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Chapter 1

Physical and Mathematical
Foundations of Sound

Modelling

In order to have useful discussions about sound, we need a very simplistic,
but practical, understanding of the physics and mathematics associated with
sound.

1.1 Physics: What Is Sound?

For our purposes, sound is any kind of vibration that is detectible by the
ear or devices analogous to the ear. Treatments of sound in physics books
tend to focus attention on the transmission of sound vibrations through the
air. We will focus instead on the vibrating systems that produce and detect
sounds, and just assume that the air is capable of transmitting vibrations
from sound producers to the detectors in the ear.

1.1.1 Vibrating Springs

The simplest sort of vibration to understand is that of a spring. To really
simplify things, imagine an environment with no gravity, and with a mass
(a solid chunk of something) moving along a frictionless track that is fixed
so the track cannot move. The track constrains motion of the mass to a
straight line, so we do not need to consider the three dimensions of space.
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Figure 1.1: Ideal spring resonator

Finally, imagine a spring attached at one end to the mass, and at the other
end to some fixed point on the track. Be a bit liberal-minded, and imagine
that the spring has length 0 when it is not stretched, and that the mass can
move freely past the point where the spring is attached. A picture of our
imaginary system is given in Figure 1.1.

At any moment in time, the state of the spring system can be described
by two real numbers: the displacement y of the mass to the right of the point
on the track to which the spring is fixed, and the velocity v of the mass to
the right. Displacement to the left is represented by negative values of y, and
motion to the left is represented by negative values of v. Now, imagine that
we displace the mass to the right and hold it in a fixed position, stretching
the spring. That is, we establish an initial condition where y > 0 and v = 0.
When we release the mass, the spring pulls it to the left, causing a state
where y > 0 and v < 0. Eventually the mass reaches the center of the track
at y = 0, but at this moment v < 0 and inertia carries the mass beyond the
center, to the left where y < 0. Now, the spring pulls the mass to the right,
cancelling out the motion v < 0 to the left. Eventually the mass stops with
v = 0, but at this moment the spring is stretched to the left with y < 0,
so the pull to the right continues and causes the mass to move right with
v > 0. This motion to the right eventually moves the mass past the center,
so y > 0. The leftward pull of the spring opposes the motion until v = 0. So
we return to a condition that is similar to the initial one: y > 0 and v = 0,
and the cycle repeats. Figure 1.2 shows a schematic qualitative view of the
vibration of the spring.

To complete the simplistic physics of a vibrating spring, we need to con-
vert the qualitative observations above into quantitative information that we
can use in a mathematical analysis. For this purpose, let ¢ be a real number
representing the time that has passed since some arbitrary starting moment
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Figure 1.2: Qualitative states of spring

when ¢ = 0. For any quantity ¢ that depends on time, dg/dt means the
instantaneous rate of change of ¢ with respect to t—when the independent
variable ¢ is understood from context, dq/dt is often abbreviated ¢’. When
no outside force acts on the spring and mass, its behavior is described by the
following two equations:

y = Av
v = —By (1.2)

A and B are positive real number constants (independent of time)—their
actual values do not matter to us. Equation 1.1 holds because velocity is
defined to be the change of location over time, and displacement is just a
measure of location from a particular origin—the constant A takes care of
any conversion of units between y’ and v (normally the units are the same
and A = 1). Equation 1.2 represents the fact that the force exerted by a
spring increases in magnitude proportionally to the distance that the spring
is stretched, and the force acts to pull the ends of the spring together. The
value of B is determined by the stiffness of the spring. Equation 1.2 is an
approximation, because no real spring exerts a force precisely proportional
to the stretching distance—in particular when a spring is stretched too far
it changes radically, becoming stiffer, or becoming softer, or breaking, de-
pending on its construction. The right practical approach to understanding



vibration is to do as much analysis as possible based on the simple approx-
imate equations above, and then do the potentially complicated corrections
only when greater accuracy is required.

Vibrating objects that produce sound, and others (such as the hairs in the
cochlea of the ear) that detect sound, can be modelled fairly well by systems
of vibrating springs connected together in various ways. Other vibrating
systems have other physical parameters that measure the vibrating behavior,
but in most cases there are two real numbers—for example pressure and flow
of vibrating air, potential and current of vibrating electrical charge—that
behave analogously to displacement and velocity in a vibrating spring.

1.2 Mathematics: How Do We Model Sound?

The key to understanding the mathematical analysis of sound is to visualize
the mathematics using graphs and geometric diagrams. The right way to
visualize the mathematics does not look like the physical system of vibrating
springs or other objects that it is describing. The value of the mathematics is
to give us a different way of visualizing sound, that is much more convenient
for analytic reasoning than the actual physical configuration of vibrating
objects. Mathematically, the important properties of a vibrating spring are
just Equations 1.1 and 1.2. We can forget that they arose from the physical
properties of a spring, and just consider the numerical behavior of two real
numbers x and y as functions of ¢, when they satisfy the equations.

y = Ax (1.3)
¥ = —By

From now on, lower case Roman variables, such as = and y, stand for real
numbers that are functions of a time parameter t. Upper case Roman vari-
ables, such as A and B, stand for real number constants, which are the
same as unvarying functions of time (but widely used notations, such as
e = 2.71828. .., are left alone). Occasionally, we will use the form x(¢) to
denote the value of a function x at a particular time ¢, but usually we will
refer to entire functions rather than individual values. When an expression
a(t) containing an independent variable, such as ¢, should refer to an entire
function, rather than a single value of the function, we write [t]a(?).
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Figure 1.3: State and change vectors for vibrating spring

1.2.1 Vibration as the Circular Movement of a Rotor

To visualize all the possible states of a vibrating system, consider a plane in
which the horizontal axis gives the value of x and the vertical axis gives the
value of y—in this way each possible state of the system is a point in the

plane.

First, consider the simple case where B = A, so Equations 1.3 and 1.4

specialize to

Az
— Ay

Figure 1.3(a) shows an example point (z,y) and the corresponding point
(x',y") = (—Ay, Ax) as vectors in the plane, when A = 3/8. Notice that
the angle between these two vectors is always a right angle. Since (z/,y’)
represents a change in (x,y) it is useful to displace the origin of the vector
representing (z',y’) to the end of the vector representing (x,y), as shown in
Figure 1.3(b). Now, it is easy to see that the state of the system must trace
out a circle in the plane centered about the origin, because the direction of



Figure 1.4: Spring system vs. rotor

change is always at right angles to the state vector. The size of the circle can
be any nonnegative real number—setting the size corresponds to providing
an initial displacement to the mass on the spring. Furthermore, since the
magnitude of the state vector always stays the same, the magnitude of the
change vector is also always the same (A times the magnitude of the state
vector), so the state moves around the circle at a constant speed. I call such a
system with a point moving around a circle at a constant speed a rotor. The
time required for one full rotation is the period P of the rotor. The number
of full rotations in a unit of time is the frequency of the rotor: its value is
1/P. The magnitude of the state vector is the amplitude of the rotor. The
angle of the state vector with respect to the x axis ((1,0)) at time ¢ = 0 is
the phase of the rotor.

Take 5 minutes to visualize the relationship between the rotor and the
vibrating spring system, as suggested in Figure 1.4. Notice that we have no
interest in actual physical devices that look like rotors—the rotor is purely a
mathematical concept that allows us to analyze the behavior of a vibrating
system. Now forget about springs, and always visualize vibration in terms
of rotors and similar mathematical systems that we investigate later.

While the speed of a rotor state around its circular path is constant, the



x and y components of the rotor state oscillate sinusoidally. Consider a rotor
with amplitude R (that is, the circular path has radius R) and frequency F
(F full rotations per unit time), starting at time ¢ = 0 in state (@, y) = (R, 0).
The values of = and y at any time are given by the trignometric cos and sin
functions.

r = Rcos(2rFt)
y = Rsin(2rFt)

The multiplication by 27 is required because we measure angles in radians,
and one full rotation is 27 radians. Notice that the maximum (minimum)
values for x and y are both R (—R), and each reaches its maximum and
minimum when the other is 0. Figure 1.5 shows x (solid line) and y (dashed
line) as functions of time ¢ for a rotor with a frequency of 1/4 rotation per
unit time. Figure 1.6 shows a three-dimensional plot of x, y, and t. The
path of the state is a helix, circling about the ¢ axis. Think of the helix as
the trace of a point running around the circle from Figure 1.3.

When A # B in Equations 1.3 and 1.4, the state vector traces out an
ellipse, whose aspect ratio is /A/B. The speed of the state vector around
the ellipse is not constant (but the period and frequency are still well defined).
Instead of figuring out a detailed description of an elliptical rotor, notice that
we can always normalize a rotor to have circular motion, by changing the
units in which x and y are measured. In an elliptical rotor with frequency
F, starting at time ¢ = 0 in state (x,y) = (R,,0) and crossing the y axis in
state (x,y) = (0, R,), the values of x and y at any time are still given by the
cos and sin functions, but with different scaling factors for each.

r = R,cos(2nFt) (1.9)
y = R,sin(2rF1) (1.10)
In this case, the maximum (minimum) value for x is R, (—R,), and for y it

is R, (—R,). As before, each parameter reaches its maximum and minimum
when the other is 0.

1.2.2 Rotor State as a Complex Number

It is mathematically convenient to think of the two-dimensional rotor state
vector (x,y) as a single complex number = + 2y, where 2 is the “imaginary”
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Figure 1.5: Rotor state parameters x and y as functions of time ¢
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Figure 1.6: Rotor parameters + and y vs. ¢ as a helix in three dimensions



number defined to be the principal square root of —1 (if you read engineering
books and articles, you may see this number written as 3 instead of 2). Do not
look for deep significance in the names “real number,” “imaginary number,”
“complex number.” These names are just tags made up by mathematicians—
“real” numbers are no more real than other numbers, “imaginary” numbers
are no more imaginary, and “complex” numbers are used to simplify a lot
of the analysis that we need to do. For our purposes, the complex number
x4ty is just a particular notation for the vector (x,y), which is particularly
convenient because the familiar operations of addition, multiplication, and
exponentiation on the real numbers extend very naturally to operations on

complex numbers that are just right for analyzing vibration.

Review of Complex Arithmetic

From now on, we use Greek letters a, 3, v, etc. as variables ranging over
complex number functions depending on the time variable ¢t. Complex num-
ber constants independent of time are denoted by bold face Greek letters o,
B, =, etc. (but widely used notations, such as # = 3.14159 ... are left alone).
It is important to be fluent in the following facts about complex numbers,
and to be able to do complex arithmetic and algebra just as easily as you
learned to do real arithmetic and algebra in calculus class. Make sure that
you visualize each of the facts below in terms of vectors in the plane.

Cartesian form of complex numbers
x1 + 2y; = 29 + 2y, if and only if 1 = 29 and y; = y» (1.11)

Addition and multiplication extend to complex numbers by using the
commutative, associative, and distributive laws, and the fact that 42 = ¢* =
—1. Addition of complex numbers may be visualized in terms of the vectors
represented by the two numbers: shift the origin of one vector to the head of
the other vector as shown in Figure 1.7. The conjugate of a complex number,
written @, is the reflection of « through the real axis, as shown in Figure 1.8.

(1 +2y1) + (z2 +2y2) = (21 +22) +2(y1 +y2) (1.12)
(z1 + ) (e +2y2) = (2122 — y1y2) +2(T1y2 + z2y1)  (1.13)

10
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T+ 2y = 3 — iy (1.14)
a+fh = f+a (1.15)
(048 +y = at(3+a) (1.16)
0+a = « (1.17)

aff = fa (1.18)

0By = a() (1.19)

la = « (1.20)

0a = 0 (1.21)
a(f+7) = af+ay (1.22)

The real and imaginary parts of a complex number are defined to select
out the two components of the vector.

R(x+2y) = =« (1.23)
S(x+2y) = y (1.24)
Rla+8) = Rla)+ R(B) (1.25)

(@) +3(8) = Sla)+3(P) (1.26)
R(aB) = R(a)R(B) — 3(a)3(P) (1.27)

J(af) = R(a)3(B) + 3(a)R(5) (1.28)

a = Rla)+13(a) (1.29)

a = fif and only if R(«a) = R(B) and I(a) = J(f) (1.30)

R(a) and S(«) are called the Cartesian coordinates of the complex number
a.

Polar form of complex numbers. The reason why complex numbers are
particularly convenient for analyzing vibration is that they may be manipu-
lated according to the magnitude (length of the vector) and argument (angle
of the vector with respect to 1) as well. A magnitude is just a real number
> 0, representing the length of a vector. Angles are a bit trickier.

Rotational and directional angles. There are really two connected
but different concepts that are both called “angles.” First, there are rota-
tional angles that measure an amount of rotation. A rotational angle may

12



be any real number—positive numbers represent counterclockwise rotation,
and negative numbers represent clockwise rotation. A rotational angle of 27
represents a full rotation counterclockwise. Even though the direction that
an object points after a full rotation is the same as before the rotation, 27
represents a different rotation than 0 or —27 or 47—suppose for example
that we are measuring rotation of a wheel that winds up a spring.

The other sorts of angles are directional angles that measure the direction
that a vector is pointing with reference to some conventional 0 direction (for
complex numbers, 0 is the directional angle of the vector represented by 1).
Directional angles must be in the half-open interval [0,27). Many books
and articles prefer to describe directional angles in the interval (—x, 7] (so,
for example, the angle 37/2 in our notation becomes —x/2). It makes no
essential difference which interval is used, since all arithmetic on directional
angles is done on a circle of circumference 27, rather than the usual real line.
We may convert rotational angles to directional angles with the function
mod2x.

rmod2r = x—2x|x/(27)] (1.31)

0 < 2 mod 27 < 27 (1.32)

When # mod z = y mod z we often write x =y (mod z) instead. This form
suggests an alternate view of modular arithmetic: @ = y (mod z) means
that @ and y are two names for the same thing in the  (mod z) universe, even
though they may be different numbers in the usual real number universe. If
we apply a rotational angle = to rotate a vector from a starting position with
directional angle 0, we get a new vector with directional angle = mod 2.
Notice that all rotational angles 4+ 2kn for integers k correspond to the
same directional angle. Given a directional angle « resulting from a rotation,
there is no way to tell which of the infinitely many possible rotational angles
generated x. To avoid becoming confused by the ambiguity in the word
“angle,” visualize each angle as either an amount of rotation or a static
direction, instead of a pure abstract real number.

The angle of a complex number is a directional angle, so it is restricted

to the interval [0, 27).
e +2y| = a2+ y? (1.33)

arg(x +2y) = arctan(y/a) mod 27 (1.34)
la > 0 (1.35)

13



arg(a) > 0 (1.36)

arg(a) < 2w (1.37)

(1.38)

a = fif and only if || = |F] and arg(«) arg(/) (1.39)

arg(0) is undefined, since it makes no sense to take the angle of a vector
with magnitude 0. But, we let arg(¢y) = 7/2 for y > 0 and arg(zy) = 37/2
for y < 0 in spite of the division by 0 in Equation 1.34, since ¢ and —¢ are
clearly at a right angles to the real axis (notice that lim,_ ., arctan(z) =
7/2, lim,__., arctan(z) + 27 = —7/2 + 2% = 37/2). Figure 1.9 shows the
relation between R(«), J(«), |al, and arg(«) when « is drawn as a vector
in a two-dimensional space. |a| and arg(«) are called the polar coordinates
of the complex number a. Addition of complex numbers is easiest to do by
manipulating the real and imaginary parts, but multiplication and division

may be defined very nicely on the magnitude and angle.

0Bl = a3 (1.40)
arg(af) = arg(a)+ arg(s) mod 27 (1.41)
a/8] = lal/I8 (1.4
arg(a/B) = arg(a)— arg(s) mod 27 (1.43)
—al = |a (1.41)
arg(—a) arg(a) + 7 mod 27 (1.45)
lzal = | — zq| z|af for @ >0 (1.46)
arg(za) arg(a) for @ >0 (1.47)
& = ol (1.15)
arg(a) = —arg(a)mod 27 (1.49)

a = |a|(cos(arg(a)) + zsin(arg(a))) (1.50)

Using Equations 1.40 and 1.41, we see that a complex number « of magnitude
1 acts as a rotator: the multiplication a3 rotates 3 by the angle arg(a). In
particular, multiplication by 2 rotates a vector counterclockwise by 7 /2 (right
angle). So, letting the single complex number p = x + 2y represent the rotor
state (x,y), we may express Equations 1.5 and 1.6 as a single equation.

pho= iAp (1.51)

14
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The elliptical rotor system of Equations 1.3 and 1.4 may also be expressed
as a single equation using the conjugate operation.

plo= W(A+ B)p+(A-B)p)/2 (1.52)

Complex number to real power. Equation 1.41 is also the key to under-
standing exponentiation of complex numbers. Notice that the angle behaves
logarithmically with respect to addition and multiplication (think of the anal-
ogous equation In(zy) = In(x) + In(y)). Since exponentiation is essentially
iterated multiplication, and complex multiplication is additive on angles,
complex exponentiation has a multiplicative effect on angles. Consider first
a complex number « raised to the power of a real number z.

0| = lof (153)
arg(a®) = warg(a) (1.54)
o™tV = ooV (1.55)
a™ = (o)’ (1.56)
(@B = a°f" (157
T = @ (1.58)

ol = a (1.59)

a¥ =1 (1.60)

Equation 1.54 begins to reveal the power of complex numbers for an-
alyzing vibration. Think of a rotor with amplitude R, frequency F', and
phase 0 (starting value R + ¢0 at time ¢ = 0). The state of the rotor at
any time ¢ is p = Ri*" (we multiply F' by 4 because arg(i) = 7/2 is
1/4 of 2x radians, which is a full rotation). For an elliptical rotor with
starting value R that crosses the imaginary axis at 2/,, the state at time
tis (R + Rg)i4Ft/2 + (R — Rz)i4Ft/2. Equivalent expressions include
(Ry+ Ro)a™ 240 (R — Ry) (=) /2 and (B4 Ry)a™ /24 (Ry — Ry)a /2.
The last of these is the most popular, and leads to the notion of a —F' fre-
quency component in an elliptical rotor.

Complex exponents. The most important fact about complex numbers
for the study of vibration is the rule for raising the real number e = 2.71828 . ..
to a complex power.

e = cos(y) + isin(y) (1.61)

16



T = ¢"(cos(y) + isin(y)) (1.62)
o] = %@ (1.63)
arg(e®) = S(a) mod 27 (1.64)
e e~ (1.65)

o = |aletaEl® (1.66)

o = ehnleDFiars(e) for o £ () (1.67)

Equation 1.61, known as Fuler’s formula in honor of the famous mathemati-
cian who discovered it, is the most important single equation for the study of
vibration. It allows us to reason about trigonometric functions by using the
relatively easy-to-remember properties of exponentiation. Computer algebra
systems typically convert trigonometric formulae into exponential form in
order to simplify them more efficiently.

For our purposes, the derivation of Euler’s formula is not as important as
the formula itself. To see why the formula is sensible, consider the ordinary
differential equation defining the exponential function for real numbers:

¥ = Az (1.68)

The most interesting solution to equation 1.68 is the one with initial condition

x(0) = 1, and this leads to

z(t) = (1.69)
That is, the (scaled) exponential function e! is characterized by its inital
value and the fact that its slope at each time ¢ is A times its value at time
t—the larger it gets, the faster it grows. Notice that equation 1.51 has the
same form as equation 1.68, but it describes a complex-valued function, and
the multiplier is an imaginary number ¢A rather than a real number A. So,
it is sensible to regard the natural solution to equation 1.51, which is a rotor,
as the function e*4?,
Euler’s formula also gives us another way to represent each complex num-
ber a—instead of the usual form R(a) + 13 (a) we may write |a]e?®8(®), For
o # 0 we may also write e™leD+éars(e)  Unlike the additive Cartesian form

x + 1y, the exponential polar re*” form for a complex number is not unique,

17



since ret? = petwt2km) and (et = (et

T1:T2:0

or
ret = rye™? if and only if ri =7z and w; = wy (mod 2r)
or
ry = —rq and wy = (wy + 7) (mod 27)

(1.70)
In essence, exponentiation is a kind of conversion between Cartesian and po-
lar coordinates: the polar coordinates of e* are |e®| = ™) and arg(e®) =
(S(a) mod 27). So, the Cartesian coordinates of « turn into the polar coor-
dinates of €. Notice that J(«) is naturally understood as a rotational angle,
while arg(e®) is a directional angle.

Euler’s formula (Equation 1.61) allows an even nicer way to analyze a ro-
tor with amplitude R, frequency F', and phase 0 (starting value R+10 = Re®
at time t = 0): the state at any time ¢ is just p = Re®*™* (such expo-
nential expressions are sometimes called phasors in the engineering litera-
ture). For the elliptical rotor starting at Ry and crossing the imaginary
axis at ¢R,, the state at time ¢ is ((Ry + Rg)ei%ﬂ + (Ry — Rg)m)/l
or ((By + Ry)et*™ 4+ (R — Ry)e™ %) /2. And, it is particularly easy to
construct a complex number with magnitude 1 to rotate other numbers by a
given angle w: use e, Look back at Figures 1.3 and 1.6 again, and interpret
them in terms of complex numbers.

Now, the way to understand exponentiation 3% with an arbitrary complex
base 3 is to first write 8 = |3|e?*#8® and then use the rules for exponentia-
tion with base e.

(reiw)x-l—iy — rve—wyei(wl’-l-y In(r)) (171)
13°] = |5|§R(O‘)e—arg(ﬁ)3(0‘) (1.72)
arg(”) = arg(B)R(a) + In(|3])3(e) (1.73)

These equations are rather complicated, and fortunately we will not be using
them much. Work them through for exercise with complex numbers, and
convince yourself that they follow from the earlier rules. Notice how expo-
nentiation mixes together the Cartesian coordinates of the exponent with the
polar coordinates of the base.
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Complex logarithms. Euler’s formula makes it easy to define the natural
(base €) logarithm of a complex number.

In(er) = In|a] +zarg(a) for a # 0
) = afor a#0
) = Inlal
S(ln(e)) = arg(a)

In(0) is undefined. Notice that, for positive real numbers x > 0 there is a
unique real number y such that ¢V = x. But, even for positive real numbers x
there are infinitely many complex numbers 3 such that ¢’ = 2. That is, while
Equation 1.75 defines the natural logarithm uniquely as a real value, it has
infinitely many complex solutions, since e® = e**t2*¥7 for all integers k. The
particular choice above for the imaginary part of In(«) is arbitrary, just as
the particular interval [0,27) for directional angles is arbitrary. Notice that
this choice restricts all complex logarithms In(«) to the horizontal stripe in
the complex plane where 0 < J(In(a)) < 27.

logs(a) = In(a)/In(B) for a, 8 # 0 (1.78)

1.2.3 Sound Signals in the Time Domain

In general, the sounds that we would like to create and analyze are much
more complicated than the sounds produced by simple rotors. But, we will
continue to model sounds by complex-valued functions o depending on a
real number parameter ¢ standing for time. Such functions are called sound
signals in the time domain. Later, in Chapters 4 and 6, we will see other
mathematical representations of sound, but signals in the time domain are the
easiest models to relate intuitively to the physical signals that enter the ear.
Widely used digital input and output devices for sound are also most easily
understood in terms of signals in the time domain. Most books and papers
on sound consider real-valued time signals, and most electronic devices, both
digital and analog, for analyzing or creating sound deal only with real values.
Many analysis and synthesis techniques, however, are best understood in
terms of a complex signal 0. We may always project the complex signal
o to a real signal by taking R(c). Just as many systems for manipulating
graphic images deal with three dimensional models, and project them to two
dimensions at the last stage before displaying them on video screens, we will
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think of sound signals as two dimensional, and project to one dimension at
the last stage before rendering them through loudspeakers.

Given a sound signal ¢ in the time domain, and a particular time ¢, the
instantaneous amplitude of o at time t is |o(¢)], the instantaneous phase
is arg(o(t)), and the instantaneous frequency is (darg(o)/dt)(t). These are
interesting quantities to discuss, and may be useful in analyzing sound, but
they do not necessarily have the perceptual impact of the corresponding
constant quantities associated with a simple rotor.

Not every complex-valued function o of ¢ makes sense as a sound signal
in the time domain. Some reasonable relation must hold between the real
and complex components of o. But, it is not clear precisely what relation
to require in general. Particular physical interpretations of o impose certain
constraints—for example if R(o) is the velocity of a physical object, and
J(o) is the displacement of the same object, then R(o) = d3(o)/dt. When
S(o) = Rsin(Ft), d3(o)/dt = FRcos(Ft), so this derivative constraint
forces rotors to be elliptical, with aspect ratio proportional to the frequency.
Circular rotors are much more convenient mathematically. Roughly speaking,
we would like to restrict sound signals o so that J(o) is essentially the same
as R(o) with a phase difference of 7 (90°)—such signals are said to be in
quadrature, since the angle 7 is one quarter of the full circle. The problem is
that many different frequencies may be present in . In Chapter 4 we see a
precise definition of this quadrature constraint.

Figures 1.10, 1.11, and 1.12 show examples of sound signals in the time
domain that are slightly more complicated than the basic helix. In each case,
part (a) shows a three-dimensional plot of the complex-valued function, and
part (b) shows a two-dimensional plot of the real and imaginary components.

1.3 Exercises

1. Take the spring system of Figure 1.1, rotate the track to a vertical
orientation, and let a constant gravitational force act on the mass.
The stable position about which the mass oscillates is no longer at
the point where the spring attaches to the track, but some distance
below that point where the force exerted by the spring exactly cancels
gravity. Does the frequency of the vibrating spring increase or decrease
as a result of the influence of gravity? Explain briefly.
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. Consider a vibrating spring system in which the motion of the mass
is opposed by a certain amount of friction. In order to analyze such
a system, do we change Equation 1.1, Equation 1.2, both, or neither?
Explain briefly.

. Consider a vibrating system with a mass that is attracted to the cen-
ter of vibration by a gravitational force instead of a spring. In such a
system, the period of vibration depends on the amplitude. As the am-
plitude of the vibration increases, does the period increase or decrease?
Explain briefly.

. Notice how Equation 1.5 has a positive multiplier A, while Equation 1.6
has a negative multiplier —A. There are three other possibilities: (a)
both multipliers negative, (b) both multipliers positive, (c) the first
multiplier negative and the second positive. Describe briefly and qual-
itatively the behavior of a system described by each of the variants
(a—c). Draw pictures analogous to Figure 1.3(b) to help explain.

. When A > B in Equations 1.3 and 1.4, the path of the state vector
(x,y) is an ellipse. Which axis of the ellipse is longer, the = axis or
the y axis? Explain briefly, using precise mathematical information
derived from Equations 1.3 and 1.4. Hint: Derive slightly different
equations relating Cyy’ to Cyx and Cpa’ to Cyy for cleverly chosen
constant multipliers C, and C),.

. Derive simple formulae representing the frequency and period of the
vibrating system of Equations 1.3 and 1.4 in terms of the constants A
and B. Hint: Look at Equations 1.7 and 1.8. Differentiate both sides of
both equations. Solve the special case where A = B. Then, apply the
scaling of  and y by constants C, and €, that you used in Exercise 5.

. In an elliptical rotor system obeying Equations 1.3 and 1.4 the speed
with which the state point travels around the ellipse is not constant.

(a) Where is this speed the least, and where is it greatest? Explain
briefly.

(b) Answer the same question for the angular speed of the state
vector—the speed at which its angle with the = axis changes.
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8.

10.

For each of the following operations on complex numbers o and 3, state
whether it is more convenient to represent each number in Cartesian or
polar coordinates, or whether both are equally convenient. Sometimes
the answer is different for 3 than for a.

Derive formulae for the Cartesian coordinates R(3%) and J(5%) of 3
in terms of Cartesian and/or polar coordinates of « and /3.

Derive the following trigonometric identities, using Euler’s formula
(Equation 1.61) and easy algebraic manipulations of additions, sub-
tractions, multiplications, and divisions of complex numbers. Note
that cos?(x) and sin?(x) are conventional ways of writing (cos(z))* and
(sin(z))?, respectively.
) = cos®(z) —sin®(z)
) = 2cos(x)sin(x)
() = (14 cos(2x))/2
(x) = (1—cos(2x))/2
(y) = 2cos((z+y)/2)cos((z —y)/2)
sin(y) = 2sin((z +y)/2) cos((x —y)/2)
(y) = (cos(x —y)+cos(x+y
(y) = (cos(z —y)—cos(x +y
() (z —y)
)
)

i) sin(a) cos(y) = (sin(x —y) +sin(z+y))/2
j) cos(x +y) = cos(x)cos(y) — sin(a)sin(y)
k) sin(x +y) = sin(x)cos(y) + cos(x)sin(y)
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11. We saw how to express the state of an elliptical rotor at time ¢ in the
form ae®®™/t 4 bei2rit where a is the average of the real and imaginary
intercepts of the ellipse, and b is half their difference. Derive a nice
formula for the state of an elliptical rotor whose major and minor axes
are different from the real and imaginary axes.
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Chapter 2

Perceptual Foundations of

Sound

This chapter is a particularly rough draft, with a lot of missing
information.

In every section: limits of human sound perception.

This chapter sketches the structure of human sound perception in a delib-
erately simplistic and superficial way. I believe that the best digital models
for sound production will be informed by audiology, but they will sacrifice
a lot of perceptual precision for mathematical simplicity. By rough analogy,
there are lots of qualities of human visual perception that are ignored by
the pixel model of graphics. Also, general-purpose models for sound produc-
tion must work for almost all listeners, so they cannot be designed around
details of perception that vary from person to person. Later chapters will
investigate more precisely the mathematical qualities of sound that affect
perception, but we will stick with a very approximate and intuitive notion of
perception itself.

We are interested in sound as a medium that may be used for communica-
tion. Particular forms of audible communication, such as music and speech,
may be highly specialized to their purposes and to the acoustic resources
available to them for generating sound. There must be some very general
structural qualities of sound that are present in essentially all uses of sound
for communication. Each particular form of audible communication may
exploit these general structural qualities in very different ways.

By rough analogy to visual communication, notice that almost all visual
scenes may be described in terms of structural concepts such as region, edge,
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texture, color, brightness. Written communication in English exploits the
shapes of regions with contrasting brightness, and the edges of those regions,
to provide recognizable alphabetic characters of the Roman alphabet. Ar-
chitectural drawings exploit edges in a radically different way. Perspective
pictures draw on texture and color in yet other ways to communicate layouts
of physical objects. In this chapter we seek an intuitive understanding of
structural qualities of sound roughly at the level of region, edge, texture,
color, brightness in video.

2.1 The Ear as a Frequency Analyzer

The key receptive structure in the ear is the cochlea, a spiral-shaped tube
containing lots of little hairs that vibrate with the surrounding fluid. i air or
some body liquidz  From our point of view, each hair is a physical realization of a
rotor. Somehow (the how is still the topic of some debate) each hair is tuned
to a narrow range of frequencies, and stimulates an assigned nerve ending
proportionally to the amount of excitation it receives within its frequency
range. So, the human ear is roughly a frequency analyzer, passing on a
spectral presentation of sound at each instant to the brain for further analysis.

2.2 Sound Imaging—What is “a Sound”?

I call a complex of sound that is presented to a listener an “audible scene.”
Many audible scenes deompose naturally into the sum of several components
that are perceived as units, vaguely analogous to contiguous regions in a
visual scene. The decomposition is often ambiguous, and sometimes there is
no sensible decomposition, but the notion of a perceived contiguous piece of
sound is likely to be useful whenever it applies. I call such an intuitive unit in
an audible scene “a sound.” In well-articulated musical pieces, a single note
by a single instrument is a sound. In speech, the notion is more ambiguous,
but perhaps a phoneme or segment of a phoneme may be understood as a
sound.

Automated analysis of audible scenes into individual sounds is extremely
difficult, because it must resolve all of the ambiguities that arise. Synthe-
sis by adding up individual sounds to create audible scenes is much more
tractable, since the instructions for synthesizing a given scene can specity
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an interpretation explicitly. A synthesis method based on adding individ-
ual sounds together might be very useful even if it doesn’t guarantee that
every object described as “a sound” by the system is perceived as a single
sound—as long as there is a good heuristic correlation between description
and perception the method can succeed.

The precise way in which the ear and brain decompose an audible scene
into individual sounds is not understood. The spatial location of sound
sources, as detected by the stereo effects of pairs of ears and by the asym-
metric distortion induced by the funny shapes of our heads and external
ears, certainly plays an important part. We will ignore spatial location, not
because it isn’t important, but because for the purposes of synthesis, it can
probably be separated from monaural qualities. To synthesize an audible
scene, we may describe sounds, then describe where each sound is placed,
and these two parts of our description may be essentially independent. For
analysis, they are probably tangled together inextricably.

Ignoring location, the qualities that make a particular complex vibra-
tion sensible to regard as an individual sound probably have to do with the
frequency components of that vibration. We prefer to group frequency com-
ponents together perceptually when their beginnings, and to a lesser extent
their endings, are nearly simultaneous. Also, we prefer to group frequen-
cies that are very close to being integer multiples of some audible frequency,
which may or may not be present itself—stated another way we prefer to
associate frequencies whose ratios are very close to rational numbers with
small integer numerators and denominators. These qualitative observations
are very far from providing a useful basis for analysis, but they may serve as
heuristic guides in considering synthesis techniques.

2.3 Perceptual Parameters of a Sound

2.3.1 Pitch

Pitch is the quality of a sound that leads us to consider it “higher” or “lower”
than another sound. Some sounds, such as engine noises and drum beats,
yield only a vague sense of high or low pitch. Other sounds, such as notes
of bird songs and of melodic musical instruments, yield a fairly precise sense
of pitch that can be measured numerically, with most listeners agreeing that
the measurement is correct.
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At first approximation, the pitch of a sound is its frequency. The human
ear detects frequencies from about 20 Hertz (cycles per second) to about
20,000 Hertz. Perceived pitch is essentially the logarithm of frequency. Mul-
tiplying a frequency is perceived as adding to the pitch. For example, on a
piano keyboard, the interval (difference in pitch) called an octave is heard
as the result of moving up 12 half steps (the interval from one key to the
next higher—usually one is white and the other black), but it is essentially a
multiplication of the frequency by 2. The interval called a perfect fifth, heard
as moving up 7 half steps, multiplies frequency by approximately 3/2.

We need to know the pitch resolution of the human ear.

But, it’s not that simple. Perception of pitch is affected by loudness (loud
sounds tend to sound higher in pitch than soft sounds of the same frequency),
and there may be many other small but significant influences on perceived
pitch. My hunch is that most of these should not affect the structure of a
general-purpose model of sound, but rather should be viewed as fine points
to be applied outside of the model, when polishing a sound definition to its
final form, only when great precision is truly required. For most purposes,
lots of perceptual subtleties are best ignored.

One major complication in pitch perception probably will affect the struc-
ture of good digital models of sound. Although pitch is essentially the log-
arithm of frequency, perception of pitch is tied more closely to the relation
between a number of component frequencies in a sound, rather than to the
frequency of one particular component. Specifically, when a sound is nearly
harmonic—when most of the frequency components of a sound are nearly in-
teger multiples of another audible frequency F', called the fundamental pitch
of that sound—we tend to hear a pitch given by In . The frequency F' itself
need not be present! This seems spooky at first, but it is probably a very
sensible adaptation of aural perception to the fact that some components of
a sound may be masked by noise. Perception of the “missing fundamental”
is roughly analogous to the visual perception of an entire object, even though
parts of it are hidden behind other objects.

The perception of pitch intervals is also a bit more complicated than
merely subtracting one pitch from another. When we perceive the pitch in-
terval between two nearly harmonic sounds s; with fundamental frequency
Iy and s, with fundamental F,, we seem to overlay their component fre-
quencies. If the component of s; with approrimate frequency M F} is close
enough to the component of sy with approzimate frequency NFy (M and N
are integers), this influences us toward perceiving an interval determined by
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InN/M =In N —In M, rather than In Fy/F; = In Fy — In Fy. Each pair of
components that overlays closely enough influences the perceived interval,
and it is hard to characterize the way in which these influences add up. But,
there are plenty of sounds that are nearly enough harmonic to have a musical
effect, but far enough from perfect integer ratios to confuse the perception
of intervals. The piano and the bagpipes are examples of instruments with
substantial deviations from harmonic sound, and the comparison of pitch be-
tween them and nearly perfect harmonic sounds, such as the sounds of most
orchestral instruments, is quite tricky.

The precision of pitch perception is roughly constant within audible fre-
quency limits. Since pitch is the logarithm of frequency, this means that fre-
quency precision is much better for lower frequencies and poorer for higher
frequencies. Section 2.3.5 discusses the perception of time for sound, which
has a variation of precision inverse to the variation of frequency precision.

2.3.2 Loudness

Loudness of a simple helical signal is roughly the logarithm of its power
(the rate at which it delivers energy). Notice that when two helical signals
have the same amplitude, the one with higher frequency also has higher
power, because it moves faster. The exact power in a signal depends on
the precise physical interpretation of the signal, but in general the power
in a helical signal Re®?™""* is proportional to some polynomial in R and F,
and at least as big as RF', so perceived loudness is roughly proportional to
In(RF) = In(R) + In(F'). But, perceived loudness varies according to the
sensitivity of the ear at the given frequency, so signals at frequencies near
the limits of audible frequencies seem softer than signals of equal power near
the center.

We need information on the units used to measure loudness and the limits of normal human perception.

When a number of frequencies are present in a sound, it seems sensible
that the perceived loudness will be roughly proportional to the logarithm of
the sum of all power within audible frequency limits. This seems sensible,
but it’s wrong. The perception of loudness in complex sounds is influenced
by the critical bands of human sound perception—frequency bands contain-
ing a spread of frequencies roughly spanning a musical minor third, so the
highest frequency in a band is roughly 6/5 times the lowest. These bands
are not discrete, rather they overlap continuously across the range of audible
frequencies, varying slightly in width depending on the center frequency.
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Two helical signals within a critical band tend to add their powers, so
that the perceived loudness within a critical band is close to the logarithm
of the total power in the band. But, two helical signals whose frequencies
differ by more than a critical band tend to add their perceived loudness after
the individual loudnesses are taken as the logarithm of power. Since In(z) +
In(y) > In(x+y), the same amount of sonic power sounds louder when spread
over a larger frequency range. The precise computation of loudness from
power spectrum is quite complicated because of the overlapping of critical
bands.

I doubt that the critical band concept will have an impact on the lowest
levels of sound modelling, but it clearly has a profound effect on perception,
and therefore on the construction of highly polished sounds.

2.3.3 Timbre

Two sounds of the same pitch and loudness may have recognizably different
qualities: for instance the sounds of string instruments vs. reed instruments
in the orchestra. These distinguishing qualities of sound are called timbre,
and are sometimes compared to visible color. Compared to pitch and loud-
ness, timbre is not at all well defined. It clearly has a lot to do with the
relative strengths of different frequency components of a sound, called the
partials. But, it is also affected seriously by some aspects of the time de-
velopment of partials—particularly but not exclusively by the increase in
amplitude of partials at the beginning of a sound, called the attack in mu-
sic. Different partials of a musical sound typically increase at very different
rates, and these differences are crucial to the identification of a sound with a
particular instrument. For example, the sounds of brass instruments are rec-
ognized partly by the quicker development of lower frequencies than higher
frequencies.

At first approximation it seems that two sounds of different pitch will have
the same perceived timbre when the spectral content of one looks just like
the other, but shifted in frequency. For example a sound with a component
of amplitude 1 at 100 Hertz, amplitude 0.5 at 200 Hertz, and amplitude
0.25 at 300 Hertz might be expected to be qualitatively similar to one with
amplitude 1 at 250 Hertz, 0.5 at 500 Hertz, and 0.25 at 750 Hertz. In this sort
of case, the second sound might be produced by recording the first one on
tape, then playing it back with the tape moving faster. The famous singing
chipmunks demonstrate the fallacy in this expectation—they do not sound
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at all like their creator singing higher.

A more accurate notion of timbre must take into account the fact that
sound perception has adapted to the way that many sound producers, in-
cluding the human voice and most musical instruments, create their sounds
by a two-stage process. First, there is some sort of vibrating structure, such
as the vocal chord, violin string, oboe reeds, which may follow the shifted
partials model fairly well. But, the sound coming from this first vibrating
structure filters through another resonating structure, such as the human
head, the body of the violin, the body of the oboe, which scales the ampli-
tudes of partials according to its responsiveness at different frequencies. The
responiveness of the second structure does not take a frequency shift when
the incoming pitch changes, so it changes the relative strengths of partials
depending on their absolute frequencies, and not just their ratios to the given
pitch. This filtering structure is sometimes called a formant filter, because it
may often be characterized by a small number of highly resonant frequency
bands, called formants. Human sound perception seems to have adapted to
recognizing the constancy of formant filters when they are stimulated by a
variety of incoming sounds at different pitches. This is vaguely analogous to
the tendency of human visual perception to perceive the reflective properties
of a given pigment as its color, even under radically different illuminations
that may change the actual spectrum reaching the eye quite severely.

2.3.4 Transient Effects
2.3.5 Sound Events

Although abstract physics recognizes time as a single one-dimensional con-
tinuum (at least for any single observer), different intervals of time may be
perceived as if they are in completely different dimensions, depending on the
lengths of the intervals and the sorts of perceptible changes that occur during
them. For example, in visual perception, changes in electromagnetic flux on
a scale of millionths of a second are not perceived as time at all, but rather
determine the frequency of light, and thereby contribute to the perception
of color. Changes on a scale of tenths of a second or longer are generally
perceived as temporal events involving changes in visual qualities, including
color. The huge gap between the electromagnetic time scale and the event-
sequence time scale make it easy to classify particular changes unambiguously
into one class or the other.
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Sound perception seems to have at least three time scales that are per-
ceived quite differently, and they all overlap to make things more complicated.

1. Changes in air pressure on a scale of about 1/20,000th of a second to
1/20th of a second are on the sonic time scale. They are not perceived
as time developments at all, but determine the frequency of components
of a sound, and thereby contribute to pitch, timbre, and loudness per-
ception. Sonic time for sound is analogous to the electromagnetic time
scale for visual perception.

2. Slightly slower what ranger changes in the amplitudes of various frequency
components are on the transitional time scale. They are perceived as
time developments, such as the attack initiating a musical note, but the
exact time sequence is hard or perhaps impossible to trace perceptu-
ally. The special quality of the transitional time scale is demonstrated
by playing sounds backwards. While a sequence of events played back-
wards may be recognized accurately, even if it is physically ridiculous
(for example, a reversed movie of someone walking), the time-reversal
of sound transitions makes us perceive them completely differently. I
suspect that a person who heard a time-reversed sound for the first
time, with no clue such as a view of the record being spun backwards,
might not even recognize it as the time reversal of something. Even
knowing that a sound is time reversed, it is difficult to tell intuitively
what the forward version sounds like. I am not aware of any visual
phenomenon analogous to the transitional time scale for sound.

3. Changes in the frequency components of sound on a scale of more accurate
lower bouna? perhaps 1/30th of a second and longer are often perceived as
sequences of events. The event-sequence time scale for sound is anal-
ogous to the one for visual perception, and they operate in a similar
range. For example, the sequence of notes in a scale, or the sequence
of clicks in a rhythmic form, are perceived on the event-sequence time
scale. The reversal of a sequence of events may be musically or physi-
cally peculiar, but it is relatively easy to recognize.

Even the sonic and event-sequence time scales overlap for sound, with
the transitional scale in between and overlapping both. This makes the
understanding of time developments in sound quite subtle in some cases.
In particular, the boundaries are sensitive to frequency. For low-frequency
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components of sound, the boundaries of the scales move toward longer time
intervals, and for high-frequency components they move toward shorter in-
tervals. It takes about one full period (rotation) of a helix to recognize the
frequency. So, changes in a helical component of sound can only be detected
when they are not too short compared to the time of a complete period.

The inverse relation between frequency precision, which is best for low
frequencies, and time precision, which is best for high frequencies, is striking.
It is not an accident, but comes from fundamental physical limitations, which
limit the product of time and frequency precision, so that when one improves,
the other gets proportionately worse. The same mathematical form produces
the Heisenberg uncertainty principle in quantum mechanics.
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Chapter 3

Digital Sampled Sound

In Chapter 1 we modelled sound as a function from a real value ¢ representing
time to a complex value o representing a two-dimensional state of some
vibrating system. In order to deal with sound digitally, we must somehow
reduce such a signal to a finite number of symbols from a discrete set of
possibilities, such as the bits 0 and 1 that current digital computers use to
represent all information. The digitization of sound is normally achieved by
two independent steps, each of which has consequences for the fidelity with
which sound is produced digitally.

3.1 Discrete time

Sound signals in the discrete time domain. The usual first logical
step in digitizing sound is to approximate the continuous domain of real
values representing time by a discrete set of equally spaced values. Let S
be a positive real number, called the sampling rate (the number of samples
to take in a unit of time). A represents the set of all positive and negative
integers. 7g represents the domain of discrete time with sampling rate S.

N = {..,-2,-1,0,1,2,3,...} (3.1)
Ts = {k/S: keN} (3.2)
Every finitely represented sound spans some finite interval {¢,,......., tmaz}

rather than the infinite domain 75, but we may only listen to a finite time-
span of sound in a lifetime anyway, so the discretization of time is much
more important than the limitation to a finite interval. A sound signal in the
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discrete time domain with sampling rate S is a complex-valued function o
on 7s. When discussing the domain 7, we write the members of the domain
as ... ,t_z, t_l, to, tl, tg, t3, ceey where

ty = k/S (3.3)

Converting from continuous to discrete. Given a continuous sound
signal o, the obvious and natural choice for a discrete sound signal to repre-
sent it is Dg(o) where

Ds(o)(t) = o(t) for t € T (3.4)

Ds(o) is just o restricted to the domain Tg. Such a representation is inher-
ently ambiguous—there are an infinite number of different continous sound
signals represented by the same discrete sound signal. The confusion result-
ing from this ambiguity is called aliasing.

Aliasing. —Note: serious problems with functional notation—
Whenever two continuous sound signals oy and oy agree on every point in
Ts (01(t) = o2(t) for all t € Tg), then they have the same representation
04 = Ds(01) = Ds(03) as a discrete sound signal, and we say that oy and o
are aliases. The famous problem of wagon wheels appearing to roll backwards
in old movies is an example of aliasing in a sampled video signal. But, when
we generate a real physical sound from oy, a listener can only hear one of
the infinitely many continous sound signals that it might represent. This
is undesirable in the case where we discretize one continous sound, and the
listener hears a different one. In particular, two continuous helical signals
are aliases if and only if their amplitudes and phases are exactly the same,
and their frequencies are the same  (mod ).

For Ry, Ry >0, P, P, € [0,27):

DS(Rlei(Pl"'%Flt)) = DS(Rzei(Pﬁ%F?t)) for all t € T4 (35)
3.5

if and only if
RlzRgandplngandFleg (modS)

For real-valued signals, there is even more aliasing. Frequencies Fy and F,
may be aliased when Fy = —F, (mod S) and the signals are out of phase
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by exactly 7 (half a period).
For Ry, Ry >0, P, P, €[0,27), Fi,F, #0 (mod S/2):
Ds(Ry sin( Py + 21 Fit)) = Ds(Rysin( Py + 27 Fyt)) for all t € Ts
if and only if (3.6)
Ri=Ryand P, =P, and F; = F, (mod S)

or

Ri=Ryand P =P, +7 (mod 2x) and F; = —F; (mod 9)

For frequencies that are exact multiples of half the sampling rate, there is even
confusion about the amplitude and phase. In the case of odd multiples of half
the sampling rate, the samples are all equal in magnitude, and alternating
in sign. The amplitude of the samples depends on the phase at which the
samples are taken, which is the same for each half wave.

For Ry, Ry > 0, P, P, € [0,27), Fy = F, = §/2  (mod S):
Ds(R, sin(P, + 27 F1t)) = Ds(Ry sin( Py + 27 Fyt)) for all ¢ € Ty
if and only if (37)
Ry sin(P,) = Rysin(Py)

In the special case where P, = P, = 0, the amplitudes could have any values.
For multiples of the sampling rate, all samples have the same value, and
again there is a tradeoff between amplitude and phase.

For Ry, Ry >0, P, P, € [0,27), Fy = F, =0 (mod S):
Ds(R, sin(P, + 27 F1t)) = Ds(Ry sin( Py + 27 Fyt)) for all ¢ € Ty
if and only if (38)
Ry sin(P,) = Rysin(Py)

Finally, for completeness, notice that an odd multiple of half the sampling
rate aliases with a multiple of the sampling rate precisely when the phases
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are both 0, so that all samples have the value 0.
For Ry, Ry >0, P, P, €[0,27), F1 =0 (mod 5), F, = 5/2 (mod 5):
Ds(Rysin( Py + 27 Fit)) = Ds(Rysin(Pr + 27 Fyt)) for all t € Ty

if and only if

(3.9)

Rendering a discrete sound signal as continuous sound. Having
computed a discrete sound signal o4, we need to render it through a loud-
speaker or similar controllable vibrating device in order to hear the sound.
At some point in the rendering process, o4 is converted to a continuous signal
o.. It is natural to choose one of the infinitely many continous sound signals
that o; might represent. In particular, it is natural to create o. by inter-
polating values between the ones given by o, in such a way as to make the
resulting sound signal as smooth as possible, according to some appropriate
definition of smoothness. The interpolating is normally done, not by a digi-
tal computation, but by the analog machinery, usually electronic, controlled
by the computation. In Chapter 4 we find that when the sampling rate is
high enough, the precise nature of the interpolation is relatively unimportant.
But, the sorts of analog devices commonly used for sound production typi-
cally interpolate so that the final result is close to a sum of sinusoidal signals
of the lowest possible frequency. So, if o4(t) = Re**™* is a discrete heli-
cal signal, it is normally rendered as something very close to the continuous
signal o.(t) = Ret?1F mod St

Not all aliases of a helical or sinusoidal signal are helical or sinusoidal
themselves. For real-valued signals the frequencies, the frequencies near half
the sampling rate (5/2) alias to signals that are amplitude modulations of a
carrier with frequency S (see Figure 777). In many cases, these amplitude-
modulated signals represent the way that a rendered signal is likely to be
heard. For complex-valued helical signals, the problem of non-helical aliases
seems to be less important, but I know very little about the rendering of
complex-valued signals. It is interesting to note that we seem to need two
real numbers per period to represent a given frequency, whether those two
reals are separate samples or whether they are bundled into a single complex
sample. But, we really need only the sign of the imaginary component, along
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with the entire value of the real component of a complex sample, to resolve the
ambiguity between helical frequencies Fy = —F; (mod 5), although the full
value of both real and complex components is required to get full information
about amplitude and phase, and about multiple frequency components.

Causes of and cures for aliasing. Aliasing occurs any time a continuous
signal is converted to a discrete signal by sampling. It is natural to think of
the case where a physical continuous signal is read by an electronic sampler,
but this is not really the most important cause of aliasing. The engineers who
design and build samplers are pretty smart, and they have had plenty of time
to worry about aliasing and find ways to prevent its harmful consequences.
The most troublesome cases of aliasing arise when a continuous mathematical
model of a sound signal is converted to a calculation of samples. The original
continuous model may only exist in the mind of a person who is designing
sound—it need not be present as a data structure in a computer, or in any
other realization in an artificial medium. Even when there is an explicit
representation of the continuous sound signal available as a data structure,
the problem of avoiding aliasing in software is far more complex, due to
the variety of conceptual sources for continuous signals. Flexible sound-
processing software has largely failed to prevent the introduction of harmful
aliasing in sampled signals.

The only cure for the harmful consequences of aliasing is prevention. Once
a continuous sound signal has been replaced by a sampled discrete represen-
tation, and the continuous signal is no longer available for inspection, there is
no way to determine which of the infinitely many possible continuous signals
was truly intended. In order to prevent one continuous sound signal oy, con-
verted to the discrete signal o4 = Dg(oy), from being rendered continuously
as some alias oy that sounds quite different, we must sample only signals that
will be rendered accurately. With the usual “smooth” rendering techniques,
a sampled complex-valued signal produces frequencies in the range [0,.5),
and a sampled real-valued signal produces frequencies in the range [0, .5/2).
To avoid harmful aliasing, all higher frequencies must be filtered out from the
continuous signal before sampling. For this reason, sampling converters have
analog filters that eliminate high frequencies before sampling. Even though
digital filters have many advantages, they cannot be applied to the aliasing
problem, because they cannot distinguish frequencies that differ by multi-
ples of the sampling rate. To avoid the aliasing of frequencies near S/2 with
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an amplitude-modulated signal (and presumably there are simlar problems
for complex-valued signals at frequencies near ), continuous signals should
in fact be filtered to an even smaller frequency interval, but it is not clear
precisely how much smaller it needs to be.

Discrete signal values other than samples.
o interval values

e average values—equivalent to filtering

3.2 Quantized Vibration State

Even a finite time segment from a discrete sound signal is an infinite object
if the sample values are complex or real numbers. In order to get a com-
pletely digital representation of a sound signal, we must also approximate
the continuous range of real or complex numbers by a discrete subset. Since
the consequences of this quantization of the domain of values are largely in-
dependent of the consequences of discretizing the time domain, we consider
signals from the continuous time domain to a discrete subset of the complex
or real numbers.

Discrete sets of complex or real values. A subset V of the complex
numbers is discrete if we may draw a circle around each point in V), so that
each circle contains only one point in V. If V contains only real numbers,
then it is also a discrete subset of the reals. While the discretization of time
seems to make sense only with a constant interval between points, there are
a number of different popular ways to quantize the real or complex values
o(t). For the domain of real numbers, the two basic ideas are linear and
logarithmic quantization.

Given a real number ) > 0, Vg represents the linear quantization of the
real domain with quantum interval ().

Vo = {k/S: keN) (3.10)

Yes, this is mathematically the same thing as the discrete time domain 7,
but we think of it as having a different physical dimension. Just as in the
case of the discrete time domain, a digital representation requires that we
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limit ourselves to a finite interval within Vg, but it is the use of a discrete
subset of values, rather than the limitation to a finite interval, that has the
most interesting consequences for sound modelling.

Given two real numbers B > 1 and M > 0, Lpar represents the loga-
rithmic quantization of the real domain with base B and minimum nonzero

value M.
Ly = {0yU{B* —B*: kc N and B* > M} (3.11)

Notice that the minimum value M is required to make the domain discrete,
even if the 0 value is omitted. Lp s is an idealized abstraction of several
different essentially logarithmic quantizations, such as “mu-law” encoding,
but it does not represent them precisely. The crucial quality of logarithmic
domains is that the interval between points goes up exponentially with the
magnitude of the points: the Lpars are the mathematically simplest sort
of domains with that crucial quality. Floating-point domains are a funny
hybrid of linear and logarithmic: they consist of finite segments of different
linear domains pieced together so that the progression over larger segments
is essentially logarithmic.

The usual way to quantize the complex domain is to pick a quantization
of the real domain, and then apply it to the real and imaginary components
of complex numbers. So, we can define

Vo = {z+iy: a,y € Vo) (3.12)
'C?B,M = {ae4ey: 2,y € Lpum} (3.13)

Polar versions, others.
e Quantization (roundoff) noise.
e Nonlinear encodings.
e Recovering complex data from real.

e Why discretization and quantization are studied in such different ways.

3.3 Other Ways to Digitize a Sound Signal

e Delay conversion to discrete sampled representation as long as possible
(analogy to bitmapping in graphics).
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3.4 Direct Manipulation of Digital Sampled

Sound

e Time shifting.

o Amplitude scaling.

e Amplitude clipping.

e Irequency/speed shifting.

e Time stretching by repetition of a “period”.

e Changing sampling rate.

e AM enveloping.

e Adding sounds.

e Nonlinear waveshaping.

e Frequency modulation.

43



Chapter 4

The Frequency Spectrum

In this chapter we investigate the analysis of a sound signal into its compo-
nents at different frequencies. For the moment, we are concerned only with
steady-state sound signals. Imagine that you walk into a room in which some
sound is in the air. You stay for some length of time much longer than the
period of any frequency that you can hear, and then leave the room. Sup-
pose that, while you are in the room, the sound is essentially stable: you do
not hear any change in its quality. Roughly speaking, a steady-state sound
signal is the infinite extension of such a stable sound into the past and the
future—a sound that has always been and will always be qualitatively the
same. [t is natural and sensible in a mathematical analysis of a stable signal
to ignore the fact that it has a beginning and an end.

4.1 Pure Helical, Periodic, and Quasiperiodic
Signals

In order to analyze a signal into its components at different frequencies,
we need to know what each component is like. We choose the standard
helixes ReP+27F0) - characterized by amplitude B > 0, phase P € [0,27),
and frequency F' > 0, as the components for analysis. In principle, there
are infinitely many other choices for the basic components: square waves,
triangular waves, pulses, etc. We choose the helixes because they are math-
ematically very simple and suitable for analysis, and they agree quite well
(but not perfectly) with the physical qualities of vibrating sound producers,
as well as the sound detectors in the ear. In principle, the elliptical helixes
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with aspect ratios proportional to frequency match our physical analysis of
a vibrating spring better than the circular helixes. But, we choose the math-
ematical simplicity of the circular helixes, and trust an intuitive hunch that
they will be satisfactory for our practical needs.

A sound signal o is periodic if there is a positive real number P > 0,
called the period of o, such that for all times ¢, o(t + P) = o(t) (actually, the
smallest such P is the period of o, and all multiples of P satisfy the same
equation). The helical signal Re!F+277%) is periodic, with period 1/F. If
01,09, ... are all periodic signals, and the ratios of their periods are rational
numbers, then . 0; is also periodic. If the ratios of their periods are not
all rational, then the sum is not periodic, but it may still be analyzed into
its components at different frequencies—such signals are called quasiperiodic.
Since physical measurements can never distinguish absolutely between ratio-
nal and irrational values, it makes sense that we need to study quasiperiodic
signals in essentially the same way as the periodic ones.

4.2 The Ear as a Spectral Analyzer

This section repeats Chapter 2, and should be merged in with that
chapter.

The part of the mammalian ear that detects sound is called the cochlea.
The cochlea is a tube (wound into a spiral, but that is not particularly
important to us) containing a long sequence of tiny hairs. For our current
purposes, each of those hairs is essentially a vibrating spring, tuned to a
different frequency. The number of hairs is finite, but it is large enough that
we will ignore the discreteness of the set of hairs, and suppose that every
possible value in the continuous spectrum of real positive frequencies has
a hair tuned to it. In Chapter 6 we find that there are other limitations
on the accuracy with which frequency is measured in the ear, besides the
finite number of detecting hairs. We also ignore the physiological limits on
the range of frequencies. The most natural way to analyze signals is to find
their components at all frequencies, and accept the fact that some of those
frequencies are indetectible by a given ear.

Intuitively, the spectrum of a steady-state sound signal o is the function
Y» mapping each frequency f > 0 to a complex number ¢( f) such that |(f)]
is the amplitude of the stimulation delivered by o to an idealized ear, and
arg((f)) is the phase of the stimulation. The spectrum ¢ is often called

45



a signal in the frequency domain, to complement the description of o as a
signal in the time domain. The perception of steady-state sound signals is
explained very well (but not perfectly) in terms of the spectrum of the signal.
In fact, most of the perception of steady-state sound appears to depend only
on the magnitude ||, but in Chapter 6 we find that the perception of changes
in the spectrum depends on the relative phases of different components, so
it is best to define the spectrum to include phase information.

4.2.1 Perceptual Parameters of Sound

It is tempting to think of the perceptual qualities of a steady-state sound
signal that are derived from its spectrum as being analogous to the color of
an optical signal. Such an analogy probably leads to more misunderstanding
than useful insight. Human color perception depends only on three dimen-
sions of the frequency spectrum of light, while the ear can distinguish at
least hundreds of frequencies. Considering the number of independent pa-
rameters involved, a better analogy would relate each frequency component
of a sound signal to a single point in a visual scene. This analogy also breaks
down, because the ear relates individual frequency components in ways that
are fundamentally and structurally different from the way the eye relates
different points in a scene.

First, different frequency components of a steady-state sound signal are
often grouped together and perceived as a unit, which I call a sound. A
steady-state sound signal may contain many individual sounds going on si-
multaneously. A particular frequency, typically the lowest of those in a sound,
may dominate the perceptual identification of frequency in a sound: such a
dominant frequency is called the fundamental frequency of a sound; all of
the component frequencies are called partials of the sound. In particular,
components with frequencies that are very close to reasonably small integer
multiples of a single frequency F (1F,2F,3F,...), are often heard as a single
sound (a lot of information other than the spectrum may affect this grouping,
particularly stereo effects that seem to locate components in space). In this
case, the sound is a (nearly) harmonic sound, F'is the fundamental, and the
partial kF' is called the kth harmonic. In many cases not all of the harmonics
are present (for example, the presence of only odd harmonics is very com-
mon). Even the fundamental frequency F' may not be present in a harmonic
sound, but it still dominates perception of the identifying frequency of the
sound.
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For a harmonic sound, and for many others as well, the ear perceives a
quality of highness or lowness called pitch. Pitch is essentially determined
by the fundamental frequency (even when that frequency is not actually
present), but the less harmonic a sound is the more subtle is the determi-
nation of a fundamental frequency. Doubling the fundamental frequency
typically produces a perception of an additive increment in the pitch—the
pitch increment associated with doubled fundamental frequency is called an
octave in conventional European music. So, the perceived pitch of a sound
is roughly the logarithm of the fundamental frequency. For perfectly har-
monic sounds this definition works very well; for nearly harmonic sounds the
perception of pitch intervals is affected by the inaccuracies in the nearly inte-
ger ratios of partials to fundamental frequencies. Notice that the essentially
logarithmic relationship of pitch to frequency means that when a sound sig-
nal o containing several sounds is transformed by time-scaling to the signal
[t]o(St), the pitch intervals between the sounds stays the same. The ten-
dency of frequency components to cluster into harmonic sounds is consistent
with the logarithmic relationship of pitch to frequency, since the partials of
different harmonic sounds will interleave in the same way as long as those
sounds are separated by the same pitch interval.

While the fundamental frequency of a steady-state sound typically deter-
mines its pitch, the relative amplitudes of the frequency components produce
a perceived quality of sound that is called timbre. Even with all the subtleties
in determining perceived pitch, the perception of timbre is orders of magni-
tude more subtle, and has never been characterized with precision. Some
acoustical scholars believe that the word “timbre” is simply a convenient
label for those qualities of sound that we cannot describe or analyze satisfac-
torily, much in the way that “intelligence” sometimes seems to be used as a
pleasant label for those aspects of human behavior that we want to admire,
but cannot explain. My hunch is that timbre is susceptible to a much better
analysis than has been achieved so far, but not necessarily to a complete
analysis. Timbre perception certainly has a lot to do with the relative am-
plitudes of partials, but is also affected crucially by the initiation of a sound,
the relation of amplitudes of partials to their absolute frequencies (rather
than just the ratios with fundamental frequencies), and probably to a lot of
other things that nobody has thought of yet.

The other perceptual quality of sound that has been analyzed fairly well
is loudness. While pitch is naturally associated with an individual sound,
loudness is perceived both for individual sounds and for entire sound signals.
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Loudness is determined by the amplitude of sound. Although the mathe-
matically simplest measure of the amplitude of a helical signal Re*>™ is the
multiplier R, perceived loudness is better related to the power of the signal,
which is proportional to R?F. In a system based on elliptical helixes, if the
aspect ratio of the ellipses grows proportionally to frequency, then product
of the lengths of the axes is proportional to power, but this advantage of
elliptical helixes does not seem to justify their extra complexity. Just as
perceived pitch is logarithmically related to frequency, perceived loudness is
logarithmically related to power, so the decibel system for measuring loud-
ness associates an additive increase of 6 decibels with a doubling of power.
Perceived loudness is also affected by frequency in at least two ways. First,
loudness naturally tends to drop off as the frequency of a signal approaches
the limits of frequency perception in the ear. Second, when several frequency
components combine, the percieved loudness of the combination is different
depending on whether the frequencies are close together (lying in what are
called critical bands) or farther apart. My hunch is that the dependence of
perceived loudness on frequencies should not affect the structure of a ba-
sic, general-purpose system for sound modelling, but it certainly will become
very important to a sound designer for the finer polishing of a sound signal.

4.3 Mathematical Spectral Analysis with the
Fourier Transform

The frequency spectrum of a sound signal ¢ is another complex-valued func-
tion ¥ of one real parameter, but in this case the parameter represents fre-
quency, rather than time, and the value of ¢ at a frequency f describes the
component of o at frequency f. In particular, |¢>(f)|is the magnitude of the
component at frequency f, and arg(¢(f)) is the phase of that component. If
o is described by a formula in the form

O_(t) — Rlei(Pl-I—Q?TFlt) _I_ RQ@i(P2+27TF2t) _I_ ...

then it is easy to see that its spectrum  should have value ¥ (f) = 0 for all
frequencies f not in the list Fy, F5, ..., and it appears that its value at F;
should be ¢ (F;) = R;e*f*. This is the right basic idea, but for mathematical
consistency with more complex spectra, the value ¢ (F}) is interpreted in a
slightly more peculiar way, described in Section 4.3.1. But, what if we are

48



given a completely unknown signal o, and need to characterize its frequency
spectrum? Just as, in the physical world, a prism is used to analyze a light
signal into its different frequency components, in the mathematical world the
Fourier transform analyzes a mathematically given signal in a similar way.
The essential idea behind the Fourier transform is to perform a kind of
pattern matching between the given signal o and each of the standard helical
components ¢, The strength of the match will determine the value ¥ (F)
of the spectrum at frequency F'. Through a fortunate stroke of mathematics,
we need not test all the different amplitudes R and phases P in the form
RetP+27EY) hecause our definition of pattern-matching produces information
about all amplitudes and phases as a result of matching against any helix of
the right frequency. To understand how the peculiar integral formula that
we will introduce as the definition of the Fourier transform represents a kind
of pattern matching, we take a detour through simpler sorts of signals.
Suppose that we are given two signals oy and oy over a discrete and finite
time domain {1,2,...,n}, and suppose in addition that both signals take
only the values 1 and —1. At any time ¢, the product m = o(t)o2(1) is
m = 1 if the signals agree, and m = —1 if the signals disagree. So, the sum

M(oy,04) = Z:Ul (t)oo(t)/n

represents the accuracy with which oy matches oy9—a pertect match gives the
value Moy, 03 = 1; a complete failure to match gives the value M(oq,03) =
—1, and partial matches give values between —1 and 1. From another point of
view, (M (o1, 04)+1)/2 is the probability that oy and o agree at a randomly
chosen time ¢t € {1,2,...,n}.

Now, generalize oy and oy to real-valued functions on the same discrete
and finite time domain. The product o1(#)oy(t) is still a very reasonable mea-
sure of the extent of agreement between oy and oy at time . m > 0 when
o1 and o3 have the same sign, m < 0 when they have opposite sign, and the
magnitude |m| indicates the strength of their agreement or opposition in a
way that credits agreement with large numbers more than agreement with
small numbers. Again, the extent of agreement or disagreement between
the entire signals oy and oy may be taken as the average M(oq,03) of the
products. Now, however, the average is no longer restricted to the interval
[—1,1], but might be any real number. If oy is a function that we are ana-
lyzing, and oy is a pattern that we are comparing it to, then M(oy, 03) gives
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information about the matching of M against all multiples of o3 as well, since
M(oy,Soq) = SM(oy,09).

What if o; and o, are complex-valued functions on the discrete and fi-
nite time domain? The product o1(t)oz(t) is no longer a good measure of
agreement at time ¢, because of the way that complex multiplication adds
the angles of multiplicands. For example, if arg(o(?)) = arg(os(t)) = 7/2,
then arg(oq(t)os(t)) = 7, and 7 is the angle of the negative real numbers.
Similarly, if arg(o1(?)) = 7 /2 and arg(os(t)) = 37/2, then arg(oy(t)o2(t) = 0,
so the product is a positive real number. These results are the opposite of
what we want, since in the first case the signals agree in direction, but the
product is negative, and in the second case the signals are opposite in direc-
tion but the product is positive. Instead of the product o(t)os(t), we need
the product of one signal with the conjugate of the other: m = Ul(t)?(t).
Notice that

arg(o1(1)72(1)) = arg(or(1))+arg(@2(1)) = arg(o1 (1)) —arg(a(1))  (mod 27)

So, when o1(t) and 03(1) are in the same direction, m is a positive real number
(angle 0), when they are in opposite directions m is a negative real number
(angle 7), and in other cases the angle of m gives the amount of disagreement
between the angles of o1(f) and o3(?). In the special case where oy and o
are real-valued, m = o1(t)o2(t), since each real number is its own conjugate.
But, the mathematical symmetry between oy and o5 in the real-valued case
is lost in the complex-valued case: pattern matching the same two signals in
opposite order yields results that are conjugates of one another. Let

Mioro) = Y or ({0}

Because M (o1, aoy) = @M (o1, 02) for all complex constants a, the result of
pattern matching oy against a single pattern oy gives information about the
matching of oy against all signals that are the same as o9 except for amplitude
and phase. In particular, matching against ¢*>™f* gives information about the
match with all helixes Re!P+27FT) of the same frequency.

Now, to define the Fourier transform F(o) of a signal o, we need only
generalize the ideas above to the infinite continuous time domain, using the
integral as the natural continuous analog of the sum. F (o) is itself a function
of a real variable f representing frequency, and F(o)(f) is the result of
pattern matching o against a standard helix at frequency f (™). Notice
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that @27/t = =7/t and it is conventional to use the —i27 form in the
formula for the transform.

Foun =

— 00

o0 o0

o(1)e Tid) = / o(1)e= 2t dt (4.1)
Although the first integral formula above displays the character of the Fourier
transform as the results of pattern-matching a signal against the standard
helixes, the second form is the one commonly seen in books and papers
about the transform. There are a number of variations in the definition
of the Fourier transform—some authors give it as [*°_ o(t)e~*dt, others as
(27)~Y2 [ o(t)e" ¥ dl—Dbut these variations are merely the result of scaling
to different units of measurement. The form chosen in Equation 4.1, which
measures frequency in cycles per unit time, is the mathematically most con-
venient one for our purposes.

Other variations on the Fourier transform normalize the magnitude of
points in the spectrum in sensible ways. Since the power in the helical signal
Re®™ft is proportional to R%f, rather than to R, we might argue for one of
the following forms

Fralo)f) = [TF) (+2)
Frne0)([) = 7 |F()|0D a0 (43)

Or, if we interpret the real and imaginary components of the signal in such a
way that the real component is the derivative of the imaginary component,
then it could make sense to match the signal against elliptical helixes:

Feuipse(o)([) = /_O:o o()((f 4+ )e ™+ (f — 1)e™") /24t
= (F+DFN)+(F-1DF(=1)/2 (4.4)

Finally, since perceived pitch is roughly the logarithm of frequency, a sensible
variation is

Frg(@)p) = [ oty (15)
= F()2) (4.6)

The logarithmic frequency scale rules out negative frequencies, which may be
an advantage or a disadvantage in different contexts. Since each of these vari-
ations is easy to calculate from the conventional transform in Equation 4.1,
we stick with that simpler formula.

51



When using complex-valued signals in the time domain, it seems most
sensible to use only positive frequencies—that is, signals ¢ whose spectra
b have the property that (f) = 0 for f < 0. But, the mathematics of
the Fourier transform allows negative-frequency components, and it is best
to understand the mathematics in its full generality, and then make what-
ever restrictions seem appropriate in a given application. Real-valued signals
always have negative-frequency components. Also, elliptical helixes have
negative-frequency components when the spectrum is defined in terms of cir-
cular helixes; similarly, circular helixes have negative-frequency components
in a spectrum defined in terms of elliptical helixes.

We see in the remainder of this chapter how the Fourier transform F(o)
gives a sensible representation of the spectrum of the steady-state signal o.
It is also important to calculate a sound signal in the time domain from a
given frequency spectrum. For this purpose, we need the inverse Fourier
transform. The Fourier transform is almost self-inverting.

FF@)) = a(=t) (4.7)

The Fourier transform of the Fourier transform of a signal o is the same
signal played backwards in time. The inverse of the Fourier transform is
defined just like the forward transform, except running the helical patterns
backwards in time.

FAOW = [ e = [T einetta ()

— 00

7_1(7(0)) = o for well-behaved o (4.9)

Equation 4.9 fails for certain weird functions, but all of the sound signals that
interest us are well behaved (see [?] for a characterization of the well-behaved
functions).

4.3.1 Discrete Spectra

[ronically, for precisely the simple case of a signal that is the sum of helixes
at discrete frequencies, the Fourier transform is ill-defined over conventional
functions from reals to complex values. Consider the simplest case of a pure
helical signal:

F(le () = [ e

— 00

iQrFte—iQWftdt — /oo ei??r(F—f)t

o0
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For f # F, the product ¢®?™te=2mft — 27(F=/)t ocillates, and its integral

i27TFte—i27rFt 2r(F-F)t 0

is 0. But, for f = F, we integrate e =¢e’ =1, so

the integral is infinite. Similarly, the Fourier transform of a sum of helixes

= ¢

is 0 except at the frequencies of the helixes, where it is infinite. The fact
that the integral is infinite tells us that there exists a component at the given
frequency, but we lose all information about the magnitude of the component.

Generalized Functions

In order to give more informative values for the Fourier transform of a signal
with components at discrete frequencies, we leave the defining formula of
Equation 4.1 alone, but we reinterpret the nature of the functions that it
may evaluate to, and the rules of calculus for evaluating it. These changes
do not affect the well-defined values given by the usual integral calculus, but
they provide specific values in some cases where the usual integral calculus
is ill defined (consider the analogy to complex arithmetic, which extends
real arithmetic to provide a value for v/—1, which is undefined in the reals).
The basic idea is that we want to let F([t]e®?Ft) represent a function whose
integral is 1, but which has the value 0 everywhere except at F'. There is
no such function in the conventional calculus, but just as the real number
system may be extended with the new value ¢ with the property 2* = —1, the
system of functions from a real number to a complex value may be extended
with a new function 6, called the Dirac function, or the impulse function,
with the properties

6(f) = Ofor f#£0 (4.10)
/OO s(Ndf = 1 (4.11)

Intuitively, ¢ is a function that has value 0 except for a spike at input 0. The
spike is infinitesimally narrow, and infinitely high, so that the area inside it
is 1. A more careful development defines generalized functions to be certain
infinite sequences of conventional functions, and considers only the properties
of generalized functions in the limit. ¢ is formally an infinite sequence of
narrower and higher spikes, all with area 1. Notice that to place the spike
at F'instead of 0 we merely shift the input to ¢, in the generalized function
[f16(f — F). To increase the area under the spike to R, we multiply R6.
Now, we have a sensible value for the Fourier transform of a helix

F(e®™)(f) = 6(f— 1) (4.12)
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For a helix with arbitrary amplitude and phase, the amplitude and phase
pass through to the Fourier transform at the helix frequency:

F(HREP+I) () = R8(f — F)ei® (1.13)

It is often tempting to think that 6(0) = 1, but this is not quite right. In
order to yield the integral value 1 in Equation 4.11, §(0) must be bigger than
every conventional real number. But, it is not merely oo, since it is twice
as big as 6(0)/2, half as big as 26(0), etc., and it has a well defined angle
as a complex number. Just as the new number ¢ was introduced to denote
V=1, we may use A = §(0) when it is convenient to denote the value of the
impulse function at its spike.

Also, unlike the discontinuous real-valued function that has value 1 at
0, and value 0 everywhere els, 6 should be understood as continuous, and
continuously differentiable, even at 0. Intuitively, there is a continuous con-
nection from the 0 values to the infinite value, infinitesimally close to the 0
input. The derivative of 6 is an even more peculiar function that has the
value 0 at every real input, but goes infinite infinitesimally before input 0,
and negatively infinite infinitesimally after input 0.

Now, consider the sum of helixes from the beginning of this section:

O_(t) — Rlei(Pl-I—Q?TFlt) _I_ RQ@i(P2+27TF2t) _I_ ...
The Fourier transform of ¢ is just a sum of shifted impulse functions:
F(o)(f) = Rad(f = F)e™ + Rob(f — Fa)e'™ + -

That is, F(o)(f) = 0 for f # Fi, Fy,..., and F(o)(F;) = AR, The
location of the nonzero values in F(o) shows the frequencies in the spectrum
of o, the magnitude |F(o)(f)/A| gives the amplitude of the component at
frequency f, and the angle arg(F(o)(f)/A) gives its phase.

There is a lot more to the theory of generalized functions than I have
even hinted here. There are generalized functions that cannot be defined
from conventional functions plus é6—their values may not therefore be ex-
pressed in terms of A. In addition to introducing a particular sort of infinite
values, generalized functions allow much of the useful qualities of continuous
functions to be associated with mappings to values that are discontinuous in
the conventional sense. That is, generalized functions may connect distant
values in an infinitesimal range of inputs. So, the wnit step, or Heaviside
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function H that has value 0 on negative inputs, value % at 0, and value 1 on
positive inputs, may be regarded as connecting from 0 to 1 in the infinites-
imal region around 0, as the intuitive picture of H shows in Figure 77. As
long as the infinitesimally narrow connections work in the most obvious way,
I omit them from the definition of a function.

0 ifz<0
H(z) = % ifz=0
1 ifz>0

The impulse function é also contains an instantaneous connection from 0 to
A and back again to 0 in the infinitesimal region around 0.

0 ifz<0
o(x) = A ifz=0
0 ifz>0

4.3.2 Continuous Spectra and Noise

The putative advantage of the Fourier transform is to connect arbitrary sound
signals to their spectra. From Section 4.3.1, we see that the Fourier transform
discovers the spectrum of a sum of helixes at discrete frequencies, but we
should also be able to use the Fourier transform to analyze signals with
components spread continuously across some range of frequencies. Since we
do not know in advance what such signals are like in the time domain, it
makes sense to define a continuous spectrum, and then apply the inverse
Fourier transform to get a sound signal. For example, the spectrum given
by the Heaviside impulse function H seems like a sensible representation for
the spectrum of a signal with components at all frequencies, all with equal
amplitude and phase 0. But, the inverse Fourier transform yields

FI = [ H(e g
_ /Oooei%rftdf

= Tissing steps
= 6(1)/2+1¢/(2nt)

This signal is not perceived as a steady-state sound: rather it is an infinitely
sharp sort of click. The problem is that the different frequency components
cancel out in a systematic way, instead of presenting a steady sound.
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One might object to the spectrum H because it has equal sized com-
ponents spread over an infinite range of frequencies, and therefore appears
to represent an infinite total amount of sound. But, the finite continuous
spectrum with frequencies over the range [1,2] has similar problems.

0 if f<1

%iff:l
h2(f) = 1 ifl< f<?2

%iff:Q

0 if f>2

Intuitively, a finite amount of sound at a discrete frequency F' is represented
by an infinite value Az in the spectrum at F'. So, II; ; allots only an in-
finitesimal amount of sound at each frequency in the range [1,2], and the
total amount of sound is finite. But, the inverse Fourier transform yields:

FRIL0) = [ Mol

2
_ ez27rftd
[ et
— (ez2qr2t _ elzm)/(iQﬂ't)
(ei(—qr/2+27r2t) . ei(—qr/2-|—27rt))/(2ﬂ_t)
= missing steps
= sin(xt)e G (1)
That is, F~'(II; ) looks like a helix at frequency 3/2, whose amplitude os-
cillates and dies out by multiplication with sin(#t)/(7t). Such a signal is
not perceived as a steady-state sound, but rather as a sound that rises from
silence to a maximum loudness at 0 and then dies out again. Again, the con-

tinuous spread of frequency components with synchronized phases produces
a strange sort of systematic cancellation.

Random Functions

In order to give the perception of steady-state sound with components spread
over a continuous range of frequencies, we need to use sound signals whose
values vary randomly at each point in the time domain. Let

Z(z) = e\ 2x (4.14)
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and notice that
/OO Z(x)de = 1 (4.15)

7 is called the Gaussian function, or the normal probability density function,
and it has the shape of a bell (see Figure ??). 7 is particularly convenient
mathematically because many probability calculations starting with Gaus-
sian functions produce scaled versions of Gaussian functions at the end. In
particular, the sum of an infinite sequence of independent random variables
with a Gaussian density is itself a random variable with a Gaussian density.

Let r be a real-valued function, such that for each input ¢, r(¢) is a random
value with Gaussian density, independent of all other values of r. And, let
p be another real-valued function such that for each ¢, p(¢) is a uniformly-
distributed value in the range [0,27x), independent of all other values of p
and all values of r. Now, define the complex-valued sound signal in the time
domain p by

p = re? (4.16)

FEach angle arg(p(t)) is a random value uniformly distributed over the range
[0,27), each |p(?)| is a random positive real value distributed with density
[2]2Z(x), and all of these random values are independent of one another.
Unlike the generalized functions, random functions such as p are legitimate
functions according to the conventional mathematical definition, but they
are unusual in that they are discontinuous everywhere. Imagine the graph
of p as an infinite bristle brush, of the sort where bristles stick out in a full
circle about the handle, which is the ¢ axis of the graph. (As generalized
functions, do the ps connect each value back to 0, or to “adjacent”
values? I’'m not sure at the moment. Later: certainly not to 0,
but the exact sense in which adjacent values connect is tricky. The
key is to get a sensible derivative.) Although random functions are
mathematical functions in the conventional sense, our definitions of random
functions, and our notation for them, are somewhat odd. When we write p,
we are referring to any one of the infinitely many functions with the random
properties described above, but within one discussion, all instances of the
symbol p refer to the same random function. If we attach different subscripts
to p, such as pq, po, ..., then we are referring to different functions with the
same random properties (independent?).
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The marvellous thing about the signal p is that its Fourier transform is
another function with the same random properties:

F(p)(f) = /OO p1()e bt = py(f) with probability 1 (4.17)
The reason for this similarity is that, for each f, [t]pi ()™t = py (1) is
another Gaussian-random function, and then the integral gives yet another
random function with Gaussian density. The independence of each pair of
values F(p1)(F1), F(p1)(Fy) for F} # F, holds because the functions e~#27F1?
and e~ are linearly independent. So, the spectrum of a Gaussian-random
sound signal p; is given by another Gaussian-random function ps. py is
perceived as a steady-state sound, and p, represents essentially a uniform
spread of sound over all frequencies. The randomization of the precise values
of the spectrum avoids the systematic cancellation in the signals with spectra
H and II, 5.

The spectrum py above has the same qualitative behavior over negative
frequencies as over positive frequencies. In order to have a steady-state sound
signal with only positive-frequency components, define the spectrum by

n _ 0 it f <0
) = {p(f) it 7> 0

The inverse Fourier transform of p™ is a random function with the same
density as p.

(4.18)

FUobn = [ ete i = p*(1) = paft)

with probability 1 (4.19)

It is strange that p and p* seem to have the same inverse Fourier transform.
In fact, they do not. They both have inverse transforms that are random
functions of the same density, but F~!(p") inhabits a small, probability-0,
subspace of the space of all such functions. p® denotes a function in this
subspace.

PP = F ") (4.20)

Every p is also a p, but a randomly chosen p has probability 0 of being a

p?.
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Classical probability theory based on measure is not really the right foundation for this discussion.
Each particular signal either does or does not sound like white noise. What determines the sound is not
the process that produced the signal, but specific statistics that must agree with the statistics of a random
process.

Steady-state signals with spectra, such as p and p*, that distribute sound
evenly across all frequencies or all positive frequencies are called white noise,
by analogy to the perception of light with an even mixture of all fequencies
as the color white. Lots of other randomized functions behave as white noise.
In particular, either the phase or the magnitude of the signal may be constant
or deterministic as long as the other one is appropriately randomized. For
example, real-valued functions with random values in uniform or Gaussian
density, and complex-valued functions with constand magnitude and random
angle, both generate forms of white noise.

4.3.3 A Calculus of Fourier Transforms

In order to apply the Fourier transform to generate useful insight, we need
some rules for deriving Fourier transforms of interesting functions. In princi-
ple, we may use the definition of Fourier transform in Equation 4.1, and apply
the rules of the integral calculus. In fact, that is far too cumbersome, and we
need to manipulate functions and their transforms at a much higher level.
The best thing is to forget the meaningful application of the transform for
a while, and just systematically absorb some useful functions and operators
on functions and the rules for their interactions with the transform.

Basic Functions and Their Transforms

Many of the basic functions turn out to be useful in both the time and
frequency domains, so I define them in terms of a generic variable x. For a
systematic presentation, I repeat some functions that we are already familiar
with.

l(z) = 1 (4.21)

Ex) = (4.22)
0 ifx<O

§(z) = { A ifz=0 (4.23)
0 ifx>0
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i_o: o(x — 1)

o(x)/2+1/(2rx)
0 ifa<0
Lifa=0

2
1 ifz>0

12 N2
0 ife<—1/2

; — _1
ifz= 5

if —1/2<a2<1/2

; — _1
ifz= 5

if @ >1/2
sin(ra)/(mx)

O = = o=

re®? for Gaussian random r, uniform random p

Hp
Fph)

Now, the transforms of the basic functions:

F() = ¢
F(&) = I[slo(s —1)
Fo) =1
FAII) = 110
F(k) = H
F(H) = &
F(z) = 7
F(I) = sinc
F(sinc) = 1I
Flp) = pe
Flpt) = p°
F(p¥) = p*

(4.24)

(4.25)

(4.26)

(4.27)



Functional Operators

Functions may be combined by performing a given arithmetic operation on

their corresponding values. Cross correllation (%) and convolution (*) operate

on the entirety of two functions with an integral formula to produce a new

function.

(a+B8)(x) = alx)
(a—B)(x) = alx)
(aB)(x) = alx)
(a/B)(z) = ala)

(8°)(x) = Bla)

ae) = ol)

(axf)@) = [
(axd)e) = [

Now, consider some important properties of, and relations between, these

functional operators.

%«

ax* 3

(a* )+
ax*(B+7)
0%

a* 3
(axB)*y
ax(f+7)
a* 3

ax* 3

(axp)

(s B

o

([x]6(z— A)) *
([x]6(x — A)) *

B *a

ax(Bx7)

(ax*f)+ (axy)

B ([z]a(—2))

ax(Bx7)

(axf)+ (axy)

([x]a(—2)) * f =a  ([z]B(—x))
([zJa(—2)) * B =@ * ([2]3(—2))
o * 3

ax 3

(a(0))6

[z]a(z — A)

[z]a(z — A)



([x]6(z — A))a = a(A) (4.68)

To calculate Fourier transforms, use the following rules that show how the
transform and other functional operators interact.

Fla+B) = Fla)+F(B) (1.69)
F@ = @D (1.70)
FlaB) = aF(p) for constant a (4.71)
Fpt—A) = FOUSAD) = FO)[fe™)
for real constant A (4.72)
F([t1B(A)) = ([f]F(B)(f]/A))]|A] for real constant A (4.73)
F(p(=t)) = [FFBN=S) (4.74)
Flaxp) = Fla)F(P) (4.75)
FlaB) = Fla)+ F(P) (4.76)
Flaxp) = —[[IF(a)(=))F(B) (4.77)
Fla(]e®™) = [fIF(a)(f - F) (4.78)
Flaxa) = |F(a)]? (4.79)
Flo) = [fli2nfF(a)(f) (4.80)

4.4 The Meaning of Convolution and Multi-
plication

Table 4.1 shows how various signal-processing operations can be expressed as
various multiplications and convolutions in the time and frequency domains.
In each case, the subscript ¢ indicates a sound signal in the time domain, and
the subscript f indicates its Fourier transform in the frequency domain. In
the first five cases, the correspondence of the multiplicative formula in one
domain to the signal-processing operation is intuitively clear—the appropri-
ateness of the convolution formula follows from Equations 4.75 and 4.76. In
the last case (time-shifting), the convolution formula in the time domain is
intuitively clear, and the multiplication formula in the frequency domain is
derived from it.

The Fourier transform provides a number of useful insights into the nature
of steady-state sound. Amplitude modulation is seen to introduce frequency
components at the sums and differences of components in the carrier and
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the modulator, since it translates from multiplication in the time domain to
convolution in the frequency domain. Filtering to boost certain frequencies
in relation to others clearly corresponds to multiplication in the frequency
domain, so it may be implemented by convolution in the time domain. Since
sampling in the time domain is essentially multiplication by III, it has the
effect of convolution with IIl in the frequency domain, and the replication of
frequency components at regular intervals resulting from convolution with 111
is precisely aliasing. Finally, notice how Equation 4.79 tells us that the rela-
tive magnitudes of components in the frequency spectrum F(o) depend only
on the statistical correllation of o with the time-shifted versions [t]o(t — A).
This autocorrellation property is what allows random functions to generate
continuous spreads of frequencies, at the cost of randomizing the phases of
the frequency components.

Operation Time Domain Frequency Domain

Amplitude modulation Ay By Ag *x By
Amplitude/phase modulation feHyoH ag * By
Sampling 13, IIT * 3y
Filtering Ay * By Ay By
Filtering /phase-shifting oy * By aysBy
Time-shifting ([t]o(t — A)) * 5, ([fle®™4) 3,

Table 4.1: The meanings of convolutions and multiplications of signals.
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Chapter 5

Additive Spectral Synthesis

5.1 Steady-State Sound

5.2 Amplitude Modulation, Enveloping

5.2.1 Enveloping a Multifrequency Sound
5.2.2 Enveloping Individual Spectral Components

5.3 Frequency Modulation
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Chapter 6
Time-Varying Spectral Analysis

e Dual use of time—sonic time vs. variation time.

6.1 Shortcomings of the Fourier Transform

e Implications for sampling rate.

6.2 Time-Varying Spectral Analysis with the
Continuous Wavelet Transform

Windowing.

Window shape.

Constant ().

Causality.

e Phase vocorder.
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Chapter 7

Synthesis by Resonant Modes

e Shortcomings of additive synthesis w.r.t. simplicity, transformability.

7.1 Filters

In general, a filter is just something that converts an input signal to an
output signal: that is, a function 7 from signals to signals. Most of filter
theory deals with restricted classes of filters with qualities that are physically
reasonable and/or convenient for analysis. The important restricted classes
of filters include:

Time-invariant. Although we express time as a real-valued parameter ¢, it
is usually unrealistic to attach any special significance to time ¢ = 0,
nor to any other particular value of . Normally, only the time differ-
ences between events have perceptual significance in a sound signal. A
time-invariant filter is one whose output at time ¢ does not depend on
the specific value of ¢, but only on the time difference between ¢ and
various events in the input signal. The output of a time-invariant filter
normally varies over time, but that variation depends entirely on input
variation, not on the value of t. That is, the filter has no internal clock,
and no access to information other than the input signal. Technically,
this means that if the input is shifted in time, the output gets shifted
in exactly the same way.

Strictly speaking, if we change the behavior of a filter by manipulat-
ing some knobs, sliders, or other controls, then the filter is not time-
invariant, since its response to an input signal depends on which parts
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of the signal arrive before our adjustmets and whecih parts arrive af-
terwards. For example, the tuning circuitry on a radio is not a time-
invariant filter when we turn the dial. But, we normally understand
such an adjustable filter as a parameterized sequence of time-invariant
filters corresponding to the different control settings. This view works
well enough as long as we are willing to ignore transient behavior close
to the times when the controls change.

Causal. A causal filter is one whose output at time ¢ depends only on the
input at times < ¢. That is, present output depends on past and
present, but not future, input. In the strictest sense, only causal filters
are physically realizable when both input and output are signals in the
time domain. But, it may be convenient to view a causal filter as an
approximation to a mathematically simpler noncausal filter. Also, it is
sometimes convenient to callibrate input and output times to different
0 points, in which case a filter that is physically causal may be mod-
elled by one that appears to look into the future for a limited interval.
Causality is largely irrelevant when we filter signals that are arranged
in space rather than time. Noncausal filtering of sound signals in real
time is impossible, but noncausal filters are perfectly feasible, and quite
useful, for image processing and off-line sound processing.

Finite Impulse Response. A filter has finite impulse response if, when-
ever the input becomes 0 and remains 0 forever, the output eventually
becomes and remains 0.

Memoryless. A filter is memoryless if the output at time ¢ depends only
on the input and its derivatives at time t—not on the future nor past
behavior of the input signal.

Pointwise. A filter is pointwise if the output at time ¢ depends only on the
input value at time t—no memory and no derivatives.

Stable. A stable filter is one whose output cannot run off to infinity with-
out some sort of infinite input stimulus. Physically realizable filters
are always stable in some sense, but it may be convenient to model a
situation where the filter gets destroyed as an instability. There are
many possible variants of stability depending on the precise physical
interpretation of signals, and on the limitations imposed on inputs. In
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these notes, I require that the output of a stable filter cannot go off
to infinity unless the input does so. Physically realizable filters often
satisfy stronger restrictions, such as conservation of energy.

Linear. A linear filter is one for which sums and scalings of input produce
corresponding sums and scalings of outputs. Linear filters are much
easier to analyze than general nonlinear filters, since we may break the
input up into helical components, filter each component, and recon-
struct the output from the filtered components. We have a thorough
mathematical explanation of linear filters, and very little mathematical
information about nonlinear ones. Physically realizable filters are never
precisely linear, but they are often very nearly linear within reasonable
limits on the input signal. In such cases, it is very helpful to consider
the linear approximation to a filter, instead of a more exact but less
analyzable form.

Each restrictions on filters may be expressed precisely as a mathematical
property of a filter 7:

Time-invariant: 7 ([s]o(s + A))(t) = T(o)(t + A) for all signals o, real

constants A.
Causal: 7T (o)(t) =T (o[s|H(t — 5))(1).

Finite Impulse Response: For all signals o, real constants A, there is a
real constant B such that 7 ([s](H(s — A))*o)(t) =0 for all t > B.

Memoryless: T (o)(t) = f(o(t), Lo(t), %a(t), ...) for some function f.

Pointwise: T (o)(t) = f(o(t)) for some function f.
Stable: For all signals o, if there is a real constant A such that |o(¢)| < A

for all ¢, then there is another real constant B such that |7 (o)(f)] < B
for all £.

Linear: 7 (yo+63) =~7(0)+ 87 (/) for all time signals o and /3, complex

constants =, 8.

In this section, I review the theory of linear, time-invariant filters. Nonlinear
filters are very important in sound modelling, but I cannot find a general
theory for them.
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7.1.1 Unit Resonances and Antiresonances

Just as sound signals may be decomposed into simple helices, linear time-
invariant filters may be composed into simple resonances, which boost signals
near a certain frequency, and antiresonances, which suppress signals near a
certain frequency.

Unit Resonances

The unit resonance filter is essentially the ideal spring system of Section 1.1.1,
with an idealized frictional force opposing the spring tension. The tendency of
a spring to vibrate at a particular frequency produces the desired resonance—
in fact a frictionless spring, once moved away from 0, vibrates forever at its
natural frequency. Friction is needed to keep the system stable when it is
stimulated by an input signal. Because of the form of analysis described in
Section 7.1.3, this type of basic filter is also called a single-pole filter. Since
current behavior depends only on present and past behavior, it is causal.
But, it is neither memoryless, nor finite-impulse response.

Recall Equation 1.51 from Section 1.2.2, the complex-number form of the
differential equation for a rotor:

plo= iAp

The real constant A determines the frequency of the rotor; ¢Ap is a vector
perpendicular to p with length scaled by A, so tAp represents a motion
around a circle. Idealized friction causes the rotor to decay toward 0, by
adding a displacement in the opposite direction to p, and of proportional
length. So, the differential equation for a decaying rotor is

o= (BtiA) (7.1)

with B < 0. If B =0, then this reduces to the frictionless rotor. For B > 0,
we get a rotor with antifriction, which is rather explosive. We might as well
take full advantage of complex arithmetic, and rewrite Equation 7.1 as

po= ap (7.2)

where R(a) < 0 and 3(a) > 0.
With initial condition p(0) = 1, the solution to Equation 7.21s p(t) = e®?,
just as if a were real. Using Euler’s formula (Equation 1.61), this is

p(t) = ™ = Rt iS(Q)t e%(a)t(cos(%(a)t) + zsin(S(a)t))
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So, the behavior of a decaying rotor, when released at p(0) = 1, is to follow a
spiral that turns at J(a)/(27) cycles per unit time, and decays exponentially

()t at time ¢.

with amplitude e®

To use a decaying rotor as a unit resonance, let the input to the filter
contribute an additional component to the rotor derivative, and take the
output from the rotor state. Let Req be the filter constructed from the

decaying rotor with constant a. Then Ra(0) = p, where
p = oc+tap (7.3)

This filter resonates to frequencies near J(ax)/(27), and the strength of the
resonance decreases as R(a) decreases.

First, consider the behavior of R when the input is a unit helix at the
resonant frequency, that is Rea(0) where o(t) = ¢! Assume that the
input continues for all time, so that the rotor configuration reaches some
sort of steady state. In that steady state, the rotor state and the input have
exactly the same angle (they are precisely in phase), and the input cancels the
decay component of the rotor equation, so that the rotor state is also a helix
at frequency 3(a)/(27), but with possibly a different amplitude than the
input. Look at Figure (see Maple manuscript) for the relationship between
the input and rotor state.

The picture in Figure (Maple manuscript) is probably the best tool for un-
derstanding the essential quality of the rotor filter with input at its resonant
frequency. But, if you really want to work through the mathematics (which
is elementary, but icky), here it is. Since p has the same frequency and phase
as the input, but some unknown amplitude A, we may write p(1) = Ae?(X)?,
which implies that

Ai%(a)eig(a)t =p =c+ap= eIS(Qt 1 o At (1+ Aa)eiS(a)t

Comparing the first and last terms above, we find that 1A (a) = (1 + Aa),
SO

0= R(EAS (@) = R(1 + Aa) = 1 + AR(ex)

so A = —1/R(a). A is undefined when R(a) = 0. In fact, the only way to
have a steady state with R(a) = 0 is to make o = 0. The derivation yields
a steady state when ®(a) > 0. This steady state is correct in a sense. It
corresponds to input exactly % a cycle out of phase with the rotor state. But,
this configuration is highly unstable: the least deviation from opposite phase
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will send the rotor state off to infinity. By contrast, when R(a) < 0 every
initial state heads asymptotically toward the steady state derived above.

Now, consider an input unit helix at an arbitrary frequency, o(t) = e*5t.
The picture of the steady state is a bit more complicated than before. The
frequency of the output must still be the same as the frequency of the input,
so that the rotor state and input remain at the same angle. If the input
frequency is greater than the resonant frequency, then the phase of the input
advances ahead of the phase of the rotor state, so that part of the input
contributes to moving the rotor at a higher frequency than the resonance.
If the input frequency is less than the resonant frequency, then the phase
of the input falls behind the phase of the rotor state, so that part of the
input retards the rotor. As a result, there is less of the input available
to cancel the decay, and the output has a smaller amplitude than it does
at the resonant frequency. Look at Figures (Maple manuscript) to see the
relationship between the input and rotor state when the input frequency is
greater (respectively, less) than the resonant frequency.

If you really want to see the mathematical derivation, let the output be

p(1) = Ae?PHC) Then
Az BeiBtH0) — pf=c+ap= etBt L oy At BIHC) — (e_ic + Aa)ei(BH'C)
Comparing the first and last terms, 2AB = ¢ + Aa, so
0=R(AB) = ?R(e_sm + Aa) == —cos(C) + AR(«x)

and

AB = S(3AB) = (' + Aa) = —sin(C) + AS(a)

From the real part, cos(C') = AR(a). From the imaginary part, sin(C') =
A(S(a) — B), so C = arctan((S(a) — B)/R(a)) and A = cos(C)/R(ax) =
sin(C)/(S(a) — B) = 1/|a — 2B|. It is easy to see that A is maximum, and
C is 0, when B = J(a). Notice also that the amplitude A falls off more
rapidly the closer that (a) gets to 0. When B > S(a), then C < 0, which
means that the input phase is ahead of the output. When B < 3(a), then
C > 0, so the input phase is behind the output. When R(a) = 0, and when
R(a) > 0, behavior is analogous to the case where input frequency equals
resonant frequency: we get no steady state unless the input is 0, and a steady
but unstable case with input nearly % cycle out of phase with rotor state,
respectively.
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One mathematical complication has been swept under the rug. If you
didn’t notice it, don’t worry about. Just in case you did: the steady-state
output derived above is not the only solution satisfying the differential equa-

tion for the unit resonance. There are an infinite number of solutions. We
may select any complex number value for Ra(c)(0), and there is a unique
solution with that 0 value. The solution that makes physical sense is the only
one in which lim;—._., Ra(c)(t) is bounded. Intuitively, this corresponds to
setting the filter state to 0 at time —oo.

Even though you skipped the mathematical derivations, you should re-
view the following crucial qualitative observations.

Ra has a resonant frequency at S(a)/(27).

Set to some nonzero initial state, and left to itself, the decaying rotor
with constant a spins at the resonant frequency, and its amplitude
decays in the form of e @),

When R(a) < 0, the rotor behavior is stable.

When £(a) = 0 and the resonant frequency is not 0, the rotor behavior
is unstable for all nonzero helical inputs. On zero input, it rotates at
the resonant frequency without decay. The peculiar special case where
a = 0 is stable for helical inputs with nonzero frequency.

When R(a) > 0, the rotor behavior has an unstable equilibrium where
the input is approximately opposite to the rotor state, and cancels the
increase. Any deviation from that unstable equilibrium sends the rotor
off to infinity.

For helical inputs, output amplitude is highest when the input fre-
quency equals the resonant frequency.

Input is in phase with output at the resonant frequency. At higher
frequencies, input phase advances ahead of output phase, at lower fre-
quencies it retards.

Larger values of ®(a) (i.e., closer to 0, since they should be negative)
give higher amplitude of output, and also a sharper peak at the resonant
frequency.
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Although a signal at frequency 0 is not perceptible as sound, a filter with
resonance at frequency 0 may be quite useful. Rp, where D is a real constant,
is a low-pass filter—it boosts low frequencies and suppresses high frequencies,
and D determines how steeply its response rolls of with increasing frequency.
Ro just integrates the input, which is the simplest form of linear lowpass
filtering. Negative-frequency filters also act as low-pass when the input has
only positive frequencies. When working with real-valued signals, instead
of complex-valued, each resonance at frequency F' is usually paired with
another at frequency —F. Even a resonance at infinite frequency makes
sense—it is a high-pass filter, which boosts high frequencies and suppresses
low frequencies—but resonance at infinite frequency cannot be implemented
with a decaying rotor. For now, just think of it as the limiting filter as
frequency goes infinite.

It is not difficult to show that every unit resonance filter R is linear
and time-invariant. So, the steady-state behavior of a resonance is entirely
determined by its response to unit helices. The amplitude A of the output
to a unit helix at frequency F' is called the gain at F', and the phase shift ¢
is called the phase delay at F'. Many people abbreviate this to “delay,” but
that practice is hazardous, since there is another completely different sort of
delay in filter behavior. Section 7.1.3 shows how to analyze and describe the
entire behavior of a linear time-invariant filter, including transient behavior
as well as steady state.

Resonances have very interesting transition effects, in addition to their
steady-state behavior. When a frequency component starts or increases in
the input, the output component at that frequency responds gradually, and
approaches its steady-state value asymptotically. When an input component
reduces or disappears, the resonance continues to vibrate, or “ring”, at the
resonant frequency. Higher values for R(a) lead to slower response when a
component increases, and quicker decay of the ringing. When filters are used
in sound reproduction systems and conventional signal-processing applica-
tions, these transient effects are often considered undesirable, and extensive
design effort is expended to minimize them. But, for sound synthesis, tran-
sient effects, and particularly ringing, are often the main point of using a
filter.

Just as all sound signals may be expressed as a combination of unit helices
(perhaps infinitely many) scaled by complex constants, all causal linear time-
invariant filters may be expressed as a combination of scaled resonances filters
(noncausal filters require time-reversed versions of the resonances). But,
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many natural and useful filters may be expressed more compactly and more
insightfully if we also alo antiresonances, suppressing a given frequency. A
particular filter may be expressible by a discrete or even finite combination of
resonances and antiresonances, while requiring the integration of a continuous
spread of resonances. So, the next subsection investigates antiresonances.

Unit Antiresonances

In terms of input/output behavior, a unit antiresonance filter is the inverse
of a unit resonance. Unfortunately, the rotor mechanism does not explain
antiresonances. Notice that, since the input to a decaying rotor is added to
the derivative of the rotor state, the effect of the rotor is to integrate input,
scaled in some way determined by the resonance, over time. Antiresonance
depends on differentiating the input. A unit antiresonance filter is causal,
finite-impulse-response, and even memoryless (output at time ¢ depends only
on the input and its derivative at time ), but not pointwise. Because of the
form of analysis in Section 7.1.3, a unit antiresonance is usually called a
single-zero filter.

Recall the derivative of a unit helix: %eiBt = ¢Be'Pt. That is, the deriva-
tive of a unit helix is another helix at the same frequency, but advanced in
phase by 1 cycle (from the multiplication by ¢), and scaled by B (frequency
times 27). The crucial quality of the derivative is the scaling by B, since this
gives a mathematical tool for suppressing a particular frequency. We must
work around the phase advance, but it is uniform for all frequencies. So, the
general form for an antiresonance is to cancel a scaled and rotated version of
the input signal against the derivative of the input.

Let Aq be the unit antiresonance with antiresonance characterized by «.
Let o be an input, and let p = Aa/(0) be the corresponding output, defined
by

p = o —ac (7.4)

This is the inverse of the resonance filter behavior in Equation 7.3. Solving
for ¢’ yields

o = ptac (7.5)

which has exactly the form of Equation 7.3, with the roles of o and p reversed.
So, the output Aq (o) from an antiresonance filter, when presented as input
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to the corresponding resonance filter Rey, yields the original input o, and the
same thing happens when the output of the resonance is supplied as input
to the antiresonance.

Aa(Ralo)) = o (7.7)

Consider the behavior of Aq on a unit helix ¢*?!. Since ao and o’ have
the same frequency as o, the output is certainly of the form p = AeiB+C),
and we need to determine the amplitude A and phase shift C. 3(a)o
is a vector in the same direction as o', so by subtracting this from ¢’ we
cancel entirely when B = $(a), and nearly cancel when B is close to the
antiresonant frequency. We are also left with —R(a)o, which is just a scaling
of the input. Look at Figures (Maple manuscript) to see how this works.

Here’s the mathematical derivation, but you may skip it as before.
AeietBt = A'BHD) = ) = o' — a0 = iBe'P! — ae’P! = (iB — a)e'P!
Comparing the first and last terms, Ae? = 4B — a, so
Acos(C) = R(Ae') = R(4B — a) = R(«)

and
Asin(C) = (Ae™) = 3(iB —a) = B — S(a)

From the real part, cos(C') = R(a)/A. From the imaginary part, sin(C') =
(B —S(a))/A, so C = arctan((B — S(a))/R(a) and A = R(ax)/ cos(C) =
(B — S(a))/sin(C) = |a — ¢B|. It is easy to see that A is minimum, and
C' is 0, when B = S(a). The amplitude A increases more rapidly the closer
that R(a) gets to 0. When R(a) = 0, the antiresonant frequency 3(ar)/(27)
is completely suppressed. When B > S(a), then €' > 0, so the phase of the
output lags behind the input. When B < (), then €' < 0, so the phase
of the output advances ahead of the input. This is the opposite of the phase
behavior for a resonance. Unlike a resonant filter, an antiresonant filter is
stable even when R(a) = 0 and R(a) > 0. When the real part is 0, we get
complete suppression of the antiresonant frequency. When the real part is
positive, we get the same output amplitude as if the real part were negated,
but the opposite phase.

Even though you skipped the mathematical derivations, please review
these critical qualitative observations.
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e Aq has an antiresonant frequency at S(a)/(27).

o Aq has no internal state, so it does not produce sonically interesting
output when released in some initial state. Section 7.1.3 shows the
mathematical analogue to the decay of the rotor.

o Aq behaves stably for all values of «.
e When R(a) = 0, the antiresonant frequency is eliminated entirely.

e As |R(a)| grows, the antiresonant frequency is reduced less and less,
and the increase in amplitude away from the antiresonant frequency is
less sharp.

e Negating R(a) corresponds to reversing the phase of the output.

e When R(a) < 0, frequencies higher than the antiresonant frequency
are retarded in phase, lower frequencies are advanced.

at oo: that is, Ap for real constant D is a high-pass filter. In particular,
Ap just differentiates its input, which is the simplest form of linear highpass
filtering. An antiresonance at co makes perfect sense, but it is usually more

convenient to represent it as a resonance at 0. ARE THESE REALLY THE

The antiresonances, like the resonances, are linear and time-invariant.
So, their steady-state behaviors are determined entirely by their responses
to unit helices. As with resonances, the amplitude A of the output to a unit
helix at frequency F'is the gain, and the shift C' is the phase delay at F'.
Antiresonant filters are memoryless, and present output depends only on the
value and derivative of present input, so they do not create the transient ef-
fects, particularly ringing, of resonant filters. But, because of the dependence
on input derivative, antiresonances react in interesting ways to transients in
the input. A sudden change in a frequency component of the input boosts
the amplitude of that component in the output. Higher values of R(a) lead
to stronger reactions to changes in the input.

Identity, Constant Output, Time Shifting

There are a few linear time-invariant behaviors that do not develop naturally
from resonances and antiresonances. But, they are quite simple to under-
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stand directly. The identity filter produces output exactly the same as its
input.

I(o) = o (7.8)

7 is neither a resonance nor an antiresonance, but when we consider combina-
tions of resonances and antiresonances, it is the natural starting point—the
combination of 0 resonances and (0 antiresonances. The constant output fil-
ters produce the same output no matter what the input.

Notice that the output must be a complex constant, independent of time,
else the filter would not be time-invariant.

The remaining time-invariant filtering behavior that does not appear to
develop naturally from resonances and antiresonances is time shifting.

Sp(o)(t) = o(t— B) (7.10)

When E > 0, the time shifter Sg is causal, and represents a delay. The delay
induced by Sg is called pulse delay. It is totally different from the phase
delay induced by resonances and antiresonances.

Combining Filters in Sequence and In Parallel

Given the unit resonances, unit antiresonances, identity, constants, and time
shifters, a lot of interesting filter behaviors may be constructed by the intu-
itive equivalent of scaling the filters and wiring them together. The scaling
of a filter 7 by a multiplies the output by a. When the filter is linear and
time-invariant, this has the same result as multiplying the input by o.

(aT)o) = a(T(0) (1)
(Ta)(lo) = T(ao) (7.12)
a7 = Toa when 7 is linear time-invariant (7.13)

The sum of two filters 7; and 7, corresponds to splitting the input signal,
feeding it separately to 7., and 73, and adding the two outputs.

(Ti+T)(0) = Ti(0)+ Ta(o) (7.14)

77



The composition, or cascade, of 7y and 7 corresponds to feeding the input
to 7q, then taking that output and feeding it to 7;. When both filters are
linear and time-invariant, the order makes no difference.

(ToT)o) = T(T(o) (7.15)
TioT, = T,07T; when Tq,7; are linear time-invariant (7.16)

With suitable notions of infinitary sum and composition, all causal lin-
ear time-invariant filters may be constructed from scaled versions of reso-
nances, antiresonances, identity, constant, and time shifters Sp with £ > 0.
Along with the negative time shifters, they suffice to construct all linear
time-invariant filters, although the forms of filters that depend on the in-
definite future are rather peculiar, and more natural presentations require
time-reversed versions of the resonances. Section 7?7 explores some of the
special forms for representing filters using various operations on the the ba-
sic filters.

7.1.2 Forms for Representing Filters

There are a number of different ways to represent linear time-invariant filters,
each of them useful in different ways. The best representation for the purpose
of implementation is not always the best for understanding and analysis.

Impulse Response and the Convolution Form

The impulse response for a filter 7 is its output whent the input is an in-
finitely sharp pulse at time 0, that is 7(6). Since the only nonzero input is
at time 0, 7(6)(¢) gives the contribution of an input at time 0 to the output
at time t. For a time-invariant filter, this is the same as the contribution
of input at time s to output at time s + ¢, for all s. For a linear filter, the
contribution of an input point to an output point is proportional to the input
value, and the output at a given time is the sum of the contributions from
other times. So, 7(6) completely determines the behavior of 7. At first,
it may seem surprising that a single input determines the behavior for the
infinitely many different unit helices, but recall that F(é) = 1, so ¢ contains
helical components at every frequency.

The description of 7 (o) in terms of the impulse response is particularly
simple.

T(o) = T()*o (7.17)



This is the convolution form of the filter 7. Recall that (7(6) * o)(t) =
22 T (8)(s)o(t — s)ds, so the convolution is just the integration of the con-
tributions of each o(t — s) to o(t). This is particularly clear mathematically,
but it may be very expensive to compute, particularly if the impulse response
goes to 0 slowly.

Interesting properties of a linear time-invariant filter 7 may be expressed
in terms of the impulse response.

Causal: 7(6)(t) =0 for all t < 0.

Finite Impulse Response: There is some real constant A such that 7 (6)(#)
0 for all £ > A.

Memoryless: 7 (6)(t) =0 for all ¢ # 0.
Pointwise: 7(6) = a6 for some complex constant a.
Stable: lim,_... 7 (6)(t) = 0.

Since convolution is a form of weighted integration, it is surprising at
first that the convolution form can express filters, such as the antiresonances
Aa, that depend on derivatives of the input. But, ¢’, the derivative of the
Dirac impulse, has the strange property that it produces derivatives of other
functions by convolution.

§xo = o (7.18)

6'(t) = 0 for all real numbers ¢, but ¢’ shoots up to oo infinitesimally before
0, and down to —oo infinitesimally after 0, so by convolution it produces
the slope of an infinitesimal region about each point in the signal o. The
convolution form suggests another interesting restricted class of filters: a
filter is convolutional if its impulse response is a normal function from reals
to complex numbers, rather than a generalized function.

It we object to convolution with generalized functions, then we may ex-
press all filters as sums of convolutions with derivatives

0 dk
T(o) = kZ:% L * T (7.19)
This form is not unique—there are many different sequences g, ¢1, ... repre-

senting the same filter 7—but all of the (4s may be normal functions from
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reals to complex numbers. Perhaps it is more interesting to let the s be
sums of normal functions and time-shifted Diracs [t]6(t — A), so that they
combine integrals and discrete values of their respective derivatives.

Differential Equation Forms

The unit resonances were all defined by ordinary differential equations. This
representation generalizes to define all linear time-invariant filters in the form
of ODEs of any chosen order k. That is, 7 (c) = p, where p is the solution
to the differential equation of the form

dk
%P

Appropriate initial conditions are required to select the right one of the
infinitely many solutions. For causal filters, the right idea is to initial-
ize p and all of its derivatives to 0 at time —oo; formally we require that
limy_._., fracd'dt'p is bounded for all /. For noncausal filters, things are
more complicated. Essentially, a noncausal filter is the sum of a causal com-

= (xo+n*xp (7.20)

ponent that starts in value 0 at time —oo and an anticausal component that
ends in value 0 at time oco.

With £ = 0, ¢ = 7(6) and n = 0, the ODE form is the same as the
convolution form. For every filter 7 and positive integer k, we can get a kth

order ODE by letting « = 4 T(6)="1T( a ). But, the ODE form is useful

i dik
when ¢ and 7 are both nonzero, and both simpler or easier to compute with

than all of the 7 ( d* 6) functions.

diF
Ideally, o and 3 may be finite sums of impulses and derivatives of im-
pulses. For example, Ra/(6) = HJ[t]e™®" is an infinitely long, continuous

impulse response, but R may also be presented as a first-order ODE with
t =1 and n = a. The composition Re, 0+ 0 Ray, of k unit resonances

may be defined by a finite kth order ODE. For example, Ry, © Ry, has the
2nd order ODE

d? d

ﬁp = o+ (a1 + ag)—tp — X1 ap (721)

d
with £ = 2, L= 1, n = (a1 + a2)5’ — X1 X2,
Interesting properties of the filter 7 may be expressed in terms of the
parameters of an ODE form for 7.

Causal: 7(t) =0 for all ¢t > 0.
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Finite Impulse Response: n = 0.

4 . .
Memoryless: n = 0and ¢ = >_72, al%(S, for some infinite sequence ay, oy, . . .
of complex constants.

Pointwise: 7 =0 and ¢ = )2, a6, for some infinite sequence ay, ar, . .. of
complex constants.

Every differential equation of order & may be reduced to lower orders
k—1,k—2,...1 by introducing extra variables. When defining a filter, these
extra variables may be understood as the internal state of the filter. For
example, R, © Rex,, which was represented by a 2nd order ODE above,
may also be represented by a lst order ODE to be solved simultaneously
for 2 variables. That is, Ra, © Rav,(0) = p1, where pq, py are simultaneous
solutions to the ODE

Py = p2taup (7.22)
plg = 0+ aps

Multivariate low-order (usually 1st order) ODEs often provide the most direct
understanding of a filter as a device with input, internal state that develops as
a function of input and previous state, and output derived from the internal
state. For example, a multirotor system may be described by an ODE with
one complex variable keeping the state of each rotor. The final output may
be given as a linear combination of the rotor states.

7.1.3 Analyzing Filters with the Laplace Transform

Just as we analyze every sound signal in terms of unit helices, we may analyze
every linear time-invariant filter in terms of unit resonances. Information
about antiresonances comes as a byproduct of the analysis of resonances. In
fact, the Fourier transform of the impulse response already provides enough
information to characterize the behavior of a filter, but that information is
revealed more conveniently by an extension of the Fourier transform, called
the Laplace transform. The Laplace transform of a signal o is

L(o)(¢) = /OO o(t)e=PItds (7.23)

— 00
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The Laplace transform takes a function from real to complex values and
produces a function from complex to complex. It generalizes the Fourier
transform by allowing the multiplier 227 f of ¢ in the exponent to be an ar-
bitrary complex number ¢. The Laplace transform of ¢ contains the Fourier
transform in a simple way.

Flo)(f) = Llo)(@2xf) (7.24)

In fact, the whole Laplace transform may be defined as a combination of
Fourier transforms of o times a real-valued exponential.

L) (@) = Fle P (S(e)/(27) (7.25)

Fixing an arbitrary constant value D for the real component of ¢, the real-to-
complex function [f]L(c)(D +¢f) carries enough information to reconstruct
o, so the Laplace transform is highly redundant. Most functions from com-
plex to complex are not the Laplace transform of any signal.

Different books and papers use variations on the definition of the Laplace
transform. Many use a one-sided Laplace transform, with integral from 0 to
00. Of course, the one-sided transform of ¢ is just the two-sided transform
of Ho. For greater generality, and closer correspondence with the Fourier
transform, the two-sided form is better.

Roughly, £(0)(¢) matches o against the decaying (or expanding) heli-
cal pattern [t]e®!. The negation of ¢ in the exponent within the integral
defining the transform serves the purpose of conjugating the helix, as in
the Fourier transform, and it also reverses the decay/expansion of the helix.

This reversal of decay/expansion causes the product [t]a(t)e_(ﬁt to be the

constant 1 precisely when o = [t]e(ﬁt. But, while the helical patterns in the
Fourier transform are linearly independent, all decaying/expanding helices
at the same frequency are dependent. So, a resonance « affects the Laplace
transform at 3 as long as S(a) = J(3), even when the real components
differ.

The precise understanding of the Laplace transform as pattern matching
is rather subtle, and beyond the mathematical powers of these notes. In
particular, for many functions of interest, the defining integral diverges, and
L(0)(¢) is undefined, except for a small band of values of ¢. Some of the
divergence may be understood through generalized functions, but much of
it may not. Some applications of Laplace transform require thorough un-
derstanding of the regions of convergence. For our purposes, the Laplace
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transform of most useful signals produces a nice symbolic expression, and
the function defined by that expression gives the insight that we need, even
though strictly speaking the expression is only correct within the region of
convergence. This is spooky, but we’ll have to live with it. T am sure that
there is a way of recasting the mathematics to explain the apparent values
of Laplace transforms in the divergent regions, but I haven’t found it yet.

The Laplace transform has properties analogous to those of the Fourier
transform, but with some differences on inputs with nonzero real compo-
nents. Most tables of Laplace transforms leave out és and other functional
components with infinite values, since by definition they are outside of the
region of convergence. This confuses me, and obscures the correspondence
between Laplace transform and Fourier transform, so I have included these
infinite components.

L) = 1 (7.26)
L) = [dlo (7.27)
E(%@ = [¢]¢" (7.28)
L6 —ab) = [¢]6—a (7.29)
L(§" —2a8 +a’s) = [¢](6— ) (7.30)
Lot —A)) = [gle™” (7.31)
L(H) = [g)(67" +6(4)/2) (7.32)
L -3) = g (7.33)
L(Z) = [g]e”/tm) (7.34)

L(II) = [¢](2sinh(¢/2)/¢)

[¢]

(2

(e = e/ 9) (7.35)

(14 (arctan(—¢/7) — arctan(¢/x))/#()7.36)
(7.37)

L(sinc) = [¢]

To calculate Laplace transforms, use the following rules that show how the
transform and other functional operators interact.

Lla+8) = Lla)+L(P) (7.38)
L@ = [L(a)((9) (7.39)
L{af) = aLl(f) for constant a (7.40)
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L(NB(t—A)) = L(B)([#]e™?) for real constant A (7.41)
L([t]F(AL)) = ([9]L(B)(¢/A))]|A] for real constant A (7.42)
L([15(=1) = ([¢lL(B)(=9)) (7.43)

Llaxp) = La)l(B) . (7.44)
Llas) = [dltize)™ [ L) (h)£(6 — v

for certain C' depending on ¢ (7.45)

LlaxpB) = [¢]L(a)(=0)L(B) (7.46)

Llaxa) = [o]L(a)(¢)L(a)(—¢) (7.47)

L) = ([¢]6)L(a) (7.48)

In the convolution theorem (Equation ?7?), the complicated-looking integral
is a convolution of traces in the imaginary direction through « and 3, deter-
mined by the real value C. « is traced at C', and 3 at R(¢) — C. If possible,
(' is chosen so that both traces converge. A different C' may be chosen for
each ¢. If more than one choice of C' yields convergence, then all such values
of C yield the same value.

The Laplace transform is most often applied to signals that are 0 for all
negative times, so it is worth reviewing those cases in particular.

LOH) = [¢l(1/6+6(4)/2) (7.49)
LEH) = [¢]1/(¢ —12n) (7.50)

L6H) = 1 (7.51)
LIH) = []coth(qs/z) (7.52)
c(@enm) = [gl(¢—a)”! (7.53)

7.1.4 Discrete Filters and the 7 Transform
7.2 Sound Creation by Modal Synthesis

7.2.1 Continuously Driven Resonators

7.2.2 Ringing Resonators
7.3 Sound Modification with Formant Filters
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