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Noise 

Much of signal processing involves extracting signals of interest from noise. 
Without noise to combat, a radar receiver could detect an echo by simple 
energy thresholding. In a noiseless world an infinite amount of information 
could be transmitted through a communications channel every second. Were 
it not for noise, signal classification would be reduced to dictionary lookup. 
Yet signals in the real world are always noisy. Radar echoes are buried under 
noise, making their detection impossible without sophisticated processing. 
Modem signals rely on complex modulation and error correction schemes to 
approach the maximum rate attainable through noisy telephone lines. Due 
to noise, signal classification is still more an art than a science. Extracting a 
signal from noise can rely on knowledge of the clean signal and/or knowledge 
of the noise. Up to now we have learned to characterize clean signals; in this 
chapter we will study the characteristics of noise. 

As discussed in Section 2.3, a stochastic signal cannot be precisely pre- 
dicted, being bound only by its statistics. What do we mean by ‘statistics’? 
It is jokingly said that probability is the science of turning random numbers 
into mathematical laws, while statistics is the art of turning mathematical 
laws into random numbers. The point of the joke is that most people take 
‘statistics’ to mean a technique for analyzing empirical data that enables one 
to prove just about anything. In this book ‘statistics’ refers to something 
far more tangible, namely the parameters of probabilistic laws that govern 
a signal. Familiar statistics are the average or mean value and the variance. 

In this chapter we will learn how noisy signals can be characterized 
and simulated. We will study a naive approach that considers noise to be 
merely a pathological example of signals not unlike those we have previously 
met. In particular, we will take the opportunity to examine the fascinating 
world of chaotic deterministic signals, which for all practical purposes are 
indistinguishable from stochastic signals but can be approached via periodic 
signals. Finally, we will briefly discuss the mathematical theory of truly 
stochastic signals. 
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5.1 Unpredictable Signals 

‘Pure noise’ is the name we give to a quintessential stochastic signal, one that 
has only probabilistic elements and no deterministic ones. Put even more 
simply, pure noise is completely random; it obeys only probabilistic laws 
and can never be perfectly predicted. ‘Plain’ noise has a softer definition in 
that we allow signals with some deterministic characteristics, e.g. the sum 
of a pure noise and a deterministic signal. The ratio of the energy of the 
deterministic signal to that of the pure noise component is called the Signal 
to Noise Ratio (SNR), usually specified in dB. A signal with finite SNR is 
unpredictable to some degree. Our guesses regarding such noisy signals may 
be better than random, but we can quite never pin them down. An SNR of 
OdB (SNR=l) means the signal and noise have equal energies. 

There are four distinguishable ways for a signal to appear unpredictable: 
it may be pseudorandom, incompletely known, chaotic, or genuinely stochas- 
tic. The exact boundaries between these four may not always be clear, but 
there is progressively more known about the signal as we advance from the 
first to the third. Only the fourth option leads to true noise, but in practice 
it may be impossible to differentiate even between it and the other three. 

A pseudorandom signal is completely deterministic, being generated by 
some completely defined algorithm. However, this algorithm is assumed to 
be unknown to us, and is conceivably quite complex. Being ignorant of the 
algorithm, the signal’s behavior seems to us quite arbitrary, jumping capri- 
ciously between different values without rhyme or reason; but to the initiated 
the signal’s behavior is entirely reasonable and predictable. If we may as- 
sume that there is no correlation between the unknown generating algorithm 
and systems with which the signal may interact, then for all intents and pur- 
poses a pseudorandom signal is noise. Pseudorandom signals will be treated 
in more detail in Section 5.4. 

An incompletely known signal is also completely deterministic, being 
generated by a known algorithm that may depend on several parameters. 
The details of this algorithm and some, but not all, of these parameters 
are known to us, the others being hidden variables. Were we to know all 
these parameters the signal would be completely predictable, but our state 
of knowledge does not allow us to do so. In practice knowing the form and 
some of the parameters may not help us in the least, and the signal seems to 
us completely erratic and noise-like. In theory the signal itself is not erratic 
at all; it’s simply a matter of our own ignorance! 

A chaotic signal is also completely deterministic, being generated by a 
completely specified algorithm that may even be completely known to us. 
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However, a chaotic signal seems noisy because of numeric sensitivity of this 
algorithm that causes us to rapidly lose information about the signal with 
the passage of time. Were all initial conditions to be specified to infinite 
precision, and all calculations to be performed with infinite accuracy, the 
signal would indeed be perfectly predictable; but any imprecision of knowl- 
edge or inaccuracy of computation will inevitably lead to complete loss of 
predictability after enough time has passed. Such chaotic signals will be 
treated in detail in Section 5.5. 

A truly stochastic signal is one that is not generated by any deterministic 
algorithm at all. The time between successive clicks of a Geiger counter 
or the thermal noise measured across a resistor are typical examples. At 
a fundamental level, quantum mechanics tells us that nature abounds with 
such genuinely random signals. The philosophical and scientific consequences 
of this idea are profound [53]. The implications for DSP are also far-reaching, 
and will be discussed briefly in Section 5.6. However, a formal treatment of 
stochastic signals is beyond the scope of this book. 

EXERCISES 

5.1,l The game of guessit is played by two or more people. First the players 
agree upon a lengthy list of functions of one variable t, each of which is also 
dependent on one or two parameters. The inventor picks function from the 
list and supplies parameters. Each analyst in turn can request a single value 
of the function and attempt to guess which function has been selected. What 
strategy should the inventor use to make the analysts’ task more difficult? 
What tactics can the analysts use? Try playing guessit with some friends. 

5.1.2 Generate a signal x with values in the interval [0 . . . l] by starting at an 
arbitrary value in the interval and iterating xn+l = Xx,(1-xzn) for 0 5 X 5 4. 
For what values of X does this signal look random? 

5.1.3 To which of the four types of unpredictable signal does each of the following 
most closely belong? 

1. Static noise on shortwave radio 
2. Sequence of heads (s=l) and tails (s=O) obtained by throwing a coin 
3. World population as a function of time 
4. Value of stock portfolio as a function of time 
5. Sequence produced by your compiler’s random number generator 
6. Distance from earth to a given comet 
7. Position of a certain drop of water going down a waterfall 
8. Maximum daily temperature at your location 
9. The sequence of successive digits of 7r 
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5.2 A Naive View of Noise 

No matter what its source, a noise-like signal is very different from the 
signals with which we have dealt so far. Although we can observe it as a 
function of time, its graph resembles modern art as compared to the classical 
lines of deterministic signals; and every time we observe and plot it we get 
a completely different graph. In Figures 5.1, 5.2, and 5.3 we plot distinct 
noise signals in the time domain. All the plots in each figure represent the 
same noise signal, and are called realizations of the underlying noise. No 
two realizations are precisely the same, yet there are noticeable similarities 
between realizations of the same noise, and different noise signals may be 
easily distinguishable by eye. 

Were you to be presented with a new, previously unseen realization of 
one of the noise signals of the figures, and asked to which it belonged, you 
would probably have little difficulty in classifying it. How do you do it? 
How can we best characterize noise signals? It will not surprise you to learn 
that noise signals, like deterministic signals, have characteristics in the time 
domain and in the frequency domain. 

In the time domain we are interested in the statistical attributes of in- 
dividual signal values u,, such as the mean (average) (v) , the variance or 
standard deviation, and the moments of higher orders. The set of all pa- 
rameters that determine the probabilistic laws is called suficient statistics. 
Sufficient statistics are not sufficient to enable us to precisely predict the 
signal’s value at any point in time, but they constitute the most complete 
description of a stochastic signal that there is. Noise signals are called sta- 
tionary when these statistics are not time-dependent. This implies that the 
probabilistic properties of the noise do not change with time; so if we mea- 
sure the mean and variance now, or half an hour from now, we will get the 
same result. 

We will almost always assume stationary noise signals to have zero mean, 
(v) = 0. This is because noise w(t) of nonzero average can always be written 

v(t) = (v) + u(t) A D 21, = (v) + un 

where the constant (w) is of course a (deterministic) DC signal, and v is 
noise with zero mean. There is no reason to apply complex techniques for 
stochastic signals to the completely deterministic DC portion. which can be 
handled by methods of the previous chapters. 



5.2. A NAIVE VIEW OF NOISE 165 

Figure 5.1: A few realizations of a noise signal. The set of all such realizations is called 
the ensemble. Note that each realization is erratic, but although the different realizations 
are quite varied in detail, there is something similar about them. 

Figure 5.2: A few realizations of another noise signal. Note the differences between this 
noise signal and the previous one. Although both have zero average and roughly the 
same standard deviation, the first is uniformly distributed while this signal is Gaussian 
distributed. A few values are off-scale and thus do not appear. 

___ _.. ._......... . . . . . . . .-.. . . . . . . . -. . . KG. __............ . . . . . . . . . __. ._._.._ . . . . . . . ..-........ . ..--.. . . . . _... 
Figure 5.3: A few realizations of a third noise signal. Note the differences between this 
noise signal and the previous two. Although the signal is also zero average and of the 
same standard deviation, the first two signals were vrhite while this signal has been low- 
pass filtered and contains less high-frequency energy, 
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The most detailed information concerning the statistics of individual 
signal values is given by the complete probability distribution these values. 
Probability distributions are functions p(z) that tell us the probability of the 
signals taking on the value 5. Digital signals can only take on a finite number 
of values, and thus (at least in principle) we can record the complete prob- 
ability distribution as a table. To demonstrate this consider a noise signal 
that can take on only the values -1, 0,l and whose probability distribution 
is the following. 

p(-1) = i P(O) = 4 p(+l) = ; 

Note that the probabilities sum to one since each signal value must be either 
-1, 0, or +l. One signal with such a distribution may be 

. . . 0, -1, +l, -1, -l,O, +l,O,O,O, +l, +l,O, 0, -l,O,. . . 

while another could be 

. . . 0, +l,O, -1, +l,O, -1, -l,O, +l,O, -l,O, 0, +l,O,. . . 

as the reader may verify. 
Given a long enough sample of a digital signal with unknown distribu- 

tion, we can estimate its probability distribution by simply counting the 
number of times each value appears and at the end dividing by the number 
of signal values observed. For example, the noise signal 

. . . - l,O, +l, +1,0, -l,O, -l,O, +I, +I, -1, +I, 0, -1, * * * 

has a probability distribution close to i, $, f . The probability distribution 
of any digital signal must sum to unity (i.e., must be normalized) 

CP(Xi) = 1 (5 2) . 

where the sum is over all possible signal values. 
We said before that the probability distribution contains the most de- 

tailed information available as to individual signal values. This implies that 
all single signal value statistics can be derived from it. For a digital signal 
we can express the mean as a sum over time, 

( > 
1 N 

I-L = Sn =- 
N c Sn (5 3) . 

n=l 

or we can sort the terms such that smaller sn appear before larger ones. 
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This is in turn equivalent to summing each observed signal value s times 
the relative number of times it was observed p(s), 

P = 2 P(S>S 
S=--00 

(5 4 . 

which is seen to be a simple sum of the probability distribution. The variance 
is defined to be the mean-squared deviation from the mean 

o2 = 
( 

(Sn - P)2) = $ &sn - P>2 
n=l 

which can also be written in terms of the probability distribution. 

CT2 = g p(x)(x - pj2 
2=-00 

(5 5) . 

(5 6) . 

Analog signals have a nondenumerably infinite number of possible signal 
values, and so a table of probabilities cannot be constructed. In such cases 
we may resort to using histograms, which is similar to digitizing the analog 
signal. We quantize the real axis into bins of width 62, and similar to the 
digital case we count the number of times signal values fall into each bin. 
If the histogram is too rough we can choose a smaller bin-width 6~. In 
the limit of infinitesimal bin-width we obtain the continuous probability 
distribution p(x), from which all finite width histograms can be recovered by 
integration. Since the probability distribution does not change appreciably 
for close values, doubling small enough bin-widths should almost precisely 
double the number of values falling into each of the respective bins. Put 
another way, the probability of the signal value x falling into the histogram 
bin of width 6x centered on x0 is p( x0)6x, assuming 6x is small enough. For 
larger bin-widths integration is required, the probability of the signal value 
being between x1 and 22 being Ji12 p(x)dx. Since every signal value must be 
some real number, the entire distribution must be normalized. 

s ccl 
p(x) dx = 1 

--00 
(5 7) . 

In analogy with the digital case, the mean and variance are given by the 
following. 

s 00 P = P(X) x dx 
-00 

o2 = I” p(x)(x - p)2dx (5 8) . 
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Figure 5.4: Four different probability distributions. (A) represents the uniform distribu- 
tion. (B) depicts an exponential distribution. (C) is the bell-shaped Gaussian (or normal) 
distribution. (D) is a representative bimodal distribution, actually the mixture of two 
Gaussians with different means. 

From its very definition, the probability distribution of a random signal 
must be nonnegative and have an integral of one. There are a large number 
of such functions! For example, signal values may be uniformly distributed 
over some range, or exponentially distributed, or have a Gaussian (normal) 
distribution with some mean and variance, or be multimodal. Uniformly 
distributed signals only take on values in a certain range, and all of these 
values are equally probable, even those close to the edges. In Figure 5.4.A 
we depict graphically the uniform distribution. Gaussian distribution means 
that all signal values are possible, but that there is a most probable value 
(called the mean p) and that the probability decreases as we deviate from 
the mean forming a bell-shaped curve with some characteristic width (the 
standard deviation a). Mathematically, 

(5 9) . 

is the famous Gaussian function, depicted in Figure 5.4.C. It is well known 
that when many students take an exam, their grades tend to be distributed 
in just this way. The rather strange constant before the exponent ensures 
that the Gaussian is normalized. 

The frequency domain characteristics of random signals are completely 
distinct from the single-time signal value characteristics we have discussed so 
far. This may seem remarkable at first, since in DSP we become accustomed 
to time and frequency being two ways of looking at one reality. However, 
the dissimilarity is quite simple to comprehend. Consider a digital signal 

Sl, S2, S3, l l -  SN 

with some signal value distribution and a new signal obtained by arbitrarily 
replicating each signal value 

Sl, Sl, S2, S2, S3, S3,. . - SN, SN 
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so that each value appears twice in a row. The new signal obviously has the 
same single-sample statistics as the original one, but its frequencies have 
been halved! Alternatively, consider permuting the order of signal values; 
this once again obviously results in an identical probability distribution, 
but quite different frequency characteristics! A signal’s frequency statistics 
are determined by the relationship between signal values at various rela- 
tive positions, and thus contains information different from the signal value 
statistics. 

We will often talk of white noise. White noise is similar to white light 
in that its spectrum is flat (constant, independent of frequency). Having all 
possible frequencies allows the signal to change very rapidly, indeed even 
knowing the entire past history of a white noise signal does not contribute 
anything to prediction of its future. We thus call a discrete time signal sn 
white noise if observation of {sn}!&, does not allow us to say anything 
useful about the value of sk other than what the single-signal value statistics 
tell us. 

Of course not all noise is white; when the noise signal’s spectrum is 
concentrated in part of the frequency axis we call it colored noise. Colored 
noise can be made by passing white noise through a band-pass filter, a 
device that selectively enhances Fourier components in a certain range and 
rejects others. As we decrease the bandwidth of the filter, the signal more 
and more resembles a sine wave at the filter’s central frequency, and thus 
becomes more and more predictable. 

Since they are independent, time and frequency domain characteristics 
can be combined in arbitrary ways. For example, white noise may happen 
to be normally distributed, in which case we speak of Gaussian white noise. 
However, white noise may be distributed in many other ways, for instance, 
uniformly, or even limited to a finite number of values. This is possible 
because the time domain characteristics emanate from the individual signal 
values, while the frequency domain attributes take into account the relation 
between values at specific times. 

Our naive description of noise is now complete. Noise is just like any other 
signal-it has well defined time domain and frequency domain properties. 
Although we have not previously seen a flat spectrum like that of white 
noise, nothing prevents a deterministic signal from having that spectrum; 
and colored noise has narrower spectra, more similar to those with which we 
are familiar. The time domain characterization of noise is different from that 
of regular signals -rather than specifying how to create the signal, we must 
content ourselves with giving the signal’s statistics. From our naive point of 
view we can think of all noise signals as being pseudorandom or incompletely 
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known; we suppose that if we had more information we could describe the 
‘noise signal’ in the time domain just as we describe other signals. 

The reader probably realizes from our use of the word naive in describing 
this characterization of noise, that this isn’t the entire story. It turns out 
that stochastic signals don’t even have a spectrum in the usual sense of the 
word, and that more sophisticated probabilistic apparatus is required for 

the description of the time domain properties as well. We will take up these 
topics in Section 5.6. However, our naive theory is powerful enough to allow 
us to solve many practical problems. The next section deals with one of the 
first successful applications of noise removal, the processing of radar returns. 

EXERCISES 

5.2.1 Write a program to generate digital noise signals with probability distribution 
(5.1). Estimate the probability distribution using 10, 100, 1000, and 10,000 
samples. What is the error of the estimation? 

5.2.2 Equation (5.6) for the variance require two passes through the signal values; 
the first for computation of ~1 and the second for 0’. Find a single-pass 
algorithm. 

5.2.3 Using the random number generator supplied with your compiler write a 
zero-mean and unity variance noise generator. Make a histogram of the val- 
ues it produces. Is it uniform? Calculate the empirical mean and standard 
deviation. How close to the desired values are they? 

5.2.4 Using the noise generator of the previous exercise, generate pairs of random 
numbers and plot them as Z, y points in the plane. Do you see any patterns? 
Try skipping L values between the 2 and y. 

5.2.5 The noise generator you built above depends mainly on the most significant 
bits of the standard random number generator. Write a noise generator that 
depends on the least significant bits. Is this better or worse? 

5.2.6 You are required to build the sample value histogram of a signal that only 
takes on values in a limited range, based on N samples. If you use too few 
bins you might miss relevant features, while too many bins will lead to a 
noisy histogram. What is the ‘right’ number of bins, assuming the probability 
distribution is approximately flat? What is the error for 10,000 samples in 
100 bins? 

5.2.7 What are the average, variance, and standard deviation of a Gaussian signal? 
What are the sufficient statistics? In what way is a Gaussian noise signal the 
simplest type of noise? 
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5.3 Noise Reduction by Averaging 

Radar is an acronym for radio detection and ranging. The basic principle of 
range finding using radar was first patented in 1935 by Robert Watson-Watt, 
but practical implementations were perfected by American and British sci- 
entists during World War II. Although modern radars are complex signal 
processing systems, the principles of the basic pulse radar are simple to 
explain. The radar transmitter periodically sends out a powerful electro- 
magnetic pulse of short time duration; the time between pulses is called the 
Pulse Repetition Interval (PRI). The pulse leaves the transmitter at the 
speed of light c and impinges upon various objects, whereupon minute frac- 
tions of the original signal energy are reflected back to the radar receiver. 
The round-trip time between the transmission of the pulse and the reception 
of the returned echo can thus be used to determine the distance from the 
radar to the object 

r = $T (5.10) 

where the speed of light c is conveniently expressed as about 300 meters per 
microsecond. 

The radar receiver is responsible for detecting the presence of an echo and 
measuring its Time Of Arrival (TOA). The time between the TOA and the 
previous pulse transmission is called the lug which, assuming no ambiguity 
is possible, should equal the aforementioned round-trip time T. In order to 
avoid ambiguity the lag should be less than the PRI. Radar receivers must 
be extremely sensitive in order to detect the minute amounts of energy 
reflected by the objects to be detected. To avoid damaging its circuitry, 
the radar receiver is blanked during pulse transmission; and in order to 
keep the blanking time (and thus distance to the closest detectable target) 
minimal we try to transmit narrow pulse widths. This limits the amount of 
energy that may be transmitted, further decreasing the strength of the echo. 
Unfortunately, large amounts of natural and man-made noise are picked up 
as well, and the desired reflections may be partially or completely masked. 
In order to enhance the echo detection various methods have been developed 
to distinguish between the desired reflection signal and the noise. In general 
such a method may exploit characteristics of the signal, characteristics of 
the noise, or both. In this section we show how to utilize the knowledge 
we have acquired regarding the attributes of noise; the known PRI being 
the only signal-related information exploited. In Section 9,6 we will see how 
to improve on our results, notably by embedding easily detectable patterns 
into the pulses. 
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We can view the received signal as being the sum of a deterministic 
periodic signal xn and an additive zero-mean noise signal u, 

and our task is to recover 2, to the best of our abilities. The periodic- 
ity (with period equal to the PRI) of the desired signal derives from the 
supposition that the target is stationary or moving sufficiently slowly, and 
it enables us to observe the same echo signal many times. For sufficiently 
strong echoes we can simply isolate the echoes and measure the TOA for 
each pulse transmitted. Then we need only subtract successive TOAs to find 
the lag. However, this approach is not optimal, and doesn’t work at all when 
the echoes are hidden deep in the noise. We are thus led to seek a stronger 
technique, one that exploits more knowledge regarding the noise. 

The only quantitative statement made about the additive noise Un was 
that it had zero mean. From one PRI to the next the desired signal xn re- 
mains unchanged, but the received signal yn is seems completely different 
from Xn, as depicted in Figure 5.5. Sometimes yn is greater than xn, but 
(due to the noise having zero mean) just as frequently it will be less. Math- 
ematically, using the linearity of the expectation operator, we can derive 
(Yn) = (X7-h + V,) = (Xn) + (%) = Xn- 

Figure 5.5: A pulsed radar signal contaminated by additive zero-mean noise. Note that 
from pulse to pulse the noise is different, but the pulse shape stays the same. 
uncontaminated signal can be reconstructed by pulse-to-pulse integration. 

Thus the 



5.3. NOISE REDUCTION BY AVERAGING 173 

Hence, although in general the observed yn is not the desired xn, its 
average is. We can thus average the observed signals and obtain a much 
cleaner estimate of xn. Such averaging over successive pulses is called radar 
return integration. With each new pulse transmitted, the true echo signal 
becomes stronger and stronger, while the noise cancels out and grows weaker 
and weaker. Even if the echo was initially completely buried in the noise, 
after sufficient averaging it will stand out clearly. Once detected, the lag 
measurement can be made directly on the average signal. 

A similar operation can be performed for all periodic phenomena. When 
the desired underlying signal is periodic, each period observed supplies in- 
dependent observations, and averaging increases the SNR. Another special 
case is slowly varying signals. Assuming the additive noise to be white, or at 
least containing significant spectral components at frequencies above those of 
xn, we can average over adjacent values. The time domain interpretation of 
this operation is clear-since xn varies more slowly than the noise, adjacent 
values are close together and tend to reinforce, while the higher-frequency 
noise tends to average out. The frequency domain interpretation is based 
on recognizing the averaging as being equivalent to a low-pass filter, which 
attenuates the high-frequency noise energy, while only minimally distorting 
the low-frequency signal. So once again just the zero mean assumption is 
sufficient to enable us to increase the SNR. 

These averaging techniques can be understood using our naive theory, 
but take on deeper meaning in the more sophisticated treatment of noise. 
For example, we assumed that we could perform the averaging either in time 
or over separate experiments. This seemingly innocent assumption is known 
as the ergodic hypothesis and turns out to be completely nontrivial. We will 
return to these issues in Section 5.6. 

EXERCISES 

5.3.1 Generate M random fl values and sum them up. The average answer will 
obviously be zero, but what is the standard deviation? Repeat for several 
different M and find the dependence on M. 

5.3.2 In this exercise we will try to recover a constant signal corrupted by strong 
additive noise. Choose a number x between -1 and +l. Generate M random 
numbers uniformly distributed between -1 and +l and add them to the 
chosen number, sn = x + u,. $70~ try to recover the chosen number by 
averaging over M values 2 = Cn=i sn and observe the error of this procedure 
z - 2. Perform this many times to determine the average error. How does 
the average error depend on M? 
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5.3.3 Generate M sets of 1024 points of a sinusoidal signal corrupted by additive 
zero-mean noise, 

%a = sin@) + gun 

where un is uniform in the range [-1 . . . + 11. Average sn over the A4 sets to 
reduce the noise. Use fl = 0.01, g = 0.1, 1,10 and A4 = 10,100,1000. How 
does the residual noise decrease as a function of M? 

5.3.4 Using the same signal as in the previous exercise, replace each sn value by 
the average 

s,-L + &g-L+1 + l l ’ + Sn-1 + Sn + Sn+l + l l l + Sn+L-1 + Sn+L 

How well does this work compared to the previous exercise? Try Q = 0.001 
and St = 0.1. What can you say about time averaging? 

5.4 Pseudorandom Signals 

Although noise is often a nuisance we wish weren’t there, we frequently need 
to generate some of our own. One prevalent motive for this is the building 
of simulators. After designing a new signal processing algorithm we must 
check its performance in the presence of noise before deploying it in the real 
world. The normal procedure (see Section 17.7) requires the building of a 
simulator that inexpensively provides an unlimited supply of input signals 
over which we exercise complete control. We can create completely clean 
signals, or ones with some noise, or a great deal of noise. We can then 
observe the degradation of our algorithm, and specify ranges of SNR over 
which it should work well. 

We may also desire to generate noise in the actual signal processing algo- 
rithm. Some algorithms actually require noise to work! Some produce output 
with annoying features, which may be masked by adding a small amount 
of noise. Some are simply more interesting with probabilistic elements than 
without. 

In this section we will discuss methods for generating random numbers 
using deterministic algorithms. These algorithms will enable us to use our 
familiar computer environment, rather than having to input truly proba- 
bilistic values from some special hardware. You undoubtably already have 
a function that returns random values in your system library; but it’s often 
best to know how to do this yourself. Perhaps you checked your random 
number generator in the exercises of the previous section and found that 
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it is not as good as you need. Or perhaps you are designing an embedded 
application that runs without the benefit of support libraries, and need an 
efficient noise generator of your own. Or maybe you are given the job of 
writing just such a library for some new DSP processor. 

Before embarking on our exposition of random number generators there 
is a myth we must dispel. There is no such thing as a random number! If 
there is no such thing, then why are we trying to generate them? We aren’t. 
What we are trying to generate are random sequences or, in DSP terminol- 
ogy, random digital signals. Each particular signal value, once generated, is 
perfectly well known. It’s just that the connection between the signal values 
at different times is nontrivial and best described in probabilistic terms. Ide- 
ally one should not be able to guess the next value that the generator will 
produce based on the previous values (unless one knows the algorithm). Un- 
fortunately, the term ‘random number generator’ has become so entrenched 
in popular computer science jargon that it would be futile to try to call it 
something else. You can safely use this term if you remember that these gen- 
erators are not to be used to generate a single ‘random’ value; their proper 
use is always through generating large numbers of values. 

There are several relatively good algorithms for generating random se- 
quences of numbers, the most popular of which is the linear recursion method, 
originally suggested by D.H. Lehmer in 1951. This algorithm employs the 
integer recursion 

xn+l = (uz, + b) mod m (5.11) 

starting from some quite nonrandom initial integer x0. The integer param- 
eters a, b, and m must be properly chosen for the scheme to work, for 
instance, by taking large m, and requiring b and m to be relatively prime, 
and a to be a large ‘unusual’ number. Real-valued random signals may be 
obtained by dividing all the integer values by some constant. Thus to create 
random real-valued signals in the range [O . . . 1) one would probably simply 
use u, = ti m , yielding quantized values with spacing -&. Subtracting $ from 
this yields noise approximately symmetric around the zero. 

The signals generated by equation (5.11) are necessarily periodic. This 
is because the present signal value completely determines the entire future, 
and since there are only a finite number of integer values, eventually some 
value must reoccur. Since apparent periodicity is certainly a bad feature 
for supposedly random signals, we wish the signal’s period to be as long 
(and thus as unnoticeable) as possible. The longest period possible for the 
linear recursion method is thus the largest integer we can represent on our 
computer (often called MAXINT) . 
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Long period is not enough. Taking a = 1, b = 1, and m =MAXINT gives 
us the sequence 1,2,3.. .MAXINT, h’ h ’ d d 1 w  ic m ee on y repeats after MAX- 
INT values, but hardly seems random. This is the reason we suggested that 
a be relatively large; this allows successive values to be widely separated. 
Keeping b and m relatively prime makes successive values as unrelated as 
possible. There is a lot more to say about optimal selection of these param- 
eters, but instead of saying it we refer the reader to the extensive literature. 

The implementation of equation (5.11) is quite problematic due to the 
possibility of overflow. Normally we desire m to be close to MAXINT, but 
then x may be quite large as well and ax + b would surely overflow. Choos- 
ing m to be small enough to prohibit overflow would be overly restrictive, 
severely limiting period length. In assembly language programming this may 
sometimes be circumvented by temporarily allocating a larger register, but 
this option is not available to the writer of a portable or high-level language 
routine. The constraints can be overcome by restructuring the computation 
at the expense of slightly increased complexity (in the following / represents 
integer division without remainder). 

Given integers m, a, b, x 
Precompute: 

Q t mla 
r + m-a*q 
h-m-b 

Loop : 

x + a*(x-q*k)-wk-1 
if x < 0 then x + x + m 

By the way, if what you want is random bits then it’s not a good idea to 
generate random integers and extract the LSB. This is because a sequence 
of integers can appear quite random, even when its LSB is considerably 
less so. Luckily there are good methods for directly generating random bits. 
The most popular is the Linear Feedback Shift Register (LFSR), which 
is somewhat similar to linear recursion. A shift register is a collection of 
bits that can be shifted one bit to the right, thus outputting and discarding 
the LSB and making room for a new MSB. Linear feedback means that 
the new bit to be input is built by xoring together some of the bits in the 
shift register. Starting off with some bits in the shift register, we generate 
a sequence of bits by shifting to the right one bit at a time. Since the state 
of the shift register uniquely determines the future of the sequence, the 
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sequence eventually become periodic. If the shift register ever has all zeros 
it becomes stuck in this state, and so this must be avoided at all costs. 

One of the first random number generators was suggested by John von 
Neumann back in 1946. His method starts with some D digit integer. Squar- 
ing this integer produces an integer with 20 digits from which the next 
integer in the sequence is obtained by extracting the middle D digits. This 
recursion produces a periodic sequence of D digit integers, but this sequence 
will be considerably less random than one generated by a properly selected 
linear recursion generator. 

Another random number generator does not require a multiplication, but 
does need more memory 

G-b+1 = (xn-j + xn-h) mod m 

where j, Ic, and rn need to be carefully chosen. Of course we need a buffer of 
length max(j, k), and must somehow initialize it. 

Even if our random number generator turns out to be of inferior per- 
formance, there are ways to repair it. The most popular method is to use 
several different suboptimal generators and to combine their outputs in some 
way. For example, given three generators with different periods that output 
b bit integers, we can add the outputs or xor together their respective bits 
(an operation that is usually fast) and obtain a much better sequence. Given 
only two generators we can ‘whiten’ one by placing its values into a FIFO 
buffer and output a value from the buffer chosen by the second generator. 
This can even be accomplished by using a single suboptimal generator for 
both purposes. For example, assume that each call to ‘random’ returns a 
new pseudorandom real number between 0 and 1; then 

Allocate buffer of length N 
for i + 1 to 72 

bufferi +- random 
Loop : 

Ic +-- f loor(nrandom) + 1 
output buff erk 
bufferr, +- random 

is more random, since it whitens short time correlations. 
The algorithms we have discussed so far return uniformly distributed 

pseudorandom numbers. In practice we frequently require pseudorandom 
numbers with other distributions, most frequently Gaussian. There are two 
popular ways of generating Gaussian noise given a source of uniformly 
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distributed noise. The first relies on the ‘law of large numbers’ (see Ap- 
pendix A.13) that states that the sum of a large number of independent 
random numbers, whatever their original distribution, will tend to be Gaus- 
sianly distributed. To exploit this law requires generating and adding N 
(even 12 is often considered large enough) uniform random numbers. Of 
course the maximum value that can be obtained is N times the maximum 
value of the uniform generator, so in reality the Gaussian is somewhat trun- 
cated, but the true distribution is extremely small there anyway. Often of 
more concern is the computational burden of computing N uniform random 
numbers per Gaussian random required. 

The second method commonly used to generate Gaussianly distributed 
numbers, sometimes called the Box-Muller algorithm after its inventors, is 
best understood in steps. First pick at random a point inside the unit circle, 
x:+iy=re . ie If we selected the point such that x and y are independent 
(other than the constraint that the point be inside the circle) then r and 
0 will be as well. Now 8 is uniformly distributed between 0 and 27r; how 
is r distributed? It is obvious that larger radii are more probable since the 
circumference increases with radius; in fact it is quite obvious that the prob- 
ability of having a radius between zero and r increases as r2. We now create 
a new point in the plane u + iv, whose angle is 6’ but with radius p that 
obeys r2 = e -P2j2 The probability of such a point having radius less than R . 
is the same as the probability that the original squared radius r2 is greater 
than e -R2/2. From this it follows that u and v are Gaussianly distributed. 

How do we select a point inside a circle with all points being equally 
probable? The easiest way is to randomly pick a point inside the square that 
circumscribes the unit circle, and to discard points outside the circle. Picking 
a point inside a square involves independently generating two uniformly 
distributed random numbers x and y. Since u and v are also independent, 
for every two uniform random numbers that correspond to a point inside 
the circle we can compute two Gaussianly distributed ones. 

Thus we arrive at the following efficient algorithm: 

generate two uniform random numbers between -1 and +l, x and y 
r2 + x2 -I- y2 
if r2 > 1 return to the beginning 

P2 +- -21nr2, c + $ 
u c- cx and v + cy 
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EXERCISES 

5.4.1 Not only isn’t there such a thing as a random number, there really is no such 
thing as a random sequence of finite length. For example, all sequences of ten 
digits are equally probable, namely one chance in lOlo. Yet we feel viscerally 
that sequences such as { 1, 1, 1, 1, 1, 1, 1, 1, 1) or { 1,2,3,4,5,6,7,&g} are less 
random than say { 1,9,3,6,3,4,5,8,2}. Can you explain this feeling? 

5.4.2 You can test a random function using the following graphical test. Gener- 
ate successive values ~1, r2, . . . and make a scatter plot consisting of points 
(rk, rk- 1). If the resulting picture has structure (e.g., noticeable lines) the 
random sequence has short-term correlations. If the plot looks reasonably 
homogeneous repeat the procedure but plot (rk, ?-k-m) instead. Test the in- 
teger recursions (equation (5.11)) defined by a=lO, b=5, m=50; a=15625, 
b=O, m=65536; and the generator supplied with your programming environ- 
ment . 

5.4.3 Take inferior random generators from the previous exercise and whiten them 
using the algorithm given in the text. Perform the graphical test once again. 

5.4.4 Code a Gaussian noise generator based on the law of large numbers and check 
its distribution. 

5.4.5 Some people use this algorithm to generate Gaussianly distributed numbers: 
generate two uniform random numbers, z and y, between 0 and +l 
a=&BiZi,q6=2~y 
u + asin and v +- aces(#) 
Is this algorithm correct? What are the advantages and disadvantages relative 
to the algorithm given in the text? 

5.4.6 Other people use the following algorithm: 
generate two uniform random numbers, x and y, between 0 and +l 
u = j/Xsin(2ny) 
v = ~xiiEcos(2Ty) 
Show that this method is mathematically equivalent to the method given 
in the text. In addition to requiring calls to sine and cosine functions, this 
method is numerically inferior to the one given in the text. Why? 

5.4.7 Complete the proof of the second algorithm for generating Gaussianly dis- 
tributed random numbers. 

5.4.8 How can we generate random numbers with an arbitrary distribution given 
a uniform generator? 

5.4.9 Show that after an initial transient LFSR sequences are always periodic. 
What is the maximal period of the sequence from a shift register of length 
K? Find a maximal length LFSR sequence of length 15. 
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5.5 Chaotic Signals 

Completely specified deterministic signals, that is, signals generated by com- 
pletely specified deterministic algorithms, can still appear to be entirely ran- 
dom and chaotic. The word ‘chaos’ comes from the Greek taoa, the most 
ancient of the gods, and refers to the confused primordial state before the 
creation. The study of chaotic signals is quite the reverse; what can be fruit,- 
fully examined is the route taken from orderly (often periodic) behavior to 
the chaotic. Most of this section will be devoted to the study of the transition 
from periodic to chaotic behavior in the simplest possible setting. 

How can deterministic signals exhibit chaotic behavior? Turbulence of 
rapidly flowing liquids is one of the prototypes of chaos; although the equa- 
tions of fluid dynamics are well known, we cannot predict the exact behavior 
of twisting currents and whirlpools. When the flow is slow the behavior is 
understandable, so we can start with a slowly flowing liquid and gradually in- 
crease the flow until chaos sets in. Similarly, the future value of investments 
may become unpredictable when interest rates are high and the market 
volatile, but such prediction is straightforward under more subdued condi- 
tions. One can forecast the weather for the next day or two when conditions 
are relatively stable, but prediction becomes impossible over longer periods 
of time. 

There is a simple mathematical explanation for the appearance of chaos 
in a deterministic setting. Linear equations (whether algebraic, differential, 
or difference) have the characteristic that small changes in the input lead 
to bounded changes in output. Nonlinear equations do not necessarily have 
this attribute. In fact it is known that for nonlinear equations with three or 
more free parameters there always are values of these parameters for which 
infinitesimally small changes in initial conditions lead to drastic changes 
of behavior. Even one or two parameter nonlinear equations may become 
oversensitive. Such equations are said to exhibit chaotic behavior since our 
knowledge of the initial conditions is never sufficient to allow us to predict 
the output far enough from the starting point. For example, we may be 
able to predict tomorrow’s weather based on today’s, but the fundamental 
equations are so sensitive to changes in the temperature and air pressure 
distributions that we have no chance of accurately predicting the weather 
next week. 

Perhaps the simplest example of knowledge loss is the shift and truncate 
recursion 

zn+l = Trunc (lox,) (5.12) 
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which shifts the signal value’s decimal point to the right, and then removes 
the integer part. The first few values starting with ~0 = n - 3 are 

0.1415926535.. . , 0.4159265358.. . , 0.1592653589. . . , 
0.5926535897. . . , 0.9265358979 . . . , 0.2653589793 . . . 

which seem to oscillate wildly over the unit interval. Had we chosen ~0 
slightly different from x - 3, the deviation of the resulting xx;n from the 
above values would exponentially increase; for example, with a difference of 
10B5 all similarity is lost after only five iterations. 

The weather prediction example is similar. It turns out that the equations 
relating air pressure, temperature, wind velocity, etc. are highly nonlinear, 
even for rather simplistic models of atmospheric conditions. Weather pre- 
diction relies on running such models, with appropriate initial weather con- 
ditions, on large computers and observing the resulting weather conditions. 
The initial specification is rather coarsely defined, since only gross features 
such as average air temperature and pressure are known. This specification 
leads to specific predictions of the weather as a function of time. However, 
slight changes in the specification of the initial weather conditions lead to 
rather different predictions, the differences becoming more and more signif- 
icant as time goes on. This is the reason that the weather can be predicted 
well for the short term, but not weeks in advance. Lorenz, who discovered 
the instability of weather prediction models in the early 196Os, called this 
the ‘butterfly effect’; a butterfly flapping its wings in Peking will affect the 
weather in New York a month later! 

How can we hope to study such nonlinear equations? Isn’t chaos by 
definition incomprehensible and thus unresearchable? The trick is to study 
routes to chaos; we start at values of parameters for which the nonlinear 
equations are not chaotic, and then to vary the parameters in order to ap- 
proach the chaotic region. Before entering the chaotic region, the output 
signal, although increasingly bizarre, can be profitably investigated. In this 
section we will study Feigenbaum’s route to chaos. This route is easy to 
study since it occurs in a simple one-parameter setting, arguably the sim- 
plest nonlinear equation possible. It also seems to model well many interest- 
ing physical situations, including some of the examples mentioned above. 

We’ll introduce Feigenbaum’s route with a simple example, that of fish in 
a closed pond. Let us denote by x the present fish population divided by the 
maximum possible population (thus 0 < x < 1). We observe the population 
every day at the same hour, thus obtaining a digital signal xn. How does xn 
vary with time? Assuming a constant food supply and a small initial number 
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xn+1 

Figure 5.6: The logistics recursion relates the new signal value zn+l to the old one xn 
by a inverted parabola. As such it is the simplest nonlinear recursion relation. It can also 
be used to approximate any recursion with a single smooth maximum. 

of fish, we expect an initial exponential increase in population, 

but once the number of fish becomes large, we anticipate an opposite ten- 
dency due to overpopulation causing insufficient food and space, and possi- 
bly spread of disease. It makes sense to model this latter tendency by a 1 -xn 
term, since this leads to pressure for population decrease that is negligible 
for small populations, and increasingly significant as population increases. 
Thus we predict 

Xn+l = r G-t (1 - Xn) (5.13) 

which is often called the logistics equation. This equation is quadratic (see 
Figure 5.6) and thus nonlinear. It has a single free parameter r (which is 
related to the amount we feed the fish daily), which obey 0 5 r 5 4 in order 
for the signal x to remain in the required range 0 < x 5 1. Although a 
nonlinear equation with one free parameter is not guaranteed to be chaotic, 
we will see that there are values of r for which small changes in x0 will lead 
to dramatic changes in xn for large n. This means that when we overfeed 
there will be large unpredictable fluctuations in fish population from day to 
day. 

You may object to studying in depth an equation derived from such a 
fishy example. In that case consider a socialistic economy wherein the state 
wishes to close the socioeconomic gap between the poor and the wealthy. It 
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is decided to accomplish this by requiring everyone to deposit their money 
in a state-controlled bank that pays lower interest rates to the wealthy. Let 
yn be the amount invested as a function of time, gmas the maximum wealth 
allowed by law, and i the applicable interest. The usual financial formulas 
tell us 3fn+r = (1 + i>z~~, but here i must be a decreasing function of y, which 
we take to be i = io( 1 - Ymclz a). Substitution leads to 

a-&+1= (l+,,(l-k))& 

which by a simple change of variables becomes the logistics equation (5.13). 
We could continue to give examples that lead to the same equation. It is 

so ubiquitous simply because it is the simplest nonlinear recursion relation 
for a single bounded signal that contains a single free parameter. Any time we 
obtain a quadratic relationship we can transform it into the logistics equation 
by ensuring that the variable is constrained to the unit interval; indeed any 
time we have any nonlinear recursion with a single smooth maximum we can 
approximate it by the logistics equation in the vicinity of the maximum. 

Now that we are convinced that such a study is worthwhile, let us embark 
upon it. We expect the signal xn to eventually approach some limiting value, 
i.e., that the number of fish or the amount of money would approach a 
constant for long enough times. This is indeed the case for small enough r 
values. To find this value as a function of r we need to find a fixed point 
of the recursion, that is, a signal value that once attained forever remains 
unchanged. Since x,+1 = f(xn) must equal xn, we conclude that a fixed 
point zr must obey the following equation. 

x1 = f(xl) = 7-x1(1 - Xl) (5.14) 

Zero is obviously a fixed point of the logistics equation since x, = 0 
implies xn+l = rx,(l - x,) = 0 as well. When you have no fish at all, none 
are born, and an empty bank account doesn’t grow. Are there any nontrivial 
fixed points? Solving equation (5.14) we find the nonzero fixed points are 
given by x1 = p, G 1 - i. 

For this simplest of recursions we could algebraically find the fixed points 
with little trouble. For more complex cases we may fall back to a graphical 
method for finding them. In the graphical method you first plot the recursion 
function x,+1 = f&J (with x, on the x axis and x,+1 on the y axis). Then 
you overlay the identity line xn+l = xn. Fixed points must correspond to 
intersections of the recursion plot with the identity line. In our case the 
recursion is an inverted parabola, and we look for its intersections with the 
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xn+1 

--X n 

Figure 5.7: Graphical method of finding fixed points of the logistics equation. From 
bottom to top the inverted parabolas correspond to 7‘ = 0, 1,2,3,4. We see that for T < 1 
the parabola intersects the identity line only at z = 0, while for larger T there is an 
additional point of intersection. 

45” line (Figure 5.7). It is easy to see that for the parameter region 0 < r 5 1 
the only possible fixed point is ~0 = 0, but for r > 1 the new fixed point 
p, appears. For r 2 1 the new fixed point p, is close to the old one (zero), 
gradually moving away with increasing r. 

So we have found that the steady state behavior of the recursion is 
really very simple. For r < 1 we are underfeeding our fish, or the interest is 
negative, and so our fish or money disappear. An example of this behavior 
is displayed in Figure 5.8.A. For 1 < r < 3 the number or fish or amount of 
money approaches a constant value as can be seen in Figure 5.8.B. However, 
we are in for quite a shock when we plot the behavior of our fish or money 
for r > 3 (Figures 5.8.C and 5&D)! In the first case the signal oscillates 
and in the second it seems to fluctuate chaotically, with no possibility of 
prediction. In the chaotic case starting at a slightly different initial point 
produces a completely different signal after enough time has elapsed! We 
don’t yet understand these phenomena since we progressed along the route 
to chaos too quickly, so let’s backtrack and increase r more slowly. 

The most important feature of the behavior of the signal for small r is 
the existence of the fixed point. Fixed points, although perhaps interesting, 
are not truly significant unless they are attractive. An attractive fixed point 
is one that not only replicates itself under the recursion, but draws in neigh- 
boring values as well. For r 5 1 the zero fixed point is attractive-no matter 
where we start we rapidly approach x = 0; but for 1 < r < 3 the new fixed 
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A 

B 
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D 

Figure 5.8: Signal produced by recursion of the logistics equation for different values of 
r. In (A) we have T = 0.9 and the signal decays to zero. In (B) we have T = 1.9 and the 
signal approaches a constant value. (C) depicts r = 3.1 and the signal oscillates between 
two values. In (D) we have r = 4 with two slightly different initial states; the signal is 
noise-like and irreproducible. 

point ‘draws in’ all signals that do not begin with ~0 = 0 or x0 = 1. This is 
hinted at in Figure 5.8, but it is both simple and instructive for the reader 
to experiment with various r and ~0 and become convinced. 

The idea of attraction can be made clear by using the ‘return map’, 
which is a graphical representation of the dynamics. First, as before, we 
plot the recursion x,+1 = f(z,) and the 45’ line x, = ~~-1. We start with 
a point on the line (x0, x0). Now imagine a vertical line that intersects this 
point; it crosses the recursion curve at some point xl. We draw the vertical 
line from (x0, x0) to this new point (x0, xl>. Next we imagine a horizontal 
line that intersects this new point. It crosses the 45” line at (xl, xl), and we 
proceed to draw a horizontal line to there. The net result of the previous two 
operations is to draw two lines connecting (x0, x0) to (xl, xl), corresponding 
to one iteration from x0 to x1. 

We can now continue to iterate (as in Figure 5.9) until an attractor is 
found. In part (A) of that figure we see that when r < 1 (no matter where 
we begin) we converge to the zero fixed point. Part (B) demonstrates that 
when 1 < r < 3, we almost always converge on the new fixed point (the 
exceptions being x0 = 0 and x0 = 1, which remain at the old zero fixed 
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Figure 5.9: Use of return maps to depict the dynamics of a simple recursion. Each 
iteration starts on the 45’ line, proceeds vertically until intersecting the recursion curve, 
and then returns to the diagonal line. Here we see that after enough iterations we converge 
on a fixed point, which is the intersection of the recursion curve with the diagonal line. In 
(A) we have T = 0.5 and the only fixed point is zero, while in (B) we see convergence to 
the nonzero fixed point p,-. 

point). We will see shortly that for r > 3 even this fixed point ceases being 
an attractor; if one starts exactly at it, one stays there, but if one strays 
even slightly the recursion drives the signal away. 

How can we mathematically determine if a fixed point p is an attractor? 
The condition is that the absolute value of the derivative of the recursive 
relation f must be less than unity at the fixed point. 

y&*l < 1 (5.15) 

This ensures that the distance from close points to the fixed point decreases 
with each successive recursion. It is now easy to show that for r > r2 = 3 the 
fixed point p, becomes unattractive; but what happens then? No new fixed 
point can appear this time, since the reasoning that led to the discovery of p, 
as the sole nonzero fixed point remains valid for all r! To see what happens 
we return to the return map. In Figure 5.10.A we see that starting from some 
initial point we approach a ‘square’, which translates to alternation between 
two points. Once the signal reaches its steady state it simply oscillates back 
and forth between these two values, as can be seen in Figures 5.10.B and 
5.11. This dual-valued signal is the new attractor; unless we start with 20 = 
O,l,l - + or f-l(1 - $) we eventually oscillate back and forth between two 
values. As r increases the distance between the two values that make up this 
attractor also increases. 

So attractors can be more complex than simple fixed points. What hap- 
pens when we increase r still further? You may have already guessed that 
this two-valued attractor also eventually becomes unattractive (although if 
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Figure 5.10: Return map representation of the logistics equation for r > 3. In (A) 
r = 3.2 and we see that from an arbitrary initial state 20 we converge on a ‘non fixed 
point’ attractor close to pr. The attractor contains two points, one on either side of pr. In 
(B) T = 3.4 and we display only the long time behavior (steady state behavior after the 
transient has died down). 

A 0.5 

OL t 

B * 
0 0.5 

Figure 5.11: The signal resulting from recursion of the logistics equation for T = 3.2. In 
(A) we see the steady state signal in the time domain. It oscillates between the two values 
that make up the attractor, which means that zn+l = f(zn) and xn+2 = f(zn+l) = zn. 
In (B) we see the same signal in the frequency domain. The DC component represents 
the nonzero average of the two points. Since the signal oscillates at the maximum possible 
frequency, we have a spectral line at digital frequency i. 

one starts at ezactly one of its points one stays trapped in it) and a new 
more complex attractor is born. In this case, this happens at rg = 1 + fi 

and the new attractor is composed of a cycle between four signal values, as 
depicted in Figure 5.12. If we call these points al, a2, as, and ~4, the require- 
ment is u2 = f(ar), a3 = f(c4, a4 = f(a3), and al = f(a4). Note that the 
2-cycle’s al split up into our present al and ~3, while its u2 became our new 
a2 and ~4. So the attractor’s components obey al < u3 < u2 < ~4, which 
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Figure 5.12: The return map, signal, and spectrum for the steady state behavior when 
T = 3.5. The attractor is a $-cycle. 

7 
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Figure 5.13: The return map, signal, and spectrum for the steady state behavior when 
T = 3.55. The attractor is a &cycle. 

Figure 5.14: The return map, signal, and spectrum for the steady state behavior when 
r = 3.5675. The attractor is a 16-cycle. 
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means that the closest together in time are the farthest in space and vice 
versa. This induces a spectrum wherein an additional spectral line appears 
at twice the period, or half the frequency of the previous line. 

We saw that when r increased above rg each component of the 2-cycle 
splits into two, just as the fixed point had earlier split. The same thing hap- 
pens in turn for the 4cycle when r goes above r4 and an &cycle is born. The 
critical feature is that at each stage all components of the present attrac- 
tor become unattractive simultaneously, a phenomenon known as pitchfork 
bifurcation. Due to the bifurcation, with increasing r we find 16-cycles, 32- 
cycles, and all possible 2n-cycles. Examples of such cycles are depicted in 
Figures 5.12 through 5.14. The rule of ‘closest in time are farthest in space’ 
continues to be obeyed, so that new spectral lines continue to appear at 
harmonics of half the previous basic frequency. Eventually the lines are so 
close together that the spectrum becomes white, and we have chaotic noise. 

The transition from periodicity to chaos can best be envisioned by plot- 
ting the attractors as a function of T, as in Figure 5.15. The transition points 
rn as a function of n approach a limit 

7?,-+00 

so that the regions where these cycles exist become smaller and smaller. By 
the time we reach roe we have finished all the 2n-cycles. 

Figure 5.15: The attractors of the recursion as a function of T. Observe the zero attractor 
for 0 < r < 1, the fixed point p,. for 1 < P < 3, the 2-cycle for 3 < T < 1 + 6, and the 
2”-cycles for 3 < f < roe. Certain odd cycle regions can also be clearly seen for r > Too. 
At r = 4 chaos reigns. 
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Figure 5.16: Non 2n-cycle attractors for r > roe. We present return maps for a 3-cycle 
(T = 3,83), a 6-cycle that results from bifurcation of that 3-cycle (r = 3.847), a quite 
different 6-cycle (T = 3.63), and a 5-cycle (T = 3.74). 

What happens between here and r = 4? It turns out that every length 
attractor is possible. For example, in Figure 5.16 we see 3-cycles, 5-cycles 
and 6-cycles. There is a theorem due to Sarkovskii that states that the order 
of first appearance of any given length is 

1,2,4,8,. . .2”, . . * 2” * 9, 2k * 7, 2k ’ 5, 2k ’ 3, * * ’ 4 ’ 9,4 * 7,4 * 5,4 * 3, * * * 9,7,5,3 

so that once a 3-cycle has been found we can be certain that all cycle lengths 
have already appeared. 

For roe < r < 4 there are other types of behavior as well. Let us start at 
r = 4 where all possible x values seem to appear chaotically and decrease 
r this time. At first x seems to occupy the entire region between i and 
r (1 - $) , but below a certain ri this band divides into two broad subbands. 
The signal always oscillates back and forth between the two subbands, but 
where it falls in each subband is unpredictable. Decreasing r further leads 
us past ri where each subband simultaneously splits into two somewhat 
narrower subbands. The order of jumping between these four subbands is 
‘closest in time are farthest in space’, but the exact location inside each sub- 
band is chaotic. Decreasing further leads us to a cascade of r6 in between 
which there are 2n chaotic subbands, a phenomenon known as ‘reverse bi- 
furcation’. Interspersed between the reverse bifurcations are regions of truly 
periodic behavior (such as the 3-, 5-, and 6-cycles we saw before). The rk 
converge precisely onto ra where the reverse bifurcations meet the previous 
bifurcations. 

We have seen that the simplest possible nonlinear recursion generates 
an impressive variety of periodic and chaotic signals; but although complex, 
these signals are still deterministic. In the next section we will see what a 
truly random signal is. 
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EXERCISES 

5.5.1 What is the change of variables that converts the socialistic economy equation 
into the fish pond one? 

5.5.2 Write a simulator that graphically depicts the behavior of the signal generated 
by the logistics equation (5.13). Vary r and by trying various starting points 
identify the attractors in the different regions. 

5.5.3 Write a program to plot the attractors as a function of r. For each r go 
through the possible xc systematically and identify when periodic behavior 
has been reached and plot all points in this attractor. Can you identify the 
various regions discussed in the text? 

5.5.4 Extend the simulator written above to display the spectrum as well. Repro- 
duce the results given in the text. 

5.5.5 Prove that equation (5.15) is indeed the criterion for attractiveness. Prove 
that for r 5 1 zero is indeed an attractor. Prove that for 1 < p 5 3 the fixed 
point p, is an attractor. 

5.5.6 At r = 4 a change of variable 

2 = $ (1 - cos 27re) 

brings us to a variable 8, which is homogeneously distributed. Show that x 
is distributed according to - &kj 

. 

5.5.7 Plot the signal and spectrum of the 3-, 5-, and 6-cycles. 

5.5.8 Henon invented 
for example, 

a number of area preserving two-dimensional chaotic signals, 

Xn+l = XnCOSa- (yn -xi)sina 

Yn+l = xnsina+ (yn - X~)COSCY 

which is dependent on a single parameter cy, which must obey 0 5 CK 5 T. 
Show that the origin is a fixed point, that large x diverge to infinity, and that 
there is a symmetry axis at angle a/2. Are there any other fixed points? 

5.5.9 Write a program to plot in the plane the behavior of the Henon map for 
various a. For each plot start from a large number of initial states (you 
can choose these along the 45’ line starting at the origin and increasing 
at constant steps until some maximal value) and recurse a large number 
of times. What happens at Q = 0 and cy = K? Increase QI from zero and 
observe the behavior. For what a are ‘islands’ first formed? Zoom in on these 
islands. When are islands formed around the islands? Observe the sequence 
of multifurcations. When is chaos achieved? 
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5.6 Stochastic Signals 

In this section we will briefly introduce the formal theory of stochastic 
signals. This topic is a more advanced mathematically, and we assume 
the reader has a working knowledge of basic probability theory (see Ap- 
pendix A.13). Since a full discussion of the theory would require a whole 
book we will have to content ourselves with presenting only the basic ter- 
minology. 

Recall that a signal is deterministic if we can precisely predict its value at 
any time; otherwise it is stochastic. What do we mean by a random signal? 
By our original definition a signal must be precisely defined for all times, 
how can it be random? When we speak of a random signal in the formal 
sense, we are actually not referring to a single signal at all, but to an infinite 
number of signals, known as an ensemble. Only individual realizations of 
the ensemble can be actually observed, (recall Figures 5.1, 5.2, and 5.3) 
and so determining a signal value requires specification of the realization in 
addition to the time. For this reason many authors, when referring to the 
entire ensemble, do not use the term ‘signal’ at all, prefering to speak of a 
stochastic process. 

Often a stochastic signal is the sum of a deterministic signal and noise. 

s’(t) = z(t) + v’(t) A D s; = xn + v; (5.16) 

Here the superscript r specifies the specific realization; for different r the 
deterministic component is identical, but the noise realization is different. 
Each specific realization is a signal in the normal sense of the word; although 
it might not be possible to find an explicit equation that describes such 
a signal, it nonetheless satisfies the requirements of signalhood, with the 
exception of those we usually ignore in any case. While taking a specific r 
results in a signal, taking a specific time t or r~ furnishes a random variable, 
which is a function of r over the real numbers that can be described via its 
probability distribution function. Only when both r and t or 72 are given do 
we get a numeric value; thus a stochastic signal can be better described as 
a function of two variables. 

When describing a stochastic signal we usually specify its ensemble statis- 
tics. For example, we can average over the ensemble for each time, thus ob- 
taining an average as a function of time. More generally, for each time we 
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can find the Probability Density Function (PDF) of the ensemble. 

f(t, s)ds = 
AD MN = 

Prob(s 5 s(t) 5 s + ds) Prob(s 5 sn 5 s + ds) 
(5.17) 

Here, even for the digital case we assumed that s was unquantized, fn (s)ds 
representing the probability that the signal value at time n will be between s 
and s+ds. Note that unlike the statistics of a regular random variable, statis- 
tics of stochastic signals are functions of time rather than simple numbers. 
Only for the special case of stationary signals are these statistics constants 
rather than time-dependent. 

As for regular random variables, in addition to the density function f(s) 
we can define the Cumulative Distribution Function (CDF) 

F(t, s) = Prob(s(t) 5 s) A D &(s) = Prob(s, 5 s) (5.18) 

and it is obvious that for every time instant the density is the derivative 
of the cumulative distribution. These distribution functions are in practice 
cumbersome to use and we usually prefer to use statistics such as the mean 
and variance. These can be derived from the density or cumulative distri- 
bution. For example, for analog signals the mean for all times is calculated 
from the density by integration over all x values 

and the variance is as one expects, 

o-Z(t) = Srn (s(t) - mso)” f(t, 4 ds -03 

(5.19) 

(5.20) 

There are also other statistics for stochastic signals, which have no coun- 
terpart for simple random variables. The simplest is the correlation between 
the signal at different times 

C&l, tz) = (s(t+(tz)) A D G(7-v2) = (wnz) (5-21) 

which for stationary signals is a function only of the time difference r = tl-t2 

or m = n1 - 722. 

G(T) = (SW - 4) A D w-4 = (wn-m) (5.22) 
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This correlation is usually called the autocorrelation, since there is also a 
crosscorrelation between two distinct signals C&&l, tz) = (Z(tl)Y(tp)) l 

The autocorrelation tells us how much the value of the signal at time tl 
influences its value at time t2, and is so important that we will devote all 
of Chapter 9 to its use. The single time variance is simply the autocor- 
relation when the two time variables coincide a:(t) = Cs (t, t), and so for 
stationary signals ai = Cs(0). We also sometimes use the autocovariance 

K$l, t2) = (u > s t1 - m&1)) (@a) - 77GzN) and it is easy to show that 

v,(h, t2) = G@l, t2) - m,(h) m&2)* 

More generally we can have statistics that depend on three or more time 
instants. Unlike single time statistics, which can be calculated separately for 
each time, these multitime statistics require that we simultaneously see the 
entire stochastic signal (i.e., the entire ensemble for all times). We often use 
only the mean as a function of time and the correlation as a function of two 
times. These are adequate when the probability density function for all times 
is Gaussian distributed, since Gaussians are completely defined by their 
mean and variance. For more general cases higher-order signal processing 
must be invoked (see Section 9.12), and we define an infinite number of 
moment functions 

M&l, t2, l l l , tk) = (s(h)s(tz) l ’ l @k)) (5.23) 

that should not be confused with ‘statistical moments’ 

ms = ( > tSs(t) 

which are simply numbers. A stochastic signal is said to be ‘stationary to 
order Ic’ if its moments up to order Ic obey 

Ms(tl,t2,7tk) = MS(tl + T, t2 + 7,. . . > tl, + 7) 

and stationarity implies stationarity to order Ic for all finite Ic. 
A few concrete examples will be helpful at this point. An analog Markov 

signal is a stationary, zero mean stochastic signal for which the autocorre- 
lation dies down exponentially. 

I It241 

C(t1,t2) = e T 7 
Thus there is essentially only correlation between signal values separated 
by about 7 in time; for much larger time differences the signal values are 
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essentially uncorrelated. When T approaches zero we obtain white noise, 
which thus has a delta function autocorrelation. 

Wl, t2) = a26(t1 - t2) 

This means that for any two distinct times, no matter how close these times 
are, there is no correlation at all between signal values of white noise. 

For discrete time signals we define Markov signals of different orders. 
A first-order Markov signal is one for which sn depends on s,-1 but not 
directly on any previous value. A second-order Markov signal has the signal 
value depending on the two previous values. 

There is an important connection between white noise and Markov sig- 
nals; A Markov signal sn can be generated by filtering white noise v,. We 
cannot fully explain this result as our study of filters will only begin in 
the next chapter, but the main idea can be easily understood. Signal val- 
ues of white noise at different times can be independent because of the 
high-frequency components in the noise spectrum. Filtering out these high 
frequencies thus implies forcing the signal value at time n to depend on 
those at previous instants. A particular type of low-pass filtering produces 
precisely Markovian behavior. 

Sn = O!Sn-1 + vn 

Low-pass filtering of white noise returns us to a Markov signal; band- 
pass filtering results in what is often called ‘colored noise’. These signals 
have nonflat power spectra and nondelta autocorrelations. 

Note that although we often use Gaussian white noise, these two charac- 
teristics are quite independent. Noise can be white without being Gaussian 
and vice versa. If for any two times the signal is uncorrelated, and all mo- 
ments above the second-order ones are identically zero, we have Gaussian 
white noise. However, when the signal values at any two distinct times are 
statistically independent, but the distributions although identical at all times 
are not necessarily Gaussian, we can only say that we have an Independent 
Identically Distributed (IID) signal. Conversely, when there are correlations 
between the signal values at various times, but the joint probability func- 
tion of n signal values is n-dimensional Gaussian, then the signal is Gaussian 
noise that is not white. 

Stochastic signals are truly complex, but it is reassuring to know the 
most general stationary stochastic signal can be built from the elements we 
have already discussed. In the 1930s Wold proved the following theorem. 
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Theorem: Wold’s Decomposition 
Every stationary stochastic signal s can be written 

00 

s, = Xn + C hnWn-rn 
m=O 

as the sum of a deterministic signal x and filtered white noise. n 

In addition to the ensemble statistics we have been discussing, there 
is another type of statistics that can be computed for stochastic signals, 
namely time statistics. For these statistics we consider a single realization 
and average over the time variable, rather than hold the time constant and 
averaging over the ensemble. Thus the time average of a signal s at time 
zero is 

1 

J 

7+$ 
1 

v+% 
0 

S =- T s(t)dt A D 

T 2 

(s) = z 1 sn (5.25) 
r-- n=v-3 

where T or N are called the ‘integration windows’. This type of averaging is 
often simpler to carry out than ensemble averaging since for s(t) and sn we 
can use any realization of the signal s that is available to us, and we needn’t 
expend the effort of collecting multiple realizations. When we previously 
suggested combating noise for a narrow-band signal by averaging over time, 
we were actually exploiting time statistics rather than ensemble statistics. 

What is the connection between ensemble statistics and time statistics? 
In general, there needn’t be any relation between them; however, we often 
assume a very simple association. We say that a signal is ergodic if the 
time and ensemble statistics coincide. The name ‘ergodic’ has only historical 
significance, deriving from the ‘ergodic hypothesis’ in statistical physics that 
(wrongly) posited that the two types of statistics must always coincide. To 
see that in general this will not be the case, consider the ensemble of all 
different DC signals. The ensemble average will be zero, since for every 
signal in the ensemble there is another signal that has precisely the opposite 
value. The time average over any one signal is simply its constant value, and 
not zero! A less trivial example is given by the digital sinusoid 

sn = Asin 

with A chosen in the ensemble with equal probability to be either 1 or -1. 
Here both the ensemble and time averages are zero; but were we to have 
chosen A to be either 0 or 1 with equal probability, then the time average 
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would remain zero, while the ensemble average becomes the time-dependent 
ij sin(wn). 

What does ergodicity really mean ? Simply that rather than acquiring 
an ensemble of N signal generators we can use only a single generator but 
restart our experiment N times. If the signal with all the possible different 
initial times reproduces the entire ensemble of the stochastic signal, then the 
signal is ergodic. Not only must all possible realizations be reproduced, they 
must be reproduced the same number of times. When we thinking about it 
this way, ergodicity is rather too strong a statement; no signal can really be 
so random that a single realization completely samples all the possibilities 
of the ensemble! The number of realizations generated by restarting the 
experiment at all possible times equals the number of points on the real line, 
while there are many more different functions of time! However, ergodicity 
makes life so simple that we most often assume it anyway. 

For ergodic signals we can redefine the correlations in terms of time 
averages. For example, the autocorrelation becomes 

C&) = / s(t)s(t - T)& A D G(m) = &brn (5.26) 
n 

and it is these forms that we shall use in Chapter 9. 

EXERCISES 

5.6.1 Consider a stationary signal that can only take the values 0 and 1. What is 
the probability that the signal is nonzero at two times r apart? What is the 
meaning of moments for this type of signal? 

5.6.2 Derive the relation between autocovariance and autocorrelation V,(tl, t2) = 
G@lJ2> - 774074~2). 

5.6.3 Show that for white signals (for which all times are independent) the auto- 
covariance is zero except for when tl = t2. 

5.6.4 In the text we discussed the filtering of white noise, although white noise is 
not a signal and thus we have never properly defined what it means to filter 
it. Can you give a plausible meaning to the filtering of a stochastic signal? 

5.6.5 Prove that a first-order Markov signal can be obtained by low-pass filtering 
white noise. Assuming that sn is created from a noise signal u, by equa- 
tion 5.24 with 1~1 < 1, what is the probability distribution of sn given that 
we already observed s,+i? 

5.6.6 Show that the signal sn generated by the recursion sn = ars+r +cQs,-.~+v, 
(where V, is white) is a second-order Markov signal. 
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5.6.7 Given the Markov signals of equation (5.24) and the previous exercise, can 
you recover the white noise signal u, . ? What can you learn from the expression 
for vn? 

5.6.8 What is the power (si) of the Markov signal of equation (5,24)? Why did we 
require Ial < l? The special case CI = 1 is called the random walk or Wiener 
signal. What happens here? 

5.6.9 Pink noise is a term often used for a noise whose power spectrum decreases 3 
dB per octave (doubling of frequency). What is the spectral density’s depen- 
dence on frequency? How does the power per octave depend on frequency? 

5.6.10 Blue noise is the opposite of pink, with power spectrum increasing 3 dB per 
octave; red noise has a 6 dB drop per octave. How do these spectral densities 
depend on frequency? 

5.7 Spectrum of Random Signals 

We know what the spectrum of a signal is, and thus we know what the 
spectrum of a single realization of a stochastic signal is; but can we give 
meaning to the spectrum of the entire stochastic signal? The importance of 
the frequency domain in signal processing requires us to find some consistent 
definition for the spectrum of noisy signals. Without such an interpretation 
the concept of filtering would break down, and the usefulness of DSP to 
real signals (all of which are noisy to some degree) would be cast in doubt. 
Fortunately, although a much more formidable task than it would seem, 
it is possible to define (and compute) the spectrum of a stochastic signal. 
Unfortunately, there are several different ways to do so. 

If we consider the entire ensemble and take the FT of each realization 
individually we obtain an ensemble of transforms. Well, almost all realiza- 
tions of a stationary stochastic signal will have infinite energy and therefore 
the FT won’t converge, but we already know (see Section 4.6) to use the 
STFT for this case. Similarly, for nonstationary signals whose statistics vary 
slowly enough we can use the STFT over short enough times that the signal 
is approximately stationary. Thus from here on we shall concentrate on the 
STFT of stationary random signals. 

We could consider the entire ensemble of spectra as the spectrum. Such a 
‘spectrum’ is itself stochastic, that is, for every frequency we have a complex 
random variable representing the magnitude and angle. To see why these are 
truly random variables consider a realization of a white noise signal. Many 
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more realizations of the same stochastic signal can be created by shifting 
this one in time by any arbitrary interval. Thus the phases of the spectrum 
of such a signal should be uniformly distributed random variables. There is 
no way to resolve this problem other than to avoid it. Thus we concentrate 
on the short time power spectrum of stationary stochastic signals. Returning 
to our ensemble of transforms we square the values and discard the phases 
and obtain an ensemble of power spectra. 

For well-behaved stationary stochastic signals (the type we are interested 
in) a unique (nonrandom) power spectrum can be defined. In practice we do 
not have access to the entire ensemble of signals but can observe one partic- 
ular realization of the stationary signal for some amount of time. Assuming 
ergodicity, this can be just as good. Thus, if we compute the short time 
power spectrum of the realization we happen to have, we expect to obtain 
a good estimate of the aforementioned true power spectrum. 

What do we mean by a ‘good’ estimate? An estimator is considered 
good if it is unbiased and has a small variance. For example, consider the 
mean value of a stationary signal s. Were we to have access to the entire 
ensemble we could take any single moment of time, and calculate the mean 
of the signal values in all realizations of the ensemble at that time. This 
calculation provides the true mean. Since the signal is assumed stationary, 
we could repeat this at any other time and would obtain precisely the same 
result. Alternately, assuming ergodicity, we could perform the average over 
time in a single realization. For a digital signal this entails adding all signal 
values from n = --00 to n = 00, which would take quite a long time to carry 
out. Instead we could estimate the mean by 

1 N m=- 
N c 4-b 

n=l 

summing over N consecutive signal values. Such an estimator is unbiased; it 
will be too large just as many times as it will be too small. More precisely, 
if we carry out the estimation process many times, the mean of the results 
will be the true mean. Also this estimator has a variance that decreases with 
increasing N as k. That is, if we double the number of times we estimate 
the mean, the average variance will drop by half; the variance vanishes in 
the limit N + 00. 

Returning to power spectra, we expect that our estimation of the power 
spectrum based on the STFT of a single realization to be unbiased and 
have variance that vanishes asymptotically. Unfortunately, neither of these 
expectations is warranted. If we calculate the power spectrum based on a 
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single realization, the estimated power spectrum thus obtained will be biased 
and will have a standard deviation of about the same size as the value being 
estimated. Increasing the size of the window of the STFT does reduce the 
bias but doesn’t reduce the variance at all! 

It is informative to understand the reasons for these enigmas. The bias 
problem is the less severe of the two and the easier one to understand. Sim- 
ply stated, the bias comes from comparing two different entities. When we 
use the STFT to estimate the energy at a given frequency, we are actu- 
ally dividing the frequency axis into bins, each of width determined by the 
number of signal points in the transform. The STFT estimated spectrum 
averages together the true spectrum’s values for all frequencies in the bin. 
Thus the STFT power spectrum’s value at some frequency f should not be 
expected to precisely replicate the true spectrum’s value there. However, as 
the number of points in the STFT becomes larger, the bins become smaller 
and the difference between the two decreases. Another way of looking at this 
is to think of the STFT as the FT of the original signal multiplied by the 
data window. This will of course equal the desired FT convolved with the 
FT of the window function. For any given window duration use of good win- 
dow functions can help (see Section 13.4), but the fundamental uncertainty 
remains. As the duration of the window increases the FT of the window 
function approaches a delta function and the bias disappears. 

The true problem is the variance of our estimator. The spectral vari- 
ance, unlike the variance of the mean, does not decrease with increasing the 
number of data points used. At first this seems puzzling but the reason (as 
first realized by T’ukey in the late 1940s) is quite simple. When we double 
the size of the STFT we automatically double the number of frequency bins. 
All the information in the new data goes toward providing more frequency 
resolution and not toward improving the accuracy of the existing estimates. 
In order to decrease the variance we must find a way to exploit more of the 
signal without increasing the frequency resolution. Two such methods come 
to mind. 

Assume that we increase the number of input signal values by a factor 
of M. Bartlett proposed performing M separate power spectra and aver- 
aging the results rather than performing a single (M times larger) STFT. 
This averaging is similar to the mean estimator discussed above, and re- 
duces the estimator’s variance by a factor of AL Welch further improved 
this method by overlapping the data (with 50% overlap being about ideal). 
Of course performing multiple transforms rather than a single large trans- 
form is somewhat less efficient if the FFT is being used, but this is a small 
price to pay for the variance reduction. The second way to reduce the vari- 
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ante does perform a single STFT but then sums adjacent bins to reduce the 
resolution. This effectively smooths the estimated power spectrum resulting 
in a similar variance reduction. We will delve further into these techniques 
in Section 13.3. 

Earlier we stated that a unique (nonrandom) power spectrum can be 
defined. This was first done by Wiener and Khintchine based on the following 
theorem. 

Theorem: Wiener-Khintchine 
The autocorrelation and the power spectral density are an FT pair. n 

In Chapter 9 we will prove this theorem for the deterministic case (after 
properly defining the autocorrelation for deterministic signals). Here we take 
this theorem as the definition for the stationary stochastic case. The basic 
idea behind the theorem is clear. If we are only interested in the square of 
the spectrum then we should only have to look at second-order entities in 
the time domain; and the autocorrelation is the most basic of these. 

Basing ourselves on Wiener-Khintchine we can now compute power spec- 
tra of noisy signals in a new way, due to Blackman and Tukey. Rather than 
directly computing the signal’s FT and squaring, we calculate the autocor- 
relation and then take the FT. All that we have seen above about bias and 
variance still holds, but averaging the computed spectra still helps. Since we 
can use the FFT here as well, the Blackman-Tukey technique is similar in 
computational complexity to the more direct Bartlett and Welch methods. 

EXERCISES 

5.7.1 Generate a finite-duration digital signal consisting of a small number of si- 
nusoids and create K realizations by adding zero-mean Gaussian noise of 
variance g2. Compute the power spectrum in the following three ways. Com- 
pute the FT of each of the realizations, average, and then square. Compute 
the FT, square, and then average. Compute the autocorrelation from the 
realizations and find the power spectrum from Wiener-Khintchine. Compare 
your results and explain. 

5.7.2 Generate a single long (a power of two is best) realization of a signal as 
above. Compare power spectrum estimates using windows without overlap, 
overlapping windows, and smoothing of a single long FFT. 
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5.8 Stochastic Approximation Methods 

Sometimes we are allowed access to the ensemble of signals, in which case 
rather different techniques can be employed. As a concrete example we will 
briefly consider the Robbins-Monro algorithm for finding a zero of a function 
corrupted by additive noise. The zero of a function f(t) is a x such that 
f(x) = 0. Finding the zero of a purely deterministic function is relatively 
straightforward. The standard way is to search for intervals [tr . . . tz] where 
the sign of f(t) changes, i.e., f(tr) < 0 and f(t2) > 0 or f(tl) > 0 and 
f(t2) < 0. Then we look at some t in the interval tl < t < t2, and check 
if f(t) = 0 to within the desired accuracy. If not, we replace either tl or t2 
with t, depending on the sign of f(t). The various algorithms differ only in 
the method of choosing t. 

In the Robbins-Monro scenario we can only observe the noisy signal 
g(t) = f(t) + 4% w h ere the noise is assumed to be zero-mean (y(t)) = 0 
and of finite variance ( y2(t)) < 00. However, we are allowed to make as 
many measurements of g(t) as we desire, at any t we wish. One way to 
proceed would be to imitate the standard procedure, but averaging out the 
noise by sampling g(t) a sufficient number of times. However, the smaller the 
absolute value of g(t), the more susceptible is its sign to noise. This causes 
the number of samples required to diverge. 

The Robbins-Munro algorithm recursively updates the present estimate 
XI, for the zero instead. 

zk+l = 
gh) 

z-- 
k 

(5.27) 

It can be shown that this procedure both converges to the desired root in 
the mean square, i.e., 

iima ((zk - z)‘) = 0 - 

and converges with probability 1, i.e., 

Prob( i’“, Zk = x ) = 1 4 

although the convergence may, in practice, be very slow. 

EXERCISES 

5.8.1 Is the division by k required for the deterministic case? Code the algorithm 
and check for a few polynomials and a sinusoid. 

5.8.2 Add noise to the signals you used in the previous exercise and run the full 
algorithm. How does the error in the zero location depend on the noise level? 
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5.9 Probabilistic Algorithms 

The Robbins-Monro algorithm is a way to combat noise, but we have men- 
tioned that there are probabilistic algorithms that actually exploit noise. 
The usual definition of ‘algorithm’ is a precisely defined (i.e., deterministic) 
prescription of the solution of a problem; why would we want to make an 
algorithm probabilistic? The reason has to do with practicalities; sometimes 
the standard deterministic algorithm takes too long to compute its answer, 
while a probabilistic algorithm may be able to come up with an usable esti- 
mate much faster. 

Numerical integration is a good example. The deterministic approach 
requires dividing the x axis into small intervals and summing the value 
of the function in these intervals. The function needs to be approximately 
constant over each interval so for rapidly varying functions many functional 
values must be evaluated and summed. Multidimensional integration is much 
more demanding; here all of the axes corresponding to independent variables 
must be divided into sufficiently small intervals, so that the computational 
complexity increases exponentially with the dimensionality. 

As a concrete example consider finding the area of a circle, which can 
be expressed as a two-dimensional integral. The standard numeric approach 
requires dividing two-dimensional space into a large number of small squares, 
and the integration is carried out by counting the number of squares inside 
the circle. Of course there will always be the problem of those squares that 
straddle the circumference of the circle; only by using small enough squares 
can we ensure that these questionable cases do not overly effect the answer. 

How can a probabilistic algorithm find the area? Circumscribe the circle 
by a square and choose at random any point inside this square. The prob- 
ability that this point is inside the circle is exactly the ratio of the area of 
the circle to that of the square. So by generating a large number of ran- 
dom points (using any of the random number generators of section 5.4) and 
counting up how many fall inside the circle we can get an estimate of the 
area. Note that there isn’t a well-defined end to this computation; each new 
random point simply improves the previous estimate. So there is a natural 
trade-off between accuracy and computational complexity. 

This lucky integration technique is often called Monte-Carlo integration 
(for obvious reasons), and you can bet that it can be generalized to any 
integration problem in any number of dimensions. 
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EXERCISES 

5.9.1 Compute 7r by Monte-Carlo determination of the area of the unit-radius 
circle. Monitor the error as a function of the number of points generated. 
How does the computation required to obtain a given accuracy compare with 
that of direct numerical integration? 

5.9.2 Find the volume of a unit-radius sphere and the hypervolume of a unit-radius 
hypersphere in four dimensions. Make the same computational complexity 
comparisons as in the previous exercise. 

5.9.3 In certain cases deterministic and probabilistic approaches to integration can 
be combined to obtain a faster and more accurate method. Explain the idea 
and apply to the previous exercise. (Hint: Inscribe the circle with a second 
square.) 

Bibliographical Notes 

Our treatment of noise has been very different, and a good deal less pedantic, than 
that found in engineering textbooks. For those who miss the formalistic treatment 
there are several good books on stochastic processes. The classic text is that of 
Papoulis [ 1901; only slightly less classic but much less friendly is van Trees [264]; 
but any text that has the words ‘stochastic’ and ‘process’ in its title will probably 
do. There are also texts with a major emphasis on stochastic processes that mix 
in a certain amount of straight signal processing, e.g., [250], and others with the 
opposite stress, such as [188]. 

Those interested in more information regarding radar systems can try anything 
by Skolnik [245, 243, 2441 or the book by Levanon [145]. 

The generation of pseudorandom signals is discussed at length in the second 
volume of Knuth [136]. The transformation from uniform to Gaussian distributed 
random numbers (also found in Knuth) was discovered by Box and Muller [22]. The 
standard text on shift register sequences is by Golomb [81]. 

Deterministic chaos is quite a popular subject, with many books, each with its 
own approach. A suitable text for physicists is [234], while there are other books 
suitable for engineers or for mathematicians. The popular account by Gleick [75] is 
accessible and interesting. 

Perhaps the earliest mathematical account of noise is [219,220], which presented 
a complete theory including power spectra, statistical properties, and the effect of 
nonlinear systems on noise. Many would claim that the most important book on 
stochastic processes is that of Papoulis mentioned above [190]. 

An accessible source from which one can gain insight regarding 
noise is to be found in much of what is called modern music. 
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