4

Channel Coding and Its

Potential

Almost all codes are good, except those we can think of!

Attributed to the late J. Wollowitz

In Chapter 3 the performance of many signaling formats has been analyzed for important
channel models and different detection strategies. The point of view there was that each
symbol produced by the modulator was a message in itself, independent of previous
and future transmissions, observed in the presence of white Gayssian noise. Thus, in
the absence of intersymbol interference effects, the detector can optimally decide each
symbol by itself, as in one-shot transmission.

The process of channel coding produces modulator input symbols that are inter-
related in either a block-by-block or sliding-window fashion, introducing a crucial aspect
of memory into the signaling process. At the same time, there is introduced a controlled
redundancy, in that the number of actually producible waveforms in a given interval
is less than that which could be produced by the same modulator when no coding is
employed.

The reasons for adopting coding are, broadly speaking, to achieve highly reliable
communication at rates approaching the channel capacity limit defined by the physical
channel and to do so in an instrumeniable way. We have, for example, determined
that orthogonal signal sets achieve the Shannon capacity limit for the infinite bandwidth
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Gaussian noise channel as M becomes very large, but the demodulator complexity per
bit grows essentially exponentially with M, as does the bandwidth, and we do not regard
this as an attractive solution. The channel coding approach offers the same potential
performance, in principle, through construction of elaborate signal sequences lying in
high-dimensional spaces, but composed from elementary modulator sets. A now classical
example is the use of binary channel encoding functions, with code symbols commu-
nicated using antipodal signaling, where signal sequences can be viewed as occupying
a (sparse) set of the vertices of a high-dimensional cube. The net result is that spec-
tral occupancy and demodulator/decoder complexity can be far less than the orthogonal
construction would imply for equivalent levels of performance.

Channel coding is useful in virtually every kind of noisy channel transmission
problem; some still regard its principal area of application as the unlimited-bandwidth
channel, but recently major contributions to practical communications have been made by
intelligent coding for band-limited channels. We will also find coding offers particularly
impressive gains on fading and time-varying interference channels.

Our first section in this chapter is a description of generic channel coding ap-
proaches to provide the reader with general familiarity and a preview of material 1o
follow in-Chapters 5 and 6. Beyond these fundamental notions, however, we are not
presently interested in the exact construction of codes. Instead, the major theme of the
chapter deals with the information-theoretic potential of coding, without resort to de-
scription of best codes. With the converse to the coding theotem presented in Chapter 2,
we have demonstrated that it is impossible to transfer information faster than the channel
capacity limit, C, measured in bits per channel use, with vanishingly small error prob-
ability. The positive side of the argument, that if the information rate R is strictly less
than C arbitrarily reliable communication is achievable, is referred 1o as the direct noisy
channel coding theorem and is the subject of a major part of this chapter. In developing
this result, we shall also encounter the parameter Rg, which serves as a compact figure
of merit for a modulation and demodulation system when coding is émployed. The im-
portance of R to coded systems was first advanced by Wozencraft and Kennedy [ 1) and
later by Massey [2]. The remainder of the chapter examines in detail the R, viewpoint
toward communications as @ modern means of assessing different modulation and coding
options.

4.1 A TAXONOMY OF CODES

At the heart of any coding technique is a mapping from sequences of message symbols
to sequences of input labels to the modulator, which in tum produces a sequence of
modulator signals uniquely determined by the input to the encoder. Coding techniques
may be classified based on the structure behind the encoding function, that is, the re-
lation between message symbols and modulator inputs. The first distinction, shown in
Figure 4.1.1, is between block codes and trellis, or sliding block codes. Both may be
viewed as mappings from the space of discrete-alphabet input sequences, called messages,
to the space of discrete-alphabet output sequences, called codewords or code sequences.
Frequently, but not always, the two alphabets are the same.
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Figure 4.1.1 Taxonomy of channe! cading techniques.

As the name connotes, block codes operate in block-by-block fashion, and each
codeword depends only on the current input message block. We may view the code as
a dictionary of codewords addressed by input messages. Block codes may be further
categorized as linear or nonlinear codes. Linear codes are defined by a linear mapping
(over an appropriate algebraic system) from the space of input messages 1o the space of
output messages, and this is ultimately representéd by a matrix multiplication. As we
shall see, this algebraic structure allows significant simplification of encoding and decod-
ing equipment. Linear codes are also known as parity check codes because we can view
the codeword as comprised of a message component and parity symbols, analogous 1o a
single parity bit used in simple error-checking systems. ‘Nonlinear codes, although not
particularly important in the context of block coding, are the remaining codes. The prac-
tically important linear codes are in a more restricted class known as cyclic codes, or at
least codes closely related to cyclic codes. Their cyclic structure admits still further hard-
ware or software simplifications. These properties will be further developed in Chapter 5.

Trellis encoders, in contrast, should be viewed as mapping an arbitrarily long input
message sequence 10 an arbitrarily long code stream without block structure. The output
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code symbol(s) at a certain time is defined to depend on the stafe of a finite-state encoder,
as well as on current inputs. Since the encoder state is normally specified by a short
block of previous inputs, the name sliding-block code is sometimes used. In practice,
messages and code sequences are terminated at some point, in which case we could say
we have produced a (long) block code. However, the description and instrumentation of
trellis codes are quite unrelated to this observation. Trellis codes get their name because
the codewords may be identified with a regular, directed finite-state graph reminiscent
of a garden trellis, a concept introduced by Forney [3].

Linear trellis codes are known as convelutional codes, because the code sequence
can be viewed as the convolution (in discrete time and over a discrete alphabet) of the
message sequence with the encoder’s impulse response. In practice, most trellis codes
have thus far been linear codes, but this linear/nonlinear option does not have significant
impact for maximum likelihood decoding in the case of trellis codes. The complexity of
the ML decoder depends only on the number of states in the encoder, whether or not the
encoder implements a linear mapping. It is true that the design and analysis of codes is
simplified by the linearity property, and some simple decoding procedures (for example
syndrome’decoders) require the linear structure. This will be révisited in Chapter 6.

So, what is the underlying thought behind coding? Why bother with the complex-
ity? Both kinds of codes install two key features into the code sequence: redundency
and memory. Redundancy means that the set of allowable code sequences, or codewords,
is smaller (often many orders of magnitude smaller) than the number of sequences sug-
gested by the size of the code alphabet. Thus the code symbols do not carry as much
information per symbot as they might without coding, and we speak of the transmissions
as being redundant. This redundancy may accomplish little, however, unless the code
symbols depend on many input symbols, which we could ascribe as memory. Equiv-
alently, the information sequence is somehow diffused throughout the code sequence.
The combination of the two features allows the decoder to use sequence observations
to make more reliable decisions about the original message by exploiting the averaging
tendency associated with the law of large numbers. This will become evident shortly.

Prior to Shannon’s work, communications engineers undersiood a fairly obvious
fact—that redundancy was useful at increasing reliability, in the form of repeating the
message several times, hoping to get it comrect by majority voting among successive
decisions. The problem is that this repetition reduces the information throughput per
channel use. The missing conceptual ingredient was that encoding and decoding with
memory could avoid this large penalty in throughput while still maintaining high relia-
bility. Shannon showed that, as long as the message has a sufficiently small attempted
throughput per channel use, then high reliability is possible. How smalf is smail enough?
Channel capacity is the magic number!

In the roughly 45 years since Shannon’s paper appeared, both block codes and
trellis codes have had their share of advocates, and the debate over the relative merits
of the two classes of codes has been occasionally heated and usually entertaining. One
wag has joked that “block codes make for good papers, but trellis codes make for better
sales.” Both types of codes have their own advantages in certain applications, which
will become clear in the next two chapters, and it is essential for the communication
engineer to be fluent in the language and principles of both. Actually, there is more
congruence between block and trellis codes than commonly realized, which we shall try
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to illuminate, and, for that matter, some of the most powerful approaches in use today
utilize block and trellis codes in a concatenated, or hierarchical, manner.

In the following sections, we shall further develop the coding potential of block
codes for no other reason than that the block structure is simpler to visualize and analyze.
Our objective is not to highlight specific techniques, which we shall study in Chapter 5,
but to glimpse the real promise of information theory for reliable digital transmission.

4.2 INTRODUCTION TO BLOCK CODIN(-E‘- AND OPTIMAL DECODING

A block code C is merely a list of T codewords, x;,i = 1,..., T, each an n-tuple
whose entries are from an alphabet of size g. These codewords are t0 be used for
representing one of T messages, and assuming that the message source selects messages
equiprobably and independently from message to message, the entropy of the codeword
selection process is log, T bits per message.

The codewords are injected into the available channel by some digital modula-
tion process (often the alphabet size ¢ matches that of the chosen modulator), and we
assume for now that the cascade of modulator/channel/demodulator is a memoryless
channel, perhaps a discrete-output channel. The information exchanged between source
and user, if no uncertainty remains after observing the channel output sequence y, is
log, T bits, or (log, T)/n bits per codeword symbol. We define the latter as the rate of
the code:

_ log, T
T oon

information bits per channel symbol. (4.2.1)

Alternatively, a code of rate R and block length n has T = 2"% codewords.

For example, if we generaie a table having T = 1024 codewords of binary
I5-tuples, this forms a code of rate R = 19 =1 7 bits/channel symbol. A rate R = ; code
with codewords each n = 80 bits long would have 2% codewords! This, in fact, is not at
all a large code by modern standards, which suggests something other than table-lookup
encoding and decoding must be employed. It is interesting to note that, even for this
relatively modest coding arrangement, commanication of the entire set of codewords at
a source rate of 1 Gbps would require duration of many orders of magnitude longer than
the age of the universe!

We should emphasize that no special mathematical structure has been imposed on
the code at this point, although we will do so in Chapter 5 when dealing with actual
implementations. For the present, a code is simply a dictionary, or lexicon, relating
messages to codewords,

Now consider the situation shown in Figure 4.2.1. The message source selects a

 message, say the ith message, to which is associated a codeword, x,,. We will con-
centrate initially on the case where each code symbol of the selected codeword is acted
on by a discrete memoryless channel (DMC) with a g-ary input alphabet and Q-ary
output alphabet, where @ > g. The physical origins of this channel are not important
for the present. The channel is completely specified by input/output transition probabi-
ities P(y}x). The decoder seeks a minimum-probability-of-error decision, based on the
sequence y, about which codeword was transmitted and, thereby, which message was
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y; € Q-ary alphabet

Figure 4.2.1 Block coding framework for DMC.

sent. Assuming that codewords are selected with equal probability, the best rule is, as in
Chapter 2, the ML rule; that is, find that x,, which maximizes P(y|x). Because of the
memoryless channel assumption, we may express this as

n—1
N X, 422
max P (y|x;) l:lgclel P(y1xi;) (4.2.2a)

where x;; is the jth symbol in the ith codeword. Extensions of this basic model include
the case of vector-valued continuous r.v. outputs from the channel, collected as ¥ =

(Y0, ¥1, .. -, ¥a_1). We would then express the task as
n~1
max f (§Ix) = mag!jo Fyilxip). (4.2.2b)

Still another extension is the situation where the channel, or more precisely the de-
modulation equipment, supplies “side information™ about the channel state(s) during the
duration of a codeword. This side information is employed to construct the relevant
likelihood functions for a given time index. We will return to such cases at the end of
the chapter.

Returning to the DMC case, we can Just as well take logarithms (to any base) of
the product in (4.2.2), obtaining the equivalent rule

a1 n- |
mx;axglog P(yjlx,) = rr;?x;l(yj,x;f) = max A(y, x). (4.2.3)
Here we have introduced the notion of a symbol metric, A{ Y Xij) = log P(y;lxi;),
which scores each code symbol by the log likelikood. The total score, or metric, for a
codeword, A(y,x;), is the sum of these metrics,

Occasionally, for reasons of convenience, metrics other than the optimal log-
likelihood metric are used. However, for many channels and modulation formats, the
optimal metric is easy to determine and implement, as the next two examples illustrate.

Example 4.1 Maximum Likelihood Decoding on the BSC

Consider transmission of binary code symbols through a BSC, which might arise from a
variety- of binary modulation and detection options. Let € be the channel error probability.
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The likelihood function for sequences, P{y|x;), is given by

=1}

Piylx;,) =1 | Plvilvp)
D) Y (4.2.4)

= Ed,f(y'li)(l — e)"*‘fH(y-xJ‘

where the function dy(y. x;) merely counts the number of places where the vectors y and x;
differ. This function is known as the Hamming distance between vectors and is fundamental
1o the study of coded systems. Because of its central importance, we repeat: the Hamming
distance between two n-tuples over the same alphabet (binary or otherwise) is the number
of positions where the vectors are not egual. Hamming distance is a true distance measure
in the mathematical sense, satisfying requirements of nonnegativity, symmetry, and the
triangle inequality. (See Exercise 4.3.1.)

Retuming to the decoding task, it is obvious by taking the logarithm of (4.2.4) that
the log-likelihood metric is

A(_\ux,')’: log P(y|x;) = dy(y. %} log l ¢ + nlog(l — ¢). (4.2.5)

- €

The second term in (4.2.5) may be discarded since it contributes equally to all codeword
melrics. Thus. maximum likelihood decoding on the BSC corresponds to sminimum Hamming
distance decoding. provided ¢ < 1/2. We can add any constant to the log likelihood, as well
as scale by any positive constant, without affecting the outcome. Hence, we could assign
the per-symbol metric

0. Vi = X/,

and find the code vector x; whose metric Ay, x;) is largest. More typically, we adopt a
symbol metric

(4.26)

Yj = Xij.

4,27
¥ # Xij 4.2.0)

0.

Ay xijy =1,

and choose that codeword with smallest metric sum, which translates to performing minimum

Hamming distance decoding. This principle generalizes to any g-ary uniform channel, but
nol to g-ary symmetric channels, as discussed in the next example.

Example 4.2 Decoding of 8-PSK with Hard-decision Demodulation

Suppose that codewords are formed from an 8-ary alphabet and are communicated using
8-PSK modulation. Let the channel model be AWGN, and suppose the demodulator forms
a hard decision on each code symbol, forming the best estimate of each symbol by itself.
The resuiting channet is the 8-ary symmetric channe! shown in Figure 4.2.2. Notice that all
transition probabilities are not equal in the error set, since, for example, adjacent symbol
errors are more likely in M-PSK iransmission than, say, antipodal error types.! Nonetheless,
we can score each received symbol against a hypothesized code symbol with the meiric
log P{ynlxn), where both y, and x, are in the set {0,1,....7). Here it is not simple
Hamming distance between observed and test symbols that provides the optimal metric. 1f
desired, the metrics, which are real numbers, may be scaled, translated, and rounded to
integers without substantial 1oss in performance.

""This constitutes an example of a symmetric, but nonuniform channel.
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Figure 4.2.2 Eight-input, 8-output symmetric channe! for hard-decision 8-
PSK transmission.

Example 4.3 Soft-decision Decoding on a Gaussian Channel

Suppose that antipodal signaling is employed for code symbols and thai the symbol energy-
to-noise density ratio is a rather low E;/Ng = 1/2, or —3 dB. Rather than performing a
hard decision on each code symbol, which would have error probability Q(1) = 0.1587, let
the demodulator quantize the correlator output to eight levels, with level spacing 0.5 £ S' 2
This constitutes a symmetric 2-input, 8-output discrete channel, with transition probabilities
0.308, 0.192, 0.192, 0.150, 0.0916, 0.0442, 0.0171, and 0.00598. (These are obtained using
integrals of Gaussian p.d.f.’s.)

A decoder, when testing a certain binary symbol, should employ the log-likelihood
metric

AMyj, xi) = log Pyjlx;), (4.2.8)

which would be among the values —1.18, —1.65, —1.65, —1.90, —2.39, —3.12, —4.07, and
—5.12 when natural logarithms are employed. In practice, these metrics would be translated
and scaled so that low-precision arithmetic is possible.

Decoding with finely quantized demodulator cutputs is known as seft-decision decod-
ing in the literature, and at least on the Gaussian channel it buys important improvements
in the energy efficiency as we will see. The maximum-likelihood rule forms a partition
of observation space, and soft-decision decoding forms decision boundaries that are closer
to the boundaries for the unquantized channel than with hard-decision decoding. To illus-
trate, suppose that the two codewords are (0, 0,0) and (1, 1, 1). Example 2.24 showed that
the optimal decision boundary is a plane biseciing the line connecting the two signals in
signal space. Soft-decision decoding classifies a vector (yp, y|, ¥2) according to the sum
of log likelihoods, as before, with the resulting decision boundary shown in Figure 4.2.3.
Near the origin, where the connecting line bisects the plane, the corrugated surface of
Figure 4.2.3 is clearly a reasonable approximation to the ideal and much closer than the
hard-decision boundary shown in Figure 2.6.6. Of course, if we had chosen the quantizer
boundaries differently, the surface changes, pointing to the need to perform quantization
carefully. ’

Sec. 4.2  Introduction to Biock Coding and Optimal Decoding 307



Figure 4.2.3 Decision surface for two codewords, x; = (=1, -1, ), xa = (1. 1. 1),
8-level quantization.

Example 4.4 Decoding on a Fading, Noise-varying Channel with Antipodal Signaling

Te consider a more complicated example, one- with continuous variable channel outputs,
suppose the codewords are binary; that is, x,, € {0, 1} and that code symbols are transmitied
with an antipodal modulation scheme, say PSK, and that coherent demodutation is performed.
Furthermore, we let the channel act on each symbol with a gain factor ; and assume that the
demodulator output carries a time-dependent Gaussian noise with variance aﬁ. as depicted
in Figure 4.2.4. We suppose the noise is independent from symbol to symbol. This situation
might arise physically from a fading channel, with time-varying noise level due to pulsed
jamming. We assume that both channel gain and noise level are known by the decoder, an
example of the side information menticned earlier.

)?ij -1, 1}

LAntipodal
Mapper

xij€ {0, 1} —

Figure 4.2.4

Gain E,*2

a n;

Amplitude Additive
Fading Gaussian
Noise, n(O,o?)

Channel model for Example 4.3.
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The observation y; is a Gaussian random variable whose mean is given by +a;E;"",

depending on the code symbol sent, and whose variance is crf. The likelihood function then
is, due to independence of successive transmissions,

n—1

2 I ~ (-, %,;E," 7 20
flxi, (g} fo?h = H) ramme e (4.2.9)
1= J

where we have mapped x,; 10 ¥;; by
K= 24 ~ 1. (4.2.10)

{This relation takes {0, |} code symbols into {—1, |} modulator inputs.)

After forming the logarithm of (4.2.9) and eliminating terms that either do not involve
the codeword index i or are the same for both modulator symbols, we find that the per-
symbol metric should be

Ay xij) = a—’y‘zx”, 4211

al
Thus, the optimal codeword metric is a weighted correlation of the real codeword sequence
and the real-valued output of the channel, with weighting proportional to signal amplitude
and inversely proportional to noise variance, The nonfading, fixed-noise-level Gaussian
channel is obviously a special case of the model here, and in that case all weighting factors

can be removed. Then signed addition of the demodulator outpus is the maximum likelihood
decoding procedure.

Let’s now return to the general coding/decoding task. Looking beyond the decoding
complexity of performing the maximization in (4.2.3), we inquire about the probability of
a decoding error. The ML decision rules given previously imply a partition of cbservation
space into decision zones D;,i = 1,2,...,T. Letting & denote the decoder’s choice of
codeword, we write the error probability as

T T
PR#x) = Z P(x)PG #xix; sent) = D P(x)P(y € Di|x; sent),  (4.2.12)
=2 C

i =]

where D] is the complement of the decision region for codeword x;. In general, the
conditional error probabilities in (4.2.12) may vary among codewords. Unfortunately, it
is quickly apparent that (4.2.12) is difficult to evaluate exactly, even for simple situations
with highly symmetric codes used on simple channels such as the BSC. Moreover, the
code design problem is to specify the code that minimizes the probability of error (4.2.12).
This is generally even more formidable. Shannon cleverly avoided this difficulty by not
tackling head on the exact analysis of a given code and design of the “best” code, but
instead analyzing the ensemble of all codes with a given set of code parameters (rate,
alphabet, and block length). He was able to prove certain behavior for this ensemble:
if R < C, the channel capacity defined earlier, then the probability of error, averaged
over the ensemble of codes, diminishes to zero as n increases. Since at least one code in
the ensemble of codes must be as good as the average, this clever argument proves the
existence of good codes without ever finding them. Researchers later showed that this
convergence of error probability to zero happens exponentially fast with block length,
but the fundamental breakthrough was to show that if the attempted rate is less than
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capacity then arbitrarily reliable communication is possible. Conversely, if rate exceeds
capacity, we have already seen in Chapter 2 that the performance cannot be arbitrarily
good.

The central problem of coding theory since 1948 has been to find casily im-
plementable codes that approach the kind of performance that Shannon’s early work
promised. This constructive coding is the topic of Chapters 5 and 6, where we discuss
the specifics of block and trellis codes. For the remainder of this chapter, however,
we further investigate this behavior of code ensembles and introduce another power-
ful descriptor of a modulation-channel-demodulation sysiem, called Rg, which is now
widely employed in communication system analysis. We will study the implications for
intelligent design of coded communication systems, based on channel capacity and Rp
considerations.

4.3 TWO-CODEWORD ERROR PROBABILITY AND R,

To approach the problem of bounding the error probability for general codes, we first
consider two specific codewords X, and x,, with block length n, used on a memoryless
channel. The channel output can either be discrete or continuous, although we will
emphasize the discrete case at the outset.

We compute the probability of the event that x; is transmitted, but x; has higher
likelihood, when computed by (4.2.2) or (4.2.3), as a result of channel imperfections,
We write this error probability as

Paxi = x) = 3 P(ylxi), (4.3.1)

yeD,

where we interpret the summation as an n-dimensional sum and denote the decision
region for codeword Xx; by D;. (See Figure 4.3.1.) In (4.3.1) we are simply totaling the
probability of having received any y in the error set, given transmission of x,.

We have earlier indicated that the exact evaluation of error probabilities is a tough
task in general, and we shall settle for an upper bound to (4.3.1). To do so, we can

Space of
Received n-tuples

Figure 4.3.1 Decision regions for two-codeword problem.
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multiply every term in (4.3.1) by a number larger than or equal to 1. Forall y € D,
P(y|x2) = P(y|x;), by definition of the error region. Thus, we choose (with some
hindsight) to muitiply each term in the sum by

(4.3.2)

o(y) = [P(Yixz)]m

Pyix))
which also is greater than or equal to | for all y in the range of the sum. Doing so, we
find that

Pyxi = %) < 3 PyIx) 2P (ylx)' (4.3.3)
yeD,

We can retain an upper bound by including in the summation all y’s, not just those in
the region Dj, yielding

Pa(xi = %) < ) P(yIx))' P P(yIx)' 2 Pa(xi. x2), 4.3.4)

defining Pg(x;, x2). This is a rather general expression, not requiring a channel symmetry
or memoryless behavior.

The bound in (4.3.4) is known as the Bhattacharyya bound on error probability,
and its negative logarithm is known as the Bhattacharyya distance, dg(x,. X;), between
two codewords or signal sequences:

dp(X). X2) = —logl Pg(x,. X2)]. (4.3.5)

Equivalently, the two-codeword upper bound on error probability is Pg(x,,x;) =
2—(!5(:1.:&:).

Despite the two stages of bounding, we will find that P (x;, x,) defined by (4.3.4) is
surprisingly tight for most channels of interest. Note also the symmetry of this expression,
for the subscripts 1 and 2 could be interchanged without changing the value of the sum
in (4.3.4). It might seem that the exact error probabilities are also symmetric; that is,
we are just as likely to confuse x; for x; as the reverse. However, this is not true on
asymmetric channels (see Exercise 4.3.5). Nonetheless, the hound we have obtained is
a symmetric bound for all DMCs.

This same bound can be interpreted as a Chemnoff bound, as we now show. Given
transmission of x;, an error occurs if P(y[xs) > P(y|x;). (We shall be pessimistic
regarding ties.) Equivalently, the error event is defined by the set of outcomes y for
which log P(y|x;) — log P(y|x;) > 0. Thus, we are interested in

Pxy > x3)=PFP [log Plylx2) > 0)x;, senl]. (4.3.9)

Pylx)) ~
Let’s define the log-likelihood ratio in (4.3.6) to be the random variable Z. By a Chernoff
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bound argument, as in Section 2.4,
P(Z 2 0x)) < e Ez), (%]

s log P(y|x2)
=y exp | LTI |

i [P(ylxz)]‘
Tl paixo )

(The cumbersome subscript on the expectation operator is to emphasize that the expec-
tation is with respect to the variable Z or Y when conditioned on x,.)

The conditional expectation can be obtained by multiplying the quantity whose
expectation is sought by £(y|x;) and summing over y:

PUI":)]S
P(yix;)

= Y [Py} [Piyix)]
¥

437

P(Z > 0x;) < 3 P(ylx;) [
Y (4.3.8)

We are interested in minimizing this expression with respect to s > 0. If the prescribed
channel is symmetric and memoryless, then symmetry of (4.3.8) implies the minimum
occurs when s = % Substitution of s = % into (4.3.8) then yields (4.3.4). For asymmetric
channels and arbitrary choice of codewords, the general Chemoff formulation can be
tighter when s # %

The Bhattacharyya bound (or Chernoff bound) plays an important role in our subse-
quent analysis of coded communication systems (see for example [4], [5]). One appealing
aspect of the Bhattacharyya distance is that it lends a partial geometric interpretation (see
Figure 4.3.2) to general decision problems through d, generalizing the importance of
Euclidean distance that we have already seen for the coherent Gaussian channel, or
Hamming distance for the BSC. The Bhattacharyya distance possesses two of the usual

Space of
Codewords

Figure 4.3.2 Bhattacharyya distance between two codewords.
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attributes of a distance metric, nonnegativity and symmetry, but lacks the triangle in-
equality property (Exercise 4.3.3).

We next proceed to evaluate the Bhattacharyya bound (4.3.4). By the assumed
memoryless property of the channel

n—1
Pyix)y = [T Pk, (4.3.9)
1 2

Substituting (4.3.9) into (4.3.4), expanding the n-fold sum, and recognizing that this can
be written as a product of scalar summations, we find

n—1Q-1
Pg(x;,x3) = “ Z [P(yijXIj)P()'kj \x;g,-)]l/z. (4.3.10a)

j=0 k=0

where () is the size of the demodulator’s output alphabet.

For memoryless channels producing a vector y; of continuous random variables
at each position, exactly the same line of reasoning may be followed as in (4.3.1)
through (4.3.4), except that we replace summation over the output alphabet by inte-
gration and use conditional probability densities instead of probabilities. We obtain

/ a—1 oo
Ps(x),x;) = nf [f @il f31x2)]' 7 dy;. (4.3.10b)
j=07-%

(The integral is a multiple integral over the space appropriate for y.) Notice again that
in both forms, (4.3.10a) and (4.3.10b), the resulting bound for error probability is a
symmetric function of its two arguments.

The bound in (4.3.10) may be more compactly rewritten as

n—1
Pa(xi,x) =[] b @3.1h)
=0

if we introduce the notaticn b; for each term of the product in (4.3.10a) or (4.3.10b);

0-1
b= 3 [Py b )P (v o] (4.3.12a)
k=0
oc
1/2
or h, =/ [y lx) fiaap] " dy;. (4.3.12b)
-x

Notice that b; is a function of the choice of two code symbols and the channe!
transition probabilities for the jth symbol.position. Given two specific codewords, it
is straightforward to evaluate (4.3.12) and hence (4.3.10), as the following examples
illustrate.

Example 4.5 Two-codeword Bound on BSC

Suppose two binary codewords, (00000) andy(10101), are to be used on a BSC with parameter
€, where ¢ is the error probability for each code symbol. (The fact that this is not the best
choice of two codewords is immaterial.) In those positions of the codewords where the
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symbols disagree (positions 1, 3, and 5), we can evaluate b; from (4.3.12a) to be
b = [POIO)PO))'2 + [P(110)P (141))'2
=[e(1 -~ €)]'2 + [e(1 — )}/ (4.3.13a)
= [4e(1 ~ €)'/,
In those positions where the code symbols agree, b; is 1. Thus, we have
b= {Ue=n™ A @3.13n
and substitution into (4.3.11) yields
Py (xi,x2) = [4e(l — €)' (4.3.18)

since the codewords differ in three positions. More generally, we may write the Bhat-
tacharyya upper bound on two-codeword error probability for the BSC as

P(X1.X3) = [de(1 — )} (1. %)/2 4.3.15)

where dp(x), x) is the Hamming distance between the two codewords. We reemphasize
that this same quantity serves as a bound on the probability that x; would be chosen instead
of X3, given the latter was selected for transmission.

In this simple case, it is easy to evaluate the exact probability of message error. A
minimum Hamming distance decoder will fail if and only if two or more channel errors
oceur in the three positions where the codewords differ. (Notice that errors in the positions
where the two codewords agree are not harmful.) Thus,

Pxi - x3) = Cgez(l ae)' +C'Ze3
’ (4.3.16)
= 362(1 ~€)+¢’.

As we would anticipate, the exact probability is strictly fess than the Bhattacharyya
bound. (4.3.14), for any € < §.

Example 4.6 Two-codeword Bound for Antipodal Signaling on AWGN Channel

314

Consider the case of binary coding where each binary code symbol is transmitted using an
antipodal signal set. The basis function form of the demodulator produces scalar outputs that
are Gaussian with mean either }E',l 2 or —!:?3l ” and variance o2 = Ng/2. The unquantized
observation is passed to the decoder. From the inleéml form in (4.3.10b) we have that

oo
m=flﬂmmwmmmmwf (4.3.17)

o0

Clearly, if x|, = X3, then b; = 1. If not, we can substitute the appropriate conditional
density functions, expand, complete the square of the exponen{, and then recognize the
integral of a resulting p.d.f. to be 1. We find that

b- _ e—Es/Nﬂ' xlj # ~\'2‘,|'- (4 3 ls)
! l. ,l‘ij =A’2J;, e

(This is a special case of the general AWGN channe! bound developed shortly, se we skip
the details for the present.) Thus, for antipodal signaling in AWGN, the Bhattacharyya
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bound becomes

P(x; = X3) < Pp(x].xp) = e~ WO xE/N (43.19)

where again dy (X], X2) is the Hamming distance between codewords.

It will be convenient to define the Bhattacharyya parameter B as the value of b; when
x1j # x2j- Thus, in Example 4.5, B = [4¢(} — e)}‘ﬂ, while in 1he present example the
Bhattacharyya parameter is B = ¢~ £:/Mo_ In some sense, B will always depend on channel
quality and we will have B < |.

Before proceeding with the development of the channel coding theorem, we detour
briefly to consider repetition coding. Suppose that we have available a g-ary channel
and exactly ¢ messages, or codewords. Each codeword is formed by repeating any
of the g symbois in the code alphabet n times, with obvious redundancy. The code
rate is R = (log, q}/n bits/code symbol. In exchange for the rate per code symbol
becoming small as n becomes large, we can, by (4.3.10) and (4.3.11), at least make the
two-codeword error probability go to zero exponentially in n; that is,

Py(x; — x3) < B”, (4.3.20)

because, the codewords differ in n positions. By a simple union bound, the probability
of choosing one of ¢ — 1 incorrect codewords is less than (g -- 1)B”, and thus we find
that the probability of a message error is exponentially decreasing in n. We will soon
find that vanishing throughput, or rate, need not be the price for high reliability.

4.3.1 Ensemble Average Performance for Two-codeword
Codes

Now imagine that we do not focus on specific codewords x; and x,, but that we form
them by a probabilistic mechanism, with P(x) denoting the probability assigned to
n-tuples from an alphabet of size g. We assume that the two codewords are gener-
ated independently, and we also suppose that the code symbols of a given codeword are
generated independently so that

n-1
Px) = [T Pxip. (4.3.21)
11

Thus, the scalar probability mass function P(x) completely defines the probability struc-
ture for forming codewords. In a binary coding setting, we form codewords according to
a coin-flipping process, not necessarily with a fair coin, however. The conceptual view
is illustrated in Figure 4.3.3. This formulation is often described as a random coding
strategy, although the name is misleading. Once we adopt a code, the coding process is
completely deterministic, and the decoder is given the code in use.

A completely equivalent view is the following: We form an experiment that consists
of random seiection of a two-codeword code from the ensemble of ail two-codeword
codes of length n. The probability measure assigned to selection of a given code is just

P(x).%2) = P())P(x) = [[] Plxi,) Plazy). (43.22)

=1
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Two Codewords ———Q C

in Each Code,
Xiye Xip

| "
Universe of —
Two-codeword Codes

with Block Length n,
Universe Has 22" Codes

Figure 4.3.3 Ensemble of two-codeword block codes.

We now ask for an upper bound on the two-codeword error probability with a
randomly selected pair of codewords. Equivalently, we could ask, *“what is the probability
that we randomly pick a code (with two codewords) and choose to send the first codeword,
yet the decoder decides the second was sent?” We simply must average our previous
result for two specific codewords. Noting that the two-codeword bound was symmetric
in its arguments, we replace P(x; — X;) by simply Py(X;, X»). Then the ensemble
average error probability is

Pai(x), %) < 2 Z P(x)JP(x2) Pg(x), X2) = Pp(xy, X2). (4.3.23)
LI

Substitution of the product distribution assumed for P(x; ) into (4.3.23) and using (4.3.10)
gives, after manipulating sums,

n—1\
B ) <[] 303 " PoapPap [P pP(lap)' (43240

=0y ;; xy

After realizing that the subscripted variables in (4.3.24a) are merely dummy variables
and that each term in the product is independent of position index j, we may simplify
this result to

n—1 2
Pi(x1, %) < ]—[Z[E P(x)P(y|x)‘f2], (4.3.24b)
j=0 y x

where the two summations are over the output and input alphabets, respectively.
To more compactly represent (4.3.24), we introduce a new quantity, Ro(P):

2
Ro(P) = ~log, (Z[Z P(x)P(ny)""} ) (4.3.25)

¥

In this definition, Ro(F) carries dimensions of bits/channel symbo). This definition allows
writing the bound on error probability for the ensemble of two-codeword codes as

Pylx;, x;) < 27"RlP), (4.3.26)

Notice that we have switched now to general codeword subscripts, for the result would
hold for any pair of codewords in a larger code, provided the codeword probability
structure is unchanged.
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We are free 10 choose the distribution on code symbols P(x} so that we obtain the
smallest upper bound. Thus, we derine Ry 10 be

2
Ry = 1?3);{_ Iogz(zv:[z P(x)P(ylx)”z] ) } (4.3.27a)

from which

Pa(x;, xz) <27 "Ro, : (4.3.27b)

Due to monotonicity of the logarithm function, an equivalent expression for Ry is

2
. 12
Ro = log, lirp(l‘l}lZ[Z P(X)P(y|x)" ] ” (43.28)

For symmetric channels, as defined in Section 2.7, an equiprobabl}: distribution on
the input alphabet, P(x) = 1/q, achieves the extremum, as it does for capacity. This
can be readily shown by study of (4.3.28). The exptession for R in this case becomes

2
Ro=—log, | 3" [% 3 P(ylx)‘”J

y

1 2
= log; q — log, (E Z[Z P(yi){)]/z] )

.\.

(4.3.29)

Even for channels that are nol symmetric, Ry given by (4.3.29) is a lower bound
on (4.3.27a) and hence yields a valid upper bound for Pg(x;, x3). The second loga-
rittm term on the right-hand side is positive, and thus Ry < log, ¢ bits per signaling
interval, with equality approached as the channel quality improves.

Example 4.7 Application to the Binary Symmetric Channel

Let’s choose two codewords of length n = 10 by tossing a fair coin. (We can imagine this
as the choice of a code from the set of all possible codes with two codewords of length 10.)
We may get an especially good code, say x; = (0000000000) and x5 = (11t1111111), or
we may unfortunately produce identical codewords! Such is the spirit of “random coding.”
In any case, the expected error probability, with expectation taken with respect to choice of

codes, is
Py(x). %2) < 2710Rs (4.3.30)
where Ry = | —log[l + /4¢(1 — €)] as found from (4.3.29) and (4.3.27b). If ¢ = 0.1, then

Rg = 0.322 bit per code symbol, and Pg(xy, x;) < 2710032 — 0 108. This is undoubtedly
disappointing, since the expected error probability of a randomly selected code is slightly
worse (at least by this bound) than obtained if we merely send uncoded messages 0 or |
through the channel with one transmission!

We might compare this with the performance of the best previous code, whose ML
decoder, using a majority vote, will decide correctly if fewer than five errors occur in a
codeword transmission. If five errors occur, we choose either codeword with probability %
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The probability of a decoding error for such a code is

P(x) = x32) = %P(5 errors in 10 transmissions) + P (6 or more errors)

4.3.31)
1 .05 5 Zm 10, j 10—

J=b

which is 8.9- 1074 for € = 0.1, clearly much smaller than cur bound for a randomly selected
pair of codewords. The bound’s weakness derives from two sources: the inclusion of bad
codes in the entire ensemble and the Bhattacharyya upper bound for a specific code. The
example may suggest that random coding ideas are rather impotent, but in fact they are at
the heart of the proofs of coding theorems to follow.

Historical Aside: The parameter R initially surfaced in conjunction with se-
quential decoding of convolutional codes [6,7), where it has an important
complexity implication. There it was called R.omp. for computational cutoff
rate, for it was shown that attempts to transmit with code rates larger than
Rcomp were faced with a mean decoder computation per bit that was not finite.
This has promulgated a folklore that, although we can in principle commu-
nicate at rate near channel capacity with arbitrarily small error probability,
Rg represents an upper limit on rate for practically instrumentable reliable
communications. There seems to be little other precise support for this no-
tion. Sequential decoding will be described in the context of trellis codes in
Chapter 6.

To recap, we have bounded the probability of error for two specific codewords
of length n, in terms of the channel transition probability assignments, and called this
the Bhattacharyya bound. We then proceeded to choose the codewords according to a
probabilistic mechanism and found an upper bound on error probability for the ensemble
of two-codeword codes. By definition, this quantity is 2%,

4.3.2 Extension to Discrete-input, Continuous-output
Channels

The previous development may be extended to the discrete-input, continuous-output chan-
nel as follows. We begin by assuming that the output of the channel for eack code symbol
is an N-dimensional continuous vector y. For a specific choice of two codewords X and
Xz, we recall from (4.3.10b) that

n—| o0
Pe(xhxz):nf [ e ) £ (y;1x200' 2 dy;.
j=07=

We again consider an ensemble of two-codeword codes and let the probability assignment
on code symbols have the independent structure used in the discrete case. We let P(x)
denote the marginal probability assigned to each letter of each codeword. Formulation
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of the ensemble average P;(x,, x;) yields

Pa(x, %) < 2R, (4.3.32a)
where
Ry = max Ro(P) (4.3.32b)
P(x)
and where
) .
o — 12

Ro = max log, [’ (Z P(x) f(ylx) ) dy}. (4.3.32¢)

The integral in (4.3.32¢) is interpreted as N-dimensional.

A helpful alternative argument is to imagine a discretized version of the output
vector obtained by uniformly partitioning N-dimensional space into hypercubes. This
produces a discrete memoryless channel to which (4.3.27) can be applied. The ap-
propriate conditional probabilities would be obtained by integrating conditional density
functions over the various regions. In the limit as the partition becomes fine, the sum
over the output variable becomes an integral, and we obtain (4.3.32).

In an important special case, (4.3.32) can be considerably simplified. That is,
consider an N-dimensional set of M signals to be transmitted over an AWGN channel
with coherent detection. The receiver first projects the received waveform into signal

space, obtaining the output vector y = (yp. ¥;. ..., ¥n¥-1). These are independent Gaus-
sian random variables, each with variance 62 = Ny/2. Furthermore, the mean vector,
conditioned on transmission of signal s5;(t), is 8; = (50, Si1.....5 n—1), the vector of

signal-space coordinates. We shall utilize vector norm notation for manipulating den-
sities; specifically, ||y — x; 17 will be the squared Euclidean distance between y and x;.
This can be expanded as

ly — %12 = liyl° = 2y - x; + (%[ (4.3.33)

By substituting the known conditional density information into (4.3.32c) and realizing
that the integrand is a product of sums, we obtain

1 22
RO(P) = - lOg f [__T_Te“(|1!—51|1 20 )]
sz g (2ra N2

i R
[(2,10-2)4\1/2 e—(lly"hl’/-az)] P(s|)P(s1)dy.

1/2

(4.3.34)

After expanding the integrand, we obtain

i
Ro(P) = _IOgZme

W o (4.3.35)
eI =Gitsry+is P+ 200 p g ) pso) dy.
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Completion of the square in the exponent yields

1 S+ 8
Ro(P): —logZZ/Wexp[—lly— >
S %
S -8 :

w113

The integral is 1 for any choice of code vectors, since it is recognized as the integral
of a multidimensional Gaussian p.d.f. Hence, the final result simplifies to

Ro(P) = —log}_ Y ek p(s,) P(sy), (4.3.37)
LU

2
o]
(4.3.36)

/202)] P(s)) P(s2).

where we have used 02 = Ny/2. This expression may be readily evaluated in terms
of signal-space coordinates for any signal set, whether QAM, PSK, orthogonal, lattice-
type, or other. For signal constellations where the set of distances to other neighbors
is invariant to choice of reference point (a2 symmetry condition holding for M-PSK and
M -orthogonal sets, for example), we have that the equiprobable assignment on inputs
maximizes Ro(P), and

M-1

Ry = log, M — log, Z (=5, /aNo) l (4.3.38)
j=0

Even when the symmetry indicated previously is lacking, it is convenient to define Ry

according to (4.3.38), remembering that the exact value might be slightly superior.

In any case, Rp approaches log, ¢ bits/channel symbol as the energy-to-noise
density ratio increases. This implies, by (4.3.32a), that for a randomly-selected code
Py(x|,X;) < 27" < g=". The latter is just the probability that two codewords are
equal in all positions, clearly an unfortunate choice of codewords.

In this section, we have demonstrated the significance of Ry for the two-codeword
situation. Obviously, our real interest is in the case where we have many (2"%) code-
words, which we pursue in the nexi section. We remark, however, that Ry will play an
important role in this case as well.

Example 4.7 Continued

As an application of (4.3.38), we suppose that the BSC assumed in Example 4.7 arose from
use of binary antipodal signaling on an AWGN channel. The error probability assumed
there, ¢ = 0.1, corresponds to E/Np = 0.817 = —0.87 dB. Suppose that instead of making
a binary decision on each coded symbol we retain the single Gaussian r.v. produced in the
demodulator as the sufficient statistic. Decoding would then employ analog correlation in
the likelihood computation, as we have earlier discussed. We thereby have a discrete-input,
continuous-output communication channel.
Substitution in {4.3.38) gives

Rg = log; 2 — logy (1 + e~ £+/Noy = 0.472 bit/channel use (4.3.39)

which we note is larger than the 0.322 bit/channel use for the comesponding quantized
channel. Continuing the assumptions made carlier, we suppose thal the block length of
codewords is n = 10. Then the probability of error for two-codeword codes, averaged over
the ensemble of all such codes, is

P(x; — x3) = 27" —2-472 _ 00379, (4.3.40)
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again significantly smaller than the corresponding result for the previous quantized channel.
This is evidence for the deleterious effect of coarse receiver quantization in processing of
specific codes.

Of course, the best code with two codewerds performs far better. It comresponds to
a repetition code, equivalent in signal-space terms to an antipodal signal set with Ep/No of
10(0.817) = 8.17. Optimal decoding will have a bit emor probability given by the bit error
probability for antipodal signals:

Py=Q[@-817)'*] =27-1073, (4.3.41)

4.3.3 Generalizations

This bounding procedure can be extended to allow for use of an arbitrary (not necessarily
ML) metric on a memoryless channel. The channel inputs are g-ary, and we assume
that the channel output is either discrete or continuous. Furthermore, we assume that
the demodulator may supply side information for each time interval, such as channel
amplitude or instantaneous noise level in a time-varying interference situation. We let
the side information in interval n be represented by the variable(s) z,.

We assume that a per-symbol metric A(x,; ¥,; z,) is employed for scoring the
goodness of a given channel output vector y against a hypothesized code symbol. Some
examples might be

Axn, Yot 2n) = —2,dp (Xn, yn), weighted Hamming meiric,
Axgy, Ya; Zn) = Xn¥n, AWGN metric,

) . ) (4.3.42)
A(xn, Yni 2n) = ZpXayn, amplitude-weighted correlation,

Mxn,¥n: 2p) = yf”, square of correlator output for hypothesized signal.

The last was encountered in Section 3.8 as an approximation to optimal combining of
noncoherently detected frequency-hopping demodulator outputs.

The decoder will decide in favor of the codeword having the greatest codeword
metric, which we assume to be a sum of symbol metrics:

N-1
AFxizD =Y My x3z). (4.3.43)
=0

Thus, the probability that x; is selected when X, is in fact sent is
P(x; = x3) = P(A(F. x252) — A(Y, X1 2) > Ofx; sent).

This probability is difficult to evaluate in the general case, but can be upper-bounded by
a Chernoff bound. Thus, we have, for any s > 0,
X]]

P(x; = x3]x)) < E[eS(A(j.xz:z)-A(j-.xnz))
n—| )
= E I_[es(l(y,..1'2,;:1)—A(y,-.x|_,;z,-))

i=0

X
] (4.3.44)
n—|

= n E[e-"(l(h ) =My N |xi;1.
j=0
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This expectation is with respect to choice of the code symbols in the various positions
and with respect to the channel action.

Clearly, when two code symbols agree in a given position, the contribution 1o the
product is a factor 1. For channels/metrics having outpmt symmetry? when x; # x;,
the jth factor is independent of the specific values x,;, xa;.

In this symmetric case, defining

D(s) = E [0 2 iy (4.3.45)
allows us to write
Pixy = %)) £ D(s)W"-™, (4.3.46)
and by defining D = min D(s), we obtain the tightest upper bound:
P(x; —» n3) < Do), (4.3.47)

This illustrates the importance of Hamming distance in general transmission seftings.

4.4 PROBABILITY OF ERROR WITH MANY CODEWORDS AND THE
CHANNEL CODING THEOREM

Using the methods of the previous section, we now move to the case of codes with many
codewords and develop expressions for the performance of ensembles of codes. The first
argument, which is simple but not the strongest available, is a union-bound argument
that endows the parameter Ry with a twofold significance. The second argument, due
to Gallager [8], is more subile and establishes the fundamental noisy channel coding
theorem and the role of channel capacity C for a DMC. Ro emerges in this development
as well.

44.1 Code Ensembies and a Simple Ensembie Bound on
Performance

Imagine the universe of all possible block codes with rate R, block length n, and alphabet
size q. Each code has T = 2"% codewords of length n symbols. Each of the n2"% symbols
can be any of ¢ choices, so there are g"*"" possible codes. Even for modest-sized codes
with ¢ = 2, n = 10, and R = 0.5, where each code would have 32 codewords of length
10, the number of distinct codes is 2***. Some of these codes are quite poor, for the
ensemble includes ¢” different code sets whose codewords are ail identical and many
more codes with at least one pair of duplicate codewords. While it is easy to describe
poor codes, it is & difficult problem to describe the best code in the ensembile, let alone
evaluate its performance exactly. So, after Shannon, we take a different route. We
are interested in evaluating the message error probability averaged over the ensemble
of codes. Despite the presence of weak codes just described, the ensemble average

*This includes antipodal modulation with the correlation metric and orthogonal signaling with square-law
metric.
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performance can be impressive as we shall see, provided R < C, thereby convincing us
that at least one code in the ensemble must be good.

Consider the following thought experiment, with reference to Figure 44.1. A
message source selects a codeword index i, i = 1,2,...,T. At the same time we
perform a code selection experiment: we imagine selection of a code from the code
universe, according to a probability distribution that is of a very simple form. We assume
that codeword probabilities P(x;) are independent, and symbols within a codeword are
also independent, as in Section 4.3. An alternative way of thinking about this process
is to form all the codewords in our code by a sequence of independent trials of a
q-ary experiment, outcomes not necessarily equiprobable. This is the random coding
framework of the previous section.

A specific code C, when used to send the message labeled i through a DMC, will
exhibit some error probability P(eji, C), which in general depends on the code selected
as well as the message index. More specifically, we are interested in the probability that
we send a codeword, say x;, and find that some other codeword x; in the code has equal
or higher likelihood, causing a decoding error. (We shall be pessimistic about resolving
likelihood ties.) The error event {X; # x;} is the union of T — 1 error events of specific
type, and we can apply a union bound to express the conditional error probability for a
specific code C as

P(eli,C) < ) P(x; > x;|C)
J#
< Z Pg(x;, x;|C),
i
again invoking the Bhattacharyya (or Chernoff) bound of the previous section, but leaving
the code conditioning in force.

(44.1)

. A A
Message| ! | Block Xi Y X "1
Selector | Encoder ~| bMcC = Decoder
bo 4
Code
Selector

Code Ensemble; Each Code Has Rate R,
Biock Length n

Figure 4.4.1 Framework for “random coding.”
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Next, we compute the ensemble average (with respect to code selection, keeping |
fixed) of (4.4.1) and obtain

Plel) =) Pa(ui.x)). (4.4.2)
i

Each ensemble average in the sum of (4.4.2) is equivalent and independent of i and j.

Thus, we find that the ensemble of codes has an error probability, for any message index

i, bounded by

Ple) < (T - YPp(x;. X)) = (T — )27, (4.4.3)

invoking the definition of Ry from the last section. Now upper-bounding T — | by
T = 2"R_ we have that the ensemble average error probability is bounded by

Ple) < 2"Ry"Ro = g7nRo-h), (4.4.4)

which, provided R < Ry, affords exponentially decreasing error probability for the
ensemble average as block length increases. This is sometimes known as a umion-
Chernoff bound or union-Bhattacharyya bound.

We will soon find it convenient to write (4.4.4) as

Pe) < 27"EWR) (4.4.5)

where E(R) = Ry — R is an error exponent that is a function of code rate R. This error
exponent is positive provided the code rate is less than the channel parameter Ry (see
Figure 4.4.2). Moreover, for any rate R, Ry — R specifies the size of the exponent. Thus,
we see, based on random coding arguments, that Ry establishes both a range of rates
where reliable communication (arbitrarily small message error probability) is possible

o

ER)

Ry Rate R

Figure 4.4.2 Error exponent E(R) produced by umon—Bhattachaxyya bound.
Both intercepts equal Rg.
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and a forecast of the performance as well. This suggests that Ry is a single-parameter
descriptor of a channel’s quality [2].

Because at least one code in the ensemble has performance matching or beating
the ensemble average, we have demonstrated the existence of good codes as block length
increases, at least for a range of rates less than Ro. Furthermore, Ry provides some
indication of the required block length needed to achieve a given performance target
on a memoryless channel, but it is wise not to accept (4.4.4) too strictly in system
designs. -

Random coding is certainly not a recipe for finding easily instrumentable and
powerful codes, but it is not as unsophisticated as it may seem. Markov’s inequality
implies that if the ensemble of codes of a given rate and block length has error probability
P (e), then no more than 1% of the codes can have error probability larger than 100P (e},
and so on. Thus, the aphorism at the head of the chapter—in effect, randomly picked
codes of appropriate rate are highly likely to be good in the sense of providing high
reliability as blocklength increases; however, the lack of code structure would generally
make encoding and decoding prohibitively difficult.

We will return later in this chapter to a thorough discussion of Ry and its impli-
cations for modulation and coding design. However, we will first develop a stronger
result, developed in principle by Shannon and extended by many others, that the range
of rates for which exponentially decreasing error probability holds is R < C, with
C = Rp. Attainment of this stronger result necessitates using something more clever
than the union-Bhattacharyya bounding approach. Our development closely follows that
of Gallager [8].

4.4.2 Generdlized Upper Bound for a Specific Code with
Many Codewords

We consider again the ensemble of codes of size T and block length n with codewords
denoted by x;,i = 1,...,T. Suppose we select for transmission the ith message. The
codeword corresponding to this message is viewed as a codeword of a randomiy se-
lected code C, with the same independent probability model for codewords and codes
used previously. Let y be the corresponding output vector produced by the DMC in
response 0 X;. We denote the conditional error -probability, given i, x,, and y, by
P(e)i.x;, y). The eror probability for the ith message, averaged over the code en-
semble, is then

Plely =) "3 Pleli.xi,)P(x:.y)
X; ¥

(4.4.6)
=Y "3 PO)PIX)Pleli, x;. y).
X% )

Nex!, we proceed to upper-bound the conditional error probability term in (4.4.6). Given
x; and y, an error will be made if some other codeword x; in the code has equal or
greater likelihood; that is, P(y[x;) = P(y|x,) for some J # i. We denote by A;;(y)
the event that, given y, the codeword x; has likelihood greater than or equal that of x;.
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Then

Pleli.xi.y) < P [U Aji (y)] . (44.7)
J#i
where inequality is aliowed because tie breaking may succeed.
Now we apply a generalized union bound to the right-hand side of (4.4.7):

P(Us) = [; P(Bj)}

This is an extension of the more familiar union bound of Chapter 2 fobtained in (4.4.8)
when p = 1] and is easily demonstrated as follows. If the sum in (4.4.8) is less than
1, raising the sum to a power between 0 and 1 cannot decrease the result. Also, if the
sum is 1 or perhaps larger due to event overlap, raising the sum to a nonnegative power
cannot make the result less than 1, and the inequality thus holds trivially.

Now. from the definition of Aj;(y), we have that

PlAi(DI= Y Pix;). (4.4.9)

x,-EX:

p

D<p<l. (4.4.8)

where X| is defined as the set of codewords x; for which P(y|x;) > P(y|x,). The sum
in (4.4.9) is n-dimensional. As in the two-codeword development, we multiply each term
in (4.4.9) by a factor larger than or equal to 1. Here we choose as our multiplier [P (y|x;)
/P(yIx)}. s > 0, which satisfies our need for all x; in the constraint set of (4.4.9). (We
previously adopted s = 5' in formulating the two-codeword bound.) Thus, (4.4.9) is

bounded as

P(H"f)]"
P{A;i(y)] = P(x;) [——- : (4.4.10)
ity ‘,;. " Fiymo
Further relaxation of the bound by including all x; in the range of summation gives
P(ylxj)]’
PlA;i(p)] < P(x-)[—— : 4.4.11)
1S DP9 | B (

Observe that in (4.4.11) x; is merely a variable of summation, and we see the
bound is independent of j. Furthermore, since there are T — 1 selections for j#i, we
have, from (4.4.7) and (4.4.8),

: Piyix) 1'71°
Pleli.x,.y) (T~ DP . . . . . 4.12
(eli. x;. y) <[( ) (x)[P(ylxi)]] s>0. 0xp<] (4.4.12)

Substitution of this conditional error probability into (4.4.6) and rearrangement
vields

»

Plel) < (T — 1) Z[Z P(x,)P(yix,)I""’][Z P(x)P(yix)-"] . (44.13)
¥ X, x

We now choose s = (I + p)~', which is nonnegative as required for 0 < p < |. (This
choice may be shown [8.9] to minimize (4.4.13) with respect to s for a given g, but in
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any case the bound is preserved by this choice.) This produces

I+p
"P(eli)S(T—1)”2[21’(1()-"()'!1)”““”} . D=psl 4414
¥ X

This expression is a general bound on an ensemble average, holding for arbitrary discrete
channels. Looking ahead, we anticipate minimizing this bound by suitable choice of p
and the input distribution P (x). Notice that this result reduces when g = 1 to our eardier
result for the two-codeword ensemble error probability with T = 2.

For the case of a g-input, Q-output DMC with P (x) having a product form, as we
carlier assumed for the ensemble of codes, the n-fold summations in (4.4.14) may be

rewritten as
n

I+p
Q-1 1 g-1
Ple < (T -1 | [Z P(k)P(j]k)"“*"’] . (4.4.15)
j=0 k=0
{We have now adopted the shorthand notation P (k) for P(x;} and P (k) for P{y;|x;).]
After noting that T — | < 2% we obtain the expression
0-1t g1 I+p\ " .
P (e]i) < 2"R» Z [Z P(k)P(j|k)"“+")} (4.4.16)
j=0 L&=0

To obtain a final and more compact expression, we realize that we are free to
choose p in the unit interval, as well as P(k), the probability assignment on the symbols
in the code alphabet, and do so i0 minimize the bound (4.4.16). Thus, we define the
random coding exponent (also known as a reliability function) as

ER) = mgx max [ Eo{p, P) — pR], O<p<x<l, (4.4.17)
[
where -
01 Fa-1 I+p
Eolp, P) = —log, Z [Z P(k)P(jlk)‘/le] (4.4.18)
i=0 =0

is what is called the Gallager function [8].
With these definitions we have established that

Pleji) < 27"E®) (4.4.19)

and since the bound is valid for each message index / in the code, (4.4.19) becomes an
upper bound on the ensembie error probability, irrespective of message index ¢ or the
probabilities of selecting the various messages for transmission.

We have yet to show that the error exponent of (4.4.17) is positive for a given range
of rates, that is, for 0 < R < C, but assuming that £(R) > 0 for some rate K, we have
demonstrated that the ensemble average error probability can be driven to zero exponen-
tially fast by increasing the block length n. At least one code in this ensemble must be at
least this good, certifying the existence of a sequerice of codes of increasing block length,
but with fixed rate R, whose error probability diminishes exponentially with block length.
Of course, our argument has not revealed the detailed nature of these codes, nor have
we required that there be any structure allowing possibly simpie encoding and decoding.
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Furthermore, the argument has not actually said there is a sequence of codes for which all
message indexes in the code have diminishing error probability; this is taken up shortly.

4.4.3 Properties of the Error Exponent and a Coding
Theorem

We shall now examine the random coding exponent defined in (4.4.17) and (4.4.18)
and thereby prove a general coding theorem for the DMC. We first recall the mu-
tual information shared between channel input and output, given an input distribution
P(k),k =0,...,q — I, and a channel transition law P{j|k) is
. P(jik)
Ip(X;Y) = PKk)P(jlk) 1o (—"'""—- .
g Z; UIOle\ s~ PG

&

(4.4.20)

The subscript on mutual information designates that the result depends on the choice of
mput probability assignment. We assume that /p(X; Y) is strictly positive, which will be
true for all but useless channels or degenerate input distributions. The function Eg(p. P)
‘in (4.4.18) has three fundamental properties:

Eo(p, P) 20, p=0 (4.4.21a)
Ip(X:Y)> BEL:;’—F:-)— >0 p=20 (4.4.21b)

with equality on the left obtained when p == 0; and
32—[53%'2 <0, p >0 (4.4.21c)

These properties may all be demonstrated by beginning with the definition of Ey(p. P)
and applying standard calculus. (Gailager [9, p. 142] provides a detailed development
as well.) In words, Eg(p. P) is a nonnegative convex U function of o over the given
range, with slope at o = 0 equaling the corresponding mutual information. Visualized
graphically as a function of p, Eg(p. P) is sketched in Figure 4.4.3a. We note that the
graph depends on the input distribution P.

Now, according to (4.4.17), for any given P distribution, we wish to maximize
Eo(p.P) —pR for 0 < p < 1 (see Fig. 4.43b). A stationary point, if it exists, will be
the solution to

dEo(p. P)
op -
[If a siationary point exists, it will be a maximum by (4.4.21c).] Such a solution will
exist in the interval 0 < p < | if (see Figure 4.4.3)

R=0. (4.4.22)

dEo(p. P AEqo(p. P
0Lole- M) g < e P)E 1p(X: Y). (4.423)

On the other hand, if R < R.(P) = 3Ey(p, l")/apipzl;1 then the maximizing choice
for pis p = 1, and the error exponent, which remember still depends on choice of the

R, stands for “critical rate,” although the name gives it more significance than it deserves.
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Figure 4.4.3a Gallager's Ep(p, P) function.
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Figure 4.4.3b Function to be maximized over p for specific input distribu-
tion P.

input distribution P, becomes
E(R,P)=Eo(1.PY-R, R < Rq(P). (4.4.24)

Similarly, for R larger than the critical rate R (P), we have, using (4.4.22), a parametric
form of the solution:

_ aEO(P, P)
= ———-ﬁap

R (specifies p)

(4.4.25)
dEo(p, P)

E(R, Py=Ep(p,P)—p %

which pertains for R (P) < R < Ip(X;Y).
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Figure 4.4.4 Ermor exponent £(R) is upper envelope of E(R, P) curves.

A typical sketch of E(R, P) versus code rate R is shown in Figure 4.4.4, and
we emphasize that its graph depends on the choice of P. For a given P, however, it
may be shown that £(R. P} is a positive, nonincreasing, convex U function of R for
O0< R < IpiX;Y).

Recalling the definition of the error exponent, E(R), from (4.4.17), we now wish
to maximize E(R, P) over choice of input distributions P. The error exponent £(R) is
then visualized as the upper envelope of the family of all curves E(R, P), as shown in
Figure 4.4.4. It is obvious that for all rates 0 < R < max /(X; Y¥) = C, E(R) remains
positive, which is the essential result. From Figure 4.4.4 we observe that, in general,
a different input distribution P optimizes £(R) as code rate R changes. However, for
symmetric channels, as with the attainment of capacity, the equiprobable input assignment
maximizes E(R) for any rate R.

The general shape of E(R) appears in Figure 4.4.5, For symmetric channels, there
exists a straight-line portion of the curve, where R < R, and in this range of rates,
E(R) = b — R, where b is an intercept. This zero-rate intercépt (see Figure 4.4.5) of the
function E(R) is in fact

E(R)|g=0 = max max Eo(p, P) — pR|p=0

(4.4.26)
= m;lx max Eg(p, P) = m}x Eq(l, P)
2

since Eq(p, P) maximizes at p = 1. This latter term is

Q-1fq-1 2
. A
mPax Eo(1, P) = m;xx —log ,E:q [;L] P(k)P(j|k)l/2] = Ry. (44.27)

Thus, the Ry parameter emerges again as a key parameter describing the general random
coding exponent: it is the zero-rate intercept of the random coding error exponent E(R)
derived previously, and in the low-rate region, it specifies an ensemble average upper-
bound exponent.
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