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Chapter �

Physical and Mathematical

Foundations of Sound

Modelling

In order to have useful discussions about sound� we need a very simplistic�
but practical� understanding of the physics and mathematics associated with
sound�

��� Physics� What Is Sound�

For our purposes� sound is any kind of vibration that is detectible by the
ear or devices analogous to the ear� Treatments of sound in physics books
tend to focus attention on the transmission of sound vibrations through the
air� We will focus instead on the vibrating systems that produce and detect
sounds� and just assume that the air is capable of transmitting vibrations
from sound producers to the detectors in the ear�

����� Vibrating Springs

The simplest sort of vibration to understand is that of a spring� To really
simplify things� imagine an environment with no gravity� and with a mass
�a solid chunk of something� moving along a frictionless track that is �xed
so the track cannot move� The track constrains motion of the mass to a
straight line� so we do not need to consider the three dimensions of space�
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Figure ���� Ideal spring resonator

Finally� imagine a spring attached at one end to the mass� and at the other
end to some �xed point on the track� Be a bit liberal�minded� and imagine
that the spring has length 
 when it is not stretched� and that the mass can
move freely past the point where the spring is attached� A picture of our
imaginary system is given in Figure ����
At any moment in time� the state of the spring system can be described

by two real numbers� the displacement y of the mass to the right of the point
on the track to which the spring is �xed� and the velocity v of the mass to
the right� Displacement to the left is represented by negative values of y� and
motion to the left is represented by negative values of v� Now� imagine that
we displace the mass to the right and hold it in a �xed position� stretching
the spring� That is� we establish an initial condition where y � 
 and v � 
�
When we release the mass� the spring pulls it to the left� causing a state
where y � 
 and v � 
� Eventually the mass reaches the center of the track
at y � 
� but at this moment v � 
 and inertia carries the mass beyond the
center� to the left where y � 
� Now� the spring pulls the mass to the right�
cancelling out the motion v � 
 to the left� Eventually the mass stops with
v � 
� but at this moment the spring is stretched to the left with y � 
�
so the pull to the right continues and causes the mass to move right with
v � 
� This motion to the right eventually moves the mass past the center�
so y � 
� The leftward pull of the spring opposes the motion until v � 
� So
we return to a condition that is similar to the initial one� y � 
 and v � 
�
and the cycle repeats� Figure ��� shows a schematic qualitative view of the
vibration of the spring�
To complete the simplistic physics of a vibrating spring� we need to con�

vert the qualitative observations above into quantitative information that we
can use in a mathematical analysis� For this purpose� let t be a real number
representing the time that has passed since some arbitrary starting moment
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Figure ���� Qualitative states of spring

when t � 
� For any quantity q that depends on time� dq�dt means the
instantaneous rate of change of q with respect to t�when the independent
variable t is understood from context� dq�dt is often abbreviated q�� When
no outside force acts on the spring and mass� its behavior is described by the
following two equations�

y� � Av �����

v� � �By �����

A and B are positive real number constants �independent of time��their
actual values do not matter to us� Equation ��� holds because velocity is
de�ned to be the change of location over time� and displacement is just a
measure of location from a particular origin�the constant A takes care of
any conversion of units between y� and v �normally the units are the same
and A � ��� Equation ��� represents the fact that the force exerted by a
spring increases in magnitude proportionally to the distance that the spring
is stretched� and the force acts to pull the ends of the spring together� The
value of B is determined by the sti�ness of the spring� Equation ��� is an
approximation� because no real spring exerts a force precisely proportional
to the stretching distance�in particular when a spring is stretched too far
it changes radically� becoming sti�er� or becoming softer� or breaking� de�
pending on its construction� The right practical approach to understanding
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vibration is to do as much analysis as possible based on the simple approx�
imate equations above� and then do the potentially complicated corrections
only when greater accuracy is required�
Vibrating objects that produce sound� and others �such as the hairs in the

cochlea of the ear� that detect sound� can be modelled fairly well by systems
of vibrating springs connected together in various ways� Other vibrating
systems have other physical parameters that measure the vibrating behavior�
but in most cases there are two real numbers�for example pressure and �ow
of vibrating air� potential and current of vibrating electrical charge�that
behave analogously to displacement and velocity in a vibrating spring�

��� Mathematics� How DoWeModel Sound�

The key to understanding the mathematical analysis of sound is to visualize
the mathematics using graphs and geometric diagrams� The right way to
visualize the mathematics does not look like the physical system of vibrating
springs or other objects that it is describing� The value of the mathematics is
to give us a di�erent way of visualizing sound� that is much more convenient
for analytic reasoning than the actual physical con�guration of vibrating
objects� Mathematically� the important properties of a vibrating spring are
just Equations ��� and ���� We can forget that they arose from the physical
properties of a spring� and just consider the numerical behavior of two real
numbers x and y as functions of t� when they satisfy the equations�

y� � Ax �����

x� � �By �����

From now on� lower case Roman variables� such as x and y� stand for real
numbers that are functions of a time parameter t� Upper case Roman vari�
ables� such as A and B� stand for real number constants� which are the
same as unvarying functions of time �but widely used notations� such as
e � ������� � � �� are left alone�� Occasionally� we will use the form x�t� to
denote the value of a function x at a particular time t� but usually we will
refer to entire functions rather than individual values� When an expression
��t� containing an independent variable� such as t� should refer to an entire
function� rather than a single value of the function� we write �t���t��

�



(b)

state state

(a)

change

change

yy

x x

Figure ���� State and change vectors for vibrating spring

����� Vibration as the Circular Movement of a Rotor

To visualize all the possible states of a vibrating system� consider a plane in
which the horizontal axis gives the value of x and the vertical axis gives the
value of y�in this way each possible state of the system is a point in the
plane�
First� consider the simple case where B � A� so Equations ��� and ���

specialize to

y� � Ax �����

x� � �Ay �����

Figure ����a� shows an example point hx� yi and the corresponding point
hx�� y�i � h�Ay�Axi as vectors in the plane� when A � ���� Notice that
the angle between these two vectors is always a right angle� Since hx�� y�i
represents a change in hx� yi it is useful to displace the origin of the vector
representing hx�� y�i to the end of the vector representing hx� yi� as shown in
Figure ����b�� Now� it is easy to see that the state of the system must trace
out a circle in the plane centered about the origin� because the direction of
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Figure ���� Spring system vs� rotor

change is always at right angles to the state vector� The size of the circle can
be any nonnegative real number�setting the size corresponds to providing
an initial displacement to the mass on the spring� Furthermore� since the
magnitude of the state vector always stays the same� the magnitude of the
change vector is also always the same �A times the magnitude of the state
vector�� so the state moves around the circle at a constant speed� I call such a
system with a point moving around a circle at a constant speed a rotor� The
time required for one full rotation is the period P of the rotor� The number
of full rotations in a unit of time is the frequency of the rotor� its value is
��P � The magnitude of the state vector is the amplitude of the rotor� The
angle of the state vector with respect to the x axis �h�� 
i� at time t � 
 is
the phase of the rotor�
Take � minutes to visualize the relationship between the rotor and the

vibrating spring system� as suggested in Figure ���� Notice that we have no
interest in actual physical devices that look like rotors�the rotor is purely a
mathematical concept that allows us to analyze the behavior of a vibrating
system� Now forget about springs� and always visualize vibration in terms
of rotors and similar mathematical systems that we investigate later�
While the speed of a rotor state around its circular path is constant� the
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x and y components of the rotor state oscillate sinusoidally� Consider a rotor
with amplitude R �that is� the circular path has radius R� and frequency F
�F full rotations per unit time�� starting at time t � 
 in state hx� yi � hR� 
i�
The values of x and y at any time are given by the trignometric cos and sin
functions�

x � R cos���Ft� �����

y � R sin���Ft� �����

The multiplication by �� is required because we measure angles in radians�
and one full rotation is �� radians� Notice that the maximum �minimum�
values for x and y are both R ��R�� and each reaches its maximum and
minimum when the other is 
� Figure ��� shows x �solid line� and y �dashed
line� as functions of time t for a rotor with a frequency of ��� rotation per
unit time� Figure ��� shows a three�dimensional plot of x� y� and t� The
path of the state is a helix� circling about the t axis� Think of the helix as
the trace of a point running around the circle from Figure ����
When A �� B in Equations ��� and ���� the state vector traces out an

ellipse� whose aspect ratio is
q
A�B� The speed of the state vector around

the ellipse is not constant �but the period and frequency are still well de�ned��
Instead of �guring out a detailed description of an elliptical rotor� notice that
we can always normalize a rotor to have circular motion� by changing the
units in which x and y are measured� In an elliptical rotor with frequency
F � starting at time t � 
 in state hx� yi � hRx� 
i and crossing the y axis in
state hx� yi � h
� Ryi� the values of x and y at any time are still given by the
cos and sin functions� but with di�erent scaling factors for each�

x � Rx cos���Ft� ���	�

y � Ry sin���Ft� ����
�

In this case� the maximum �minimum� value for x is Rx ��Rx�� and for y it
is Ry ��Ry�� As before� each parameter reaches its maximum and minimum
when the other is 
�

����� Rotor State as a Complex Number

It is mathematically convenient to think of the two�dimensional rotor state
vector hx� yi as a single complex number x� iy� where i is the 
imaginary�
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number de�ned to be the principal square root of �� �if you read engineering
books and articles� you may see this number written as j instead of i�� Do not
look for deep signi�cance in the names 
real number�� 
imaginary number��

complex number�� These names are just tags made up by mathematicians�

real� numbers are no more real than other numbers� 
imaginary� numbers
are no more imaginary� and 
complex� numbers are used to simplify a lot
of the analysis that we need to do� For our purposes� the complex number
x� iy is just a particular notation for the vector hx� yi� which is particularly
convenient because the familiar operations of addition� multiplication� and
exponentiation on the real numbers extend very naturally to operations on
complex numbers that are just right for analyzing vibration�

Review of Complex Arithmetic

From now on� we use Greek letters �� �� �� etc� as variables ranging over
complex number functions depending on the time variable t� Complex num�
ber constants independent of time are denoted by bold face Greek letters ��
�� �� etc� �but widely used notations� such as � � ������	 � � � are left alone��
It is important to be �uent in the following facts about complex numbers�
and to be able to do complex arithmetic and algebra just as easily as you
learned to do real arithmetic and algebra in calculus class� Make sure that
you visualize each of the facts below in terms of vectors in the plane�

Cartesian form of complex numbers

x� � iy� � x� � iy� if and only if x� � x� and y� � y� ������

Addition and multiplication extend to complex numbers by using the
commutative� associative� and distributive laws� and the fact that ii � i� �
��� Addition of complex numbers may be visualized in terms of the vectors
represented by the two numbers� shift the origin of one vector to the head of
the other vector as shown in Figure ���� The conjugate of a complex number�
written �� is the re�ection of � through the real axis� as shown in Figure ����

�x� � iy�� � �x� � iy�� � �x� � x�� � i�y� � y�� ������

�x� � iy���x� � iy�� � �x�x� � y�y�� � i�x�y� � x�y�� ������
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Figure ���� The conjugate of a complex number
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� � 
 ������

��� � �� � �� � �� ������

The real and imaginary parts of a complex number are de�ned to select
out the two components of the vector�

��x� iy� � x ������

��x� iy� � y ������

���� �� � ���� � ���� ������

���� � ���� � ���� � ���� ������

����� � ����������������� ������

����� � �������� � �������� ������

� � ���� � i���� ����	�

� � � if and only if ���� � ���� and ���� � ���� ����
�

���� and ���� are called the Cartesian coordinates of the complex number
��

Polar form of complex numbers� The reason why complex numbers are
particularly convenient for analyzing vibration is that they may be manipu�
lated according to the magnitude �length of the vector� and argument �angle
of the vector with respect to �� as well� A magnitude is just a real number
� 
� representing the length of a vector� Angles are a bit trickier�

Rotational and directional angles� There are really two connected
but di�erent concepts that are both called 
angles�� First� there are rota�
tional angles that measure an amount of rotation� A rotational angle may
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be any real number�positive numbers represent counterclockwise rotation�
and negative numbers represent clockwise rotation� A rotational angle of ��
represents a full rotation counterclockwise� Even though the direction that
an object points after a full rotation is the same as before the rotation� ��
represents a di�erent rotation than 
 or ��� or ���suppose for example
that we are measuring rotation of a wheel that winds up a spring�
The other sorts of angles are directional angles that measure the direction

that a vector is pointing with reference to some conventional 
 direction �for
complex numbers� 
 is the directional angle of the vector represented by ���
Directional angles must be in the half�open interval �
� ���� Many books
and articles prefer to describe directional angles in the interval ���� �� �so�
for example� the angle ���� in our notation becomes ������ It makes no
essential di�erence which interval is used� since all arithmetic on directional
angles is done on a circle of circumference ��� rather than the usual real line�
We may convert rotational angles to directional angles with the function
mod���

x mod �� � x� ��bx�����c ������


 � x mod �� � �� ������

When x mod z � y mod z we often write x � y �mod z� instead� This form
suggests an alternate view of modular arithmetic� x � y �mod z� means
that x and y are two names for the same thing in the �mod z� universe� even
though they may be di�erent numbers in the usual real number universe� If
we apply a rotational angle x to rotate a vector from a starting position with
directional angle 
� we get a new vector with directional angle x mod ���
Notice that all rotational angles x � �k� for integers k correspond to the
same directional angle� Given a directional angle x resulting from a rotation�
there is no way to tell which of the in�nitely many possible rotational angles
generated x� To avoid becoming confused by the ambiguity in the word

angle�� visualize each angle as either an amount of rotation or a static
direction� instead of a pure abstract real number�
The angle of a complex number is a directional angle� so it is restricted

to the interval �
� ����

jx� iyj �
q
x� � y� ������

arg�x� iy� � arctan�y�x� mod �� ������

j�j � 
 ������

��



arg��� � 
 ������

arg��� � �� ������

������

� � � if and only if j�j � j�j and arg��� arg��� ����	�

arg�
� is unde�ned� since it makes no sense to take the angle of a vector
with magnitude 
� But� we let arg�iy� � ��� for y � 
 and arg�iy� � ����
for y � 
 in spite of the division by 
 in Equation ����� since i and �i are
clearly at a right angles to the real axis �notice that limz�� arctan�z� �
���� limz��� arctan�z� � �� � ���� � �� � ������ Figure ��	 shows the
relation between ����� ����� j�j� and arg��� when � is drawn as a vector
in a two�dimensional space� j�j and arg��� are called the polar coordinates
of the complex number �� Addition of complex numbers is easiest to do by
manipulating the real and imaginary parts� but multiplication and division
may be de�ned very nicely on the magnitude and angle�

j��j � j�jj�j ����
�

arg���� � arg��� � arg��� mod �� ������

j���j � j�j�j�j ������

arg����� � arg��� � arg��� mod �� ������

j � �j � j�j ������

arg���� � arg��� � � mod �� ������

jx�j � j � x�j � xj�j for x � 
 ������

arg�x�� � arg��� for x � 
 ������

j�j � j�j ������

arg��� � � arg��� mod �� ����	�

� � j�j�cos�arg���� � i sin�arg����� ����
�

Using Equations ���
 and ����� we see that a complex number � of magnitude
� acts as a rotator� the multiplication �� rotates � by the angle arg���� In
particular� multiplication by i rotates a vector counterclockwise by ��� �right
angle�� So� letting the single complex number 	 � x� iy represent the rotor
state hx� yi� we may express Equations ��� and ��� as a single equation�

	� � iA	 ������

��



real

axis

im
ag

in
ar

y

ax
is

R(a)

arg(a)

I(
a) |a

|
a

Figure ��	� Complex number� Cartesian and polar coordinates

��



The elliptical rotor system of Equations ��� and ��� may also be expressed
as a single equation using the conjugate operation�

	� � i��A�B�	� �A�B�	��� ������

Complex number to real power� Equation ���� is also the key to under�
standing exponentiation of complex numbers� Notice that the angle behaves
logarithmically with respect to addition and multiplication �think of the anal�
ogous equation ln�xy� � ln�x� � ln�y��� Since exponentiation is essentially
iterated multiplication� and complex multiplication is additive on angles�
complex exponentiation has a multiplicative e�ect on angles� Consider �rst
a complex number � raised to the power of a real number x�

j�xj � j�jx ������

arg��x� � x arg��� ������

�x�y � �x�y ������

�xy � ��x�y ������

����x � �x�x ������

�x � �x ������

�� � � ����	�

�� � � ����
�

Equation ���� begins to reveal the power of complex numbers for an�
alyzing vibration� Think of a rotor with amplitude R� frequency F � and
phase 
 �starting value R � i
 at time t � 
�� The state of the rotor at
any time t is 	 � Ri�Ft �we multiply F by � because arg�i� � ��� is
��� of �� radians� which is a full rotation�� For an elliptical rotor with
starting value R� that crosses the imaginary axis at iR�� the state at time

t is �R� � R��i
�Ft�� � �R� � R��i

�Ft��� Equivalent expressions include
�R��R��i

�Ft����R��R����i��Ft�� and �R��R��i
�Ft����R��R��i

��Ft���
The last of these is the most popular� and leads to the notion of a �F fre�
quency component in an elliptical rotor�

Complex exponents� The most important fact about complex numbers
for the study of vibration is the rule for raising the real number e � ������� � � �
to a complex power�

eiy � cos�y� � i sin�y� ������
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ex�iy � ex�cos�y� � i sin�y�� ������

je�j � e���� ������

arg�e�� � ���� mod �� ������

e� � e� ������

� � j�jei arg��� ������

� � eln�j�j��iarg��� for � �� 
 ������

Equation ����� known as Euler�s formula in honor of the famous mathemati�
cian who discovered it� is the most important single equation for the study of
vibration� It allows us to reason about trigonometric functions by using the
relatively easy�to�remember properties of exponentiation� Computer algebra
systems typically convert trigonometric formulae into exponential form in
order to simplify them more e�ciently�
For our purposes� the derivation of Euler�s formula is not as important as

the formula itself� To see why the formula is sensible� consider the ordinary
di�erential equation de�ning the exponential function for real numbers�

x� � Ax ������

The most interesting solution to equation ���� is the one with initial condition
x�
� � �� and this leads to

x�t� � eAt ����	�

That is� the �scaled� exponential function eAt is characterized by its inital
value and the fact that its slope at each time t is A times its value at time
t�the larger it gets� the faster it grows� Notice that equation ���� has the
same form as equation ����� but it describes a complex�valued function� and
the multiplier is an imaginary number iA rather than a real number A� So�
it is sensible to regard the natural solution to equation ����� which is a rotor�

as the function eiAt�
Euler�s formula also gives us another way to represent each complex num�

ber ��instead of the usual form ���� � i���� we may write j�jei arg���� For
� �� 
 we may also write eln�j�j��iarg���� Unlike the additive Cartesian form
x� iy� the exponential polar reiw form for a complex number is not unique�
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since reiw � rei�w��k�� and 
eiw� � 
eiw� �

r�e
iw� � r�e

iw� if and only if

r� � r� � 

or

r� � r� and w� � w� �mod ���
or

r� � �r� and w� � �w� � �� �mod ���
����
�

In essence� exponentiation is a kind of conversion between Cartesian and po�
lar coordinates� the polar coordinates of e� are je�j � e���� and arg�e�� �
����� mod ���� So� the Cartesian coordinates of � turn into the polar coor�
dinates of e�� Notice that ���� is naturally understood as a rotational angle�
while arg�e�� is a directional angle�
Euler�s formula �Equation ����� allows an even nicer way to analyze a ro�

tor with amplitudeR� frequency F � and phase 
 �starting value R�i
 � Re�

at time t � 
�� the state at any time t is just 	 � Rei��Ft �such expo�
nential expressions are sometimes called phasors in the engineering litera�
ture�� For the elliptical rotor starting at R� and crossing the imaginary
axis at iR�� the state at time t is ��R� � R��e

i��Ft � �R� � R��ei��Ft����
or ��R� � R��ei��Ft � �R� � R��e�i��Ft���� And� it is particularly easy to
construct a complex number with magnitude � to rotate other numbers by a
given angle w� use eiw� Look back at Figures ��� and ��� again� and interpret
them in terms of complex numbers�
Now� the way to understand exponentiation �� with an arbitrary complex

base � is to �rst write � � j�jeiarg���� and then use the rules for exponentia�
tion with base e�

�reiw�x�iy � rve�wyei�wx�y ln�r�� ������

j��j � j�j����e� arg������� ������

arg���� � arg������� � ln�j�j����� ������

These equations are rather complicated� and fortunately we will not be using
them much� Work them through for exercise with complex numbers� and
convince yourself that they follow from the earlier rules� Notice how expo�
nentiation mixes together the Cartesian coordinates of the exponent with the
polar coordinates of the base�
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Complex logarithms� Euler�s formula makes it easy to de�ne the natural
�base e� logarithm of a complex number�

ln��� � lnj�j� i arg��� for � �� 
 ������

eln��� � � for � �� 
 ������

��ln���� � ln�j�j� ������

��ln���� � arg��� ������

ln�
� is unde�ned� Notice that� for positive real numbers x � 
 there is a
unique real number y such that ey � x� But� even for positive real numbers x
there are in�nitely many complex numbers � such that e� � x� That is� while
Equation ���� de�nes the natural logarithm uniquely as a real value� it has
in�nitely many complex solutions� since e� � e���k� for all integers k� The
particular choice above for the imaginary part of ln��� is arbitrary� just as
the particular interval �
� ��� for directional angles is arbitrary� Notice that
this choice restricts all complex logarithms ln��� to the horizontal stripe in
the complex plane where 
 � ��ln���� � ���

log���� � ln���� ln��� for �� � �� 
 ������

����� Sound Signals in the Time Domain

In general� the sounds that we would like to create and analyze are much
more complicated than the sounds produced by simple rotors� But� we will
continue to model sounds by complex�valued functions 
 depending on a
real number parameter t standing for time� Such functions are called sound
signals in the time domain� Later� in Chapters � and �� we will see other
mathematical representations of sound� but signals in the time domain are the
easiest models to relate intuitively to the physical signals that enter the ear�
Widely used digital input and output devices for sound are also most easily
understood in terms of signals in the time domain� Most books and papers
on sound consider real�valued time signals� and most electronic devices� both
digital and analog� for analyzing or creating sound deal only with real values�
Many analysis and synthesis techniques� however� are best understood in
terms of a complex signal 
� We may always project the complex signal

 to a real signal by taking ��
�� Just as many systems for manipulating
graphic images deal with three dimensional models� and project them to two
dimensions at the last stage before displaying them on video screens� we will
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think of sound signals as two dimensional� and project to one dimension at
the last stage before rendering them through loudspeakers�
Given a sound signal 
 in the time domain� and a particular time t� the

instantaneous amplitude of 
 at time t is j
�t�j� the instantaneous phase
is arg�
�t��� and the instantaneous frequency is �d arg�
��dt��t�� These are
interesting quantities to discuss� and may be useful in analyzing sound� but
they do not necessarily have the perceptual impact of the corresponding
constant quantities associated with a simple rotor�
Not every complex�valued function 
 of t makes sense as a sound signal

in the time domain� Some reasonable relation must hold between the real
and complex components of 
� But� it is not clear precisely what relation
to require in general� Particular physical interpretations of 
 impose certain
constraints�for example if ��
� is the velocity of a physical object� and
��
� is the displacement of the same object� then ��
� � d��
��dt� When
��
� � R sin�Ft�� d��
��dt � FR cos�Ft�� so this derivative constraint
forces rotors to be elliptical� with aspect ratio proportional to the frequency�
Circular rotors are muchmore convenientmathematically� Roughly speaking�
we would like to restrict sound signals 
 so that ��
� is essentially the same
as ��
� with a phase di�erence of � �	
���such signals are said to be in
quadrature� since the angle � is one quarter of the full circle� The problem is
that many di�erent frequencies may be present in 
� In Chapter � we see a
precise de�nition of this quadrature constraint�
Figures ���
� ����� and ���� show examples of sound signals in the time

domain that are slightly more complicated than the basic helix� In each case�
part �a� shows a three�dimensional plot of the complex�valued function� and
part �b� shows a two�dimensional plot of the real and imaginary components�

��� Exercises

�� Take the spring system of Figure ���� rotate the track to a vertical
orientation� and let a constant gravitational force act on the mass�
The stable position about which the mass oscillates is no longer at
the point where the spring attaches to the track� but some distance
below that point where the force exerted by the spring exactly cancels
gravity� Does the frequency of the vibrating spring increase or decrease
as a result of the in�uence of gravity� Explain brie�y�
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�� Consider a vibrating spring system in which the motion of the mass
is opposed by a certain amount of friction� In order to analyze such
a system� do we change Equation ���� Equation ���� both� or neither�
Explain brie�y�

�� Consider a vibrating system with a mass that is attracted to the cen�
ter of vibration by a gravitational force instead of a spring� In such a
system� the period of vibration depends on the amplitude� As the am�
plitude of the vibration increases� does the period increase or decrease�
Explain brie�y�

�� Notice how Equation ��� has a positive multiplierA� while Equation ���
has a negative multiplier �A� There are three other possibilities� �a�
both multipliers negative� �b� both multipliers positive� �c� the �rst
multiplier negative and the second positive� Describe brie�y and qual�
itatively the behavior of a system described by each of the variants
�a�c�� Draw pictures analogous to Figure ����b� to help explain�

�� When A � B in Equations ��� and ���� the path of the state vector
hx� yi is an ellipse� Which axis of the ellipse is longer� the x axis or
the y axis� Explain brie�y� using precise mathematical information
derived from Equations ��� and ���� Hint� Derive slightly di�erent
equations relating Cyy

� to Cxx and Cxx
� to Cyy for cleverly chosen

constant multipliers Cx and Cy�

�� Derive simple formulae representing the frequency and period of the
vibrating system of Equations ��� and ��� in terms of the constants A
and B� Hint� Look at Equations ��� and ���� Di�erentiate both sides of
both equations� Solve the special case where A � B� Then� apply the
scaling of x and y by constants Cx and Cy that you used in Exercise ��

�� In an elliptical rotor system obeying Equations ��� and ��� the speed
with which the state point travels around the ellipse is not constant�

�a� Where is this speed the least� and where is it greatest� Explain
brie�y�

�b� Answer the same question for the angular speed of the state
vector�the speed at which its angle with the x axis changes�
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�� For each of the following operations on complex numbers � and �� state
whether it is more convenient to represent each number in Cartesian or
polar coordinates� or whether both are equally convenient� Sometimes
the answer is di�erent for � than for ��

�a� � � �

�b� � � �

�c� �

�d� ��

�e� ���

�f� ��

�g� log����

	� Derive formulae for the Cartesian coordinates ����� and ����� of ��
in terms of Cartesian and�or polar coordinates of � and ��

�
� Derive the following trigonometric identities� using Euler�s formula
�Equation ����� and easy algebraic manipulations of additions� sub�
tractions� multiplications� and divisions of complex numbers� Note
that cos��x� and sin��x� are conventional ways of writing �cos�x��� and
�sin�x���� respectively�

�a� cos��x� � cos��x�� sin��x�
�b� sin��x� � � cos�x� sin�x�

�c� cos��x� � �� � cos��x����

�d� sin��x� � ��� cos��x����
�e� cos�x� � cos�y� � � cos��x� y���� cos��x� y����

�f� sin�x� � sin�y� � � sin��x� y���� cos��x� y����

�g� cos�x� cos�y� � �cos�x� y� � cos�x� y����

�h� sin�x� sin�y� � �cos�x� y�� cos�x� y����

�i� sin�x� cos�y� � �sin�x� y� � sin�x� y����

�j� cos�x� y� � cos�x� cos�y�� sin�x� sin�y�
�k� sin�x� y� � sin�x� cos�y� � cos�x� sin�y�
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��� We saw how to express the state of an elliptical rotor at time t in the
form aei��ft� bei��ft� where a is the average of the real and imaginary
intercepts of the ellipse� and b is half their di�erence� Derive a nice
formula for the state of an elliptical rotor whose major and minor axes
are di�erent from the real and imaginary axes�
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Chapter �

Perceptual Foundations of

Sound

This chapter is a particularly rough draft	 with a lot of missing
information�

In every section� limits of human sound perception�

This chapter sketches the structure of human sound perception in a delib�
erately simplistic and super�cial way� I believe that the best digital models
for sound production will be informed by audiology� but they will sacri�ce
a lot of perceptual precision for mathematical simplicity� By rough analogy�
there are lots of qualities of human visual perception that are ignored by
the pixel model of graphics� Also� general�purpose models for sound produc�
tion must work for almost all listeners� so they cannot be designed around
details of perception that vary from person to person� Later chapters will
investigate more precisely the mathematical qualities of sound that a�ect
perception� but we will stick with a very approximate and intuitive notion of
perception itself�
We are interested in sound as a medium that may be used for communica�

tion� Particular forms of audible communication� such as music and speech�
may be highly specialized to their purposes and to the acoustic resources
available to them for generating sound� There must be some very general
structural qualities of sound that are present in essentially all uses of sound
for communication� Each particular form of audible communication may
exploit these general structural qualities in very di�erent ways�
By rough analogy to visual communication� notice that almost all visual

scenes may be described in terms of structural concepts such as region� edge�
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texture� color� brightness� Written communication in English exploits the
shapes of regions with contrasting brightness� and the edges of those regions�
to provide recognizable alphabetic characters of the Roman alphabet� Ar�
chitectural drawings exploit edges in a radically di�erent way� Perspective
pictures draw on texture and color in yet other ways to communicate layouts
of physical objects� In this chapter we seek an intuitive understanding of
structural qualities of sound roughly at the level of region� edge� texture�
color� brightness in video�

��� The Ear as a Frequency Analyzer

The key receptive structure in the ear is the cochlea� a spiral�shaped tube
containing lots of little hairs that vibrate with the surrounding �uid� Is it air or

some body liquid� From our point of view� each hair is a physical realization of a
rotor� Somehow �the how is still the topic of some debate� each hair is tuned
to a narrow range of frequencies� and stimulates an assigned nerve ending
proportionally to the amount of excitation it receives within its frequency
range� So� the human ear is roughly a frequency analyzer� passing on a
spectral presentation of sound at each instant to the brain for further analysis�

��� Sound Imaging�What is �a Sound��

I call a complex of sound that is presented to a listener an 
audible scene��
Many audible scenes deompose naturally into the sum of several components
that are perceived as units� vaguely analogous to contiguous regions in a
visual scene� The decomposition is often ambiguous� and sometimes there is
no sensible decomposition� but the notion of a perceived contiguous piece of
sound is likely to be useful whenever it applies� I call such an intuitive unit in
an audible scene 
a sound�� In well�articulated musical pieces� a single note
by a single instrument is a sound� In speech� the notion is more ambiguous�
but perhaps a phoneme or segment of a phoneme may be understood as a
sound�
Automated analysis of audible scenes into individual sounds is extremely

di�cult� because it must resolve all of the ambiguities that arise� Synthe�
sis by adding up individual sounds to create audible scenes is much more
tractable� since the instructions for synthesizing a given scene can specify
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an interpretation explicitly� A synthesis method based on adding individ�
ual sounds together might be very useful even if it doesn�t guarantee that
every object described as 
a sound� by the system is perceived as a single
sound�as long as there is a good heuristic correlation between description
and perception the method can succeed�
The precise way in which the ear and brain decompose an audible scene

into individual sounds is not understood� The spatial location of sound
sources� as detected by the stereo e�ects of pairs of ears and by the asym�
metric distortion induced by the funny shapes of our heads and external
ears� certainly plays an important part� We will ignore spatial location� not
because it isn�t important� but because for the purposes of synthesis� it can
probably be separated from monaural qualities� To synthesize an audible
scene� we may describe sounds� then describe where each sound is placed�
and these two parts of our description may be essentially independent� For
analysis� they are probably tangled together inextricably�
Ignoring location� the qualities that make a particular complex vibra�

tion sensible to regard as an individual sound probably have to do with the
frequency components of that vibration� We prefer to group frequency com�
ponents together perceptually when their beginnings� and to a lesser extent
their endings� are nearly simultaneous� Also� we prefer to group frequen�
cies that are very close to being integer multiples of some audible frequency�
which may or may not be present itself�stated another way we prefer to
associate frequencies whose ratios are very close to rational numbers with
small integer numerators and denominators� These qualitative observations
are very far from providing a useful basis for analysis� but they may serve as
heuristic guides in considering synthesis techniques�

��� Perceptual Parameters of a Sound

����� Pitch

Pitch is the quality of a sound that leads us to consider it 
higher� or 
lower�
than another sound� Some sounds� such as engine noises and drum beats�
yield only a vague sense of high or low pitch� Other sounds� such as notes
of bird songs and of melodic musical instruments� yield a fairly precise sense
of pitch that can be measured numerically� with most listeners agreeing that
the measurement is correct�
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At �rst approximation� the pitch of a sound is its frequency� The human
ear detects frequencies from about �
 Hertz �cycles per second� to about
�
�


 Hertz� Perceived pitch is essentially the logarithm of frequency� Mul�
tiplying a frequency is perceived as adding to the pitch� For example� on a
piano keyboard� the interval �di�erence in pitch� called an octave is heard
as the result of moving up �� half steps �the interval from one key to the
next higher�usually one is white and the other black�� but it is essentially a
multiplication of the frequency by �� The interval called a perfect �fth� heard
as moving up � half steps� multiplies frequency by approximately ����

We need to know the pitch resolution of the human ear�

But� it�s not that simple� Perception of pitch is a�ected by loudness �loud
sounds tend to sound higher in pitch than soft sounds of the same frequency��
and there may be many other small but signi�cant in�uences on perceived
pitch� My hunch is that most of these should not a�ect the structure of a
general�purpose model of sound� but rather should be viewed as �ne points
to be applied outside of the model� when polishing a sound de�nition to its
�nal form� only when great precision is truly required� For most purposes�
lots of perceptual subtleties are best ignored�
One major complication in pitch perception probably will a�ect the struc�

ture of good digital models of sound� Although pitch is essentially the log�
arithm of frequency� perception of pitch is tied more closely to the relation
between a number of component frequencies in a sound� rather than to the
frequency of one particular component� Speci�cally� when a sound is nearly
harmonic�when most of the frequency components of a sound are nearly in�
teger multiples of another audible frequency F � called the fundamental pitch
of that sound�we tend to hear a pitch given by lnF � The frequency F itself
need not be present� This seems spooky at �rst� but it is probably a very
sensible adaptation of aural perception to the fact that some components of
a sound may be masked by noise� Perception of the 
missing fundamental�
is roughly analogous to the visual perception of an entire object� even though
parts of it are hidden behind other objects�
The perception of pitch intervals is also a bit more complicated than

merely subtracting one pitch from another� When we perceive the pitch in�
terval between two nearly harmonic sounds s� with fundamental frequency
F� and s� with fundamental F�� we seem to overlay their component fre�
quencies� If the component of s� with approximate frequency MF� is close
enough to the component of s� with approximate frequency NF� �M and N
are integers�� this in�uences us toward perceiving an interval determined by
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lnN�M � lnN � lnM � rather than lnF��F� � lnF� � lnF�� Each pair of
components that overlays closely enough in�uences the perceived interval�
and it is hard to characterize the way in which these in�uences add up� But�
there are plenty of sounds that are nearly enough harmonic to have a musical
e�ect� but far enough from perfect integer ratios to confuse the perception
of intervals� The piano and the bagpipes are examples of instruments with
substantial deviations from harmonic sound� and the comparison of pitch be�
tween them and nearly perfect harmonic sounds� such as the sounds of most
orchestral instruments� is quite tricky�
The precision of pitch perception is roughly constant within audible fre�

quency limits� Since pitch is the logarithm of frequency� this means that fre�
quency precision is much better for lower frequencies and poorer for higher
frequencies� Section ����� discusses the perception of time for sound� which
has a variation of precision inverse to the variation of frequency precision�

����� Loudness

Loudness of a simple helical signal is roughly the logarithm of its power
�the rate at which it delivers energy�� Notice that when two helical signals
have the same amplitude� the one with higher frequency also has higher
power� because it moves faster� The exact power in a signal depends on
the precise physical interpretation of the signal� but in general the power

in a helical signal Rei��Ft is proportional to some polynomial in R and F �
and at least as big as RF � so perceived loudness is roughly proportional to
ln�RF � � ln�R� � ln�F �� But� perceived loudness varies according to the
sensitivity of the ear at the given frequency� so signals at frequencies near
the limits of audible frequencies seem softer than signals of equal power near
the center�

We need information on the units used to measure loudness and the limits of normal human perception�

When a number of frequencies are present in a sound� it seems sensible
that the perceived loudness will be roughly proportional to the logarithm of
the sum of all power within audible frequency limits� This seems sensible�
but it�s wrong� The perception of loudness in complex sounds is in�uenced
by the critical bands of human sound perception�frequency bands contain�
ing a spread of frequencies roughly spanning a musical minor third� so the
highest frequency in a band is roughly ��� times the lowest� These bands
are not discrete� rather they overlap continuously across the range of audible
frequencies� varying slightly in width depending on the center frequency�
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Two helical signals within a critical band tend to add their powers� so
that the perceived loudness within a critical band is close to the logarithm
of the total power in the band� But� two helical signals whose frequencies
di�er by more than a critical band tend to add their perceived loudness after
the individual loudnesses are taken as the logarithm of power� Since ln�x� �
ln�y� � ln�x�y�� the same amount of sonic power sounds louder when spread
over a larger frequency range� The precise computation of loudness from
power spectrum is quite complicated because of the overlapping of critical
bands�
I doubt that the critical band concept will have an impact on the lowest

levels of sound modelling� but it clearly has a profound e�ect on perception�
and therefore on the construction of highly polished sounds�

����� Timbre

Two sounds of the same pitch and loudness may have recognizably di�erent
qualities� for instance the sounds of string instruments vs� reed instruments
in the orchestra� These distinguishing qualities of sound are called timbre�
and are sometimes compared to visible color� Compared to pitch and loud�
ness� timbre is not at all well de�ned� It clearly has a lot to do with the
relative strengths of di�erent frequency components of a sound� called the
partials� But� it is also a�ected seriously by some aspects of the time de�
velopment of partials�particularly but not exclusively by the increase in
amplitude of partials at the beginning of a sound� called the attack in mu�
sic� Di�erent partials of a musical sound typically increase at very di�erent
rates� and these di�erences are crucial to the identi�cation of a sound with a
particular instrument� For example� the sounds of brass instruments are rec�
ognized partly by the quicker development of lower frequencies than higher
frequencies�
At �rst approximation it seems that two sounds of di�erent pitch will have

the same perceived timbre when the spectral content of one looks just like
the other� but shifted in frequency� For example a sound with a component
of amplitude � at �

 Hertz� amplitude 
�� at �

 Hertz� and amplitude

��� at �

 Hertz might be expected to be qualitatively similar to one with
amplitude � at ��
 Hertz� 
�� at �

 Hertz� and 
��� at ��
 Hertz� In this sort
of case� the second sound might be produced by recording the �rst one on
tape� then playing it back with the tape moving faster� The famous singing
chipmunks demonstrate the fallacy in this expectation�they do not sound
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at all like their creator singing higher�
A more accurate notion of timbre must take into account the fact that

sound perception has adapted to the way that many sound producers� in�
cluding the human voice and most musical instruments� create their sounds
by a two�stage process� First� there is some sort of vibrating structure� such
as the vocal chord� violin string� oboe reeds� which may follow the shifted
partials model fairly well� But� the sound coming from this �rst vibrating
structure �lters through another resonating structure� such as the human
head� the body of the violin� the body of the oboe� which scales the ampli�
tudes of partials according to its responsiveness at di�erent frequencies� The
responiveness of the second structure does not take a frequency shift when
the incoming pitch changes� so it changes the relative strengths of partials
depending on their absolute frequencies� and not just their ratios to the given
pitch� This �ltering structure is sometimes called a formant �lter� because it
may often be characterized by a small number of highly resonant frequency
bands� called formants� Human sound perception seems to have adapted to
recognizing the constancy of formant �lters when they are stimulated by a
variety of incoming sounds at di�erent pitches� This is vaguely analogous to
the tendency of human visual perception to perceive the re�ective properties
of a given pigment as its color� even under radically di�erent illuminations
that may change the actual spectrum reaching the eye quite severely�

����� Transient E�ects

����� Sound Events

Although abstract physics recognizes time as a single one�dimensional con�
tinuum �at least for any single observer�� di�erent intervals of time may be
perceived as if they are in completely di�erent dimensions� depending on the
lengths of the intervals and the sorts of perceptible changes that occur during
them� For example� in visual perception� changes in electromagnetic �ux on
a scale of millionths of a second are not perceived as time at all� but rather
determine the frequency of light� and thereby contribute to the perception
of color� Changes on a scale of tenths of a second or longer are generally
perceived as temporal events involving changes in visual qualities� including
color� The huge gap between the electromagnetic time scale and the event�
sequence time scale make it easy to classify particular changes unambiguously
into one class or the other�
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Sound perception seems to have at least three time scales that are per�
ceived quite di�erently� and they all overlap to make things more complicated�

�� Changes in air pressure on a scale of about ���
� 


th of a second to
���
th of a second are on the sonic time scale� They are not perceived
as time developments at all� but determine the frequency of components
of a sound� and thereby contribute to pitch� timbre� and loudness per�
ception� Sonic time for sound is analogous to the electromagnetic time
scale for visual perception�

�� Slightly slower what range� changes in the amplitudes of various frequency
components are on the transitional time scale� They are perceived as
time developments� such as the attack initiating a musical note� but the
exact time sequence is hard or perhaps impossible to trace perceptu�
ally� The special quality of the transitional time scale is demonstrated
by playing sounds backwards� While a sequence of events played back�
wards may be recognized accurately� even if it is physically ridiculous
�for example� a reversed movie of someone walking�� the time�reversal
of sound transitions makes us perceive them completely di�erently� I
suspect that a person who heard a time�reversed sound for the �rst
time� with no clue such as a view of the record being spun backwards�
might not even recognize it as the time reversal of something� Even
knowing that a sound is time reversed� it is di�cult to tell intuitively
what the forward version sounds like� I am not aware of any visual
phenomenon analogous to the transitional time scale for sound�

�� Changes in the frequency components of sound on a scale of more accurate

lower bound� perhaps ���
th of a second and longer are often perceived as
sequences of events� The event�sequence time scale for sound is anal�
ogous to the one for visual perception� and they operate in a similar
range� For example� the sequence of notes in a scale� or the sequence
of clicks in a rhythmic form� are perceived on the event�sequence time
scale� The reversal of a sequence of events may be musically or physi�
cally peculiar� but it is relatively easy to recognize�

Even the sonic and event�sequence time scales overlap for sound� with
the transitional scale in between and overlapping both� This makes the
understanding of time developments in sound quite subtle in some cases�
In particular� the boundaries are sensitive to frequency� For low�frequency
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components of sound� the boundaries of the scales move toward longer time
intervals� and for high�frequency components they move toward shorter in�
tervals� It takes about one full period �rotation� of a helix to recognize the
frequency� So� changes in a helical component of sound can only be detected
when they are not too short compared to the time of a complete period�
The inverse relation between frequency precision� which is best for low

frequencies� and time precision� which is best for high frequencies� is striking�
It is not an accident� but comes from fundamental physical limitations� which
limit the product of time and frequency precision� so that when one improves�
the other gets proportionately worse� The same mathematical form produces
the Heisenberg uncertainty principle in quantum mechanics�
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Chapter �

Digital Sampled Sound

In Chapter � we modelled sound as a function from a real value t representing
time to a complex value 
 representing a two�dimensional state of some
vibrating system� In order to deal with sound digitally� we must somehow
reduce such a signal to a �nite number of symbols from a discrete set of
possibilities� such as the bits 
 and � that current digital computers use to
represent all information� The digitization of sound is normally achieved by
two independent steps� each of which has consequences for the �delity with
which sound is produced digitally�

��� Discrete time

Sound signals in the discrete time domain� The usual �rst logical
step in digitizing sound is to approximate the continuous domain of real
values representing time by a discrete set of equally spaced values� Let S
be a positive real number� called the sampling rate �the number of samples
to take in a unit of time�� N represents the set of all positive and negative
integers� TS represents the domain of discrete time with sampling rate S�

N � f� � � ������� 
� �� �� �� � � �g �����

TS � fk�S � k � Ng �����

Every �nitely represented sound spans some �nite interval ftmin� � � � � tmaxg
rather than the in�nite domain TS � but we may only listen to a �nite time�
span of sound in a lifetime anyway� so the discretization of time is much
more important than the limitation to a �nite interval� A sound signal in the
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discrete time domain with sampling rate S is a complex�valued function 

on TS � When discussing the domain TS � we write the members of the domain
as � � � � t��� t��� t�� t�� t�� t	� � � �� where

tk � k�S �����

Converting from continuous to discrete� Given a continuous sound
signal 
� the obvious and natural choice for a discrete sound signal to repre�
sent it is DS�
� where

DS�
��t� � 
�t� for t � TS �����

DS�
� is just 
 restricted to the domain TS� Such a representation is inher�
ently ambiguous�there are an in�nite number of di�erent continous sound
signals represented by the same discrete sound signal� The confusion result�
ing from this ambiguity is called aliasing�

Aliasing� 
Note� serious problems with functional notation

Whenever two continuous sound signals 
� and 
� agree on every point in
TS �
��t� � 
��t� for all t � TS�� then they have the same representation

d � DS�
�� � DS�
�� as a discrete sound signal� and we say that 
� and 
�
are aliases� The famous problem of wagon wheels appearing to roll backwards
in old movies is an example of aliasing in a sampled video signal� But� when
we generate a real physical sound from 
d� a listener can only hear one of
the in�nitely many continous sound signals that it might represent� This
is undesirable in the case where we discretize one continous sound� and the
listener hears a di�erent one� In particular� two continuous helical signals
are aliases if and only if their amplitudes and phases are exactly the same�
and their frequencies are the same �mod S��

For R�� R� � 
� P�� P� � �
� ����

DS�R�e
i�P����F�t�� � DS�R�e

i�P����F�t�� for all t � TS
if and only if

R� � R� and P� � P� and F� � F� �mod S�

�����

For real�valued signals� there is even more aliasing� Frequencies F� and F�

may be aliased when F� � �F� �mod S� and the signals are out of phase
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by exactly � �half a period��

For R�� R� � 
� P�� P� � �
� ���� F�� F� �� 
 �mod S����

DS�R� sin�P� � ��F�t�� � DS�R� sin�P� � ��F�t�� for all t � TS
if and only if

R� � R� and P� � P� and F� � F� �mod S�
or

R� � R� and P� � P� � � �mod ��� and F� � �F� �mod S�

�����

For frequencies that are exact multiples of half the sampling rate� there is even
confusion about the amplitude and phase� In the case of odd multiples of half
the sampling rate� the samples are all equal in magnitude� and alternating
in sign� The amplitude of the samples depends on the phase at which the
samples are taken� which is the same for each half wave�

For R�� R� � 
� P�� P� � �
� ���� F� � F� � S�� �mod S��

DS�R� sin�P� � ��F�t�� � DS�R� sin�P� � ��F�t�� for all t � TS
if and only if

R� sin�P�� � R� sin�P��

�����

In the special case where P� � P� � 
� the amplitudes could have any values�
For multiples of the sampling rate� all samples have the same value� and
again there is a tradeo� between amplitude and phase�

For R�� R� � 
� P�� P� � �
� ���� F� � F� � 
 �mod S��

DS�R� sin�P� � ��F�t�� � DS�R� sin�P� � ��F�t�� for all t � TS
if and only if

R� sin�P�� � R� sin�P��

�����

Finally� for completeness� notice that an odd multiple of half the sampling
rate aliases with a multiple of the sampling rate precisely when the phases
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are both 
� so that all samples have the value 
�

For R�� R� � 
� P�� P� � �
� ���� F� � 
 �mod S�� F� � S�� �mod S��

DS�R� sin�P� � ��F�t�� � DS�R� sin�P� � ��F�t�� for all t � TS
if and only if

P� � P� � 

���	�

Rendering a discrete sound signal as continuous sound� Having
computed a discrete sound signal 
d� we need to render it through a loud�
speaker or similar controllable vibrating device in order to hear the sound�
At some point in the rendering process� 
d is converted to a continuous signal

c� It is natural to choose one of the in�nitely many continous sound signals
that 
d might represent� In particular� it is natural to create 
c by inter�
polating values between the ones given by 
d in such a way as to make the
resulting sound signal as smooth as possible� according to some appropriate
de�nition of smoothness� The interpolating is normally done� not by a digi�
tal computation� but by the analog machinery� usually electronic� controlled
by the computation� In Chapter � we �nd that when the sampling rate is
high enough� the precise nature of the interpolation is relatively unimportant�
But� the sorts of analog devices commonly used for sound production typi�
cally interpolate so that the �nal result is close to a sum of sinusoidal signals
of the lowest possible frequency� So� if 
d�t� � Rei��Ft� is a discrete heli�
cal signal� it is normally rendered as something very close to the continuous
signal 
c�t� � Rei�
�F mod S�t�
Not all aliases of a helical or sinusoidal signal are helical or sinusoidal

themselves� For real�valued signals the frequencies� the frequencies near half
the sampling rate �S��� alias to signals that are amplitude modulations of a
carrier with frequency S �see Figure ����� In many cases� these amplitude�
modulated signals represent the way that a rendered signal is likely to be
heard� For complex�valued helical signals� the problem of non�helical aliases
seems to be less important� but I know very little about the rendering of
complex�valued signals� It is interesting to note that we seem to need two
real numbers per period to represent a given frequency� whether those two
reals are separate samples or whether they are bundled into a single complex
sample� But� we really need only the sign of the imaginary component� along
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with the entire value of the real component of a complex sample� to resolve the
ambiguity between helical frequencies F� � �F� �mod S�� although the full
value of both real and complex components is required to get full information
about amplitude and phase� and about multiple frequency components�

Causes of and cures for aliasing� Aliasing occurs any time a continuous
signal is converted to a discrete signal by sampling� It is natural to think of
the case where a physical continuous signal is read by an electronic sampler�
but this is not really the most important cause of aliasing� The engineers who
design and build samplers are pretty smart� and they have had plenty of time
to worry about aliasing and �nd ways to prevent its harmful consequences�
The most troublesome cases of aliasing arise when a continuous mathematical
model of a sound signal is converted to a calculation of samples� The original
continuous model may only exist in the mind of a person who is designing
sound�it need not be present as a data structure in a computer� or in any
other realization in an arti�cial medium� Even when there is an explicit
representation of the continuous sound signal available as a data structure�
the problem of avoiding aliasing in software is far more complex� due to
the variety of conceptual sources for continuous signals� Flexible sound�
processing software has largely failed to prevent the introduction of harmful
aliasing in sampled signals�
The only cure for the harmful consequences of aliasing is prevention� Once

a continuous sound signal has been replaced by a sampled discrete represen�
tation� and the continuous signal is no longer available for inspection� there is
no way to determine which of the in�nitely many possible continuous signals
was truly intended� In order to prevent one continuous sound signal 
�� con�
verted to the discrete signal 
d � DS�
��� from being rendered continuously
as some alias 
� that sounds quite di�erent� we must sample only signals that
will be rendered accurately� With the usual 
smooth� rendering techniques�
a sampled complex�valued signal produces frequencies in the range �
� S��
and a sampled real�valued signal produces frequencies in the range �
� S����
To avoid harmful aliasing� all higher frequencies must be �ltered out from the
continuous signal before sampling� For this reason� sampling converters have
analog �lters that eliminate high frequencies before sampling� Even though
digital �lters have many advantages� they cannot be applied to the aliasing
problem� because they cannot distinguish frequencies that di�er by multi�
ples of the sampling rate� To avoid the aliasing of frequencies near S�� with
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an amplitude�modulated signal �and presumably there are simlar problems
for complex�valued signals at frequencies near S�� continuous signals should
in fact be �ltered to an even smaller frequency interval� but it is not clear
precisely how much smaller it needs to be�

Discrete signal values other than samples�

� interval values
� average values�equivalent to �ltering

��� Quantized Vibration State

Even a �nite time segment from a discrete sound signal is an in�nite object
if the sample values are complex or real numbers� In order to get a com�
pletely digital representation of a sound signal� we must also approximate
the continuous range of real or complex numbers by a discrete subset� Since
the consequences of this quantization of the domain of values are largely in�
dependent of the consequences of discretizing the time domain� we consider
signals from the continuous time domain to a discrete subset of the complex
or real numbers�

Discrete sets of complex or real values� A subset V of the complex
numbers is discrete if we may draw a circle around each point in V� so that
each circle contains only one point in V� If V contains only real numbers�
then it is also a discrete subset of the reals� While the discretization of time
seems to make sense only with a constant interval between points� there are
a number of di�erent popular ways to quantize the real or complex values

�t�� For the domain of real numbers� the two basic ideas are linear and
logarithmic quantization�
Given a real number Q � 
� VQ represents the linear quantization of the

real domain with quantum interval Q�

VQ � fk�S � k � Ng ����
�

Yes� this is mathematically the same thing as the discrete time domain TQ�
but we think of it as having a di�erent physical dimension� Just as in the
case of the discrete time domain� a digital representation requires that we
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limit ourselves to a �nite interval within VQ� but it is the use of a discrete
subset of values� rather than the limitation to a �nite interval� that has the
most interesting consequences for sound modelling�
Given two real numbers B � � and M � 
� LB�M represents the loga�

rithmic quantization of the real domain with base B and minimum nonzero
value M �

LB�M � f
g � fBk��Bk � k � N and Bk �Mg ������

Notice that the minimum value M is required to make the domain discrete�
even if the 
 value is omitted� LB�M is an idealized abstraction of several
di�erent essentially logarithmic quantizations� such as 
mu�law� encoding�
but it does not represent them precisely� The crucial quality of logarithmic
domains is that the interval between points goes up exponentially with the
magnitude of the points� the LB�Ms are the mathematically simplest sort
of domains with that crucial quality� Floating�point domains are a funny
hybrid of linear and logarithmic� they consist of �nite segments of di�erent
linear domains pieced together so that the progression over larger segments
is essentially logarithmic�
The usual way to quantize the complex domain is to pick a quantization

of the real domain� and then apply it to the real and imaginary components
of complex numbers� So� we can de�ne

V�
Q � fx� iy � x� y � VQg ������

L�
B�M � fx� iy � x� y � LB�Mg ������

Polar versions� others�

� Quantization �roundo�� noise�
� Nonlinear encodings�
� Recovering complex data from real�
� Why discretization and quantization are studied in such di�erent ways�

��� Other Ways to Digitize a Sound Signal

� Delay conversion to discrete sampled representation as long as possible
�analogy to bitmapping in graphics��

��



��	 Direct Manipulation of Digital Sampled

Sound

� Time shifting�
� Amplitude scaling�
� Amplitude clipping�
� Frequency�speed shifting�
� Time stretching by repetition of a 
period��
� Changing sampling rate�
� AM enveloping�
� Adding sounds�
� Nonlinear waveshaping�
� Frequency modulation�
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Chapter �

The Frequency Spectrum

In this chapter we investigate the analysis of a sound signal into its compo�
nents at di�erent frequencies� For the moment� we are concerned only with
steady�state sound signals� Imagine that you walk into a room in which some
sound is in the air� You stay for some length of time much longer than the
period of any frequency that you can hear� and then leave the room� Sup�
pose that� while you are in the room� the sound is essentially stable� you do
not hear any change in its quality� Roughly speaking� a steady�state sound
signal is the in�nite extension of such a stable sound into the past and the
future�a sound that has always been and will always be qualitatively the
same� It is natural and sensible in a mathematical analysis of a stable signal
to ignore the fact that it has a beginning and an end�

	�� Pure Helical
 Periodic
 and Quasiperiodic

Signals

In order to analyze a signal into its components at di�erent frequencies�
we need to know what each component is like� We choose the standard
helixes Rei�P���Ft�� characterized by amplitude R � 
� phase P � �
� ����
and frequency F � 
� as the components for analysis� In principle� there
are in�nitely many other choices for the basic components� square waves�
triangular waves� pulses� etc� We choose the helixes because they are math�
ematically very simple and suitable for analysis� and they agree quite well
�but not perfectly� with the physical qualities of vibrating sound producers�
as well as the sound detectors in the ear� In principle� the elliptical helixes
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with aspect ratios proportional to frequency match our physical analysis of
a vibrating spring better than the circular helixes� But� we choose the math�
ematical simplicity of the circular helixes� and trust an intuitive hunch that
they will be satisfactory for our practical needs�
A sound signal 
 is periodic if there is a positive real number P � 
�

called the period of 
� such that for all times t� 
�t�P � � 
�t� �actually� the
smallest such P is the period of 
� and all multiples of P satisfy the same
equation�� The helical signal Rei�P���Ft� is periodic� with period ��F � If

�� 
�� � � � are all periodic signals� and the ratios of their periods are rational
numbers� then

P
i 
i is also periodic� If the ratios of their periods are not

all rational� then the sum is not periodic� but it may still be analyzed into
its components at di�erent frequencies�such signals are called quasiperiodic�
Since physical measurements can never distinguish absolutely between ratio�
nal and irrational values� it makes sense that we need to study quasiperiodic
signals in essentially the same way as the periodic ones�

	�� The Ear as a Spectral Analyzer

This section repeats Chapter �	 and should be merged in with that
chapter�
The part of the mammalian ear that detects sound is called the cochlea�

The cochlea is a tube �wound into a spiral� but that is not particularly
important to us� containing a long sequence of tiny hairs� For our current
purposes� each of those hairs is essentially a vibrating spring� tuned to a
di�erent frequency� The number of hairs is �nite� but it is large enough that
we will ignore the discreteness of the set of hairs� and suppose that every
possible value in the continuous spectrum of real positive frequencies has
a hair tuned to it� In Chapter � we �nd that there are other limitations
on the accuracy with which frequency is measured in the ear� besides the
�nite number of detecting hairs� We also ignore the physiological limits on
the range of frequencies� The most natural way to analyze signals is to �nd
their components at all frequencies� and accept the fact that some of those
frequencies are indetectible by a given ear�
Intuitively� the spectrum of a steady�state sound signal 
 is the function

� mapping each frequency f � 
 to a complex number ��f� such that j��f�j
is the amplitude of the stimulation delivered by 
 to an idealized ear� and
arg���f�� is the phase of the stimulation� The spectrum � is often called
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a signal in the frequency domain� to complement the description of 
 as a
signal in the time domain� The perception of steady�state sound signals is
explained very well �but not perfectly� in terms of the spectrum of the signal�
In fact� most of the perception of steady�state sound appears to depend only
on the magnitude j�j� but in Chapter � we �nd that the perception of changes
in the spectrum depends on the relative phases of di�erent components� so
it is best to de�ne the spectrum to include phase information�

����� Perceptual Parameters of Sound

It is tempting to think of the perceptual qualities of a steady�state sound
signal that are derived from its spectrum as being analogous to the color of
an optical signal� Such an analogy probably leads to more misunderstanding
than useful insight� Human color perception depends only on three dimen�
sions of the frequency spectrum of light� while the ear can distinguish at
least hundreds of frequencies� Considering the number of independent pa�
rameters involved� a better analogy would relate each frequency component
of a sound signal to a single point in a visual scene� This analogy also breaks
down� because the ear relates individual frequency components in ways that
are fundamentally and structurally di�erent from the way the eye relates
di�erent points in a scene�
First� di�erent frequency components of a steady�state sound signal are

often grouped together and perceived as a unit� which I call a sound� A
steady�state sound signal may contain many individual sounds going on si�
multaneously� A particular frequency� typically the lowest of those in a sound�
may dominate the perceptual identi�cation of frequency in a sound� such a
dominant frequency is called the fundamental frequency of a sound� all of
the component frequencies are called partials of the sound� In particular�
components with frequencies that are very close to reasonably small integer
multiples of a single frequency F ��F� �F� �F� � � ��� are often heard as a single
sound �a lot of information other than the spectrum may a�ect this grouping�
particularly stereo e�ects that seem to locate components in space�� In this
case� the sound is a �nearly	 harmonic sound� F is the fundamental� and the
partial kF is called the kth harmonic� In many cases not all of the harmonics
are present �for example� the presence of only odd harmonics is very com�
mon�� Even the fundamental frequency F may not be present in a harmonic
sound� but it still dominates perception of the identifying frequency of the
sound�
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For a harmonic sound� and for many others as well� the ear perceives a
quality of highness or lowness called pitch� Pitch is essentially determined
by the fundamental frequency �even when that frequency is not actually
present�� but the less harmonic a sound is the more subtle is the determi�
nation of a fundamental frequency� Doubling the fundamental frequency
typically produces a perception of an additive increment in the pitch�the
pitch increment associated with doubled fundamental frequency is called an
octave in conventional European music� So� the perceived pitch of a sound
is roughly the logarithm of the fundamental frequency� For perfectly har�
monic sounds this de�nition works very well� for nearly harmonic sounds the
perception of pitch intervals is a�ected by the inaccuracies in the nearly inte�
ger ratios of partials to fundamental frequencies� Notice that the essentially
logarithmic relationship of pitch to frequency means that when a sound sig�
nal 
 containing several sounds is transformed by time�scaling to the signal
�t�
�St�� the pitch intervals between the sounds stays the same� The ten�
dency of frequency components to cluster into harmonic sounds is consistent
with the logarithmic relationship of pitch to frequency� since the partials of
di�erent harmonic sounds will interleave in the same way as long as those
sounds are separated by the same pitch interval�
While the fundamental frequency of a steady�state sound typically deter�

mines its pitch� the relative amplitudes of the frequency components produce
a perceived quality of sound that is called timbre� Even with all the subtleties
in determining perceived pitch� the perception of timbre is orders of magni�
tude more subtle� and has never been characterized with precision� Some
acoustical scholars believe that the word 
timbre� is simply a convenient
label for those qualities of sound that we cannot describe or analyze satisfac�
torily� much in the way that 
intelligence� sometimes seems to be used as a
pleasant label for those aspects of human behavior that we want to admire�
but cannot explain� My hunch is that timbre is susceptible to a much better
analysis than has been achieved so far� but not necessarily to a complete
analysis� Timbre perception certainly has a lot to do with the relative am�
plitudes of partials� but is also a�ected crucially by the initiation of a sound�
the relation of amplitudes of partials to their absolute frequencies �rather
than just the ratios with fundamental frequencies�� and probably to a lot of
other things that nobody has thought of yet�
The other perceptual quality of sound that has been analyzed fairly well

is loudness� While pitch is naturally associated with an individual sound�
loudness is perceived both for individual sounds and for entire sound signals�
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Loudness is determined by the amplitude of sound� Although the mathe�
matically simplest measure of the amplitude of a helical signal Rei��Ft is the
multiplier R� perceived loudness is better related to the power of the signal�
which is proportional to R�F � In a system based on elliptical helixes� if the
aspect ratio of the ellipses grows proportionally to frequency� then product
of the lengths of the axes is proportional to power� but this advantage of
elliptical helixes does not seem to justify their extra complexity� Just as
perceived pitch is logarithmically related to frequency� perceived loudness is
logarithmically related to power� so the decibel system for measuring loud�
ness associates an additive increase of � decibels with a doubling of power�
Perceived loudness is also a�ected by frequency in at least two ways� First�
loudness naturally tends to drop o� as the frequency of a signal approaches
the limits of frequency perception in the ear� Second� when several frequency
components combine� the percieved loudness of the combination is di�erent
depending on whether the frequencies are close together �lying in what are
called critical bands� or farther apart� My hunch is that the dependence of
perceived loudness on frequencies should not a�ect the structure of a ba�
sic� general�purpose system for sound modelling� but it certainly will become
very important to a sound designer for the �ner polishing of a sound signal�

	�� Mathematical Spectral Analysis with the

Fourier Transform

The frequency spectrum of a sound signal 
 is another complex�valued func�
tion � of one real parameter� but in this case the parameter represents fre�
quency� rather than time� and the value of � at a frequency f describes the
component of 
 at frequency f � In particular� j��f�j is the magnitude of the
component at frequency f � and arg���f�� is the phase of that component� If

 is described by a formula in the form


�t� � R�e
i�P����F�t� �R�e

i�P����F�t� � 	 	 	

then it is easy to see that its spectrum � should have value ��f� � 
 for all
frequencies f not in the list F�� F�� � � �� and it appears that its value at Fi
should be ��Fi� � Rie

iPi� This is the right basic idea� but for mathematical
consistency with more complex spectra� the value ��Fi� is interpreted in a
slightly more peculiar way� described in Section ������ But� what if we are

��



given a completely unknown signal 
� and need to characterize its frequency
spectrum� Just as� in the physical world� a prism is used to analyze a light
signal into its di�erent frequency components� in the mathematical world the
Fourier transform analyzes a mathematically given signal in a similar way�
The essential idea behind the Fourier transform is to perform a kind of

pattern matching between the given signal 
 and each of the standard helical
components ei��Ft� The strength of the match will determine the value ��F �
of the spectrum at frequency F � Through a fortunate stroke of mathematics�
we need not test all the di�erent amplitudes R and phases P in the form
Rei�P���Ft�� because our de�nition of pattern�matching produces information
about all amplitudes and phases as a result of matching against any helix of
the right frequency� To understand how the peculiar integral formula that
we will introduce as the de�nition of the Fourier transform represents a kind
of pattern matching� we take a detour through simpler sorts of signals�
Suppose that we are given two signals 
� and 
� over a discrete and �nite

time domain f�� �� � � � � ng� and suppose in addition that both signals take
only the values � and ��� At any time t� the product m � 
��t�
��t� is
m � � if the signals agree� and m � �� if the signals disagree� So� the sum

M�
�� 
�� �
nX
t��


��t�
��t��n

represents the accuracy with which 
� matches 
��a perfect match gives the
value M
�� 
� � �� a complete failure to match gives the value M�
�� 
�� �
��� and partial matches give values between�� and �� From another point of
view� �M�
�� 
������� is the probability that 
� and 
� agree at a randomly
chosen time t � f�� �� � � � � ng�
Now� generalize 
� and 
� to real�valued functions on the same discrete

and �nite time domain� The product 
��t�
��t� is still a very reasonable mea�
sure of the extent of agreement between 
� and 
� at time t� m � 
 when

� and 
� have the same sign� m � 
 when they have opposite sign� and the
magnitude jmj indicates the strength of their agreement or opposition in a
way that credits agreement with large numbers more than agreement with
small numbers� Again� the extent of agreement or disagreement between
the entire signals 
� and 
� may be taken as the average M�
�� 
�� of the
products� Now� however� the average is no longer restricted to the interval
���� ��� but might be any real number� If 
� is a function that we are ana�
lyzing� and 
� is a pattern that we are comparing it to� then M�
�� 
�� gives

�	



information about the matching ofM against all multiples of 
� as well� since
M�
�� S
�� � SM�
�� 
���
What if 
� and 
� are complex�valued functions on the discrete and ��

nite time domain� The product 
��t�
��t� is no longer a good measure of
agreement at time t� because of the way that complex multiplication adds
the angles of multiplicands� For example� if arg�
��t�� � arg�
��t�� � ����
then arg�
��t�
��t�� � �� and � is the angle of the negative real numbers�
Similarly� if arg�
��t�� � ��� and arg�
��t�� � ����� then arg�
��t�
��t� � 
�
so the product is a positive real number� These results are the opposite of
what we want� since in the �rst case the signals agree in direction� but the
product is negative� and in the second case the signals are opposite in direc�
tion but the product is positive� Instead of the product 
��t�
��t�� we need
the product of one signal with the conjugate of the other� m � 
��t�
��t��
Notice that

arg�
��t�
��t�� � arg�
��t���arg�
��t�� � arg�
��t���arg�
��t�� �mod ���

So� when 
��t� and 
��t� are in the same direction�m is a positive real number
�angle 
�� when they are in opposite directions m is a negative real number
�angle ��� and in other cases the angle of m gives the amount of disagreement
between the angles of 
��t� and 
��t�� In the special case where 
� and 
�
are real�valued� m � 
��t�
��t�� since each real number is its own conjugate�
But� the mathematical symmetry between 
� and 
� in the real�valued case
is lost in the complex�valued case� pattern matching the same two signals in
opposite order yields results that are conjugates of one another� Let

M�
�� 
�� �
nX
t��


��t�
��t��n

BecauseM�
���
�� � �M�
�� 
�� for all complex constants �� the result of
pattern matching 
� against a single pattern 
� gives information about the
matching of 
� against all signals that are the same as 
� except for amplitude
and phase� In particular� matching against ei��Ft gives information about the
match with all helixes Rei�P���FT � of the same frequency�
Now� to de�ne the Fourier transform F�
� of a signal 
� we need only

generalize the ideas above to the in�nite continuous time domain� using the
integral as the natural continuous analog of the sum� F�
� is itself a function
of a real variable f representing frequency� and F�
��f� is the result of
pattern matching 
 against a standard helix at frequency f �ei��ft�� Notice

�




that ei��ft � e�i��ft� and it is conventional to use the �i�� form in the
formula for the transform�

F�
��f� �
Z �

��

�t�ei��ftdt �

Z �

��

�t�e�i��ftdt �����

Although the �rst integral formula above displays the character of the Fourier
transform as the results of pattern�matching a signal against the standard
helixes� the second form is the one commonly seen in books and papers
about the transform� There are a number of variations in the de�nition
of the Fourier transform�some authors give it as

R�
�� 
�t�e�iftdt� others as

��������
R�
�� 
�t�e�iftdt�but these variations are merely the result of scaling

to di�erent units of measurement� The form chosen in Equation ���� which
measures frequency in cycles per unit time� is the mathematically most con�
venient one for our purposes�
Other variations on the Fourier transform normalize the magnitude of

points in the spectrum in sensible ways� Since the power in the helical signal
Rei��ft is proportional to R�f � rather than to R� we might argue for one of
the following forms

Ffreq�
��f� � f��F�f� �����

Fpower�
��f� � f��jF�f�j�����ei arg�F�f�� �����

Or� if we interpret the real and imaginary components of the signal in such a
way that the real component is the derivative of the imaginary component�
then it could make sense to match the signal against elliptical helixes�

Fellipse�
��f� �
Z �

��

�t���f � ��e�i��ft � �f � ��ei��ft���dt

� ��f � ��F�f� � �f � ��F��f���� �����

Finally� since perceived pitch is roughly the logarithm of frequency� a sensible
variation is

Flogfreq�
��p� �
Z �

��

�t�e�i���

ptdt �����

� F�
���p� �����

The logarithmic frequency scale rules out negative frequencies� which may be
an advantage or a disadvantage in di�erent contexts� Since each of these vari�
ations is easy to calculate from the conventional transform in Equation ����
we stick with that simpler formula�

��



When using complex�valued signals in the time domain� it seems most
sensible to use only positive frequencies�that is� signals 
 whose spectra
� have the property that ��f� � 
 for f � 
� But� the mathematics of
the Fourier transform allows negative�frequency components� and it is best
to understand the mathematics in its full generality� and then make what�
ever restrictions seem appropriate in a given application� Real�valued signals
always have negative�frequency components� Also� elliptical helixes have
negative�frequency components when the spectrum is de�ned in terms of cir�
cular helixes� similarly� circular helixes have negative�frequency components
in a spectrum de�ned in terms of elliptical helixes�
We see in the remainder of this chapter how the Fourier transform F�
�

gives a sensible representation of the spectrum of the steady�state signal 
�
It is also important to calculate a sound signal in the time domain from a
given frequency spectrum� For this purpose� we need the inverse Fourier
transform� The Fourier transform is almost self�inverting�

F�F�
���t� � 
��t� �����

The Fourier transform of the Fourier transform of a signal 
 is the same
signal played backwards in time� The inverse of the Fourier transform is
de�ned just like the forward transform� except running the helical patterns
backwards in time�

F������t� �
Z �

��
��f�e�i��ftdf �

Z �

��
��f�ei��ftdf �����

F���F�
�� � 
 for well�behaved 
 ���	�

Equation ��	 fails for certain weird functions� but all of the sound signals that
interest us are well behaved �see ��� for a characterization of the well�behaved
functions��

����� Discrete Spectra

Ironically� for precisely the simple case of a signal that is the sum of helixes
at discrete frequencies� the Fourier transform is ill�de�ned over conventional
functions from reals to complex values� Consider the simplest case of a pure
helical signal�

F��t�e�i��Ft��f� �
Z �

��
ei��Fte�i��ftdt �

Z �

�
ei���F�f�t

��



For f �� F � the product ei��Fte�i��ft � ei���F�f�t oscillates� and its integral
is 
� But� for f � F � we integrate ei��Fte�i��Ft � ei���F�F �t � e� � �� so
the integral is in�nite� Similarly� the Fourier transform of a sum of helixes
is 
 except at the frequencies of the helixes� where it is in�nite� The fact
that the integral is in�nite tells us that there exists a component at the given
frequency� but we lose all information about the magnitude of the component�

Generalized Functions

In order to give more informative values for the Fourier transform of a signal
with components at discrete frequencies� we leave the de�ning formula of
Equation ��� alone� but we reinterpret the nature of the functions that it
may evaluate to� and the rules of calculus for evaluating it� These changes
do not a�ect the well�de�ned values given by the usual integral calculus� but
they provide speci�c values in some cases where the usual integral calculus
is ill de�ned �consider the analogy to complex arithmetic� which extends
real arithmetic to provide a value for

p��� which is unde�ned in the reals��
The basic idea is that we want to let F��t�ei��Ft� represent a function whose
integral is �� but which has the value 
 everywhere except at F � There is
no such function in the conventional calculus� but just as the real number
system may be extended with the new value i with the property i� � ��� the
system of functions from a real number to a complex value may be extended
with a new function �� called the Dirac function� or the impulse function�
with the properties

��f� � 
 for f �� 
 ����
�Z �

��
��f�df � � ������

Intuitively� � is a function that has value 
 except for a spike at input 
� The
spike is in�nitesimally narrow� and in�nitely high� so that the area inside it
is �� A more careful development de�nes generalized functions to be certain
in�nite sequences of conventional functions� and considers only the properties
of generalized functions in the limit� � is formally an in�nite sequence of
narrower and higher spikes� all with area �� Notice that to place the spike
at F instead of 
 we merely shift the input to �� in the generalized function
�f ���f � F �� To increase the area under the spike to R� we multiply R��
Now� we have a sensible value for the Fourier transform of a helix

F��t�ei��Ft��f� � ��f � F � ������

��



For a helix with arbitrary amplitude and phase� the amplitude and phase
pass through to the Fourier transform at the helix frequency�

F��t�Rei�P���Ft���f� � R��f � F �eiP ������

It is often tempting to think that ��
� � �� but this is not quite right� In
order to yield the integral value � in Equation ����� ��
� must be bigger than
every conventional real number� But� it is not merely 
� since it is twice
as big as ��
���� half as big as ���
�� etc�� and it has a well de�ned angle
as a complex number� Just as the new number i was introduced to denotep��� we may use  � ��
� when it is convenient to denote the value of the
impulse function at its spike�
Also� unlike the discontinuous real�valued function that has value � at


� and value 
 everywhere els� � should be understood as continuous� and
continuously di�erentiable� even at 
� Intuitively� there is a continuous con�
nection from the 
 values to the in�nite value� in�nitesimally close to the 

input� The derivative of � is an even more peculiar function that has the
value 
 at every real input� but goes in�nite in�nitesimally before input 
�
and negatively in�nite in�nitesimally after input 
�
Now� consider the sum of helixes from the beginning of this section�


�t� � R�e
i�P����F�t� �R�e

i�P����F�t� � 	 	 	

The Fourier transform of 
 is just a sum of shifted impulse functions�

F�
��f� � R���f � F��e
iP� �R���f � F��e

iP� � 	 	 	

That is� F�
��f� � 
 for f �� F�� F�� � � �� and F�
��Fi� �  Rie
iPi � The

location of the nonzero values in F�
� shows the frequencies in the spectrum
of 
� the magnitude jF�
��f�� j gives the amplitude of the component at
frequency f � and the angle arg�F�
��f�� � gives its phase�
There is a lot more to the theory of generalized functions than I have

even hinted here� There are generalized functions that cannot be de�ned
from conventional functions plus ��their values may not therefore be ex�
pressed in terms of  � In addition to introducing a particular sort of in�nite
values� generalized functions allow much of the useful qualities of continuous
functions to be associated with mappings to values that are discontinuous in
the conventional sense� That is� generalized functions may connect distant
values in an in�nitesimal range of inputs� So� the unit step� or Heaviside

��



function H that has value 
 on negative inputs� value �
�
at 
� and value � on

positive inputs� may be regarded as connecting from 
 to � in the in�nites�
imal region around 
� as the intuitive picture of H shows in Figure ��� As
long as the in�nitesimally narrow connections work in the most obvious way�
I omit them from the de�nition of a function�

H�x� �

�����
����

 if x � 

�
�
if x � 


� if x � 


The impulse function � also contains an instantaneous connection from 
 to
 and back again to 
 in the in�nitesimal region around 
�

��x� �

���
��

 if x � 

 if x � 


 if x � 


����� Continuous Spectra and Noise

The putative advantage of the Fourier transform is to connect arbitrary sound
signals to their spectra� From Section ������ we see that the Fourier transform
discovers the spectrum of a sum of helixes at discrete frequencies� but we
should also be able to use the Fourier transform to analyze signals with
components spread continuously across some range of frequencies� Since we
do not know in advance what such signals are like in the time domain� it
makes sense to de�ne a continuous spectrum� and then apply the inverse
Fourier transform to get a sound signal� For example� the spectrum given
by the Heaviside impulse function H seems like a sensible representation for
the spectrum of a signal with components at all frequencies� all with equal
amplitude and phase 
� But� the inverse Fourier transform yields

F���H��t� �
Z �

��
H�f�ei��ftdf

�
Z �

�
ei��ftdf

� missing steps

� ��t��� � i����t�

This signal is not perceived as a steady�state sound� rather it is an in�nitely
sharp sort of click� The problem is that the di�erent frequency components
cancel out in a systematic way� instead of presenting a steady sound�

��



One might object to the spectrum H because it has equal sized com�
ponents spread over an in�nite range of frequencies� and therefore appears
to represent an in�nite total amount of sound� But� the �nite continuous
spectrum with frequencies over the range ��� �� has similar problems�

!����f� �

�����������
����������


 if f � �
�
� if f � �

� if � � f � �
�
� if f � �


 if f � �

Intuitively� a �nite amount of sound at a discrete frequency F is represented
by an in�nite value  x in the spectrum at F � So� !��� allots only an in�
�nitesimal amount of sound at each frequency in the range ��� ��� and the
total amount of sound is �nite� But� the inverse Fourier transform yields�

F���!�����t� �
Z �

��
!����f�e

i��ftdf

�
Z �

�
ei��ftdf

� �ei���t � ei��t���i��t�

� �ei���������t� � ei��������t������t�

� missing steps

� sin��t�e�i���	���t���t�

That is� F���!���� looks like a helix at frequency ���� whose amplitude os�
cillates and dies out by multiplication with sin��t����t�� Such a signal is
not perceived as a steady�state sound� but rather as a sound that rises from
silence to a maximum loudness at 
 and then dies out again� Again� the con�
tinuous spread of frequency components with synchronized phases produces
a strange sort of systematic cancellation�

Random Functions

In order to give the perception of steady�state sound with components spread
over a continuous range of frequencies� we need to use sound signals whose
values vary randomly at each point in the time domain� Let

Z�x� � e�x
����

p
�� ������

��



and notice that Z �

��
Z�x�dx � � ������

Z is called the Gaussian function� or the normal probability density function�
and it has the shape of a bell �see Figure ���� Z is particularly convenient
mathematically because many probability calculations starting with Gaus�
sian functions produce scaled versions of Gaussian functions at the end� In
particular� the sum of an in�nite sequence of independent random variables
with a Gaussian density is itself a random variable with a Gaussian density�
Let r be a real�valued function� such that for each input t� r�t� is a random

value with Gaussian density� independent of all other values of r� And� let
p be another real�valued function such that for each t� p�t� is a uniformly�
distributed value in the range �
� ���� independent of all other values of p
and all values of r� Now� de�ne the complex�valued sound signal in the time
domain 	 by

	 � reip ������

Each angle arg�	�t�� is a random value uniformly distributed over the range
�
� ���� each j	�t�j is a random positive real value distributed with density
�x��Z�x�� and all of these random values are independent of one another�
Unlike the generalized functions� random functions such as 	 are legitimate
functions according to the conventional mathematical de�nition� but they
are unusual in that they are discontinuous everywhere� Imagine the graph
of 	 as an in�nite bristle brush� of the sort where bristles stick out in a full
circle about the handle� which is the t axis of the graph� 
As generalized
functions	 do the 	s connect each value back to 
	 or to �adjacent�
values� I�m not sure at the moment� Later� certainly not to 
	
but the exact sense in which adjacent values connect is tricky� The
key is to get a sensible derivative�� Although random functions are
mathematical functions in the conventional sense� our de�nitions of random
functions� and our notation for them� are somewhat odd� When we write 	�
we are referring to any one of the in�nitely many functions with the random
properties described above� but within one discussion� all instances of the
symbol 	 refer to the same random function� If we attach di�erent subscripts
to 	� such as 	�� 	�� � � �� then we are referring to di�erent functions with the
same random properties �independent���

��



The marvellous thing about the signal 	 is that its Fourier transform is
another function with the same random properties�

F�	���f� �
Z �

��
	��t�e

�i��ftdt � 	��f� with probability � ������

The reason for this similarity is that� for each f � �t�	��t�e
�i��ft � 	��f �t� is

another Gaussian�random function� and then the integral gives yet another
random function with Gaussian density� The independence of each pair of
values F�	���F��� F�	���F�� for F� �� F� holds because the functions e�i��F�t

and e�i��F�t are linearly independent� So� the spectrum of a Gaussian�random
sound signal 	� is given by another Gaussian�random function 	�� 	� is
perceived as a steady�state sound� and 	� represents essentially a uniform
spread of sound over all frequencies� The randomization of the precise values
of the spectrum avoids the systematic cancellation in the signals with spectra
H and !����
The spectrum 	� above has the same qualitative behavior over negative

frequencies as over positive frequencies� In order to have a steady�state sound
signal with only positive�frequency components� de�ne the spectrum by

	��f� �

�

 if f � 

	�f� if f � 
 ������

The inverse Fourier transform of 	� is a random function with the same
density as 	�

F���	�� ��t� �
Z �

��
	�� �t�e

�i��ftdt � 	��t� � 	��t�

with probability � ����	�

It is strange that 	 and 	� seem to have the same inverse Fourier transform�
In fact� they do not� They both have inverse transforms that are random
functions of the same density� but F���	�� inhabits a small� probability�
�
subspace of the space of all such functions� 	� denotes a function in this
subspace�

	� � F���	�� ����
�

Every 	� is also a 	� but a randomly chosen 	 has probability 
 of being a
	��

��



Classical probability theory based on measure is not really the right foundation for this discussion�

Each particular signal either does or does not sound like white noise� What determines the sound is not

the process that produced the signal� but speci�c statistics that must agree with the statistics of a random

process�

Steady�state signals with spectra� such as 	 and 	�� that distribute sound
evenly across all frequencies or all positive frequencies are called white noise�
by analogy to the perception of light with an even mixture of all fequencies
as the color white� Lots of other randomized functions behave as white noise�
In particular� either the phase or the magnitude of the signal may be constant
or deterministic as long as the other one is appropriately randomized� For
example� real�valued functions with random values in uniform or Gaussian
density� and complex�valued functions with constand magnitude and random
angle� both generate forms of white noise�

����� A Calculus of Fourier Transforms

In order to apply the Fourier transform to generate useful insight� we need
some rules for deriving Fourier transforms of interesting functions� In princi�
ple� we may use the de�nition of Fourier transform in Equation ���� and apply
the rules of the integral calculus� In fact� that is far too cumbersome� and we
need to manipulate functions and their transforms at a much higher level�
The best thing is to forget the meaningful application of the transform for
a while� and just systematically absorb some useful functions and operators
on functions and the rules for their interactions with the transform�

Basic Functions and Their Transforms

Many of the basic functions turn out to be useful in both the time and
frequency domains� so I de�ne them in terms of a generic variable x� For a
systematic presentation� I repeat some functions that we are already familiar
with�

��x� � � ������


�x� � ei��x ������

��x� �

���
��

 if x � 

 if x � 


 if x � 


������

�	



III�x� �
�X

i���

��x� i� ������

��x� � ��x��� � i����x� ������

H�x� �

�����
����

 if x � 

�
�
if x � 


� if x � 


������

Z�x� � e�x
����

p
�� ������

!�x� �

�����������
����������


 if x � ����
�
�
if x � ��

�

� if � ��� � x � ���
�
�
if x � ��

�


 if x � ���

������

sinc�x� � sin��x����x� ����	�

	 � reip for Gaussian random r� uniform random p ����
�

	� � H	 ������

	� � F���	�� ������

Now� the transforms of the basic functions�

F��� � � ������

F�
� � �s���s� �� ������

F��� � � ������

F�III� � III ������

F��� � H ������

F�H� � � ������

F�Z� � Z ����	�

F�!� � sinc ����
�

F�sinc� � ! ������

F�	�� � 	� ������

F�	�� � 	� ������

F�	�� � 	� ������

�




Functional Operators

Functions may be combined by performing a given arithmetic operation on
their corresponding values� Cross correllation ��� and convolution ��� operate
on the entirety of two functions with an integral formula to produce a new
function�

��� ���x� � ��x� � ��x� ������

��� ���x� � ��x�� ��x� ������

�����x� � ��x���x� ������

������x� � ��x����x� ������

�����x� � ��x���x� ����	�

��x� � ��x� ����
�

�� � ���x� �
Z �

��
��y � x���y�dy �

Z �

��
��y���x� y�dy ������

�� � ���x� �
Z �

��
��y���x� y�dy �

Z �

��
��y � x����y�dy ������

Now� consider some important properties of� and relations between� these
functional operators�

� � � � � ������

� � � � � � � ������

�� � �� � � � � � �� � �� ������

� � �� � �� � �� � �� � �� � �� ������

� � � � � ������

� � � � � � ��x����x�� ������

�� � �� � � � � � �� � �� ����	�

� � �� � �� � �� � �� � �� � �� ����
�

� � � � ��x����x�� � � � � � ��x����x�� ������

� � � � ��x����x�� � � � � � ��x����x�� ������

�� � ��� � �� � � ������

�� � ��� � � � �� ������

�� � ���
��� ������

��x���x�A�� � � � �x���x�A� ������

��x���x�A�� � � � �x���x�A� ������
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��x���x�A��� � ��A�� ������

To calculate Fourier transforms� use the following rules that show how the
transform and other functional operators interact�

F��� �� � F��� � F��� ����	�

F��� � �f �F�����f� ����
�

F���� � �F��� for constant � ������

F��t���t�A�� � F�����f �
�Af�� � F�����f �ei��Af �
for real constant A ������

F��t���At�� � ��f �F����f�A���jAj for real constant A ������

F��t����t�� � �f �F�����f� ������

F�� � �� � F���F��� ������

F���� � F��� � F��� ������

F�� � �� � ��f �F�����f�F��� ������

F����t�ei��Ft�� � �f �F����f � F � ������

F�� � �� � jF���j� ����	�

F���� � �f �i��fF����f� ����
�

	�	 The Meaning of Convolution and Multi�

plication

Table ��� shows how various signal�processing operations can be expressed as
various multiplications and convolutions in the time and frequency domains�
In each case� the subscript t indicates a sound signal in the time domain� and
the subscript f indicates its Fourier transform in the frequency domain� In
the �rst �ve cases� the correspondence of the multiplicative formula in one
domain to the signal�processing operation is intuitively clear�the appropri�
ateness of the convolution formula follows from Equations ���� and ����� In
the last case �time�shifting�� the convolution formula in the time domain is
intuitively clear� and the multiplication formula in the frequency domain is
derived from it�
The Fourier transform provides a number of useful insights into the nature

of steady�state sound� Amplitude modulation is seen to introduce frequency
components at the sums and di�erences of components in the carrier and
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the modulator� since it translates from multiplication in the time domain to
convolution in the frequency domain� Filtering to boost certain frequencies
in relation to others clearly corresponds to multiplication in the frequency
domain� so it may be implemented by convolution in the time domain� Since
sampling in the time domain is essentially multiplication by III� it has the
e�ect of convolution with III in the frequency domain� and the replication of
frequency components at regular intervals resulting from convolution with III
is precisely aliasing� Finally� notice how Equation ���	 tells us that the rela�
tive magnitudes of components in the frequency spectrum F�
� depend only
on the statistical correllation of 
 with the time�shifted versions �t�
�t�A��
This autocorrellation property is what allows random functions to generate
continuous spreads of frequencies� at the cost of randomizing the phases of
the frequency components�

Operation Time Domain Frequency Domain

Amplitude modulation At�t Af � �f
Amplitude�phase modulation �t�t �f � �f

Sampling III�t III � �f
Filtering At � �t Af�f

Filtering�phase�shifting �t � �t �f�f
Time�shifting ��t���t�A�� � �t ��f �ei��Af ��f

Table ���� The meanings of convolutions and multiplications of signals�
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Chapter �

Additive Spectral Synthesis

��� Steady�State Sound

��� Amplitude Modulation
 Enveloping

����� Enveloping a Multifrequency Sound

����� Enveloping Individual Spectral Components

��� Frequency Modulation
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Chapter �

Time�Varying Spectral Analysis

� Dual use of time�sonic time vs� variation time�


�� Shortcomings of the Fourier Transform

� Implications for sampling rate�


�� Time�Varying Spectral Analysis with the

Continuous Wavelet Transform

� Windowing�
� Window shape�
� Constant Q�
� Causality�
� Phase vocorder�
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Chapter �

Synthesis by Resonant Modes

� Shortcomings of additive synthesis w�r�t� simplicity� transformability�

��� Filters

In general� a �lter is just something that converts an input signal to an
output signal� that is� a function T from signals to signals� Most of �lter
theory deals with restricted classes of �lters with qualities that are physically
reasonable and�or convenient for analysis� The important restricted classes
of �lters include�

Time�invariant� Although we express time as a real�valued parameter t� it
is usually unrealistic to attach any special signi�cance to time t � 
�
nor to any other particular value of t� Normally� only the time di�er�
ences between events have perceptual signi�cance in a sound signal� A
time�invariant �lter is one whose output at time t does not depend on
the speci�c value of t� but only on the time di�erence between t and
various events in the input signal� The output of a time�invariant �lter
normally varies over time� but that variation depends entirely on input
variation� not on the value of t� That is� the �lter has no internal clock�
and no access to information other than the input signal� Technically�
this means that if the input is shifted in time� the output gets shifted
in exactly the same way�

Strictly speaking� if we change the behavior of a �lter by manipulat�
ing some knobs� sliders� or other controls� then the �lter is not time�
invariant� since its response to an input signal depends on which parts
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of the signal arrive before our adjustmets and whcih parts arrive af�
terwards� For example� the tuning circuitry on a radio is not a time�
invariant �lter when we turn the dial� But� we normally understand
such an adjustable �lter as a parameterized sequence of time�invariant
�lters corresponding to the di�erent control settings� This view works
well enough as long as we are willing to ignore transient behavior close
to the times when the controls change�

Causal� A causal �lter is one whose output at time t depends only on the
input at times � t� That is� present output depends on past and
present� but not future� input� In the strictest sense� only causal �lters
are physically realizable when both input and output are signals in the
time domain� But� it may be convenient to view a causal �lter as an
approximation to a mathematically simpler noncausal �lter� Also� it is
sometimes convenient to callibrate input and output times to di�erent

 points� in which case a �lter that is physically causal may be mod�
elled by one that appears to look into the future for a limited interval�
Causality is largely irrelevant when we �lter signals that are arranged
in space rather than time� Noncausal �ltering of sound signals in real
time is impossible� but noncausal �lters are perfectly feasible� and quite
useful� for image processing and o��line sound processing�

Finite Impulse Response� A �lter has �nite impulse response if� when�
ever the input becomes 
 and remains 
 forever� the output eventually
becomes and remains 
�

Memoryless� A �lter is memoryless if the output at time t depends only
on the input and its derivatives at time t�not on the future nor past
behavior of the input signal�

Pointwise� A �lter is pointwise if the output at time t depends only on the
input value at time t�no memory and no derivatives�

Stable� A stable �lter is one whose output cannot run o� to in�nity with�
out some sort of in�nite input stimulus� Physically realizable �lters
are always stable in some sense� but it may be convenient to model a
situation where the �lter gets destroyed as an instability� There are
many possible variants of stability depending on the precise physical
interpretation of signals� and on the limitations imposed on inputs� In
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these notes� I require that the output of a stable �lter cannot go o�
to in�nity unless the input does so� Physically realizable �lters often
satisfy stronger restrictions� such as conservation of energy�

Linear� A linear �lter is one for which sums and scalings of input produce
corresponding sums and scalings of outputs� Linear �lters are much
easier to analyze than general nonlinear �lters� since we may break the
input up into helical components� �lter each component� and recon�
struct the output from the �ltered components� We have a thorough
mathematical explanation of linear �lters� and very little mathematical
information about nonlinear ones� Physically realizable �lters are never
precisely linear� but they are often very nearly linear within reasonable
limits on the input signal� In such cases� it is very helpful to consider
the linear approximation to a �lter� instead of a more exact but less
analyzable form�

Each restrictions on �lters may be expressed precisely as a mathematical
property of a �lter T �
Time�invariant� T ��s�
�s � A���t� � T �
��t � A� for all signals 
� real

constants A�

Causal� T �
��t� � T �
�s�H�t� s���t��

Finite Impulse Response� For all signals 
� real constants A� there is a
real constant B such that T ��s��H�s�A�� � 
��t� � 
 for all t � B�

Memoryless� T �
��t� � f�
�t�� d
dt

�t�� d

�

dt�

�t�� � � �� for some function f �

Pointwise� T �
��t� � f�
�t�� for some function f �

Stable� For all signals 
� if there is a real constant A such that j
�t�j � A
for all t� then there is another real constant B such that jT �
��t�j � B
for all t�

Linear� T ��
���� � �T �
���T ��� for all time signals 
 and �� complex
constants �� ��

In this section� I review the theory of linear� time�invariant �lters� Nonlinear
�lters are very important in sound modelling� but I cannot �nd a general
theory for them�
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����� Unit Resonances and Antiresonances

Just as sound signals may be decomposed into simple helices� linear time�
invariant �lters may be composed into simple resonances� which boost signals
near a certain frequency� and antiresonances� which suppress signals near a
certain frequency�

Unit Resonances

The unit resonance �lter is essentially the ideal spring system of Section ������
with an idealized frictional force opposing the spring tension� The tendency of
a spring to vibrate at a particular frequency produces the desired resonance�
in fact a frictionless spring� once moved away from 
� vibrates forever at its
natural frequency� Friction is needed to keep the system stable when it is
stimulated by an input signal� Because of the form of analysis described in
Section ������ this type of basic �lter is also called a single�pole �lter� Since
current behavior depends only on present and past behavior� it is causal�
But� it is neither memoryless� nor �nite�impulse response�
Recall Equation ���� from Section ������ the complex�number form of the

di�erential equation for a rotor�

	� � iA	

The real constant A determines the frequency of the rotor� iA	 is a vector
perpendicular to 	 with length scaled by A� so iA	 represents a motion
around a circle� Idealized friction causes the rotor to decay toward 
� by
adding a displacement in the opposite direction to 	� and of proportional
length� So� the di�erential equation for a decaying rotor is

	� � �B � iA�	 �����

with B � 
� If B � 
� then this reduces to the frictionless rotor� For B � 
�
we get a rotor with antifriction� which is rather explosive� We might as well
take full advantage of complex arithmetic� and rewrite Equation ��� as

	� � �	 �����

where ���� � 
 and ���� � 
�
With initial condition 	�
� � �� the solution to Equation ��� is 	�t� � e�t�

just as if � were real� Using Euler�s formula �Equation ������ this is

	�t� � e�t � e����tei����t � e����t�cos�����t� � i sin�����t��
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So� the behavior of a decaying rotor� when released at 	�
� � �� is to follow a
spiral that turns at ��������� cycles per unit time� and decays exponentially
with amplitude e����t at time t�
To use a decaying rotor as a unit resonance� let the input to the �lter

contribute an additional component to the rotor derivative� and take the
output from the rotor state� Let R� be the �lter constructed from the
decaying rotor with constant �� Then R��
� � 	� where

	� � 
 ��	 �����

This �lter resonates to frequencies near ���������� and the strength of the
resonance decreases as ���� decreases�
First� consider the behavior of R� when the input is a unit helix at the

resonant frequency� that is R��
� where 
�t� � ei����t� Assume that the
input continues for all time� so that the rotor con�guration reaches some
sort of steady state� In that steady state� the rotor state and the input have
exactly the same angle �they are precisely in phase�� and the input cancels the
decay component of the rotor equation� so that the rotor state is also a helix
at frequency ���������� but with possibly a di�erent amplitude than the
input� Look at Figure �see Maple manuscript� for the relationship between
the input and rotor state�
The picture in Figure �Maple manuscript� is probably the best tool for un�

derstanding the essential quality of the rotor �lter with input at its resonant
frequency� But� if you really want to work through the mathematics �which
is elementary� but icky�� here it is� Since 	 has the same frequency and phase
as the input� but some unknown amplitude A� we may write 	�t� � Aei����t�
which implies that

Ai����ei����t � 	� � 
 ��	 � ei����t ��Aei����t � �� �A��ei����t

Comparing the �rst and last terms above� we �nd that iA���� � �� �A���
so


 � ��iA����� � ��� �A�� � � �A����
so A � �������� A is unde�ned when ���� � 
� In fact� the only way to
have a steady state with ���� � 
 is to make 
 � 
� The derivation yields
a steady state when ���� � 
� This steady state is correct in a sense� It
corresponds to input exactly �

� a cycle out of phase with the rotor state� But�
this con�guration is highly unstable� the least deviation from opposite phase
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will send the rotor state o� to in�nity� By contrast� when ���� � 
 every
initial state heads asymptotically toward the steady state derived above�
Now� consider an input unit helix at an arbitrary frequency� 
�t� � eiBt�

The picture of the steady state is a bit more complicated than before� The
frequency of the output must still be the same as the frequency of the input�
so that the rotor state and input remain at the same angle� If the input
frequency is greater than the resonant frequency� then the phase of the input
advances ahead of the phase of the rotor state� so that part of the input
contributes to moving the rotor at a higher frequency than the resonance�
If the input frequency is less than the resonant frequency� then the phase
of the input falls behind the phase of the rotor state� so that part of the
input retards the rotor� As a result� there is less of the input available
to cancel the decay� and the output has a smaller amplitude than it does
at the resonant frequency� Look at Figures �Maple manuscript� to see the
relationship between the input and rotor state when the input frequency is
greater �respectively� less� than the resonant frequency�
If you really want to see the mathematical derivation� let the output be

	�t� � Aei�Bt�C�� Then

AiBei�Bt�C� � 	� � 
 ��	 � eiBt ��Aei�Bt�C� � �e�iC �A��ei�Bt�C�

Comparing the �rst and last terms� iAB � e�iC �A�� so


 � ��iAB� � ��e�siC �A�� �� � cos�C� �A����

and
AB � ��iAB� � ��eiC �A�� � � sin�C� �A����

From the real part� cos�C� � A����� From the imaginary part� sin�C� �
A����� � B�� so C � arctan������ � B������� and A � cos�C������ �
sin�C��������B� � ��j�� iBj� It is easy to see that A is maximum� and
C is 
� when B � ����� Notice also that the amplitude A falls o� more
rapidly the closer that ���� gets to 
� When B � ����� then C � 
� which
means that the input phase is ahead of the output� When B � ����� then
C � 
� so the input phase is behind the output� When ���� � 
� and when
���� � 
� behavior is analogous to the case where input frequency equals
resonant frequency� we get no steady state unless the input is 
� and a steady
but unstable case with input nearly �

� cycle out of phase with rotor state�
respectively�
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One mathematical complication has been swept under the rug� If you
didn�t notice it� don�t worry about� Just in case you did� the steady�state
output derived above is not the only solution satisfying the di�erential equa�
tion for the unit resonance� There are an in�nite number of solutions� We
may select any complex number value for R��
��
�� and there is a unique
solution with that 
 value� The solution that makes physical sense is the only
one in which limt���R��
��t� is bounded� Intuitively� this corresponds to
setting the �lter state to 
 at time �
�
Even though you skipped the mathematical derivations� you should re�

view the following crucial qualitative observations�

� R� has a resonant frequency at ����������
� Set to some nonzero initial state� and left to itself� the decaying rotor
with constant � spins at the resonant frequency� and its amplitude
decays in the form of ei����t�

� When ���� � 
� the rotor behavior is stable�
� When ���� � 
 and the resonant frequency is not 
� the rotor behavior
is unstable for all nonzero helical inputs� On zero input� it rotates at
the resonant frequency without decay� The peculiar special case where
� � 
 is stable for helical inputs with nonzero frequency�

� When ���� � 
� the rotor behavior has an unstable equilibrium where
the input is approximately opposite to the rotor state� and cancels the
increase� Any deviation from that unstable equilibrium sends the rotor
o� to in�nity�

� For helical inputs� output amplitude is highest when the input fre�
quency equals the resonant frequency�

� Input is in phase with output at the resonant frequency� At higher
frequencies� input phase advances ahead of output phase� at lower fre�
quencies it retards�

� Larger values of ���� �i�e�� closer to 
� since they should be negative�
give higher amplitude of output� and also a sharper peak at the resonant
frequency�
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Although a signal at frequency 
 is not perceptible as sound� a �lter with
resonance at frequency 
 may be quite useful� RD� whereD is a real constant�
is a low�pass �lter�it boosts low frequencies and suppresses high frequencies�
and D determines how steeply its response rolls of with increasing frequency�
R� just integrates the input� which is the simplest form of linear lowpass
�ltering� Negative�frequency �lters also act as low�pass when the input has
only positive frequencies� When working with real�valued signals� instead
of complex�valued� each resonance at frequency F is usually paired with
another at frequency �F � Even a resonance at in�nite frequency makes
sense�it is a high�pass �lter� which boosts high frequencies and suppresses
low frequencies�but resonance at in�nite frequency cannot be implemented
with a decaying rotor� For now� just think of it as the limiting �lter as
frequency goes in�nite�
It is not di�cult to show that every unit resonance �lter R� is linear

and time�invariant� So� the steady�state behavior of a resonance is entirely
determined by its response to unit helices� The amplitude A of the output
to a unit helix at frequency F is called the gain at F � and the phase shift C
is called the phase delay at F � Many people abbreviate this to 
delay�� but
that practice is hazardous� since there is another completely di�erent sort of
delay in �lter behavior� Section ����� shows how to analyze and describe the
entire behavior of a linear time�invariant �lter� including transient behavior
as well as steady state�
Resonances have very interesting transition e�ects� in addition to their

steady�state behavior� When a frequency component starts or increases in
the input� the output component at that frequency responds gradually� and
approaches its steady�state value asymptotically� When an input component
reduces or disappears� the resonance continues to vibrate� or 
ring�� at the
resonant frequency� Higher values for ���� lead to slower response when a
component increases� and quicker decay of the ringing� When �lters are used
in sound reproduction systems and conventional signal�processing applica�
tions� these transient e�ects are often considered undesirable� and extensive
design e�ort is expended to minimize them� But� for sound synthesis� tran�
sient e�ects� and particularly ringing� are often the main point of using a
�lter�
Just as all sound signals may be expressed as a combination of unit helices

�perhaps in�nitely many� scaled by complex constants� all causal linear time�
invariant �lters may be expressed as a combination of scaled resonances �lters
�noncausal �lters require time�reversed versions of the resonances�� But�
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many natural and useful �lters may be expressed more compactly and more
insightfully if we also alo antiresonances� suppressing a given frequency� A
particular �lter may be expressible by a discrete or even �nite combination of
resonances and antiresonances� while requiring the integration of a continuous
spread of resonances� So� the next subsection investigates antiresonances�

Unit Antiresonances

In terms of input�output behavior� a unit antiresonance �lter is the inverse
of a unit resonance� Unfortunately� the rotor mechanism does not explain
antiresonances� Notice that� since the input to a decaying rotor is added to
the derivative of the rotor state� the e�ect of the rotor is to integrate input�
scaled in some way determined by the resonance� over time� Antiresonance
depends on di�erentiating the input� A unit antiresonance �lter is causal�
�nite�impulse�response� and even memoryless �output at time t depends only
on the input and its derivative at time t�� but not pointwise� Because of the
form of analysis in Section ������ a unit antiresonance is usually called a
single�zero �lter�
Recall the derivative of a unit helix� d

dt
eiBt � iBeiBt� That is� the deriva�

tive of a unit helix is another helix at the same frequency� but advanced in
phase by �

�
cycle �from the multiplication by i�� and scaled by B �frequency

times ���� The crucial quality of the derivative is the scaling by B� since this
gives a mathematical tool for suppressing a particular frequency� We must
work around the phase advance� but it is uniform for all frequencies� So� the
general form for an antiresonance is to cancel a scaled and rotated version of
the input signal against the derivative of the input�
Let A� be the unit antiresonance with antiresonance characterized by ��

Let 
 be an input� and let 	 � A��
� be the corresponding output� de�ned
by

	 � 
� ��
 �����

This is the inverse of the resonance �lter behavior in Equation ���� Solving
for 
� yields


� � 	��
 �����

which has exactly the form of Equation ���� with the roles of 
 and 	 reversed�
So� the output A��
� from an antiresonance �lter� when presented as input
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to the corresponding resonance �lterR�� yields the original input 
� and the
same thing happens when the output of the resonance is supplied as input
to the antiresonance�

R��A��
�� � 
 �����

A��R��
�� � 
 �����

Consider the behavior of A� on a unit helix eiBt� Since �
 and 
� have
the same frequency as 
� the output is certainly of the form 	 � Aei�Bt�C��
and we need to determine the amplitude A and phase shift C� i����

is a vector in the same direction as 
�� so by subtracting this from 
� we
cancel entirely when B � ����� and nearly cancel when B is close to the
antiresonant frequency� We are also left with �����
� which is just a scaling
of the input� Look at Figures �Maple manuscript� to see how this works�
Here�s the mathematical derivation� but you may skip it as before�

AeiCeiBt � Aei�Bt�C� � 	 � 
� ��
 � iBeiBt ��eiBt � �iB ���eiBt

Comparing the �rst and last terms� AeiC � iB ��� so

A cos�C� � ��AeiC� � ��iB ��� � ����
and

A sin�C� � ��AeiC� � ��iB ��� � B �����
From the real part� cos�C� � �����A� From the imaginary part� sin�C� �
�B �������A� so C � arctan��B � ���������� and A � ����� cos�C� �
�B � ������ sin�C� � j� � iBj� It is easy to see that A is minimum� and
C is 
� when B � ����� The amplitude A increases more rapidly the closer
that ���� gets to 
� When ���� � 
� the antiresonant frequency ���������
is completely suppressed� When B � ����� then C � 
� so the phase of the
output lags behind the input� When B � ����� then C � 
� so the phase
of the output advances ahead of the input� This is the opposite of the phase
behavior for a resonance� Unlike a resonant �lter� an antiresonant �lter is
stable even when ���� � 
 and ���� � 
� When the real part is 
� we get
complete suppression of the antiresonant frequency� When the real part is
positive� we get the same output amplitude as if the real part were negated�
but the opposite phase�
Even though you skipped the mathematical derivations� please review

these critical qualitative observations�
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� A� has an antiresonant frequency at ����������
� A� has no internal state� so it does not produce sonically interesting
output when released in some initial state� Section ����� shows the
mathematical analogue to the decay of the rotor�

� A� behaves stably for all values of ��
� When ���� � 
� the antiresonant frequency is eliminated entirely�
� As j����j grows� the antiresonant frequency is reduced less and less�
and the increase in amplitude away from the antiresonant frequency is
less sharp�

� Negating ���� corresponds to reversing the phase of the output�
� When ���� � 
� frequencies higher than the antiresonant frequency
are retarded in phase� lower frequencies are advanced�

������������� An antiresonance at frequency 
 is the same as a resonance
at 
� that is� AD for real constant D is a high�pass �lter� In particular�
A� just di�erentiates its input� which is the simplest form of linear highpass
�ltering� An antiresonance at 
 makes perfect sense� but it is usually more
convenient to represent it as a resonance at 
� ARE THESE REALLY THE
SAME������ I THINK NOT�
The antiresonances� like the resonances� are linear and time�invariant�

So� their steady�state behaviors are determined entirely by their responses
to unit helices� As with resonances� the amplitude A of the output to a unit
helix at frequency F is the gain� and the shift C is the phase delay at F �
Antiresonant �lters are memoryless� and present output depends only on the
value and derivative of present input� so they do not create the transient ef�
fects� particularly ringing� of resonant �lters� But� because of the dependence
on input derivative� antiresonances react in interesting ways to transients in
the input� A sudden change in a frequency component of the input boosts
the amplitude of that component in the output� Higher values of ���� lead
to stronger reactions to changes in the input�

Identity	 Constant Output	 Time Shifting

There are a few linear time�invariant behaviors that do not develop naturally
from resonances and antiresonances� But� they are quite simple to under�

��



stand directly� The identity �lter produces output exactly the same as its
input�

I�
� � 
 �����

I is neither a resonance nor an antiresonance� but when we consider combina�
tions of resonances and antiresonances� it is the natural starting point�the
combination of 
 resonances and 
 antiresonances� The constant output �l�
ters produce the same output no matter what the input�

C��
� � � ���	�

Notice that the output must be a complex constant� independent of time�
else the �lter would not be time�invariant�
The remaining time�invariant �ltering behavior that does not appear to

develop naturally from resonances and antiresonances is time shifting�

SE�
��t� � 
�t� E� ����
�

When E � 
� the time shifter SE is causal� and represents a delay� The delay
induced by SE is called pulse delay� It is totally di�erent from the phase
delay induced by resonances and antiresonances�

Combining Filters in Sequence and In Parallel

Given the unit resonances� unit antiresonances� identity� constants� and time
shifters� a lot of interesting �lter behaviors may be constructed by the intu�
itive equivalent of scaling the �lters and wiring them together� The scaling
of a �lter T by � multiplies the output by �� When the �lter is linear and
time�invariant� this has the same result as multiplying the input by ��

��T ��
� � ��T �
�� ������

�T ���
� � T ��
� ������

�T � T � when T is linear time�invariant ������

The sum of two �lters T� and T� corresponds to splitting the input signal�
feeding it separately to T� and T�� and adding the two outputs�

�T� � T���
� � T��
� � T��
� ������

��



The composition� or cascade� of T� and T� corresponds to feeding the input
to T�� then taking that output and feeding it to T�� When both �lters are
linear and time�invariant� the order makes no di�erence�

�T� � T���
� � T��T��
�� ������

T� � T� � T� � T� when T��T� are linear time�invariant ������
With suitable notions of in�nitary sum and composition� all causal lin�

ear time�invariant �lters may be constructed from scaled versions of reso�
nances� antiresonances� identity� constant� and time shifters SE with E � 
�
Along with the negative time shifters� they su�ce to construct all linear
time�invariant �lters� although the forms of �lters that depend on the in�
de�nite future are rather peculiar� and more natural presentations require
time�reversed versions of the resonances� Section �� explores some of the
special forms for representing �lters using various operations on the the ba�
sic �lters�

����� Forms for Representing Filters

There are a number of di�erent ways to represent linear time�invariant �lters�
each of them useful in di�erent ways� The best representation for the purpose
of implementation is not always the best for understanding and analysis�

Impulse Response and the Convolution Form

The impulse response for a �lter T is its output whent the input is an in�
�nitely sharp pulse at time 
� that is T ���� Since the only nonzero input is
at time 
� T ����t� gives the contribution of an input at time 
 to the output
at time t� For a time�invariant �lter� this is the same as the contribution
of input at time s to output at time s � t� for all s� For a linear �lter� the
contribution of an input point to an output point is proportional to the input
value� and the output at a given time is the sum of the contributions from
other times� So� T ��� completely determines the behavior of T � At �rst�
it may seem surprising that a single input determines the behavior for the
in�nitely many di�erent unit helices� but recall that F��� � �� so � contains
helical components at every frequency�
The description of T �
� in terms of the impulse response is particularly

simple�

T �
� � T ��� � 
 ������

��



This is the convolution form of the �lter T � Recall that �T ��� � 
��t� �R�
�� T ����s�
�t� s�ds� so the convolution is just the integration of the con�
tributions of each 
�t� s� to 
�t�� This is particularly clear mathematically�
but it may be very expensive to compute� particularly if the impulse response
goes to 
 slowly�
Interesting properties of a linear time�invariant �lter T may be expressed

in terms of the impulse response�

Causal� T ����t� � 
 for all t � 
�
Finite Impulse Response� There is some real constant A such that T ����t� �


 for all t � A�

Memoryless� T ����t� � 
 for all t �� 
�
Pointwise� T ��� � �� for some complex constant ��

Stable� limt�� T ����t� � 
�
Since convolution is a form of weighted integration� it is surprising at

�rst that the convolution form can express �lters� such as the antiresonances
A�� that depend on derivatives of the input� But� ��� the derivative of the
Dirac impulse� has the strange property that it produces derivatives of other
functions by convolution�

�� � 
 � 
� ������

���t� � 
 for all real numbers t� but �� shoots up to 
 in�nitesimally before

� and down to �
 in�nitesimally after 
� so by convolution it produces
the slope of an in�nitesimal region about each point in the signal 
� The
convolution form suggests another interesting restricted class of �lters� a
�lter is convolutional if its impulse response is a normal function from reals
to complex numbers� rather than a generalized function�
If we object to convolution with generalized functions� then we may ex�

press all �lters as sums of convolutions with derivatives

T �
� �
�X
k��

�k � dk

dtk

 ����	�

This form is not unique�there are many di�erent sequences ��� ��� � � � repre�
senting the same �lter T�but all of the �ks may be normal functions from

�	



reals to complex numbers� Perhaps it is more interesting to let the �ks be
sums of normal functions and time�shifted Diracs �t���t� A�� so that they
combine integrals and discrete values of their respective derivatives�

Di�erential Equation Forms

The unit resonances were all de�ned by ordinary di�erential equations� This
representation generalizes to de�ne all linear time�invariant �lters in the form
of ODEs of any chosen order k� That is� T �
� � 	� where 	 is the solution
to the di�erential equation of the form

dk

dtk
	 � � � 
 � � � 	 ����
�

Appropriate initial conditions are required to select the right one of the
in�nitely many solutions� For causal �lters� the right idea is to initial�
ize 	 and all of its derivatives to 
 at time �
� formally we require that
limt��� fracdldtl	 is bounded for all l� For noncausal �lters� things are
more complicated� Essentially� a noncausal �lter is the sum of a causal com�
ponent that starts in value 
 at time �
 and an anticausal component that
ends in value 
 at time
�
With k � 
� � � T ��� and � � 
� the ODE form is the same as the

convolution form� For every �lter T and positive integer k� we can get a kth
order ODE by letting � � dk

dtk
T ��� � T � dk

dtk
��� But� the ODE form is useful

when � and � are both nonzero� and both simpler or easier to compute with
than all of the T � dk

dtk
�� functions�

Ideally� � and � may be �nite sums of impulses and derivatives of im�
pulses� For example� R���� � H�t�e��t is an in�nitely long� continuous
impulse response� but R� may also be presented as a �rst�order ODE with
� � � and � � �� The composition R�� � 	 	 	 � R�k

of k unit resonances
may be de�ned by a �nite kth order ODE� For example�R�� �R�� has the
�nd order ODE

d�

dt�
	 � 
 � ��� ����

d

dt
	 �����	 ������

with k � �� � � �� � � ��� ������ ������
Interesting properties of the �lter T may be expressed in terms of the

parameters of an ODE form for T �
Causal� ��t� � 
 for all t � 
�

�




Finite Impulse Response� � � 
�

Memoryless� � � 
 and � �
P�

l���l
dl

dtl
�� for some in�nite sequence������ � � �

of complex constants�

Pointwise� � � 
 and � �
P�

l���l�� for some in�nite sequence ������ � � � of
complex constants�

Stable� jR��� �j � � ����� Or is it R���j�j � � �����
Every di�erential equation of order k may be reduced to lower orders

k��� k��� � � �� by introducing extra variables� When de�ning a �lter� these
extra variables may be understood as the internal state of the �lter� For
example� R�� � R�� � which was represented by a �nd order ODE above�
may also be represented by a �st order ODE to be solved simultaneously
for � variables� That is� R�� � R���
� � 	�� where 	�� 	� are simultaneous
solutions to the ODE

	�� � 	� ���	� ������

	�� � 
 ���	�

Multivariate low�order �usually �st order� ODEs often provide the most direct
understanding of a �lter as a device with input� internal state that develops as
a function of input and previous state� and output derived from the internal
state� For example� a multirotor system may be described by an ODE with
one complex variable keeping the state of each rotor� The �nal output may
be given as a linear combination of the rotor states�

����� Analyzing Filters with the Laplace Transform

Just as we analyze every sound signal in terms of unit helices� we may analyze
every linear time�invariant �lter in terms of unit resonances� Information
about antiresonances comes as a byproduct of the analysis of resonances� In
fact� the Fourier transform of the impulse response already provides enough
information to characterize the behavior of a �lter� but that information is
revealed more conveniently by an extension of the Fourier transform� called
the Laplace transform� The Laplace transform of a signal 
 is

L�
���� �
Z �

��

�t�e��ftdt ������

��



The Laplace transform takes a function from real to complex values and
produces a function from complex to complex� It generalizes the Fourier
transform by allowing the multiplier i��f of t in the exponent to be an ar�
bitrary complex number �� The Laplace transform of 
 contains the Fourier
transform in a simple way�

F�
��f� � L�
��i��f� ������

In fact� the whole Laplace transform may be de�ned as a combination of
Fourier transforms of 
 times a real�valued exponential�

L�
���� � F�e���������������� ������

Fixing an arbitrary constant value D for the real component of �� the real�to�
complex function �f �L�
��D� if� carries enough information to reconstruct

� so the Laplace transform is highly redundant� Most functions from com�
plex to complex are not the Laplace transform of any signal�
Di�erent books and papers use variations on the de�nition of the Laplace

transform� Many use a one�sided Laplace transform� with integral from 
 to

� Of course� the one�sided transform of 
 is just the two�sided transform
of H
� For greater generality� and closer correspondence with the Fourier
transform� the two�sided form is better�
Roughly� L�
���� matches 
 against the decaying �or expanding� heli�

cal pattern �t�e�t� The negation of � in the exponent within the integral
de�ning the transform serves the purpose of conjugating the helix� as in
the Fourier transform� and it also reverses the decay�expansion of the helix�

This reversal of decay�expansion causes the product �t�
�t�e��t to be the

constant � precisely when 
 � �t�e�t� But� while the helical patterns in the
Fourier transform are linearly independent� all decaying�expanding helices
at the same frequency are dependent� So� a resonance � a�ects the Laplace
transform at � as long as ���� � ����� even when the real components
di�er�
The precise understanding of the Laplace transform as pattern matching

is rather subtle� and beyond the mathematical powers of these notes� In
particular� for many functions of interest� the de�ning integral diverges� and
L�
���� is unde�ned� except for a small band of values of �� Some of the
divergence may be understood through generalized functions� but much of
it may not� Some applications of Laplace transform require thorough un�
derstanding of the regions of convergence� For our purposes� the Laplace

��



transform of most useful signals produces a nice symbolic expression� and
the function de�ned by that expression gives the insight that we need� even
though strictly speaking the expression is only correct within the region of
convergence� This is spooky� but we�ll have to live with it� I am sure that
there is a way of recasting the mathematics to explain the apparent values
of Laplace transforms in the divergent regions� but I haven�t found it yet�
The Laplace transform has properties analogous to those of the Fourier

transform� but with some di�erences on inputs with nonzero real compo�
nents� Most tables of Laplace transforms leave out �s and other functional
components with in�nite values� since by de�nition they are outside of the
region of convergence� This confuses me� and obscures the correspondence
between Laplace transform and Fourier transform� so I have included these
in�nite components�

L��� � � ������

L���� � ���� ������

L� d
k

dtk
�� � ����k ������

L��� ���� � ������ ����	�

L���� � ���� ����� � ��������� ����
�

L��t���t�A�� � ���eA� ������

L�H� � ������� � ������� ������

L�H � �
�
� � ������ ������

L�Z� � ���e�
������ ������

L�!� � ����� sinh��������

� �����e���� e�������� ������

L�sinc� � ����� � �arctan������� arctan���������������
������

To calculate Laplace transforms� use the following rules that show how the
transform and other functional operators interact�

L�� � �� � L��� � L��� ������

L��� � ���L�������� ����	�

L���� � �L��� for constant � ����
�

��



L��t���t�A�� � L�������e�A�� for real constant A ������

L��t���At�� � ����L������A���jAj for real constant A ������

L��t����t�� � ����L�������� ������

L�� � �� � L���L��� ������

L���� � ����i�����
Z C�i�

C�i�
L������L�� � ��d�

for certain C depending on � ������

L�� � �� � ���L�������L��� ������

L�� � �� � ���L������L������� ������

L���� � ������L��� ������

In the convolution theorem �Equation ���� the complicated�looking integral
is a convolution of traces in the imaginary direction through � and �� deter�
mined by the real value C� � is traced at C� and � at �����C� If possible�
C is chosen so that both traces converge� A di�erent C may be chosen for
each �� If more than one choice of C yields convergence� then all such values
of C yield the same value�
The Laplace transform is most often applied to signals that are 
 for all

negative times� so it is worth reviewing those cases in particular�

L��H� � �������� ������� ����	�

L�
H� � �������� i��� ����
�

L��H� � � ������

L�IIIH� � ��� coth����� ������

L���t
e�t�H� � ���������� ������

����� Discrete Filters and the Z Transform

��� Sound Creation by Modal Synthesis

����� Continuously Driven Resonators

����� Ringing Resonators

��� Sound Modi�cation with Formant Filters
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