5.3 BOUNDS ON MINIMUM HAMMING DISTANCE FOR BLOCK
CODES

We have witnessed the key role of Hamming distance between codewords and the special
importance of the minimum distance dyin. The central problem of block coding theory
has been the descripticn of codes with large (or largest) dpy;, for a given a, k, and ¢g. For
small codes, the best codes can be found by exhaustive search of generator matrices if
necessary. The range of parameters for which this exhaustive search can be performed is
rather limited, however, and in general we must settle for upper and/or lower bounds on
dmin- In some cases these will be equal, implying we have described the error-correcting
power without actually constructing the code.

Tables of bounds on dy,, are provided by MacWilliams and Sloane [3}, Helgert
and Stinaff [10], and Verhoeff [11]. In Table 5.2 we include an abbreviated version of
the table of tightest known bounds on dp, for linear binary codes listed in [11]; the
reader may find it instructive to attempt constructions of some of the smaller codes by
finding appropriate systematic-form generator matrices whose row sums give the stated
minimum weight. Equivalently, we may attempt construction of parity check matrices
of a certain size such that all sets of dyin — | columns are linearly independent. There
are numerous open questions; it is intriguing to see in Table 5.2 that for n = 25 and
k = 16 the question is still open as to whether the largest attainable is dy;, = 4 or 5.

In this section, we will develop some of the important general bounds. These
bounds may be used in assessing the possible existence of a code having certain parame-
ters, or in establishing how good a known code is against theoretical limits. In addition,
asymptotic results on code performance for large block length follow readily from these
bounds. We begin with three upper bounds on dp,,, referred to as the Hamming bound,
the Singleton bound, and the Plotkin bound.

5.3.1 Hamming (Sphere-packing) Bound

Consider (n, k) codes over GF(g). We shall visualize the codewords as points in the
n-dimensional space of n-tuples over GF(¢) and imagine centering a “ball” of radius r
Hamming units at each of the ¢* codewords in this space, as schematically shown in
Figure 5.3.1. These balls will be regarded as minimum distance decoding regions for
the various codewords. We ask for the largest ¢ such that it is possible that balls do
not intersect (even share points) so that a code will be ¢ etror comecting. The answer
follows from a simple volumetric calculation and provides an indirect answer for the
largest possible dmiq, since f = [(dmin — 1)/2}. ;

A ball of radius ¢ includes ali vectors at Hamming distance 0, !, ..., from a
reference vector, and the number of such vectors is called the n-dimensional volume:

f
V=3 "Crg - 1) (53.1)
j=0

The balls cannot be disjoint unless the total volume of n-space is at least as large as the
volume contained in ¢° decoding regions. Thus, it is necessary for a code to be  error
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TABLE 5.2 LISTING OF LARGEST ACHIEVABLE d,,, VERSUS n AND k FOR LINEAR BINARY CODES
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Disjoint Spheres
of Radius ¢, Each
with Voiume
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yim = E (") {g-1y n-tuples over GF (q),
j=0 \ "Volume" = g"

Figure 5.3.1 Illustration of Hamming or sphere-packing bound.

correcting that

i
@Y Clg-1 <q", (5.3.2a)
j=0
or, equivalently,
I
"= Clg -1y (5.3.2b)
i =0

Still another form of the bound is
f
n—kz>log, Y Clig—1). (533)
o

Notice that this argument does not involve any structural properties of the code, but enly
the code size and block length, so the bound holds for nonlinear (n, k) codes as well.

Example 5.11 Application of the Hamming Bound

With n = 15, k£ = 8, and ¢ = 2, we might ask for an upper bound on achievable values of
1. Substitution in (5.3.2) yields

r=2 .
Yool =120 52 =g, (5.3.4)
j=0

so 1 = 2 is allowed by the Hamming bound. A similar check will show, however, that
1 = 3 is impossible. In fact, a (15, 8) double-error-correcting nonlinear code exists and has
been described by Nordstrom and Robinson {12]. This code and its generalizations provide
the most notable examples where nonlinear codes offer any advantage over linear codes.
From Table 5.2, the best linear code with n = 15 and ¢ = 2 is a BCH code having & = 7.
That linear code thereby provides only half as dense a packing of spheres in 15-dimensional
space as the nonlinear code.
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Perfect and quasi-perfect codes

The case of equality in (5.3.2) preseats interesting possibilities, for it suggests that the
total volume is exactly divisible among g* balls of radius ¢, leaving no interstitial space.
Of course, having exactly the correct total volume does not ensure that such volume
can be divided into radius-r balls centered about each code point without overlap. If,
however, an (n. k) code can be demonstrated tc have decision zones of radius ¢, with
equality in (5.3.2), then the code is termed a perfect code. In a perfect code, every
received n-tuple is within + Hamming units of one and only one codeword. This is
obviously a special partitioning of #-dimensional space, and such codes are also called
close packed.

Perfect codes are in fact very rare. The (n, 1) repetition codes of Example 5.7 are
perfect codes for n odd and any g, with t = (n — 1)/2. When r = 1, equality is obtained
in (5.3.2) for g-ary codes when t +n(g — 1) = ¢" %, orif n = (¢"% — 1)/(g — 1).
Since this last equation has integer-valued solutions for any ¢ and n — k, perfect r = 1
codes then might exist with these lengths. For example, with ¢ = 16, setting n — k = 3
points to the possibility of a perfect + = 1 code with n = (16° — 1)/15 = 273, so
the code would be a (273.270) code over GF(16). An infinite family of such codes
(Hamming codes) does in fact exist, defined by the parity check matrix construction as
described in Section 5.2.5. They may also be described as cyclic codes, as demonstrated
in Section 5.4,

Beyond these examples of perfect codes, there are surprisingly only two others: a
(23,12) t = 3 binary code and a (11, 6) temary (¢ = 3) code with ¢+ = 2, both due to
Golay [13]. Others have been conjectured; for example (n, &, ¢) = (90, 78, 2) provides
equality in (5.3.2) with r = 2, but such a perfect code does not exist. Tietavainen [14]
has put the issue of other perfect codes over arbitrary finite fields 10 rest in the negative.
The paucity of perfect codes should not be regarded as discouraging, however, for such
elegant mathematical objects are not essential to good performance. We will settle simply
for good spatial packings.

The next best arrangement is a quasi-perfect code, of which there are many. A
code is ¢ error correcting quasi-perfect if bals of radius s located about each code point
are distinct, and all remaining points in the space of n-tuples are at most # + } units
from a code point. In terms of the standard array for the code, this implies that the coset
leaders include all error patterns up thrcugh weight £, some patterns o1 weight ¢ + 1,
and none of larger weight. This is clearly a good packing of codewords in space, if not
perfect, and can be shown to yield a code with minimum error probability for a specified
n, k, and q. An example is provided by the (6, 3) binary code studied in Example 5.8.

$.3.2 Singleton Bound (15): dmin < N — k+ 1

This upper bound on distance for linear codes is easy to demonstrate, but is usually not
attainable. Recall that the minimum distance of a linear code is equal to the minimum
nonzero weight of a codeword. A nonzero codeword may have as few as one nonzero
symbol in the k message positions of a codeword, and the largest possible weight of the
remaining n — k parity symbols is obviously n — k. Thus, the minimum weight, and
hence dpyn, cannot exceed n — k + 1. Codes that achieve the upper bound are said to be
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maximum distance separable (MDS), or simply maximum, and the most notable codes
to do so are the Reed-Solomon (RS) codes. These will be discussed in cyclic form in
Section 5.4, The only hinarv MDS codes are the (n, 1) repetition codes with dpi = 1
and their duals, the (n, n — 1) codes with d,;,, = 2. The (35, 3) code over GF(4) presented
in Example 5.9 is an MDS code, since dpy, =n — 4+ 1 = 3.

An important implication of the Singleton bound is provided by normalizing diyq
by block length », in which case we have that dy/m < (n—k+ 1)/n = (1 — R) + t/n.
For long-block-length codes, we find that dyn/n essentially cannot exceed 1 — R. If we
realize that the guaranteed error-correcting capability ¢ is upper-bounded by d,;, /2, then
we find that the guaranteed fractional error-correcting capability. t/n, of a linear code is
upper-bounded (asymptotically for large n) by one-half the code redundancy (1 — R)/2.
long R = % codes, over any alphabet, therefore cannot hope to correct more than 25%
of the incorrect symbols in a codeword.

Another interesting interpretation of the Singleton bourd is that ¢ is essentially
upper bounded for long codes by (n ~ k)/2, which is to say that ar least two parity
symbols are required for every unit of guaranteed error-correcting capability.

5.3.3 Plotkin Bound (16)

In a linear {n, k) code over GF(q). in every column of a table of the ¢* codewords,
each symbol in GF(q) appears exactly ¢* ! times {provided none of the columns of the
generator matrix is all zero). For example, note that every column in the code listing of
Figute 5.2.2 has exactly eight I’s and eight 0's. The total weight of all codewords is
thus n(g — 1)g*~!. Furthermore, since there are g* — I nonzero codewords in the code.
the average codeword weight is

" = Dg'! (5.3.5)

g' -1
The minimum weight, equivalent to 4, must be no larger than the average weight.
Thus, we have that for g-ary codes

e =

n(ig -1}
g -1
which provides another upper bound on d,;,, in terms of n, k, and q.
Upon dividing both sides of (5.3.6) by n, we have that
d ; _ k-1
min _ g~ Dq" " (5.3.7)

n - gf-1
In the limit of large k, we find that minimum distance as a fraction of block length
is essentially upper-bounded by (¢ — 1)/, independent of rate R. This bound thus is
usually very loose, especially at high rates and for large q.

Other upper bounds on minimum distance, tighter than the three bounds presented
here but more cumbersome to formulate, have been obtained by Elias [17] and McEliece
et al. [18). These are discussed in |1] and [5]. The exercises also address an upper
bound on dp,;, due to Griesmer.
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Next, we tum to the opposite problem, and for a given set of code parameters, seek
existence results, that is, define the parameter range within which codes are guaranteed to
exist. We can think of this process as establishing lower bounds on dy;, for a given n, &,
and g. We will develop similar bounds due to Gilbert [19] and Varshamov [20], which,
although distinct, give the same asymptotic (large block length) guarantees for codes.

5.3.4 Gilbert Bound

Now suppose we are given a block length »n and target distance d, with 2 < d < n, and
we wish 1o establish a guaranteed dimension k. The development is similar to that of
the Hamming bound, in essence a geometric argument involving balls in #-dimensional
space. We will formulate the proof for linear codes, although the result holds for nonlinear
codes with equal rate,

We try to construct a gererator matiix G with eventual rank &, for which all
(nonzero) linear combinations of rows have weight d or larger. We begin by removing
from the space of .n-tuples over GF(g) all vectors within & — 1 Hamming units of the 0
vector. There are V;’_']l vectors in this ball. For the first row, g,. of the generator matrix,
we select any remaining n-tuple. Note that it and all nonzero multiples of this vector
have weight at least d. Surrounding each vector of the form u,g;, we further remove all
vectors within a radius & — 1. From the remaining n-tuples, if any, select g;. We know
that u,8, + u2g2 # 0, by construction, so we have a two-dimensional linear code at this
stage. Furthermore, all linear combinations of these two rows, where u; and u, are not
both zero, will have weight at least 4. Now around each of the ¢* vectors in this code,
remove all Vd(’i)l vectors within radius d — L. If any remain, pick one as g3 and continue
the process until all the g" vectors are consumed by one of the balls of radius of d — 1.
This sequence is illustrated in Figure 5.3.2.

We note that when g; is selected we have already removed g/=! balis; in the worst
case, these balls will be disjoint, but in general some overlap exists. Nonetheless, if &
satisfies

gVt < g, (5.3.8)
then an (n. k) linear code over GF(q) with d,;, > d is guaranteed to exist. [The pos-
sibility of significant sphere overlap allows codes to have possibly larger dimension
than (5.3.8) might suggest.]

Rewriting (5.3.8) gives
At

i
-3 Clg-1)<q" (5.3.9)
q j=0

as the sufficient condition for existence of an (n, k) code with din = d.
Example 5.12 Application of the Gilbert Bound

Suppose we seek 2 single-error-correcting binary code of block length 10 and wish to know
what values of k are guaranteed. We take n = 10, d = 3, and q = 2, and the sufficient
condition (5.3.9) becomes

2
1
3 Y )0tk (5.3.10)
=0
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Figure 53.2 Gilbert bound argument with ¢ = 3. (a) Prior to selection of
g2: ¢ balls removed; (b) prior to selection of g1; ¢° balls removed.
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The left-hand side is 28, which implies (at least) that a ¥ =5 code exists with dpin > 3,
and hence with ¢ = 1. On the other hand, the Hamming bound with ¢ = 1 requires that
& < 6. In fact, a (10, 6) code is achievable with dpin = 3, as shown in Table 5.2.

5.3.5 vVarshamov Bound

A slightly different existence statement is due to Varshamov {20], based on construction
of the parity check matrix H. For this bound, we first fix the number of parity symbols
n — k = r. (This is equivalent to fixing the dimension of the dual code.) We also adopt
some target distance 2 < d < r +1. From Section 5.2, we know that, if we can construct
an n — k by n parity check matrix over GF(g) such that every set of d — 1 columns is
linearly independent, then we have described an (n, k) code with dpy > d.

We form the first r columns of H as the r by r identity matrix. Clearly, these
columns are linearly independent. For the (r + 1)st column, we use any nonzero r-tuple
that is not a linear combination of any d—2 previous columns. There are Zf;lz Ci(g— 1)/
such linear combinations of the first » columns. In general, these are not all distinct, but,
in any case, if this number of linear combinations is less than the number of nonzero
{n—k)-tuples, then an (r+1}st column can be added, still maintaining linear independence
of d — 1 columns,

We can pursue this extension to add at least an nth column if

d-2
Cl g -1 <q"r -1 (53.11)
i=1
or, equivalently, if
d-2
Y g -1 <q. (5.3.12)
j=0

Equation (5.3.12) is a sufficient condition for the existence of an (n, n — r) linear code,
with dy;in > d. As with the Gilbert bound proof, nondistinctness of linear combinations
of columns generally means that the number of r-tuples is not exhausted so quickly, and
achievable values for n, given n—k and d, are perhaps larger than guaranteed by (5.3.12).
It is worth noting that the bound just presented bears strong resemblance to the form of
the Hamming bound, (5.3.2b}, with an important difference on the range of the sum.
Example 5.13 Applications of the Varshamov Bound

Suppose that we pick r = n—k = 5, d = 3, and ¢ = 2. The condition (5.3.12) is

1 (k +4) < 32, implying that & = 26 is achievable. Thus, a (31, 26) code exists with

dm.. = 3. Such a code is the Hamming code with these parameters and dy;, = 3.

As a second case, let us choose r =n — & = 17 and d = 7, with ¢ = 2. Essentially,
the question is “How large a value of £ is guaranteed for codes with triple-error-correcting
capability and that use |7 parity bits?” The sufficient condition becomes

5
Yokt <2 = 131,072, (5.3.13)
i=0
Solution shows that the largest k is 12, so a (29, 12) code is known to exist with dmin > 7.
It will be seen in Section 5.4 that a (31, 16) binary BCH code has dy, = 7, and this code
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could be shortened to (29, 14) with the same minimum distance (see Section 5.6). Thus,
we can actually construct a code with n = 29 having higher rate than guaranteed by the
Varshamoy bound. Verhoeff's complete tables [11] show in fact that a (29, 14) code with
dmin = B exists.

The Varshamov and Gilbert bounds are often wvsed interchangeably, but in fact
they are different statements. The former fixes n — k and specifies a guaranteed value
for n, and hence k. The Gilbert bound on the other hand fixes n and determines the
guaranteed #. Both bounds predict the same asymptotic story. Before looking at the
asymptotic significance of these bounds, we note that the issue of optimal design is
still a surprisingly open question in selected cases. Verhoeff [11] observes that the
current best upper and lower bounds t0 dp,y, for the binary (127, 33) case are 48 and 32,
respectively!

5.3.6 Asymptctic Forms of the Varshamov-Gilbert and
Hamming Bounds

The bounds just studied can be applied for any specific n, k, and ¢. It is also illuminating
to study their implications tor large block length 7. It may be shown {2] that the volume
v, of a radius-¢ sphere in 71-space is bounded by

,)ﬁ”zq"h”“fn) < V,(") Eq"h"(r/m~ (5.3.14)

where h,(x) is the g-ary version of the binary entropy function:

1
Aax) =x iogq(q—l)—x log, x—(1—x) Iogq(l—x), O0<xy < —r07 (5.3.15)
)
Use of this result in the statement of the Gilbert bound (5.3.10), followed by letting n
become large, shows that g-ary codes exist with

dri k

2> (1 ——).—_hq](l—R), (5.3.16)
" n

where h;'(x) is the inverse of the entropy function. Thus, binary rate 3', block codes
exist for which the ratio of d;, to block length exceeds about 0.11, or for which the
ratio of guaranteed error-correcting capability 7 to block length n exceeds 0.055. as n and
k become large. More importantly, the Varshamov-Gilbert bound establishes that codes
exist with fixed rate whose ratio of minimum distance 1o block length remains bounded
away from zero as block length increases. On the contrary, there are only a few known
constructions of codes for which the ratio of distance to block length does not diminish
to zero as the length grows;'* in particular, BCH codes, the best known family of block
codes, do not satisfy the Varshamov-Gilbert bound for large # and, even worse, the ratio
of dmin 10 block length goes to zero as n increases [28].

MThe Varshamov-Gilben constructions show in principle how to generate codes meeting the bound for
large n., but these are not likely to have any appealing implementation properties, and will not constitute a
family of code designs.

440 Block Codes Chap. 5



Similar arguments show that the asymptotic form of the Hamming upper bound is

ri? ";_n <h' =R, (5.347)
Thus, the asymptotic forms of the upper and lower bounds bracket the attainable distance
to within a factor of 2, as a function of rate R and block length n.

In Figure 5.3.3 we plot the asymptotic forms of the Hamming, Singleton, and
Plotkin upper bounds on dp,i,, as well as the Varshamov-Gilbert lower bound, normalized
to block length for binary codes of rate R. Sucl plots clearly delineate the possible and
forbidden regions for long codes of various code rates.

}
Plotkin Bound
0.5
Hamming
Devin 4 Bound J
n Singleton Bound: :"3 <1-R
0.25
V- G Bound
I 1 I -
4] 0.5 1 R

Hamming Bound: %ﬂ <h,'01-R)
n

V- G Bound: d% 2h3' (1-R)

Figure 5.3.3 Asymptotic upper and lower bounds on normalized dyy, versus
R for binary codes. Shaded region is existence region, defined by Hamming
upper bound and V-G lower hounds.

5.3.7 Channel Capacity and the Coding Theorem
Revisited

It is worthwhile revisiting the issue of channel capacity in the context of the bounds on

the capability of block codes we have just developed. The channel capacity for a g-ary

uniform channel, as developed in Chapter 2, is

C=1+P logq(q -1 -F logq P, — (1 — P,)logq(] — P} g-ary units/symbol,
(5.3.18)
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where P, is the symbol error probability. Using the notation of (5.3.15), we have then that
C =1~ hy(P). (5.3.19)

In the case of a binary symmetric channel with ¢ = 0.11, the channel capacity is %
bit per channel use. The converse to the coding theorem produced in Chapter 2 showed
that no coding scheme having rate R > -'2- can have arbitrarily small probability of error.

Consider n uses of a BSC to transmit an (#, k) binary codeword. If # is large, the
law of large numbers holds that the number of errors occurring within a block is within a
small interval near ne, whose probability.increases as block length grows. For arbitrarily
reliable communication to ensue, it is clear that the code must be capable of correcting
at least ne errors per block, or that the fractional error-correcting capability 1 /n must be
at least €. However, the Hamming bound in asymptotic form shows that the code rate
R cannot exceed | — fix(t/n) = 1 — ha(e), or that we must have R < C for reliable
communication. Thus, the Hamming bound provides an alternative demonstration of the
converse to the coding theorem for the special case of the binary symmetric channel;
this is easily extended to the M-ary uniform channel.

The positive side of the coding theorem is not so well supported here, however.
The Varshamov-Gilbert bound guarantees only that long binary codes of rate £ = (.22
exist with distance 0.22n, or with fractional error-correcting capability of 0.11. Given
the existence of reliable codes (indeed linear codes, although we did not prove this) that
operate with rate arbitrarily near capacity, we must surmise that either (1) the Varshamov-
Gilbert asymptotic guarantee is. pessimistic in stating the achievable minimum distance
of long block codes, or (2) reliable communication at rates near capacity is somehow
accomplished with decoders capable of correcting many error patterns with more errors
than the number guaranteed correctable,

5.4 CYCLIC CODES

Cyclic codes are linear block codes with an important additional property: a cyclic, or
end-around, shift of any codeword is also a codeword. n the language of algebra, the
codewords constitute a group under the cyclic shift operation. This additional structure
permits further simplification in encoding and decoding, relative to that of general linear
codes, and virtually all block codes employed in modern practice are cyclic codes or
closely related to one.

To make our definition clearer by examples, we list three (3,2) codes in Fig-
ure 5.4.1. The firstis cyclic, while the second is not, failing the cyclic shift test, although
it is a finear code. The third code meets *he cyclic shift requirement, but because the
code is not linear, we shall not include it in the class of cyclic codes. The definition

extends as well to nonbinary codes, and the reader can verify that the code defined over
GF(4) in (5.2.5) is also cyclic.

5.4.1 Shucture of Cyclic Codes

In discussing cyclic codes it is convenient to use polynomial representation for the
codewords and for encoding and decoding operations, since shifting of a codeword
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000 000 111
110 100 106
011 cn ot0
101 111 001
(a) Cyclic (b) Linear, Nuncyclic (¢} Nonlinear Fi%“f'e 54.1 Three (3. 2) block
codes,

is just equivalent to a modification of the exponents of a polynomial. Specifically, if
X = (Xg. X1, ..., x,-1) denotes a codeword with elements in GF(g), we associate with it
a polynomial over GF(g) of degree at most n — 1:

x(D)y=xo+,D' + 02D+ -+ x,,D"". 5.4.1)

Note the coefficients of the polynomial are in GF(q). Now consid:=r a one-position right-
cyclic shift of x, producing x'"" = (x,), xg. x1, ..., X,—2). The associated polynomial
wotuld be

Dy = X+ oD+, D7+ ..+ Xy_a D", (5.4.2)

which is another polynomial of degree at most » — |. Note that the powers found
in.{5.4.1) have merely been increased by one. modulo 2,
The two polynomials x(D) and <"’ (D) are related by

x'"(D)y = Dx(D) mod(D" - 1). (5.4.3)

This follows since
Dv(Dy=xoD+ - +x,_, D"

=Xyt + 30D + 0D X D (5.4.4)
= Xy—| +.\-()D + - +.l};-:D"—l +x"_i(D,".' - l)'

and upon division by D" — 1 we have x'"(D) in (5.4.2) as remainder. This argument
generalizes for any amount of shifting, and in general D/x(D)mod(D” — 1) is the code
polynomial corresponding to a right-cyclic shift of any codeword x by j positions.

Now suppose that we are given a particular cyclic (n, k) code over GF(g). We
define the generator polymomial ¢(D) of the cyclic code as the monic polynomial of
minimum degree among the set of nonzero codeword polynomials. We suppose that the
degree of this polynomial is » < n — 1, and write

gDy =go+e D'+ + 5D, (5.4.5)

where again the coefficients are members of GFig). There is a unique choice for this
polynomial, for if two distinct monic polynomials of degree r existed in the code, these
would produce, upon differencing, another code polynomial of lesser degree, yielding a
contradiction to the minimality of the degree of the two original polynomials.

Two fundamental properties of cyclic codes are:

Property 1.  x(D) is a code polynomial if and only if x(D) = u(D)g(D), where
u(D) is of degree n — | — or less.
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Property 2. g(D) generates an {n, k) cvclic code if and only if g(D) is of degree
n —k and is a factor of D" — 1.

These properties stipulate that all codewords in an (n. &) cyclic code are multiples of a
single underlying polynomial, g(D), and that this g(D) must have special degree and be
a factor of D" — 1,

To prove property 1, we note that upg (D) is a code polynomial of the code for any
ug in GF(¢). Furthermore, u,-ng(D) is a distinct codeword for all j < n—1 —r, since
these polynomials are just scalar multiples of right shifts of the polynomial g(D). By
linearity of the code. all linear combinations of g(D) and its j-place shifts, j < n~1-r,
are also codewords, so

D)= (o +wm D+ +u,. .DD) (5.4.6)

is a codeword. We now show that all code polynomials have g(D) as a common factor.
By Euclid’s division algorithm for polynomials, x (D) = a(D)g(D) + b(D), where a(D)
and h(D) are the unique quotient and remainder polynomials, respectively, upon dividing
x(D) by g(D). Since g(D) has degree r, we know that b(D) will have degree less than
+ and that the quotient polynomial a{D) will have degree < n — 1 — r. But since x(D)
and a(D)g(D} are code polynomials [the latter fact was just demonstrated in (5.4.6)],
linearity implies that A(D) = x(D) — u(D)g(D) must be a codeword. However, unless
hiD) is the zero polyncmial, we would have a code polynomial with degree less than
r, forming a contradiction of the minimal degree of g(D). Thus, x(D) is a codeword if
and only if x(D} = u(D)g(f3), where deg{u(D)} < n —1 —r. There are clearly " ="
such polynomials, and u(D) could be designated the message polynomial.

To verify property 2, we assume that the code is cyclic with generator polynomial
g(D), and recall that g(D) is monic and degree r. Therefore, upon multiplication of
g(D) by D", the highest-order term is D", and we could express the result using
Euclid’s division algorithm as

D" "g(D)=1.(D"— 1} + h(D), (5.4.7)
where we have defined the remainder in (5.4.7) as
b(D) = D" "g(D)mod(D" — 1). (5.4.8)

This remainder has degree less than n. By recalling (5.4.3), we see that b{D) defined
by (5.4.8) is a cyclic shift of g(D) and is therefore a codeword containing g(D) as a
factor. Thus, rewriting (5.4.7) yields

D"~ 1 =D""g(D) ~ h{D)

. _ (5.4.9)
=D""g(D) —ulD)g(D) = g(D) - (D" — w(Dy),
proving that D" — | must contain ¢(£2) as a factor.
Next suppose that g(£) has degree n — & and is a factor of D" — |. We wish

to argue that the code formed by linear combinations of g(D) and its first & — | shifts,
De(D), D*gi(D). ..., D*"'¢(D), is a linear cyclic code. The code is linear by definition
and has dimension k, for the vectors associated with g(D) and its first k¥ — 1 shifts are
linearly independent. Suppose that x(D) corresponds to a code polynomial formed as
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described; that is,
WDy = o+ - + u- (D' Hg(D) = 1(D) - g(D).
Then a right shift of this polynomial is expressed as
Dx(D) = x,—1(D" = D+ x,2D" 7 + -+ + x0D + Xyt (5.4.10)

Because x(D) and D" — 1 are divisible by g(D), it follows that x,_>D""! FESRY ) Lt
<o+ x0D + x, is also divisible by g(D). Extending this to all shifts, we have that
any cyclic shift of a codeword formed as in the preceding. is also expressible as a linear
tombination of g(D) and its k— [ shifts. This shows that the code is cyclic and completes
the proof of property 2.

The generator polynomial plays the same fundamental role for cyclic codes that
the generator matrix G does for general {inear codes: everything we could seek to know
about the code is embodied in g(D). On the other hand, whereas we can fashion a
general linear code for any (n, &) simply by specifying G = [I,P], we are restricted
to centain (n, k) combinations for cyclic codes because of the requirement that g(D)
must be a polynomial with degree n — k factoring D" — 1. Although factorizations
of D" — { exist for all n, we cannot, in general, obtain factors of any desired degree
n — k. [Try factoring D* — | over GF(2) with third-degree polynemials to produce a
(5. 2) cyclic binary code.] However, the set of cyclic codes is suitably rich. and with
the code-modification technigues of Section 5.6, we can achieve any design of interest,
albeit with a code that is not strictly cyclic.

An imporiant observation about g(D) is that if its degree is r there are r roots of the
polynomial, that is, solutions a; to g(a;) = 0. Furthermore, since g(D)r(D) = D" — |
for some h(D), the r roots of g(D) are nth roots of unity, that is, a = 1. These roots
are typicaily found in some extension field of GF(q), the coefficient field for g(D): but
it is important to note that g(D), and hence an (n. k) cyclic code. is completely specified
by the r = n —k roots of ¢g(D). Descriptions we shall soon encounter for the most
popular codes involve specification of the root set for the code or, equivalently, the roots
of g(D).

The connection between cyclic codes and more general linear codes is further en-
hanced by forming a generator matrix of a cyclic code. As proved earlier, the code
polynomials are linear combinations of g(D), Dg(D). D g(D)..... D*'g(D). Equat-
ing polynomials with vectors reveals that any codeword is a linear combination of
g = (g.81.-... gs—«) and its & — 1 right shifts. Thus, one expression of G is the
banded matrix

g & g ... 0 0
. 0 & g . :
G = : ! 5401
T TP SR
0 0 0 coe Bu—d-1 ik

The form of the generator matrix given in (5.4.11) is not in systematic form, but as
with any linear code, an equivalent code in systematic form can be produced. This is
described in the next section.
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The “cojuctor” of g(D),
D" -1
glm

is called the parity check polvromial of a cyclic code, because it provides the entnes
in the parity check matrix for the cyclic code, as we shall see shortly. Notice alo that
multiplication of the codeword x(D) = u(D)g(D) by h(D) produces u(D}(D" —~ 1).
This polynomiai coniains two unambiguous copies of the polynomial u([3), since the
degree of «(D) is at most k — 1 < n — 1. This provides a simple scheme for message
recovery when the received sequence is correct, but this method of decoding lacks any
error-correcting power.

Because A({D) has degree k£ and divides D” — 1, it generates an (n.n — &) cyclic
code as well, and this code is essentially dual to the original code. [Actually, we need
to form the dual code using the reversed form of the polynomial #(D), made monic, as
described later.]

The cyclic code generated by g(3) has a parity check matrix H obtained as follows.
Consider again multiplying ary code polynomial x(D) by h(D):

V(D) = ((DY(D) = a(D)g(DYH(D) = (D" — Na(D. (5.4.13)

h(Dh = =+ D+ -+ h D (5.4.12a)

Since the degree of a(D) is k — 1 or less, we have that the n — & coefficients of the terms
D' D¥Y . D" in the product v(D) = x(D)h(D) must vanish. These coefficients
may be interpreted as being produced by a convolution of the codeword sequence with
the sequence hy. Ay, ..., hy_y, prefixed and appended with zeros. We thus require that
Ym =3 Nk =00 m=kk+1 -1 (5.4.19

J=b

This set of equations may be expressed in matrix form by y = xH" = 0, where H is the
parity check matrix of the code. Use of (5.4.14) implies that the parity check matrix can
be expressed as

h,( h,(v) v 0
0 I - - hy

H={0 0 . - k. (5.4.15)
o 0 - - Mk

where /i; are the coefficients of the parity check polynomial #(D). This H matrix is the
generator matrix for the code that is the dual of the code produced by G of (5.4.11).
While the matrix has the same general structure, note that the coefficients of D) are
entered in reverse order relative to that shown in (5.4.11). This is equivalent to saying
that the cyclic code that is the dual of that generated by ¢(D) is produced by

MDY =h+h D'+ + D' 4+ hDF (5.4.12b)

which is often called the reciprocal polynomial. If the reciprocal polynomial is not
monic, we divide all coefficients by k to make it so, thus making the dual code generalor
polynomial monic.

We now tumn 1o several examples of cyclic codes to clarify this discussion.
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Example 514 Binary Cyclic Codes of Length n =7
D7 — | may be factored over GF(2) as (D + | }{(D* + D + 1)(D? + D* + 1), as multiplication
wilf confirm. We can therefore obtain the following four cyclic codes by combining different
factors into g(D):

k=1: g =@ +D+ 1D +D 4+ D)
=D°+D°+D*+ D +D*+ D'+

k=3: gD =@+ +D +1\)=D*"+D*+D+ (54.16)

k=4: gD)=D"+D+1

k=6: g(D)=D+1

The first generator polynomial produces a (7, 1) repetition code, and the last, its dual code,
a (7.6) single parity bit code. (Writing out the generator matrices and/or parity check
matrices will readily confirm this.) The second and third codes are also duals, the third being
equivalent to the (7, 4) Hamming code. It is worthwhile experimenting with one of these
codes, say that with & = 3. by forming all code polynomials according to x(D) = u(D)g(D)
and verifying the cyclic property.

To further consider the possibilities for cyclic codes, we list all binary cyclic codes
of block lengths 10 and 15 in Figures 5.4.2a and 5.4.2b, respectively. For each code, we
list the generator polynomial in binary form, the minimum distance, and the complete
weight spectrum. The codes are found by a simple program that tests divisor polypomials
of degree n —  until zero remainder is found. The weight spectra are then determined by
exhaustion; that is, all codewords are computed and their Hamming weight determined.
(This rapidly becomes too time consuming for a minicomputer.) Also, we have not listed
codes for which the generator (in binary) is a reversal of a listed code. Such codes have
equivalent weight spectra.

Notice that for a given (n. k} pair, more than one choice of g(D) may be available,
and these can produce quite different codes. Thus. merely finding a g(D) of proper order
that divides D" — | does not end the search for the best code. Some cyclic codes are
simply bad, but the best ones are essentially as good as any that can be constructed. An
example to be of interest shortly is the case of (n, k) = (15,7). The first such code

k g Owin W=0 1 2 3 4 5 6 7 8 9 10
9 11 2 1 0 45 0 210 0210 0 45 0 1
8 101 2 1 0 20 0 130 0 100 0 25 0 O
6 11111 2 1 6 5 0 1032 100 5 0 1
5 100001 2 1 0 5 0 10 0 10 0 5 0 1
4 1100011 4 1 0 0 0 10 0 c 0 5 0 o
2 101010101 B 1 0 0 0 0. 2 00 0 0 1
1 Mmimtn 10 1 6 0 0 0 0 00 O 0 1

Figure 5.4.2a Binary cyclic codes with n = 10.
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histed in Figure 5.4.2b has d,,,, = 5, while the second cyclic code has dnin = 3. Clearly,
the former is preferred. Also, we note from Figure 5.4.2a that the block lerfgth 10 codes
arc remarkably weak. It is known, for example, that a linear (but not cyclic) (10, S)
code has dni, = 4. This weakness extends to all even-iength cyclic codes. Finally, we
observe that there are no (10, 7) or (10, 3) cyclic codes. The reason that (15. k) cvclic
codes exist for all k is that D'> — | has polynomial factors of degrees 4, 2, and 1, and
these may be combined as in Example 5.14 to yield a g(D) of any desired degree.

Example 5.15 n = 23 Code over GF(2): Binary Golay Code

D?? — 1 factors over the binary field as

D? -1 =" +D"+D*+ D3+ D+ DT+ 1)
(5.4.17)
D'+ D+ DT+ D DD+ 1) (D+ D).

which may be verified by polynomial multiplication. Either of the degree-11 polynomials
may be taken as the generator polynomial for a cyclic (23. 12) binary code, one of the
most celebrated and highly studied objects in coding and combinatorics, the perfect (23. 12)
Golay code [13], with dmyy = 7. Figure 5.4.3 lists the weight spectrum of the (23, 12)
binary Golay code; although not obvious, either choice of generator polynomial yields the
same code and weight spectrum.

w A,
0 1
7 263
8 506
11 1288
12 1288
15 506
16 253
23 1
20986 Figure 5.4.3 Weight spectrum for
(23, 12) binary Golay code.

Another perfect code found by Golay is described in the next example.

Example 5.16 »r = 11 Cyclic Code over GF(3): Ternary Golay Code
The polynomial g(D) = D° + D* +2D* + N? 42 over GF(3) is a factor of D'' - | with
coefficient arithmetic performed modulo 3. Thus, £(D) generates an (11. 6) ternary cyclic
code. Stince the weight of ¢()) is 5. dy, can be no greater than 5, and it may be shown
that it is indced 5. We may venify the necessary condition for perfectness to occur: equality
in the Hainming bound (S32) withg = 3, ¢t =2, n =11, and & = 6. although this is not
sufficient in itself 10 claim that such a perfect code exists.

Further tabulation of binary cyclic codes is provided in [21] and [22] for lengths up
to n = 99, including the minimum distance and descriptiens of the generator polynomials,
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5.4.2 Encoding of Cyclic Codes

Property 1 of cyclic codes suggests one implementation of an encoder: performing the
computation of x(D) = u(D)g(D). Such an encoding system is shown in Figure 5.4.4
and is nothing more than a digital transversal filter over GF(g) that convolves the infor-
mation sequence u;_ i, ..., 1o with the impulse response g,_i. gn—i-1. ..., go. We can
easily check that the circuit performs the same computations as longhand multiplication
of the polynomials #(D) and g(D).

CAUTION

At this point considerable confusion may arise over the ordering of the information
sequence and the corresponding code sequence. Our convention in Figure 5.4.4 is that in
= (ug.4y..... t;_;) the rightmost (largest index) symbol is the first symbol to enter
the encoder, subscript order notwithstanding.

The codewords produced by this impiementation of the enceder are nonsystem-
atic; as may be seen from (54.6) or from the diagram of Figure 5.4.4, the informa-
tion symbols do not appear explicitly in the code stream. However, we know that
this linear code has an equivalent systematic counterpart; production of systematic-form
codewords is convenient and simple as well. Consider the polynomial D" *u(D). By
Euchd’s division theorem we can express this in guotient/divisorfremainder form as

D" (D) = a(D)g(D) + (D" u(D)| mod ¢ D)

(5.4.18a)
=a(D)g(D}+ p(D).
Thus, rearranging (5.4.18a) reveals that the polynomial
(D) = D" (D) — D" " w(D))mod g(D) (5.4.18b)

is a multiple of g¢D), hence a member of the cyclic code. Also, because u{D) has
degree at most k& — 1, then D" *u(D) has maximal exponent n — | and minimal ex-
ponent n — k. Since the remainder of the division by g(D) [designated previously by
p(D) for parity polynomial] has degree as most n — k& — 1, the two polynomials on the
right-hand side in (5.4.18b) have exponent ranges that do not overlap, and the polyno-
mial #(D} appears distinctly in the highest-order k positions of v (D). In n-tuple terms,
u appears in the high-index & positions of x, followed by the n — & parity symbois p.

Thus, to implement systematic encoding we need a means of dividing D" *u(D)
by g(D), producing the remainder, as indicated in (5.4.18). First, we argue that the circuit
of Figure 5.4.5 computes the remainder of a general polynomial r (D) upon division by
g(D), based on egiivalence with the operations of longhand division. In dividing r(D)
by g(D), the first coefficient in the quotient polynomial is r,,_,g”‘”"_. In long division,
we proceed to form the product of this first coefficient and g(D) (the divisor), and then
subtract from the original dividend. This leaves us with a result whose degree is at most
n—2. The next ceefficient of the quotient polynomial is thus (f-,,_2—1~n_|g,‘,'_"_g,,_‘_l)g;,".
We multiply this by g(D). subtract, and so on. Thus, in Figure 5.4.5 the proper quotient
coefticients appear sequentially at point A, and the feedback into the register is providing
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n—k delay cells

Figure 5.4.5 Circuit for dividing r(D) by g([). After n cycles, coefficients of remain-
der polynomial reside in register. Register is initially zeroed.

the coefficients in the polynomial tc be subtracted from the previous residual. After n
cycles the register holds the coefficients of the remainder polynomial. References |1] and
(4] develop further details and alternative circuit realizations for polynomial arithmetic.
[The reader is cautioned that many texts develop this implementation for binary codes,
in which case subtraction and addition are equivalent, and multiplicaiion by g; is trivial,
so the circuit appears slightly simpler in that case. In any ficld g;_‘t = 1, becavse g(D)
is monic, and for fields of characteristic 2, addition is equivalent to subtraction.]

To apply this procedure to systematic encoding, recall that we need to compute
the remainder of D""*u(D) upon division by g{D) and append this to the message, rep-
resented by D" “u(D). This is readily accomplished with the circuit of Figure 5.4.6a.
Premultiplication by D""* amounts to moving the injection point n — k stages to the
right, that is, to the right-hand end of the register, and allows thal the remainder be
available after & clock cycles. (Figure 5.4.6b illustrates the equivalence with long di-
vision.) The encoding cycle begins with the register contents zeroed and the feedback
switch closed. Information symbols are clocked into the circuit, each time sending
these to the channel or buffer and updating the register contents. After k shifts, the
feedback path is disabled, and the register contents, which are the coefficients of p(D)
in (5.4.18b}. are clocked out to be appended 10 the information symbols. If we are

interfacing to a syrchronous channel. a buffering and rate conversion by n/k must also
take place.

Excmpie 5.17 Encoder for g(D) = D° + D+1

The systematic-form encoder is shown in Figure 5.4.7. Note that for a binary code the GFi¢)
multipliers are unnecessary, and subtraction is equivalent to addition. Thus, we merely form
a teedback connection when g; = 1. Also, the modulo-2 adders are simple 1-bit exclusive-or
gates,

To encode the message (uy,. 4y, ty. w3} = (1.0. i, @), the successive states of the reg-
ister are {000), (000, (110), (011}, and (001), and the entire codeword is x = (0, 0,1, 1,0, 1,
01 The code sv generated is equivalent to that of the (7,4) Hamming code studied earlier,
although the codewords form a different set than listed in Figure 5.2.2.

Example 5.18 CCITT Cyclic Redundancy Check Code

The binary poiynomial g{D; = 0'9+ D'? + DS 1+ | has been selected by the international
standards orgurization CCITT as a cyelic redundancy check (CRC) code generator for
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U1 D™~ (U 187N G r DT -
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(U2 - uk—1gr;lk gn—k-1) Dri— ...

Figure 5.4.6b Long-division and relationship to Figure 5.4.6a. Quotient co-
efficients appear at A in Figure 5.4.6a; remainders appear in n — k cell register.

Open at Time k

et

o A . L X0, X1, «oor Xp-1

+ —
L»—X

U Uy Uz Uy

Figure 5.4.7 Systematic encoder for (7, 4) Hamming code with g(D) = D3+
D+l

certgin binary data communication protocols, for exampie, in packet communication using
the X.25 protocol. The codewords are formed as by a k-bit information sequence followed
by a check pattern of 16 bits (two 8-bit bytes) at the end of the message, computed according
10 {5.4.18). Systematic encoding can be accomplished with the circuit of Figure 5.4.8 and
is available commercially in integrated circuit form. Although the encoder can be used with
any packet length &, producing a (k + 16, &) code, the resultant set of codewords is not
cyclic in general [since g(D) usually does not factor DX*1® — || but is simply called a
polynomial code. For the normai application of this code (error detection only), this is not
a substantial issue.

Open at Time k

IS S Y
-GDDDD(%—DDDDDDD‘&}D@

uOr Uh I Uk_I

Figure 5.48 Systemalic encoder for CCITT polynomial code with g(D) =
D+ D24+ D+ 1

We are now ready to present the most popular cyclic codes: BCH codes, Hamming
codes, and Reed—Solomon codes.
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5.4.3 BCH Codes

Around 1960, Bose and Ray-Chaudhuri [23] and Hocquenghem [24] independently dis-
covered what have become known as BCH codes. These codes probably have been
the most profusely studied block codes and are important in practice for the following
reasons:

1. There is an ample selection of block lengths and code rates.

2, For short-to-moderate block lengths and small code alphabets, BCH codes are
essentially the most powerful linear codes.

3. Elegant general-purpose algebraic decoding algorithms exist,

Our description of these codes will be terse, but one that emphasizes the central
ideas. We begin with a basic definition of the generator polynomial for BCH codes.

Definition of BCH codes over GF(q)

Given a field GF(g), a block length n > 3, which is a divisor of ¢ — 1 for some m, and
3 <48 < n,an (n, k) BCH code over GF(q) is a cyclic code generated by

g(D) = LCMImyi(D), my, (D). my, (D), ..., mysz (D)), (5.4.19)

Here the myg, (D) are minimal polynomials of 8 — 1 successive powers of a field element g
whose order is # in an extension field GF(g™). (Usually, 8 is a primitive element in this
extension field, as discussed later.) LCM denotes the least common multiple potynomial,
or smallesi-degree monic polynomial for which all the indicated minimal polynomials
are divisors. It is noted that in the set of & — 1 minimal polynomials there often will be
found repeated polynomials. Since the minimal polynomials are all irreducible, finding
the LCM polynomial amounts to forming the product of the distinct minimal polynomials
in (54.19).

Since each minimal polynomial is a divisor of D" — 1, g(D) defined by (5.4.19)
will also be a divisor of this same polynomial, which is sufficient to generate a cyclic
code of length n. The code’s dimension, &, will depend on the degree of the polynomial
in (54.19).

An equivalent definition that is fundamental to understanding decoding is that a
BCH code is the largest set of codewords x whose corresponding polynomials x (D) have
as roots & — | successive powers of an element 8 of order n in an extension field of
GF(g). That is, for every code polynomial

Y(DYpog =0,  i=j i+l 42 .. =2 (54.20)

where 8" = 1 in GF(g™). This follows since these powers of a field element are roots
of minimal polynomials making up the generator polynomial and are therefore roots of
g2{(D) and thus x(D) as well.

A “frequency-domain” interpretation is also helpful. Recall from Section 5.1 that
the DFT coefficients X; are equivalent to evaluations of time-domain polynomials at var-
ious powers of the transform kernel. From (5.4.20), codewords in a BCH code have spe-
cial transforms: § — 1 consecutive transform coefficients in positions j, j+1,..., j+8—2
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are identically zero, the remaining transform coefficients being unspecified, as depicted
in Figure 5.4.9. Thus, we could also define a BGH code as a set of n-tuples over GF(g),
each of whose DFTs are zero in a specified number of consecutive positions. In con-
structing such DFTs we use a transform kernel that is an nth-root of unity in an extension
field GF(g™).

Normally, the base field element, B, for the definition of the minimal polynomials
is a primitive element, o, in some extension field GF(g™), in which case the code is a
primitive BCH code. The order of such an element is = = g™ — 1, which is also the
block length of the code. Furthermore, we usually adopt for the definition j = 1. in
which the root set of the code begins with the first power of . In this case the code
is said to be narrow sense. Introductory treatments of BCH codes often default to the
primitive, narrow-sense codes.

Notice that the degree of g(D) is less than or equal to m(8 — 1), since there are
at most § — 1 distinct minimal polynomials involved in the construction of g(D), and
each has degree ai most m. Thus, for BCH codes over any field we have the foliowing
relations:

BCH Relations
n=g" —1 (ora divisor of g" — 1) (54.21)
and

n—k=degg(D)<mi{é-1. (5.4.22a)

Equation (5.4.22a) places a bound on the number of parity symbols of the codes. Note
that the previous definition of the BCH code does not directly specify the dimension, k,
of the code; this only becomes clear once the construction of g(D) is compieted.

For binary narrow-sense BCH codes, the number of parity bits, n — &, is more
tightly upper bounded by m[(§ — 1)/2], since among the sequence of minimal poly-
nomials employed in the previous definition of g(D) the only unique polynomials are

myi (D), myg3(D), ..., mg-1(D). (Recall the earlier discussion that conjugate elements
of a field, for example, @, a?, &*, ..., share identical minimal polynomials.) Thus, for
binary codes, (5.4,22a) becomes
n—k<m [—;—] (binary, narrow-sense case) (5.4.22b)
X [] Xi

. - point .
=g o

s N : 1 e *
—r adpaLe
012 n-2 012 8-1n-1
Figure 549 DFTs of BCH codewords have & — | successive zeros at i+
L., j+6-2.
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We will soon demonstrate that the minimum distance can be lowet bounded by
dmm = 3. (5423

50 & is often called the design distance of the code: consequently, ¢ = (5 — 1)/2] could
be called the designed error correction capability. It may turn out that the true minimum
distance. dyi. is larger than the design distance and thus that an optimum decoder
is capable of correcting more than ¢ errors. However, the standard BCH decoding
algorithms are incapable of exploiting this possibility. We remark that all primitive
single- and double-error-correcting BCH codes are known to have true minimum distance
equaling the design distance [25].

Example 5.19 (15,7) BCH Code over GGF(2)

This code represents perhaps the first interesting step beyond the Hamming codes. in that the
code is double error correcting in a nontrivial way. We begin with § = 5, so that 7 = 2, and
select # = 15, which implies that m = 4 by (5.4.21) for a primitive code. The dimension &
{for a binary narrow-sense code) wili be at least 15 —nm[{6 — 1)/2] =7 by {5.4.22h). The
generator polynomial can be taken as the least common multiple of the minimal polynomials
for a.a’. o', and o*, where « is a primitive element in GE(16). We recall, however, that
the minimal polynomials for the elements o @=. and «* are identical. and thus there are but
two distinct polynomials in the ser used to define g(D). From Figure 5.1.3. these minimal
polynomials are seen 1o be

g (D) = DY+ D+ 1

(5.4.24)
matD =D+ D' =Pt D1
The generator pelynomial is then the eighth-degree pelynomial
giDy=m, (Dyms(Dy=D*+D" + D" 4+ D* 4 1. (54.25)

Because g(0) has degree 8. we conclude that & is indeed seven, Also. (5.4.23) holds
that dyn will be 5 or larger, but since the number of nonzero coefficients in the generator
polynomial is 3, this becomes the true o, (This code should be located in Figure 54.2b
of length 15 cyclic codes.)

Example 5.20 BCH Code with n = 15,1 =3

The binary BCH code with designed distance d = 7 (or ¢ = 3) and n = 15 has a generator
palynomiul that is the LCM of minimal polynomials of six consecutive powers of a primitive
element in GF(16). say «.a”. ... o Again. some of these minimal polynomials are
identical. However, one of the polynomials has degree 2 (see Figure 5.1.3), and the generator

polynomial has degree 10;

D) =D+ D+ D+ D D DYND LD+ )
l ﬁ i (5.4.26)
=D DD+ DD DL

Thus. the number of parity symbols is n — & = 10, which is smaller than the BCH bound
of (54.22b). or 12, This occurs precisely because the minimal polynomials are not all
degree 4. Here. again, the actual dy,in i equivalent to & since the weight of g(£2) is 7. This
code contains 32 codewords. which form a subcode of the code having 128 codewords in
Example 5.19. In general, low-rate BCH codes are subcodes (or subspaces) of high-rate
BCH codes of the sume length. because the low-rate codes have root sets that include the
root sets of the higher-rate codes. '
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In keeping with our frequency-domain definition of BCH codes, we could say that
all 32 codewords of this code have DFT coefficients [in GF(16)] that are identically zero in
the six consecutive positions 0, 1,...,8 — 2 = 5. The remaining DFT coefficients depend
on the actual message.

Figure 5.4.10 provides a compendium of binary, primitive, narrow-sense BCH
codes for n = 7, 15, 31, 63, and 127, including the design distances, the actual dimension
of the codes, the true distances, and the generator polynomials, expressed in octal form.
The latter polynomials are extracted from Lin and Costello [3]), where a more extensive
table for longer block length codes is found. As indicated previously, these parameters
emerge only after applying the definition of the code and determining the degree of g(),
as well as determining the true dpiy.

We observe several interesting aspects in this tabulation. First, note that the di-
mension k usually decreases in steps of m units, where n = 2™ — 1, for each entry in the
table, but not always. The unusual case occurs when a minimal polynomial with degree
smaller than m is encountered in the sequence of (5.4.19). If » is prime, however, this
never occurs (all minimal polynomials in this case have degree m), and the sequence
of dimensions k is regular. Also, as § is incremented. we will occasionally find that a
range of & can be achieved with the same dimension &, and normally we would elect to
know the largest possible design distance. We finally note that the first example (among
primitive codes) for which the true minimum distance exceeds 8 is (127, 43). Usually,
for primitive, narrow-sense BCH codes the minimum distance is either equivalent to the
design distance or within a very few Hamming units of 5. This is often not the case with
nonprimitive or nonnarrow-sense designs, however.

We have not claimed optimality for the BCH designs, and it is possible that other
constructions will outperform the BCH construction. Chen [21] reports a (63, 46) cyclic
code with d,;, = 7 that is slightly superior to the (63, 45) primitive, narrow-sense BCH
code with design distance (and true dyy,;,) equaling 7. This seems rare for moderate block
lengths and for n = 2™ — 1, Tables of cyclic codes in [21] and [22], however, show that
for other block lengths cyclic codes often have true distance in excess of the BCH bound,
that is, one greater than the maximum number of consecutive powers of 8 in the root
set of the code, where £ is a primitive nth root of unity. Techniques for narrowing in on
the true minimum distance of cyclic codes are presented by van Lint and Wilson {26].

Example 5.21 The (23, 12) Golay Code as a Nonprimitive BCH Code

With helpful hindsight, we can realize that the Golay code is a special case of a BCH code.
In GF(2'"), primitive elements would have order 2!! - | = 2047, but there are also elements
in this field with order 23, since 23(89) = 2047. Let us adopt 8 = a® (where o is primitive)
as our base element for defining a BCH code, and adopt j = 1 and § = 3. Here, (D) is the
LCM of the minimal polynomials for § = o*® and for g2 = a'"8. These polynomials are
identical since the extension field has characteristic 2, and a suitable tabulation of GF(2048)
would reveal that this polynomial has degree 11; either found in (5.4.17) will suffice. Thus,
the number of information bits in this nonprimitive BCH code is 12.

Surprisingly, the true dmin of the code is 7, not 3. This situation is more common
with nonprimitive codes in general. However, the standard BCH decoder described in the
next section is inefficient at exploiting the full error-correcting capability of the code, and
special “error-trapping” procedures devoted to this code have been devised [27). With
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Figure 5.4.10 Binary primitive BCH code paramelers. Generalor polynomials
listed in octal; for exampiz
polynomials taken from Lin and Costello [3].
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modem technology, table lookup after syndrome computation represents the fastest decoding
technique.

It is interesting to examine the behavior of binary BCH codes of a fixed rate
as block length increases, with special attenlion paid to normalized dp,, and how it
compares with respect to the Varshamov-Gilbert bounds. Consider codes of rate R = 1,
listed in Figure 5.4.11. We list the design distance & and the true minimum distance
dnin and also the normalized minimum distance. We observe that with increasing block
length the BCH codes are progressively poorer, and di,,/n eventually falls below the
existence bound of Varshamov—Gilbert. (The Varshamov-Gilbert bound in its asymptotic
form would say that codes exist whose dy;./n exceeds #~'(1 — 0.5) = 0.11. This has
prompted the declaration that long BCH codes are “bad,” and in fact dmia/n approaches
zere as n increases [28, 29].) On the positive side, we note that the normalized distance
still exceeds the V-G lower bound for rather long block lengths, perhaps the range of
most practical interest anyway. Furthermore, the code competition is not that strong,
especially when we ask for reasonable decoding algorithms and for codes with rather
general (n, k) paramelers.

Our BCH construction incorporates nonbinary BCH codes at the outset. Thus, we
could pursue the same constructions to produce a code over GF(4), say, whose block
length is 63, since 4* — | = 63. Roots of the generator polynomial would be taken as
consecutive powers of & primitive element in GF(64). Nonetheless, these nonbinary BCH
codes are of lesser practical importance, except for one special case taken up shortly.
that of Reed-Solomon codes.

We now return to the issue of minimum distance and prove the BCH bound (5.4.23).
For notation we will adopt a primitive base element «, although this is not restricting.
From thw definition, we see that vatid codewords in a BCH code must have a sequence
of 3 — | powers of & as roots of the corresponding code polynomial x(D); that is.

@Y= xnla)" =0, i=j i+l j+E=2 (5.4.27)
{(n, & B Urnin minf
{7, 8) 3 3 0.42
(15, 7) 5 5 0.33
(31, 16) 7 7 0.22
{127, 64) 2 B3 0.16
(511, 255) 57 57(?) 0.12

Figure 5.4.11  Listing of BCH codes with R =~ }.
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These 5 —~ 1 equations may be represented in matrix form by xH' = 0, where

! o’ . o'
] a,_.'ﬂ . afn-l}(j+1)

H=| . . . . (5.4.28)
1 a}‘h?ﬂ . a(n—ll(i+5—2)

L

H is a matrix of § — 1 rows and # columns in the general case; however, some of the rows
of H may be linearly dependent, which is to say that they do not provide independent
parity check tnformation. In the case of binary codes with j = |, fur example, only
a.a, .., o®? (assuming & is odd) must be accounted for in the parity check matrix.

Now we appeal to a result of Section 5.2: if the parity check matrix is such that
ali sets of d — 1 columns are linearly independent. then 4., > d. We wish to show
then that any linear combination of § — | colpmns in (5.4.28) cannot be zero, uniess the
multiplier coefficients are all zero. If we let w,, p = 1,2....,8 — 1, designate column
indexes selected for linear combination. such a linear combination would be equivalent
to the system of equations

Yk =0. = i+l -2 (5.4.29)
p=]

The question is whether nonzero solutions exist for the § — 1 unknowns x, . Such
nontrivial solutions exist only if the determinant of the system matrix is zero., Therefore,

we consider the § — | by § — | determinant
i ot @t @y l
A= _ _ ‘ (5.4.30)
!a"‘ Y )”" L (el

We can proceed to facior from cach row of the determinant above a common term,
thereby obtaining the reduced torm

1 a :’rf’i"z)n; I
" N
P R (x® "y .
;ﬁ:a”ia _V‘am.r'{. . . E:__an;an_a.__al,g,lgwr' (5'431)
, _ i
oa™ (a®* Yng

The remaining determinant | V1 is a Vandermonde determinant, known to be expressible
as [30]

|
l V= n E— I(\a”i _ a":)_ {54.32)
/ i

This determinant is ronzero by specification that the base element is of order » so that
a™ # a’, j # i. and thus the compleie determinant is nonzero. Thus, we have shown
that no linear comibination of 8 - | columns may sum to zero, in turn guaranteeing that
dmin > &. It 1nay be that linear independence can be claimed for more than 8 columns,
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implying that the true distance exceeds the design distance, but this cannot be guaranteed
at the start.

By inspecting the complete argument, we can claim a somewhat more general
result: for any (n, k) cyclic code {BCH or not), the true minimum distance is at least as
large as the number of consecutive powers of & found in the root set of the code, where
o is of order n in GF(¢g™).

$.4.4 Cyclic Hamming Codes

We hLiave already encountered the Hamming codes in Section 5.2 as a class of perfect,
single-error-correcting codes over any field, with dyi, = 3. Normally, they are described
as binary codes. Recalling the development of Example 5.9, we have that
n—k _ 1

n=-——— (5.4.33)

qg—1

is the expression constraining n, &, and q. For a cyclic code to exist with these parameters,
we need a generator polynomial of degree n — k, which factors D" — 1. The existence
of such codes is easily seen with appeal to the BCH construction, with § = 3. The BCH
codes have length n = ¢" % — | or any divisor of this number. Clearly, ¢ — 1 is such a
divisor, so we consider BCH codes with length n = (q""‘ — 1)}/(g — 1), as required for .
the Hamming codes. Let 8 be an element of order n. Then the generator polynomial is,
from (5.4.19) with j =1,

g(D} = LCM[my(D), mg:(D)]. (5.4.34)

However, we have the usual result that # and B2 have the same minimal polynomial
for fields of characteristic 2. Furthermore, this polynomial will be of degree n — k
over GF(q). For the case of binary Hamming codes, all this simplifies to the fact that
the generator polynomial is a primitive polynomial over GF(2) of degree n — k. Thus,
the generator polynomials for binary Hamming codes may be taken from the table of
primitive polynomials given earlier. A (31,26) binary cyclic Hamming code is then
produced by g(D) = D’ + D? + 1. Nonbinary cyclic Hamming codes are similarly
produced: the shortest Hamming code over GF(16) is obtained with »n — & = 2. 50
from (5.4.33) the block length is n = 17 and & = 15. The generator polynomial is the
minimal polynomial of an element of order 17 in GF(256), which wiil be a second-degree
polynomial over GF(16) of the form g(D) = g. + g, D! + D2,

The BCH bound guarantees that the minimum distance is at least the design dis-
tance, 3. However, the Hamming upper bound prevents the minimum distance from
exceeding 3. Also, inspection of the binary generator polynomials, which are primitive
polynomials taken from Figure 5.1.2, shows that (except for the degree 8 case) the num-
ber of nonzero terms is generally 3, demonstrating the existence of weight 3 codewords.
We will not proceed to verify that in fact these are all perfect codes; such could be done
by appealing to the parity check matrix, in turn provided by the parity check polynomial,
and showing that all ¢"~* columns of H are nonzero and distinct. Thus, every single-
error pattern produces a unique syndrome, while all higher-weight error patterns produce
syndromes corresponding to single-error patterns.
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5.4.5 Reed-Solomon Codes

Originally conceived in 1960 [31] as a class of maximum distance separable codes, these
nonbinary codes were subsequently seen to be a special case of nonbinary BCH codes.
[A possible alternative view is that BCH codes are a subfield subcode'® of Reed-Solomon
(RS) codes, in which case Reed-Solomon codes become the general class.]

Although conceived early in the history of coding theory, it is fair to say that RS
codes have cnly come into practical prominence in the last several years, due largely 10
the developments in VLSI processing technology that make the decoding computations
feasible. At the same time there has been increased interest in coding for nonbinary
modulation. The best evidence of the penetration of RS codes into modern practice is
their use in compact disc players [32]. RS codes have also recently become prominent
in recording on magnetic and optical media, and high-speed single-chip decoders have
been produced for certain standards {33},

We shall view the RS codes as special cases of BCH codes. Recall that primitive
g-ary BCH codes have block lengths n = ¢™ — I, and the extension field GF(¢™) is
invoked for locating roots of g(D). Taking m = 1, we have n = g — 1, which governs
the standard Reed-Solomon (RS) codes. Notice that the code symbol field and the field
of the roots of g(D) are the same.

For the primitive BCH codes, the generator polynomial is given by

g(D)y=LCMIm, (D).m, (D}, .... P (DY), {5.4.35)

where ni, (D)} are minimal polynomials of elements a', powers of a primitive element in
GF(g™). and & is the designed distance. With m = 1, however, the minimal polynomials
over GF(q) of elements in GF(g) are first degree, of the form (D ~a/), and g(D) reduces
to

gDy =D —a’ WD —a'h . (D= a2, (5.4.36a)

This is a polynomial over GF(g) of degree exactly 8 ~ I (in contrast 1o the general
BCH case, which may produce a generator of degree less than the number of minimal
polynomials would suggest.} Thus, n —k = & — | for Reed—Solomon codes.

Because these codes are BCH codes, the true minimum distance must be at least
dmin = 8 = n —k + 1. However, any linear code has distance less than or equal to
i —k + 1 by the Singleton bound (Section 5.3.2), so

dmin =n-k+1. (5.4.36h)

and RS codes are maximum distance separable (MDS). Note also that. whereas the
block length of the code is tied to the field size, the dimension & may be selected as
any integer up to 1 — 1. For all such choices, we have an MDS code. The restriction
on block lengths may seem quite constraining, but as with binary codes, RS codes can
be shortened without decreasing d;, or changing n — &, and thus shortened RS codes
are also MDS. Furthermore, Wolf [34] has shown that up 10 two stages of lengthening.
that is, adding more information symbols, while keeping 1 ~ & fixed, can be performed

A subfield subcode of a code C over GF(g) 15 a code contained in ¢ whose code symbols are in a
subtield of GF(g).
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without changing dm:n. These shortened or lengthened codes are not cyclic, but cyclic
encoding and decoding procedures may be employed with minor modifications.

In defining the RS codes, the choice of j, that is, the starting exponent in the
sequence of roots, is completely arbitrary (d,;, and the dimension k are unaffected} and
is commonly taken as j = 1. In contrast, for BCH codes, choice of j may affect the
dimension and minimum distance of the code. Finally, ihe dual cod€ for an (n, k) RS
code is an (n. n —k) RS code. In contrast, duals of BCH codus are not, in general, BCH
codes.

A summary of the relevant g-ary RS cede relations is given by

RS Relations

! n=gq—|

(5.4.37)
n—k=5-1

i don =8 =n —k + 1

The weight spectrum of MDS codes, inciuding RS codes, is known in exact form
[1} and is given by

w-tn—i+1)

Aw=Cp Y (=D"CEGUT ), w=n-k+1 a0 (5.438)

m==0)

It follows that the number of codewords having minimum nonzero weight is

Ad, =Cg (g — D). (5.4.39)
Example 5.22 RS Codes over GF(16)

The natural block length is n = g — 1 = !5 code symbels. Suppose that we seek & dyin = 9
code, producing 7 = 4. This implies by {5.4.37) that n — k =8, or k = 7. [As a point of
comparison, the (15, 7) BCH code over GF(2) has dpjp == 5.] This RS code has 2.7 - 108
codewords; each word has 75,075 nearest neighbors at distance 9,

If we wished to find a code with the same distance, but with only five information
symbols, the original {15, 7) code could be shoriened to (13, 5). On the other hand. the code
could be lengthened to {16, 8; and (17,9} {34], both retaining dpn = 9. (Such modifications
are described in Section 5.6.) The (16, 8) code has R = % which is aitractive in centain
hardware irnplementations.

Example 5.23 RS Codes over GF(28) = GF(256)

Here the fieid size is 235, and the information aid code svmbols can be regarded as §-bit
bytes. The natural block length is n = 235 Selection of dp;, = 33 guarantees a + = 16
symbol-error-correcting capability. The number of informatior symbols is 223, and the
fractional redundancy is only 53;2-5 = % (It may scem remarkabie that a high-rate code as
this is can have such powerful error-correction features, but this is typical of codes on larger
field sizes).

The generator pelynomial for this code is a 32nd-degree polynomial over GF{256),
certainly rather complicated to implement, with all arithmetic over GF(256). VLSI imple-
mentation of ar encoder has been described in [35); Blahut [36] also reports architectures
for universal RS encoders and decoders, not restricted to this configuration. The particular
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code cited here has become pant of a NASA/ESA'® deep-space coding standard (CCSDS),
which employs the RS code in a concatenated arrangement with a trellis code. We will
study this interesting (and very powerful) design later.

Compact disc players [32] also employ a RS code defined on 8-bit bytes for purposes
of correcting electronic emors or surface defects in the disc; however, the codes used employ
block length 1 = 16 and are referred 10 as shortened RS codes.

Reed-Solomon codes have three important applications. First, by choosing ¢ = M,
they are a natural means of coding for M -ary modulation. There is special advantage to
nonbinary modulation for noncoherent detection on AWGN channels, fading channels,
and certain spread-spectrum channels, as described in Chapter 4. Since RS codes are
MDS, there is no need to look further among block codes for better g-ary codes, at least
if Hamming distance is the measure of interest for codes, as it would be on uniform
M -ary channels. Second, these codes may be used in conjunction with binary transmis-
sion, letting each g-ary symbol be represented as m = log, ¢ bits. With this understand-
ing, 2 RS code over GF(g) becomes an (nlog, q. k log, q) binary code. While perhaps
not the design with largest Hamming distance (in binary units), the code does provide
intrinsic robustness to bursty error phenomena. Specifically, if binary channel errors are
confined to m bits and properly phased relative to symbol boundaries, the RS decoder sees
these bursts as symbol errors in GF(g), so a burst is no worse than an isolated bit error.
If the RS code has capability for correcting r symbol errors, it may correct single bursts
up to length m(t — 1) + m ~ 1 (now allowing for arbitrary placement of the burst with
respect to symbol boundaries) or multiple shorter bursts. Consequently, RS codes have
found application in computer memory systems organized with a byte-oriented memory
architecture, where the binary storage mechanism exhibits error clustering [37]. Finally,
RS codes are a frequent contributor to concatenated coding approaches, introduced by
Formey [38], where RS codes form the outer code for a binary inner code. The outer
code is normally seen as a “mop-up” code for residual inner-code errors, which tend to
be bursty; hence the efficacy of a code over a larger field size. Concatenation schemes
are discussed in more detail in Section 5.8.

5.5 DECODING OF CYCLIC CODES

In Section 5.2, we presented a general ML decoder for linear block codes when employed
on a g-ary input, ¢-ary output channel. This procedure involved syndrome computation
followed by table lookup of the most likely error pattern. This general procedure has two
practical deficiencies. Most importantly, the table is k¢"~* symbols in size (normally
oniy the k information symbols must be repdired), and this is unmanageably large for
many codes of practical interest. Of lesser importance is the complexity of syndrome
computation: matrix multiplication would require on the order of n(n — k) GF{g) multi-
plications and additions. For general cyclic codes, a simpler procedure is available and
we present this next. Following that discussion, we describe elegant decoding algorithms
for decoding the most important of cyclic codes, the BCH/RS codes. In fact, it is the

'*NASA denotes the National Aeronautics and Space Administration in the United States: ESA is the
European Space Agency.
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existence of efficient decoding algorithms that has made these codes popular. Such de-
coders are generally referred to as algebraic decoders, for they utilize the algebra of
finite fields to solve for most likely error patterns.

A shortcoming of all algebraic decoding procedures is that channel quality infor-
mation in the form of symbol likelihoods is not easily incorporated, when available. One
improvement is afforded by errors-nnd-erasures decoding, wherein the demodulator pro-
duces an erasure symbol in code positions for which the decision has low confidence.
This decoding algorithm can be treated as a modification of the standard errors-only
algorithm. More ambitiously, we might be interested in maximum likelikood decoding
for the channel at hand. Although ML decoding for general codes remains practically
infeasible in many cases, it is readily implemented for certain small codes. Furthermore,
procedures exist that approach maximum likelihood decoder performance by employing
multiple decodings with an algebraic decoder. These will be discussed at the end of the
section.

8.5.1 General-purpose Decoding of Cyclic Codes over
GF(q)

Let us retum to the general situation of transmitting a codeword x from a cyclic code
by a uniform g-ary input, g-ary output channel. We seck the codeword that is nearest
in Hamming distance to the received sequence, r. The additional structure resident in
a cyclic code provides a twofold economy of implementation relative to the geperal
syndrome decoder of Section 5.2. First, computing the syndrome may be done with a
simple feedback shift register similar to the encoder circuit. This is an improvement over
building (or programming) a general-purpose muitiplication of the received sequence r
with a parity check matrix H. Second, once the syndrome is computed, it is possible to
iteratively determine which code positions should apparently be corrected by cycling the
syndrome register.
We again represent the actions of the channel by

r=x+e, 535.1)
where x = (xg,x;,...,x,_) represents the transmitted codeword and e =
leo. €1, ...,e,_1) is the error sequence, with both sequences from GF(g). In polyno-
mial form, we express the channel action by

r(D) = x(D) + e(D). (5.5.2)

Now consider division of r(D) by g(D), the generator polynomial for the code. This
is motivated by recalling that valid codewords are exactly divisible by g(D); that is,
they produce zero remainder upon such division. We shall denote the remainder of this
division as another polynomial, s(D), the syndrome polynomial:

s(D)y=so+ D+ 4 s,_,D"*
= r(D)mod g(D) = [x(D) + e(D)}mod g(D)
= x(D)mod g(D) + (D) mod g(D)
= e(D) mod g(D)

(535.3)
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We have invoked the distributive property of the modulus operation (see Exercise 5.5.1),
and the last step follows from the fact that g(D) divides x(D).

Euclid's division theorem implies that the syndrome polynomial is exactly deter-
mined by the error sequence, and s(D) will have degree n — k — | or less. Of course,
for every s(D) there are ¢* solutions for e(D) comesponding to the ¢* choices for the
transmitted codeword, and our task is to find the most likely error pattem. Again, this
corresponds to locating a minimum-weight error pattern. As argued in Section 5.2, initial
reduction of the received vector to the syndrome vector entails no loss in ability to infer
the most likely error pattern. "

To compute the syndrome polynomial, we require a circuit for computing the
remainder upon polynomial division. We have provided such a circuit in Figure 54.5, as
a step toward formulating the systematic encoder, and repeat the generic structure of the
syndrome computer in Figure 5.5.1, a device having n — k g-ary register cells.'’ The
circuit is clocked 1 times, at which time the syndrome vector (or polynomial) resides in
the (n—k)-stage register, sq in the leftmost memory cell. Notice also that the encoder and
corresponding syndrome computer differ only in the location of the input to the register
and in the number of cycles to perform. This allows essentially the same circuitry (or
chip) to perform both encoding and syndrome computation.

Toe Ty ovii Fpy

Figure 5.5.1 Syndrome forming circuit to compute r(D)/g(D).

Once the syndrome vector is determined, we have several courses of action. If
all we seek is error detection (mode | of Section 5.2), we merely check for a zero
syndrome, since s(D} = O if and only if (D) corresponds to a valid codeword. Thus,
error detection with cyclic codes is especially simple. More attention to this important
topic is given in Section 5.7. ‘

Usually, however, we will want 1o attempt error correction. Given the syndrome
we could proceed with table lookup of the coset leader, the minimum-weight error
pattern consistent with the observed syndrome. When ¢"~* is reasonable in size, this
is the preferred choice nowadays due to the availability of fast, inexpensive read-only
memory. When such an approach is not feasible, we may exploit the following property

17 An altcmative implementation has & cells and is more efficient for low-ratc codes: however, most
applicutions of modern inicrest are such that n — £ is smaller than k.
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of cyclic codes:

If s(D) is the syndrome comresponding to a received sequence r (D}, then the syndrome
of a right-cyclic shift of (D), denoted r'"(D), is

s(D) = r"(D)mod g(D) = Ds(D) mod g(D). (5.5.4)

Thus, to obtain the syndrome polynomial for ¢!*(D), we merely right-shift the original
syndrome and then reduce modulo g(D). This operation can be implemented with the
circuit of Figure 5.5.1 by disabling further inputs from the left.

We can justify (5.5.4) as follows. From the fundamental properties of cyclic shifting
[see (5.4.4)]

Dr(D)=r,_(D" = )+ r'"(D) (5.5.5)
SO
r'D)Y = Dr(D) = rp_ (D" = 1). (55.6)

We may use Euclid’s theorem to uniquely express the left-hand side of (5.5.6) as
‘(D) = a(D)g(D) + z(D). This defines z(D) as the remainder upon division of
r'""(Dy by g(D) or, equivalently, z(D) = s'""(D) is the syndrome of r""(D). Further-
more, we have by definition that r (D) = h(D)g(D) + s(D), and we can also recall that
g(DYh(D) = D" — 1. Substituting these relations into (5.5.6) yields

r" (D) = DIb(D)g(D) +5(D)| — ro_1g(DIA(D). (5.5.7)
By rewriting (5.5.7) and substituting for r'"(D), we find that
Ds(D) = a(D) + rp— h(D) — Dh(D)g(D) + z(D). (5.5.8)

Therefore, :(D} is also the remainder upon dividing Ds(D) by g(D), which thus shows
that z2(D) = Ds(D) mod g(D) = s'"(D).

We may exploit this propenty of the syndrome to sequentially correct suspected
errors in the n positions of a codeword, assuming that the error pattern is indeéd cor-
rectable. To begin, we examine s(D) after the syndrome is computed and decide whether
the given syndrome corresponds to a correctable error pattern with a nonzero symbol in
the highest-order position of the received sequence. That is, we infer whether e,_, is
nonzero and, if so, its most likely value. (In the binary case, we simply ask whether
an ervor occurred in position 7 — | or not.) In essence, we are asking for the leading
symbol of the coset leader corresponding to the observed syndrome, and this symbol
can be produced by a device having n — k g-ary input lines and a single g-ary output
line, implemented either with combinational logic or read-only memory. (Note that the
complexity of this function is considerably less than that which estimates the entire error
pattern at once.)

After e,_, is resolved {and r,_, repaired by subtracting e,_;), we perform a cyclic
shift of the syndrome register with further input inhibited. If e,_; was determined to
be zero, then this cyclic shift produces the syndrome 5'"(D) = Ds(D)mod g(D) and
reveals whether a correctable error exists in position n —2. This cycling of the syndrome
register would continue to correctly indicate the presence or absence of error as long as
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errors were not previously found. Once an error is located, however, we must remove
its influence from the syndrome so that future error positions can be properly estimated.

To accomplish this correction, suppose that there is a correctable error in position
n~1 with value e,_,. We wish to compute the syndrome that would have been produced
had this error symbol been removed at the outset; that is, we wish to postcompensate
the current syndrome for the influznce of e,..;. The received polynomial, afier error
correction, is

F(D) =r(D) —e,_, D" . (5.5.9)
A right-cyclic shift of this received vector would correspond to the polynomial
FO(D) = (rp-1 — €n_1) +roD + -+ 4 rpaD" ", (5.5.10)

The syndrome of this vector would be
s(Dy = F"(D) mod g(D), (5.5.11)
which, again by the distributive property is,
§9(D) = r'"(D) mod g(D) — e,_y mod g(D)
= Ds(D)mod g(D) —e,_, mod g(D) (5.5.12)
= Ds(D)mod g(D) —e,-1.

Therefore, the proper means to remove the influence of a Symbol thought to be in error
is to subtract the estimate of such symbols from the left-hand input to the syndrome
computation circuit. After n iterations of this estimate/cycle-and-correct operation, we
will have removed all errors in a correctable error pattern. Of course, if the original
error pattem is not correctable by a table-lookup decoder as discussed in Section 5.2, the
cyclic testing procedure here will be unable to correct the error pattern as well.

The decoder just described is sometimes referred to as a Meggit decoder [39] and
is illustrated in general form in Figure 5.5.2. While it is applicable to any g-ary cyclic
code, its shortcomings are that the complexity of the error decision circuit is still rather
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Figure 552 Meggit decoder for general cyclic codes. Following computation
of 5(D), syndrome register is cycled another n — 1 times.
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forbidding if n — & is targe. Furthermore, n — | additional cycles are needed after the
initial syndrome computation, whereas the table-lookup decoder operating on the original
syndrome could immediately find the entire error pattemn. Clearly, the two approaches
trade memory requirements (space) against decoding speed (time).

Example 5.24 Moeggit Decoding for (127, 113) Binary BCH Code

To illustrate the preceding discussion, consider the double-¢rror-correcting binary (127.113)
BCH code. The syndrome computation can be performed with a 14-bit shift register with
feedback taps set according to the generator polynomial for the code. After 127 received
symbols have entered the syndrome computer, s(D)} resides in the register, whereupon table
lookup of the entire error pattem in a table with 2'* = 16,384 words could produce the
ervor pattern.'® (Instead of storing the complete binary crror pattem of 127 bits, we may
instead store the error locations of up 1o two error positions, which consumes at most 14
bits per table entry.) '

To illustrate the Meggit decoder principle, however, we note that there is one syn-
drome corresponding to a single error in position 127 and 126 syndromes corresponding to
a 2-error pattern having one of the errors in position 127. (These syndromes are distinct by
virtue of the fact that the code is guaranteed to be double error correcting.) Thus, a total
of 127 distinct 14-bit syndromes need to be recognized by the error pattern detector. To
implement this function efficiently in combinational logic, we wouid minimize the Boolean
function whose value is 1. or “true,” only for the 127 special 14-bit syndrome input vectors.

Although we could readily show that the gate complexity of the error pattern rec-
ognizer is much less than,that of the complete table-lookup approach, we suffer the rather
slow operation of the Meggit decoder: 127 cycles of the error pattem testing process are
required to complete a decoding cycle. Of course, these cycles might be shon compared
10 a bit duration, whence the decoding delay is shon relative to a codeword duration. In
any case, some additional buffering would be required 10 handle incoming data of the next
codeword while decoding of a given word is completed.

For some codes it is possible to simplify the error recognition process by performing
a majority vote on certain syndrome positions in the register at each cycle. These codes
are known as majority logic decodable. interested readers are referred to Lin and Costello
(3] for an ample treatment of this class of codes. Generally, however, applications have
evolved to the use of longer, more powerful codes, for which the complexity of the
Meggit or table-lookup approach is infeasible, even with the rapid advance of memory
technology. Based on additional algebraic structure, BCH and RS codes have decoding
algorithms that involve direct solution for the error pattemn from the syndrome. Although
far less simple to describe than the decoding procedures presented thus far, the codes
have been widely adopted in modermn communications practice.

5.5.2 Algebraic (Errors Only) Decoding of BCH Codes and
RS Codes

Because the BCH family is such a large class of codes and because in typical coding
applications these codes are essentially as powerful as more general block codes, a large
amount of attention has been given to efficient decoding algorithms. Clever utilization of

*Such a memory is referred to as a 16K ROM. a rather elementary requirement these days.
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