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Signals 

We are now ready to commence our study of signals and signal processing 
systems, the former to be treated in Part I of this book and the latter in Part 
II. Part III extends the knowledge thus gained by presentation of specific 
algorithms and computational architectures, and Part IV applies all we will 
have learned to communications and speech signal processing. 

At times one wants to emphasize signals as basic entities, and to consider 
systems as devices to manipulate them or to measure their parameters. The 
resulting discipline may then be called signal analysis. At other times it is 
more natural to consider systems as the more fundamental ingredients, with 
signals merely inputs and outputs to such systems. The consequence of this 
viewpoint is called signal processing. This term is also most commonly used 
when it is not clear which aspect one wishes to stress. 

In this chapter we introduce the concept of a signal. We will see that 
there are analog signals and digital signals, and that under certain conditions 
we can convert one type into the other. We will learn that signals can be 
described in terms of either their time or frequency characteristics, and that 
here too there are ways to transform one description into the other. We 
present some of the simplest signals, and discover that arbitrary signals can 
be represented in terms of simple ones. On the way we learn how to perform 
arithmetic on signals, and about the connection between signals and vectors. 

2.1 Signal Defined 

The first question we must ask when approaching the subject of signal anal- 
ysis is ‘What exactly do we mean by signal?’ The reader may understand 
intuitively that a signal is some function of time that is derived from the 
physical world. However, in scientific and technological disciplines it is cus- 
tomary to provide formal mathematical definitions for the main concepts, 
and it would be foolish to oppose this tradition. In order to answer the ques- 
tion satisfactorily, we must differentiate between analog and digital signals. 
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16 SIGNALS 

Definition: signal 
An analog signal s is a finite real-valued function s(t) of a continuous variable 
t (called time), defined for all times on the interval -oo < t < +oo. A digital 
signal s is a bounded discrete-valued sequence sn with a single index n (called 
discrete time), defined for all times n = -oo . . . + 00. n 

The requirement that analog signals be real-valued, rather than integer or 
complex, has its origin in the notion that real-world signals, such as speeds, 
voltages, and acoustic pressures, are simple continuous variables. Complex 
numbers are usually considered purely mathematical inventions that can 
never appear in nature. Digital signals are constrained more by the require- 
ment of representability in a digital computer than by physical realizability. 
What we mean here by ‘discrete’ is that the possible values are quantized to 
discrete values, such as integers or all multiples of 2-b. ‘Bounded’ means that 
there are only a finite number of possible signal values. Bounded discrete 
values are exactly the kinds of numbers represented by computer words with 
some finite number of bits. 

Finiteness is another physical requirement, and comes in three vari- 
eties, namely finite signal value, finite energy, and finite bandwidth. Finite- 
valuedness simply means that the function desiring to be a signal must never 
diverge or become mathematically singular. We are quite confident that true 
physical quantities never become infinite since such behavior would require 
infinite energy or force or expense of one type or another. Digital signals are 
necessarily bounded in order to be representable, and so are always finite 
valued. The range over which a signal varies is called its dynamic range. 
Finite energy and finite bandwidth constraints are similarly grounded, but 
the concepts of energy and bandwidth require a little more explanation for 
the uninitiated. 

Energy is a measure of the sixe of a signal, invented to enable the analyst 
to compare the infinitely many possible signals. One way to define such a 
measure might be to use the highest value the signal attains (and thus finite 
energy would imply finite signal value). This would be unsatisfactory because 
a generally small signal that attains a high value at one isolated point in time 
would be regarded as larger than a second signal that is almost always higher 
than the first. We would certainly prefer a measure that takes all times into 
account. Were signals to have only positive values we could possibly use the 
average signal value, but since they are not the average is ineffectual as many 
seemingly large signals (e.g., Asin with large A) have zero average due 
to positive and negative contributions cancelling. The simplest satisfactory 
measure is given by the following definition. 
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Definition: energy 
The energy of an analog or digital signal s is defined to be 

E, = 
s 

O” 2 s (t)dt A D E, = 5 s; (24 --oo 7X=--00 

the sum (or integral for the analog case) of the signal’s values squared. 

This measure is analogous to the squared length of multidimensional 
vectors, and is proportional to the physical quantity known as energy when 
the signal is a velocity, voltage, or current. The energy we have just defined 
is also directly related to the expense involved in producing the signal; this 
being the basis for the physical requirement of finite energy. The square root 
of the energy defines a kind of average signal value, called the Root Mean 
Squared (RMS) value. 

Bandwidth is a measure not of size but of speed, the full discussion of 
which we must postpone until after the notion of spectrum has been properly 
introduced. A signal that fluctuates rapidly has higher bandwidth than one 
that only varies slowly. Requiring finite bandwidth imposes a smoothness 
constraint, disallowing sudden jump discontinuities and sharp corners. Once 
again such functions violate what we believe nature considers good taste. 
Physical bodies do not disappear from one place and appear in another 
without traveling through all points in between. A vehicle’s velocity does 
not go from zero to some large value without smoothly accelerating through 
intermediate speeds. Even seemingly instantaneous ricochets are not truly 
discontinuous; filming such an event with a high-speed camera would reveal 
intermediate speeds and directions. 

Finally, the provision for all times really means for all times of interest, 
and is imposed in order to disallow various pathological cases. Certainly a 
body no longer has a velocity once destroyed, and a voltage is meaningless 
once the experimental apparatus is taken apart and stored. However, we 
want the experimental values to settle down before we start observing, and 
wish our phenomena to exist for a reasonable amount of time after we stop 
tending to them. 

Now that we fully understand the definition of signal, we perceive that 
it is quite precise, and seemingly inoffensive. It gives us clear-cut criteria 
for determining which functions or sequences are signals and which are not, 
all such criteria being simple physical requirements that we would not wish 
to forgo. Alas this definition is more honored in the breach than the obser- 
vance. We shall often relax its injunctions in the interests of mathematical 
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simplicity, and we permit ourselves to transgress its decrees knowing full 
well that the ‘signals’ we employ could never really exist. 

For example, although the definition requires signals to be real-valued 
functions, we often use complex values in order to simplify the algebra. 
What we really mean is that the ‘real’ signal is the real part of this complex 
signal. This use of an ‘imaginary’ complex signal doesn’t overly bother us 
for we know that we could reach the same conclusions using real values, but 
it would take us longer and we would be more apt to make mistakes. We 
even allow entities that aren’t actually functions at all, when it saves us a 
few lines of proof text or program code! 

Our definition relies on the existence of a time variable. At times the 
above definition is extended to functions of other time-like independent 
variables, and even to functions of more than one variable. In particular, 
image processing, that deals with functions of two spatial coordinates, in- 
vokes many signal processing concepts. However, in most of this book we 
will not consider image processing to be part of signal processing. Although 
certain basic ideas, notably filtering and spectral analysis, are common to 
both image and signal processing, the truly strong techniques of each are 
actually quite different. 

We tend to scoff at the requirement for finite-valuedness and smooth- 
ness, routinely utilizing such nonphysical constructs as tangents and square 
waves, that possess an infinite number of discontinuities! Once again the 
reader should understand that real-world signals can only approximate such 
behavior, and that such refractory functions are introduced as mathematical 
scaffolding. 

Of course signals are defined over an infinite range of times, and conse- 
quently for a signal’s energy to be finite the signal must be zero over most 
times, or at least decay to zero sufficiently rapidly. Strictly requiring finite 
energy would rule out such useful signals as constants and periodic functions. 
Accordingly this requirement too is usually relaxed, with the understanding 
that outside the interval of time we observe the signal, it may well be set to 
zero. Alternatively, we may allow signals to be nonzero over infinite times, 
but to have finite power. Power is the energy per time 

P,(T) = $imO + JTL’ s2(t) dt 
1 

Uf$ 
A D P,, = lim - C 23: (2.2) 

+ T-- N+O N 
2 n=l/- + 

which is time-dependent in general. 
Hence although the definition we gave for signal is of good intent, its 

dictates go unheeded; there is scarcely a single clause in the definition that 
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we shan’t violate at some time or other. In practice entities are more often 
considered signals because of the utility in so doing, rather than based on 
their obeying the requirements of this definition (or any other). 

In addition to all its possibly ignorable requirements, our definition also 
leaves something out. It is quiet about any possible connection between ana- 
log and digital signals. It turns out that a digital signal can be obtained from 
an analog signal by Analog to Digital conversion (the ‘A/D’ of Figure 1.3) 
also known as sampling and digitizing. When the sampling is properly car- 
ried out, the digital signal is somehow equivalent to the analog one. An 
analog signal can be obtained from a digital signal by Digital to Analog 
conversion (the ‘D/A’ block), that surprisingly suffers from a dearth of al- 
ternative names. Similar remarks can be made about equivalence. A/D and 
D/A conversion will be considered more fully in Section 2.7. 

EXERCISES 

2.1.1 Which of the following are signals? Explain which requirement of the def- 
inition is possibly violated and why it is acceptable or unacceptable to do 
so. 

1. the height of Mount Everest 

2. (eit + ewi”> 

3. the price of a slice of pizza 

4. the ‘sin? function F 

5. Euler’s totient function 4(n), the number of positive integers less than 
n having no proper divisors in common with n 

6. the water level in a toilet’s holding tank 

7. [tJ the greatest integer not exceeding t 

8. the position of the tip of a mosquito’s wing 

9. fi 

10. the Dow Jones Industrial Average 

11. sin($) 

12. the size of water drops from a leaky faucet 

13. the sequence of values zn in the interval [0 . . . l] defined by the logistics 
recursion zn+l = Xx, (1 - xn) for 0 5 X 5 4 

2.1.2 What is the power of s(t) = Asin( The RMS value? 

2.1.3 A signal’s peak factor is defined to be the ratio between its highest value and 
its RMS value. What is the peak factor for s(t) = Asin( The sum of N 
sinusoids of different frequencies? 
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2.1.4 Define a size measure M for signals diRerent from the energy (or RMS value). 
This measure should have the following properties. 

l The zero signal must have zero measure MO = 0, and no other signal 
should have zero measure. 

l If signal y is identical to signal x shifted in time then M3, = M,. 
0 If yn = CYX~ for all times, then Mg > Mz if cy > 1 and My < M, if 

cy < 1. 

l If yn > x,., almost all of the time, then My > M,. 

What advantages and disadvantages does your measure have in comparison 
with the energy? 

2.2 The Simplest Signals 

Let us now present a few signals, ones that will be useful throughout our 
studies. The simplest signal is the unit constunt, that is, s(t) = 1 in analog 

time or sn = 1 in digital time. 

s(t) = 1 A D sn = 1 (2 3) . 

Although this is the simplest signal we can imagine, it has infinite energy, 
and therefore violates one of the finiteness constraints. Hence technically it 
isn’t really a signal at all! Arbitrary constant signals can be obtained by 
multiplying the unit constant signal by appropriate values. The constant 
signal, depicted in Figure 2.1, although admittedly trivial, can still be use- 
ful. We will often call it Direct Current (DC), one of the many electronics 

--i- I-- 
Figure 2.1: The constant signal. In (A) we depict the analog constant and in (B) the 
digital constant. 
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Figure 2.2: The unit step signal. In (A) we depict the analog step u(t) and in (B) the 
digital step un. 

terms imported into signal processing. The gist is that a battery’s voltage 
is constant, w(t) = VO, and consequently induces a current that always flows 
in one direction. In contrast the voltage from a wall outlet is sinusoidal, 
w(t) = VO sin(&), and induces an Alternating Current (AC). 

We cannot learn much more from this signal, which although technically 
a ‘function of time’ in reality is not time dependent at all. Arguably the 
simplest time-dependent signal is the unit step, which changes value at only 
one point in time (see Figure 2.2). Mathematically, the analog and digital 
unit step signals are: 

A D y E;: (2.4) 
- 

respectively. In some of the literature the step function is called Heaviside’s 
step function. Once again the finite energy requirement is unheeded, and 
in the analog version we have a jump discontinuity as well. Here we have 
set our clocks by this discontinuity, that is, we arranged for the change to 
occur at time zero. It is a simple matter to translate the transition to any 
other time; u(t - T) has its discontinuity at t = T and U,-N has its step 
at n = N. It is also not difficult to make step functions of different sizes 
Au(t) and Au,, and even with any two levels Au(t) + B and Au, + B. The 
unit step is often used to model phenomena that are ‘switched on’ at some 
specific time. 

By subtracting a digital unit step shifted one to the right from the un- 
shifted digital unit step we obtain the digital unit impulse. This signal, 
depicted in Figure 2.3.B, is zero everywhere except at time zero, where it 
is unity. This is our first true signal, conforming to all the requirements of 
our definition. In Chapter 6 we will see that the unit impulse is an invalu- 
able tool in the study of systems. Rather than invent a new mathematical 
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Figure 2.3: The unit impulse. In (A) we depict an analog impulse of unity width. In (B) 
the digital unit impulse 6,,0. 

symbol for this signal, we utilize one known as the Kronecker delta 6n,m. 
This doubly indexed entity is defined to be one, if and only if its indices are 
equal; otherwise it is zero. In terms of the Kronecker delta, the digital unit 
impulse is sn = &a. 

The full Kronecker delta corresponds to a Shifted Unit Impulse (SUI) 

Sn = 6 n,rn (2 5) . 

that is zero for all times except for time n = m, when it equals one. The 
importance of the set of all SUIs will become clear in Section 2.5. 

One might similarly define an analog unit impulse by subtracting analog 
unit steps, obtaining the Figure 2.3.A. This analog signal flagrantly displays 
two jump discontinuities, but by now that should not make us feel uncom- 
fortable. However, this is not the signal usually referred to as the analog unit 
impulse. There is no profound meaning to the width of this signal, since in 
the analog world the meaning of a unit time interval depends on the time 
units! What is meaningful is the energy of the impulse, which is its ampli- 
tude squared times its width. There are good reasons to expect that once 
the width is small enough (i.e., small compared to all significant times in 
the problem) all impulses with the same energy will have basically the same 
effect on systems. Accordingly, when one speaks of a ‘unit impulse’ in the 
analog domain, conventionally this alludes to a ‘unit energy’ impulse. Of 
course the unit width impulse in Figure 2.3 is a unit impulse in this sense; 
but so are all the others in Figure 2.4. 

The unit energy impulses in the figure are given by: 

I(t) = 
{ 

0 (tl>T 

& Itl < T 
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Figure 2.4: Analog unit energy impulses. Since all of these signals have the same energy, 
the height increases as the width decreases. The vertical arrow is a symbolic way of 
designating Dirac’s delta function. 

where T is the width. In the limit T + 0 we obtain a mathematical entity 
called Dirac’s delta function s(t), first used by P.A.M. Dirac in his mathe- 
matical description of quantum physics. The name delta is purposely utilized 
to emphasize that this is the ‘analog analog’ of Kronecker’s delta. The word 
function is a misnomer, since Dirac’s delta is not a true function at all. 
Indeed, Dirac’s delta is defined by the two properties: 

l 6(t) is zero everywhere except at the origin t = 0 

l the integral of the delta function is unity Jr&, G(t)& = 1 

and clearly there can be no such function! However, Dirac’s delta is such an 
extremely useful abstraction, and since its use can be justified mathemati- 
cally, we shall accept it without further question. Indeed, Dirac’s delta is so 
useful, that when one refers without further qualification to the analog unit 
impulse, one normally means b(t). 

s(t) = 6(t) A D sn = 6,,. (2 6) . 

The next signal we wish to discuss is the square wave 0 (t), depicted in 
Figure 2.5.A. It takes on only two values, 33, but switches back and forth 
between these values periodically. One mathematical definition of the analog 
square wave is 

q (t) = 
14 is even 

11 1tJ is odd (2 7) . 
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Figure 2.5: Three periodic analog signals. In (A) we depict the square wave, in (B) the 
triangle wave and in (C) the sawtooth. 

where LtJ (pronounced ‘floor’ of t) is the greatest integer less than or equal 
to the real number t. We have already mentioned that this signal has an 
infinite number of jump discontinuities, and it has infinite energy as well! 
Once again we can stretch and offset this signal to obtain any two levels, 
and we can also change its period from unity to T by employing q (t/T). 
We can further generalize the square wave to a rectangular wave by having 
it spend more time in one state than the other. In this case the percentage 
of the time in the higher level is called the duty cycle, the standard square 
wave having a 50% duty cycle. For digital signals the minimal duty cycle 
signal that is not a constant has a single high sample and all the rest low. 
This is the periodic unit impulse 

(2 8) . 

where the period is P samples. 
Similarly we can define the analog triangle wave n(t) of Figure 2.5.B 

and the sawtooth 7(t) of Figure 2.5.C. Both, although continuous, have 
slope discontinuities. We leave the mathematical definitions of these, as well 
as the plotting of their digital versions, to the reader. These signals pop 
up again and again in applications. The square wave and its close brethren 
are useful for triggering comparators and counters, the triangle is utilized 
when constant slope is required, and the sawtooth is vital as the ‘time base’ 
of oscilloscopes and the ‘raster scan’ in television. Equipment known as 
‘function generators’ are used to generate these signals. 
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Figure 2.6: Sinusoidal signals. In (A) we depict the analog sinusoid with given amplitude, 
frequency and phase. In (B) the digital sinusoid is shown. 

Of course the most famous periodic signal is none of these, but the sine 
and cosine functions, either of which we call a sinusoid. 

s(t) = sin(2nft) A D sn = sin(27rfd n) (2 9) . 

The connection between the frequency f of an analog sinusoid and its period 
T can be made clear by recalling that the sine function completes a full cycle 
after 27r radians. Accordingly, the frequency is the reciprocal of the period 

f f 
=- 

and its units must be fu2l cycles per second, also known as Hertz or Hz. 
The period represents the number of seconds per cycle while the frequency 
in Hz describes the number of full cycles per second. Since discrete time n 
carries no units, the digital frequency fd will be essentially a pure number. 
The periodicity of digital sinusoids will be discussed later. 

In order to avoid factors of 2n we often rewrite equation 2.9 as follows. 

49 = sin(wt) A D sn = sin(w, n) (2.10) 

Since the argument of a trigonometric function must be in radians (or de- 
grees), the units of the angular frequency w = 2nf must be radians per 
second, and those of the digital angular frequency wd = 2n fd simply radians. 
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In many respects sin(t) is very similar to n(t) or n(t), but it possesses 
a major benefit, its smoothness. Sinusoids have neither jump nor slope dis- 
continuities, elegantly oscillating back and forth (see Figure 2.6.A). More 
general sinusoids can be obtained by appropriate mathematical manipula- 
tion 

A sin&t + 4) + B 

where A is called the amplitude, w the frequency, 6 the phase, and B the 
DC component. Sines of infinite time duration have infinite energy, but are 
otherwise eminent members of the signal community. Sinusoidal signals are 
used extensively in all facets of signal processing; communications are carried 
by them, music is modeled as combinations of them, mechanical vibrations 
are analyzed in terms of them, clocks are set by comparing to them, and so 
forth. 

Although the signals sin(wt) and cos(wt) look exactly the same when 
viewed separately, when several signals are involved the relative phases be- 
come critical. For example, adding the signal sin(wt) to another sin(wt) 
produces 2 sin(wt); adding sin(wt) to cos(wt) creates fisin(wt + 2); but 
adding sin(wt) to sin(wt + 7r) = - sin(wt) results in zero. We can conclude 
that when adding sinusoids 1 + 1 doesn’t necessarily equal 2; rather it can be 
anything between 0 and 2 depending on the phases. This addition operation 
is analogous to the addition of vectors in the plane, and many authors define 
phasors in order to reduce sinusoid summation to the more easily visualized 
vector addition. We will not need to do so, but instead caution the reader 
to take phase into account whenever more than one signal is present. 

Another basic mathematical function with a free parameter that is com- 
monly employed in signal processing is the exponential signal 

s(t) = eht A D sn = eAdn 

depicted in Figure 2.7 for negative A. For positive A and any finite time this 
function is finite, and so technically it is a well-behaved signal. In practice 
the function explodes violently for even moderately sized negative times, 
and unless somehow restricted does not correspond to anything we actually 
see in nature. Mathematically the exponent has unique qualities that make 
it ideal for studying signal processing systems. 

We shall now do something new; for the first time we will allow complex- 
valued functions. We do this by allowing the constant in the argument of the 
exponential to be a pure imaginary number A = iw, thus radically chang- 
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Figure 2.7: Exponentially decreasing signals. In (A) we depict the analog exponential, 
in (B) the digital. 

ing the character of the signal. Recalling the remarkable identity (equa- 
tion (A.7)) 

eicp = cos(cp) + isin 

we see that exponentials with imaginary coefficients are complex sinusoids. 

AeiWt = A cos(wt) + iA sin(&) 

When we deal with complex signals like s(t) = AeiWt, what we really mean 
is that the real-world signal is the real part 

s(t) = Rs(t) = A cos(wt) 

while the imaginary part is just that-imaginary. Since the imaginary part 
is 90” (one quarter of a cycle) out of phase with the real signal, it is called 
the quadrature component. Hence the complex signal is composed of in-phase 
(real) and quadrature (imaginary) components. 

At first it would seem that using complex signals makes things more 
complex but often the opposite is the case. To demonstrate this, consider 
what happens when we multiply two sinusoidal signals s1 (t) = sin(wl t) and 

$2 v> = sin(o2t). The resulting signal is 

s(t) = Sr (t)sg(t) = sin(&) cos(w2t) + cos(wr t) sin(w2t) 

which is somewhat bewildering. Were we to use complex signals, the product 
would be easy 

s(t) = sl(t)s2(t) = eiwlt$Qt = &(wl+w2)t 
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due to the symmetries of the exponential function. The apparent contradic- 
tion between these two results is taken up in the exercises. 

A further variation on the exponential is to allow the constant in the 
argument of the exponential to be a complex number with both real and 
imaginary parts A = X + iw. This results in 

@) = Ae@+i‘+ = AeXt cos(wt) + iAeXt sin(&) (2.11) 

corresponding to the real signal 

s(t) = AeXt cos(wt) (2.12) 

which combines the exponential with the sinusoid. For negative X, this is a 
damped sinusoid, while for positive X it is an exponentially growing one. 

Summarizing, we have seen the following archetypical simple signals: 

unit constant s(t) = 1 S -1 n- 

unit step s(t) = u(t) Sn = Un 

unit impulse s(t) = d(t) Sn = 6,,0 

square wave s(t) = q (C3t) Sn = q l(W,n) 
sinusoid s(t) = Asin(wt + 4) sn = A sin(wdn + 4) 
damped sinusoid s(t) = Aevxt sin(wt + 4) sn = Aa+ sin(wdn + 4) 
real exponential s(t) = AeXt Sn = Cy n 

complex sinusoid s(t) = Ae1(Wt+4) S n = Ae%W++> 

damped complex sinusoid s(t) = Ae(x+lw)t sn = Ae@+iwd>n 

EXERCISES 

2.2.1 Thomas Alva Edison didn’t believe that AC electricity was useful, since the 
current first went one way and then returned. It was Nikola Tesla who claimed 
that AC was actually better than DC. Why was Edison wrong (hint: energy) 
and Tesla right (hint: ‘transformers’)? 

2.2.2 In the text we depicted digital signals graphically by placing dots at signal 
values. We will usually use such dot gruphs, but other formats are prevalent 
as well. A comb gruph uses lines from the time axis to the signal point; a slint 
graph (straight line interpolation) simply connects successive signal values; 
comb-dot and slint-dot combinations are useful when the signal takes on zero 
values. These formats are depicted in Figure 2.8. Write general routines for 
plotting digital signals in these formats in whatever computer programming 
language you usually use. Depending on your programming language you 
may first have to prepare low-level primitives. Plot the digital sinusoidal 
signal sn = sin(w,n) for various frequencies CJ in all of these formats. Decide 
which you like the best. You may use this format from now on. 
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Figure 2.8: Different formats for graphical representation of digital signals. In (A) we 
depict a signal using our usual dot gruph. In (B) th e same signal is plotted as a comb graph. 
In (C) it is graphed as a Ant graph. (D) and (E) are comb-dot and slint-dot representations 
respectively. 

2.2.3 Give mathematical definitions for the analog triangle signal A(t) of Fig- 
ure 2.5.B and for the analog sawtooth saw(t) of Figure 2.5.C. 

2.2.4 What is the integral of the square wave signal? What is its derivative? 

2.2.5 Using your favorite graphic format 
and sawtooth, for various periods. 

plot the digital square wave, triangle wave 

2.2.6 Perform the following experiment (you will need an assistant). Darken the 
room and have your assistant turn on a pen-flashlight and draw large circles 
in the air. Observe the light from the side, so that you see a point of light 
moving up and down. Now have the assistant start walking while still drawing 
circles. Concentrate on the vertical and horizontal motion of the point of light, 
disregarding the depth sensation. You should see a sinusoidal signal. Prove 
this. What happens when you rotate your hand in the opposite direction? 
What can you infer regarding negative frequency sinusoids? 

2.2.7 Dirac’s delta function can be obtained as the limit of sequences of functions 
other than those depicted in Figure 2.4. For example, 

0 t<o 

asymmetric unit impulses ZT@) = & O<t<T 

0 t>T 

Gaussian functions Gu (4 

Sine functions $sinc,(t) 
sin(wt) =- 

7rt 

Lorentzian functions 

Graph these functions for decreasing T, E and increasing 0, w, graphically 
showing the appearance of the Dirac delta. What new features appear? Show 
that in the proper limit these functions approach zero for all nonzero times. 

2.2.8 The integral of the analog impulse d(t) is the unit step u(t), and conversely 
the derivative of u(t) is d(t). Explain these facts and depict graphically. 
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2.2.9 Explain the following representation of Dirac’s delta. 

d(t) = &I 
2.2.10 Show that 

J 
O” f(t)b(t - t’)dt = f(t’) 

-CO 

both graphically and by using basic calculus. From this result show that J(t) 
must be zero for all nonzero arguments. Compare the above relation with the 
Fourier identity 

WI =- 2’, J* du J" dtf(t)ei"(t-t') --oo -C-Xl 
and derive an integral representation for the Dirac delta. What meaning can 
be given to the derivative of the Dirac delta? 

2.2.11 Plot the analog complex exponential. You will need to simultaneously plot 
two sinusoids in such fashion that one is able to differentiate between them. 
Extend the routines you wrote in the previous exercise to handle the digital 
complex exponential. 

2.2.12 Explain why the real signal corresponding to the product of two complex 
exponentials is not the same as the product of the two real sinusoids. 

2.3 Characteristics of Signals 

Now that we have some experience with signals, let us discuss some general 
characteristic signals can have. Signals are characterized as being: 

l deterministic or stochastic 

l if deterministic: periodic or nonperiodic 

l if stochastic: stationary or nonstationary 

l of finite or infinite time duration 

l of finite bandwidth or of full spectrum 

Perhaps the most significant characteristic of a signal is whether it is de- 
terministic or stochastic. Deterministic signals are those that are generated 
by some nonprobabilistic algorithm. They are thus reproducible, predictable 
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(at least over short time scales-but see Section 5.5) and well-behaved math- 
ematically. Stochastic signals are generated by systems that contain random- 
ness (see Section 5.6). At any particular time the signal is a random variable, 
(see Appendix A.13), which may have well defined average and variance, but 
is not completely defined in value. Any particular sequence of measurements 
of the signal’s values at various times captures a specific instantiation of the 
stochastic signal, but different sequence of measurements under the same 
conditions would retrieve somewhat different values. 

In practice we never see a purely deterministic signal, since even the 
purest of deterministic signals will inevitably become contaminated with 
noise. ‘Pure noise’ is the name we give to a quintessential stochastic signal, 
one that has only probabilistic elements and no deterministic ones. When a 
deterministic signal becomes contaminated with additive noise, as depicted 
in Figure 2.9, 

dt> = dt> + n(t) 

we can quantify its ‘noisiness’ by the Signal to Noise Ratio (SNR). The 
SNR is defined as the ratio of the signal energy to the noise energy, and is 
normally measured in dB. (equation (A.16)) 

J% SNR(dB) = 10loglo z;r = IO (log,a & - loglo En) (2.13) 

Figure 2.9: Deterministic signal (simple sine) with gradually increasing additive noise. 
In (A) the deterministic signal is much stronger than the noise, while in (D) the opposite 
is the case. 
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When measuring in, we usually talk about the signal as being above the 
noise by SNR(dB). 

Not all the signals we encounter are stochastic due solely to contami- 
nation by additive noise. Some signals, for example speech, are inherently 
stochastic. Were we to pronounce a single vowel for an extended period of 
time the acoustic signal would be roughly deterministic; but true speech is 
random because of its changing content. Speech is also stochastic for an- 
other reason. Unvoiced sounds such as s and f are made by constricting air 
passages at the teeth and lips and are close to being pure noise. The h sound 
starts as noise produced in the throat, but is subsequently filtered by the 
mouth cavity; it is therefore partially random and partially deterministic. 

Deterministic signals can be periodic, meaning that they exactly repeat 
themselves after a time known as the period. The falling exponential is not 
periodic, while the analog sine Asin(2rft), as we discussed above, is peri- 
odic with period T = $. The electric voltage supplied to our houses and the 
acoustic pressure waves from a flute are both nearly perfect sinusoids and 
hence periodic. The frequency of the AC supplied by the electric company 
is 60 Hz (sixty cycles per second) in the United States, and 50 Hz (fifty 
cycles per second) in Europe; the periods are thus 16; and 20 milliseconds 
respectively. The transverse flutes used in orchestral music can produce fre- 
quencies from middle C (524 Hz) to about three and a half octaves, or over 
ten times, higher! 

While the analog sinusoid is always periodic the digital counterpart is 
not. Consider an analog signal with a period of 2 seconds. If we create a 
digital sinusoid by ‘sampling’ it 10 times per second, the digital signal will 
be periodic with digital period 20. However, if we sample at 10.5 times per 
second, after 2 seconds we are a half-second out of phase; only after four 
seconds, (i.e., 21 samples) does the digital signal coincide with its previous 
values. Were we to sample at some other rate it would take even longer for 
the digital version to precisely duplicate itself; and if ratio of the period to 
the sampling interval is not rational this precise duplication will never occur. 

Stochastic signals may be stationary, which means that their probabilis- 
tic description does not change with time. This implies that all the signal’s 
statistics, such as the mean and variance, are constant. If a stochastic signal 
gets stronger or weaker or somehow noisier with time, it is not stationary. For 
example, speech is a stochastic signal that is highly nonstationary; indeed 
it is by changing the statistics that we convey information. However, over 
short enough time intervals, say 30 milliseconds, speech seems stationary 
because we can’t move our mouth and tongue this fast. 
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A signal, analog or digital, can be of infinite or finite time duration. We 
required that signals be defined for all times -oo < t < 00 or n = -m,=J, 
but not that they be nonzero for all times. Real physical signals are of finite 
energy, and hence are often zero for times much before or after their peak. 

In like fashion,.signals, analog or digital, can be of infinite or finite band- 
width. According to our original definition an analog signal should be finite 
bandwidth, but noise and signals with discontinuities are full spectrum. The 
interpretation of this concept for digital signals must be postponed until 
after clarification of the sampling theorem, in the Section 2.8. 

EXERCISES 

2.3.1 Look closely at the graphs of the digital sinusoid sn = sin(wn) that you 
prepared in exercise 2.2.2. When is the digital sinusoid periodic? Under what 
conditions is the period the same as that of the analog sinusoid? Verify the 
statement in the text regarding nonperiodic digital sinusoids. 

2.3.2 The purpose of this exercise is to examine the periodicity of the sum of two 
analog sines. For example, the sum of a sine of period 4 seconds and one of 
period 6 seconds is periodic with period 12 seconds. This is due to the first 
sine completing three full periods while the second competes two full periods 
in 12 seconds. Give an example of a sum that is not periodic. Give a general 
rule for the periodicity. What can be said about cases when the sum is not 
exactly periodic? 

2.3.3 Plot analog signals composed of the sum of two sinusoids with identical am- 
plitudes and frequencies jr and f2. Note that when the frequencies are close 
the resultant seems to have two periods, one short and one long. What are 
the frequencies corresponding to these periods? Prove your assertion using 
the trigonometric identities. 

2.4 Signal Arithmetic 

Some of the requirements in our definition of signal were constraints on signal 
values s(t) or sn, while some dealt with the signal as a whole. For example, 
finite valuedness is a constraint on every signal value separately, while finite 
energy and finite bandwidth requirements mix all the signal values together 
into one inequality. However, even the former type of requirement is most 
concisely viewed as a single requirement on the signal s, rather than an 
infinite number of requirements on the values. 
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This is one of the economies of notation that make it advantageous to 
define signals in the first place. This is similar to what is done when one de- 
fines complex numbers or n-dimensional vectors (n-vectors); in one concise 
equation one represents two or even n equations. With a similar motiva- 
tion of economy we define arithmetic operations on signals, thus enabling 
us to write single equations rather than a (possibly nondenumerable) infi- 
nite number! Hence in some ways signals are just like n-vectors of infinite 
dimension. 

First let us define the multiplication of a signal by a real number 

Y = ax Y = ax 
means AD means (2.14) 

y(t) = ax(t) Vt yn = ax, Vn 

that is, we individually multiply every signal value by the real number. 
It might seem overly trivial even to define this operation, but it really is 
important to do so. A signal is not merely a large collection of values, it is 
an entity in its own right. Think of a vector in three-dimensional space (a 
3-vector). Of course it is composed of three real numbers and accordingly 
doubling its size can be accomplished by multiplying each of these numbers 
by two; yet the effect is that of creating a new 3-vector whose direction is the 
same as the original vector but whose length is doubled. We can visualize 
this operation as stretching the 3-vector along its own direction, without 
thinking of the individual components. In a similar fashion amplification 
of the signal should be visualized as a transformation of the signal as a 
whole, even though we may accomplish this by multiplying each signal value 
separately. 

We already know that multiplication of a signal by a real number can 
represent an amplification or an attenuation. It can also perform an inversion 

Y = -X Y = -X 

means AD means (2.15) 

Y(t) = -x(t) vt Yn = -57-t h 

if we take the real number to be a = - 1 Here the minus sign is an ‘operator’, 
transforming a signal into another, related, signal. The inverted signal has 
the same energy and bandwidth as the original, and we shall see later on 
has the same power spectrum. Nevertheless, every time the original signal 
increases, the inverted one decreases; when the signal attains its maximum, 
the inverted signal attains its minimum. 

There is another way to make a signal of the same energy and power 
spectrum as the original, but somehow backwards. We can reverse a signal 
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using the operator Rev 

y=Revz y = Revz 
means AD means (2.16) 

Y(t) = x(-t) vt Yn =X-n Vn 

which makes it run backwards in time. If you whistle a constant note it will 
sound the same when reversed, but if you whistle with ascending pitch the 
reversed signal will have descending pitch. This operation has no counterpart 
for n-vectors. 

Frequently we will need to add two signals, 

z =x+y 2 =x+y 
means AD means (2.17) 

z(t) = x(t) + y(t) v’t zn = Xn +yn Vn 

one simply adds the values. This is the familiar addition of two n-vectors, 
and is the similar to the addition of complex numbers as well. Signal addition 
is commutative (x + y = y + x) and associative (x + (y + Z) = (x + y) + Z) 
and adding a signal to its inversion yields the zero signal. Hence signals, like 
real numbers, complex numbers, and n-vectors, obey all the normal rules of 
arithmetic. 

We will also need to multiply two signals, and you have probably already 
guessed that 

x = xy x=xy 
means AD means (2.18) 

z(t) = x(t) y(t) vt Xn=Xnyn Vn 

one simply multiplies value by value. Multiplication of a signal by a num- 
ber is consistent with this definition of multiplication-just think of the 
number as a constant signal. However, this multiplication is different from 
multiplication of 3-vectors or complex numbers. The usual ‘dot product’ 
multiplication of two 3-vectors yields a scalar and not a 3-vector. There is 
a cross or vector product kind of multiplication that yields a vector, but it 
doesn’t generalize to n-vectors and it isn’t even commutative. Multiplication 
of complex numbers yields a complex number, but there 

2 =xy does not mean !I?, = Rx %y and Sz = 9x Qy 

which is quite different from value by value multiplication of signals. 
Although value by value multiplication of signals can be very useful, 

for instance in ‘mixing’ of signals (see Section 8.5), there is another type 
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of multiplication, known as dot product, that is more important yet. This 
product is analogous to the usual scalar product of n-vectors, and it yields 
a real number that depends on the entire signal. 

r=x-y r =x:‘y 
means AD means (2.19) 

r = JZ& x(t)y(t)dt r = C~iLcoXnYn 

This is the proper definition for real signals; although it can be extended for 
complex signals. The energy of a signal is the dot product of the signal with 
itself, while the dot product of two different signals measures their similarity 
(see Chapter 9). Signals for which the dot product vanishes are said to be 
orthogonal, while those for which it is large are said to be strongly correlated. 

For digital signals there is another operator known as the time advance 
operator z, 

Y = 2x means Yn = G-b+1 Vn (2.20) 

which would certainly be meaningless for vectors in space. What meaning 
could there possibly be for an operator that transforms the x coordinate 
of a vector into the y coordinate? However, signals are not static vectors; 
they are dynamic entities. The time variable is not a dummy variable or 
index; it is physical time. We can always renumber the axes of a vector, 
thus scrambling the order of elements, and still understand that the same 
physical vector is described. For signals such an action is unthinkable. This 
is the reason that Rev(x) had no vector counterpart. This is the reason that 
our original definition of signal emphasized that the independent variable or 
index was time. 

You can think of z as the ‘just wait a little while and see what happens’ 
operator. For digital signals the natural amount of time to wait is one unit, 
from n to n + 1. If we wish to peek further forward in time, we can do so. 
For example, we can jump forward two units of time by first advancing one 
unit and then one more 

Y =zzx=z2x means Yn = xn+2 Qn 

and so on. 
We may also wish to go backwards in time. This doesn’t require us to 

invent a time machine, it just means that we wish to recall the value a 
signal had a moment ago. A little reflection leads us to define the time delay 
operator z-l 

y = z-lx means Yn = Xn-1 Vn (2.21) 
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so that z z-l x = z-l z x = x. The operator z-l will turn out to be even more 
useful than z, since it is usually easier to remember what just happened than 
to predict what is about to occur. The standard method for implementing 
the digital delay of L units of time is through a FIFO buffer of length L. 
A signal value that enters the FIFO at time n exits at time n + L, and so 
the output of the FIFO is delayed exactly L time units with respect to its 
input. When used in this fashion the FIFO is called a delay line. 

We can make these operators more concrete with a simple example. In 
exercise 2.1.1.13 we introduced a family of recursively defined signals, often 
called the logistics signals 

Xn+l = %L( 1 - 2,) (2.22) 

where the xn are all in the range 0 2 X~ 5 1. In order to enforce this last 
restriction we must restrict X to be in the range 0 5 X < 4. A particular 
signal in this family is determined by giving x0 and X. It is most instructive 
to generate and plot values for various x0 and X, and the reader will be 
requested to do so as an exercise. In this case the operation of the time 
advance operator can be simply specified 

zx = Xx(1 - 2) 

which should be understood as an equation in signals. This stands for an 
infinite number of equations of the form (2.22), one for each n. However, we 
needn’t return to these equations to understand it. We start with l-x, which 
really means 1 + (-2). (-2) is the inversion of the signal x; we add to it the 
signal 1 that is the constant signal whose value is 1 for all times. Addition 
between signals is value by value of course. Next we multiply this signal 
by the original signal, using signal multiplication, value by value. Finally we 
multiply this resulting signal by a real number X. So for this special case, the 
time advance operator can be specified in terms of simple signal arithmetic. 

Operators can be combined to create new operators. The finite difference 
operator A is defined as 

A E 1 - z-l (2.23) 

that is, for any digital signal s, the following holds for all time n. 

As, = sn - s~-~ 

The finite difference operator for digital signals is vaguely similar to the dif- 
ferentiation operator for continuous signals. Common characteristics include 
linearity and the fact that they are identically zero only for a constant. A is a 



38 SIGNALS 

linear operator since for any two signals II: and y, A@+ y) = AZ+ Ay and for 
any number c and signal 2, Acx = cAx. As = 0 (the zero signal) if and only 
if the signal is constant. In other ways finite differences are similar to, but 
not identical to derivatives. For example, A(xy) = xAy + Ax z-l y. In some 
things finite differences are completely different, e.g., Aan = o?( 1 - CV-l). 

This last example leads us to an important property of the time delay 
operator. For the exponential signal sn = enn it is easy to see that 

Sn-1 = e N-1) = e-heAn = e-A 
Sn 

so that 
z-is = eBAs 

i.e., the operation of time delay on the exponential signal is equivalent to 
multiplication of the signal by a number. In linear algebra when the effect 
of an operator on a vector is to multiply it by a scalar, we call that vector 
an ‘eigenvector’ of the operator. Similarly we can say that the exponential 
signal is an eigensignal of the time delay operator, with eigenvalue e-* 

The fact that the exponential is an eigensignal of the time delay operator 
will turn out to be very useful. It would have been even nicer were the 
sinusoid to have been an eigensignal of time delay, but alas equation (A.23) 
tells us that 

h-1 = sin 
( 
w(n - 

4 
= sin(wn) cos(w) - cos(wn) sin(w) 

which mixes in phase-shifted versions of the original signal. The sinusoid 
is the eigensignal of a more complex operator, one that contains two time 
delays; this derives from the fact that sinusoids obey second-order differen- 
tial equations rather than first-order ones like the exponential. Nonetheless, 
there is a trick that saves the day, one that we have mentioned before. We 
simply work with complex exponentials, which are eigensignals of time de- 
lay, remembering at the end to take the real part. This tactic is perhaps the 
main reason for the use of complex signals in DSP. 

EXERCISES 

2.4.1 Show that the exponential signal s, = AeAn is an eigensignal of the time 
advance operator. What is its eigenvalue? The real sinusoid sn = A sin(wn+qb) 
is the eigensignal of an operator that contains z-l and zV2. Can you find this 
operator? 

2.4.2 What is the effect of the time advance operator on the unit impulse? Express 
the general SUI Sn,m in terms of Sn,a and the time delay operator. 
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2.4.3 Compare the energy of a time delayed, advanced, or reversed signal with 
that of the original signal. What is the energy of y = ax in terms of that 
of x? What can be said about the energy of the sum of two signals? For 
example, consider summing two sinusoids of the same frequency but different 
amplitudes and phases. What about two sinusoids of different frequencies? 
Why is there a difference between these two cases? 

2.4.4 Plot the logistics signal of equation (2.22) using several different x0 for each 
X. Try X = 0.75 and various x0---what happens after a while? Next try 
X = 1.5,2.0, and 2.75. How is the long time behavior different? Can you 
predict the behavior as a function of X? Are there any starting points where 
the previous behavior is still observed? Next try X = 3.2,3.5,3.55,3.5675, 
and 3.75. What is the asymptotic behavior (for almost all x0)? 

2.4.5 Using the program from the previous exercise try X = 3.826,3.625 and 3.7373. 
What is the asymptotic behavior? Try X = 4. How is this different? 

2.4.6 Canons are musical compositions composed of several related voices heard 
together. The ‘canonical’ relations require the voices to repeat the theme of 
the first voice: 

time offset: after a time delay, 

key shift: in a different key, 

diminution: at twice normal speed, 

augmentation: at half normal speed, 

inversion: with high and low tones interchanged, 

crab order: time reversed, 

or with combinations of these. Describe the signal processing operators that 
transform the basic theme into the various voices. In order for the resulting 
canon to sound pleasing, at (almost) every instant of time the voices must 
be harmonically related. Can you write a program that composes canons? 

2.4.7 In the text we discussed the usefulness of considering a signal as a single 
entity. This exercise deals with the usefulness of considering a signal as a col- 
lection of values. A streaming signal is a digital signal that is made available 
as time progresses. When the signal is not being streamed one must wait for 
the signal to be completely prepared and placed into a file before processing. 
Explain the usefulness of streaming digital audio. In certain computer lan- 
guages a stream is defined to be a sequentially accessed file. Compare this 
use of ‘stream’ with the previous one. 
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2.5 The Vector Space of All Possible Signals 

In Section 2.2 we presented the simplest of signals; in this section we are 
going to introduce you to all the rest. Of course there are an infinite number 
of different signals, but that doesn’t mean that it will take a long time to 
introduce them all. How can this be? Well, there are an infinite number 
of points in the plane, but we can concisely describe every one using just 
two real numbers, the z and y coordinates. There are an infinite number 
of places on earth, but all can be located using longitude and latitude. 
Similarly there are an infinite number of different colors, but three numbers 
suffice to describe them all; for example, in the RGB system we give red, 
green, and blue components. All events that have already taken place or 
will ever take place in the entire universe can be located using just four 
numbers (three spatial coordinates and the time). These concise descriptions 
are made possible by identifying basis elements, and describing all others as 
weighted sums of these. When we do so we have introduced a vector space 
(see Appendix A.14). The points in the plane and in space are well known 
to be two-dimensional and three-dimensional vector spaces, respectively. 

In the case of places on earth, it is conventional to start at the point 
where the equator meets the prime meridian, and describe how to reach 
any point by traveling first north and then east. However, we could just as 
well travel west first and then south, or northeast and then southwest. The 
choice of basic directions is arbitrary, as long as the second is not the same 
as the first or its reverse. Similarly the choice of x and y directions in the 
plane is arbitrary; instead of RGB we can use CMY (cyan, magenta, and 
yellow), or HSV (h ue, saturation, and value); and it is up to us to choose 
the directions in space to arrive at any point in the universe (although the 
direction in time is not arbitrary). 

Can all possible signals be described in terms of some set of basic signals? 
We will now convince you that the answer is affirmative by introducing 
the vector space of signals. It might seem strange to you that signals form 
a vector space; they don’t seem to be magnitudes and directions like the 
vectors you may be used to. However, the colors also form a vector space, 
and they aren’t obviously magnitudes and directions either. The proper way 
to dispel our skepticism is to verify that signals obey the basic axioms of 
vector spaces (presented in Appendix A.14). We will now show that not only 
do signals (both the analog and digital types) form a vector space, but this 
space has an inner product and norm as well! The fact that signals form a 
vector space gives them algebraic structure that will enable us to efficiently 
describe them. 
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Addition: Signal addition s = sr + s2 according to equation (2.17), 

Zero: The constant signal s, = 0 for all times n, 

Inverse: The inversion -s according to equation (2.15), 

Multiplication: Multiplication by a real number as in equation (2.14), 

Inner Product: The dot product of equation (2.19), 

Norm: The energy as defined in equation (2.1), 

Metric: The energy of the difference signal obeys all the requirements. 

Since signals form a vector space, the theorems of linear algebra guar- 
antee that there is a basis {vk}, i.e., a set of signals in terms of which any 
signal s can be expanded. 

S = 
c ckvk (2.24) 

k 

The use of the summation sigma assumes that there are a finite or denu- 
merable number of basis signals; when a nondenumerable infinity of basis 
signals is required the sum must be replaced by integration. 

s = 
s 

c(k)v(k) dk (2.25) 

From linear algebra we can show that every vector space has a basis, but 
in general this basis is not unique. For example, in two-dimensional space 
we have the natural basis of unit vectors along the horizontal ‘z’ axis and 
vertical ‘y’ axis; but we could have easily chosen any two perpendicular direc- 
tions. In fact we can use any two nonparallel vectors, although orthonormal 
vectors have advantages (equation (A.85)). Similarly, for the vector space of 
signals there is a lot of flexibility in the choice of basis; the most common 
choices are based on signals we have already met, namely the SUIs and the 
sinusoids. When we represent a signal by expanding it in the basis of SUIs 
we say that the signal is in the time domain; when we the basis of sinusoids 
is used we say that the signal is in the frequency domain. 

We are not yet ready to prove that the sinusoids are a basis; this will be 
shown in Chapters 3 and 4. In this section we demonstrate that the SUIs are 
a basis, i.e., that arbitrary signals can be uniquely constructed from SUIs. 
We start with an example, depicted in Figure 2.10, of a digital signal that 
is nonzero only between times n = 0 and n = 8. We build up this signal 
by first taking the unit impulse 6,,0, multiplying it by the first signal value 
SO, thereby obtaining a signal that conforms with the desired signal at time 
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Figure 2.10: Comb-dot graph depicting building up a digital signal from shifted unit 
impulses. 

n = 0 but which is zero elsewhere. Next we take the shifted unit impulse 
6 n,l, which is nonzero only for n = 1, and multiply it by ~1, thus obtaining a 
signal that agrees with sn for n = 1 but is otherwise zero. Adding together 
these two signals we obtain a signal that is identical to the desired signal 
both at time n = 0 and at time n = 1 but otherwise zero. We proceed in a 
similar fashion to build up a signal that is identical to the desired signal for 
all times. 

In a similar fashion we can expand any digital signal in terms of SUIs 

cm 

Sn = 
c %-n&,7-n 

n=--00 
(2.26) 

thus proving that these signals span the entire space. Now, it is obvious that 
no two SUIs overlap, and so the SUIs are orthogonal and linearly indepen- 
dent (no 6n,m can be expanded in terms of others). Therefore the SUIs are a 
linearly independent set that spans the entire space, and so they are a basis. 

Hence we see that the SUIs form a basis of the vector space of digital 
signals. Since there are (denumerably) infinite signals in the basis, we see 
that the vector space of signals is of infinite dimension. Similar statements 
are true for analog signals as well. In Figure 2.11 we demonstrate approxi- 
mating a function using shifted unit width analog impulses. We leave it for 
the reader to complete the argument to show that any analog signal can be 
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Figure 2.11: Building up an analog signal from shifted unit width impulses. 

expanded in terms of shifted Dirac deltas. Dirac deltas are consequently a 
basis of a vector space of (nondenumerably) infinite dimension. The deltas 
(whether Kronecker or Dirac) form a basis that induces the time domain 
representation of the signal. 

EXERCISES 

2.5.1 Show that the triangle inequality is obeyed for signals. 

cc Sl, - s3J2 2 (X 81, - 52J2 + cc s2, - s3J2 

2.5.2 Show that the set of digital signals of finite time duration is a finite dimension 
vector space. 

2.5.3 Express a general digital signal x, as a sum involving only the impulse at 
time zero and time delay operators. 

2.5.4 Let’s try to approximate the S-vector v = (v,, vy, v,) by a vector parallel to 
the x axis a,?. The best such approxrmation requires that the error vector 
e=v-cxa, 2 l!k of minimal squared length. Show that this criterion leads to 
a Z = v, acd that the error vector lies entirely in the y-z plane. Similarly, 
show that best approximation of v by a vector in the x-y plane a, 2 + oy$, 
requires cyZ = vZ and or, = vy , a<d for the error vector must be parallel co 
the z axis. When can the error become zero? 
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2.5.5 The previous exercise leads us to define the coefficients vi as those real num- 
bers that minimize the approximation error. Use this same approach to find 
the expansion of a given signal s(t) in terms of a set of normalized signals 
vk(t), by requiring the error signal to be of minimal energy. Show that this 
approach demystifies the use of equation (2.19) as the dot product for signals. 

2.5.6 Show how to expand analog signals in terms of shifted Dirac delta functions, 
by starting with Figure 2.11 and sending the impulse width to zero. 

2.5.7 Explain why the set of all analog signals forms a vector space. What new 
features are there? What is the dimensionality of this vector space? In what 
sense are there more analog signals than digital ones? 

2.5.8 Show that the set of all analog periodic signals with the same period is a 
vector space. Is it denumerably or nondenumerably infinite in dimension? 

2.6 Time and Frequency Domains 

According to our definition a signal is a function of a signal variable, or a 
singly-indexed sequence. Doesn’t that mean that digital signal processing is 
some subset of mathematics, similar to analysis (calculus)? 

Technically yes, of course, but in a deeper sense not at all. The first 
requirement for a signal was for it to be a physical quantity; a requirement 
that imparts a special flavor to signal processing, quite distinct from the 
seasonings with which mathematical treatments of analysis are spiced. 

The differential calculus was originally invented to help in the abstract 
mathematical treatment of the kinematics of ideal bodies. As such, the em- 
phasis is on derivatives and the basic functions used are polynomials. Con- 
sider the kinematical quantity s = SO + wet + $t2-this function is not a 
physically plausible signal as it stands, since although continuous, for large 
times it diverges! Physically realizable functions should remain bounded for 
all times, which rules out all polynomials except constants. 

The fundamental law of differential calculus states that any function 
(well not any function, but we won’t worry about that now) can be described 
in the following way. First pick some time of interest, which we will call 
to. Find the value of the function at that point, f (to). Close enough to to 
the function is always approximately f(to) due to continuity constraints. 
To go a little further away from to we need the first derivative. The first 
derivative describes what the function looks like close enough to to since all 
well-behaved functions are approximately linear over a small enough interval 
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f(t) x f(to) + $Ito(t - to). If Y ou want to know what the function does even 
further away, find the second derivative evaluated at to, and then the third 
derivative, etc. Higher and higher derivatives allow one to stray further and 
further from the original point in time. Knowing all derivatives at any one 
point in time is equivalent to knowing the function’s values at all times. This 
law is called Taylor’s Theorem and is the very fabric of the classical analysis 
way of looking at functions. It approximates functions using polynomials as 
the basis for the vector space of functions. 

The fundamental law of signal processing proclaims a different way of 
representing signals. ‘Real-world’ signals have finite energy and occupy some 
finite bandwidth. Hence polynomials are not a natural basis for describing 
them. The signal processing approximation is global rather that local, i.e., 
for any finite order is about as good (or bad) simultaneously for all times 
- 00 < t < +oc . Rather than using derivatives and polynomials, the signal 
processing way of looking at the world emphasizes spectrum and its basic sig- 
nals are sinusoids. The signal processing law (the Fourier transform) states 
that all signals can be approximated by summing together basic sinusoids. 

Because of this unique way of representing signals, signal processing 
tends to be quite schizophrenic. One has to continuously jump back and 
forth between the time domain representation, which gives the value of the 
signal for all times, and the frequency domain representation, where the 
harmonic content of the signal at every frequency is given. 

Spectrum is simply a shorter way of saying ‘frequency domain represen- 
tation’, and the idea is probably not new to you. You surely realize that 
the operation of a prism on white light consists of its decomposition into 
different frequencies (colors). You certainly have tuned in a station on the 
radio by changing the center frequency being demodulated. You may even 
have an audio system with a graphic equalizer enables amplifying certain 
component acoustic frequencies more than others. 

The spectrum of a signal that consists of a pure sine wave has a single 
line at the frequency of this sine. The sum of two sines corresponds to two 
lines in the frequency domain. If the sum is weighted the relative heights of 
these lines will reflect this. In general, any signal that can be constructed 
by weighted combination of a finite number of sines will have a discrete 
spectrum with lines corresponding to all the frequencies and weights. 

Not all signals have spectra comprised of discrete lines. For example, 
the analog unit width impulse has a sine-shaped spectrum, where the sine 
function 

w&f > 
sine(f) = f 
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Figure 2.12: The unit width analog impulse and its spectrum. In (A) we depict the 
unit width impulse in the time domain, and in (B) its (sine-function) frequency domain 
representation. The latter is the raw spectrum including negative frequencies. 

(see Figure 2.12). The meaning of negative spectral values and negative fre- 
quencies will become clear later on. The spectrum has a strong DC compo- 
nent because the impulse is nonnegative. In order to make the infinitesimally 
sharp corners of the impulse, an infinite range of frequencies is required. So 
although this spectrum decreases with increasing frequency, it never be- 
comes zero. Its bandwidth, defined as the spectral width wherein mast of 
the energy is contained, is finite. 

Signal processing stresses the dual nature of signals-signals have time 
domain and frequency domain (spectral) characteristics. Although the signal 
(time domain) and its Fourier transform (frequency domain) contain exactly 
the same information, and indeed either can be constructed from the other, 
some signal processing algorithms are more natural in one domain than in 
the other. This dual way of looking at signals is what makes signal processing 
different from mathematical analysis. 

EXERCISES 

2.6.1 Experiment with plotting signals composed of several sinusoids with various 
frequencies and amplitudes. Can you recognize the original frequencies in 
the resulting waveform? What do you observe when one sinusoid is much 
stronger than the others? When all the frequencies are multiples of a common 
frequency? When the frequencies are very close together? When they are well 
separated? When does the signal seem unpredictable? 

2.6.2 Taylor expand a sine wave (you can do this by hand since you only need to 
know the derivatives of sinusoids). Fourier expand a parabola (it will probably 
be easiest to use numeric Fourier transform software). What can you say 
about the compactness of these descriptions? 
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2.6.3 The Taylor expansion can be interpreted as the expansion of arbitrary contin- 
uous functions in a basis of polynomials. Are the functions fo(s) = 1, fl(z) = 
z, f&c) = x2, f&T) = 53,. . . a basis? Are they an orthonormal basis? 

2.6.4 Let’s examine a more complex signal with a discrete line spectrum. The V.34 
probe signal is composed of 21 sinusoids sin(2nft + 4) with frequencies f 
that are multiples of 150 Hz, and phases 4 given in the following table. 

Plot a representative portion of the final signal. What is special about the 
phases in the table? (Hint: Try altering a few phases and replotting. Observe 
the maximum absolute value of the signal.) 

2.7 Analog and Digital Domains 

At the end of Section 2.1 we mentioned that one can go back and forth 
between analog and digital signals. A device that converts an analog signal 
into a digital one is aptly named an Analog to Digital converter or A/D 
(pronounced A to D) for short. The reverse device is obviously a Digital to 
Analog converter or D/A (D to A). You will encounter many other names, 
such as sampler, digitizer and codec, but we shall see that these are not 
entirely interchangeable. In this and the next two sections we will explain 
that A/D and D/A devices can work, leaving the details of how they work 
for the following two sections. 

In explaining the function of an A/D there are two issues to be ad- 
dressed, corresponding to the two axes on the graph of the analog signal in 
Figure 2.13. You can think of the A/D as being composed of two quantizers, 
the sampler and the digitizer. The sampler samples the signals at discrete 
times while the digitizer converts the signal values at these times to a digital 
represent ation. 

Converting a continuously varying function into a discrete time sequence 
requires sampling the former at specific time instants. This may lead to a loss 
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Figure 2.13: Conversion of an analog signal into a corresponding digital one involves 
quantizing both axes, sampling time and digitizing signal value. In the figure we see the 
original analog signal overlaid with the sampled time and digitized signal value grid. The 
resulting digital signal is depicted by the dots. 

of information, since many different continuous functions can correspond to 
the same sampled sequence, but under certain conditions there is no such 
loss. The key to understanding this surprising result is the sampling theorem. 
This theorem tells us what happens when we create a discrete time signal 
by sampling an analog signal at a uniform rate. The sampling theorem will 
be discussed in the next section. 

Converting the continuous real values of the analog signal into bounded 
digital ones requires rounding them to the nearest allowed level. This will 
inevitably lead to a loss of precision, which can be interpreted as adding 
(real-valued) noise to each value a, = dn + u,, where un can never exceed 
one half the distance to nearby quantization levels. The effect of this noise 
is to degrade the Signal to Noise Ratio (SNR) of the signal, a degradation 
that decreases in magnitude when the number of available levels is increased. 

Digital signals obtained from analog ones are sometimes called PCM 
streams. Let’s understand this terminology. Imagine wiping out (zeroing) 
the analog signal at all times that are not to be sampled. This amounts to 
replacing the original continuously varying signal by a sequence of pulses 
of varying amplitudes. We could have reached this same result in a slightly 
different way. We start with a train of pulses of constant amplitude. We then 
vary the amplitude of each incoming pulse in order to reflect the amplitude of 
the analog signal to be digitized. The amplitude changes of the original signal 
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are now reflected in the varying heights of the pulses. The process of varying 
some aspect of a signal in order to carry information is called modulation. 
In this case we have modulated the amplitudes of the pulse stream, and 
so have produced Pulse Amplitude Modulation (PAM). Other aspects of 
the pulse stream could have been varied as well, resulting in Pulse Width 
Modulation (PWM), and Pulse Position Modulation (PPM). We now wish 
to digitally record the amplitude of each pulse, which we do by giving each 
a code, e.g. the binary representation of the closest quantization level. From 
this code we can accurately (but not necessarily precisely) reconstruct the 
amplitude of the pulse, and ultimately of the original signal. The resulting 
sequence of numbers is called a Pulse Code Modulation (PCM) stream. 

EXERCISES 

2.7.1 It would seem that sampling always gives rise to some loss of information, 
since it always produces gaps between the sampled time instants; but some- 
times we can accurately guess how to fill in these gaps. Plot a few cycles of 
a sinusoid by connecting a finite number of points by straight lines (linear 
interpolation). How many samples per cycle are required for the plot to look 
natural, i.e., for linear interpolation to accurately predict the missing data? 
How many samples per cycles are required for the maximum error to be less 
than 5%? Less than l%? 

2.7.2 Drastically reduce the number of samples per cycle in the previous exercise, 
but generate intermediate samples using quadratic interpolation. How many 
true samples per cycle are required for the predictions to be reasonably ac- 
curate? 

2.7.3 The sampling theorem gives a more accurate method of interpolation than 
the linear or quadratic interpolation of the previous exercises. However, even 
this method breaks down at some point. At what number of samples per 
cycle can no method of interpolation work? 

2.8 Sampling 

We will generally sample the analog signal at a uniform rate, corresponding 
to a sampling frequency fS. This means that we select a signal value every 
t, = i seconds. How does t, influence the resulting digital signal? The main 
effects can be observed in Figures 2.14-2.17. 
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Figure 2.14: Conversion of an analog signal into the corresponding digital one with a 
lower sampling rate. As in the previous figure, the original analog signal has been overlaid 
with the sampled time and digitized signal value grid. However, the time interval between 
samples t, is longer. 

Figure 2.15: Conversion of an analog signal into the corresponding digital one with yet 
a lower sampling rate. Once again the original analog signal has been overlaid with the 
sampled time and digitized signal value grid. Although there are only four samples per 
cycle, the original signal is still somewhat recognizable. 
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Figure 2.16: Conversion of an analog signal into a digital one at ‘the minimal sampling 
rate. Once again the original analog signal has been overlaid with the sampled time and 
digitized signal value grid. Although there are only two samples per cycle, the frequency 
of the original sine wave is still retrievable. 

Figure 2.17: Conversion of an analog signal into a digital one at too low a sampling 
rate. Once again the original analog signal has been overlaid with the sampled time and 
digitized signal value grid. With only one sample per cycle, all information is lost. 
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In Figures 2.14 and 2.15 the sampling rate is eight and four samples per 
cycle respectively, which is high enough for the detailed shape of the signal to 
be clearly seen (it is a simple sinusoid). At these sampling rates even simple 
linear interpolation (connecting the sample points with straight lines) is not 
a bad approximation, although peaks will usually be somewhat truncated. 
In Figure 2.16, with only two samples per cycle, we can no longer make out 
the detailed form of the signal, but the basic frequency is discernible. With 
only a single sample per cycle, as in Figure 2.17, even this basic frequency 
is lost and the signal masquerades as DC. 

Have you ever watched the wagon wheels in an old western? When the 
wagon starts to move the wheels start turning as they should; but then at 
some speed they anomalously seem to stand still and then start to spin 
backwards! Then when the coach is going faster yet they straighten out for 
a while. What is happening? Each second of the moving picture is composed 
of some number (say 25) still pictures, called frames, played in rapid succes- 
sion. When the wheel is rotating slowly we can follow one spoke advancing 
smoothly around the axle, from frame to frame. But when the wheel is ro- 
tating somewhat faster the spoke advances so far between one frame and the 
next that it seems to be the next spoke, only somewhat behind. This gives 
the impression of retrograde rotation. When the wheel rotates exactly the 
speed for one spoke to move to the next spoke’s position, the wheel appears 
to stand still. 

This phenomenon, whereby sampling causes one frequency to look like 
a different one, is called aliasing. The sampled pictures are consistent with 
different interpretations of the continuous world, the real one now going 
under the alias of the apparent one. Hence in this case the sampling caused 
a loss of information, irreversibly distorting the signal. This is a general 
phenomenon. Sampling causes many analog signals to be mapped into the 
same digital signal. This is because the digitized signal only records the 
values of the continuous signal at particular times t = nt,; all analog signals 
that agree at these points in time, but differ in between them, are aliased 
together to the same digital signal. 

Since sampling always maps many analog signals into the same digital 
signal, the question arises-are there conditions under which A/D does not 
cause irreparable damage? That is, is there any way to guarantee that we 
will be able to recover the value of the analog signal at all times based 
on the sampled signal alone? We expect the answer to be negative. Surely 
the analog signal can take on arbitrary values at times not corresponding 
to sample periods, and therefore many different analog signals correspond 
to the same digital one. An affirmative answer would imply a one-to-one 
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correspondence between analog signals obeying these conditions and the 
digital signals obtained by sampling them. 

Surprisingly the answer is affirmative; but what stipulation can confound 
our simple logic ? What restrictions can ensure that we incur no loss of 
information when representing a continuous function at discrete points only? 
What conditions on the signal will allow us to correctly guess the value of a 
function between two times separated by t, where it is known? The answer 
is finite bandwidth. 

Theorem: The Sampling Theorem 
Assume that the analog signal s(t) is sampled with a sampling frequency 
fs = l/t, producing the digital signal sn = s(nt,). 

A. If the sampling frequency is over twice that of the highest frequency 
component of the signal fs > fmall:, then the analog signal can be recon- 
structed for any desired time. 

B. The reconstructed value of the analog signal at time t 

S(t) = fj sn sine (afs(t - nt,)) 
n=-ccl 

(2.27) 

is a linear combination of the digital signal values with sine(t) = sin(t) /t 
weighting. 1 

At first sight the sampling theorem seems counterintuitive. We specify 
the values of a signal at certain discrete instants and claim to be able to ex- 
actly predict its value at other instants. Surely the signal should be able to 
oscillate arbitrarily in between sampling instants, and thus be unpredictable. 
The explanation of this paradox is made clear by the conditions of the sam- 
pling theorem. The bandwidth limitation restricts the possible oscillations 
of the analog signal between the sample instants. The signal cannot do more 
than smoothly interpolate between these times, for to do so would require 
higher frequency components than it possesses. 

The minimal sampling frequency (a little more than twice the highest 
frequency component) is called the Nyquist frequency f~ E 2fmaX in honor 
of Harry Nyquist, the engineer who first published the requirement in 1928. 
It wasn’t until 1949 that mathematician Claude Shannon published a formal 
proof of the sampling theorem and the reconstruction formula. An inaccu- 
rate, but easy to remember, formulation of the contributions of these two 
men is that Nyquist specified when an A/D can work, and Shannon dictated 
how a D/A should work. 
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To better understand the Nyquist criterion consider the simple case of 
a single sinusoid. Here the minimum sampling frequency is twice per cycle. 
One of these sample instants will usually be in the positive half-cycle and 
the in the negative one. It is just this observation of positive and negative 
half-cycles that makes the sampling theorem work. It is intuitively obvious 
that sampling at a lesser rate could not possibly be sufficient, since entire 
half cycles will be lost. Actually even sampling precisely twice per cycle 
is not sufficient, since sampling at precisely the zero or peaks conceals the 
half-cycles, which is what happened in Figure 2.17. This is why the sampling 
theorem requires us to sample at a strictly higher rate. 

The catastrophe of Figure 2.17 is a special case of the more general 
phenomenon of &using. What the sampling theorem tells us is that discrete 
time signals with sampling rate fs uniquely correspond to continuous time 
signals with frequency components less than $. Sampling any continuous 
time signal with higher-frequency components still provides a discrete time 
signal, but one that uniquely corresponds to another, simpler signal, called 
the alias. Figure 2.18 demonstrates how a high-frequency sinusoidal signal 
is aliased to a lower frequency one by sampling. The two signals agree at the 
sample points, but the simpler interpretation of these points is the lower- 
frequency signal. 

Figure 2.18: Aliasing of high-frequency analog signal into lower-frequency one. The high- 
frequency signal has only a sample every one and a half cycles, i.e., it corresponds to a 
digital frequency of 
i.e., cp = f. 

$. The lower-frequency sinusoid is sampled at four samples per cycle, 
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It is conventional to define a digital frequency in the following way 

and the sampling theorem tells us that we must have cp < i. Consistently 
using this digital frequency frees us from having to think about real (analog) 
frequencies and aliasing. All the DSP will be exactly the same if a 2 Hz signal 
is sampled at 10 Hz or a 2 MHz signal is sampled at 10 MHz. 

Before continuing we should mention that the sampling theorem we have 
been discussing is not the final word on this subject. Technically it is only 
the ‘low-pass sampling theorem for uniform time intervals’. If the signals of 
interest have small bandwidth but are centered on some high frequency, it is 
certainly sufficient to sample at over twice the highest frequency component, 
but only necessary to sample at about twice the bandwidth. This is the con- 
tent of the band-pass sampling theorem. It is also feasible in some instances 
to sample nonuniformly in time, for example, at times 0, $, 2,2$, 4, . . . . For 
such cases there are ‘nonuniform sampling theorems’. 

Now that we understand the first half of the sampling theorem, we are 
ready to study the reconstruction formula in the second half. We can rewrite 
equation (2.27) as 

ccl 
s(t) = c s,h(t - nt,) (2.28) 

7X=--o;) 

where h(t) E sinc@f,t) is called the sampling kernel. As a consequence 
the reconstruction operation consists of placing a sampling kernel at every 
sample time nts, weighting it by the sampled value there sn, and adding 
up all the contributions (see Figure 2.19). The sine in the numerator of the 
sine is zero for all sample times nts, and hence the sampling kernel obeys 
h(nt,) = &a. From this we immediately conclude s(nt,) = s, as required. 
Consequently, the reconstruction formula guarantees consistency at sample 
times by allowing only the correct digital signal value to contribute there. 
At no other times are the sampling kernels are truly zero, and the analog 
signal value is composed of an infinite number of contributions. 

In order for the reconstruction formula to be used in practice we must 
somehow limit the sum in (2.28) to a finite number of contributions. Noting 
that the kernel h(t) decays as & we can approximate the sum by restricting 
the duration in time of each sample’s contribution. Specifically, if we wish 
to take into account only terms larger than some fraction p, we should limit 
each sample’s contributions to A$ samples from its center. Conversely this 
restriction implies that each point in time to be interpolated will only receive 
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Figure 2.19: The reconstruction formula depicted graphically. In (A) we see an analog 
signal and the samples digitized slightly higher than twice the highest frequency compo- 
nent. (B) shows the sine kernels weighted by the sample value placed at each sample time; 
note that at sample times all other sines contribute zero. In (C) we sum the contributions 
from all kernels in the area and reconstruct the original analog signal. 

a finite number of contributions (from those sample instants no further than 
$ away). 

Proceeding in this fashion we obtain the following algorithm: 

Given: a sampled signal zn, 
its sampling interval tS, 
a desired time t, and 
a cut-off fraction p 

w + Round($) 
Initialize i t 0 

t 
nmid t t, 

nlo t nmid - w 

nhi i- nmid + W 

x+--o 

for n + nlo to r&i 
x t x + xn sinc(7rtStyt9) 
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EXERCISES 

2.8.1 The wagon wheel introduced in the text demonstrates the principle of aliasing 
in a popular context. What is the observed frequency as a function of intended 
frequency. 

2.8.2 Redraw Figures 2.13-2.17 with sample times at different phases of the sinu- 
soid. Is a sine wave sampled at exactly twice per cycle (as in Figure 2.16) 
always recoverable? 

2.8.3 Redraw Figures 2.13-2.17 with a noninteger number of samples per cycle. 
What new effects are observed? Are there any advantages to such sampling? 
Doesn’t this contradict the sampling theorem? 

2.8.4 Plot an analog signal composed of several sinusoids at ten times the Nyquist 
frequency (vastly oversampled). Overlay this plot with the plots obtained for 
slightly above and slightly below Nyquist. What do you observe? 

2.8.5 Write a program for sampling rate conversion based on the algorithm for 
reconstruction of the analog signal at arbitrary times. 

2.9 Digitization 

Now we return to the issue of signal value quantization. For this problem, 
unfortunately, there is no panacea; there is no critical number of bits above 
which no information is lost. The more bits we allocate per sample the less 
noise we add to the signal. Decreasing the number of bits monotonically 
reduces the SNR. 

Even more critical is the matching of the spacing of the quantization 
levels to the signal’s dynamic range. Were the spacing set such that the signal 
resided entirely between two levels, the signal would effectively disappear 
upon digitizing. Assuming there are only a finite number of quantization 
levels, were the signal to vary over a much larger range than that occupied 
by the quantization levels, once again the digital representation would be 
close to meaningless. For the time being we will assume that the digitizer 
range is set to match the dynamic range of the signal (in practice the signal 
is usually amplified to match the range of the digitizer). 

For the sake of our discussion we further assume that the analog signal 
is linearly digitized, corresponding to b bits. This means that we select the 
signal level 1 = - ( 2b-1 - 1) . . . + 2’-l that is closest to s(tn). How does b 
influence the resulting digital signal? The main effects can be observed in 
Figures 2.20-2.24. 
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Figure 2.20: Conversion of an analog signal into a corresponding digital one involves 
quantizing both axes, sampling time and digitizing signal value. In the figure we see the 
original analog signal overlaid with the sampled time and digitized signal value grid. The 
resulting digital signal is depicted by the dots. 
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Figure 2.21: Conversion of an analog signal into the corresponding digital one with fewer 
digitizing levels. As in the previous figure the original analog signal has been overlaid with 
the sampled time and digitized signal value grid. However, here only 17 levels (about four 
bits) are used to represent the signal. 
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Figure 2.22: Conversion of an analog signal into the corresponding digital one with fewer 
digitizing levels. Once again the original analog signal has been overlaid with the sampled 
time and digitized signal value grid. Here only nine levels (a little more than three bits) 
are used to represent the signal. 

Figure 2.23: Conversion of an analog signal into the corresponding digital one with fewer 
digitizing levels. Once again the original analog signal has been overlaid with the sampled 
time and digitized signal value grid. Here only five levels (about two bits) are used to 
represent the signal. 
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the minimum number of digitizing levels. Once again the original analog signal has been 
overlaid with the sampled time and digitized signal value grid. Here only three levels (one 
and a half bits) are used to represent the signal. 

Reflect upon the discrete time signal before signal value quantization 
(the pulses before coding). This sequence of real numbers can be viewed as 
the sum of two parts 

an = & + vn where d n z Round(a,) 

and so d, are integers and Ivn 1 < 2. 1 Assuming an to be within the range of 
our digitizer the result of coding is to replace a, with dn, thus introducing 
an error u, (see Figure 2.25). Were we to immediately reconvert the digital 
signal to an analog one with a D/A converter, we would obtain a signal 
similar to the original one, but with this noise added to the signal. 

The proper way of quantifying the amount of quantization noise is to 
compare the signal energy with the noise energy and compute the SNR from 
equation (2.13). For a given analog signal strength, as the quantization levels 
become closer together, the relative amount of noise decreases. Alternatively, 
from a digital point of view, the quantization noise is always a constant 
414 levels, while increasing the number of bits in the digital representation 
increases the digital signal value. Since each new bit doubles the number of 
levels and hence the digital signal value 

SNR(dB) M 10 ( logIo(2b)2 - loglo 12) = 20blogro 2 M 6b (2.29) 

that is, each bit contributes about 6 dB to the SNR. The exact relation will 
be derived in exercise 2.9.2. 
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Figure 2.25: Noise created by digitizing an analog signal. In (A) we see the output of a 
digitizer as a function of its input. In (B) the noise is the rounding error, i.e., the output 
minus the input. 

We have been tacitly assuming a digitizer of infinite range. In practice 
all digitizers have a maximum number of bits and thus a minimum and 
maximum level. The interval of analog signal values that are translated into 
valid digital values is called the dynamic range of the digitizer. Analog signal 
values outside the allowed range are clipped to the maximum or minimum 
permitted levels. Most digitizers have a fixed number of bits and a fixed 
dynamic range; in order to minimize the quantization noise the analog signal 
should be amplified (or attenuated) until it optimally exploits the dynamic 
range of the digitizer. Exceeding the dynamic range of the digitizer should be 
avoided as much as possible. Although moderate amounts of saturation are 
not usually harmful to the digitizer hardware, signal clipping is introduced. 
For a signal with high Peak to Average Ratio (PAR), one must trade off 
the cost of occasional clipping with the additional quantization noise. 

Signal to noise ratios only have significance when the ‘noise’ is truly ran- 
dom and uncorrelated with the signal. Otherwise we could divide a noiseless 
signal into two equal signals and claim that one is the true signal, the other 
noise, and the SNR is 0 dB! We have been tacitly assuming here that the 
quantization noise is truly noise-like and independent of the signal, although 
this is clearly not the case. What is the character of this ‘noise’? 

Imagine continuously increasing the input to a perfect digitizer from 
the minimum to the maximum possible input. The output will only take 
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quantized values, essentially rounding each input to the closest output level. 
Hence the output as a function of the input will produce a graph that looks 
like a staircase, as in Figure 2.25.A. Accordingly the rounding error, the 
output minus the input, will look like a sawtooth, as in Figure 2.25.B. Thus 
the quantization ‘noise’ is predictable and strongly correlated with the sig- 
nal, not random and uncorrelated as we tacitly assumed. This result seems 
contradictory-if the noise signal is predictable, then it isn’t noise at all. 
Were the error to be truly predictable, then one could always compensate 
for it, and digitizing would not harm the signal at all. The resolution of this 
paradox is simple. The noise signal is indeed correlated to the analog signal, 
but independent of the digitized signal. After digitizing the analog signal is 
unavailable, and the noise becomes, in general, unpredictable. 

EXERCISES 

2.9.1 Dither noise is an analog noise signal that can be added to the analog signal 
before digitizing in order to lessen perceived artifacts of round-off error. The 
dither must be strong enough to effectively eliminate spurious square wave 
signals, but weak enough not to overly damage the SNR. How much dither 
should be used? When is dither needed? 

2.9.2 Refine equation (2.29) and derive SNR = (2 logre 2b+1.8)dB by exploiting the 
statistical uniformity of the error, and the definition of standard deviation. 

2.9.3 Plot the round-off error as a function of time for sinusoids of amplitude 15, 
and frequencies 1000, 2000, 3000, 1100, 1300, 2225, and 3141.5 Hz, when 
sampled at 8000 samples per second and digitized to integer levels (-15, -14, 

0 “‘7 9 .“7 14, 15). Does the error look noise-like? 

2.10 Antialiasing and Reconstruction Filters 

Recall that in Figure 1.3 there were two filters marked antialiasing jilter and 
reconstruction filter that we avoided discussing at the time. Their purpose 
should now be clear. The antialiasing filter should guarantee that no fre- 
quencies over Nyquist may pass. Of course no filter is perfect, and the best 
we can hope for is adequate attenuation of illegal frequencies with minimal 
distortion of the legal ones. The reconstruction filter needs to smooth out 
the D/A output, which is properly defined only at the sampling instants, 
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and recreate the proper behavior at all times. In this section we will briefly 
discuss these filters. 

Assume that the highest frequency of importance in the signal to be 
sampled is fmaZ. Strictly speaking the sampling theorem allows us to sample 
at any frequency above the Nyquist frequency fiv = 2f,,,, but in practice 
we can only sample this way if there is absolutely nothing above fmaz . 
If there are components of the signal (albeit unimportant ones) or other 
signals, or even just background noise, these will fold back onto the desired 
signal after sampling unless removed by the antialiasing filter. Only an ideal 
antialiasing filter, one that passes perfectly all signals of frequency less than 

f max and blocks completely all frequencies greater than fmaz, would be able 
to completely remove the undesired signals; and unfortunately, as we shall 
learn in Section 7.1, such an ideal filter cannot be built in practice. 

Realizable antialiasing filters pass low frequencies, start attenuating at 
some frequency fr, and attenuate more and more strongly for higher and 
higher frequencies, until they effectively block all frequencies above some 
f2. We must be sure that the spectral areas of interest are below fr since 
above that they will become attenuated and distorted; however, we can’t 
use 2fr as our sampling frequency since aliasing will occur. Thus in order to 
utilize realizable filters we must sample at a frequency 2f2, higher than the 
sampling theorem strictly requires. Typically sampling frequencies between 
20% and 100% higher (1.2fN 5 fs 2 2fN) are used. The extra spectral 
‘real-estate’ included in the range below $ is called a guard band. 

The D/A reconstruction filter’s purpose is slightly less obvious than that 
of the antialiasing filter. The output of the D/A must jump to the required 
digital value at the sampling time, but what should it do until the next 
sampling time? Since we have no information about what the analog signal 
does, the easiest thing to do is to stay constant until the next sampling time. 
Doing this we obtain a piecewise constant or ‘boxcar’ signal that doesn’t ap- 
proximate the original analog signal very well. Alternatively, we might wish 
to linearly interpolate between sampling points, but there are two difficul- 
ties with this tactic. First, the linear interpolation, although perhaps better 
looking than the boxcar, is not the proper type of interpolation from the 
signal processing point of view. Second, and more importantly, interpolation 
of any kind is noncausal, that is, requires us to know the next sample value 
before its time. This is impossible to implement in real-time hardware. What 
we can do is create the boxcar signal, and then filter it with an analog filter 
to smooth the sharp transitions and eliminate unwanted frequencies. 

The antialiasing and reconstruction filters may be external circuits that 
the designer must supply, or may be integral to the A/D and D/A devices 
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themselves. They may have fixed cutoff frequencies, or may be switchable, 
or completely programmable. Frequently DSP software must set up these 
filters along with initialization and setting sampling frequency of the A/D 
and D/A. So although we shall not mention them again, when designing, 
building, or programming a DSP system, don’t forget your filters! 

EXERCISES 

2.10.1 Simulate aliasing by adding sinusoids with frequencies above Nyquist to prop- 
erly sampled sinusoidal signals. (You can perform this experiment using ana- 
log signals or entirely on the computer.) Make the aliases much weaker than 
the desired signals. Plot the resulting signals. 

2.10.2 If you have a DSP board with A/D and D/A determine how the filters are 
implemented. Are there filters at all or are you supposed to supply them 
externally? Perhaps you have a ‘sigma-delta’ converter that effectively has 
the filter built into the A/D. Is there a single compromise filter, several filters, 
or a programmable filter? Can you control the filters using software? Measure 
the antialiasing filter’s response by injecting a series of sine waves of equal 
amplitude and increasing frequency. 

2.10.3 What does speech sound like when the antialiasing filter is turned off? What 
about music? 

2.11 Practical Analog to Digital Conversion 

Although in this book we do not usually dwell on hardware topics, we will 
briefly discuss circuitry for A/D and D/A in this section. We have two rea- 
sons for doing this. First, the specifications of the analog hardware are of 
great important to the DSP software engineer. The DSP programmer under- 
stand what is meant by such terms as ‘one-bit sampling’ and ‘effective bits’ 
in order to properly design and debug software systems. Also, although we 
all love designing and coding advanced signal processing algorithms, much of 
the day-to-day DSP programming has to do with interfacing to the outside 
world, often by directly communicating with A/D and D/A devices. Such 
communication involves initializing, setting parameter values, checking sta- 
tus, and sending/receiving data from specific hardware components that the 
programmer must understand well. In addition, it is a fact of life that A/D 
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components occasionally fail, especially special-purpose fast A/D convert- 
ers. The DSP software professional should know how to read the signs of a 
failing A/D, and how to test for deficiencies and to evaluate performance. 

Perhaps the simplest A/D to start with is the so-called flash converter, 
the block diagram of which is given in Figure 2.26. The triangles marked 
‘camp’ are comparators that output ‘one’ when the voltage applied to the in 
input is higher than that applied to the reference input ref, and ‘zero’ oth- 
erwise. For a b bit A/D converter we require 2b such comparators (including 
the highest one to indicate an overflow condition). The reference inputs to 
the comparators must be as precise as possible, and for this reason are often 
derived from a single voltage source. 

Every sampling time a voltage x is applied to the input of the digitizer. 
All the comparators whose reference voltages are less than x will fire, while 
those with higher references will not. This behavior reminds one of a mercury 
thermometer, where the line of mercury reaches from the bottom up to a 
line corresponding to the correct temperature, and therefore this encoding is 
called a thermometer code. The thermometer code requires 2b bits to encode 
2b values, while standard binary encoding requires only b bits. It would 
accordingly be not only nonstandard but also extremely inefficient to use it 
directly. The function of the block marked ‘thermometer to binary decoder’ 
in the diagram is to convert thermometer code into standard binary. It is 
left as an exercise to efficiently implement this decoder. 

The main drawback of the flash converter is its excessive cost when a 
large number of bits is desired. A straightforward implementation for 16- 
bit resolution would require 216 reference voltages and comparators and a 
216 by 16 decoder! We could save about half of these, at the expense of 
increasing the time required to measure each voltage, by using the following 
tactic. As a first step we use a single comparator to determine whether 
the incoming voltage is above or below half-scale. If it is below half-scale, 
we then determine its exact value by applying it to a bank of $2b = Zb-’ 
comparators. If it is above half-scale we first shift up the reference voltages 
to all of these 2b-1 comparators by the voltage corresponding to half-scale, 
and only then apply the input voltage. This method amounts to separately 
determining the MSB, and requires only 2b-1 + 1 comparators. 

Why should we stop with determining the MSB separately? Once it 
has been determined we could easily add another step to our algorithm to 
determine the second most significant bit, thus reducing to 2b-2 + 3 the 
number of comparators needed. Continuing recursively in this fashion we 
find that we now require only b stages, in each of which we find one bit, 
and only b comparators in all. Of course other compromises are possible, 
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Figure 2.26: Schematic diagram of a flash converter A/D. 

for example, n most significant bits can be determined by a coarse flash 
converter, and then the remaining b - n bits by an appropriately shifted 
fine converter. These methods go by the name serial-parallel or half-JEash 
converters. 

In order to use such a device we would have to ensure that the input 
voltage remains constant during the various stages of the conversion. The 
time taken to measure the voltage is known a~ the aperture time. Were 
the voltage to fluctuate faster than the aperture time, the result would be 
meaningless. In order to guarantee constancy of the input for a sufficient 
interval a sample and hold circuit is used. The word ‘hold’ is quite descriptive 
of the circuit’s function, that of converting the continuously varying analog 
signal into a piecewise constant, boxcar signal. 

When a sample and hold circuit is employed, we can even reduce the 
number of comparators employed to one, at the expense of yet a further 
increase in aperture time. We simply vary the reference voltage through 
all the voltages in the desired range. We could discretely step the voltage 
through 2b discrete levels, while at the same time incrementing a counter; 
the desired level is the value of this counter when the reference voltage 
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first passes the sample and hold voltage. Stepping through 2b levels can be 
a complex and time-intensive job, and can be replaced by a continuously 
increasing ramp. The counter is replaced by a mechanism that measures the 
time until the comparator triggers. A sawtooth waveform is usually utilized 
in order to quickly return to the starting point. This class of A/D converters 
is called a counting converter or a slope converter. 

High-precision counting converters are by their very nature extremely 
slow. Successive-upproxirnation converters are faster for the same reason 
that half-flash are faster than flash converters. The principle is to start with 
a steep slope, thus quickly determining a rough approximation to the input 
voltage. Once the reference passes the input it is reduced one level and 
further increased at a slower rate. This process continues until the desired 
number of bits has been obtained. 

Now that we understand some of the principles behind the operation 
of real-world A/D devices, we can discuss their performance specifications. 
Obviously the device chosen must be able to operate at the required sam- 
pling rate, with as many bits of accuracy as further processing requires. 
However, bits are not always bits. Imagine a less-than-ethical hardware en- 
gineer, whose design fails to implement the require number of bits. This 
engineer could simply add a few more pins to his A/D chip, not connecting 
them to anything in particular, and claim that they are the least significant 
bits of the converter. Of course they turn out to be totally uncorrelated to 
the input signal, but that may be claimed to be a sign of noise. Conversely, if 
a noisy input amplifier reduces the SNR below that given by equation (2.29) 
we can eliminate LSBs without losing any signal-related information. A/D 
specifications often talk about the number of efective bits as distinct from 
the number of output bits. Effective bits are bits that one can trust, the num- 
ber of bits that are truly input-signal correlated. We can find this number 
by reversing the use of equation (2.29). 

The number of effective bits will usually decrease with the frequency 
of the input signal. Let’s understand why this is the case. Recall that the 
A/D must actually observe the signal over some finite interval, known as the 
aperture time, in order to determine its value. For a low-frequency signal this 
is not problematic since the signal is essentially constant during this entire 
time. However, the higher the frequency the more the signal will change 
during this interval, giving rise to aperture uncertainty. Consider a pure sine 
wave near where it crosses the axis. The sine wave is approximately linear 
in this vicinity, and its slope (derivative) is proportional to the frequency. 
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Prom these considerations it is easy to see that 

fTqxrture 5 rb (2.30) 

so that the effective bits decrease with increasing frequency. 
The sigma-delta, or one-bit, digitizer is a fundamentally different kind 

of A/D device. Although the principles have been known for a long time, 
sigma-delta digitizing has become fashionable only in the last few years. This 
is because its implementation has only become practical (read inexpensive) 
with recent developments in VLSI practice. 

With delta-RX4 one records the differences (‘delta’s) between successive 
signal values rather than the values themselves. It is clear that given the 
initial value and a sequence of such differences the original signal may be 
recovered. Hence delta-PCM carries information equivalent to the original 
PCM. The desirability of this encoding is realized when the signal does 
not vary too rapidly from sample to sample. In this case these differences 
will be smaller in absolute value (and consequently require fewer bits to 
capture) than the signal values themselves. This principle is often exploited 
to compress speech, which as we shall see in Section 19.8 contains more 
energy at low frequencies. 

When the signal does vary too much from sample to sample we will con- 
stantly overflow the number of bits we have allotted to encode the difference. 
To reduce the possibility of this happening we can increase the sampling 
rate. Each doubling of the sampling rate should reduce the absolute value 
of the maximum difference by a factor of two and accordingly decrease the 
number of bits required to encode it by one. We therefore see a trade-off 
between sampling frequency and bits; we can sample at Nyquist with many 
bits, or oversample with fewer bits. Considering only the number of bits 
produced, slower is always better; but recalling that the number of com- 
parators required in a flash converter increases exponentially in the number 
of bits encoded, faster may be cheaper and more reliable. In addition there 
is another factor that makes an oversampled design desirable. Since we are 
oversampling, we can implement the antialiasing filter digitally, making it 
more dependable and flexible. 

It would seem that we have just made our A/D more complex by re- 
quiring digital computation to be performed. However, reconstructing the 
original signal from its delta encoding requires digital computation in any 
case, and the antialiasing filter can be combined with the reconstruction. 
The overall computation is a summing (represented mathematically by the 
letter sigma) of weighted differences (deltas) and consequently these designs 
are called sigma-delta converters. 
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Carried to its logical extreme delta encoding can be limited to a one-bit 
representation of the analog signal, an encoding designated delta modulation. 
As in a conventional A/D we observe the signal at uniformly spaced inter- 
vals, but now we record only whether the signal has increased or decreased 
as compared to the last sampling interval. When the signal is sufficiently 
oversampled, and now we may require extremely high sampling frequencies, 
we can still recover the original signal. This is the principle behind what is 
advertised a~ one-bit sampling. 

Before leaving our discussion of hardware for moving between analog and 
digital domains, we should mention D/A designs. D/A devices are in general 
similar to A/D ones. The first stage of the D/A is the antidigitizer (a device 
that converts the digital representation into an appropriate analog voltage). 
In principle there need be no error in such a device, since all digitized levels 
are certainly available in the continuous world. Next comes the antisampler, 
which must output the antidigitized values at the appropriate clock times. 
Once again this can, in principle, be done perfectly. The only quandary is 
what to output in between sampling instants. We could output zero, but 
this would require expensive quickly responding circuits, and the resulting 
analog signal would not really resemble the original signal at all. The easiest 
compromise is to output a boxcar (piecewise constant) signal, a sort of anti- 
sample-and-hold! The signal thus created still has a lot of ‘corners’ and 
accordingly is full of high-frequency components, and must be smoothed by 
an appropriate low-pass filter. This ‘anti-antialiasing filter’ is what we called 
the ‘reconstruction filter’ in Figure 1.3. It goes by yet a third name as well, 
the sine filter, a name that may be understood from equation (2.27). 

EXERCISES 

2.11.1 Design a thermometer to binary converter circuit for an eight level digitizer 
(one with eight inputs and three outputs). You may only use logical gates, 
devices that perform the logical NOT, AND, OR, and XOR of their inputs. 

2.11.2 A useful diagnostic tool for testing A/D circuits is the level histogram. One 
inputs a known signal that optimally occupies the input range and counts 
the number of times each level is attained. What level histogram is expected 
for a white noise signal? What about a sinusoid? Write a program and find 
the histograms for various sounds (e.g., speech, musical instruments). 

2.11.3 An A/D is said to have bad transitions when certain levels hog more of the 
input range than they should. An A/D is said to have a stuck bit when 
an output bit is constant, not dependent on the input signal. Discuss using 
sawtooth and sinusoidal inputs to test for these malfunctions. 
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2.11.4 A signal that is too weak to be digitized can sometimes be captured using 
a technique known as dithering whereby a small amount of random noise is 
added before digitizing. Explain and demonstrate how dithering works. 

2.11.5 Delta encoding is often allocated fewer bits than actually needed. In this 
cases we must round the differences to the nearest available level. Assuming 
uniform spacing of quantization levels, how much noise is introduced as a 
function of the number of bits. Write a program to simulate this case and try 
it on a speech signal. It is often the case that smaller differences are more 
probable than larger ones. How can we exploit this to reduce the quantization 
error? 

2.11.6 Fixed step size delta modulation encodes only the sign of the difference 
between successive signal values, d, = sgn(s, - s+r), but can afford to 
oversample by b, the number of bits in the original digitized signal. Recon- 
struction of the signal involves adding or subtracting a fixed 6, according to 
n sn = s^,-1 + d,6. What problems arise when S is too small or too large? 
Invent a method for fixes these problems and implement it. 

2.11.7 Prove equation (2.30). 
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