In shor, to find the capacity of the interleaved channel with perfect side information,
average the channel capacity expression conditioned upon a given state against the dis-
tribution of states. This seems a little known result and applies for all cases (hard or
soft decisions, different channels with memory) provided the compatibility assumption
holds. It does for the fading channel under study and for the symmetric p.d.f. situations
that arise here, since the equiprobably input distribution optimizes mutual information
in the binary and M-ary orthogonal cases studied thus far. No similar interpretation is,
however, available for Ry.

Example 4.12 Capacity for Binary Noncoherent FSK with Perfect Side Information

To illustrate this averaging principie, we use the binary FSK example. With hard decisions
and side information, the crossover probability is

1

)= ———— (4.6.16)
‘@ = T @EN
and the conditional capacity is Cle(a)] = | ~ ha[e(a)}. By (4.6.15), we have
oo hJ
Cpst. hard =-[ 2ae” " Cle(a)lda. (4.6.17)
0

Similarly for the unquantized channel, the conditional capacity is

2
To(uy jo )] ody1.

Cs=a)=1-1 Rician (yg) Rayleigh (y;)log| } + ————
08> £| Yo yieigh (yy 8[ To(ztyo/o %)

p(]

(4.6.18)

Numerical calculations presented in Figure 4.6.4 show the hard-decision capacity result for

both perfect side infermation and no side information. The difference is around 3 dB at

higher SNR, but at lower rates, where the minimum energy solution exists, the penalty for

lack of side information is smaller, I to 2 dB. Similar concfusions pertain for the unquantized
case.

Unquantized Demodulation, No Side Information (NS

If amplitude side information is not available, the decoder must build its metric purely
on the basis of y and uses the channel p.d.f. f(y|x) without further conditioning on the
amplitude a. This p.d.f. can be obtained by averaging:

Fylx) = f Fix. a)Fa(@) da, (4.6.19)
0O

For the case of noncoherent detection on the Rayleigh channel, calculation will show
that the optimal decoder is a square-law combiner, that is,

Ay, 5 =m =y (4.6.20)
which is outlined in Exercise 4.6.3. The corresponding channel capacity is

2f (yo. y11x0)
So nilve) + fFlvo. yilxy)

where the conditional p.d.f.’s are obtained using numerical integration of (4.6.19).

Cnsi. vg = f S (3. yi1lx0) lﬂg[ ] dypdy;  (4.6.21)
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Figure 4.6.4 Effect of side information on Rayleigh channel capacity, binary
FSK, noncoherent detection, hard decisions.

4.6.2 M-ary Noncoherent Transmission on the Rayleigh
Channel

We now consider M-ary extensions of this development, here treating the M-orthogonal
noncoherent detection case and the cohetently detected QAM case in Section 4.6.3.
Noncoherent detection is an important practical case for fading channels, primarily due
to the difficulty in maintaining phase coherence with the channel during the deep fading
intervals. We will consider M-ary FSK, or more generally M-ary orthogonal signals,
with noncoherent detection. Again we invoke a perfect interleaving mechanism and
assume the two limiting cases on side information: no side information (NSI) or perfect
side information (PSI).

For M-ary FSK, we draw on the analysis of Stark [21]), who derives capacity and
Ry, for several cases on a general Rician fading channel, which incorporates the Rayleigh
channel as a,special case.® We will not repeat the details, but summarize the results for
unguantized demodulation (the hard-decision case is a rather straightforward extension
of previous methods and is described in detail in [21]).

With no side information available, the channel capacity is given by, due to
symmetry of the p.d.f.’s and the result that the equiprobable input maximizes mutual

9Stark works with the squares of the variables we adopl. having chi-squared p.d.f.’s, but the end resuits
are the same in either case.
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information,

(¥lxo)
Cnst = ff(lflxo) logy, [ff);y)o ] dy
0l (4.6.22a)
yix;
=1 */f(HXo)IOgM [n + Z f(ylm} y.
where f(y|xy) is obtained by averaging (see Exercise 4.6.3):
f(¥lxo) = ff(yIXo. a)fala)da
(4.6.22b)

1+ (u2/2)

!:I"I Yi e~ Vil2a’ ] exP(g‘Tﬁ%)

We point out the base M logarithm used in (4.6.22a), following [21]. With this definition
all relevant rates, capacities, and the like, will lie between 0 and 1.
We can write (4.6.22a) as

et fof e D
NSt L+ (u2/2)
(4.6.23)

Yi = Yo u?
lOgM 1+ Z exp (( oy ) [uz +2]) dy()dyl . ..dyM-l-

This expression is left to numerical integration, but is very time consuming when M
increases. Stark develops an equivalent multidimensional integral involving the squares
of variables here.

When amplitude side information is available, capacity is given by a similar ex-
pression, with the channel amplitude added to the probability statements. Specifically,
the conditional p.d.f. required is calculated by

fy.alx)) = f(ylxi, @) f(alxi) = f(ylxi, a) f (). (4.6.24)
Capacity is then found with a modification of (4.6.22):
M—|
f(yﬂ alxj)
Cpg=1- , 1 1+ —— | dy. 46,25
PSI ]a[f(y alxp) ogu[ g f(y.deO)] y ( )

This is again a task for numerical integration. Analogous to Example 4.12, this capacity
measure can be interpreted as the average, over the fading distribution, of the capacity
for a fixed-gain channel, although the latter expression is not simple in this situation.

For Ry, we appeal to the generic expression (4.3.32c), merely needing the appro-
priate p.d.f’s. The symmetry of the M-ary orthogonal situation gives that

RO’NSI 2= - IOEM{I + (M — I)DNSI] M-ary unitslsymbol, (4.6.26)
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where
2 2
Dnsi = [ f f(ylxo)."?f(ym)‘ﬂdy] . (4.6.27)
0

For the case of Rayleigh fading, the required p.d.f.'s can be found by conditioning on
amplitude, giving a product of Rician and Rayleigh p.df.’s, and then averaging with
respect to the Rayleigh distribution for amplitude. Doing so, with substitution in (4.6.26)
gives, after some work,

Roe =1 —logy [1 + (M — D4p(1l — p)], (4.6.28a)

where
1

PE IV ENg
which is just the probability of error for noncoherent binary FSK!
With side information, we can use the expression (4.6.26) with the definition
that [21] '

(4.6.28b)

> =3
Dpgy = f 2ae~ D(a) da {4.6.29a)
0

D(a) = Ry for binary FSK on the AWGN channel

*y y +a® 2\ p apyy |, T
= [./0. 0—3 exp (——-————202 ) Ioﬂ ('-:;'2'—) dy]
This may be recognized from the Ry calculation for noncoherent binary FSK on a fixed-
gain channel in Section 4.5. '

As observed by Stark, the expressions for Ry are easily calculated for different
values of M once the appropriate value of D is obtained. This is unfortunately untrue
of the capacity calculation and demonstrates one appealing feature of R, analysis.

Having obtained the various measures for C or R, the minimum energy to noise-
density ratio required to keep R < C (or Ro) is found by solving, at a given rate,

_ E. _ r lng ME),
r=C (NO) = C( Ng ) . (4.6.30)

(Recall that our definition of rate here is in M-ary symbols per M-ary channel symboi
and is between 0 and 1; the normalized rate r and rate in bits per symbol, R, are related
by R=rlog, M) :

Figure 4.6.5 provides the loci of minimum energy for unquantized noncoherent
demodulation of binary FSK on the interleaved Rayleigh channel, with and without side
information, for both capacity and Ry. We note that, as with noncoherent demodulation
on the AWGN channel, there exist optimum rates in the minimum energy sense, although
the optimal rates are smaller than for the AWGN case, and there is somewhat greater
dependence on the code rate.

Finally, and perhaps most interesting, is that if the optimal rate is selected then
~Rayleigh fading costs less than 1.5 dB in the capacity sense, relative to the minimum

(4.6.29b)
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Figure 4.6.5 Minimum energy loci versus rate, Rayleigh channel, binary or-
thogonal signals, noncoherent detection.

E,/Ng for the AWGN channel, as can be seen by comparing Figure 4.5.14. If side
information is available, the loss is even less, on the order of 0.6 dB.

Ro results at least can be easily converted to other values of M as follows [21]: if
e>(r) represents the minimum E, /Ny consistent with Rq > r for binary FSK, then ey (7).
the minimum E, /N, allowed by Ry for M-ary transmission at normalized rate r, is

L PR (M!—r_l+|) I —1lo Ml_r_'+|)
rlog, M B\ TM B2\ -1 '

4.6.31)

This derives from proper normalization of rate and energy when alphabet size changes.
Ryan and Wilson [22] illustrate this dependence on M, redrawn in Figure 4.6.6, showing
that as M increases beyond 2 the optimal rate drops still further, and the corresponding
allowed bit energy-to-noise density ratio diminishes as well. It can be shown that the
energy efficiency is approaching, for large M, that of coherent M-orthogonal transmis-
sion, paralleling a result of Chapter 3 that noncoherent detection is nearly as efficient as
coherent for large alphabet sizes.
The principal messages of this section are as follows:

en(r) =

1. Low-rate codes, in M-ary information symbols per M-ary channel symbol, are
warranted on the Rayleigh channel provided significant bandwidth expansion is
acceptable.

2. The penalty relative to the AWGN channel is minimal for intelligently designed
codes.
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Figure 4.6.6 Minimum energy loci versus rate, Rayleigh channel, M-ary or-
thogonal signals, noncoherent detection.

4.6.3 Channel Capacity for Bandwidth-efficient
Moduiation on the Rayleigh Channel

To conclude our study of coding potential for the Rayleigh fading channel, we retum
to bandwidth-efficient signal sets, such as QAM, and assume coherent detection. The
transmitted signal is represented as an N -dimensional signal with signal-space coordinates
$i = (50, Sp.... sn-1). We assume fading is flar across the signal bandwidth; that is,
all signal-space coordinates of the transmitted signal are identically affected by fading.
Thus, the received signal vector is

r.mf' = ajsmj +ﬂ,,,j. m =0. I. cevy N - l, (4.6%2’

where j represents the time index, and {n,,;] is a set of independent, zero-mean Gaussian
random variables with variance Ny/2. Given a signal vector and the fading amplitude, the
receiver outputs are independent and spherically symmetric again; the nuance here is the
additional random variable due to fading; this fading expands or shrinks all coordinates
of signal space equally.

Provided that the channel is fully interleaved and that the receiver possesses side
information regarding the amplitude of the fading process during any symbol interval'®
(and this must be deinterleaved as well), we can employ the theory of the previous
subsection to write the channel capacity as

Clzayleigh = EA[C.(A”‘ (4.6.33)

1911 is necessary anyway for the demodulator 1o determine signal strength in order to perform demodulation
of QAM sets.
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where C*(A) is the mutual information under an equiprobable input selection, conditioned
on a fade amplitude A. Therefore,

Ml o ; fylsi,a)
Choeiat = Y — | 2ae° f .. a)l [—] dyda. (4.6.34)
Rayleigh Z.; M[o e yf(y1s a}log fol |

In this expression the conditional p.df.’s are two dimensional, circularly symmetric
p-d.f.’s centered at as;, with variance Ng/2 in each coordinate.

Figure 4.6.7 illustrates the capacity for the Rayleigh channel and for the AWGN
channel for 16-QAM transmission, which is typical of other cases. Again, the fading
penalty is modest, vanishing as the code rate in bits per symbo! decreases. On the AWGN
channel, such analyses suggest that coding to send one bit per symbol less than log, M
provides virtually minimum energy design. Here, the suggestion is that smaller rates are
desired if the minimum energy sotution is sought for the Rayleigh channel. Said another
way, for communicating, say, 2 bits/symbol on this channel, it may be appropriate to
use a 16-point constellation in two dimensions, having the same bandwidth properties.
Ry analysis would lead to similar conclusiocns—principally that Rayleigh fading need not
imply a huge energy penalty.

In a less constraining manner, Ericsson [23] analyzed the capacity of the interleaved
Rayleigh channel with side information subject only to an energy constraint on N-
dimensional signals, and in particular not assuming a particular modulator set such as
QAM signals selected with equal probability. The finding is that

CRayteigh = E 4 [1 log ( 1+ Alﬂ)] bits/dimension, (4.6.35)
2 N No
where the expectation is with respect to the fading amplitude A. (This is consistent
with our recent discussion for capacity with side-information present.) Equation (4.6.35)
is actually very general, holding for N-dimensional sets with arbitrary fading statistics,
provided that coherent detection is performed and that perfect interleaving is achieved.
One implication of (4.6.35) is that if energy is spread thinly over many signal-space
dimensions (although not the case of interest here), then capacity approaches that of the
nonfading channel.
In the case of Rayleigh fading and two-dimensional sets, (4.6.35) becomes

e 1}
CRayieigh = f 2ae™" [iog (l + Az%)] da, bits/dimension (4.6.36)
0 0
which can be evaluated numerically. The result is shown in Figure 4.6.8 versus E,/Ny.
We observe that the unconstrained capacity is superior to that of a discrete set as SNR
increases, and the departure occurs at lower SNR on the Rayleigh channel. With only an
energy constraint on the input, the asymptotic results for low and high SNR show that
for low SNR the capacity approaches that of the AWGN channel, log(1 + E,/Ny), and at
high SNR the capacity penalty is 2.5 dB. These results are developed in Exercise 4.6.6.

Ericsson also determined the R, parameter for this same channel model with very
similar findings. When Ey /Ny is small, the Ry value per signal dimension is essentially
that obtained for the nonfading channel. In particular, this Ry value is asymptotically half
the channel capacity in this regime, as we saw eatlier for the nonfading channel. How-
ever, as the signal-to-noise ratio per dimension increases, Ry for the Rayleigh channel
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Figure 4.6.8 Capacity per dimension for AWGN and interleaved Rayleigh
channels, energy constraint only on input.
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experiences a similar degradation, slightly larger in fact than capacity does. Specifically,
at Ry = 1 bits/dimension (two bits/two dimensions), the increase in average energy
necessary over the nonfading channel is about 2 dB.

We may argue, correctly, that without side information the capacity in bits per
symbol increases for the same fading description when we de not interleave, although
not by large amounts. We will not pursue this point further, however, since taking
full advantage of this requires coding techniques with extremely long memory length.
Interleaving remains a viable practical approach on the fading channel.

4.7 FURTHER STUDIES ON CODING POTENTIAL'!

To conclude the chapter on the potential of channel coding, we study three case studies
that involve new channel models, relevant to certain communication engineering situa-
tions, and ones that produce some curious results for C and Ry. The channels are (1)
the ideal photon counting channel and (2) biock interference channels.

4.7.1 Photon Counting (or Direct Detection) Optical
Communication

We suppose transmission of information is accomplished by amplitude-modulating an
optical source of energy, perhaps a semiconductor laser, having a frequency f typically
around 4 - 10" Hz, or a wavelength around 0.75 micrometer (um). Digital information
is communicated by breaking a basic signaling interval of duration T; seconds into slots
of width Atr, where ordinarily At « T, and impressing a set of M modulation patterns
(laser intensity patterns) defined on the interval T, seconds. This forms the modulation
scenario, and the inputs to this modulator may be coded to enhance the communication
efficiency.

The optical signal travels through free space or a fiber medium and arrives at the
detector with average power P, watts. The optical signal will in reality be processed by
conversion to an electrical signal by the photoelectric effect; that is, optical photons create
hole—electron pairs in a semiconductor, which in wrm produce current in the presence
of a voltage bias. Such processes, whether occurring in a photomultiplier tube or an
avalanche photodiode, are intrinsically noisy. The process of one pair creating many
so that currents become suitably large is a random phenomenon. Dark curmrents exist as
well, when no incident radiation is present.

Let’s imagine nonetheless that we have available an ideal detector that is able to
count the number of photons incident on our optical receiver in every time slot and report
this integer-valued count, called N;.i =0, 1,.... This can be shown to be a sufficient
statistic for the problem assuming that the incident wave induces a Poisson stream of
photons, with rate dependent on the laser’s modulation state. We call such a detector
an ideal photon counting detector, also known as direct detection because the signal

"'No loss of continuily occurs in omitting this section.
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processing is on the optical signal directly, rather than employing Heterodyne technigues
to convert the signal to lower frequencies.

The underlying source of interesting effects on this channel is the quantum nature
of the problem; for example, even though the laser intensity in a given slot is a positive
real number, the number of observations is a Poisson r.v. with parameter determined by
the laser intensity, and it is possible that no photon counts will be registered despite the
laser intensity being positive. In essence, the variability of the signal, when observed. is
the source of message uncertainty. We will further assume that there is no background
radiation to contend with, which can be a good approximation when aperture stops
and optical bandpass filters are utilized. The modulation and demodulation scenario is
illustrated in Figure 4.7.1.

Message i [ gigna | it Laser pee 7 . ~~ Photon | Ni
Generator ) - —1 Counter
Optical
Signal
Photon
si{th § Counts/Slot

_!-LIT!-!—"LI"I
At T,

Figure 4.7.1 Optical signaling model with photon counting.

Since each photon carries hf joules, the average number of photons available per
second is
P,
A = —  photons/second. 4.7.1)
hf
If the available energy 1o a single interval is completely allocated to one slot, for example,
the intensity during this slot is

P. T,
Ay = WA photons/second, (4.7.2)

also implying that the peak iaser power is much greater than the average power, a possible
technological difficulty.

In studying this scenario, Pierce [24] first considered ideal amplification of a signal
of frequency f observed in a black-body radiation field with temperature 7 and, citing
Gordon [25], observed that the equivalent noise power spectral density is

hf (G -~ Dhf
2 AT 1) 2

where G is the ideal amplifier power gain. (An ideal amplifier in this context is one that
increases the intensity of the radiation by G units.)

For microwave and lower operating frequencies, or more prec1sely when the energy
per photon is relatively small and hf <« kT, the noise model appears as an additive white
Gaussian noise contamination with noise level No/2 = kT /2. The channel capacity for

Gulf)= W/Hz (two-sided), 4.1.3)
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the unlimited bandwidth AWGN channel is related to received power and noise level by
{Section 2.9)
C _bE_ 5 ats/second = 1 nats/joule = A nats/photon.  (4.7.4)

AWGN = = T nats/sec =7 LI = or e p . iy
[Note that we will frequently employ units of nats for information measures here; a nat
is equivalent to 1/ log, 2 = 1.44 bits.{

On the other hand, if Af > kT, as a quick calculation will show pertains for optical
frequencies, the second noise term, the quantum noise or partition noise, will dominate
in (4.7.3). and it the amplifier gain G is large, the noise source will be Gaussian with
spectral density G,(f) = Ghf /2. assuming that G >» 1. Assuming that the noise
spectrum is roughly constant over a narrow range occupied by the optical signaling
process'> and noting that the average signal power is also increased by the factor G, the
corresponding AWGN channel capacity expression applied here yields

P, 1 . . I
C = e nats/second = ;}- nats/joule = [ nat/photon (ideal amplification).

4.7.5)

It is concluded that the capacity for ideally amplified signals is | nat per photon, or about
1.44 bits per photon, in the high-frequency regime.

Pierce went on to argue that if the optical detector is able to count photons directly in

intervals of length Ar, rather than use an ideal optical amplifier, subsequent heterodyning,

and typical radio-frequency signal processing, the channel capacity, in bits per photon, is

/
Con = }(HTC bits/photon (photon counting), (4.7.6)

and in principle if the detector is cooled to sufticiently low temperature and the optical
background contributes no thermal photons, the capacity per photon is indefinitely large!
{The same could be claimed in the low-frequency regime as T — O from (4.7.4), although
the actual value of Af /kT will be much smaller for a given T when operation is in the
radio-frequency range, say 10* Hz)

One way to achieve this efficiency is to use a laser source that is pulsed exactly
once per 7T, seconds for a duration of Ar = T, /M; this is referred 10 as M -ary optical
PPM. We let the intensity of the optical source be characterized by a mean rate of photons
at the detector of A,, specified in (4.7.2). Thus, the mean number of photons per slot is
AMAL =P T /hf.

For a detection model, we assume the detector counts the number of arriving
photons, N,, in each slot. If one or more counts register in a given slot, the detector
outputs the index of the time slot.i = 0. 1. .... M — 1. Notice that it is not possible for
the wrong slot to register (because background radiation sources are neglecied), but it
is possible for no counts to register in the proper slot, due to the quantum nature of the
problem. In this case the detector outpuls an erasure symbol, say E. The probability of
an erasure, is just the probability that a Poisson r.v. is zero when the Poisson parameter
is A, At. This s

PEY=1-¢ "4 4.1.7)

"2Note that even a 10 GHz modulatica rate produces a narrowband signal centered at 4 - 10 Hz.
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We thus have an M-input symmetric, discrete memoryless channel model for each basic
signaling interval, corresponding to the M-ary erasure channel shown in Figure 4.7.2.
The capacity in bits per channel use is found by computing the difference between H (X)
and H(XjY) under an equiprobable input model. The result is

Copm = (1 — ™42 log, M nats/channel use (4.7.8a)

or

(1 —e ™2 log, M
Cr = £ nats/second. 47.8b
7 VAT / ( )

Because the average number of photons per channel use, or per symbol, is A; Ar, we
argue that the channel capacity, per photon, is

(1-e*%)log, M
As At

For any fixed laser power constraint, which fixes A; At through A;Ar = P, T, we can
make the capacity per photon arbitrarily large by letting M become large. In fact, the
most efficient operation is obtained when A;Ar = P.T, is small, in which case the
capacity per photon approaches log, M nats/photon (not nats/symbol!).

Technological limits eventually set in—we cannot transmit with arbitrarily small
siot width, detectors do not have infinite bandwidth, and the channel medium may be time
dispersive. Furthermore, holding the average power fixed while At shrinks means the
peak laser power is becoming unbounded. Nonetheless, the fact remains that ideal photon
detection on the optical channel, or any quantum-limited channel, has potentially very
large capacity per unit of energy (photon). The most obvious penalty is the exponential
increase in bandwidth attached to the increase in information efficiency.

nats/photon. (4.7.9)

Cph =

1 _ e—lsbf

* 0

NN .

e™*sM each

M~1 e : « M-1 )
Figure 4.7.2 M -ary erasure channel
model for optical PPM with photon
* E

counting.

McEliece [26] further studied the general intensity-modulated model, allowing the
intensity in each time interval to be a real number A, , while the detector still reports the
registered number of photon counts, possibly zero, in each time interval. Each interval
is a new use of the channel. The channel capacity is developed by maximizing mutual

information between input and output, under the constraint that we expend u photons
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per interval, on average. Under an average power constraint, u becomes

o= Eé—r 4.7.10)

hf
The mutual information between the real-valued input intensity y and the output count N
is upperbounded by the unconditional entropy of the channe! output count. This entropy
is in turn maximized over ali nonnegative integer-valued random variable distributions
having constrained mean m when [25}

PINi=my=p"(1 - p), n=201 ..., @.7.1hH

with p = u/(1 + u). (This says that the output counts should have a geometric distri-
bution.) Substitution of this result into the expression for entropy of the outpul shows
that channel capacity is upper-bounded by

| .
C <logll +u)+u log(l + —-) nats/channel use. (4.7.12)
\ p

Normalizing by u stll allows C,; to be arbitrarily large (when u shrinks toward zero).
However, since the actual rate of transmission is bounded by C and log(l + u) < u,
we have that R/u < 1 +log(l + 1/u). McEliece used this result to show that for any
intensity modulation scheme, including of course PPM, the bandwidth expansion factor
grows exponentially at the same time as €, shrinks toward zero.

Returning to M-ary PPM, the R, parameter can be easily established from the
erasure channel model of Figure 4.7.2. Recalling that the definition of R, is, for the
symmetric channel,

-

I .1
Ry = ~log, [Z‘ 7 P(_\'].\')”'] , (4.7.13)

¥ X

we can determine that

Ml — e hory
R() = - lOg!. [—‘(_fp{;———l -+ PvA‘AIJ
i (4.7.14)
— M

= — log, [e'*’ &+ T] nats/symbol.

Taking the limit as A, Ar — O shows that, in units of nats per photon, Ry can be
made arbitrarily close to (M — 1)/M = | by lowering the laser intensity and utilizing
arbitrarily short time slots! McEliece also shows that more general signaling, that is,
allowing signaling in each slot, but with an average power constraint, produces at most
Ry = | nat/photon.

In contrast to results obtained on the AWGN channel, where C and R, did not differ
by more than a factor of 2, we have here a puzzling contrast between the assessments
offered by channel capacity and Ry analysis: the former is unbounded, while the latter
saturates at ) nat/photon. The belief that R, represents a limit on reliable communication
rate with feasible complexity would suggest that reliable throughput much in excess of
a few bits per photon will be difficult.

Butman et al. [27] have studied the optical PPM channel from a different perspec-
tive, observing first that the usual communication concern is achieving a given throughput
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Ry in bits per second, and thus the optimization should require that a given Cr (or Ry in
nats per second) be obtained. [Notice that if our only concern is maximizing information
capacity per photon the maximum throughput Cr vanishes to zero by (4.7.8b)!] Further-
more, it is realistic to establish a bandwidth constraint or, equivalently, a minimum pulse
width Az. So the slot width At is specified, and the capacity in bits per second, given
by (4.7.8b), is set equal to some target value, and we ask for the best value of M to
maximize Cp;. In keeping the value of Cr fixed, while varying At, it is obvious that A
must vary, and this allows the best utilization of energy. Maximizing Cp; numerically
leads to a result that depends on the specified Ar and the target throughput Cr. If, for
example, At = | ns, and we seek a modest throughput of Cy = 10° nats/s, then the
optimum M is about 2000, resulting in an energy efficiency of 6.5 nats/photon. For
the same desired throughput and a pulse width A = 107'?, which is present state of
the art for laser pulse width, the optimal M is about 2 - 108, atllowing communication
with about 13.5 nats/photon. The plot of C,,, versus M for these conditions is shown in
Figure 4.7.3.

14
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C, nats/photon

0 1 l 1 l 1 l L
10° 10? 104 108 108
M

Figure 4.7.3 Capacity per photon, optical PPM, throughput = 10? nats/s.

In the latter case, if, through channel coding, we push the transmission rate up
close to capacity, then the signaling interval is 107'2(2-10%) = 2-107° 5, corresponding
to an information rate of 2 nats/interval, despite the large alphabet size. (Lesh [28] later
showed that if we adhere to this optimizing policy the capacity in nats per channel use
is upper bounded by 2, approaching 2 as the bandwidth expansion factor M/ log, M
increases.) Recalling that the M ~ 2 . 10%, we find that the suggested code rate is about
2/10(%(2 - 10%) =~ 0.14. The bandwidth expansion factor would be M /(Rlog, M) =
7-10°.
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4.7.2 Block Interference Channels

McEliece and Stark [29] analyze a class of block interference channels wherein blocks
of m channel symbols are affected in statistically identical, but memoryless, manner,
constituting a special kind of channel with memory. On this particular channel, it is
found that capacity increases with memory or the length of the interference interval,
while Ry actually drops! '

An example, which will be studied shortly, is the situation where we can commu-
nicate by one of two BSCs: a good channel or a bad (high interference) channe) with
larger crossover probability, for a duration of m bits. Then, a new channel presents itself.
In each condition, the channel behaves as a memoryless channel with fixed statistical
description. The assumed mechanism on channel selection is Bernoulli trials; that is, that
choice of a successive block’s model is independent of other blocks. The probability
that the channel is the good channel will be designated P,.

Such channels are phased in the sense that the behavior is always in blocks of
length m, but in (29] it is observed that this may be a good model for jamming or
multiple-access channels that suffer from bursts of interference of fixed duration m or
as a model for concatenated coding scheme (see Chapter 5), wherein an inner decoder
failure presents the outer decoder with a poor superchannel for a fixed interval.

We are interested both in the channel capacity and the Ry parameter that are
measures forecasting the success of channel coding on this kind of channel. Two cases
are analyzed: first, the decoder may possess side information on which channel state
is in effect in a given block, or, conversely, the decoder may not have channel state
information. In either case, the encoder does not know the channel state.

The communication process may be viewed as having superchannel inputs given
by m-tuples over the channe! input alphabet and with outputs given by m-tuples over
the channel output alphabet. If side information is provided, the decoder is also sup-
plied the index of the channel state, s, for the given block. In [29] it is assumed
that the input probability distribution achieving capacity is the same for all channel
states, referred to as a compatibility requirement, which holds in the examples consid-
ered.

By treating the communication process as a DMC at the m-tuple level, the capacity
with side information, C(m), is readily found. Let C(s) denote the per-symbol channel
capacity for a channel in state § = 5. Then, because the channel is memoryless within
a block,

|
Cimy=—max(X;Y.5) 4.7.15)

m P(X)
where 1(X; Y. §) is the mutual infermation between input vectors and the outpul collec-
tion (Y. §). This mutual information may be decomposed as [9, 29]

XY, ) =1(X: )+ X YIS
(4.7.16)

=1(X:Y|S) = Es[1(X; Y*)).

where Y'? is the m-tuple of channel outputs when statz s is in effect and when the
common (compatible) input distribution is used. [We used the assumption that X and S
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are independent random variables and hence have zero mutual information in (4.7.16).]
Now, we know that /(X; Y'') < mC(s). with equality if the input distribution achieves
capacity in a given state and inputs are selected equiprobably. Thus, from (4.7.15) the
channel capacity, with side information, is

Cim)=C = E[C(S)] 4.7.17)

independent of block memory length! The expectation is over the set of channel states,
and in simple terms, the channel capacity is just the average of the capacities of the
component channels, each of which s readily found for each DMC.

Now. regarding the channel capacity in the absence of side information. C(m), we
first note that

C(m) < C(m) =C, (4.7.18)
since
X Y) = 11X Y, 5).
Furthermore,
X Y. )< IXiY+1(X Y. s (4.7.19)

with equality holding if Y. S are independent. Dividing by m and taking the limit as m
grows gives

lim C(m) = lim —“i(x Y)=C (4.7.20)
m— 0 n-->o0 m
since lim,, . /(X. Y: §)/m = 0. provided S has finite entropy itself, which we assume.
This reveals that the penalty for lacking channel state is small if the block length is
sufficienty long. Intuitively, we may probe the channel every block with test symbols
for each block to leam the channe! state at the receiver, and this overhead can be made
negligibly small as the block length increases.
If we again define Rq in terms of two-codeword error probability averaged over an
ensemble of codes, it is shown in [28] that, with side information supplied to the decoder,

e [
Ro(m) = - — log, Es [27"%], @7.21)

where Ry, is the Ry parameter for the channel in state s and where expectation is again
over channel states. Thus, we do not average the individual channel R, parameters, as
for capacity, but instead Ro(m) satisfies, from (47.21),

2—mR.,(ml Z P(5)2~mRus, (4.7.22)

Experience with various examples shows this decreases with m. Analysis of the no-side-
information case shows that Ry(m) < Rg(m), as we would expect, and it is conjectured
that the former is also strictly decreasing in m.

Let’s interpret all this through a simple example of a block interference channel.
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Example 4.13 Block Interference Channel with Two BSCs

378

Consider the example introduced at the outset, where the channel states have either zero
error probabilily or error probability ¢ = % (This model is generalized in the exercises.)
The probability that the good channel is in effect is Pop = 0.9, and P, = 1 — Py. The
memory length is again m channel symbols.

The two channels have capacities of | and 0 bit/channel use, respectively, so the
overall capacity with side information is C = Py = 0.9 bits per symbol, independent of
memory length. This result would certainly be anticipated if both encoder and decoder
knew the channel state, for we can communicate with rate | during the good channel states
and rate O elsewhere, attaining a throughput of 0.9, but it is perhaps surprising that this
throughput can be achieved reliably without encoder clairvoyance.

The two channels also have respective Ry ; values 1 and 0 bits/channel use, and so

— |
Ro(m) = ~ [ logl(1 - P0)2° + Pp27™ "] bits/channel symbol
| (4.7.23)
= —— log,{0.1 + (0.927" + 0.1].
m

Thts decreases monotonically to zero as memory increases.
The corresponding expressions for the no-side-information case are calculated by
taking an m-tuple view of the communication problem and are extracted from [29]:

Cim) =[Py + (1 — P)277)

1 (4.7.24)
= k(P — P\ + (P = P27 ") log(l = 27™))
and
1
Ro(m) = - log J;. (4.7.25)
where
) 2" —1 |
Jy = i J + F (4.7.26a)
and
-2 I-m m 12
4= =P+ 27 PP+ 270 - PP (4.7.26b)

Table 4.2 provides the results of the calculation of these four quantities for selected block
lengths of a power of 2. Notice that the opposing trends of capacity and Ry result.

TABLE 4.2 CODING PARAMETERS
VERSUS BLOCK LENGTH FOR BLOCK
INTERFERENCE CHANNEL

m Ro(m) Rolm) Cint) Can)

1 0.48 .56 0.71 0.90

4 045 .67 0.80 0.90
16 0.2t 0.21 0.87 (.90
64 0.052 0.052 0.89 (.90
256 0.013 0.013 0.90 .50
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These channel descriptors forecast the coding potential on this channel if we treat
the problem as one of communicating m-tuples, with or without side information. On
the other hand, the code alphabet for such a system would be large, |A|™, where |Af
is the input alphabet size for the basic channel, and practical realization of the coding
potential is unlikely. Interleaving is a common practice of scrambling or permuting the
order of symbols output by an encoder, prior to transmission, when the channel has
memory. The effect we hope to achieve is to produce a memoryless channel, as seen
by the encoder/decoder, with a first-order probability structure given by the expected
channel behavior averaged over ils modes. (Permutation of channei symbols, then re-
assembling them in proper order, does not change the true capacity at all; it is just that
the encoder/decoder proceed on the supposition that the channel is memoryless.) In other
words we form a channel with memory m = |, having the same marginal behavior as the
real channel. The traditional justification is that codes designed for memoryless channels
will have better performance and not be overwhelmed by bursts of more errors than the
code can accommodate.

If side information is present (and interleaved/deinterleaved along with channel
symbols), the fact thal capacity is independent of memory length suggests that inter-
leaving is not helpful, but, more surprisingly perhaps, not harmful either. On the other
hand, when side information is lacking, the improvement of C{m) with m suggests that
interleaving may be harmful; this is, in fact, the usual case, For the two-state in Exam-
ple 4.13, the corresponding memoryless channel would be a BSC with parameter 2, /2,
having capacity

2

which is iess than the capacity of the channel with memory. Rp analysis may suggest
that interleaving is useful, with or without side information, since both Rg parameters
decrease with memory length m. The example of the two BSCs shows dramatic difference
between values for m = 1 and m = 256. A clever “smart interleaving™ scheme in [29]
involving test patterns attached to each block and erasure of the block if the correct test
patiem is not received leads to further improvement in the channel parameters, rendering
the channe! nearly as good as having full side information. The gain in Ry is especially
large. We should caution that the block memory assumed may not be correct or even
that this particular model for channel memory is accurate.

McEliece and Siark offer a reconciliation of the paradoxical findings of C and Ry:
rather than a measure of complexity (code block length) needed to achieve a given level
of performance on a certain channel, Ry should be regarded as a reciprocal measure of
required delay, this delay being incurred through interleaving of codewords.

P
Cinterieaved = | — 2 (-—l) bits/channel use 4.7.27)

APPENDIX 4A1: DECODING ON CHANNELS WITH MEMORY

We imagine the scenario depicted in Figure 4A.1, wherein input vectors X are injected
into a channel, and the aggregate channel output is a vector (of vectors perhaps) ¥ =
(¥1, ¥2. ... ¥n). We suppose that the channel has an internal mechanism called a state,
and the sequence of states will be denoted s = (51.52,....5,). We make the further
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X
X Channel |V Decoder —
flylx,s)
} }
§f ~m—m - 4 .
Side-information

Channel State

Pr Ocess Figure 4A.1 Channel model for
w/Mernory channel with memory.

assumtion that, conditioned on knowledge of the state and the input sequence, the
output sequence is memoryless; that is, we assume that

fExes) =[] ruix.s). “ALID)
Jj=l

We are interested in optimal decoding on such a channel under one of two cases. First,
we decode only observing ¥ {the no-side-information case). Second, we may have access
to § as well (side information).

No _Slde Information

Given only ¥, the optimal decoder will maximize the a posteriori probability P(x;|y),

which can be writien as .
— (¥I1x)P(x;)
P (xly) = LI (4A1.2)
F(y)
If we assume that messages are equiprobable and note that the denominator in (4A1.2) is
a scale factor that is constant for all hypothesized x;, we may use the maximum-likelihood

rule:
mxax f{Fix). (4A1.3}

This looks familiar, but we should realize that this conditional p.d.f. must incorporate a
channel state effect with memory. This can be expressed by

£ = [ 1G9 fsds. (ALY

In general, the corresponding metric is difficult to formulate for arbitrary channels with
memory, although Markov models for the state sequence simplify the results, More
important, however, is the fact that uniess the decoder operates over many modes of the
channel, rather than just basing message decisions on a short span of activity, the error
performance will be very poor. This is basically the rationale for interleaving, discussed
in Sections 4.6 and 4.7; the channel is rendered memoryless by a scrambling operation.
In that case at least, assuming that the state process is stationary, the per-symbol metric
becomes

Aly;jx;) = log f(y;lx;} = log U Flyjix;, $) fs(s) ds]: (4A1.5)

that is, a state-averaged p.d.f. is employed.
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Perfect Side Information

Suppose now that s is observed as well. Beginning with the MAP optimality rule, we
have that

Tx. ) P
P(xilf.s)=fmx"s) 1s), (4A1.6)

f(yls)
We assume that the message input x is independent of the channel state and, moreover,
equiprobable. Thus, P(x;|s) can be neglected in the metric. Also, the denominator does
not depend on the index i and can be removed as a simple scale factor. Thus, because
we assumed that f(y|x;, s) was a product form, in the perfect-side-information case we
find that the per-symbol metric should be

My;, x50 sy = log fyjlx;,5)). (4A1.7)

In other words, we use a sequence of metrics appropriate for the various (known) channel
states.

Despite the fact that the metric looks very familiar in this case, we should not infer
that we have taken care of all the memory difficulties of the channel. In particular, unless
we use codewords whose lengths span many channel decorrelation times, performance
is dominated by the very poor channel modes, for example, deep fades on a Rayleigh
fading channel. Thus, there may be good reason 10 employ interleaving on the channel
even when side information /s available. This interleaving will not change the metric
when side information is used (after all, we are just rearranging the order of time), but
performance can be drasticaily different.
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4.2.1.

4.2.2.

4.2.3.

4.24,

4.2.5.

4.2.6.

4.2.7.

EXERCISES

A famous block code, which will be studied in Chapter 3. is the (23, 12) code due 10 Golay.

The encoder maps 12-bit binary information sequences to 23-bit binary code sequences.

(a) What is the size and rate of this code?

(b) Repeat for a code that maps 9-tuples from an alphabet of size 16 to length 15 sequences
from the same alphabet.

Discuss the usage of the term rate of a code and when it is actually the information, or

entropy, rate of the code in bits per symbol.

M -ary orthogonal signaling is to be analyzed for use with coded transmission with nonco-

herent detection of code <ymbols. The demodulator produces for each symbol the vector of

M noncoherent matched filter outputs, designated y;, as described in Section 3.4.

(a) Show that the ML metric for scoring symbol x; = m at time j, given that the vector
observation y; is

H Y,
l(yf..\'j =m) = |0gf 1o (—U—;—) '

where 1 = E sl 2 is the (known) signal strength parameter involved in the Rician p.d.f. at
the receiver. In other words, the ML decision maker, in scoring a codeword, uses only the
demodulator output corresponding to the hypothesized code symbols in the codeword
and ignores the remaining data. This follows from writing the complete likelihood
expression f(y|x;) for a given transmission and then simplifying by eliminating terms
common to all such expressions.

(b) By finding a series expansion for /g(x) for small argument x and then using an ex-
pansion of the logarithm for arguments near I, show that for small SNR cases the

square-law metric

My; xj=my=y,*

is near optimal and avoids use of special functions.
Let a set of binary codewords be given by (000), (110), (101), and (011). Map these onto
vertices of a cube through the usual antipodal refation, '0’ - —1,’1’ — 1. Sketch or
otherwise describe the decision regions in the manner of Figure 4.2.3 for ML and binary
hard-decision decoding on the AWGN channel. Shade the regions as black, white, or gray
(flip a coin) if the likelihoods are equal.

Show that for the memoryless binary erasure channel, regardiess of erasure probability, the
ML decision rule is “find the codeword that has zero Hamming distance to the observed
vector in nonerased positions; if ties exist, make an equiprobable choice.”

It is appropriate to remember that decision procedures that result from addition of AWGN
to signals can be inappropriate if the noise mechanism is non-Gaussian. Suppose that the
noise p.d.f. appears as in Figure P4.2.6, which might correspond to the mixture of two
possible p.d.f.’s, & low-noise condition and a high-noise condition. In a two-codeword sit-
uation with codewords (—1,~1, —1) and (1, 1, ), suppose thal the received vecior is
(=0.9, —1.1,2.1). Based on independent Gaussian noise assumptions, the decision would
be in favor of (1, 1, 1), since the sum of observations exceeds 0. Which codeword has
greater likelihood under the adopted noise model?

Suppose 16-QAM is to be employed for coding on an AWGN channel. One option would

be 1o perform hard symbol decisions, with P; given by the theory of Chapter 3. (Note that
symbol error types are not equal here).
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433,

4.3.4.

4.3.5.
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Figure P4.2.6 Non-Gaussian noise p.d.f.

(a) What per-symbo! metric would you suggest for measuring demodulator outpu! ¥ against
code symbol hypothesis x?

(b) If unquaniized iwo-dimensional observations wete produced by the demodulator, derive
the optimal per-symbol metric for decoding. (Ans.: It is negative Euclidean distance,
which can be simplified to a correlation plus an energy-related correction.)

Show the Bhattacharyya distance dg(x,y) as formulated in Section 4.2 has wwo of the

properties of a metric, that dg(x. y) > 0 and dp(x, y) = dg(y. x), but does not satisfy the

tnangle inequality. dg(X,y) < dg(X,1) + dg(z.y).

Demonstrate that Hamming distance between two n-tuples has the necessary properties of

a metric as listed in Exercise 4.3.1.

Consider two codewords of length 10, x; = (0000000000) and x> = (111111111}, One

codeword is transmitted by a memoryless binary erasure channel with erasure probability 0.1.

(a) Formutate the ML decision rule, invoking a tie-breaking rule if necessary, Show that
the decoding ervor probability is Pr = 5 x 10™!!, Calculate the Bhattacharyya upper
bound on codeword error probability given by (4.3.4).

(b) Repeat for the Z-channel, with crossover parameter 0.1, Here the actual conditional
error probabilities for the two codewords are different. Formulate the ML rule, and note
that an error may occur only if the all-cnes codeword is transmitted and 10 crossovers
occur. Calculate the two-codeword bound by {4.3.4). Notice that the bound does not
reveal the asymmetry of the problem.

(¢} Change the codewords to (0000Gi 1111} and (1111i100000). Notice that the Hamming
distance is stil! 10. Performance will remain unchanged on the BEC, but what about
the Z-channel?

Randomly generate a code of size T = 4 codewords of length 8, and thus rate R = i 1o

be used on a BSC with ¢ = 0.1. To avoid natural biases toward good codes, use a coin

or random number generator to produce the codewords. List the four words and find the

Hamming distance between all pairs.

(a) Evaluate the probability of error for your code using a union bound. Note that some
codewords may have poorer reliability than others.

(b) Formulate the random coding viewpoint for this set of parameters by using Ry analysis
to upper bound the error probability for the ensemble of such codes. Evaluate at R = %
and determine how your code fares.

(e) Slepian (1956) produced a code with T = 4 and n = 8 that is equivalent to x| =
(00000000), x; = (01001111), x3 = (10111100). and x4 = (11110011). Note this
code has at least five disagreements between every pair of vectors and is said to be
double-error correcting. Using the approximation that any three or more error patterns
in 8 bits causes a decoding error, find the error probability for this code.

Consider a pulse position modulation strategy for a laser communication system. In each
symbol interval, we use a pulse of optical energy in one of M slots, each of length T, /M
seconds. At the receiver, we assume that background radiatior, wid dark-current noise are
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negligible, so we have a perfect photon-counting channel. Let A be the mean number
of photons in a slot. Then the probability of receiving zero photons when the pulse is
present is e~*. The resulting channel model is the M-ary erasure channel shown in Fig-
ure P4.35.

{a) Calculate the channel capacity and Rp in bits per interval.

(b) Investigate what happens as M becomes arbitrarily large.

AN -
<~ .

M-1 e *M-1 Figure P4.3.5 Channel model for
* Erasure optical PPM.

4.3.6. For the Z-channel of Exercise 4.3.3. calculate C and R(. Note that an equiprobable in-
put distribution does not maximize the related functions, so attack this numerically by
evaluating the expressions as a function of a single parameter describing the binary inpul
distnibution.

4,).7. Write a program to evaluate R for a constellation built from the Dy lattice. Take 2¢ points
of the forrn (+1, £1.0. 0} together with 8 points of the form (£2, 0.0, 0) to construct
a 32-ary four-dimensional signal set. Let £, be the average eriergy per two-dimensional
coordinate, and graph Ry versus E;/Ng. Determine the E /Ny thal is required to attain
Ry = 4 bits/four-dimensional symbol (or 2 bitstwo-dimensionat symbol), and compare with
the corresponding number for the 8-QAM (box) two-dimensional constellation. This ray
demonstrate a modest coding advantage when using higher-dimensional signal sets. (Note
that this corresponds to “constellation doubling,” since we only require 16 four-dimensional
signals to send 4 bits/four dimensions. The peak energy of the four-dimensional design is
stightly less as well, for a given average energy.)

4.4.1. For the binary symmetric channel with crossover probability ©.1, assume an input symbol
distribution that is equiprobable, and compute Eg(p. P) as given by (4.4.18). Plot as 2
function of p between 0 and 1. By graphing tangent lines and by visual inspection of your
sketch, verify the properties of (4.4.21). Sketch the line pR for R = 1'; and graphically
determine the value of p that maximizes the Gallager exponent at this rate. What is the
value of E(R) at this rate?

4.4.2. Consider the BSEC shown in Figure P4.4.2. Calculate the channel capacity C and the channel
parameter Ro. Make a plot of Eg(p, P) versus p for the eguiprobable input condition, and
label this plot with the quantities C, Ry, and the critical rate Rer.

o)

.2

1
0.8 Figure P4.4.2 BSEC channel.
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4.4.3. (Very Neisy Channels) Consider the case of antipodal signaling with £;/Np = ~10 dB, and
suppose the demodulator output is subjected to four-level quantization with thresholds set
at 0 and 0.8F ,” * You may choose No/2 = 1 for computation purposes.

(a) Using a table of the Q-function, determine the channel transition probabilities for the
2-input, 4-output channel.

(b) Calculate C in bits per channel symbof. .

(c) Calculate R in bits per channel symbol. You should find that Rg = C /2, which is a
general result for very noisy channels, those for which the conditional probability of a
given symbol differs by only a small amount as the input symbol label is varied. An
equivalent interpretation of the factor of 2 difference between C and Ry is that in the
low SNR regime 3 dB additional SNR is required to achieve a given value of Rg than
for C.

4.44. Repeart the calculations of Exercise 4.4.3 if £,/Ng = 0 dB.

4.4.5. (a) Consiruct the trellis coding exponent £,(R) using (4.4.38) for a BSC with ¢ = 0.1.
{b} For rate ;} trellis codes with channel constraint length of ng = 20 bits (memory order

m = d), determine the form of a bound on the ensemble average bit error probability
at the decoder output.

(c) Repeat part (b) when the enceder constraint length is 1z = 40.

4.5.1. Consider antipodal signaling on the AWGN channel. The Rg expressions for ML decoding
and for the binary-quantized decoding are, respectively,

Rop =1 logy(1 + ¢ &:/Noy
and
Ro = | — logy [1 + (4e(1 — e))'2].

Calculate Ry for both cases, assuming that E,/Ng = 4 dB = 2.5 and the code rate is R = 5.
Apply this in the random-coding bound (union-Bhattacharyya bound) to determine the block
length of R = % codes needed to achieve ensemble average probability of error of 10775,
(This exercise should convince you of the benefits of avoiding binary quantizing and of the
often disappointing absolute numbers of random coding bounds. Fortunately, the best codes
perform quite 2 bit better than the ensemble average.)

4.5.2. We discussed in Chapter 2 the simple (3, 1) code using antipodal signaling on the additive
white Gaussian noise channel and examined the effect of receiver quantization. This problem
is intended to demonstrate the effect experimentally. Let E;/Ng =4.3dB=27,s0 E s/No =
0.9. Assume the encoder selects codeword (000); then the matched filter receiver will pro-

,j-— | +n.¢' !'-—1.2,3
N() ’ !

where n; are normal, zero-mean, independent, Gaussian r.v.'s with upity variance.

{(a) For ML decoding, we form T = ry 4 r; + r3 and compare with a zero threshold. If
T > 0, decide (incorrectly) that (111) was sent. Perform 5000 trigls of this process on
a computer, calculating the empirical error probability. Note that the theoretical error
probability for this antipodal arrangement is Q{(2E»/Ng)!?} = 0.01, so we should
experience a number of errors on the order of 50.

(b) For binary decoding, first make a sign decision on each of the three symbols in
a codeword; then do majority voting (which minimizes Hamming distance). Repeat
the 5000 trials with the same random numbers, and recalculate the error probability.
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4.5.3.

4.5.4.

4.5.5,

You might also try increasing E,/No by 3/2, or 1.8 dB, to test the calculated difference
in energy efficiencies between these two approaches.

(¢) Finally, do three-level decoding by declaring an erasure if a symbol has a magnitude
that falls in the range of (—0.5¢,0.5¢), or one-half the noise standard deviation on
either side of zero. To decode, if vou observe types (1,1, 1), (1,1,E), or (1,E, E),
decide in favor of (111). If types (1,0, E) or (E, E, E) are observed, flip a fair coin.
Otherwise, decode to (000). Repeat the experiment and calculate the error probability.
It shouid, of course, be intermediate to those obtained previously.

Repeat the calculation of Example 4.7 pertaining to binary DPSK with hard decisions, using
instead channel capacity as the ultimate limit on rate R. You should find a lower threshold
on E5/Ng al any designated rate. What is the implication for R = % codes?

(a) Plot the Rg expression versus E;/Ng for noncoherent FSK on a linear scale, and ob-
serve that the function is not convex, in contrast to, say, the expression for PSK with
coherent detection. Experiment with the graphical solution of Figure 4.5.3 to show that
an optimum rate exists for coded noncoherent FSK.

(b) Define E;/Nog = g(Rg) 10 be the inverse relation of Rg = f(E;/Np) and argue that if
we can find a rate R for which

dg(R) _ g(R)
dR ~ R

this rate is optimal in minimizing energy. Interpret this graphically.
Suppose that your company is charged with developing a coding system to be coupled
with 8-PSK modems. As delivered, the demodulator outputs are hard (8-level) decisions. At
reasonable SNR, you can assume that the channel transitions only to neighboring decision
zones, so the channel model of Figure P4.5.5 results, with 28 = P,
(a) Is the channel symmetric?
(b) Show that § = Q[{0.29E; /Ng)!/2).
(c) Calculate and plot Rp.
(d) If a code rate of R = 2 bits per symbol is adopted, what is the minimum EpfNo that
maintains Ry > R?

Pe/2=8
0 e 0
1. - 1
2. *2
3 e *3
4 * 4
£ e * 5

* 6 Figure P4.5.5 8-PSK hard decision
channel model; adjacent symbol errors
7 allowed.
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4.5.6,

4.5.7.

4.58.

4.5.9.

4.5.10.

4.5.11.

(e} Make a case to your management for retrofitting the demodulator to provide finely
quantized in-phase and quadrature channel cutputs to the decoder. How much savings
in £4/Ng do you expect based on unquantized Ry?

{a) Compute Rg for the 32-ary QAM constellation of Section 3.3. Use the expression
of (4.3.38) together with an equiprobable distribution on inputs, and exploit constellation
symmetries to write Rg of the form

Rp =log, 32 — log [1 Ny~ RN Nyt AN ] .

where N; are multipliers dependent on numbers of signals at various distances and 4;
are intrasignal distances.

(b} Suppose that we wish to send 4 bits per modulztor symbol using coding. What is the
smallest £, /Ny consistent with Ry > R?

(¢) Uncoded 16-QAM would have the same dimensionality as the coded technique in part
(b). What £,/Ng is necessary (o maintain P; = 107> for this uncoded signaling? You
should conclude that coding can gain about 8 dB in energy efficiency with the same
dimensionalily.

Consider 8-PSK modulation on the AWGN channel. The unquantized Rq behavior is shown

in Figure 4.5.11 versus E; /Np. If we believe that R = Ry is a practical limit on information

rate, what is the minimum Ej/No allowed by ® = 2 bit/symbol coding? What is the mini-
mum specified by the channel capacity limit, C = log,(I + E, /Ng). for two-dimensional,
signaling?

(a) We could use two consecutive symbols of B-PSK in coded fashion (o send R = 5 (not
6) bits of information per four-dimensional signat pair (see Wilson, IEEE Transactions
on Cammunications, October 1986). Formulate Ry for the 64-point constellation cor-
responding to pairs of 8-PSK symbols, and determine the minimum £p /Ny limited by
Rg = 5 bits/four-dimensional symbol.

(b) Compare these findings with the building of codes directly onto 8-PSK symbols, at
R = 2.5 bits/symbol.

(a) Ternary (M = 3j PSK forms a simplex signal set. Write an expression for Ry as a
function of E;/Ng. Determine the minimum £,/Ny as specified by Ry capable of
providing Rg > 1 bit per symbol. Compare this result with that of 3-level AM or 3-
orthogonal transmission. (You should find that the ternary design is slightly superior to
both.)

(b) If R = 1 bitiwo-dimensional symbol is desired as a code rate, how would you rate
3-PSK relative 10 4-PSK?

Lee [16] established necessary conditions for a {J-zone quantizer to be optimal: for every
point y on the boundary between decision zones D and D-

ME_I Af [ L2l ]m - [ P(D' l""“) ]m fiylm) =0
= = P{Dy[n1) P{D\{m)

(@) Use this (0 find the best three-level quantizer for antipodal signals in AWGN when
E/Np = -3 dB.

(b) Show that for M-PSK signaling a 2M-ary quantizer with 2M pie-shaped regions having
boundaries through signal points meets the necessary condition [Parsons and Wilson
(31

With 4-PSK modulation, find Ry for the following quantization strategies as a function of

E; [Ny
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4.5.12.

4.6.1.

4.6.2.

4.6.3.

4.6.4.

(a) Q = 4, decision regions being the four quadrants. This yields a 4-ary symmetric channel.

(b) Q = 5, with a square region at the origin providing the fifth decision region, called an
erasure. The sides of the square are 0.5(No/2)' 2 (not necessarily optimal). Probabilities
of various regions can be found using products of Q-functions.

(c) Q@ = 8, with eight pie-shaped sectors, with sector boundaries lying on signal points.
Assume that noise may only move the received vector into the two adjacent zones to a
signal.

Prove that an M-ary simplex is the constellation with M points maximizing Ry for a

given SNR on the additive white Gaussian noise channel, assuming that dimensionality is

unconstrained (see Massey [2]).

From the definition of mutual information and use of ruies for conditional p.d.f.'s such

as f(y.alx) = f(ylx,a)f(x|a), verify (4.6.15) pertaining to the chamel capacity for an

interleaved channel with perfect side information.

Given channel observations y and the corresponding fading amplitudes a, show that max-

imizing the a posteriori probability P(xly,a) in order to minimize probability of message

error corresponds to maximizing the likelihood

max fly. ajx)

If the amplitude is slowly varying, the p.d.f cannot be factored into product form. Show,
however, that use of f(y, alx) = f(y|x,a)f(a]x) allows us to write the likelihood in the
form

n—1
Aly.x;a) = Zlog f(yilxi, a;) +log f(a)
j=0

since the fading is independent of the input x. Then, because the st term does not involve
X, it is sufficient to use the symbol metric log fyjlxj.a5).

This exercise concerns coding/decoding with noncoherent detection of M-ary orthogonal
signals on a Rayleigh fading channel when side information is lacking. To obtain the metric
for decoding and to calculate channel parameters such as C, we need f(y|x = m). This can
be found by

FOlk=m)= /f(ylx =m,a) fala)da.

(a) By substitution of the relevant p.d.f's, and integration aver the variable @, show that

flyle=m) = [n ‘%exp [_v_f]] exp[%? (71#1“_2)]

201 14+ 1202

j=m

(A key step is manipulating the integrand into a Rician p.d.f. form whose integral is 1.)
{b) Show then that the optimal metric 10 be applied at time j is the square-law metric

Ay .xj=m) = y,-_,z.

(c) What is the optimal metric if side information is available?

In Section 4.6, the Ry analysis was applied to M-ary orthogonal signaling on the Rayleigh
fading channel. Figure 4.6.6 presents the minimum E, /Ny allowed as a function of coding
rate R, without regard to bandwidth or dimensionality constraints. On this set of curves, ploi
contours of equal dimensionality per information bit by using the fact that the dimensionality
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4.6.5.

"4.6.6.

4.6.7.

4.71.1.

4.7.2.

per information bit

D M
R ™ logpM’

Determine the best signal set size and best code rate if D/R = 16 is tolerable,

Your telecommunications firm has the task of utilizing some existing 4-ary orthogonal FSK

modems, which use noncoherent detection and supply hard decisions and no other side

information. The expected channel environment is slow Rayleigh flat fading with additive
white Gaussian noise. You suggest that coding would be a useful add-on and that interleaving
would be useful.

(a) What rate of coding would you adopt, as suggested by Ry considerations? What is the
minimum E, /Ny allowed?

{b) Suppose the aliowable bandwidth expansion constrains the ratio of signal-space dimen-
sions per symbol, D, to rate R bits/symbol, to be no larger than 25. What code rate
should be adopted now?

(a) Beginning with the expression for capacity in (4.6.34) for the energy-consirained two-
dimensiona! Rayleigh fading channel with side information, show that as E;/Np be-
comes small the capacity approaches £ /Ng/(log, 2) bits/symbol, the same as that for
the nonfading channel.

(b} Show that at high E;/Ng the energy penalty implied by fading amounts 10 0.577
nats/symbol, or 10log,qexp(0.577) = 2.5 dB in E;/N).

Suppose a fading channel exhibits slow, flat fading but instead of Rayleigh amplitude vari-

ations, the channel gain is Rician;

fala) = '%exp(—-a2 + a®)lglaa/B?), a>0,

where o and B are fading distribution parameters. (Note that the case with @ = 0 is the
Rayleigh situation.}) Formulate expressions for channel capacity with binary noncoherent
FSK when side information on amplitude is present for both hard decisions and unquan-
tized demodulation.

Consider optical PPM. with ideal photon counting and no background radiation. Let the
detector observe photon counts #; in each slot. In uncoded transmission, the demodulator
wouid output the index of that slot registering any counts, assuming one exists. If all counts
are zero, a random decision could be made. Show that in coded PPM transmission, for
which the channel model is the M-ary erasure channel, that it is sufficient 1o report only
the index of the slot registering counts, or an erasure if none does; that is, it is no loss of
information to discard the actual value of the integer count in the slot producing a nonzero
count.

Design an optical PPM system for linking Earth and Mars that has a throughput of Cr =
10- 10° bits/s. We are allowed the use of an argon laser (wavelength = 0.6 um), which can
be pulsed with a width of 10 ns.

(a) Use the procedure outlined in the text 10 optimize the capacity of the PPM channel. in
bits per photon, under the given constraints. What is the optimal value of M and the
resulting capacity in bits per photon? Be mindful of the logarithm base,

(b) What is the resulting Rp in bits per photon?

(¢c) What channe! coding rate is implied to achieve the given throughput, together with the
modulation parameters you have found?

(d) What is the average number of photons received per slot at the detector, and what would
be the corresponding average power in watts?
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4.7.3.

4.7.4.

4.7.5.

4.7.6.

Analyze the following binary block interference channel. Blocks of three binary channel
bits either are transmitted cormrectly or are each acted on by a purely random memory-
less channel with error probability % due to interference (which couid be to block signal
dropouts or block noise bursts). The probability of either condition is % and the condi-
tion is chosen independently for each block. We can view the channel as memoryless at
the level of 3-tuples, and the channel diagram is either of the two channels depicted in
Figure P4.7.3.

(a) First, assume that the decoder knows the channel state for a given 3-tuple. Find the
capacity C(3) and Rg(3), and express in units of bits per binary channel symbol.

(b) Now suppose that the decoder does not know the channel state. Find the average channel
transition probabilities P (y|x) and draw the corresponding channel diagram. Recalculate
C(3) and Rp(3).

-One approach to commumicating over st:ch a channel is precisely that suggested: view
3-tuples as symbols in the code alphabet. Another is 1o design a binary code capable of
correcting 3-bit bursts. Still another is to scramble (or interleave) the binary channel trans-
missions so that the channel appears like a DMC with effective error probability of 1/4.
Suppose that side information is also available for each symbol. Does interleaving increase
or decrease channel capacity here? How about R;?

1 1/2
0 °D 0 2 0
: 1/2
or
1 12
1e 1 1e / .1
12

Figure P4.7.3 Two BSCs.

Consider a simple two-mode channel that has 2 good state and a bad state, each having

probability !/2. In the good state the channel is a memoryless BSC with zero error rate. In

the bad state the BSC error probability is 0.1.

{(a) Assume that the channel is interleaved, making the channe} states independent in time,
In the first case, assume that the receiver has access only to the binary channel output
y;j. Show that the channel capacity for this case is C = | — h; (0.05).

(b) Now suppose that in addition 10 y; you can have access to the channel state at-a given
time. Show that the capacity now is 3C(€ = 0) + 1C(e = 0.1).

(¢) Conclude that knowing the channel state does indeed improve the capacity.

Suppose that the channel of Exercise 4.7.4 is interleaved two symbols at a time, making a

memoryless channel over successive pairs, but within a pair the channel resides in a given

state. Recalculate channel capacity here with and without side information. Does capacity

increase or decrease?

Consider the interference or jammed channel shown in Figure P4.7.6. Antipodal signals
are inputs to the channel, and with probability g, an independent Gaussian noise variate is
added to the input. When noise is present, the variance is 02/p so o2 is the average noise -
energy per channel use. The jammer is free to select p and knows the resources E; and
a? avatlable to both parties. Four cases for reception are to be analyzed, corresponding o
switch positions in the diagram. In case I, the receiver has hard decisions available, but no
channel state information. In case iI, hard decisions and channel state are available. For
case [11, the analog channel output is provided with no channel state, while for case 1V, the
analog channel output and channel state are provided.
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{a) For each case, formulate the ML decoding metric Lo be applied to each symbol reccived.

(b) Evaluate Rg as a function of p. For each case determine the jammer’s best strategy.

{¢) Find the union-Cheroff bound on performance for coded systems of rate K when the
jammer applies its best strategy for each situation. You should find that the use of
unquantized reception without channel state information is a poor performer’

| Antipodal £ fi
Modulator
8; € {0, 1}
Pla, =1l=p
Binary Gaussian
i.nd. Noise
Generator Generator

Hard
Decision

z.
yiﬁg_f_

S

9 (0, o?/p}

Figure P4,7.6 Pulsed interferer model.
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