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0 R C R Figure 4.4.5 Eror exponent E(R)
« for general DMC.

4.4.4 Summary of Coding Potential for Block Codes on
DMCs

We have developed two primary results from random coding arguments for block codes.
The first, and easiest to develop, was

Pleliy <27 mtho=f), (4.4.28)

which claims that the error probability for the ith codeword in the ensemble of code-
words of block length n and rate R is exponentially decreasing as block lengih increases,
at least if R < Ry. The second and stronger resuit is that

Pleji) < 2 "E®) (4.4.29)

where E(R) is positive for all R < C.

Both results were developed for a specific codeword index /i in the ensemble, but
it 1§ clear that the result is independent of the index i, so the bounds hold for the error
probability averaged over the 2"% codewords; that is,

-P('—e).< 2—11E(R)' (4430)

Since at least one code in the ensemble has error probability as good as the ensemble
average (4.4.30), we then have the fundamental coding theorem for discrete memoryless
channels:

Noisy Channel Coding Theorem

Given a DMC with capacity C, there exists a sequence of codes of increasing
block length n, each with fived rate R < C, for which the error probabil-
ity Pie) = Z Fi Peli) of a maximum likelihood decoder diminishes to zero
exponentially fast in n.

Various extensions of this fundamental result are possible. First, although we now
know a code exists whose error probability averaged over all codewords is arbitrarily
reliable, it is possible that the error probability conditioned on transmission of the mith
codeword in this good code is, in fact, quite poor. Simple arguments are, however,
possible to establish the existence of uniformly good codes, for which all codewords
are reliable [9]. This is particularly important, since in real transmission systems the
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prior message probabilities may be unknown. Second, we may ask whether our upper
bound is the tightest possible. It turns out that at low rates the ensemble average error
probability is dominated by poor codes (recall that the ensemble includes a code with all
codewords identical, and this code’s error probability would be nearly 1.) Expurgation
arguments, which rid the ensemble of such bad codes, can in fact increase the size of the
error exponent at low rates, although these same arguments cannot strengthen the bound
at rates near capacity.

On the other side of the argument, we can ask what a lower bound on error
probability is for rates less than capacity; this delimits a forbidden region for error
probability ‘as a function of code rate R, while our upper bound establishes a region
where codes in fact are known to exist having a specified performance. The interested
reader is referred to texts of Gallager [9] or Blahut [10] for the essential ideas. One
important conclusion is that the exponent describing the lower bound coincides with
E(R) defined previously for rates approaching capacity, so we can be assured that our
argument is essentially the strongest possible statement in this region.

Finally, similar results are obtainable for channels with discrete-input alphabets
and continuous-output alphabets, as appropriate for, say, binary antipodal signaling on
the AWGN channel. Specifically, we may claim that

P(e) < 27°EWR), (4.4.31)

where E(R) is positive for all R < C, with C now defined using the discrete-input,
continuous-output form for mutual information. The zero-rate intercept of E(R) in this
case is again Ry, defined for this channel model in (4.3.32). We will examine these
important cases later in the chapter.

Example 4.8 Calculations for the BSC
To illustrate the ideas we have just developed, consider the simple binary symmetric chan-
ne! with parameter ¢. Due to symmerry, it is known immediately that the equiprobable
assignment on the channel inputs 0 and | is optimal in maximizing E(R). By writing out
the expression for Eg(p, P} with equiprobabie input distribution and then differentiating
with respect to p and evaluating the partial derivative at p = 1, we have that the critical
rate is

< €2 ’
=1- _—
o =1—hy (elﬂ o _6)”2), (4.4.32)

where hj{x) denotes the binary entropy function f3(x) = —x logx — (I —x)log(i ~ x).
For the region R < R, using the Ry expression of Example 4.6, we obtain
ER)=Ry~R=1-log[l+ @l —))]'"> =R, R <Rq. (4.4.33)

For rates exceeding the critical rate, but less than capacity, we must resort to a solution of
the parametric set of equations (4.4.25):

R =1-hys),
. (4.4.34)
E(R) =t(8) — ha(8),

where 1(8) = —dloge — (1 - 8)log (1 — e).
To numerically interpret the result, suppose that the channel error parameter is € =
0.1 Then the channel capacity is, from (2.7.18a), C = 0.53 bit per usage. I we are
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aggressive in pursuit of the ultimate limits on performance, we might opt for a coding
system with & = 0.5 bit per symbol, near the capacity limit. This is well beyond the
critical rate, which may be found to be 0.186 bit per channel use, so we must use the
parametric form of the error exponent description. Setting ha{e) = 0.5 yields é = Q.11,
from which

E(R) =t(8) — ha(8) =8.1-107% (4.4.353)

If we wish our ensemble of codes of rate R = 0.5 to achieve error probability of 1073, we
must have

2—n(0‘(ﬂ)81) < 10—5‘ (4.4.35b)

which implies that the block length must be n = 20510! Of course, the {(very large) best
code, if we could find it, might be far better that the average, but this is probably rather
discouraging. The random coding arguments simply suggest that operation near the capac-
ity limit with high reliabitity implies a rather large complexity. We note.also that R here
significantly exceeds Rg = 0.322 bit/channe! symbol, so the simpler bound based on Ry is
useless here.

If, on the other hand, the channel quality is somehow improved so that ¢ = 0.01,
channel capacity increases to 0.919 bit/symbol, and Ry becomes 0.738 bit/symbol. Now
operation at the same rate R = 0.5 with a target error probability of 10~ implies a block
length of (only) 68, as determined by E(R) recaiculation. The size of the code with these
parameters is still 20968 = 1.7. 10'0 codewords! Use of the exponent Ro — R projects
a required block length of 70; the closeness-of these findings is traceable to the fact that
E(R)= Ry — R atrate 0.5,

Exampie 4.9 Caiculations for a 4-ary Erasure Channel

Suppose that QPSK modulation is employed and the channel is an AWGN channel. Instead
of supplying the demodulator’s best estimate of each symbol, we suppose that an erasure,
or low-confidence output, is reported whenever the received two-dimensional vector is not
sufficiently near one of the four desired signal locations in terms of phase angle. We suppose
the SNR and the erasure policy are such that the correct symbol decision is obtained with
probability 0.9, but that an erasure is declared with probability 0.1. We assume there is no
chance for an incorrect symbol decision to be produced. )

The equivalent DMC is a d-input, 5-output symmetric erasure channel shown in
Figure 4.4.6. The function Eq(p, P) for this channel is shown in Figure 4.4.6 as well. It is
straightforward to compute the channel capacity to be C = 1.80 bits/symbol and Rp = 1.62
bits/symbol. We may determine the critical rate by evaluating the derivative of Ey(p, P) at
£ =1, and this is R, = 1.40 bits/symbol. Each has a graphical interpretation indicated in
Figure 4.4.6.

If we develop codes for this channel having rate R = 1 bit per channel symbol, then,
since R < Ry, the error exponent would be given by E(R) =1.62 — 1.0, and the ensemble
of codes with block length n = 16 symbols would have ensemble error probability bounded

by 27160062 = 1 03. 103,
Example 4.10 Very Noisy Channels

Interesting closed-form results emerge when we consider very Raisy channels (11}, which
basically are channeis for which the conditional probability of output j is nearly the same
for all inputs. More precisely,

Pk = yi(1 + pje). (4.4.36)
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Figure 4.4.6 Ey(p, P) for Example 4.8, 4-ary erasure channel.

where 4, is small compared to 1. Although we omit the details, Gallager (9] shows the

following:
1. Ro=C/2
2. Ree =C/4

3. E(R)=C/2—RforR<C/4A
& ER=[C'P R forR. <R <C

Thus, the error exponent is simply described for such channels.
A simple application would be a BSC with ¢ = 0.3, for which C = 0.12 bit/symbol.
Then it follows that Ry = 0.06, and for codes with rate Tli say, the exponent would be

E(R) = 0.0031. These are in fact approximations to results that could be caiculated by the
techniques of Example 4.8.

Despite the powerful implications of the channel coding theorem, much practical
work remains. We now know codes exist that are good, that is, codes whose per-
formance with increasing block length but fixed rate is arbitrarily reliable. However,
from the argument we know almost nothing about how to find them. (The Markov
inequality again says, if we simply pick a code at random and use it, with high prob-
ability the performance will not be much worse than the ensemble average. However,
such codes will in general lack sufficient structure to circumvent table-lookup encoding
and exhaustive search decoding.) Since the original development of the noisy channel
coding theorem and during its many subsequent refinements, the communication engi-
neering emphasis has been on the description of codes that are reasonably implemented,
particularly with respect to decoding effort. We shall devote Chapters 5 and 6 to the

two prevalent classes of constructive codes, block codes, as discussed here, and trellis
codes. '
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4.4.5 Remarks for Trellis Codes

We have been focusing on block codes since Section 4.1. However, the R and capacity
theory is pertinent to the ensemble of trellis codes as well. We will merely cite the
relevant results here for the special case of binary convolutional codes; the interested
reader is referred to Viterbi and Omura [12].

We consider a convolutional encoder with rate R = 1/n to be a shift register having
m delay elements along with n modulo-2 adders connected to bits in the register. In
Chapter 6, we will discuss this in much more detail as a finite-state machine having 2™
states, and memory order m. The channel constraint length of the encoder is defined as
ng = (m + 1)n channel bits, since a given information symbol possibly influences this
number of consecutive channel symbois. This parameter bears a rough correspondence
to the block length of a block code.

The most efficient decoder is implemented in the form of the Viterbi algorithm,
but for now we assume that ML decoding is accomplished in any manner. For such an
encoding system, the message error probability of an arbitrarily long message sequence
must approach 1 for any reasonable channel (something bad will happen if we wait long
enough!), so the proper figure of merit is the decoded symbol or bit error probability.

Viterbi [12, 13] showed* that for the ensemble of convolutional codes of rate R
and channel constraint length ng

Py < g2 ER) (4.4.37)

where cg is a constant dependent on R but not ng, and where E,(R) is a random-coding
exponent for trellis codes. The functional form of £,(R) is given by

_ Ro, R < R(),
Ei(R) = [ Eg(p*.P). . Ry <R <C, (4.4.38)
and p* is the solution to
PR = Ey(p”. P). (4.4.39)

(Notice again the dual role of Ry in assessing the performance of the ensemble of
convolutional codes, at least for fow rates,)

The graphical interpretation of E,(R) for rates in excess of Ry is shown in Fig-
ure 4.4.7. It has also been shown that £,(R) is the best possible exponent for rates near C.

Wl Slope = RolP)

——  Figure 447 Determining E,(R) for
P R> Rg.

S Y

“The argument was strictly for time-varying trellis codes, but that is not an important issue here.
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This ensemble coding exponent is sketched in Figure 4.4.8 for a typical DMC, where
it is seen that the trellis coding exponent dominates the block coding exponent E(R)
obtained earlier. (Expurgated bounds also show a relative preference for convolutional
codes [12].) This fact, coupled with the practical issue that maximum likelihood de-
coding i3 more convenient with trellis codes than with block codes, has prompted
enormous interest in trellis codes in the last 20 years. Of course, there is some dan-
ger in comparing coding techniques merely based on such ensemble exponents. First,
we have compared the classes so that block length n is equated with channel con-
straint length ng, This leaves aside the relative decoding complexity and delay com-
parisons. Furthermore, there is a potentially large coefficient ¢g in the bound for trellis
codes. Finally, these are after all ensemble bounds, and best codes may not mimic this
finding.

Ro

E(R), E(R)

R Figure 4.4.8 Error exponent for
ensemble of time-varying tretlis codes.

4.5 IMPLICATIONS OF Rp AND C FOR SIGNALING ON AWGN
CHANNELS

In the previous sections we established the significance of the parameters Ry and C for
general memoryless channels, and we now study implications for efficient system de-
sign and for required system resources that derive from these parameters. Specifically,
we wish to determine how a channel encoder can optimally utilize a given modula-
tion/demodulation technique, under power and/or bandwidth constraints, and what the
potential gains are in system efficiency over uncoded transmission.

In this section we focus on the AWGN channel environment, treating a variety of
modulation formats and detection scenarios. The channel is treated as a nondistorting,
fixed-gain, white Gaussian noise channel. At the input to the demodulator, the energy
available per uncoded information bit is £, joules, and the two-sided noise power density
is No/2 W/Hz. The demodulator may or may not make binary decisions on each code
symbol.

We will first examine coding approaches of the form shown in Figure 4.5.1, which
involve a coding process producing binary codewords with rate R < 1 bits per channel
symbol and a binary modulation process.
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Figure 4.5.1 Binary coding framework,

4.5.1 Ry and C Considerations for Binary Signaling, AWGN
Channel, and Hard Decisions

When binary decisions are formed for each code symbol sent through the AWGN channel,
the combination of modulator, channel, and demodulator becomes a simple BSC, with
crossover probability ¢ determined by the modulation and detection format, as well as
the ratio of energy per code symbol-to-noise density, £,/Ny. This quantity is related to
E, /Ny through the actual code rate by

Es Eb

No ~  Ng
since the energy associated with a given information bit is shared among code bits. The
four cases of primary interest and their corresponding error probabilities are the following:

, 4.5.1)

[ (2E,\'?
e =0 (N_o) coherent PSK (antipodai) (4.5.2a)
PN
€ =Q (N—’) coherent FSK (orthogonal) (4.5.2b)
0
L
|
€ = 58‘5"‘”“ DPSK (4.5.2¢)
I
€ = Ee‘E‘RN" nencoherent FSK (orthogonal) (4.5.2d)

Notice that each error probability is an implicit function of code rate R for a given
Ey [Ny, through (4.5.1). Given a power constraint and a fixed information rate constraint
in bits per second, the optimization of R becomes an interesting design question.

For all BSCs, we have from Section 4.3 that

Ro=1~log[l+ (4e(1 —e)'?], (4.5.3)

which may be readily evaluated for these four cases as a function of E,/Ny and is
shown in Figure 4.5.2. We note that all techniques have the same asymptote of 1 bit per
symbol, as will any binary signal set. As indicated in (4.5.2), a given Ry is obtained by
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Figure 4.5.2 R, for binary modulation, hard-decision demodulation.

coherent antipodal systems with 3 dB less SNR than with coherent orthogonal; also, a
3-dB advantage exists for DPSK over noancoherent FSK.

For coherent PSK and noncoherent FSK, the channel capacities for the induced
BSCs are given by (see Section 2.7)

C=]+eloge+(l-—e)lqg(l—e). (4.54)

where € is given by (4.5.2a) or (4.5.2d). Comparison of these capacities with the cor-
responding Ry will show that over much of the low-rate region, say at less than 0.5 bit
per channel symbol, the capacity limit is about 3 dB below the R, limit in terms of
E,/Ny: that is, to achieve a given R, requires about 3 dB greater £,/N,, or at fixed
E, /Ny, the channel capacity is abom twice the Ry parameter. This occurs on any “‘very
noisy channel,” introduced in Example 4.10, when each channel use supplies low mutual
information.

To discern the implications for modulation and coding design, we reason that
provided R < Ry (or R < () arbitrarily small error probability may be achieved by
increasing the encoder memory, represented by block length, or constraint length for
trellis codes. For a given modulation/demodulation strategy, the primary questions are:

1. What is the required E,/N, implied by the Ry limit (or by C), if we code with
rate R?

2, What code rate R should be adopted, if spectrum constraints are not present?

To address these we first equate R = R,, which in tum is a function of REL /Ny
through (4.5.2) and (4.5.3); that is, we set

(. E
R=Ry=/ (R—'i) (4.5.5)
Ny
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Figure 4.5.3 Nomograph for
determing minimum Ep, /Ng as defined

{ by R < R for varying R.

and find the solution for E, /Ny for different code rates in the range 0 < R < 1. The
nomograph of Figure 4.5.3 illustrates a graphical solution; we pick some trial rate R, find
the minimum F, /Ny producing Ry > R, and then convert this to the required E,/Ny
through the linear relation of (4.5.1). The locus of such solutions then provides guidance
1o the communication engineer for proper choice of code rate R and to the communication
efficiency that may be expected, especially the relative efficiency of different options.
We will illustrate the solution for the case of DPSK.

Example 4.11 Finding Ej /Ny Lower Bounds for Coded DPSK, Binary Decisions

Setting R = Rp in (4.5.3), we obtain
de(l - e)'2 =21"% ) (4.5.6)
or el—e)=2"2R_ 2R 22 (4.5.7)

Defining x as the right-hand side of (4.5.7), we then seek the solution to the quadratic
equation
e—etx=0, (4.5.8)

which is €* = [1 - (1 —4x)'/?)/2. (We discard solutions with crossover probability larger
than {,.) Having found €*, we use the DPSK error probability expression (4.5.2¢)

-

€ = —e REMy (4.5.9)

| -
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and achieve the resull that the minimum SNR for operating at R = Ry, is

®
o, = B2 @s 10
For example, if R = 0.5, ¢* = 0.0449 and E/Ng,, = 4.8, or 6.8 dB.

This procedure may be repeated using channel capacity as the ultimate limit on
communication rate, giving a (smaller) lower bound on E,/Nyg (Exercise 4.5.3). We should
also note that the Ry and channel capacity calculations assumed a memoryless channel model
with BSC parameter €, which DPSK technically does not supply, due to the dependence
between successive decisions. The memoryless condition can be achieved in practice by
a small amount of code symbol interleaving and deinterleaving, a topic to be discussed in

Chapter 5.

In Figure 4.5.4 we show the minimum E,/Np loci implied by the Ry limit for
the four previously given modulation types. We interpret the curves as follows: if
the minimum E,/Ny is not maintained at a specific code rate R, then the R, of the
modulator/channel/demodulator is insufficient to keep Ry > R.

FSK, Noncoherent

14
— Ry limit FSK, Coherent
2} ! C limit /
] Capacity Bound, PSK, Noncoherent
0F N e fok Y

PSK, Coherent

Es/N,,. dB
=] @
il

»”

— -

"‘
2F T Capacity Bound, PSK
0 = 1 L b4 1 ! 4
¢ 0102 03 04 05 086 0.7 08 0.9 1.0
Rate R

Figure 4.54 Required Ep/Np versus R for binary tran.mission, AWGN. hard
decisions.

We observe several interesting features from the curves of Figure 4.5.4. First, note
that the two coherently detected cases allow steadily smaller £, /Ny with decreasing code
rate, or with increasing redundancy. Coherent PSK is everywhere 3 dB better than co-
herent detection of orthogonal signals, as expected. On the other hand, the nonceherently
detected cases show a curious degradation at low rates and a broad optimum-rate region
from about 0.3 to 0.7. Here again DPSK is 3 dB superior to noncoherent orthogonal
detection. The reason for this low-rate degradation is quite subtle. Heuristicaily, the
effect is due to the following facts:

1. As code rate lowers, the energy per symbol drops.

2. Noncoherent schemes are relatively poor in the low SNR region compared to the
coherent counterpart.
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In essence, the increased redundancy and increased intracodeword distance available
with low rate codes are unable to overcome the increasingly poor quality of the binary
decisions as R is lowered, and energy per symbol thereby decreases under a power
constraint. For coherent detection, on the other hand, we always gain in efficiency when
we decrease rate, although not substantially for rates below R = % In graphical terms,
the noncoherent Ry curves are not convex, which admits an optimum rate solution, rather
than a steadily declining energy requirement with rate. This is pursued in Exercise 4.5.4.
We will see this same dichotomy between coherent and noncoherent performance again
for unquantized and soft-decision demodulators.

Figure 4.5.4 also shows the limits imposed by keeping rate below the capacity
limit in the case of coherent PSK and noncoherent FSK; this, of course, allows even
smaller £,/Ny than Ry bounds indicate. For low rates the improvement in the coherent
antipodal case is 3 dB, due o the result that Ry = C/2 in the low-rate region (again, the
very noisy channel regime). For very low binary coding rates or large bandwidth-to-bit
rate ratio, the capacity limit for antipodal signaling with coherent hard-decision detection
is Ep/Ny,,, = 0.6 dB, which is roughly 2 dB above the usual Shannon capacity limit
En/Nyg > —1.6 dB for the power-constrained Gaussian channel with infinite bandwidth
and unquantized reception. This deficiency is not due to the use of binary inputs, rather
than a more Gaussian-like signal, but purely due to hard-decision demodulation. Note
also that the capacity limit for the noncoherent orthogonal case exhibits a broad minimum
around R = (.5, so this effect is not merely some artifact attached to Ry, but is endemic
to noncoherent detection.

Comparison of binary coding. with noncoherent detection of orthogonal signaling
against binary coding with antipodal signaling and coherent detection, say at R = 0.5,
gives a theoretical margin to the latter of about 5.3 dB using Ry comparisons and an
even larger margin if capacity is used as the figure of merit. This difference in cod-
ing potential is even larger than the difference in efficiency of uncoded signaling, say
at P, = 107>, which is about 4 dB as discussed in Chapter 3. This raises the ques-
tion of whether noncoherent schemes, when combined with coding, are viable at all.
On the AWGN channel with hinary signaling there is a definite penalty as just dis-
cussed. When M-ary modulation is utilized, the margin shrinks quite a lot, as we
will see in the next section, and for other channels such as fading and interference
channels, the performance difference also becomes quite small, especially given the
added difficulty of maintaining a phase reference for coherent detection in such environ-
ments.

4.5.2 Binary Signaling, Unquantized Demodulation

We now treat the same class of binary coding/modulation techniques, except that we
assume the demodulator passes sufficient statistics to the decoder for each code sym-
bol interval to support ML decoding. In the case of antipodal signals, the demodulator
provides a single real-valued matched filter or correlator output, which is a Gaussian
random variable. For noncoherent detection of orthogonal signals the decoder is sup-
plied the two envelope-detected measurements of the 0 and 1 channels. In the case of
DPSK, we assume that the vector dot product of consecutive phasor measurements in
the DPSK receiver is supplied. (In the DPSK case, the vector dot product is techni-
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cally not a sufficient statistic for decoding, and interleaving is required to render DPSK
modulation/demodulation a memoryless channel.)
For the antipodal case, we have from (4.3.39) that Ry is given by

Ro =t — log,(1 4+ e~ E:/Noy, (4.5.11)
and for coherent orthogonal signaling with coherent detection

Ro =1 — log,(1 4 e~E:/2Noy, 4.5.12)
These are shown in Figure 4.5.5.
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Figure 455 Ry for binary modulation, AWGN, unquantized demodulation.

For operation at the antipodal Ry limit, we choose 0 < R = Ry < } and find the
solution to

R =1—log, (14 e RE+/Noy (4.5.13)
which is
E —log (2'* -1
L 08 ) {antipodal) (4.5.14)
No,. R

and a 3 dB larger value for the orthogonal case. These lower bounds are plotied in Fig-
ure 4.5.6 as a function of R, We see that antipodal signaling monotonically approaches,
as R — 0, or as bandwidth expansion becomes large, E,/Ng_, = 2log,2 = 1.4 dB,
exactly 3 dB larger than the limit implied by capacity, another very noisy channel corol-
lary. Furthermore, the unquantized performance limit implied by R calculations is
roughly 2 dB better than the binary-quantized limit for all rates of interest. (Compare
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Figures 4.5.4 and 4.5.6.) This is an oft-quoted magic number—the information-theoretic
penalty for making hard decisions on the AWGN channel with antipodal signaling is
2 dB. Experience with typicakcoding schemes typically confirms this difference, as we
will see in Chapter 5.

10 L \ FSK, Noncoherent
/ FSK, Coherent
sl

m
2 6 DPSK
£ "/ PSK
w
2+
0 I | ] ] 1 1 i | | ]
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Figure 4.5.6 Minimal £,/N¢ as defined by Ro. AWGN, unquantized demod-
ulation.

For unquantized noncoherent detection of orthogonal signals, the decoder is pro-
vided the pair of real values from the two orthogonal channels. One of these is Rayleigh
distributed, while the other is Rician, and the variables are independent. The pd.f.'s
necessary for computing Ry via (4.3.32¢) are found in (2.2.19) and (2.2.21). Doing this
computation gives

Rg=1- Iog(l +fff(."(h."lI-\'())sz(_\’f)-)’t{sl)lﬂ d)’od)’l)

2
. st [ Y et (RY
=1 Iog(l+[e [029 Iy (oz)dy .

This expression must be evaluated numerically, using u = Eﬁ ” and 62 = No/2,. but as a
check we observe that when 1% /02 becomes small (small SNR) the integral becomes that
of a Rayleigh p.d.f.; hence Ry approaches zero. In Figure 4.5.5, we show the resulting
Rp versus E; /Ny, together with the coherently detected counterpart and note the more
rapid drop in Ry for the noncoherent case at low SNR (this is somewhat obscured by
the logarithmic presentation). It has been shown analytically by Jordan [14] that the
noncoherent Ry falls as the second power of E, /Ny in the low SNR region, rather than
a first-power dependence for the coherent case that a series expansion of (4.5.12) will
show.

Similarly for DPSK, we numerically evaluate R, using (4.3.32¢) and the p.d.f. for
the vector inner product of two complex Gaussian random variables (15]. Substitution
into the expression for R gives

' l E
Ro=1-log|1+4 e &M (—“), 5.
0 og[ *5€ g No (4.5.16)

(4.5.15)
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where

o0 ,m % o< m n 17
“ z -
g(Z) = [e_k E ;} L lie ¥ E %T] dy 4.5.17)

m=( =G -

This expression can be evaluated using numerical integration and is also shown in Fig-
ure 4.5.5 alongside the coherent antipodal case; again note the difference in behavior as
SNR becomes small.

Following the procedure described earlier, we can numerically solve for the mini-
mum E,/Ny that will keep Ry > R at various rates for DPSK and noncoherent orthogonal
cases. The results are shown in Figure 4.5.6, again with the coherently detected counter-
parts. We observe behavior similar to that in the hard-quantized case: the noncoherent
schemes suffer at low rates, and for these cases an optimum coding rate exists. Also, in
the noncoherent cases, notice that the unquantized case is superior to the binary-quantized
case, as it should be, but by a lesser amount than in the coherent detection mode.

We will not discuss at length the capacity implications for unquantized transmission,
for they basically tell a similar story. To indicate the methodology, we will consider the
antipodal case. We recall that the channel capacity for these binary modulation techniques
under an energy constraint is given by the mixed expression for mutual information, under
the adoption of equiprobable inputs:

l .
c= [ P fiylsiog [f Wis) ] d. (4.5.18)
Y'i=0 fn

where f(yls;) is a one-dimensional Gaussian p.d.f. in the case of antipodal signals and
where f(y|s;) is a two-dimensional Gaussian p.d.f. in the case of orthogonal signais.
Centering of the p.d.f.’s is at the signal in the conditioning statement, and the variance
in each signal-space coordinate is No/2. In Figure 4.5.7 we plot the antipodal {unquan-
tized) capacity versus E;/Ny, along with the capacity for the additive Gaussian noise
channel without a binary input constraint. Note that for low SNR per code symbol the
two capacities are substantially equivalent, so binary transmission induces no loss of
performance. For larger SNR, however, we must resort to nonbinary modulation, for
example, QAM, to efficiently utilize the resources. We will return to this shortly.

4.5.3 Binary Signaling with Soft-quantized Demodulation

We have just seen that binary (hard-decision) demodulation can be very detrimental
to the potential performance of coded communication systems, typically manifesting
itself as a roughly 2-dB loss in efficiency relative 10 unguantized demodulation on the
AWGN channel,’ at least as predicted by R theory. If we recognize that in modern
decoders the computations will be performed with finite-precision calculations and that
we would ordinarily wish to minimize the associated complexity, the degree of acceptable
quantization becomes of interest. Decoding with finely quantized receiver output data is
referred to in the literature as soft-decision decoding.

5The penalty may be even more profound for other channels. notably fading channels, as discussed in
Section 4.6.
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Figure 4.5.7 Capacity for antipodal signals and energy-constrained channel.

We will first consider the case of antipodal signaling with coherent detection, with
a 0 = 2"-level quantizer operating on the demodulator output. For simplicity, the
quantizer is a uniform quantizer with step size of A. The quantized channel becomes
a 2-input, -output discrete memoryless channel, for which earlier expressions can be
used to evaluate Ro, or capacity as well, once the transition probabilities are specified
for the DMC. The latter are a function of E;/N; and the quantizer scale factor.

To operate effectively over a range of SNRs, as signal andfor noise levels vary,
we need to find a procedure for scaling the range of the quantizer. For multiamplitude
constellations, it is necessary to scale the quantizer according to the received signal
level, rather than according to the noise level, although either approach works well in
the antipodal case if proper scaling is adopted. Thus, we choose A = cE'”?, or more
precisely ¢ times the mean of the demodulator output, where ¢ is a scale factor to
be optimized. Our experience is that for 4-level quantization, the proper scale factor
is ¢ = 0.6, while for 8-level quantization, ¢ ~ 0.3 gives good performance. These
judgments depend slightly on the SNR assumed, but are appropriate for SNRs giving Ry
near 0.5 bit/symbol. Lee [16] provides necessary conditions for the design of Rg-optimal
quantizers for decoding, which could be applied to this problem as well.

Figure 4.5.8 shows the Ry curves for 2-, 4-, and 8-level quantization of binary PSK,
as well as the unquantized case. The quantizer zone probabilities at E, /Ny = 0 dB are
given in Table 4.1. Of course, to properly utilize this soft-decision information, the zone
probabilities must be known fairly accurately to compute metrics; otherwise mismatch
exists. »

Observe that 8-level (3-bit) quantizing provides essentially the same efficiency as
unquantized demodulation, losing perhaps 0.25 dB; 4-bit quantization could be claimed to
provide completely adequate discretization of the receiver outputs. In the other direction,
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TABLE 4.1. QUANTIZER CONDITIONAL PROBABILITIES AT
Es/No = 0 dB FOR Q =8, 4, AND 2. STEP SIZE IS 0.3E.” FOR Q = 8.

0.556 0.158 0.125 0.082 0.046 0.021 0.008 0.004

0714 0.207 0.067 0.012

0.921 0.079

Zones are indexed from closest to farthest signal hypothesis.

the loss with 4-level quantization is typically only 0.7 dB, and, as we have seen earlier,
the penalty for hard decisions is about 2 dB. We should be careful in generalizing this,
however, to other signal schemes; 16-QAM transmission will require roughly 5 bits per
coordinate axis to achieve near-unquantized performance.

4.5.4 Summary for Binary Transmission, AWGN Channel
Before closing the discussion of coding potential for binary schemes, it is well to sum-
marize what coding offers. Recall that for uncoded transmission the best binary schemes

were antipodal signaling if coherent detection is allowed and differential PSK when non-
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coherent detection is required. To achieve an error probability of 1073 requires that
En/Ny = 10 dB for both, with coherent antipodal slightly superior. By employing chan-
nel coding of these binary modulation schemes, on the other hand, we can potentially
operate with Ej, /Ny approaching —1.6 dB in the coherent case. { Ry calculations suggest
that E,/Ng = 2 dB is technologically feasible.) Both cases admit arbitrarily low error
probability, as opposed to, say, 107 bit error probability, so it is difficult to compare
directly the coded and uncoded options. Nonetheless, there is an apparent 8- to 10-dB
energy savings offered through coding, which has prompted the enormous interest in
coding since the original realization of this fact. If we repeat the calculation for the con-
straint of binary orthogonal signaling with noncoherent detection, the required £,/Ng
to attain P, = 10~° without channel coding is 13.4 dB, from Chapter 3. Figure 4.5.6,
an Ry assessment, i}lustrates that arbitrarily reliable communication is possible with this
modulator/demodulator scheme with E,/Ny =~ 8.5 dB, a savings of about 5 dB.

To reap this benefit, we must be prepared to expand the bandwidth of our trans-
mitted signal and to accept potentially large complexity in encoding and decoding. Re-
garding bandwidth, we can define the bandwidth expansion ratio, relative to uncoded
transmission with the same modulator, as 1/R, since the number of binary digits per
unit time is increased by the encoder. Thus, the designer should realize that ~peeirum
economy suffers dramatically in the low-rate region. Given this situation. 1t 1~ well
to realize from Figure 4.5.6 that almost all the available energy efficiency is accrued
by using rate % codes. For noncoherent detection, it is best not to use low-rate codes
anyway.

4.5.5 Ry and C for Coding with M-ary Modulation, AWGN
Channels

We continue the analysis of various communication options by extending the discussion
to M-ary modulation, wherein the coding schemes now produce M-ary code symbols.
We continue to specify the code rate R in information bits per code symbol; under
this definition the encoder rate can be greater than unity. As in the previous section
we assume that the channel is nonfading, nondistorting, and corrupted only by AWGN.
We will focus on the unquantized demodulation case; hard-decision decodmg is handled
readily using the DMC methodology we have outlined.

We shall begin with coherent detection. The principal cases of interest are M-ary
orthogonal (and its biorthogonal and simplex relatives) and M-ary PSK/QAM schemes
in two dimensions. The former exhibit very good energy efficiency, at the expense of
bandwidth, while the QAM schemes are more bandwidth efficient in exchange for a
larger SNR requirement,

M -ary Orthogonal, Biorthogonal, and Simplex Designs, Coherent
Detection, Unquantized Demodulation

For coherent detection of M orthogonal signals, the basis-function form of the demodula-
lor developed in Section 3.3 produces M random variables, all Gaussian and independent.
One demodulator output statistic has mean u = E,'/?, and the remainder have zero mean.
The variance in each channel is o> = Ny/2. The ML decoder will form a symbol metric
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for testing code symbol j that utilizes only that dimension of the demodulator output:
Mo yp) =~ — ERY, (4.5.19)

which is equivalent to simply using the real-valued output of one demodulator channel
as a metric.

In (4.3.38), we presented an R, expression for any signal consteliation in the
presence of AWGN and unquantized demodulation. For the orthogonal constellation, all
distances between distinct signals are d;; = (2E,)'/2, and substitution into (4.3.38) gives

Ro =log M —log[1 + (M — 1)e~5/2N]  bits/symbol, orthogonal (4.5.20)

Figure 4.5.9 depicts the value of Ry for M =2, 8, and 32 versus E;/Ny. In each case,
R, approaches log, M bits at high SNR.

To link this to communication efficiency and to compare different options, we note
that E; = E,R since each code symbol, by definition, conveys R information bits for
coded transmission with code rate R.® We again ask, “What is the smallest E,/N,
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Figure 4.5.9 Ro for M orthogonal signals, AWGN, unquantized coherent
detection.

SNotice R may exceed | in these cases.
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that will maintain Ry greater than R?” To do so, we find the solution to
R =Ro=1logM — log[1 + (M — 1) RE+/Mo} (4.5.21)

for R in the range 0 < R < log M. The results are shown in Figure 4.5.10, after nor-
malizing both Ry and R by log M for plonting convenience. Notice that the theoretical
minimum E, /N, tmplied by Ry limits decreases with decreasing rate R and with increas-
ing alphabet size M. One penaity of this energy improvement is increased bandwidth
occupancy. If we measure the relative spectral efficiency by the number of information
bits per signal-space dimension, then the spectral efficiency becomes
n= Rl_o_gz_M bits per dimension (4.5.22)
This exhibits the bandwidth penalty we have earlier seen for uncoded M -ary orthogonal
signaling, exacerbated here by channel coding. To indicate the bandwidth efficiency of
various alternatives, values of #~' are marked along the R curves. This makes more
explicit the bandwidih expansion penalty paid if we wish to extract the ultimate energy
efficiency from the system. Bandwidth and complexity constraints will normaily prevail
well before the asymptotic gain is encountered.
Using the expression for Ry in (4.3.38), which involves only signal-space coordi-
nates, it is simple to obtain the following expressions for the M-ary biorthogonal and

Minimum Ep/N, dB

0.1 0.2 0.3 0.4 05 06 07 0.8 0.9
Normalized Rate, r = Rflag M

Figure 4.5.10 Minimum £, /N, for M orthogonal signals. coherent detection.
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simplex cases:

Ro=logM —log[1 + (M — 1)e"M~-DE/MM]  simplex (4.5.23)

and

Ro =logM — log[1 + (M — 2)e™5/M 4 ¢=26:/M]  biorthogonal. | (4.5.24)

As these expressions attest, for M > 8 there are only minor differences in the
Ry values between orthogonal, biorthogonal, and simplex. Of course, the biorthogonal
construction requires smaller bandwidth occupancy. Massey [2] has shown that the
simplex design is optimal in the sense of maximizing Ry among all M-ary signal sets
having equal E/Ng, without regard to dimensionality.

M-PSK and M-QAM

Similar calculations are easily formulated for M-ary PSK and QAM constellations, need-
ing only the signal-space coordinates and the intra signal distances to calculate Ry. For
PSK, the result of (4.3.38) becomes

| M-l ot
Ro = —logz ;’_ IZ_.; e (E, /Ny) sin™( m’M)iI‘ (4.5.25)
Figure 4.5.11 presents results for M = 2, 4, 8, and 16 as a function of E;/N,, from
which two conclusions should be drawn. First, for small E,/N,, there is no energy
benefit in utilizing large PSK signal sets for coding purposes, and this is true of general
modulation sets in this regime—binary antipodal signaling is the most suitable choice.
As E; /Ny increases, however, we can reliably achieve greater throughput (larger Ry) by
adopting larger PSK sets.

Second, the potential benefits of coding are evident from such plots. Suppose we
wish to send two bits per modulator interval using a two-dimensional constellation. The
most natural design is QPSK without coding; that is, each message bit pair is a minimes-
sage. We have seen that to achieve a symbol error probability of, say, £; = 10~ requires
roughly 10 dB in E, /Ny, or roughly 13 dB in E;/No. Ry theory would suggest that
arbitrarily reliable transmission is possible if we supply a modulator/channel/demodulator
with Rp > R. If R = 2 bits per interval, Figure 4.5.11 shows that use. of 8-PSK mod-
ulation can meet this requirement at E;/Np = 7.5 dB, representing a potential savings
of about 5.5 dB. (If we performed the comparison at P, = 107, the gains would have
been even larger.) Furthermore, bigger PSK constellations than 8-PSK are apparently of
no substantial benefit in achieving 2 bits/symbol throughput.

For small M, PSK constellations are essentially the best in two dimensions. How-
ever, as observed in Chapter 3, as M increases, the minimum distance drops rapidly due
to the points-on-a-circle constraint, and M-ary QAM constellations are typically more
efficient for large M. Figure 4.5.11 shows the Ry curve for 16-QAM,” and [16-QAM is

"We have used the equiprobable probability assignment in evaluating Ry here. Slight improvement is
possible with signal probability biased toward the small energy signals, since this reduces average energy
slightly.
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Figure 4.5.11 Rp for two-dimensional constellations, AWGN channel.

indeed superior to 16-PSK for a given average signal energy. (A peak-energy compari-
son is more favorable to 16-PSK, however.) 16-QAM would apparently be an efficient
modulation scheme for sending R = 3 (not 4) bits of information per interval.

We know that channel capacity is the ultimate limit on reliable throughput, although
pushing the rate beyond Ry proves practically difficult, as we will see. Nonetheless, let’s
reconsider what capacity arguments suggest about coded two-dimensional signaling.

First, recall from Chapter 2 that the channel capacity of the N-dimensional additive
Gaussian noise channel, in bits per channel use, is

N 2E;
Cyn = 3 log, (1 + NNO)' (45.26)
where E; is the allowed energy per N-dimensional input vector, and Ny/2 is the noise
spectral density, equivalent to the noise variance per dimension. In the two-dimensional
case this becomes C = log(l + E;/Np). This maximum mutual information is achieved
when the inputs are independent, zero-mean Gaussian variables, each with variance E, /N
joules.

In principle, efficient coding could transpire by building large sets of signal vec-
tors having the preceding prescription. Indeed, random coding is one way to proceed,
especially for large block lengths. However, for practical reasons, we wish to form code
sequences from sequences of some elementary signals; that is, we wish to build large
sets from small modulator constellations. Thus, we ask for the channel capacity for two-
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dimensional constellations and in addition prescribe that the channel inputs be selected
with equal probability. The channel capacity is given by an extension of (4.5.18):

f(ylsi)
=22 gy, (4.5.18)
fz: — f(yls) o gz[zk#f(ylsk)] y

This capacity is a function of the signal constellation and E, /Ny. Slightly larger mutual
information is available if the inputs are used with unequal probabilities, as the preceding
Gaussian distribution would suggest.

In Figure 4.5.12, C* is shown for.certain two-dimensional constellations discussed
in Chapter 3. Notice that the various capacity curves saturate at log, M bits per modulator
symbol, implied by the fact that there is no possibility of communicating more than
log; M bits/symbol reliably with an M-ary signal set. This same behavior was seen
for Ro.

The important observation for code design is that to achieve a certain capacity in
bits per symbol, say R bits/symbol, it is basically sufficient to code (build codewords)
with a good constellation having 2**' symbols. This was first apparently recognized by
Ungerboeck [17] and formed the basis of the folk theorem that constellation expansion
by 2 is sufficient. We can argue that in the capacity sense another 1 dB or so sav-
ings in E; /Ny is available with still bigger constellations with code symbols selected
nonequiprobably, but in practice this has yet to show any payoff. (Shaping [18) of
constellations can help by altering the p.d.f. on input selection.)
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Figure 4.5.12 Capacity for two-dimensional constellations, AWGN channel.
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On Figure 4.5.12, we have shown for each constellation the E;/Ny necessary to
achieve P, = 10~ and observe, following Ungerboeck, that roughly 8-dB improvement
in energy efficiency is potentially available through coding. Specifically, communicating
R = 2 bits/symbols using an 8-ary constellation can be accomplished in principle with
E,/No = 4.8 dB, whereas achieving P, = 10~° with uncoded QPSK requires E,/Ng
= 10 dB, or E;/No = 13 dB, and the potential saving is 13 — 4.8 = 8.2 dB. The really
important observation is that this can occur without increase in bandwidth by adopting
an expanded signal constellation to provide redundancy. This is in marked contrast to
incorporating redundancy by sending more symbols from the same original constellation
and thereby increasing the bandwidth for a given fixed information rate. The constructive
side of this process of course remains, which we will discuss in Chapters 5 and 6. The
rate region is larger for a given £;/N, than that defined by Ry.

Ry for M-ary Signails, Noncoherent Demodulation

We now take up the case of noncoherent demodulation in coded M-ary systems, pertinent
when the demodulator may not be able to attain a stable phase reference with which to
perform coherent demodulation. Noncoherent systems typically utilize either orthogonal
signaling or a differential phase-shift-keying (DPSK) modem.

Let’s examine first the case first of M-ary orthogonal signaling. The demodu-
lator produces for each codeword position 0 < i < n — 1 a vector of measurements,
¥Yi = (Yig» -+ Yin_,)» cormesponding to the outputs of the M noncoherent correlators or
matched filters. For the AWGN model, one of these variables will be Rician and the
remaining variables Rayleigh, with all jointly independent. In symbol-by-symbol detec-
tion, we would choose the index of the largest random variable in y; as our decision.
In sequence transmission, however, we would like the decoder to utilize as much of
the demodulator output as necessary for optimal codeword decisions. Given a code-
word X; = (x;,, Xi,» --., Xi,_, )}, the p.d.f. for the sequence of demodulator output vectors,
¥ = (Yo, . -, ¥n—1), may be written as

n—-1
F@x) =TT o). (4.5.27a)
j=0
where
A Ky —(¥ +u)2a? i~y 2o
fQOlx, =k = )’_1210 (—2"-) P H L’i-e Vim0, (4.5.27b)
o o it @

This is nothing more than the product of a Rician p.df. and M — | Rayleigh p.d.f.’s,
with the indexing controlled by the code symbol specified for the codeword under con-
sideration.

If we substitute (4.5.27) into (4.3.32c), use the symmetry of the modulator and
channel to realize that an equiprobable assignment maximizes the Ry expression, and
simplify the integrand by recognizing density functions whose integrals are 1, we can
determine that

o0 2
£ /N Y _yiae y
Ro=10gzM—logz|[1+(M—l)e EuN Uﬂ s e (%T) dy] ]]

(4.5.28)
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where a® = Ng/2 and u = E,l . This result-was first derived in Jordan [14], citing
Cheek and Reiffen. Note that for M = 2, we obtain the result of Section 4.5.2. In {14]
it was also observed that for small £,/Np with M becoming large,

Rp ~ % (—5—;)2 log, ¢ Dbits per channel symbol, (4.5.29)
whereas for coherent detection the resuit at jow SNR and large A is

Ry = % (%) log, e Dbits per channel symbol. (4.5.29b)
This again demonstrates that noncoherent detection is relatively inefficient in the small

SNR regime,

Figure 4.5.13 illustrates Ry for orthogonal signaling with noncoherent detection
for M = 2, 8, and 32, computed numerically from (4.5.28); these results should be
compared with those of coherent detection (Figure 4.5.9). The implication for coding
can be appreciated by finding the minimum energy solution consistent with keeping R,
greater than a given rate K. We obtain this by setting R = Ry and solving for E,/Ny.
This is shown in Figure 4.5.14 as a function of code rate R, and we see an important
departure between the noncoherent and coherent situations. Specifically, noncoherent
detection performs best at modest rates, say R = log, M /2 bits per symbol, and at
this optimal code rate R, the difference between coherent and noncoherent performance
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Figure 4.5.13 Rq for M orthogonal signals, AWGN, noncoherent detection.
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Figure 4.5.14 Minimum £,/Nq versus rate, M orthogonal signals, nonco-
herent detection AWGN.

predicted by Ry is about 3 dB. The fact that noncoherent detection does not benefit by
letting code rate diminish indefinitely on the AWGN channel is sometimes referred to as
the noncoherent combining penalty. We have earlier seen similar effects in the situation
of fast-frequency-hopping spread-spectrum modulation (Section 3.8). Notice that the use
of large M mitigates this noncoherence penalty somewhat,

DPSK modulation is another noncoherent technique that by itself is rather efficient
in use of spectrum for large M, but, as we have seen, the (uncoded) energy performance
is roughly 3 dB poorer than PSK for larger M. A technical detail in the analysis of
coded DPSK is that successive demodulator outputs are not independent, because two
mtervals join to form the statistic for a given interval. Thus, we cannot directly apply
memoryless channel analysis techniques. One means of handling this mathematical dif-
ficulty, and a wise engineering choice as well, is to interleave, or scramble, the sequence
at the transmitting end and then reorder symbols after demodulation so that consecu-
tive symbols are essentially independent. We shall say more about interleaving in later
chapters. Apart from this, there is a question about what variables the demodulator
should supply the decoder for optimal decoding, or what are the sufficient statistics.
In uncoded transmission, the demodulator bases its decision on phase differences; it is
thereby sensible to pass the analog phase difference to the decoder for each interval.
Recently, Bello [19] has shown that the proper data the demodutator should supply for
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interval i is
| l; =Relrir’_ ). (4.5.30)
where * denotes conjugation. This can be simplified to
i = A;A;_ cos{d; —6,_ ). (4.5.31)

where A, and 6, are, respectively the amplitude and phase of the complex number
represented by the quadrature channel outputs. Notice that the measurement amplitudes
are important in the decoding process, rather than merely the angular difference.

4.6 CAPACITY AND R; FOR THE RAYLEIGH FADING CHANNEL

Although Rayleigh fading exacts a very large penalty on energy efficiency for uncoded
transmission on the flat-fading Rayleigh fading channel, as demonstrated in Section 3.6,
properly designed coded systems can recoup virtually all this loss under certain assump-
tions. Such channels, and others 1o be examined in the next section, are especially
amenable to channel coding, with coding gains much larger than for the AWGN channel.
This potential is foretold by analyzing C and Ry.

The Rayleigh channel exhibits two important distinctions from the AWGN channel
and its hard-decision derivatives. First, we have assumed that the fading is slow, relative
to a symbol duration, and this will apparently mean that the channel amplitude and
phase modification of the signal are strongly dependent over many successive channel
transmissions. Thus, as it stands, the assumed fading channel is far from memoryless.
Second, the decoder can profit from side information in the form of the actual channel
amplitude scale factor, a;, for the jth channel symbol. In the AWGN case, it was
important for the demodulator to have proper internal scaling in cases such as QAM
if symbol-by-symbol decisions are intended, but the decoder cannot further benefit by
being told the amplitude, because it is merely a constant scale factor in the metric.

A traditional means of addressing the memory of the channel interleaving and
deinterleaving as shown in Figure 4.6.1. The interleaver is inserted between the channel
coding operation and the modulator and the deinterleaver between the demodulator and
decoder. For now, think of these devices as scramblers that permute the order of symbols
sent over the channel in such a fashion that, once descrambled, the action of the channel
appears memoryless. Some delay is incurred in this process, which is the major hmnatlon
on its practicality, and we will discuss the details in Chapter 5.

Actually, such scrambling does not alter the total information available to the de-
coder, but merely rearranges it in time. The rationale behind interleaving is that shorter
block-length codes can be immunized against the effect of a single bad fading episode;
instead, our codeword decision will be predicated on many independent channel states,
and a law of large numbers can be exploited. We will discuss at the end of the sec-
tion an information-theoretic view on interleaving, but for now we will assume that the
interleaver is ideal, producing a memoryless channel as seen by the encoder/decoder
pair. If side information on amplitude is to be supplied the decoder, it is necessary
that this information be carried along with the demodulator outputs in the deinterleaving
operation.
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Figure 4.6.1 Generic interleaving technique for slowly fading channel. En-
coder/decoder “see” a memoryless channel.

There are multiple variations on the basic model of Figure 4.6.1, including all
combinations of the following:
1. Whether the demodulator provides hard or soft decisions
2. Whether side information in the form of channel amplitude is available to the
decoder.

Using a memoryless channel model, we can define capacity and Ry parameters as before.
We will begin with binary signaling.

4.6.1 Coding Potential for Binary Signaling on the Rayleigh
Channel

Hard Decisions with No Side Information

Suppose that a binary modulator sends one symbol per unit time over a fully interleaved
Rayleigh fading channel, and let £;/Ny be interpreted as the mean symbol energy-to-
noise density ratio at the receiver, averaged over the fading distribution. If the demodu-
lator supplies its best estimate of each symbol to the decoder (again referred to as hard
decisions), the channel error probability is given by the expressions of Section 3.6. For
example, in the case of binary orthogonal signals with noncoherent detection,
I
24 E /Ny

If no further side information is supplied the decoder, the Ry expressions developed in
earlier sections for the BSC apply:

Ro(e) = 1 —logll + (4e(1 — €))'?]
C(ey=1— ha(e).

Pi=¢= 4.6.1

(4.6.2)
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Figure 4.6.2 Capacity for Ry on Rayleigh channel, coherent PSK and non-
coherent FSK. hard decisions.

Figure 4.6.2 presents results for binary orthogonal signals with noncoherent detection and
for antipodal signaling with coherent detection, these representing two typical choices.
By comparing these results with those of Figure 4.5.2 we determine the energy penalty
attached to the Rayleigh channel. Note that for throughput approaching 1 bit per symbol
(nearing uncoded transmission) the penalties are indeed large, while as the code rate
decreascs. the energy penaity diminishes, as measured by C or Ry. For example. to
obtain R, = 0.5 bit/symbol with coherent PSK, the nonfading channel can operate
with about 5.7 dB smaller mean SNR than a Rayleigh, fully interleaved channel when
hard-decision demodulation is performed. The comparison for noncoherent FSK gives a
similar difference. Thus, although fading still exacts a penaity, it is much smalier than
the 20- to 40-dB penalties attached to fading with uncoded transmission. Furthermore, it
we are allowed still lower coding rate, the penalty is even smaller, as we see from these
figures.

As with the AWGN channel, we may view code rate 0 < R < | as a design
variable and deterraine the minimum £,/N, (average) necessary to maintain C or Ry
above this code rate. For example, we let C(x) represent the functional dependence of
capacity on the quality parameter E, /Ny = RE, /Ny and find E, /N by solving

R = C[e(RE,/Ny)| (4.6.3)

as R varies, defining the minimum E,/N, allowed at this rate. The same could be
done for the Ry, parameter. Results are shown in Figure 4.6.3, and in particular we find
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that minimum energy operation on the Rayleigh channel points to rather small binary
code rates. Provided that bandwidth expansion allows such small code rates, comparison
of Figures 4.6.3 and 4.5.4 shows that the penalty exacied by the Rayleigh channel is
minimal, on the order of a decibel for PSK. Keep in mind that full interleaving is
assumed throughout.

30

25+

2

15 |- Noncoherent FSK

Minimum E,/N,, dB

10+
Coherent PSK

! ! | | I | I L |
0 097 02 03 04 05 06 07 08 09 1

R, bits/symbol

Figure 4.6.3 Minimum E,/N( maintaining Ry > R for interleaved Rayleigh
channel, binary signaling, hard decisions, no side information.

Hard Decisions with Perfect Side Information

Next, suppose that the decoder is supplied perfect knowledge of the channel gain q; for
each transmission. (This is difficult to estimate perfectly in a noisy environment, but
slow-fading conditions make this estimation somewhat easier.) The decoder’s metric

for the discrete channel is based on the log-likelihood function, now including a; in the
“observables”;*

Alyi o xia;) = log f(y;. ajlx)). (4.6.4)

(Some may find it more natural to include g; in the conditioning for y,. since a; i a
given in the problem, and this view helps in writing conditional p.d.f.'s. As shown in

*We choose 1o express the metric in a form where side information is carried along after the semicolon
to highlight ils auxiliary or optional role.
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Appendix 4A1, when the input and channel amplitude are independent random variables,
as assumed, then
F Oy ailxp) = ef (yilxj. ap),

where ¢ does not depend on x;, so either may be used.)
Since a; determines the crossover probability in.a given transmission, and trans-
missions are independent after interleaving, we can immediately write that

;. ailx;) = e(a@)™ 91 — e(a))) ~dm D), (4.6.5)

where €(a;) represents the crossover probability of the channel; given a specific amplitude
a;. The ML metric, with side information, then becomes, after dispensing with bias terms,

e(aj)
AMy;.xj.a;) = dy(x;, y;) log [l——_——e—(-‘-]:-)-]. (4.6.6)
where for coherent PSK
aerE_r 72
€(a;) =@ (4.6.7a)
No
and for noncoherent FSK
1 _.:

€la;) = se @, Ex 2, (4.6.7b)

(In these expressions E /Ny remains as the average symbal energy-to-noise density ratio.)
Note that in contrast to the no-side-information Hamming metric, the side-information
metric incorporates a scaling of each Hamming distance calculation, based on the instan-
taneous channel crossover probability. Badly faded intervals are basically ignored, while
symbols with good SNR are weighted strongly. Hagenauer [20] has earlier derived this
combining policy and studied binary coding on the Rayleigh channel in detail.

We will defer discussion of channel capacity until Example 4.12.

Unquantized Demodulation, Perfect Side Information (PS!)

Now suppose that the binary demodulator produces unquantized demodulator output
vectors y; at each time j for the channel decoder, rather than making binary decisions.
Let us assume again that the demodulator can also supply side information to the decoder
in the form of a;. To determine the optimal metric, we write the log-likelihood function
as usual. In the case of antipodal signaling, the optimal decoder metric is a weighted
correlation, as in Example 4.4:

Myj. xjia;) = a;y; ;. (4.6.8)

where i; is the %1 version of the binary signal. For noncoherent FSK transmission, the
optimal metric applied to y; = (¥, y;,) follows from the Rician-Rayleigh joint p.d.f.:

PTLY
Ay x; = m; ;) = log £(y;. a,lx; = m) — log ( fg;’"), (4.6.92)
: f
where 4 = £, and o = No/2. Therefore, the decoder utilizes only the demodulator

output corresponding to the symbol under test. The amplitude scaling appears in a
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more complicated manner for this second case, and the preceding metric would often be
approximated as

AMyjoxp=m a;) = a}'yi, {4.6.9b)
generalizing an approximation for the nonfading channel.
Expressions for capacity and Ry mimic those found in Section 4.5 for the AWGN

channel, since interleaving has rendered the channel memoryless, but we now must
include the fading amplitude in the averaging calculation:

! i f(y.alx)
Cps) o = fn (y.a|x}lo [————]d da (4.6.10a)
Psl. UQ ;[ , 27 @aloles| THT | dy

and

=0

oc ‘1 1 2
Rowy oo = / /, [Z Ef(y.alx)”zJ dy da. (4.6.10b)
4 x=0

We have used equiprobable input distributions due to the symmetry of the problem. To
calculate (4.6.10), it is convenient to use

f(y.alx) = f(ylx.a) f(aix) = f(y|x,a) f(a) (4.6.10¢)

since amplitude is presumed independent of the channel input.

A simpler intuitive understanding of the channel capacity calculation is possible
when perfect side information is available, deriving from straightforward information
theory statements. Recall that capacity is the maximum mutual information between
channel input and output, which now includes the presumed known channel side infor-
mation, which we denote more generally by §, for channel state:

C =r;1la))(l(X: Y. ). 4610

Using the facts that ([8], see also Exercise 4.6. b)
HX. Y. S)=1(X:Y|S) + 1(X;5) (4.6.12)
and that X and channel stale S are assumed independent, we have
I(X: Y. 5)=1(X.Y]|5), (4.6.13)

which is expressed as

1(X:Y)S) = jl(X;YJS = ) fs(s) ds

- f Z f, P(x.-ls)f(yrx,-..v)iog{f—%"l’;‘)i’ dy] fo(s)ds

and is just the mutual information for each channe! state averaged over the distribution
of states, here fading amplitudes. Now, if the input distribution that maximizes mutual
information is the same for all states we have that

(4.6.14)

Cps| = fC(S = s)fs(s)ds. (4.6.]5)
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