O

Block Codes

Coding Theorist's Pledge: | swear by Galois that I will be true to the noble traditions
of coding theory; that I will speak of it in the secret language known only te my fellow
initiates: and that I will vigiluntly guard the suacred theory from those who would
profane it by practical applications.

J. L. Massey

In Chapter 4, we established the possibility of reliable communication over various
memoryless channels, provided the attempted information rate is less than the channel
capacity. In this chapter, we take up the constructive aspect of the coding problem,
designing and building encoding and decoding schemes that approach the promise of
Chapter 4. Here we shall be concerned with binck codes; trellis codes are described in
Chapter 6.

Block encoders are presented with a message block of & symbols from an alphabet
of size D, and the encoder produces a codeword of length n, the code symbols taken
from an alphabet of size ¢. These n code symbols depend only on the k input symbols
of the current block. For uniqueness of the encoding, we must have D* < ¢”. Usually,
but not always, the input and output alphabets for the encoder are of the same size. We
shali assume this is the case here, and let this common alphabet size be g. Most often

393

this is a binary (g = 2) alphabet relation, but there are several interesting cases where
nonbinary codes offer performance advantages. We refer to such an encoding relation as
an (n, k) code over the q-ary alphabet. The rate R of the code is defined as R = k/n
message symbols per code symbol. or equivalently (k/n) log, g message bits per code
symbol. Assuming that codewords are selected for transmission with equal probability,
the entropy of the codeword selection process is k log, ¢ bits per codeword, so in this
case the code’s designated rate is the amount of information passed per symbol, assuming
a perfect channel.

This description of a block code is simple encugh and very general, requiring only
more details of the mapping from message blocks to codewords to be complete. We will
need to restrict our attention to more special codes, however, to make implementation
of the encoder, and especially the decoder, feasible. To see why implementation issues
are of concern, consider the encoding task. In general, we must resort to use of a
codebook in the form of a read-only memory having g* entries of length n symbols, as
shown in Figure 5.0.1. For the simplest case of ¢ = 2, long (and powerful) codes of
modern interest, for example, with k = 64, imply an enormous codebook, even for the
microelectronic age. The problem is simply exponential growth of the code size with
message length. The decoder’s job is even more challenging, for a brute-force decoder
would evaluate all ¢* codewords against the received vector, r, also of length n, and find
that codeword with largest likelihood. A faster, but more memory-intensive approach,
would be to precompute a table of size 9", where Q is the (finite) alphabet size for
the demodulator output, with each table entry storing the most likely message k-tuple.
Again, we are faced with exponential complexity as a function of blocklength. What
we need instead are codes with encoding rules that are algorithmic; that is, they allow
fast computation of the codeword and possess shori-cut routes to maximum likelihood
decoding, or at least nearly maximum likelihood decoding.

u=(u0-' U, ..., ul’—‘l) x=(x01 X1r ney xﬂ—1)

Read-only
Memory
{gcx m
. Figure 5.0.1 Table lookup encoder
Alphabets of Size q for general (n, k) block code.

To understand the essence and basic terminology of block codés, we first consider
perhaps the archetypal block code, the (7, 4) binary code due to Hamming, which we
will see later is a member of an infinite family of Hamming codes. This particular code
provides a convenient working example for the chapter; it’s small enough in size to be
manageable, yet possesses most of the interesting ingredients of good codes. This code
is also the first nontrivial code to be introduced in coding history.

394 Block Codes Chap. 5

5.0 THE (7,4) BINARY HAMMING CODE

The code is described with the aid of the Venn diagram shown in Figure 5.0.2." There are
seven distinct regions labeled iy, i1, {3, is, P1. p2, P3. in each of which we may place a red
or green token. We encode as follows: in each slot i;, place a message (or information)
token. There are 16 such color patterns, or messages. In each of slots p;, commonly
called parity positions, place another tcken such that the number of red tokens found in
each of the three circles is even, that is, 0, 2, or 4. To each of the 2¢ = 16 messages
there corresponds a unique seven-token (binary) color pattern.

With this encoding, we have installed the memory and redundancy cited in Chap-
ter 4 as the essential features in coding for error control. The influence of the information
bits is diffused throughout the codeword, three information bits affecting three positions
gach, while the information bit i, affects four positions of the codeword. Also, the
codewords convey four bits of information, not seven, so the seven tokens are in some
sense mutually redundant. To see what can be gained from this encoding process, we
assume a color-changing channel that occasionally changes red to green, or vice versa,
with probability € and that each token is processed independently.

Without coding, the message error probability for a four-bit message would be

P

€ o voding

=1~-(1 —e)* ~4de (5.0.1)

for small €. With the (7, 4) code, however, we are capable of correcting any single error,
whether it occurs in the information slots or in a parity position, as is easy to show. First,
note that between any pair of seven-token color pattems there are at least three color
disparities, one of which is a message position. From the discussion in Chapter 4, we
know that maximum likelihood decoding corresponds to finding that color pattern among
the 16 code patterns that has the most color matches with the received pattern, at least

Figure 5.0.2 Venn diagram
illustration of (7, 4) binary Hamming
code.

"This presentation is borrowed from R. McEliece, shown at the 1982 Information Theory Symposium.

Sec. 5.0 The (7, 4) Binary Hamming Code 385

provided € < % Since valid pattems differ in at least three slots, meaning the minimum
Hamming distance between codewords is 3, a single error will still leave the transmitted
message with a higher likelihood than any other, thus allowing comection of the error.
On the other hand, if two or more color errors happen, we can be assured that the decoder
will produce an incorrect message estimate, so the coding system is not foolproof.

The postdecoding error probability is

Pe.sny = P (2 0or more errors in 7 positions)

7 - .
= X:C;E"(] —e)',
i=2

which, for small ¢, is about 21€2, a clear improvement over (5.0.1). In fact, (5.0.2) is
smaller than (5.0.1) for any €.
The cost of this improvement is twofold:

(5.0.2)

1. Seventy-five percent more transmissions, or storage locations, are required for the
coded scheme; equivalently, the code rate is only R = 4/7.

2. Additional encoding and decoding complexity occurs.

Regarding the complexity issue, we have given an algorithm for producing code-
words that avoids the need for a codebook, or table, although in this simple example
table encoding would be no problem. Furthermore, we may shortcut the “examine all
codewords™ approach in decoding by the following approach: let the decoder perform
parity checks on the received pattern, that is, test whether each circle possesses an even
number of red tokens, If an error occurs in only position i;, the decoder will report
failures on each circle (all will have an odd number of red tokens, irrespective of the
message sent). If a single error occurs in any of /), /3, or i4, precisely two parity checks
fail. Finally, if a single error occurs in one of the p; slots, a single check fails. This
set of three tests produces what is called the syndrome of the error sequence, in analogy
with the syndrome of a disease, a set of symptoms a physician may use to characterize a
certain condition, but that in general does not uniquely identify the cause of the iliness.
Notice also that this syndrome depends only on the error pattern and not the message.
Since all the zero-error or one-error cases produce unique syndromes, we may correctly
identify the location of color errors. On the other hand, we may be assured that if two or
more errors occur the decoder will certainly fail, since all error patterns with two or more
errors produce syndrome patierns identical to the zero- or one-error syndromes. (The
sharp demarcation between guaranteed success and failure is a rather special property of
this code and a few others, catled perfect codes.)

You have undoubtedly realized that there is a logical, that is, Boolean, description
of this system and based on it, a high-speed electronic encoder/decoder. It is formed by
letting red — 1 and green — 0. Then the encoding rules are

prti+iz+iz=0,
p2tiz+iy+iy =0, (5.0.3)
pitit+ir+is=0,

396 Block Codes Chap. 5

where addition of 0 and 1 is modulo 2. The zero-sum constraints require that the number
of 1's (red tokens) in a circle be even. Given i = (1}, iy, i3, i4), the p; may be computed
by (5.0.3). and the complete codeword is x = (i, p) = (i), {2, 13, i4, P, P2, P3).
Decoding consists of recomputing the left-hand side for each equation in (5.0.3) and

testing for zero. Depending on how many of the three tests are nonzero, our procedure
gives us the most likely, but possibly wrong, message vector.

- Despite its almost trivial nature, this example raises several ideas and questions
fundamental to code design, which we shall extend and formalize in the remainder of
this chapter.

1. The roie of distance between codewords is clear; two codewords are less likely to
become confused in the presence of errors if they have a large distance, in this
case measured by the number of color disparities, equivalent to Hamming distance.
(For other channels other measures of distance are more appropriate.)

2, For binary messages with k = 4, we may ask whether n = 7 is the smaliest value
that guarantees the correction of single errors. Or with & = 4, what is the small-
est n ensuring double-error correction? (The answers, as we shall see, are “yes”
and “11™). More generally, the relationship between k, n, and the error-processing
power is of interest.

3. What happens if the Venn diagram positional assignments of /, and p, are reversed,
with the same circle rules still in effect, thus changing the code?

4. In the scheme shown, the message to be encoded also appears explicitly in the
codeword, referred to as Systematic encoding. 1s this good, bad, or indifferent?

Aside from the perfect nature of the example code, perhaps the most remarkable
aspect of the code is that it is a linear code. This implies that there is a linear set of equa-
tions, (5.0.3), defined on the binary alphabet, that form the code words, and this allows
a relatively simple electronic implementation. Just as important for analysis purposes is
the fact that linearity gives the code a symmetry property, wherein the performance of
the system depends only on the error pattern that occurred, and not on which message
was selected. Furthermore, there is a linear relation between the error pattern and the
syndrome vector, which is a sufficient statistic for decoding when the demodulator per-
forms hard (binary) decisions on each code symbol. Virtually all block codes in practice
are linear codes for these and other reasons. In fact, most all important codes possess
additional algebraic structure, which admits even more reductions in complexity. These
are known as eyelic codes. We shal! take up these topics shortly afier a brief review of
the theory of finite fields, which is necessary to understanding the greater potential of
block codes.

5.1 ALGEBRA OF FINITE FIELDS

We have just seen an example of a code defined on the alphabet of numbers 0 and | and
invoked familiar rules for performing arithmetic with these elements. For implementation
reasons, more general codes will be restricted to alphabets that are algebraic objects

Sec. 5.1 Algebra of Finite Fiekis 397

known as fields, of which the binary field is the simplest example. Extending our scope
to larger fields is necessary for two reasons: we will be interested in nonbinary codes
and must know how fo perform arithmetic for such codes. Second, the theory of finite
fields is central to the description and operation of powerful encoders and decoders, even
for binary codes. Another contemporary application of this material is in cryptography,
but we shall not delve into this.

The topic of finite fields has an immense and elegant literature, and detailed treat-
ments oriented toward digital communications applications can be found in texts by
Peterson and Weldon [1], Berlekamp [2], Lin and Costelle [3], Blahut [4], MacWilliams
and Sloane (5], and Michelson and Levesque [6], to name a few. Qur coverage will be
rather descriptive, aiming toward the essential tools for the practitioner.

A field is an algebraic system formed by a collection of elements, F, together
with dyadic (two-operand) operations + and * called addition and multiplication, which
are defined for all pairs of field elements in F and which behave in an arithmetically
consistent manner. Specifically, we require that for every «, 8, y contained in F

a+pefF
a+(B+y)=(a+8)+y
a+f=f+c
axfeF (5.L.1)
axBf=Bxa
ax(Bry)={a*xf)xy
ax{(B+y)=axS+axy.

Thus, a field is said to be closed under addition and multiplication, and the usual
associative, distributive, and commutative rules hold. Furthermore, we can identify an
clement in £ (call it 0) that is the additive identity element (« + 0 = «), and for every
@ there must exist a unique additive inverse element 8 such that o + B = 0. Likewise,
there is an element denoted by 1, called the multiplicative identity, such that o * | = «,
and every nonzero o has a unique multiplicative inverse, or reciprocal, 8 = a~! such
that o * B = 1. Subtraction in the ficld F is performed by adding the additive inverse
element, and division (by an element other than 0) is accomplished by multiplying by
the multiplicative inverse element.

The real numbers, dencted R, together with addition and muhiplication as taught in
primary school, form a field. However, the set of integers together with normal arithmetic
rules is not a field. there being no integer-vaiued multiplicative inverse for every nonzero
integer. Also, the complex numbers a + jb, where a and b are real, form a field denoted
C, with addition and multiplication performed as usual for complex numbers.

A finite field, or Galois field (after E. Galois, noted French algebraist of the early
19th century), is a field with a finite number, ¢, of elements, and is denoted here by
GF(g). (In various texts the finite field is also denoted GF, or F,). The simplest field is
the binary field, GF(2) = {0, 1}, with addition performed modulo 2 and multiplication
according to the logical “and™ function. Addition and multiplication tables are shown
next.

398 Block Codes Chap. 5

Addition

+ D1

0101
1 11 0

Multiplication

* 0 1
0 0 0
[0 0

Of practical importance is the fact that addition and subtraction are equivalent in the
binary field, and multiplication is trivial—muliplication of any field element by 0 or 1
produces a product 0 or the field eilement, respectively, so multiplication is actually not
required.

A field of size three, GF(3), although of little practical interest in digital com-
munications, is formed by the set of elements {0, 1, 2} with addition and multiplication
performed as usual for integers, except the resuits are represented modulo 3. Thus,
2% 2 =1, and therefore 2 is its own reciprocal. This tempting construction does not
supply a field, however, unless ¢ is prime [you might try it for ¢ = 4 and discover which
of the field requirements of (5.1.1) fails].

A result of number theory is that finite fields exist only for ¢ equaling a prime
number, p, or power of a prime, g = p™. Thus, we are simply unable to construct a
field of size 6 or, more disappointing, 10, satisfying the requirements of (5.1.1). We have
seen how to construct fields and perform arithmetic when g is prime; for prime-power
fields of size g = p”, called extension fields, a construction based on polynomials over
the prime field GF(p) is standard.

5.1.1 Polynomials over Fields and Extension Fields

A polynomial a(D) of degree m, over a finite field of size p.2 is written as

a(D)=a(]+a]D+"'+amDn'. (5.'.2)

where the coefficients a; are elements in GF(p), with a,, 3 0, and D is an indeterminate.
The degree of the polynomial is the largest exponent. We refer to the polynomial as
monic if the coefficient of the highest-degree term is the field element 1. For example,
[+ D* is a second-degree polynomial over the binary field, and D +2D? is a third-degree
polynomial over GF(3), although not monic. Such polynomials are like pelynomials
over the real-number field; they can be added, multiplied, and possibly be factored into
products of smaller-degree polynomials over the same field. The fundamental theorem
of algebra still pertains and holds that polynomials of degree m also have m roots, v;,

2p does not nezd 1o be prime to define such polynomials. although our present interest is in this case.

Sec. 5.1 Algebra of Finite Fields 399

such that a(v;) = 0, although the roots may not be in the field of the coefficients, called
the ground field, but may lie in some extension field. A familiar example is that the
polynomial 1 + D? over the real numbers has no roots in the field of real numbers,
but does in the field of complex numbers, specifically x; = j and —j, where j is
implicitly defined as a root of this polynomial. This is why j is denoted an imaginary
number.

We define the addition of two polynomials a(D) and b(D) to be another polynomial
¢{D), where the coefficients ¢; = a, + b; are obtained by addition rules for the field of the
coefficients. Thus, (1+D2)+{14+D+D?) = D overthe binary field, since the coefficients
for the degree-O terms add to 0, and likewise for the degree-2 coefficients. Similarly,
multiplication of polynomials is performed using the long hand method, coefficients again
being handled according to the rules of the field. For example, over GF(2)

(1+D)x(D+DHYy=D+D*+D*+D*=D+D* (5.1.3)

(Notice that it is imperative to be clear on the coefficient field of a polynomial to unam-
biguously perform arithmetic.)

A polynomial a(D) over a field GF(q) is said to be irreducible if it cannot be
factored into products of lesser-degree polynomials over the same field. The polynomial
1+ D? over GF(2) is not irreducible since 1 + D? = (1 + D)? in binary arithmetic, but
1+ D + D* is irreducible, as may be verified by testing all binary polynomials of degree
2 or less as divisors. An irreducible polynomial has none of its roots in the ground field,
but this is not a sufficient condition for irreducibility; the polynomial a(D) = D'+ D+ 1
has no roots in GF(2) since a(0) # 0 and a(1) # 0, but a(D) may be factored into the
product of two GF(2) polynomials as a{D) = (D? + D + 1)2.

To form an extension field of size ¢ = p”, we take the field clements to be
all polynomials® of degree m — 1 over GF(p), of which there are p™. Addition and
multiplication of elements are performed by the usual rutes for polynomial arithmetic,
except we define the results of multiplication (which may produce a polynomial of
degree m or larger) as the remainder upon division by an irreducible polynomial of
degree m. We will indicate this as ¢(D) = a(D) » h(D)mod f(D), where f(D) is
ireducible. (Notice that the addition of two polynomials of degree m — 1 or less produces
a polynomial of degree m — | or less, hence there is no formal need for reduction.) This
reduction, modulo an irreducible polynomial, is analogous to reducing results modulo

.a prime number for prime fields such as GF(3). The additive identity element of the
field is clearly the polynomial a(D) = 0, and the multiplicative identity element is the
polynomial a{D) = 1.

A more detailed treatment of finite fields would verify at this point that all the
field axioms (5.1.1) are satisfied by this construction. Some are verified easily, such
as the closure and commutative properties. Proving that a unique reciprocal exists for
every nonzero element is slightly more involved: there the requirement for reducing
products of polynomials modulo an irreducible polynomial will be seen as crucial. (See
Exercise 5.1.5.)

We now illustrate the construction of GF(8), an extension field of GF(2).

*Some confusion frequently results in identifying field elements with poiynomials; keep in mind that

these are only labels for the elements, as in any numbering scheme. and this polynomial labeling provides a
convenient means of manipulating field elements.

400 Block Codes Chap. 5

Example 5.1 Description of GF(2%) = GF(8)
The eight elements of the field can be represented by the binary polynomiais 0, 1, D,
1+ D, D2, 14 D2, D+ D? and 1+ D+ D2, Polynomial form is one representation of the
elements, convenient for manipulation. We could also label each element with a 3-bit vector
(the vector of coefficients of each polynomial), or we could label the elements as 0 through
7 by taking the integer equivalent of each binary representation. Figure 5.1.1 provides such
a listing of these possibilities.

To perform arithmetic in this field, we select (D) =1+ D + D’ as a third-degree
irreducible polynomial over GF(2). [We can quickly verify that f(D) is irreducible by
testing the first-degree polynomials D and D + | as divisors.] Now, suppose we wish to
add 2 and 7. By adding polynomials or, more easily, the binary vectors modulo 2, we find
that the sum is 5, Likewise, the product of 2 and 7 through polynomial multiplication gives

DxD*+D+lmod(D* +D+1)=D*+1, (5.1.4)

Polynomial Form integer Form m-tuple Form

0 0 000

1 1 001

D 2 010

D+1 3 011

D? 4 100

D? +1 5 101

D+ D 6 110

D+ D4+1 7 111

01 2 3 4 5 86 7 01 2 3 45 86 7

0|0 1 2 3 4 5 6 7 0j]0 0 0 0 0 0 0 O
111 0 3 2 5 4 7 8 1|01 2 3 4 6 6 7
2/2 3 01 6 7 4 5 210 2 468 3 1 7 5
3|3 2 10 7 6 5 ¢ 310 3 6 5 7 4 1 2
414 5 6 7 0 1 2 3 410 4 3 7 6 2 5 1
5|5 4 76 1 0 3 2 5/0 5 1 4 2 7 3 6
66 7 4 5 2 3 0 1 6{0 6 7 1 5 3 2 4
717 6 5 4 3 2 1 0 710 7 5 2 1 6 ¢ 3

Adadition Table Multiplication Table

Figure 5.1.1 Construction of GF(8) using f(D) = D3+ D + 1 as irreducible
polynomial.

Sec. 5.1 Algebra of Finite Fields 401

50 the product of 2 and 7 also equals 5. A complete addition and multiplication table
can be constructed in this manner and is shown in Figure 5.1.1. We also note that if a
different irreducible polynomial were employed to perform arithmetic, for example, (D) =
I + D? + D?, a different muitiplication table would result,

Before moving to a study of electronic calcuiation in such fields and some important
signal-processing results, we develop some fundamental notions associated with finite
fields. First, a field of size ¢ may contain a subfield of size r, a smaller field that obeys
the field axioms. In Example 5.1, the set {0, 1] forms a subfield of GF(8). It is known
that a field of size ¢ = p™ contains a subficld of size r = p* if and only if s divides m
[1,2]. Obviously then, there is always a GF(p) subfield of GF(p™). There is, hawever,
no subfield of size 4 in GF(R). Exercise 5.1.6 considers the subfields of GF(16) and

GF(256).
Now consider the field element | in a finite field and form the sequence 1.1 +
L, 1+ 1+ 1,.... We must eventually find a sum equaling 0, and the smallest number of

I's that can be added to produce 0 is called the characteristic of the field. For GF(2),
the characteristic is 2, and for GF(3), the characteristic is 3. For any field whose size is a
prime numbes p, the characteristic is p. In general, for extension fields of size ¢ = p”,
the characteristic is p, since two polynomials over GF(p), when added p times, will
always produce the zero polynomial by virtue of addition properties in GF(p).

In a similar vein, consider the sequence of powers of a nonzero field element, 3,
thatis. 8', 82, #°, ..., which is a sequence of nonzero field elements. This sequence will
eventually produce the field element 1 since the field is finite and thereafter be periodic.
The order of an element 8 is the smallest nonzero n such that 8" = 1. (We also say that
B is an nth root of unity when 8" = 1.) It is clear that the largest value for the order of
an element is ¢ — 1, since there are only ¢ — 1 nonzero elements, but another result of
number theory, due 10 Fermat, is that the order of every field element must divide ¢ — 1.
Thus, in GF(16) the nonzero field elements may have orders 1, 3, 5, or 15. In GF(256),
the nonzero elements may have orders 1,3, 5, 15, 17, 51, 85, and 255.

Every finite field with ¢ elements has at least one primitive element, an element o
whose order is g — I. Thus, the power sequence a'.a?,a,..., 29! = 1 = a® produces
all nonzero field elements. Any nonprimitive etement will have a power sequence that
has shorter period and whose sequence does not contain the full set of nonzero elements
in the field. If ¢ — I is prime, it is clear from the previous paragraph that nonzero
elements have order | or ¢ — 1 and that all elements, other than O or 1, are primitive,
which could be verified for GF(8).

Since each nonzero field element in a finite field can be expressed as a power of
a primitive element @, we may associate with every element a logarithm to the base o.
(By convention we take —co as the logarithm of the element 0.) As with the field of
real numbers, multiplication and division of elements can be performed by adding and
subtracting logarithms, except that exponents must be combined modulo qg-1

In the sequel we will need to identify these primitive field elements. The task of
finding primitive elements is finessed if we use a primitive polynomial of degree m as a
generating polynomial for the field. By definition, a primitive polynomial over GF(p) is
one whose m roots are primitive elements in GF(p”). We remark that being primitive
is a stronger condition on a polynomial than being irreducible, since all the roots for

402 Block Codes Chap. 5

primitive polynomials must lie in the extension field GF(p™). Primitive polynomials
over GF(2) are tabulated in [1], for example, and are listed in Figure 5.1.2 for m = 2
through 10. These in turn supply fields of size 4, 8, 16, 1024. Enumeration of these
fields is found in [3].

1+D+D?
1+D+ D3
1+D+D*
1+0%+ D5
1+D+ D"
1+0%+ D7
1+ D02 +D3+ D'+ DB

1+D4 4+ D9

10 Figure 5.1.2 Primitive polynomials
1+0°+0 over GF(2).

© ® N O o s W N F

—
o

The existence of finite fields of size ¢ = p™ for any prime p and integer m is
guaranteed by the fact that there is at least one irreducible polynomial over GF(p) of
degree m [2]. The use of two different irreducible (or even primitive) polynomials would
seemingly produce different fields. However, it can be shown that these fields are all
equivalent to within a relabeling of elements, or are isomorphic, and there is really just
one unique field for every ¢ = p™. In communication applications, the fields of primary
interest are those extension fields of size g = 2.

An illuminating example of fields and the properties just discussed is the case of
GF(16).

Example 5.2 Construction of GF(2!) = GF(16)

We adopt as our polynomial for generating the field the primitive polynomial f(D) =
D* 4+ D + | and could proceed as before to build arithmetic tables. However, a more
convenient construction is provided by letting 0 and | be the first two elements (the addi-
tive and multiplicative identities, respectively) and the next clement be a. defined only as
a root of the primitive polynomial; thus & is primitive in GF(16). We associate with this
element the polynomial D. The remaining field elements are 1aken 10 be successive powers
of a, for these cenainly generate the remaining nonzero elements. Thus, a? is associated
with the polynomial D?, and o is associated with D*. Next, we encounter o as a field
element and use the fact that a* + o + | = 0, but since a and the element | are really
just polynomials over GF(2), where subtraction is the same as addition, a® = o + 1. Thus,
o is associated with the polynomial D + 1. Continuing this procedure enumerates all the
field elements as powers of «, or as polynomials. Figure 5.1.3 provides a listing for GF{16)

Sec. 5.1 Algebra of Finite Fields 403

Elements as o/ Logarithms Basis Representation Binary Minimal Polynomial
O=a~ —ca Q 0000 ___
1=0f 0 1 0001 D41
— o 1 a 0010 p*y D41
— o 2 o? 0100 p*yD+1
0 a3j 3 ol 1000 paD34D* 4D+
g—a‘ 4 o+ 0011 p*yD+1
o) of 5 o? +a 0110 p2,.p+1
0f — 6 o? + o 100 p*y D3+ D+ D+ 1
+— o 7 o? +o+ 1 W1 pey D3y
— g 8 o+ 0101 ptyD+1
af —| 9 ol +o 010 pA D3+ D2+ D+
ol g 10 o +a+1 011 p2yps+
S—a" 1" Brod o M0 p+ip2sn
S| a?— 12 adrolia+t M DAy D4 D2+ D+ 1
— o3 13 Bro? o+ 101 p4y D3+t
— oM 14 o +1 1000 p4y p3 41

Figure 5.13 Representations of GF(16), where a is root of f(D) = D* +
D+t

elements ordered as increasing powers of «, along with the corresponding polynomial forms.
The nonzero elements in this field have orders 1, 3, 5, and 15, as could be determined by
multiplication. There happen to be eight primitive elements in the field, « being one of
them.

A final important topic in our survey of finite fields is that of minimal polynomials.
A minimal polynomial m (D) for an element § in GF(p™) is the minimum-degree monic
potynomial over GF(p) having £ as a root:

mp(D)|p_, = 0. (5.1.5)

This minimum polynomial will always have degree m or less. In a finite field of size
q = p", if 8’ is a1oot of a polynomial, then sois A7 [1]. Thus, the minimal polynomials
for B, 8%, B%. ... in GF(2"™) are identical, as are those for the elements g*, g° g'2.. ..
Elements sharing the same minimal polynomial are said to be conjugates, just as j and
—j are conjugates in the complex number field, and for which D2 + 1 is the minimal
polynomial over the real numbers. A set of conjugate elements is known as a cyclotomic
coset, and every finite field can be decomposed into disjoint cosets. This will become
relevant in owr study of cyclic codes.

In Figure 5.1.3, we have listed the cyclotomic cosets for GF(16) according to
exponents of a. Note that elements that are related by squaring, or exponent doubling,
modulo 15, form a coset, since the field characteristic is p = 2.

404 Block Codes Chap. 5

The minimal polynomial for a given field element may be shown to be [2]

my(D) = [](D - o), (5.1.6)

fESp

where a is primitive and S5 denotes the set of exponents in the cyclotomic coset for
the element B. Thus, the minimal polynomial for the field element a® in GF(16) is
(D — WD — '), which eventually simplifies to D? + D + | over the binary field. In
Figure 5.1.3, the minimal polynomials so obtained are listed adjacent to the respective
elements. Note, for example, that the elements designated o, o2, a*, and a® have the
same minimal potynomial, as do o, «®, and so on. We also note that some field elements
in Figure 5.1.3 have minimal polynomials of degree less than m = 4. From (5.1.6) this
will occur when the size of that element’s cyclotomic coset is less than m.

As a further example, Figure 5.1.4 lists the cyclotomic cosets of GF(64). It is
worth noting that these cosets can be formulated without dependence on a particular
irreducible polynomial, further testimony to the fact that there is really only one field of
a given size.

Exponents of o Minimal Polynomial
0 D+1

1 2 4 8 16 32 D%+ D+

3 6 12 24 48 33 DP+D*+D?+ D+ 1
5 10 20 40 17 34 DS+ D5+ D2+ D+ 1
7 14 28 56 49 35 DE+ D3+

9 18 36 D+ D41

11 22 44 25 50 37 DS+ D5+ DR P41
13 26 52 41 19 38 DS+ D'+ DP+ D+ 1
15 30 60 57 51 39 DE+ D5+ D*+ D241
21 42 Dty D+ 1

23 46 29 58 53 43 D¢+ D+ D'+ D+ 1
31 62 61 59 55 47 D6+ D5+ 1

45 27 54 D3+D+1

Figure 5.1.4 Conjugate sets and minimal polynomials for GF(64); primitive
polynomial D5 + D + 1 used to define o.

§.1.2 Computation in Finite Fields

For implementation of GF(q) arithmetic, table lookup for the sum and product of field el-
ements is a possibility if g is not too large. When g = 2™, the operands can be identified
with m-bit representations, and a 1able could be constructed with 2m-bit addresses and
m-bit outputs. Logarithm tables could be used for r.uitipiication as well. Equivalently,

Sec. 5.1 Algebra of Finite Fields 405

combinational logic circuits could implement the truth table defined by the addition and
multiplication tables.

These approaches rapidly become unmanageable for larger fields. We may per-
form the required computations easily, however, with electronic circuits that implement
polynomial operations over the ground field. Addition of two field elements is easily
handled by adding their corresponding coefficient vectors, which for fields of size ¢ = 2"
requires m exclusive-OR gates [GF(2) adders).*

To perform multiplication of a general field element B8 by another element, say y,
we represent field elements using o, ', ..., @™ as a basis; that is, B = fo + Bia' +
Bra? + - 4 B 1a™ !, where the coefficients §; are in the ground field. Thus, in the
previous example the element a'! = o + @? + . Expressing both multiplicands in this
manner, we have

B=Bo+ B’ + pra’ + -+ Bua™ !,

j 1 - - (5.1.7)
Y=Wtne +pa’+-typa .

If we perform longhand multiplication of these two elements and simplify, we find that
we can determine a Boolean relation giving the m output bits in terms of the 2m input
operands. This process is illustrated in Figure 5.1.5 for multiplying two elements in

ﬁo]
B,
B2
fs — — Po = BoYo + Biys + B2z + Baa
Bfg'g‘;z" —— P1 = Poa + PiYo + Bivs + Bavz + Bsv + Povs + Bava
Array [~ P2 =Bov2 + Biy1 + PoYo + Bats + Payz + fava
Yo [Da=Bova+ Bryz + Panr + Bavo + Buts
Y
Y2
Y3 —]

B— TZ%?e 08
| ML T 4 |Antilog | 4
A?jd;f a Tableg —~> P
4
4t Log
¥ Table Log y

Figure 5.1.5 Galois field multipliers for GF(16).

“Those with a computer engineering background may be tempted to “carry” in doing this addition, but
it is not allowed.

406 Block Codes Chap. 5

GF(16). If we need a multiptier to continually multiply by a fixed operand, the circuit
can be simplied even further. Modern gate-array technology is well suited for performing
such operations. Numerous design tricks exist for minimizing the complexity of such
operations, but the point is that arithmetic in GF(q) is not difficult; in fact, it is simpler
than the usual integer-field arithmetic, and there is no concemn about carries or loss of
precision as occurs in real-number arithmetic on a digital machine.

Another operation of frequent need is the “multiply and accumulate with previous
sum” operation. Such a circuit has one g-ary field element as an input and one field
element as output and may be easily realized as an extension of Figure 5.1.5. (See
Exercise 5.1.7.)

5.1.3 Discrete Fourier Transforms over Finite Fields

In signal processing of real (or complex) discrete-time sequences, the discrete Fourier
transform (DFT) plays a central role, familiar to present-day engineers, This situation
derives from the well-known analytical and operational appeal of Fourier transforms in
linear system analysis, as well as the existence of a fast algorithm for computing the
DFT. It is less well known that this transform calculus can pertain to other fields, just as
the standard operations of linear algebra remain valid over fields other than the real or
complex numbers. These generalized Fourier transforms play an important descriptive
role in the study of cyclic codes later in this chapter and to an increasing degree in the
implementation of these codes.

We first recall the familiar: the usual definition of the DFT for a sequence of

complex numbers X = (xg, X1, ..., xy_() is
X,-=’§xke‘ﬂ"“-’~, i=01,...,N—1, (5.1.8)
=0
and the inverse DFT is
Y= Nihf Xie/ Nk =0,1,2,....N - 1. (5.1.9)

i=l

The kemmel ¢ ~/2*/¥ is a primitive N'th root of unity in the complex number field,
that is, the smallest & for which e=*/>"/¥% = | is k = N, and the existence of such an
clement is all that is required for the existence of a more general transform pair and its
associated operational properties, as inspection of the development of these properties
will reveal. The DFT of a complex sequence and its inverse transform are useful for
any N precisely because in the complex field we always have a primitive Nth root of
unity, that is, e=/2*/¥ | (The use of so-called fast Fourier transforms only applies if N is
a power of a prime or highly composite, however.)

To generalize, consider a sequence of length N, x = (xq, x), ceo, Xy-y), from
GF(g). Suppose there exists a primitive Nth root of unity, @, in an extension field
GF(q™); that is, N is the smallest integer for which ™ = 1., Then we define the
discrete Fourier transform of the sequence x to be the sequence

N1
X,-:Zx;‘.a’k, i=01,..., N -1, (5.1.10)
k=0

Sec. 5.1 Algebra of Finite Fields 407

The operation (5.1.10) transforms a sequence X into another sequence X of length N
whose elements are contained in the extension field GF(2™). In analogy with the usual ap-
plication of transforming a sequence of time-domain samples into the frequency-domain
representation, we will refer to the sequences x and X as being time- and frequency-
domain descriptions, respectively, although this interpretation is less motivated in the
present case.

Note that the addition and multiplication in (5.1,10) are well defined since the
original sequence elements are in a subfield of GF(¢™). If the desired block length N
equals ¢ — | or is a factor of 4 — 1, then an extension field is not invoked and the
transform takes the original sequence into a sequence from the same field. Normally,
however, we will be interested in a longer block length N, which is a factor of g™ — 1
so that the requisite primitive Nth root of unity exists. [Recall again that the order of
all nonzero field elements in GF(g™) is a divisor of g™ — 1.]

The generalized inverse DFT is defined as

| N=l
== X (5.1.112)

where N’ is a normalizing factor representing the N-foid sum of I in the field F:

N—I
N = Z 1. (5.1.11b)
i =0

Of course, for real or complex field transforms, N’ = N, hence the scaling in (5.1.9). For
transforms over GF(2) or an extension field with characteristic 2, N’ = 1 since N’ will
always be the addition of an odd number of 1's. Thus, the nonmalization may typically
be omitted.

The fact that (5.1.10) and (5.1.11) form a transform pair follows from substitution
of (5.1.10) into (5.1.1)Y:

1 N-| fN-1) | N—i N-I
e gt d —ik j—k)i
x;.:-N—_’- (Zx,—a")a =FZI’}ZGU)- (5-1-12)

i=G \ =0 j=0 i=0

Now we invoke an important property associated with Nth roots of unity:

N-1
§ :ami =
i=0

(Verification of this result is left to the exercises.) We apply this result 1o the last sum
in (5.1.12), noting that 0 </ <N ~1land0 < j <N — 1. Thus, j — 4 is divisible
by N; that is, (j —k)modN = 0 only if k = j. The right-hand side of (5.1.12) thus
becomes (1/N')(x;N'), yielding the desired equality.

Just as the inverse transform of an arbitrary complex sequence may not produce
a real sequence with the standard DFT,> we will find that an inverse transform of a
sequence in GF(¢™) may not produce a sequence in the ground field GF(g). This will
be encountered in our study of decoding of BCH codes.

(5.1.13)

N’ if ¥ divides m,
0, else.

ltwillonly if Xy = X! i=0,1...., N — 1, where * denotes conjugation.

408 Block Codes Chap. 5

Before developing some of the key properties of this general Fourier transform,
which will in hindsight be familiar to anyone exposed to the usual DFT, we consider
two examples.

Example .3 DFT over GF(5)

In GF(5), the field elements are isomorphic to the set of integers {0, 1, 2, 3,4} and have
order 1. 2, or 4. Thus, the only transform lengths that take GF(5) sequences into GF(5)
sequences are 2 and 4, Consider N = 4, and suppose that x = (1,0, 3,4). Take o = 2,
& fourth root of unity, to define the transform. Then, by substitution in (5.1,10), we can
readily show with modulo-5 arithmetic that X = (3,0.0, 1) is the DFT of this sequence.
We could also verify that (5.1.11) produces the original time-domain sequence. In this field,
N'is 4.

If we desired longer transform block lengths, we could invoke use of a kernel that
is a primitive Nth root of unity in an extension field, say GF(25). In this case we could
perform transforms of length 2, 3, 4, 6, 8, 12, and 24, all of which factor 52 — 1. Zero
padding can be used to handle transforms of other lengths.

Example 54 DFT over GF{2)

By appealing to the extension field GF(16), the possible DFT sizes for binary sequences
are N = 3, 5, and 15, since these are the possible orders (other than 1) of the field
elements in GF(16). Consider a transform of the length-15 binary (subfield) sequence
(100001000000000), with the lewest-order element written on the left. If we take as our
primitive 15th root of unity the field element designated o in Figure 5.1.3, then simple
computation will show that the DFT is the periodic sequence X = (0,a'?, o5, 0,00, &%,
0,29 0% To perform the inverse transform, note that N’ is |, as will be the case
whenever we work in an extension field of GF(2), since N’ is obtained by adding an odd
number of 1's. Thus, for example, xg = Y_ X; = 1, which is the desired element in the
subfield GF(2).

In our development of cyciic codes it will be convenient to utilize a polynomial
representation of symbol sequences, and this proves useful in the description of DFT

properties as well. We associate with a sequence x = (g, xy, ..., xny—() over GF(g) the
polynomial x(D) = xo + D + x2D* + .- + xy_ ;1 DV~!, which has degree at most
N — 1. For the present the indeterminate D is merely a place keeper. Letting X denote
the transform sequence for x, we have
e S 2
Xi=Y ma*=3"xD*,_ . i=01..N-L (5.1.14)
k=0 k=0
Thus the spectral coefficients X; are merely the values of the polynomial x(D) evaluated
ate', i =0,1,.,.., N — 1, where « is a primitive Nth root of unity in GF(¢™). This is

true for the usual DFT as well.
Similarly, it follows from the definition of the inverse transform (5.1.11) that

1
X = v X(D)peg-i- (5.1.15)

In other words, evaluation of transform coefficients in either domain is equivalent to
polynomial evaluation at designated powers of the Nth root of unity.

Sec. 5.1 Algebra of Finite Fields 409

Properties of the DFT

The foremost property is linearity of the transform operators, as may be shown by
applying the superposition tegst to both transforms. Thus, if X, corresponds with X,
and likewise for x» and X, then the transform of a\X; + a»X2 is @ X; + @:X,, where
a, and a» are any constants in the field of the original sequence.

Another important property is the cyelic-shift property, soon to be of special interest
in our discussion of cycli¢ codes. Again, let X = (vg. v, vy_;), and let x*” denote
a p-place left-cyclic shift of x:

xP = (v, TR U (5.1.16)

The discrete Fourier transform of this rotated sequence is, from the definition (5.1.10),
N1 ‘
Xfﬂ)zz.r;ﬁ?cx". i=01..N-1
k=0
(5.1.17)

v . ¥) s
=,\'paf'+_lp+laif+...+'\p_lam' 104

= " (D) pegi

as before. These transform coefficients may be easily related to the transform coefficients
of the original sequence.” By factoring D~ 7 from each term of the polynomial form of
the x‘” sequence, we have that

(DY = D™P(x,D" +.\',,+1D”+i 4 xy DYV

(5.1.18)
+ .\'()DN + .- 4 .\p_|DN-_l+P).

By adding and subtracting to the right-hand side ¥(D) = xq +x,D + - + Xp_y D71
and then regrouping, we obtain

(DY = D7Px(D) + (DY — HF(D). (5.1.19)

Now we recall that the transform coefficients X{”’ are merely the values of the polynomial
+'P(D) evaluated at o, and since (@)™ = 1, we find

X" =a'"X;. (5.1.20)

Thus, to obtain the ith “frequency” term in the DFT of a left-cyelic rotation of a sequence,
we merely multiply the original transform coefficients X, by a ™", where p is the number -
of places shifted. This is clearly a generalization of the Fourier transform principle that
a cyclic shift of a sequence corresponds to a phase shift in the frequency domain. If we
were to repeat the preceding by shifting to the right by p places, the former transform
coefficients would be modified by o'”.

The transform sequence, if extended beyond its usual range of definition, is periodic
with period N. That is,

Xiew = X;. F=0,1...., N -1 (5.1.21)
This is easily proved by noting that

Xisw = Z.qa"*”’k = Zxka“(a”)" = Zxka" = X; (5.1.22)
3 k

410 Block Codes Chap. 5

since ¥ = | by construction. Likewise, given frequency-domain coefficients A
inverse transform sequence is periodic: xiv = X,k =0.1,... N - 1.
Finally, the convolution theorem for the generalized DFT holds that if a sequence
x is obtained as the cyclic (or circular) convolution of sequences a and b, that is,
N-1
=) aibin k=01, .N-1 (5.1.23)
i=0
where the summand subscripts are interpreted moduio N, then the transform of x is
obtained by multiplying the transforms of a and b:

Xi= A;B;, i=0,1,...,N—- 1L (5.1.24)

All other properties that hold for the standard DFT, such as Parseval’s relation and the
effect of scaling in either domain, can be proved easily from the definition. Again, all
that is crucial is using a transform kemel that is a primitive Nth root of unity in an
appropniate extension field.

5.2 LINEAR BLOCK CODES

"We are now ready to formalize the description of linear codes over general finite field
alphabets. The linear algebraic structure provides significant reduction in enceding and
decoding compiexity, relative to that for arbitrary block codes. It might be asked whether
restricting our focus to linear codes is ultimately harmful in the information-theoretic
sense. The earlier random coding proof of Chapter 4 pertained to general block codes,
but it has been shown that the ensemble of linear codes is strong in the same sense [7];
that is, there is a2 sequence of linear codes with increasing block length and fixed rate
just smaller than capacity whose error probability approaches zero exponentially as block
length increases.

5.2.1 Structure of Linear Codes over GF(q)

It is fairly traditional, especially in engineering texts, 10 first introduce binary coding
procedures and then (perhaps) generalize to the case of codes over nonbinary fields.
There is no significant conceptual problem in handling the general case at the outset, and,
given our study of finite fields in the previous section, the tools are now in hand.

7 Let w = (#o.u,....,u;-y) denote an arbitrary message k-tuple from GF(g). A
linear (n,k) code C over GF(q) is a set of ¢* codewords X = (¥, xy..... %,).
x; € GF(q), defined by the linear transformation

x = uG, (5.2.1)

where G is a k x n matrix comprised of elements from GF(¢). Haviag just seen how 1o
add and multipiy in finite fieids in the previous section, we perform matrix multiplication
along conventional lines. Figure 5.2.1 illustrates the concept of the encoding process and
the process of building each codeword element in terms of adders and multipliers over
GF{g).

Sec. 5.2 Linear Block Codes 41

us= (Uo. Uy, ..., U,,.,]' ELinedar X = (Xo, Xyp ovas Xn_1)
1 Encoder
ui e GFlg) x=uG | X €GFa

k-1
X=Yugi

i=0

g* Codewords Form a k-Dimensional Linear Space
Spanned by Rows of G

Figure 5.2.1 Linear (n, k) encoder over GF(g).

G is called the generator matrix of the code, for (5.2.1) implies that the code C
is comprised of all linear combinations of rows of G:

X = Hogo + ﬁlgl el o 'TINT /IR (52.2)

where g; is the jth row vector of G. Provided these rows are linearly independent, that
is, G Iras rank k, the code has ¢* distinct codewords, which, of course, is desired for
signaling of g* messages. In vector space terminology, we say that the code C is a
k-dimensional subspace of the set of all n-tupies, this subspace being spanned by # lin-
early independent basis vectors g;.% The choice of basis vectors is not unique, and thus the
same set of codewords can be formed with different generator matrices G, changing only
the association bétween messages and codewords. We will return to this notion shortly.

Let us reconsider our earlier example, the (7, 4) code over the binary field. By
studying the encoding equations (5.0.3) and by agreeing to place the information bits in
the leading positions of the code vector, followed by the three parity bits, we have the
encoding equations

g =ug =1,
X =up =1,
Xy =u2 =1,
X3 = U3 = Iy, (5.2.3)
y=uptuy+um=p o xg+x9+x;+x,=0,
Is=utmtus=p o xs+x+x;+2x3=0,
X =uot+tuy+us=p3 or xg+xp+x +x3=0,
Thus, G in (5.2.1) becomes

G= (5.2.4)

o -~0oC
-0 0o 0
—— -
o 0D

1
1
1
0

oo o —
oo —o

®This provides an altemative definition of an (n. k) linear code.

412 Block Codes Chap. 5

so for u = (1010), x = (1010011). There are 16 distinct linear combinations of the rows

of (3, as listed in Figure 5.2.2.

0001
0010
con
0100
0101
0110
01
1000
1001
1010
1011
1100
101
110
LARE

0000000
0001011
0010110
0011101
0100111
0101100
0110001
0111010
1000101
1001110
101001
1011000
1100010
1101001
1110100
MM

G =

1000101

_lo100111
0010110

0001011

Figure 5.2.2 Listing of codewords
for (7, 4) code.

To generalize to a nonbinary example, we define a simple (3, 2) code over GF(4),
with symbols labeled 0, 1, @, and 8 = «®. Following the earlier rules for the construc-
tion of a field, we have arithmetic tables in Table 5.1;

Sec. 5.2

Linear Block Codes

TABLE 5.1
ARITHMETIC
TABLES FOR GF(4}
Addition
+ 01 a 8
U] 01l « B
1 1 0 B «
a a B 0 1
B B a 1 0
Multiplication
* 01 a 8
] 00 00
i 01 o 8
o 0 a p 1
] 08 | «a

413

Now, if we adopt

1 0 a
= 525
a=[1 0 2] 529
then the codeword for the message u = (0, @) is x = (B, 1, a), which is just a times the
second row of G, in GF(4). This code contains 42 = 16 codewords of length 3.
Inspection of the generator matrix in (5.2.4) shows it has the canonical form

G = [Lek Pens], (5.2.6)

where I ; is the k by k identity matrix and Py ,_ is a k by (n — k) matrix reflecting how
the n —k additional code symbols are formed from the components of u. Equation (5.2.6)
implies that the first k components of any codeword are precisely the information symbols
in original order. This form of linear encoding is called systematic encoding, and several
implementation advantages accrue from the use of systematic-form codes, not the least of
which is a quick-look feature: information can be extracted trivially from the codeword,
if desired, without any decoding. Naturally, these decisions will be of lesser reliability
than when the full code vector is used to infer the message content.

For linear codes, any code is equivalent to a code in systematic form, equivalent in
the sense of having the same block error performance on a memoryless channel. This
follows from noting that a linear code is the row space, or set of linear combinations,
of the rows of the G matrix. If we interchange two rows of G, or multiply any row
by a scalar in GF(g), or add one row to another, we do not change the row space,
hence the set of codewords. All we have done is change the basis for the code, which
amounts to changing the association between messages and code vectors. By a succession
of these elementary row operations on a given G, we may bring it into the canonical
form of (5.2.6). (An additional operation that may be required in this reduction is the
interchanging of columns of G, or merely reordering the coordinates. Clearly, this also
leaves the fundamental properties of the code unchanged, but alters the row space.)

Example 5.5 Converting the (3, 2) Code over GF(4) to Systematic Form
Let’s srecall the previous code over GF(4), with

1 ’0 o
G = [a -] (5.2.7a)
Multiplying the first row by o and adding it to the second, we have
I 0 «
G,_[O p a]. (5.2.7)
Then multiplying the second row by the reciprocal of 8 we obtain
1 0 «
G|—[0 . ﬂ]’ (5.2.7¢c)

which is in the desired systematic form. We could verify that all three corresponding sets
of codewords are identical, although the association with messages changes,

Since every linear code is equivalent to a syslematic code, it is sufficient to focus
on systematic form generator matrices in our study. (This is oddly not true of linear

trellis codes, which we examine in Chapter 6, traceable 1o the fact that in a trellis code

414 Block Codes Chap. 5

it is useful to decode with a memory length longer than the encoder’s memory length.)
In systematic form, the codeword x is comprised of an information segment and a set of
n —k symbols that are linear combinations of certain information symbols, as determined
by the P matrix. These additional symbols are called parify check symbols, in keeping
with the terminotogy for familiar single-parity-bit codes that append a single parity bit to
a binary k-tuple to make the sum of symbols in the codeword be zero. (This is referred
to as forcing even parity.) For this reason, linear codes are sometimes referred to as
parity check codes. '

We have seen that the G matrix applies linear constraints to the code symbols. To
gain another important perspective on this same set of constraints, we invoke another
concept of linear algebra. Any k-dimensional linear subspace of an n-dimensional linear
space, for example, a code C, has associated with it a aull space, which we shall
designate C*, such that every vector in the null space is orthogonal to every vector in
the original space. Denoting x; and y; as members of a linear subspace and its null
space, respectively, this means the vector inner product

xiy! =0 (5.2.8)

forall x; € C and y; € C*. [In (5.2.8) the superscript T denotes the transpose operation,]
This null space has dimension n — £ and is spanned by a set of n —k linearly independent
vectors of length n. In matrix form we then have that, for any element y in the null
space,

y=vH (5.2.9)

for some v, where v is an (n — k) row vector and H has size (n — k) by n, both with
entries in GF(q). Thus, for any codeword x; in the original space C, we require

x(vH)T = x;H'v =0, all v. (5.2.10a)
This can only be possible if
xH =0, allx. (5.2.10b)

where 0 represents a vector with zero elements.

Equation (5.2.10b) constitutes a set of n —k linear equations that the codeword must
satisfy, which are called the parity check equations of the code. H is therefore denoted
the parity check matrix, because it describes the total set of parity check constraints. If
we write out the n — k equations produced by (5.2.10b), we obtain

n-1
Y xhij=0. i=01..n—k-1. (5.2.10¢)
-

For example, the last three equations in (5.2.3) provide the parity check equations for
the binary Hamming (7, 4) code.
Since (5.2.10b) must hold for any codeword in the space spanned by the rows of
G, we have that G and H must satisfy
GH" = (Ol.n—s. (5.2.11)

where the right-hand side is a k by # — k matrix of zeros. For any given G matrix, many
solutions for H are possible.

Sec. 5.2 Linear Block Codes 415

If the generator matrix G is in systematic form, then finding a parity check matrix
H is simple. Taking '

H= [P, L-tas (5.2.12)

satisfies (5.2.11), as substitution will verify.”

Since G specifies H (even in the nonsystematic case where H is not so directly
found), a completely equivalent definition of a linear code is that C is the set of all
codewords in the null space of an n — & by n matrix H, whose rank is n — &, that is, the
set of vectors x; for which

xHT =0. (5.2.13)

Furthermore, if G generates an (n, k) linear code C with a null space generated by
H, then H generates an (#, n —k} linear code C*, with null space generated by G. These
two codes are called dual codes, with the generator matrix of one being the parity check
matrix of the other. The structure of one code tells us a great deal about the other. If
the code and its dual code are equivalent, we say that the code is self-dual. Such codes
have n — k =k or k = n/2 and therefore have rate R = 1.

Example 5.6 (7,4) Binary Code Revisited

Recalling the generator matrix for the (7, 4) code, (5.2.4), we can immediately write the
parity check matrix for the code, using (5.2.12), as

1 11 01 00

H=]0 1110 1 0]. (5.2.14)
1101 0 0 1

[Recall again that in GF(2) addition and subtraction are equivalent oper%uions.] This H

matrix also generates a (7, 3) linear code that is a dual code of the (7, 4) code, and every
codeword in this code is orthogonal to every codeword in the Hamming code.

Example 5.7 (n,1) Repetition Code

A repetition code is a rather trivial code produced by G = [1,1, 1, ..., 1], s the code is
comprised of ¢ vectors whose components are n transmissions of the same symbol, and the
code rate is R = 1/n. The code has minimum Hamming distance n, since vectors differ in
all n positions. The parity check matrix for this code is

H=[LI], (5.2.19

where 1 is an (n — 1) by | column vector of 1’s and I is an (n — 1) by (n — 1) identity
matrix. This H matrix, in turn, generates an (7, n — 1) code that appends a single panty
symbol 0 n — 1 information symbols, and this dual code has minimum Hamming distance
of 2.

5.2.2 Distance Properties of Linear Codes and Emor
Protection Properties

We have seen that linear codes have algebraic structure especially useful to their de-
scription, as well as implementation of encoding. We now turn toward the performance

TUse the matrix identity [A B]- [g] = AC + BD, where dimensional consisiency is assumed.,

416 Block Codes Chap. 5

analysis, focusing on the Hamming distance structure of a linear code and guarantees we
can make for error control,

Especially important to the analysis is the fact that the sum of any two codewords
in a linear code is itself a codeword. (This, after all, is the definition of linearity for the
encoding operator). Thus, the codeword x; formed by adding x; and x; is

X3=X+%=u6+mG = +u)G=umG, (5.2.16)

s0 x; is the codeword for the message u,; +u3, which is just another message k-tuple u;.
Also, if x is a codeword, so is —X;, corresponding to the message —u,, the vector formed
by the additive inverses of the elements in w;. Thus, X; — X; is also a valid codeword.
Furthermore, the all-zeros vector is a member of every linear code, corresponding (o use
of the all-zeros message vector in (5.2.1).

The fundamental importance of the intercodeword Hamming distances has been
seen in Chapter 4 and in the study of the (7, 4) code. For general block codes, the set
of Hamming distances {d;;} between a codeword x; and all other words x; depends on
choice of the reference vector x;. For linear codes, however, every codeword has an
identical set of distances to other codewords. To see why, we consider the Hamming
distance between any two codewords:

d(x;, x;) = number of places where x; # x;, m=0,1,...,n—1
(5217
= wt(X; — X;)} = wi(X,),
where wt(z) denotes the Hamming weight of z, or the number of nonzero positions,
and X, = x; — x; is the difference between the original code vectors, which is also a
codeword as just demonstrated.

The important result is that the set of Hamming distances between distinct code-
words is the same as the set of weights of the nonzero codewords in the code and is
invariant to choice of reference vector. {The reader may want to vérify this invariance
for the (7,4) code already tabulated.] This invariance is quite profound, meaning, first,
that to fmd the distance structure of the code we only need examme the weight structure
of the g* codewords, rather than the distance between all g% pairs and, second, that
any performance analysis for channels that are uniform from the input (UFI) can be
performed by focusing on transmission of any one codeword. A convenient choice is
the all-zeros vector, always a vector in a linear code.

By listing the various Hamming weights, w, of the codewords, and the number
of codewords, A, at each weight, we obtain the weight spectrum of the code. This
information may be compactly suminarized in the form of a polynomial, called the weight
enumerator polynomial .

n
AR =) Auz®. (5.2.18)
w=~0
Clearly, Ap = 1,and A, =0 for 0 < w < dpn.

For general linear codes, tabulating the complete weight spectrum requires evalu-
ating all sums of the rows of G, centainly tedious business best left to a computer; even
this soon becomes impractical as code size grows. However, for some important codes
the weight enumerator is known in analytic form. We will say more about this as we

Sec. 5.2 Linear Block Codes 417

develop specific codes, but for the (7, 4) code it is easy to count in Figure 5.2.2 that
there is one word of weight O (the all-zeros vector), seven words of weight 3, seven of
weight 4, and one of weight 7. The weight enumerator polynomial for this code is then

;
Ay =) Apz" =147 47+ 7. (5.2.19)
w={)

To illustrate another simple binary code with not so special properties as the (7, 4)
code, we consider the (6, 3) binary code obtained by deleting the first row and column
from the generator matrix of (5.2.4). [This is called shortening the code, as described in
Section 5.6, and amounts to adoption of a subset of codewords in the (7, 4) code, having
0 in the first message position, and then not transmitting this fixed code coordinate.] The
generator matrix for this code is

[3

1
G=|0 (5.2.20)
0

o -0
-0 QO
)

1

This rate § code has 2° = 8 codewords, of which one has weight 0, four have weight 3,
and three have weight 4.

The determination of the weight spectrum is often simplified by analyzing the
dual code and then applying relations due to MacWilliams [8], which relate the weight
spectrum of a code to that of its dual code. Specifically, let A,, and B, denote the
numbers of codewords of weight w in an (#, k) code C and its (n, n — k) dual code C+,
respectively. The MacWilliams relations, which we merely state, are a set of » linear
equations:

-m n
S BCE =gt D ACT, m=nn—1..,0. (5.2.21)
i=0 j=0

Of course, for linear codes Ag = By = 1. The MacWilliams identity is particularly
useful in analyzing very large codes, whose dual codes are, however, small enough to
be enumerated directly. Short of this, a simple binomial approximation [6) to the weight
spectrum is discussed in Exercises 5.2.5 and 5.2.6.

Certainly, the most important aspect of the distance structure of a code is the
minimym Hamming distance between any two codewords, denoted d,. From our
recent discussion, this quantity is exactly the rainimum nonzero Hamming weight of ali
code vectors in a linear code. To grasp the principal importance of dp;,, consider the
use of g-ary codes on a g-ary uniform channel, described in Chapter 2. The action of
the channel can be expressed as the addition of an error sequence e to the transmitted
sequence X;. Here, maximum likelihood decoding corresponds to finding the codeword
x; that exhibits fewest discrepancies with the channel output sequence r, or which is
closest in Hamming distance to r. Suppose that x, is selected for transmission and the
closest codeword is dp;, Hamming units distant, as shown schematically in Figure 5.2.3a.
If the channel error pattern e has

t= |_d-“‘—-—l_| (5.2.22)

2

418 Block Codes Chap. 5

Set of Received
Vectors Incorrectly
Decoded by Minimum

Distance Decoder,

Set of Received Vectors Given x; Sent

Guaranteed Correctly
Decoded by Minimum
Distance Decoder, Given x; Sent

Figure §2.3a Zones of error correction and incomect decoding.

or fewer errors, we are guaranteed that r = x; +e will remain closer in Hamming distance
to x; than to any other codeword and will thus be correctly decoded.® Thus, we say that

min—1| . T~
t= [—"ﬂrj is the guaranteed error-correcting capability of the code.

If t + 1 or more errors occur in a codeword, we may be fortunate to find that r is still
closer to x; than any other codeword, but some such error patterns will lead to decoding
error. This geometric argument applies for nonlinear codes as well.

As a decoding aliernative, suppose the decoder’s task is only to detect the presence
or absence of errors and, if errors are detected, to label the codeword as unreliable. This
detector can be fooled only if e takes the transmitted vector x; to x;, another codeword;
that is, x; + e = x;. This cannot occur if there are dnin — 1 or fewer errors in the n
positions of the code (Figure 5.2.3b). Consequently,

dmin — 1 is the guaranteed error detection capability of the code.

Again, if dy;, Or more errors occur, the error pattern may still be detectable. Observe that
the guaranteed number of detectable emrors-is roughly twice the number of correctable
eITors.

Hybrid modes of operation employing concurrent error correction and detection
are possible and will be described shortly under performance analysis. It is not difficult

$The notation x| denotes the greatest integer less than or equal to x, sometimes kriown as the floor
function.

Sec. 5.2 Linear Block Codes 419

Figure 5.23b Guaranteed error
detection region, given x; sent.

to show by geometric arguments that we can guarantee correction of #; errors and still
detect up to t» > 4 errors provided that 1} + £ < diin-

Still another decoder alternative is provided if the channel occasionally erases
code symbols, as described in Chapter 2, in addition to causing errors.’ Using similar
geometric arguments, we may be assured of simultaneously correcting any combination
of ¢ errors and s erasures, provided that 21 + 5 < dpin. (See Exercise 5.2.13.)

Other channel models are certainly important, and we must reiterate that this kind
of hard-decision decoding is often inferior to true maximum likelihood decoding for the
actual physical channel. However, we will see later in this chapter that dp;, plays a
key role in more general decoding situations, motivating the search for linear codes with
large dmin for a given (n, k, g).

Another important perspective on dmin can be gained by the parity check matrix.
We recall that x = 0 is a codeword of cvery linear code, and study of the error-correcting
potential can be performed by assuming that this code vector is transmitted. Clearly, this
vector, when postmultiplied by H, will produce the zero vector of parity checks. Other
valid codewords must also do the same. A relevant question is, “What is the minimum
weight of other vectors x; that have the requisite parity check result?”, for this will reveal
the smallest number of changes in the 0 vector that is required to allow it to masquerade
as another codeword. Multiplying x by H” amounts to forming linear combinations of
columns of H, or rows of H; that is, xH” = }_x;h!, where h; is the jth column of
H. In effect, we are asking, “What is the smallest number of columns of H that, when
multiplied by a nonzero scalar in GF(g) and added together, can give a zero vector?”
In the language of linear algebra, “What is the smaliest number of columns that are
linearly dependent?”” Thus, dn, is the smallest number of columns of H that are linearly
dependent; alternatively, if we can show that all sets of d— 1 columns of the parity check
matrix are linearly independent, then we know that the code’s minimum distance, .
is at least d.

9Such erasures are neutral with respect 1o code symbols; the decoder proceeds as if this position of the
codeword had never been fransmitted.

420 Biock Codss Chap. 5§

5.2.3 Decoding of Linear Block Codes (Maximum
Likelihood and Algebraic)

Suppose that we encode a message u into x by x = uG as discussed. Let each code
symbol x; be transmitted through a channel, producing a vector observation r;, j =
0.1,..., n — 1. For example, when PSK modulation is employed with binary codes,
each code symbol produces a real demodulator output r; = +E;7 + n;, where n; is
Gaussian noise. If the symbols are in GF(8), then use of 8-ary orthogonal modulation with
noncoherent detection would produce eight numbers for each code position, they being
the magnitudes (or squared magnitudes) of matched filter outputs.'® The ML decoder will
find the codeword x; that maximizes the likelihood f(¥|x;), where ¥ = (rg.....T,_))
is a supervector combining all the available data. If the channel is memoryless from
symbol to symbol, the p.d.f. factors into product form, and if we instead maximize the
logarithm of the p.d.f, we find that the optimal choice for the codeword is

n—1\ n—|
X = arg, max Z log f(r;ix;) = arg, max Zl(rj.x,-J), (5.2.23)
=0 j=0

where A(r;. x;;) is a metric of goodness (the log likelihood) for symbol v, when the vector
r; is received. On the binary antipodal channel, the ML symbol metric is simply A =
rix;,, while on the M-ary orthogonal noncoherent channel, the ML metric is A(r,, x; =
m) = log lo(ur;, /o?): that is, we utilize only the analog demodulator channel output
corresponding to the code symbol under test in a given codeword. In both cases, we
have removed unnecessary constants from the log-likelihood expressions to simplify the
metric.

The general ML decoder must apparently compute g* sums as in (5.2.23) and
choose the codeword index with the largest metric. For general linear codes there appears
to be no way of surmounting this exponential complexity problem, because the ML
decoding problem has been shown to be NP-complete, meaning that it is equivalent to a
class of problems known to be computationally difficult in the sense that no polynomial-
time solution has been found and is not likely to be. (Actually, we will see that it is
possible to decode with complexity proportional to ¢"~*, which may be much smaller
than g*.) We should not be unduly deterred, however, because the problem is centainly
feasible for modest-sized codes, and even for certain fong codes, efficient suboptimai
algorithms can at least approximate ML decoding.

We will return to the general ML decoding problem later in the chapter, follow-
ing a development of cyclic codes, and investigate procedures for efficiently organizing
or perhaps approximating ML decoding. For the present, however, we develop what
are referred 10 as algebraic decoding algorithms, which operate with an error-correction
viewpoint. That is, the channel is viewed as a g-ary input, g-ary output discrete memo-
ryless channel. We further assume a uniform channel such that when an error is made in
transmission of a code symbol, with probability P, it is equally likely to be one ot g1
possibilities. (A possible extension is to let the demodulator produce one of q symbols

"*We should realize that these form sufficient statistics for the message decoding problem.

Sec. 5.2 Linear Block Codes 421

or an erasure when the demodulator holds low confidence in its ability to decide which
symbol occﬁrred.)

Now consider the log-likelihood function for such a channel. The metrics A(r;. x;)
are two-valued:

IOg(I - P.s‘)- Fp =X,
M%) = 1 1o (P) - (5.2.24)
g-—1 '
That is, when the observed demodulator output agrees with the symbol of a test codeword,
we assign a slightly negative metric, whereas when a discrepancy is found, we attach a
more negative metric.!' Actually, this may be simplified by noting that we may translate
the two metrics so that the largest is zero and then scale so that the smallest is —1.
Then ML deceding for this channel is equivalent to using a Hamming distance (0/1)
metric and minimizing the vector Hamming distance over all choices of ‘codewords. To
emphasize. for the M-ary uniform channel, ML decoding is equivaleni to finding the
Xx; that is closest in Hamming distance to (ro. ry. ra—1). This minimum Hamming
distance decoding is so plausible that we may expect it is always valid, but all we need
to do otherwise is to change the channel symmetry slightly, or let the channel output be
Q-ary, where Q > g.
The task then is to find the closest (in the Hamming distance sense) codeword to
r among the ¢* codewords. Clearly, exhaustive search of the codebook is possible, but
we can do much better. The received vector may be written as

r=x; t+e, (5.2.25)

where e is an n-tuple of channel error symbols from GF(g) and addition is over GF(q).
On a binary channel, e = (000110) would mean that errors occurred in positions des-
ignated 3 and 4 in a vector of length 6; on an 8-ary channel, the error vector might be
e =(0.a.0.a" 0.0), where u is a primitive element in GF(8). Both error vectors have
Hamming weight 2.

Since d(r, x;) = wi(r — x;} = wt(e}, we need to find the minimum weight (or
most probable) error pattemn that could have produced the given r and then subtract this
from the received vector. If our estimate, &, is correct, the proper codeword condition
is restored and the errors in the message have been corrected. A conceptual way to
proceed, outlined in Figure 5.2.4a, is to begin subtracting low-weight e vectors from r.
each time checking whether (r — e)H” = 0. As soon as the parity check equation i3
satisfied, we may stop. The problem is that many error vectors may need to be tested
and, for each, a vector subtraction and vector-matrix muitiplication must be performed.
There is an easier way for linear codes.

Consider first forming the (7 — k)-vector s = rH” . Note that

s=rH =(x, +e)}H = x;H +eH = eH". {(5.2.26)

where the last step follows from the parity check property of any code vector. Therefore,
the elements of s are linear combinations of the errors, ¢;, and s is referred to as the
syndrome, or symptom, of the error patten. The remaining difficulty is that there

''We assume without penalty that P, < ¢ — 1)/q.

422 Block Codes Chap. 5

e Error Pattern
Gerierator
*
]
*Begin with Minimum Try Next
Weight Test Patterns

Figure 5.2.4a Naive maximum likelihood decoder.

are many (in fact g*) error patterns capable of producing a given syndrome, one error
pattern being associated with transmission of each valid codeword; ML decoding requires
determination of the minimum weight error patiern producing s. In Figure 5.2.4b, we
illustrate conceptually this signal processing. Forming the syndrome is operationally
equivalent to encoding, that is, multiplying a vector by a matrix, but the syndrome-to-
erTor pattem conversion is potentially more difficult,

A reasonable concern is whether in condensing r down to s by a matrix mul-
tiplication we have changed the nature of the solution obtained for the error pattern.
(Equivalently, is s a sufficient statistic for the problem?) It tums out that we have not
altered the problem—the solution sets are identical. That is, the set of error pattems that
when added to codewords produces a given r is exactly the same set of error pattems that
can produce the computed syndrome. (See Exercise 5.2.8.} Finding the minimum-weight
member of either set obviously yields the same answer.

Now, let’s resume the hunt for the minimum-weight e consistent with s. For
cases where the number of distinct syndromes, ¢"~*, is reasonably sized, the following
approach is a possible implementation of the final step. (Even for cases where it is not
feasible, it illuminates the general decoding problem.) We can precompute the relation
s = eH7 for ail error patterns and form a tabie, called the standard array, of error cosets
producing the same syndrome. There will be ¢"~* such cosets, each with ¢* entries.
The most likely (minimum weight) error pattem, or any one of several equally likely
patierns, is designated the coset leader. (It may be helpful to think of cosets, indexed

Syndrome
Former
t={ro ..., Fooq) s Minimum P
- > s=rH’ -1 Weight
r=x+e Locator

/S

Figure 5.2.4b Generic decoder for g-ary symmetric channel.

Sec. 5.2 Linear Block Codes 423

by syndromes, as sets of diseases that produce a set of observable conditions and the
coset leader as the most likely diagnosis.) In our decoding table, we only need to ‘store
the coset leaders for each syndrome address and, in fact, for systematic codes we must
only store the k information positions of the coset leaders, since we normally only need
to detiver information estimates. ‘Thus, the table size is g"~* by k. The “cosrection” of
errors is performedby subtracting this coset leader from the receiver vector.

Example 58 Standard Array for (6,3) Code

In Figure 5.2.5, we show the standard array for the (6, 3) code described in (5.2.20). This
table can be constructed by enumerating all possible error pattemns and storing them in
the row cosresponding to the associated syndrome, However, to find the essential coset -
leaders, we begin with low-weight (most likely) error patterns, form s = eH”, and store e at
the corresponding location in the syndrome table. We proceed through higher-weight error
patierns until all syndromes have a cose: leader assigned. For the (6, 3) code, the zero-error
pave~ and all six single-emror patierns consume seven distinct syndromes. The remaining
syndronae, § = (101), can only be produced by an error pattem with two or more errors.
Although we have shown the complete array here, a syndrome decoding table need only
associate coset leaders with syndromes.

It should be observed in Figure 5.2.5 that the error coset corresponding 1o the syn-
dreine s = (000) is exactly the set of codewords, since xHT = 0 for valid codewords. Thus,
the top row of the array in Figure 5.2.5 is the set of eight valid codewords. Also, each
remairning cosel is formed by adding the coset leader vector to each vector in the code. This
is true more generally.

$ a

000 ; 000000 {100111 010110 001011 110001 011101 101100 111010
001 { 000001 (100110 010111 001070 110000 011100 101101 111011
010 1000010 100101 010100 001001 110011 011111 101110 111000
011 ;001000 {101111 011110 000011 111001 010101 100100 110010
100 | 000100 | 100011 010070 001111 110101 011001 101000 111110
101 [000107 | 100010 010011 001110 110100 011000 101001 111111
110 1 010000 [110111 000110 0€11011 100001 001101 111100 101010
111 | 100000 §000111° 110110 101011 010001 111101 001100 011010

f

Coset Leader Coset with g* Vectors
100111 110100
G=|010110{, H=[111010|.
001011 101001

Figure 5.2.5 Standard array for (6. 3) binary code.

Notice that the only error patterns that are correctable by such a table lookup
decoder are the coset leaders, for if an error pattern occurs that is not a coset leader, the
decoder retrieves an erroneous error patten and typically leaves the “corrected” vector
with more errors than it contained originally. In Example 5.8, the zero-error event, all
six one-error patterns, and a single two-error pattern are corrected. Notice, however.
several two-error patterns are equally likely to produce the syndrome s = (101), and

424 Block Codes Chap. 5

attempting to correct this condition is less probable of success than attempting to cormect
when observing other less ambiguous syndromes.

5.2.4 Performance Measures for Aigebraic Decoding

We now describe three possible modes of operation for a decoder, two of which allow the
decoder to avoid decision in some cases, but instead report an error condition it cannot
correct. In the case when the decoder does not produce a decision, we presume there is
a higher-level decoding that can fill the erasure of a codeword or that we may request
that the same codeword be repeated again. '2

Mode 1: Error detection only

Here we simply test for a zero syndrome vector, since s = @ only for valid codewords.
If the syndrome is not zero, we report a detected error. This decision can be wrong only
if the error pattern is very special, that is, e itself is a code vector, forthenr = x; + ¢
will be some other valid code vector, and its syndrome will be the zero vector.

For this mode of operation, the performance measure of interest is the probability
of undetected error, denoted Pyg. We then have for the q-ary uniform channel

PUE= P(E:x;:x’,' #0)

~

= Z A P(eis a specific weight w pattern)
W=dpun (5.2.27a)

= ﬂ Ay Ps w(l-P,)"“"".
2

W=dpmiq q- 1
Thus, knowledge of the complete weight spectrum of the code allows exact calculation
of Pyg. For the (6, 3) binary code on the BSC, Pyg = 4P}(1 — P,)* + 3P*(1 — P,)?,
where P is the code symbol error probability.
If only the minimum distance of the code is known, an upper bound on Pyg is

n Ps w
Pyg < | — 1 - P ™. 2.
UE_w;:m ,(q_}) (1-P,) (5.2.27b)

Mode 2: Complete decoding

Here the decoder is always required 1o deliver its best estimate of the transmitted code-
word based on syndrome measurement. This too can fail, but the probability of correct
decision is given by

Pcp = P(e is a coset leader). (5.2.28)

For the (6, 3) code, Pcp = (1~ P,)° + 6P,(1 — P,)* + P2(1 ~ P,)*. The probability of
incorrect decoding in this mode is Picp = 1 — Pop = P(e is not a coset leader). Since
exact calculation of Pcp requires knowledge of the set of coset leaders, for reasons of

2This is called ARQ for automatic request of retransmission.

Sec. 5.2 Linear Block Codes 425

tractability we often upper-bound Picp by the probability of error types that are not
guaranteed correctable. Thus, for the binary (6, 3) code, we could upper-bound the
probability of incorrect decoding by

Picp < P(ehas 2,3,..., 6 errors)

5 . A (5.2.29a)
=Y CPI(1 - P,
s

since all error patterns with two or more errors are not guaranteed correctable. In general,
we have the bound

Pp < Y CIPJ(1 =Py, (5.2.29b)

j=t+1

Knowing r alone is sufficient to compute this bound.

Mode 3: Incompiele decoding

Here we allow the decoder to attempt to correct situations that it believes comespond
to as many as f; < ¢ errors, where ¢ is the guaranteed error-correcting limit for the
code, and to report detected errors for other syndromes. Thus, we adopt a hybrid mode
of operation combining the first two modes. In essence, the standard array is divided
into two sections: a set of cosets for which error correction is attempted and a set for
which transmission error will be reported. In mode 3, three possibilities exist: we can
decode correctly; we may decode incorrectly when r falls within ¢; units of an incorrect
codeword; or we may have a detected error, when r lies in the interstitial space between
spheres of radius ¢, drawn about all codewords. (See Figure 5.2.6.) The probabilities of
these three events are obviously related by

Pcp + Piep + Ppe = 1. (5.2.30)

(DE denotes the detected error event.)

Detected Error Region

Incorrectly Decoded,
Given x; Sent

Correctly Decoded,
Given x; Sent

Figure 5.2.6 Geometry for mode 3,
hst incomplete decoding.

426 Block Codes Chap. 5

For example, with the (6, 3) code, we could take) =t = 1 and decide to report
detected errors when the ambiguous syndrome s = (101) is observed, otherwise, we
decode as usual. In this case the probability of correct decoding is slightly less than in
mode 2:

Pep = (1 — P)°+ 6P,(1 — P,), (5.2.31)

but we have incurred a lesser probability of incorrect decoding, at the expense of
failing to decode occasionally. In general, Picp is the probability of an error pat-
tern that is not a coset leader, but that lies in the cosets for which correction is at-
tempted. Similarly, Ppg is the probability that the error pattern is in the detected-error
cosets.

Incomplete decoding is particularly common when the minimum distance of the
code is even. In such a case we may perform the decoding so that ¢} = | (dpin — 1)/2]
errors are corrected, while din /2 errors are detected. (Both are guarantieed.) In the case
when dp, = 4, the code is referred to as single error correcting, double error detecting
(SEC/DED). There may be confusion at this point with the claim of mode | decod-
ing: that up to dpin ~ ! errors are detectable. The guarantees are simply different if
simultanecus error correction and error detection are attempted.

Many algebraic decoding algorithms are incomplete decoding procedures, produc-
ing the single valid codeword within ¢+ Hamming units of the received vector, if one
exists. If no such codeword exists because more than ¢ errors occur in transmission, the
algorithms may simply fail to decode, declaring detected errors.

For the Hamming (7, 4) code (and in fact for all Hamming codes), the standard
array is segmented in a special way, a corollary to its perfectness. All single-error
patterns, plus the zero-error pattern, are coset leaders. No other error pattern is a coset
leader. Thus, in mode | (error detection only), Pyg = P (3 or more errors), and in mode
2 (complete decoding), Picp = P(2 or more errors). Mode 3 is not applicable for the
Hamming codes.

The general syndrome decoder, when combined with 1able lookup, is not practical
for long codes, since the syndrome table requires g”~* words. This rapidly becomes
unmanageable, especially for ¢ > 2. It is true, however, that table lookup decoders that
were infeasible 10 years ago are perfectly reasonable today due to dramatic increase in
the sizes and speeds of semiconductor memory.

In addition 1o this complexity issue surrounding general linear codes, we note that
encoding (x = uG) and syndrome computation (s = rH’) are matrix operations over
GF(qg), and, in general, no shortcuts are possible to avoid brute-force matrix multiplica-
tion. meaning that up to nk and n(n — k) multiplications and additions are necessary for
these respective operations. In Section 5.4, we take up cyclic codes, which are linear
codes allowing still simpler encoding and syndrome formation. More importantly, it we
wish to avoid table lookup for the error pattern, algebraic procedures are available for
the most important of these codes 1o solve for the minimum-weight error pattern. or to
do so with high probability.

We will now tum to some constructive procedures for building simple codes, the
Hamming codes and Reed—Muller codes. More general constructions will be presented
later in the context of cyclic codes.

Sec. 5.2 Linear Biock Codes 427

5.2.5 Hamming Codes over GF(q)

The description of Hamming codes, both longer vinary codes and nonbinary codes, is
straightforward, involving specification of the parity check mairix. In Section 5.4, we
will show that these codes are in fact equivalent to cyclic codes. The codes are the oldest
nontrivial codes, discovered in the binary case about the same time by Hamming and
Golay.

We consider single-error correcting (n, k) codes over GF(g) and specify as the
coset leaders the zero vector and all n-vectors with a single nonzero entry, and no others.
There are n{g — 1) such vectors of weight 1 and one vector with weight 0. Since the
number of distinct syndromes is q"'*, it is necessary that

g " =1+nlg-1 (5.2.32a)
or

n= —-q—l-— =g" gl (5.2.32b)

Now we show how to produce such codes by specifying their parity check matrices.
We begin by picking a value of n — %, that is, choosing the number of parity symbols.
The required code length then follows from (5.2.32b). We select as columns of the H
matrix all the distinct nonzero (n — k)-tuples over GF(q)}, with the proviso that the first
nonzero entry in each column be 1. All single-error pattems and the zero-error pattem
will produce a unique syndrome, since s = eH’, (5.2.26). These error patterns will
thus be correctable. Furthermore, no other error patterns-are correctable since the coset
leaders have been completely assigned.

Hamming codes are particularly easily decoded by studying the dependence of
the syndrome vector on the error pattern, assumed to contain at most one error. The
error pattern can then be determined with minimal algebraic effort. In the binary case,
if the parity check matrix columns are ordered in natural binary fashion (producing
nonsystematic code), a nonzero binary syndrome vector points to the location of the
single error.

For ¢ = 2, the first few Hamming codes are (3, 1),'* (7,4), (15, 11). (31.26),
and (63,57). For g = 16, the shortest Hamming code is (17, 15), and two others are
(273, 270) and (4369, 4365). Notice that the rate R = k/n is steadily increasing as the
block length n grows, yet dpi, = 3.

The weight distrtbution for g-ary Hamming codes is known in closed form [2] and
is given by

1
A= —[[1I - z]"

+nlg = DI +(g = D27V = g)mamDDAT,

'>This is a degenerate Hamming code, a repetition code.

428 Block Codes Chap. 5

Example 5.9 (5, 3) Hamming Code over GF(4)

Suppose we pick ¢ =4 and n — &£ = 2, Then (5.2.32b) gives » = 5. Thus, the code will be
a (3, 3) single-error-correcting code. The parity check matrix has nonzero columns that are
distinict and for which the leading nonzero element is 1. This produces

11110
= : 5234
H [: @ B O 1] 6239

Note that we have put the H matrix in systematic form, H = [-P7, 1].
Substitution in the weight enumerator polynomial expression (5.2.33) yields, after
routine algebra, the polynomial

A(z) = 1 +302° + 1524 + 1825, (5.2.35)

This reveals that the code has 1 weight O vector (as we already knew), 30 codewords of
weight 3, 15 vectors of weight 4, and 18 vectors of weight 5. The weight spectrum totals
64 vectors, as it must.

5.2.6 Reed-Muller Codes

Reed-Muller (RM) codes [9] are binary linear codes whose lengths are a power of 2,
n = 2", and for which there is a very simple decoding algorithm, capable of inferring
information symbols directly from majority voting on the results of symbol estimator
equations. For modest block lengths, the codes compare well against the best-known
codes with equivalent rate. Lately, they have reemerged as fundamental to the description
of dense multidimensional lattices.

The generator matrix is defined as follows. For any m, let n = 2", and pick the
first row of the generator matrix as the a-tuple of 1's:

Go=go=(1,1,1,1,....1,1,1). (5.2.36)

Used alone, this would form a Oth-order RM code, which is just a repetition code, having
dmin =n = 2™, Next, define G, to be the m x n matrix whose columns correspond to all
distinct binary m-tuples. (We order these left to right in natural binary order.) Appended
underneath Gy, we form a generator matrix for a first-order RM code.

Similarly, we define G, to be the matrix formed by taking the logical AND of all
pairs of rows in G,. (This is equivalent to forming the product of vectors, bit by bit.)
There are C7' ways of forming such pairs. Appending this matrix to the former, we have
a matrix with

k=14+Cr+Cp (5.237)

rows, which can be shown to be linearly independent. This constitutes the second-order
RM code.

If desired, we can keep adding rows by taking rows from G, three at a time,
forming the logical AND, then four at a time, and so on. In general, the rth-order RM
code will have

k=1+CT+C3 +--- 4 CP (5.2.38)

Sec. 5.2 Linear Biock Codes 429

rows and will be of the form
G=|G2| - (5.2.39)

Although we will not demonstrate it, the matrix has rank %, and the minimum distance
of the RM code with order r is

dmin =277, r=0,1....m—1 (5.2.40)

It is readily seen that the rth-order RM code is a subcode of the (r + 1)st-order
code (in Section 5.6 we will refer to this as an expurgated code). Alternatively, an
{(r + Dst-order RM code is comprised of cosets of the rth-order RM code.

Reed [9) proposed a simple voting algorithm that recovers information bits directly
from sums of the received binary symbols; no syndromes are computed. The procedure is
iterative. We think of the message as broken into blocks, u = (up, uy, ..., u,), of length
corresponding to the row dimension of the various component matrices in (5.2.39). The
first subblock has one information bit, the second m, and the last C™. We decode the last
block bit by bit by forming 2"~" sums of 2" received bits each. The sums are chosen so
that the position 1o be decoded appears once in each sum, and all other positions appear
an even number of times in each sum. This means that a majority of the sums will yield
a result equaling the message bit in question, provided that

27— 1 deyin — 1
I = l. 3 J = [2 j (5.2.41)

or fewer errors occur. To decode the other bits of this block, we permute the arrangement
of sums, obeying the preceding rule.

When the last subblock is decoded, we remove the contribution of these information
bits from the transmitted (and received) words by

v =r-—-4G, (5242

If no errors occurred, this vector would be a codeword in the (r — 1)st-order RM code.
The bits of the next subblock are decoded in similar fashion. Now we form 2" ~"~! sums
each involving 2'*! positions and claim that if fewer than

t —[TH&’ _1J (5.2.43)
r—1 = 2 e

errors occur, then the next subblock is correct, and so on. The last block of one bit is

decoded by summing all the remaining code positions, as modified, which is equivalent
to a majority vote. The complete process is successful if ¢, or fewer errors exist.

430 Block Codes Chap. 5

Example 5.10 (16, 11) Second-order RM Code
Following the preceding recipe, the generator matrix for this code can be constructed as

[T R S W T T A N N (R A KRS S S S B
0O 0 0 o0 0 0 0 0 1 1 1 ¥ 1 1 1
0 oo 0 11 1 1 0 0 0 0 1 1 1 1
o 01 1 0 0 1 t OO0 ! 1 0 0 1 1
o tr 0 v 0 1 0 1 0 1 O Y O YV O 1}
G=|0 0 0 0 0 0 0 0 0 0 0 O 1t 1 1 1 (5.2.44)
0O 00 0O C 0 0 0 0 1 1 0 0 1 1
o 0 ¢6 ¢ 0 0 0 0 0 1 0 1 0 1 0 1
o 0 0 0 0 0 1 1+ 0 0 0 0 0 0 1 1
0O 0 0 0 0 1 0 1 O 0 0 0 0 1 0 1
Lo 00 1.0 0 0t 0 0 0 1 0 0 0) |
Notice that the submatrices have weights 16, 8, and 4 in the various rows.
We view the 11-bit message as
U= (wp, Uy, u2) = (g | 1y, a2, u3, us | us, ug, 47, ug, 49, ¥10). (5.2.45)
To decode ug. we form the four estimates
dp=ro+r +r24r3,
dlo=re+rs+re+ry,
(5.2.46)

iy =rg+ro+rpp+ri,

iy = rizt+riz+rig+rys.

By studying the generator matrix, it is seen that each estimate equation includes position 15
once, and all other positions appear an even number of times. Thus, the value of the other
message bits is self-canceling in each equation, leaving

ﬁ|0=u|0+80+€|+€2+83.

10 = uip + €5 + es + g + €7,
. (5.2.47)
g =tp+ ey +e9+ eg+ ey,

o=t +e2+e3+ey+es.

Observe that if there is 0 or | eror in the 16 received bits a majority of the preceding
estimates will yield the proper value, fijg = ;9. To decode ug, we point out that positions
(0.1.4,5), (2,3,6,7), (8,9,12,13), and (10, 11, 14, 15) provide the appropriate set of
estimator equations,

After the bits us . . . u1g are decoded in corresponding manner, we subiract ;G2 from
r and begin to work on the next four bits, which are a fragment of message bits in a first-
order RM code. To decode uq, for example, we form eight sums (estimaies) each involving
two bits. The appropriate check sets for this bit are (0, 1), (2, 3), (4, 5). ... Provided three
or fewer errors exist in the original symbols, this bit and others in its subblock are correctly
decoded. Once this subblock’s influence is finally removed, we decide ug by summing all
the bits, or majority voting.

Inspection of the procedure will show correction of up to | (dmin — 1)/2] efrors in an
rth-order RM code, which is the guaranteed error-correcting capacity based. on dg.

Sec. 5.2 Linear Block Codes 4

