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Systems 

The study of signals, their properties in time and frequency domains, their 
fundamental mathematical and physical limitations, the design of signals 
for specific purposes, and how to uncover a signal’s capabilities through 
observation belong to signal analysis. We now turn to signal processing, 
which requires adding a new concept, that of the signal processing system. 

A signal processing system is a device that processes input signals and/or 
produces output signals. Signal processing systems were once purely analog 
devices. Older household radio receivers input analog radio frequency signals 
from an antenna, amplify, filter, and extract the desired audio from them 
using analog circuits, and then output analog audio to speakers. The original 
telephone system consisted of analog telephone sets connected via copper 
wire lines, with just the switching (dialing and connecting to the desired 
party) discrete. Even complex radar and electronic warfare systems were 
once purely analog in nature. 

Recent advances in microelectronics have made DSP an attractive al- 
ternative to analog signal processing. Digital signal processing systems are 
employed in a large variety of applications where analog processing once 
reigned, and of course newer purely digital applications such as modems, 
speech synthesis and recognition, and biomedical electronics abound. There 
still remain applications where analog signal processing systems prevail, 
mainly applications for which present-day DSP processors are not yet fast 
enough; yet the number of such applications is diminishing rapidly. 

In this chapter we introduce systems analogously to our introduction of 
signals in Chapter 2. First we define analog and digital signal processing 
systems. Then we introduce the simplest possible systems, and important 
classes of systems. This will lead us to the definition of a filter that will 
become a central theme in our studies. Once the concept of filter is under- 
stood we can learn about MA, AR, and combined ARMA filters. Finally we 
consider the problem of system identijication which leads us to the concepts 
of frequency response, impulse response, and transfer function. 
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208 SYSTEMS 

6.1 System Defined 

The first question we must ask when approaching 
processing is ‘What exactly do we mean by a signal 

the concept of signal 
processing system?’ 

Definition: signal processing system 
A signal processing system is any device that takes in zero or more signals 
as input, and returns zero or more signals as outputs. n 

According to this definition systems deal only with signals. Of course 
images may be considered two-dimensional signals and thus image processing 
is automatically included. Nevertheless, we will often extend the definition 
to include systems that may also input other entities, such as numeric or 
logical values. A system may output such other entities as well. An important 
output entity is a multiclass classification identifier, by which we mean that 
various signals may be input to the system as a function of time, and the 
system classifies them as they arrive as belonging to a particular class. The 
only practical requirement is that there should be at least one output, either 
signal, numeric, logical, or classification. Were one to build a system with 
no outputs, after possibly sophisticated processing of the input, the system 
would know the result (but you wouldn’t). 

What kind of system has no input signals? An example would be an 
oscillator or tone generator, which outputs a sinusoidal signal of constant 
frequency, irrespective of whatever may be happening around it. A simple 
modification would be to add a numeric input to control the amplitude of 
the sine, or a logical input to reset the phase. Such an oscillator is a basic 
building block in communications transmitters, radars, signaling systems, 
and music synthesizers. 

What kind of system has no signal output? An example would be a 
detector that outputs a logical false until a signal of specified parameters is 
detected. A simple modification would be to output a numeric value that 
relates the time of detection to a reference time, while a more challenging 
extension would continually output the degree to which the present input 
matches the desired signal (with 0 standing for no match, 1 for perfect 
match). Such a system is the basis for modem demodulators, radar receivers, 
telephone switch signaling detectors, and pattern analyzers. Systems that 
output only multiclass classifications are the subject of a discipline known 
as pattern recognition. 
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EXERCISES 

6.1.1 Which of the following are signal processing systems (we shall use 2 for inputs 
and y for outputs)? Explain. 

1. The identity y = x 
2. The constant y = k irrespective of x 
3. y=+/z 
4. A device that inputs a pizza and outputs a list of its ingredients 
5. y = sin(+) 

6. Y(t) = S4,z(t) 
7. The Fourier transform 
8. A television 
9. A D/A converter 

6.1.2 Given any two signals x(t) and y(t), is there always a system that inputs x 
and outputs y? Given a system that inputs x(t) and outputs y(t), is there 
always a system that inputs y and outputs x? 

6.2 The Simplest Systems 

Let us now present a few systems that will be useful throughout our studies. 
The simplest system with both an input signal x and an output signal y is 
the constant, y(t) = Ic in analog time or gn = k in digital time. This type of 
system may model a power supply that strives to output a constant voltage 
independent of its input voltage. We can not learn much from this trivial 
system, which completely ignores its input. The next simplest system is the 
identity, whose output exactly replicates its input, y(t) = z(t) or yn = xn. 

The first truly nontrivial system is the ampl$er, which in the analog 
world is y(t) = Ax(t) and in the digital world yn = Ax,. A is called the 
gain. When A > 1 we say the system umplifies the input, since the output 
as a function of time looks like the input, only larger. For the same reason, 
when A < 1 we say the system attenuates. Analog amplifiers are vital for 
broadcast transmitters, music electronics (the reader probably has a stereo 
amplifier at home), public address systems, and measurement apparatus. 

The ideal amplifier is a linear system, that is, the amplification of the 
sum of two signals is the sum of the amplifications, and the amplification 
of a constant times a signal is the constant times the amplification of the 
signal. 

A (XI (4 + m(t)) = AXI + Axz(t) and A (,x(t)) = cAx(t) 
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Such perfect linear amplification can only be approximated in analog cir- 
cuits; analog amplifiers saturate at high amplitudes, lose amplification at 
high frequencies, and do not respond linearly for very high amplitudes. Dig- 
itally amplification is simply multiplication by a constant, a calculation that 
may be performed reliably for all inputs, unless overflow occurs. 

We can generalize the concept of the amplifier/attenuator by allowing 
deviations from linearity. For example, real analog amplifiers cannot output 
voltages higher than their power supply voltage, thus inducing clipping. This 
type of nonlinearity 

y(t) = Clip0 (As(t)) A D yn = Clip, (Axn) (6 1) . 

where 
e x2e 

Clip,(x) z x -8 < x < e 
-8 -8 5 x 

is depicted in Figure 6.1. On the left side of the figure we see the output ver- 
sus input for an ideal linear amplifier, and on the right side the output when 

Figure 6.1: The effect of clipping amplifiers with different gains on sinusoidal signals. In 
(A) there is no clipping, in (B) intermediate gain and clipping, while (C) represents the 
infinite gain case (hard limiter). 
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a sinusoid is input. Figure 6.1.B represents an amplifier of somewhat higher 
gain, with a limitation on maximal output. The region where the output 
no longer increases with increasing input is called the region of saturation. 
Once the amplifier starts to saturate, we get ‘flat-topping’ of the output, as 
is seen on the ride side. The flat-topping gets worse as the gain is increased, 
until in 6.1.C the gain has become infinite and thus the system is always 
saturated (except for exactly zero input). This system is known as a ‘hard 
limiter’, and it essentially computes the sign of its input. 

Ye> = win (x(t)) A D Yn = sgn Xn ( > (6 2) . 

Hard limiting changes sinusoids into square waves, and is frequently em- 
ployed to obtain precisely this effect. 

These clipping amplifiers deal symmetrically with positive and negative 
signal values; another form of nonlinearity arises when the sign explicitly 
affects the output. For example, the gain of an amplifier can depend on 
whether the signal is above or below zero. Extreme cases are the half-wave 
rectifier, whose output is nonzero only for positive signal values, 

y(t) = 0 (x(t)) x(t) A D yn = 8 (xn) xn. 

and the full-wave rectifier, whose output is always positive 

y(t) = lx(t) 1 A D Yn = lxnl (6 4 . 

as depicted in Figure 6.2. 
Yet another deviation from linearity is termed power-law distortion; for 

example, quadratic power distortion is 

y(t) = x(t) + EX~(~) A D Yn = Xn + EX; 

for small E > 0. More generally higher powers may contribute as well. Real 
amplifiers always deviate from linearity to some degree, and power law dis- 
tortion is a prevalent approximation to their behavior. Another name for 
power law distortion is harmonic generation; for example, quadratic power 
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Figure 6.2: Half-wave and full-wave rectifiers. (A) depicts the output as a function of 
input of a half-wave rectifier, as well as its effect on a sinusoid. (B) depicts the same for 
a full-wave rectifier. 

distortion is called second-harmonic generation. The reasoning behind this 
name will become clear in Section 8.1. 

Let us summarize some of the systems we have seen so far: 

constant y(t) = k Yn - -k 
identity YW = x(t) Yn = Xn 

amplification y(t) = Ax(t) yn = Axn 

clipping 

hard limiter 

half-wave rectification 

full-wave rectification y(t) = Ix(t)1 Yn = X7-b I I 
quadratic distortion y(t) = X(t) + eX2(t) yn = Xn + 6X: 

This is quite an impressive collection. The maximal extension of this type 
of system is the general point transformation y(t) = f (x(t)) or yn = f (x,) . 
Here f is a completely general function, and the uninitiated to DSP might 
be led to believe that we have exhausted all possible signal processing sys- 
tems. Notwithstanding, such a system is still extremely simple in at least 
two senses. First, the output at any time depends only on the input at 
that same time and nothing else. Such a system is memoryless (i.e., does 
not retain memory of previous inputs). Second, this type of system is time- 
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invariant (i.e., the behavior of the system does not change with time). Clas- 
sical mathematical analysis and most non-DSP numerical computation deal 
almost exclusively with memoryless systems, while DSP almost universally 
requires combining values of the input signal at many different times. Time 
invariance, the norm outside DSP, is common in many DSP systems as well. 
However, certain important DSP systems do change as time goes on, and 
may even change in response to the input. We will see such systems mainly 
in Chapter 10. 

EXERCISES 

6.2.1 

6.2.2 

6.2.3 

The digital amplifier is a linear system as long as no overflow or underflow 
occur. What is the effect of each of these computational problems? Which is 
worse? Can anything be done to prevent these problems? 

Logarithmic companding laws are often used on speech signals to be quan- 
tized in order to reduce the required dynamic range. In North America the 
standard is called p-law and is given by 

y _ sgn(x)wl + /44> - 
logO + CL) (6.6) 

where x is assumed to be between -1 and +l and p = 255. In Europe A-law 
is used 

Y= 
sgn(~~~~ 0 < 1x1 < a 

! sgn(x),w + < 1x1 < 1 (6.7) 

where A = 87.6. Why are logarithmic curves used? How much difference is 
there between the two curves? 

Time-independent point transformations can nontrivially modify a signal’s 
spectrum. What does squaring signal values do to the spectrum of a pure 
sinusoid? To the sum of two sinusoids? If point operations can modify a 
signal’s spectrum why do you think systems with memory are needed? 

6.3 The Simplest Systems with Memory 

There are two slightly different ways of thinking about systems with memory. 
The one we will usually adopt is to consider the present output to be a 
function of the present input, previous inputs, and previous outputs. 

Yn = f (Xn, &a-1, G-2, * l * h-1, Yn-2 * * *) 
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The other line of thought, called the state-space description, considers the 
output to be calculated based on the present input and the present internal 
state of the system. 

Yn = f CZ,, S) (6.9) 

In the state-space description the effec; of tii input on the system is twofold, 
it causes an output to be generated and it changes the state of the system. 
These two ways of thinking are clearly compatible, since we could always 
define the internal state to contain precisely the previous inputs and outputs. 
This is even the best way of defining the system’s state for systems that 
explicitly remember these values. However, many systems do not actually 
remember this history; rather this history influences their behavior. 

The simplest system with memory is the simple delay 

y(t) = x(t -7) A D yn = x,-s, (6.10) 

where the time r or m is called the lug. From the signal processing point 
of view the simple delay is only slightly less trivial than the identity. The 
delay’s output still depends on the input at only one time, that time just 
happens not to be the present time, rather the present time minus the lag. 

We have said that the use of delays is one of the criteria for contrasting 
simple numeric processing from signal processing. Recall from Chapter 2 
that what makes signal processing special is the schizophrenic jumping back 
and forth between the time domain and the frequency domain. It is thus 
natural to inquire what the simple delay does to the frequency domain rep- 
resentation of signals upon which it operates. One way to specify what any 
signal processing system does in the frequency domain is to input simple 
sinusoids of all frequencies of interest and observe the system’s output for 
each. For the simple delay, when a sinusoid of amplitude A and frequency 
w is input, a sinusoid of identical amplitude and frequency is output. We 
will see later on that a system that does not change the frequency of sinu- 
soids and does not create new frequencies is called a filter. A filter that does 
not change the amplitude of arbitrary sinusoids, that is, one that passes all 
frequencies without attenuation or amplification, is called an all-puss filter. 
Thus the simple delay is an all-pass filter. Although an all-pass filter leaves 
the power spectrum unchanged, this does not imply that the spectrum re- 
mains unchanged. For the case of the delay it is obvious that the phase of 
the output sinusoid will usually be different from that of the input. Only if 
the lag is precisely a whole number of periods will the phase shift be zero; 
otherwise the phase may be shifted either positively or negatively. 
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After a little consideration we can deduce that the phase is shifted by 
the frequency times the delay lag. When the phase shift is proportional 
to the frequency, and thus is a straight line when plotted as a function of 
frequency, we say that the system is linear-phase. The identity system y = x 
is also linear-phase, albeit with a trivial constant zero phase shift. Any time 
delay (even if unintentional or unavoidable such as a processing time delay) 
introduces a linear phase shift relation. Indeed any time-invariant linear- 
phase system is equivalent to a zero phase shift system plus a simple delay. 
Since simple delays are considered trivial in signal processing, linear-phase 
systems are to be considered ‘good’ or ‘simple’ in some sense. In contrast 
when the phase shift is not linear in frequency, some frequencies are delayed 
more than others, causing phase distortion. To appreciate the havoc this 
can cause imagine a nonlinear-phase concert hall. In any large concert hall a 
person in the balcony hears the music a short time after someone seated up 
front. When the room acoustics are approximately linear-phase this delay 
is not particularly important, and is more than compensated for by the 
reduction in ticket price. When nonlinear phase effects become important 
the situation is quite different. Although the music may be harmonious near 
the stage, the listener in the balcony hears different frequencies arriving 
after diflerent time delays. Since the components don’t arrive together they 
sum up to quite a different piece of music, generally less pleasant to the ear. 
Such a concert hall would probably have to pay people to sit in the balcony, 
and the noises of indignation made by these people would affect the musical 
experience of the people up front as well. 

How can the simple delay system be implemented? The laws of rela- 
tivity physics limit signals, like all information-carrying phenomena, from 
traveling at velocities exceeding that of light. Thus small analog delays can 
be implemented by delay lines, which are essentially appropriately chosen 
lengths of cable (see Figure 6.3.A). A voltage signal that exits such a delay 
line cable is delayed with respect to that input by the amount of time it 
took for the electric signal to travel the length of the cable. Since electric 
signals tend to travel quickly, in practice only very short delays can be imple- 
mented using analog techniques. Such short delays are only an appreciable 
fraction of a period for very high-frequency signals. The delay, which is a 
critical processing element for all signal processing, is difficult to implement 
for low-frequency analog signals. 

Digital delays of integer multiples of the sampling rate can be simply 
implemented using a FIFO buffer (see Figure 6.3.B). The content of this 
FIFO buffer is precisely the system’s internal state from the state-space 
point of view. The effect of the arrival of an input is to cause the oldest value 
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B 
Xn+ Xn-1 + Xn-2 -C- * l l -b- Xn-m-j-2 -b- Xn-m+l -b- Xn-m 

Figure 6.3: Implementation of the simple delay. In (A) we see how an analog delay of 
lag r can be obtained by allowing a voltage of current signal to travel at finite velocity 
through a sufficiently long delay line. In (B) a digital delay of lag m is implemented using 
a FIFO buffer. 

stored in the FIFO to be output and promptly discarded, for all the other 
values to ‘move over’, and for the present input to be placed in the buffer. Of 
course long delays will require large amounts of memory, but memory tends 
to drop in price with time, making DSP more and more attractive vis-a-vis 
analog processing. DSP does tend to break down at high frequencies, which 
is exactly where analog delay lines become practical. 

Leaving the simple delay, we now introduce a somewhat more complex 
system. Think back to the last time you were in a large empty room (or a 
tunnel or cave) where there were strong echoes. Whenever you called out 
you heard your voice again after a delay (that we will call 7) , which was 
basically the time it took for your voice to reach the wall from which it 
was reflected and return. If you tried singing or whistling a steady tone you 
would notice that some tones ‘resonate’ and seem very strong, while others 
seem to be absorbed. We are going to model such a room by a system whose 
output depends on the input at two different times, the present time and 
some previous time t - r. Our simple ‘echo system’ adds the signal values 
at the two times 

y(t) = X(t) + x(t - T) A D in = xn + xn-m (6.11) 

and is easily implemented digitally by a FIFO buffer and an adder. 
In the frequency domain this system is not all-pass; the frequency depen- 

dence arising from the time lag r (or m) corresponding to different phase 
differences at different frequencies. When we input a sinusoidal signal with 
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angular frequency w such that r corresponds to precisely one period (i.e., 
wr = 27r), the net effect of this system is to simply double the signal’s am- 
plitude. If, however, the input signal is such that r corresponds to a half 
period (we = ‘;rr), then the output of the system will be zero. This is the 
reason some frequencies resonate while others seem to be absorbed. 

More generally, we can find the frequency response, by which we mean 
the response of the system to any sinusoid as a function of its frequency. 
To find the frequency response we apply an input of the form sin(wt). The 
output, which is the sum of the input and its delayed copy, will be 

sin(wt) + sin w(t ( -4) = 2cos (y)sin(w(t- S,) 

which is easily seen to be a sinusoid of the same frequency as the input. It 
is, however, delayed by half the time lag (linear-phase!), and has an ampli- 
tude that depends on the product WT. This amplitude is maximal whenever 
wr = 2kn and zero when it is an odd multiple of 7r. We have thus completely 
specified the frequency response; every input sine causes a sinusoidal output 
of the same frequency, but with a linear phase delay and a periodic ampli- 
fication. A frequency that is canceled out by a system (i.e., for which the 
amplification of the frequency response is zero) is called a zero of the system. 
For this system all odd multiples of 7r are zeros, and all even multiples are 
maxima of the frequency response. 

Our next system is only slightly more complex than the previous one. 
The ‘echo system’ we just studied assumed that the echo’s amplitude was 
exactly equal to that of the original signal. Now we wish to add an echo or 
delayed version of the signal to itself, only this time we allow a multiplicative 
coefficient (a gain term). 

y(t) = x(t) + hx(t - r) A D yn = xn + hxnsm (6.12) 

When h = 1 we return to the previous case, while h < 1 corresponds to 
an attenuated echo, while h > 1 would be an amplified echo. We can also 
consider the case of negative h, corresponding to an echo that returns with 
phase reversal. 

y(t) = x(t) - Ihlx(t - T) A D yn = xn - Jhlx,-, 
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We leave the full mathematical derivation of the frequency response of 
our generalized echo system as an exercise. Still we can say a lot based on 
a little experimentation (using pen and paper or a computer graphing pro- 
gram). The first thing we notice is that a sinusoidal input will produce a 
sinusoidal output of the same frequency, but with amplitude between 1 - Ihl 
and 1 + lhl. Thus when lhl # 1 we can never perfectly cancel out a sinu- 
soidal input signal, no matter what frequency we try, and thus the frequency 
response will have no zeros: Of course when lhl < 1 we can’t double the am- 
plitude either; the best we can do is to amplify the signal by 1 + lhl. Yet 
this should be considered a mere quantitative difference, while the ability 
or inability to exactly zero out a signal is qualitative. The minima of the 
frequency response still occur when the echo is exactly out of phase with 
the input, and so for positive h occur whenever UT is an odd multiple of 
7r, while for negative h even multiples are needed. We present the graphs of 
amplification as a function of frequency for various positive h in Figure 6.4. 

We can generalize our system even further by allowing the addition of 
multiple echoes. Such a system combines the input signal (possibly multi- 
plied by a coefficient) with delayed copies, each multiplied by its own coeffi- 
cient. Concentrating on digital signals, we can even consider having an echo 
from every possible time lag up to a certain maximum delay. 

IH( 

-6 -4 -2 0 2 4 6 

Figure 6.4: Amplitude of the frequency response for the echo system with positive co- 
efficients. The amplitude is plotted as a function of WT. The coefficients are h = 0 (the 
straight line), 0.25,0.5,0.75, and 1.0 (the plot with zeros). 
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yn = hoxn + hlxn-1 + h2xn-2 + l * l + hLxn-L = 

c 
hxn-1 (6.13) 

l=O 
This system goes under many different names, including Moving Average 
(MA) filter, FIR filter, and alZ-xero filter, the reasoning behind all of which 
will be elucidated in due course. The mathematical operation of summing 
over products of indexed terms with one index advancing and one retreating 
is called convolution. 

Now this system may seem awesome at first, but it’s really quite simple. 
It is of course linear (this you can check by multiplying x by a constant, 
and by adding xr + x2). If the input signal is a pure sine then the output 
is a pure sine of the same frequency! Using linearity we conclude that if 
the input signal is the sum of sinusoids of certain frequencies, the output 
contains only these same frequencies. Although certain frequencies may be 
zeros of the frequency response, no new frequencies are ever created. In this 
way this system is simpler than the nonlinear point transformations we saw 
in the previous section. Although limited, the FIR filter will turn out to be 
one of the most useful tools in DSP. 

What should be our next step in our quest for ever-more-complex digital 
signal processing systems? Consider what happens if echoes from the distant 
past are still heard-we end up with a nonterminating convolution! 

Yn = c hl X72-1 (6.14) 
l=-00 

In a real concert hall or cave the gain coefficients hl get smaller and smaller 
for large enough 1, so that the signal becomes imperceptible after a while. 
When an amplifier is involved the echoes can remain finite, and if they are 
timed just right they can all add up and the signal can become extremely 
strong. This is what happens when a microphone connected to an amplifier 
is pointed in the direction of the loudspeaker. The ‘squeal’ frequency de- 
pends on the time it takes for the sound to travel from the speaker to the 
microphone (through the air) and back (through the wires). 

The FIR filter owes its strength to the idea of iteration, looping on all 
input signal values from the present time back to some previous time. 

Yn = 0 
for i=O to L 

Yn + Yn + hlxn-1 
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More general than iteration is recursion, 

Yn = f (Xn, En-17 X7x-27 * * * , Yn-17 Yn-2,. . a) 

and the IIR filter exploits this by allowing yn to be a weighted sum of all 
previous outputs as well as inputs. 

Yn = aox, + alx,-1 + a a ’ + aLXn-L + blY,-1 + b2Yn-2 + * * * + bMYn-M 
L M 

= CalXn-l+ C &Yn-, (6.15) 
l=O m=l 

We see here two convolution sums, one on the inputs and one on the (previ- 
ous) outputs. Although even this system cannot create sinusoids of frequen- 
cies that do not exist in the input at all, it can magnify out of all proportion 
components that barely exist (see exercises). Of course even IIR filters are 
simple in a sense since the coefficients al and bm do not vary with time. 
More complex systems may have coefficients that depend on time, on other 
signals, and even on the input signal itself. We will see examples of such 
systems when we discuss adaptive filters. 

Are these time- and signal-dependent systems the most complex systems 
DSP has to offer? All I can say is ‘I hope not.’ 

EXERCISES 

6.3.1 Prove the following characteristics of the convolution. 

existence of identity s1*6 = Sl 

commutative law s1 * s2 = s2 * Sl 

associative law Sl * (s2 * sg) = (s1 * s2) * s3 

distributive law sr * (~2 + ~3) = (~1 * ~2) * (~1 * ~3) 

6.3.2 We saw that a generalized echo system y(t) = z(t) + hz(t -7) has no zeros in 
its frequency response for lhl < 1; i.e., there are no sinusoids that are exactly 
canceled out. Are there signals that are canceled out by this system? 

6.3.3 Find the frequency response (both amplitude and phase) for the generalized 
echo system. Use the trigonometric identity for the sine of a sum, and then 
convert a sin(&) +b cos(wt) to A sin(wt+$). Check that you regain the known 
result for h = 1. Show that the amplitude is indeed between 1 - 1 hl and 1 + 1 hi. 

6.3.4 Plot the amplitude found in the previous exercise for positive coefficients and 
check that Figure 6.4 is reproduced. Now plot for negative h. Explain. Plot 
the phase found in the previous exercise. Is the system always linear-phase? 
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6.3.5 The digital generalized echo system yn = zn + hxnem can only implement 
an echo whose delay is an integer number of sample intervals t,. How can a 
fractional sample delay echo be accommodated? 

6.3.6 Show that an IIR filter can ‘blow up’, that is, increase without limit even 
with constant input. 

6.3.7 Show that the IIR filter 

Yn = X7-b - UlYn-1 - Yn-2 Yn = 0 for n < 0 

when triggered with a unit impulse xn = Sn,fj can sustain a sinusoid. What 
is its frequency? 

6.3.8 The sound made by a plucked guitar string is almost periodic, but starts 
loud and dies out with time. This is similar to what we would get at the 
output of an IIR system with a delayed and attenuated echo of the output 
yn = xn + gyn-m with 0 < g < 1. What is the frequency response of this 
system? (Hint: It is easier to use xn = eiwn for n > 0 and zero for n < 0, 
rather than a real sinusoid.) 

6.3.9 All the systems with memory we have seen have been causc~l, that is, the 
output at time T depends on the input at previous times t 5 T. What can 
you say about the output of a causal system when the input is a unit impulse 
at time zero? Why are causal systems sensible? One of the advantages of DSP 
over analog signal processing is the possibility of implementing noncausal 
systems. How (and when) can this be done? 

6.4 Characteristics of Systems 

Now that we have seen a variety of signal processing systems, both with 
memory and without, it is worthwhile to note some general characteristics 
a system might have. We will often use operator notation for systems with 
a single input and a single output signal. 

y(t) = Hz(t) A D yn = Hz, (6.16) 

Here H is a system that converts one signal into another, not merely a 
function that changes numbers into numbers. 

A memoryless system is called invertible if distinct input values lead to 
distinct output values. The system yn = 2x, is thus invertible since every 
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finite value of xn leads to a unique yn. Such systems are called invertible 
since one can produce an inverse system H-l such that xn = H-‘y,. For 
the system just mentioned it is obvious that xn = iy,. Since 

Xn = H-ly, = H-lHz, (6.17) 

we can formally write 
H-lH = 1 (6.18) 

where 1 is the identity system. The system yn = xt is noninvertible since 
both xn = -1 and xn = +l lead to yn = +l. Thus there is no system H-l 
that maps yn back to xn. 

The notion of invertibility is relevant for systems with memory as well. 
For example, the simple FIR filter 

Yn=Xn-G-1 

has an inverse system 

Xn =Yn+Xn-1 

which is an IIR filter. Unraveling this further we can write 

Xn = Yn + (yn-1 + Xns2) 

= Yn +Yn-1 +(Yns2 +zns3) 

= yn + yn-1 + Yn-2 + ynm3 +. . . 

and assuming that the input signal was zero for n = 0 we get an infinite 
sum. 00 

Xn = c Yi (6.19) 
i=o 

Inverse systems are often needed when signals are distorted by a system 
and we are called upon to counteract this distortion. Such an inverse system 
is called an equalizer. An equalizer with which you may be familiar is the 
adjustable or preset equalizer for high-fidelity music systems. In order to 
reproduce the original music as accurately as possible, we need to cancel 
out distortions introduced by the recording process as well as resonances 
introduced by room acoustics. This is accomplished by dividing the audio 
spectrum into a small number of bands, the amplification of which can be 
individually adjusted. Another equalizer you may use a great deal, but with- 
out realizing it, is the equalizer in a modem. Phone lines terribly distort data 
signals and without equalization data transmission speeds would be around 
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2400 bits per second. By employing sophisticated adaptive equalization tech- 
niques to counteract the distortion, transmission speeds more than ten times 
faster can be attained. 

In a Section 6.2 we mentioned linearity, although in the restricted context 
of memoryless systems. The definition remains the same in the general case, 
namely 

H(x+y) =Hz+Hy and H(cx) = CHX (6.20) 

that is, H is a linear system if its output, when the input is a sum of two 
signals, is precisely the sum of the two signals that would have been the 
outputs had each signal been inputed to H separately. The second part 
states that when the input is a constant times a signal the output must 
be the constant times the output that would have been obtained were the 
unamplified signal input instead. We have already seen quite a few nonlinear 
systems, such as the squaring operation and the hard limiter. Nonlinear 
systems require special care since they can behave chaotically. We use the 
term chaos here in a technical sense-small changes to the input may cause 
major output changes. 

This last remark leads us to the subject of stability. A system is said 
to be stable if bounded input signals induce bounded output signals. For 
example, the system 

Yn = tan Xn - G 
( > 

is unstable near xn = 0 since the output explodes there while the input is 
zero. However, even linear systems can be unstable according to the above 
definition. For instance, the system 

L 

Yn = c Xl 
2=0 

is linear, but when presented with a constant input signal the output grows 
(linearly) without limit. 

We generally wish to avoid instability as much as possible, although the 
above definition is somewhat constraining. Systems with sudden singularities 
or exponentially increasing outputs should be avoided at all costs; but milder 
divergences are not as damaging. In any case true analog systems are always 
stable (since real power supplies can only generate voltages up to a certain 
level), and digital systems can not support signal values larger than the 
maximum representable number. The problem with this compelled stability 
is that it comes at the expense of nonlinearity. 
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The next characteristic of importance is time-invariance. A system H is 
said to be time-invariant if its operation is not time-dependent. This means 
that applying time delay or time advance operators to the input of a system 
is equivalent to applying them to the output. 

y(t) = Hz(t) - y(t + T) = Hx(t + T) (6.21) 

A time-variant system has some internal clock that influences its behavior. 
For example, 

Yn = (1 + sin(nt)) Xn 

is time-variant, as is any system that is turned on at some time (i.e., that 
has zero output before this time no matter what the input, but output 
dependent on the input after this time). 

The combination of linearity and time invariance is important enough 
to receive a name of its own. Some DSP engineers call a linear and time- 
invariant systems LTI systems, but most use the simpler name filter. 

Definition: filter 
A filter is a system H with a single input and single output signal that is 
both linear (obeys (6.20)) and time-invariant (obeys equation (6.21)). n 

As usual we often deviate from the precise definition and speak of nonlin- 
ear jilters, time-variant filters, and multidimensional filters, but when used 
without such qualifications the term ‘filter’ will be taken to be equivalent to 
LTI. 

We already know about systems with memory and without. The output 
value of a system without memory depends only on the input value at the 
same time. Two weaker characteristics that restrict the time dependence of 
the output are causality and streamability. A system is termed causal if the 
output signal value at time T is only dependent on the input signal values for 
that time and previous times t 5 T. It is obvious that a memoryless system 
is always causal, and it is easy to show that a filter is causal if and only if 
a unit impulse input produces zero output for all negative times. Noncausal 
systems seem somewhat unreasonable, or at least necessitate time travel, 
since they require the system to correctly guess what the input signal is 
going to do at some future time. The philosophical aspects of this dubious 
behavior are explored in an exercise below. Streamable systems are either 
causal or can be made causal by adding an overall delay. For example, neither 
yn = xmn nor gn = x,+1 are causal, but the latter is streamable while the 
former is not. 
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When working off-line, for instance with an input signal that is available 
as a file or known as an explicit function, one can easily implement noncausal 
systems. One need only peek ahead or precompute the needed input values, 
and then place the output value in the proper memory or file location. Ana- 
log systems can realize only causal systems since they must output values 
immediately without peeking forward in time, or going back in time to cor- 
rect the output values. Since analog systems are also required to be stable, 
stable causal systems are called realizable, meaning simply that they may be 
built in analog electronics. Real-time digital systems can realize only stable 
streamable systems; the amount of delay allowed is application dependent, 
but the real-time constraint requires the required delay to be constant. 

EXERCISES 

6.4.1 Find the inverse system for the following systems. If this is in IIR form find 
the FIR form as well (take xn = 0 for n 5 0). 

1. yn = 5, +&p-1 
2. yn = xn - ix,-1 
3. yn = x, -x,-1 -x,-2 

5. yn= Xn + Yn-1 

6. yn =Xn - &a-l+ Yn-1 

6.4.2 What can you say about the FIR and IIR characteristics of inverse systems? 

6.4.3 Which of the following systems are filters? Explain. 1. yn = x,-r + k 

2. Yn = Xn+lXn-1 

3. Yn = Xln 
4. yn=O 
5. Yn = Yn-1 

6.4.4 Show that a filter is causal if and only if its output, when the input is a unit 
impulse centered on time zero, is nonzero only for positive times. 

6.4.5 Show that if two signals are identical up to time t, then the output of a causal 
system to which these are input will be the same up to time t. 

6.4.6 Show that the smoothing operation yn = %(xn + xn-r) is causal while the 
similar yn = $(xn+l + Xn) is not. The system yn = $(xn+i - xn-1) is an 
approximation to the derivative. Show that it is not causal but is streamable. 
Find a causal approximation for the derivative. 

6.4.7 Consider the philosophical repercussions of noncausal systems by reflecting 
on the following case. The system in question outputs -1 for two seconds if 
its input will be positive one second from now, but fl for two seconds if its 
input will be negative. Now feed the output of the system back to its input. 
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6.4.8 Explain why streamable systems can be realized in DSP but not in analog 
electronics. What does the delay do to the phase response? 

6.4.9 The systems yn = xn + a (which adds a DC term) and yn = xi (which 
squares its input) do not commute. Show that any two filters do commute. 

6.4.10 Systems do not have to be deterministic. The Modulated Noise Reference 

Unit (MNRU) system, defined by yn = (1 + lo-%v~) x, (where v is wide- 

band noise) models audio quality degradation under logarithmic companding 
(exercise 6.2.2). Which of the characteristics defined in this section does the 
MNRU have? Can you explain how the MNRU works? 

6.5 Filters 

In the previous section we mentioned that the combination of linearity and 
time invariance is important enough to deserve a distinctive name, but did 
not explain why this is so. The explanation is singularly DSP, linking char- 
acteristics in the time domain with a simple frequency domain interpreta- 
tion. We shall show shortly that the spectrum of a filter’s output signal is 
the input signal’s spectrum multiplied by a frequency-dependent weighting 
function. This means that some frequencies may be amplified, while oth- 
ers may be attenuated or even removed; the amplification as a function of 
frequency being determined by the particular filter being used. For exam- 
ple, an ideal low-pass filter takes the input signal spectrum, multiplies all 
frequency components below a cutoff frequency by unity, but multiplies all 
frequency components over that frequency by zero. It thus passes low fre- 
quencies while removing all high-frequency components. A band-pass filter 
may zero out all frequency components of the input signal except those in 
a range of frequencies that are passed unchanged. 

Only filters (LTI systems) can be given such simple frequency domain 
interpretations. Systems that are not linear and time-invariant can create 
new frequency components where none existed in the input signal. For ex- 
ample, we mentioned at the end of Section 6.2 and saw in exercise 6.2.3 that 
the squaring operation generated harmonics when a sinusoidal signal was 
input, and generated combination frequencies when presented with the sum 
of two sinusoids. This is a general feature of non-LTI systems; the spectrum 
of the output will have frequency components that arise from complex com- 
binations of input frequency components. Just 51s the light emerging from a 
optical filter does not contain colors lacking in the light impinging upon it, 
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just as when pouring water into a coffee filter brandy never emerges, just so 
you can be sure that the output of a signal processing filter does not contain 
frequencies absent in the input. 

Let’s prove this important characteristic of filters. First, we expand the 
input in the SUI basis (as the sum of unit impulses weighted by the signal 
value at that time). 

Xn = fJ Xmb,m 
m=-oo 

Next, using the linearity of the filter H, we can show that 

but since the x, are simply constants multiplying the SUIs, linearity also 
implies that we can move them outside the system operator. 

Co 

Yn = c xrn H&m 
77-L=-M 

Now the time has come to exploit the time invariance. The operation of the 
system on the SUI HS,,, is precisely the same as its operation on the unit 
impulse at time zero, only shifted m time units. The impulse response hn is 
defined to be the response of a system at time n to the unit impulse. 

hn = H&a,0 (6.22) 

For causal systems hn = 0 for n < 0, and for practical systems hn must 
become small for large enough n. So time invariance means HS,,, = h,-, 
and we have found the following expression for a filter’s output. 

00 

Yn = c xmhn-m (6.23) 
m=-00 

For causal filters future inputs cannot affect the output. 

0 

Yn = c xmhn-m (6.24) 
m=-oo 

We have seen this type of sum before! We called it a convolution sum 
and saw in Section 4.8 that its LTDFT was particularly simple. Taking the 
LTDFT of both sides of equation (6.23) and using equation (4.44) we find 

Yk = Hkxk (6.25) 
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which states that the output at frequency k is the input at that frequency 
multiplied by a frequency-dependent factor Hk. This factor is the digital 
version of what we previously called the frequency response H(w). 

Using terminology borrowed from linear algebra, what we have proved 
is that the sinusoids are eigenfunctions or, using more fitting terminology, 
eigensignals of filters. If we allow complex signals we can prove the same for 
the complex sinusoids xn = eiwn . 

EXERCISES 

6.5.1 In exercise 6.3.7 we saw that the system yn = xn - aiyn-1 - yn-2 could 
sustain a sinusoidal oscillation even with no input. Yet this is a filter, and 
thus should not be able to create frequencies not in the input! Explain. 

6.5.2 Show that the system yn = xn+x+ is not a filter. Show that it indeed doesn’t 
act as a filter by considering the inputs xn = sin(wn+$) and xn = cos(wn+$). 

6.5.3 Prove the general result that zn are eigenfunctions of filters. 

6.5.4 Prove the filter property for analog signals and filters. 

6.6 Moving Averages in the Time Domain 

We originally encountered the FIR filter as a natural way of modeling a 
sequence of echoes, each attenuated or strengthened and delayed in time. We 
now return to the FIR filter and ask why it is so popular in DSP applications. 
As usual in DSP there are two answers to this question, one related to the 
time domain and the other to the frequency domain. In this section we delve 
into the former and ask why it is natural for a system’s output to depend 
on the input at more than one time. We will motivate this dependency in 
steps. 

Consider the following problem. There is a signal xn that is known to be 
constant zn = x, and we are interested in determining this constant. We are 
not allowed to directly observe the signal xn, only the signal 

where vn is some noise signal. We know nothing about the noise save that 
its average is zero, and that its variance is finite. 
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Since the noise averages to zero and the observed signal is the sum of the 
desired constant signal and this noise, the observed signal’s average value 
must be x. Our path is clear; we need to average the observed signal 

-J, L-l 

r, c Xl = x 

1=0 

(6.26) 

with the sum approaching z more and more closely as we increase L. For 
finite L our estimate of x will be not be exact, but for large enough L (the 
required size depending on the noise variance) we will be close enough. 

Now let us assume that xn is not a constant, but a slowly varying signal. 
By slowly varying we mean that z, is essentially the same for a great many 
consecutive samples. Once again we can only observe the noisy xn, and are 
interested in recovering 2,. We still need to average somehow, but we can 
no longer average as much as we please, since we will start ‘blurring’ the 
desired nonconstant signal. We thus must be content with averaging over 
several xn values, 

1 L-l 

Yn =- 
L c Xn+l M zn (6.27) 

1=0 
and repeating this operation every j samples in order to track xn. 

Yo Y j 
P 9 7 * * * XL-17 XL7 XL+17 . . . wXzj+l,+L, Xj+L+l, . * * 

We must take j small enough to track variations in xn, while L 2 j must 
be chosen large enough to efficiently average out the noise. Actually, unless 
there is some good reason not to, we usually take L = j precisely. 

Yo YL Y 2L 

io,lc1,- 
A / \ 

. . . XL-l, XL, xL+l, * - l x2&-1, X2L, X2L+1, *a .X3L--l? * ’ * 

Now we assume that xn varies a bit faster. We must reduce j in order to 
track zn sufficiently well, but we cannot afford to reduce L this much unless 
the noise is very small. So why can’t the averaging intervals overlap? Why 
can’t we even calculate a new average every sample? 

Y3 

Y2 

Yl 
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Well, we can; this type of averaging is called a moving average, which is often 
abbreviated MA. The moving average operation produces a new signal V.J~ 
which is an approximation to the original xn. Upon closer inspection we 
discover that we have introduced a delay of $ in our estimates of 2,. We 
could avoid this by using 

1 L 
Yn = 2~ + 1 lzwLxn+l c Xn c (6.28) 

but this requires breaking of causality. 
Our final step is to assume that xn may vary very fast. Using the moving 

average as defined above will indeed remove the noise, but it will also intoler- 
ably average out significant variations in the desired signal itself. In general 
it may be impossible to significantly attenuate the noise without harming 
the signal, but we must strive to minimize this harm. One remedy is to no- 
tice that the above averaging applies equal weight to all L points in its sum. 
We may be able to minimize the blurring that this causes by weighting the 
center of the interval more than the edges. Consider the difference between 
the following noncausal moving averages. 

The latter more strongly emphasizes the center term, de-emphasizing the 
influence of inputs from different times. Similarly we can define longer mov- 
ing averages with coefficients becoming smaller as we move away from the 
middle (zero) terms. 

The most general moving average (MA) filter is 

L 

Yn = c h XTl+l 
1=-L 

(6.29) 

where the coefficients hl need to be chosen to maximize the noise suppression 
while minimizing the signal distortion. If we are required to be realizable we 

0 L 

Yn = c bh-1 = c hl-LXn+l-L 
1=-L l=O 

(6.30) 

although L here will need to be about twice as large, and the output yn will 
be delayed with respect to zn. 



6.7. MOVING AVERAGES IN THE FREQUENCY DOMAIN 231 

EXERCISES 

6.6.1 Experiment with the ideas presented in this section as practical techniques for 
removing noise from a signal. Start with a signal that is constant 1 to which 
a small amount of Gaussian white noise has been added xn = 1 + EU~. Try 
to estimate the constant by adding iV consecutive signal values and dividing 
by N. How does the estimation error depend on E and N? 

6.6.2 Perform the same experiment again only this time take the clean signal to be 
a sinusoid rather than a constant. Attempt to reconstruct the original signal 
from the noisy copy by using a noncausal moving average with all coefficients 
equal. What happens when the MA filter is too short or too long? 

6.6.3 Now use an MA filter with different coefficients. Take the center coefficient 
(that which multiplies the present signal value) to be maximal and the others 
to decrease linearly. Thus for length-three use (a, f , a>, for length-five use 
i(l, 2,3,2, l), etc. Does this perform better? 

6.6.4 Find a noncausal MA differentiator filter, that is, one that approximates 
the signal’s derivative rather than its value. How are this filter’s coefficients 
different from those of the others we have discussed? 

6.6.5 A parabola in digital time is defined by p(n) = on2 + bn + c. Given any three 
signal values x _ 1, xc, x+1 there is a unique parabola that goes through these 
points. Given five values x-2, x-1, x0, x+1, x+2 we can find coefficients a, b 
and c of the best fitting parabola p(n), that parabola for which the squared 
error c2 = (p(-2) -x-2)” + (p(-1) - 2-1)~ + (p(0) -x~)~ + (p(+l) - x+~)~ + 
(p(+2) - x+Z)~ is minimized. We can use this best fitting parabola as a 
MA smoothing filter, for each n we find the best fitting parabola for the 5 
signal values xn-2, x ,+.I, xn, xn+r, xn+2 and output the center value of this 
parabola. Show that the five-point parabola smoothing filter is an MA filter. 
What are its coefficients? 

6.6.6 After finding the best fitting parabola we can output the value of its derivative 
at the center. Find the coefficients of this five-point differentiator filter. 

6.7 Moving Averages in the Frequency Domain 

The operation of an MA filter in the time domain is simple to understand. 
The filter’s input is a signal in the time domain, its output is once again 
a time domain signal, and the filter coefficients contain all the inform& 
tion needed to transform the former into the latter. What do we mean by 
the frequency domain description of a filter? Recall that the operation of a 
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filter on a signal has a simple frequency domain interpretation. The spec- 
trum of a filter’s output signal is the input signal’s spectrum multiplied by 
a frequency-dependent weighting function. This weighting function is what 
we defined in Section 6.3 as the filter’s frequency response. In Section 6.12 
we will justify this identification of the frequency response as the fundamen- 
tal frequency domain description. For now we shall just assume that the 
frequency response is the proper attribute to explore. 

We originally defined the frequency response as the output of a filter 
given a real sinusoid of arbitrary frequency as input. In this section we extend 
our original definition by substituting complex exponential for sinusoid. As 
usual the main reason for this modification is mathematical simplicity; it is 
just easier to manipulate exponents than trigonometric functions. We know 
that at the end we can always extract the real part and the result will be 
mathematically identical to that we would have found using sinusoids. 

Let’s start with one of the simplest MA filters, the noncausal, equally 
weighted, three-point average. 

Yn = 3 ‘(Xn-1 + Xn + &+I) (6.31) 

In order to find its frequency response H(w) we need to substitute 

Xn = e 
iwn 

and since the moving average is a filter, we know that the output will be a 
complex exponential of the same frequency. 

Yn = H(w)eiwn 

Substituting 

Yn = - i ( 
eiw(n-l) + ,iwn + eiw(nfl) 

> ( 
= i ,-iw + 1 + ,iw ,iwn 

> 

we immediately identify 

H(w) = $ (1 + eviw + eiw) = 5 (1 + 2 COS(W)) (6.32) 

as the desired frequency response. If we are interested in the energy at the 
various frequencies, we need the square of this, as depicted in Figure 6.5. 
We see that this system is somewhat low-pass in character (i.e., lower fre- 
quencies are passed while higher frequencies are attenuated). However, the 
attenuation does not increase monotonically with frequency, and in fact the 
highest possible frequency ifs is not well attenuated at all! 
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IH( 

Figure 6.5: The (squared) frequency response of the simple three-point average filter. 
The response is clearly that of a low-pass filter, but not an ideal one. 

At the end of the previous section we mentioned another three-point 
moving average. 

Yn = $&x-l + +Xn + $Xn+l (6.33) 

Proceeding as before we find 

1 Yn = ze i4n--1) + 1 
Ze 

iwn + +iw(nfl) = 
( 

$,-iw + 4 + +eiw> ,iun 

and can identify 

H(w) = (++ + t + $eiu) = f (1 + cos(u)) (6.34) 

a form known as a ‘raised cosine’. 
This frequency response, contrasted with the previous one in Figure 6.6 

is also low-pass in character, and is more satisfying since it does go to zero 
at ifs. However it is far from being an ideal low-pass filter that drops to 
zero response above some frequency; in fact it is wider than the frequency 
response of the simple average. 

What happens to the frequency response when we average over more 
signal values? It is straightforward to show that for the simplest case 

1 L 
Yn = 5xT-i l=-L xn+l c (6.35) 

the frequency response is 
sin( +) 

Lsin(?j) 
(6.36) 
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IH( 

Figure 6.6: The (squared) frequency responses of two simple three-point average filters. 
Both responses are clearly low-pass but not ideal. The average with coefficients goes to 
zero at $ ff, but is ‘wider’ than the simple average. 

IH( 

Figure 6.7: The (squared) frequency responses of simple averaging filters for L = 3,5,7 
and 9. We see that as L increases the pass-band becomes narrower, but oscillations con- 
tinue. 
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Figure 6.8: The (squared) frequency responses of a 16-coefficient low-pass filter. With 
these coefficients the lower frequency components are passed essentially unattenuated, 
while the higher components are strongly attenuated. 

as is depicted in Figure 6.7 for L = 3,5,7,9. We see that as L increases 
the filter becomes more and more narrow, so that for large L only very low 
frequencies are passed. However, this is only part of the story, since even 
for large L the oscillatory behavior persists. Filters with higher L have a 
narrower main lobe but more sidelobes. 

By using different coefficients we can get different frequency responses. 
For example, suppose that we need to pass frequencies below half the Nyquist 
frequency essentially unattenuated, but need to block those above this fre- 
quency as much as possible. We could use a 16-point moving average with 
the following magically determined coefficients 

0.003936, -0.080864, 0.100790, 0.012206, 
-0.090287, -0.057807, 0.175444, 0.421732, 

0.421732, 0.175444, -0.057807, -0.090287, 
0.012206, 0.100790, -0.080864, 0.003936 

the frequency response of which is depicted in Figure 6.8. While some os- 
cillation exists in both the pass-band and the stop-band, these coefficients 
perform the desired task relatively well. 

Similarly we could find coefficients that attenuate low frequencies but 
pass high ones, or pass only in a certain range, etc. For example, another 
simple MA filter can be built up from the finite difference. 

yn = AX, = xn - xn-1 (6.37) 



236 SYSTEMS 

IH(ci$ 

Figure 6.9: The (squared) frequency response of a finite difference filter. With these 
coefficients the lower frequency components are passed essentially unattenuated, while 
the higher components are strongly attenuated. 

It is easy to show that its frequency response (see Figure 6.9) attenuates low 
and amplifies high frequencies. 

EXERCISES 

6.7.1 Calculate the frequency response for the simple causal moving average. 

1 
L-l 

Yn =- 
L c %x-k 

k=O 

Express your result as the product of an amplitude response and a phase 
response. Compare the amplitude response to the one derived in the text for 
equally weighted samples? Explain the phase response. 

6.7.2 Repeat the previous exercise for the noncausal case with an even number of 
signal values. What is the meaning of the phase response now? 

6.7.3 Verify numerically that the 16-point MA filter given in the text has the 
frequency response depicted in Figure 6.8 by injecting sinusoids of various 
frequencies. 

6.7.4 Find the squared frequency response of equation (6.37). 

6.7.5 Find an MA filter that passes intermediate frequencies but attenuates highs 
and lows. 

6.7.6 Find nontrivial MA filters that pass all frequencies unattenuated. 
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6.7.7 The second finite difference A2 is the finite difference of the finite difference, 
i.e., A2xn = A(x, - x,+1) = xn - 2x,- 1 + x,+2. Give explicit formulas 
for the third and fourth finite differences. Generalize your results to the kth 
order finite difference. Prove that yn = Akxn is an MA filter with k + 1 
coefficients. 

6.8 Why Convolve? 

The first time one meets the convolution sum 

x*y= c xi Yk-i 

one thinks of the algorithm 

Given x, y, k 
Initialize: conv +O; i, j 
Loop : 

increment conv by xi yj 
increment i 
decrement j 

and can’t conceive of any good reason to have the two indices moving in 
opposite directions. Surely we can always redefine yj and rephrase this as 
our original MA filter mowing average 

Given x, y 
Initialize : conv + 0; i, j 
Loop : 

increment conv by xi yi 
increment i 

saving a lot of confusion. There must be some really compelling reason for 
people to prefer this strange (or should I say convoluted) way of doing things. 
We will only fully understand why the convolution way of indexing is more 
prevalent in DSP in Section 6.12, but for now we can somewhat demystify 
the idea. 

We’ll start by considering two polynomials of the second degree. 

A(z) = a0 + al x + a2 x2 

B(x) = bo + bl x + b2 x2 
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Their product is easily found, 

A(x)B(x) = uobo + (aoh + a1bo)z + (uobs + Ulbl + azbo)g 

+ (U1b2 + &1)x3 + u2b2 x4 

and the connection between the indices seems somewhat familiar. More gen- 
erally, for any two polynomials 

A(Z) = caixi 
i=o 

B(x) = Ebjxj 
j=O 

we have 

N+M 
Xk = C (U * b)k Xk 

k=O 

and the fundamental reason for these indices to run in opposite directions 
is obvious-the two exponents must sum to a constant! 

Put this way the idea of indices running in opposite directions isn’t so 
new after all. In fact you probably first came across it in grade school. 
Remember that an integer is represented in base- 10 as a polynomial in 10, 
A = Cf/, uilOi (where dA is the number of digits). Thus multiplication of 
two integers A and B is also really a convolution. 

d/i+& 
AB = c (a * b)klok 

k=O 

The algorithm we all learned as long multiplication is simply a tabular device 
for mechanizing the calculation of the convolution. 

AN AN-~ a** Al Ao 
* BN BN-1 **a B1 BO 

BOAN BoAN-~ * ** BoAl BoAo 
&AN &AN-I . . . &A0 

BNAN *** BNA~ BNAO 

C2N cN+l CN c&l l ” cl 
co 
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We now understand why the symbol ‘*’ is used for convolution; there is a 
simple connection between convolution and multiplication! 

Anyone who is comfortable with multiplication of integers and polyno- 
mials is automatically at home with convolutions. There is even a formalism 
for turning every convolution into a polynomial multiplication, namely the x 
transform (see section 4.10). The basic idea is to convert every digital signal 
xn into an equivalent polynomial 

2,-X(d)=x&n 
n 

although it is conventional in DSP to use 2-l instead of d. Then the convo- 
lution of two digital signals can be performed by multiplying their respective 
z transforms. You can think of z transforms as being similar to logarithms. 
Just as logarithms transform multiplications into additions, z transforms 
transform convolutions into multiplications. 

We have seen an isomorphism between convolution and polynomial prod- 
ucts, justifying our statement that convolution is analogous to multiplica- 
tion. There is also an isomorphism with yet another kind of multiplication 
that comes in handy. The idea is to view the signal xn as a vector in N- 
dimensional space, and the process of convolving it with some vector hn as 
an operator that takes xn and produces some new vector yn. Now since linear 
operators can always be represented as matrices, convolution is also related 
to matrix multiplication. To see this explicitly let’s take the simple case of 
a signal xn that is nonzero only between times n = 0 and n = 4 so that 
it is analogous to the vector (x0, xl, x2, x3, x4). Let the filter hn have three 
nonzero coefficients h-1, ho, hl so that it becomes the vector (h-1, ho, hl). 
The convolution y = h * x can only be nonzero between times n = -1 and 
n = 5, but we will restrict our attention to times that correspond to nonzero 
xn. These are given by 

Yo = hoxo + helxl 

Yl = helxO + hoxl + hw1x2 

Y2 = hmlxl + hOx2 + he1x3 

Y3 = hm1x2 + h0x3 + hs1x4 

Y4 = h-lx3 + hox4 



240 SYSTEMS 

and more compactly written in matrix form. 

The matrix has quite a distinctive form, all elements on each diagonal being 
equal. Such a matrix is said to be Toeplitx in structure, and Toeplitz matrices 
tend to appear quite a lot in DSP. 

EXERCISES 

6.8.1 N.G. Kneer, the chief DSP hardware engineer at NeverWorks Incorporated, 
purchases pre-owned DSP processors on an as-is basis from two suppliers, 
Alpha Numerics and Beta Million. From Alpha Numerics one gets a perfect 
lot 30% of the time, but 10% of the time all five chips are bad. Prom Beta one 
never gets a completely bad lot, but only gets a perfect lot 10% of the time. 
In fact, N.G. has come up with the following data regarding the probability 
of k defective chips out of a lot of five. 

k Al, Bk 
0 0.3 0.1 
1 0.2 0.2 
2 0.2 0.4 
3 0.1 0.2 
4 0.1 0.1 
5 0.1 0.0 

In order to reduce his risk, N.G. buys from both suppliers. Assuming he buys 
ten chips, five chips from each, what should he expect to be the distribution 
of defective chips? What is the connection between this and convolution? 

6.8.2 Dee Espy has to purchase 100 DSPs, and decides that she should strive to 
minimize the number of defective chips she purchases. How many should she 
buy from each of the above suppliers? 

6.8.3 Convolve the signal xn = . . . . 0,0,1,1,1,1,1,1,1,1,0,0... with the filter 
h = (1, 1,1) and plot xn, h, and the output yn. Convolve vn with h, resulting 
in y1211n and again this new signal to get yn , etc. Plot 273 = [31 y!?, Yn = y!l? 
y1211,, y1311n, one under the other. What can be said about the effect of this 
consecutive filtering? 
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6.9 Purely Recursive Systems 

In this section we will deal with purely recursive systems, that is systems 
for which gn depends on previous y values and the present xn, but not on 
previous x values. You should know that DSP engineers call such systems 
AutoRegressive (AR) systems, a name coined by G. Udny Yule in 1927. 
The word regression here refers to regression analysis, a well-known statis- 
tical method for finding the relationship of a variable to other variables. 
Yule was studying the number of sunspots observed as a function of time 
and decided to attempt to relate the present sunspot activity to previous 
values of the same quantity using regression analysis. He thus called this 
technique autoregression analysis. We prefer the name ‘purely recursive’ to 
autoregressive, but will nonetheless adopt the prevalent abbreviation ‘AR’. 

For AR systems the output yn is obtained from the input xn by 

M 

Yn = xn + C hyn-m 
m=l 

(6.38) 

and to start up the recursion we have to make some assumption as to earlier 
outputs (e.g., take them to be zero). If the input signal was zero before time 
n = 0 then any causal system will have yn = 0 for all negative n. However, if 
we choose to start the recursion at n = 0 but the input actually preexisted, 
the zeroing of the previous outputs is contrived. 

Let’s return to the problem introduced in Section 6.6 of finding the true 
value of a constant signal obscured by additive noise. Our first attempt was 
to simply average up some large number L of signal values. 

1 L-l 

YL-1 =- L c x1 

I=0 

Were we to determine that L values were not sufficient and we wished to 
try L + 1, we do not have to add up all these values once again. It is easy to 
see that we need only multiply yLL- 1 by L to regain the sum, add the next 
input x~, and divide by the new number of signal values L + 1. 

YL = & WYL-1 + XL) 

This manipulation has converted the original iteration into a recursion 

yL = axL + PYL-I 
1 

wherea= -, 
L p 

L =- 
L+l 
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and we have the relation a! + p = 1. Changing the index to our more usual 
12 we can now write 

Yn = (I- P)Xn + PYn-1 Olp<l (6.39) 

which is of the AR form with A4 = 1. 
The nice thing about equation (6.38) is that it is already suitable for 

rapidly varying signals. We needn’t go through all the stages that lead to the 
MA filter with coefficients; by changing ,8 this AR filter can be set to track 
rapidly varying signals or to do a better job of removing noise from slowly 
varying ones. When ,0 = 0 (corresponding to L = 0) the AR filter output 
yn is simply equal to the input, no noise is averaged out but no bandwidth 
lost either, As p increases the past values assume more importance, and the 
averaging kicks in at the expense of not losing the ability to track the input 
as rapidly. When /3 + 1 (corresponding to infinite L) the filter paradoxically 
doesn’t look at the current input at all! 

Equation (6.39) is similar to the causal version of the moving average 
filter of equation (6.30) in that it moves along the signal immediately out- 
putting the filtered signal. However, unlike the moving average filter, equa- 
tion (6.39) never explicitly removes a signal value that it has seen from its 
consideration. Instead, past values are slowly ‘forgotten’ (at least for ,0 < 1). 
For large p signal values from relatively long ago are still relatively impor- 
tant, while for small p past values lose their influence rapidly. You can think 
of this AR filter as being similar to an MA filter operating on L previous 
values, the times before n - L having been forgotten. To see this, unravel 
the recursion in equation (6.39). 

We see that the coefficient corresponding to xn-1 is smaller than that of 
xn by a factor of ,@, and so for all practical purposes we can neglect the 
contributions for times before some 1. For example, if p = 0.99 and we 
neglect terms that are attenuated by e-l, we need to retain about 100 terms; 
however for ,B = 0.95 only about 20 terms are needed, for p = 0.9 we are 
down to ten terms, and for ,8 = 0.8 to 5 terms. It is not uncommon to use 
p = 0.5 where only the xn and x,.+1 terms are truly relevant, the xn-2 term 
being divided by 4. 

We should now explore the frequency response H(w) of our AR filter. 
Using the technique of Section 6.7 we assume 

Xn = e iwn 
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Figure 6.10: The (squared) frequency response of the simple AR low-pass filter for several 
different values of p. From top to bottom /3 = 0.5,0.6,0.7,0.8,0.9,0.95. 

and since the AR filter is a filter, we know that the output will be a complex 
exponential of the same frequency. 

yn = H(Ld)eiwn 

Substituting from equation (6.40) and using equation (A.47) 

Yn = (1 - ppJn + P(l- pp+l~ + @(I- /q&@-2) + , . . 

= (1 - p> ~(~e-iw)keiwn 
= 

P-i,” 
= (1 - p&w) 

,iwn 

and we immediately identify 

(1 - P> 
H(w) = (1 _ p,-iw) (6.41) 

as the desired frequency response, and 

lW>12 = 
I- 2p + P2 

I - 2Pcos(w) + p2 
(6.42) 

as its square. We plot this squared frequency response, for several values of 
,0, in Figure 6.10. 
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Another useful AR filter is 

Yn = Xn + Yn-1 (6.43) 

which unravels to the following infinite sum: 

00 

Yn =Xn+Xn-1 +X,-2 + . . . = c Xn-m 
m=O 

We can write this in terms of the time delay operator 

y = (1 + 2-l + C2 + * . .)x = Yx 

where we have defined the infinite accumulator operator 

00 

Y Z C ZsmXn 

m=O 
(6.44) 

which roughly corresponds to the integration operator for continuous signals. 
The finite difference A z (1 - z-l ) and the infinite accumulator are related 
through AY = 1 and YA = 1, where 1 is the identity operator. 

What happens when the infinite accumulator operates on a constant 
signal? Since we are summing the same constant over and over again the 
sum obviously gets larger and larger in absolute value. This is what we called 
instability in Section 6.4, since the output of the filter grows without limit 
although the input stays small. Such unstable behavior could never happen 
with an MA filter; and it is almost always an unwelcome occurrence, since 
all practical computational devices will eventually fail when signal values 
grow without limit. 

EXERCISES 

6.9.1 What is the exact relation between ,0 in equation (6.39) and the amount of 
past time r that is still influential? Define ‘influential’ until the decrease is 
by a factor of e -‘. Graph the result. 

6.9.2 Quantify the bandwidth BW of the AR filter as a function of ,!!I and compare 
it with the influence time T. 

6.9.3 Contrast the squared frequency response of the AR filter (as depicted in Fig- 
ure 6.10) with that of the simple averaging MA filter (Figure 6.7). What can 
you say about the amount of computation required for a given bandwidth? 
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6.9.4 Find an AR filter that passes high frequencies but attenuates low ones. Find 
an AR filter that passes intermediate frequencies but attenuates highs and 
lows. 

6.9.5 Calculate the effect of the infinite accumulator operator Y’ on the following 
signals, and then check by generating the first 10 values. 

1. xn = un where un is the unit step of equation (2.4) 
2. xn = (-l)Y& = 1, -l,l, -1,. . . 
3. xn =nu,=0,1,2,3 ,... 
4. xn = anun where Q! # 1 

6.9.6 Apply the finite difference operator to the results obtained in the previous 
exercise, and show that AT = 1. 

6.9.7 Prove that ‘Y’A = 1. (Hint: Prove that the ‘telescoping’ series x1 - x0 + x2 - 
Xl...Un -Un-l=X()+Xn.) 

6.9.8 What is the condition for gn = axn + ,8yn-r to be stable? (Hint: Take a 
constant input xn = 1 and compute yn when n --) XI.) 

6.10 Difference Equations 

We have seen that there are MA filters, with output dependent on the present 
and previous inputs, and AR filters, with output dependent on the present 
input and previous outputs. More general still are combined ARMA filters, 
with output dependent on the present input, L previous inputs, and M 
previous outputs. 

L M 

Yn = Calxn-l+ C bnYn-m (6.45) 
I=0 ?Tl=l 

When M =0 (i.e., all b, are zero), we have an MA filter yn = CfZo alx,-1, 
while L = 0 (i.e., all al = 0 except au), corresponds to the AR filter yn = 

xn + C,M,l bnyn-ma 
To convince yourself that ARMA relationships are natural consider the 

amount of money yn in a bank account at the end of month n, during which 
xn is the total amount deposited (if x n < 0 more was withdrawn than 
deposited) and interest from the previous month is credited according to a 
rate of i. 

Yn = Yn-1 + Xn + i&l--:! 

A slightly more complex example is that of a store-room that at the end 
of day n contains yn DSP chips, after xn chips have been withdrawn from 
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stock that day. The requisitions clerk orders new chips based on the average 
usage over the past two days i (zn + xn-r), but these are only delivered the 
next day. The number of chips in stock is thus given by an ARMA system. 

Yn = Yn-1 - Xn + f(Xn-1 +&z-2) 

Equation (6.45) can also be written in a more symmetric form 

M L 

cp mYn-m = c QlXn-1 (6.46) 
m=O l=O 

where 

w = al po c 1 pm = -bm for m = 1. . . M 

although this way of expressing the relationship between y and x hides the 
fact that yn can be simply derived from previous x and y values. This form 
seems to be saying that the x and y signals are both equally independent, 
but happen to obey a complex relationship involving present and past values 
of both x and y. In fact the symmetric form equally well describes the inverse 
system. 

Xn = Yn - E bmyn-m - f&x,-l 
m=l l=l 

We can formally express equation (6.46) using the time delay operator 

M L 

cp mZBrnyn = C CklZslXn 
m=O l=O 

(6.47) 

and (as you will demonstrate in the exercises) in terms of finite differences. 

5 Bm Arnyn = k& A’xn 
m=O l=O 

(6.48) 

Recalling from Section 2.4 that the finite difference operator bears some 
resemblance to the derivative, this form bears some resemblance to a linear 
differential equation 

M 

cp mY [n-ml (t) = & Qlx[“-ll (t> 
m=O I=0 

(6.49) 

where xLkI is the kth derivative of x(t) with respect to t. For this reason 
ARMA systems are often called &jJerence equations. 
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Derivatives are defined using a limiting process over differences. In DSP 
the time differences cannot be made smaller than the sampling interval T, 
and thus finite differences take the place of differentials, and difference equa- 
tions replace differential equations. 

There are many similarities between differential equations and difference 
equations. The recursion (6.45) is a prescription for generating yn given ini- 
tial conditions (e.g., all xn and yn are zero for rz < 0); similarly solutions 
to differential equations need initial conditions to be specified. The most 
general solution of a difference equation can be written as a solution to the 
equation with zero input xn = 0 and any particular solution with the actual 
input; readers familiar with differential equations know that general solu- 
tions to linear differential equations are obtained from the homogeneous so- 
lution plus a particular solution. Linear differential equations with constant 
coefficients can be solved by assuming solutions of the form y(t) = Aext; 
solutions to linear difference equations can be similarly found by assuming 
Yn = X. n, which is why we have been finding frequency responses by assuming 
yn = elUE all along. 

Differential equations arise naturally in the analysis and processing of 
analog signals, because derivatives describe changes in signals over short 
time periods. For example, analog signals that have a limited number of 
frequency components have short time predictability, implying that only a 
small number of derivatives are required for their description. More complex 
signals involve more derivatives and extremely noisy analog signals require 
many derivatives to describe. Similarly digital signals that contain only a 
few sinusoids can be described by difference equations of low order while 
more complex difference equations are required for high-bandwidth signals. 

EXERCISES 

6.10.1 Difference equations are not the only tool for describing ARMA systems; the 
state-space description explicitly uses the system’s memory (internal state). 
Denoting the input xn, the output yn, and the vector of internal state vari- 
ables at time n by sn, the state equation description relates the output to 
the present input ana system state and furthermore describes how to update 
the state given the input. 

Yn = f ’ 27-t-l + 9% 

Sn+l = ASn + XnC 
-- - 

Relate the state equation parameters f, g, A, and c to those of the ARMA 
= - 

description, a and b. - 
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6.10.2 Devise a circumstance that leads to an ARMA system with L = 2 and M = 2. 
L = 1 and M = 3. 

6.10.3 For any digital signal s, we recursively define AmI, the finite diference of 
order m. 

$1 = Jn-11 - $-;l 
n 

For example, given the sequence an = 2n + 1 we find the following. 

a0 = 1 3 5 7 9 . * * 
al = 2 2 2 2 * . . 
a2 = 0 0 o... 
a3 = 0 0 . . . 
a4 = 0 . * . 

We see here that the second and higher finite differences are all zero. In 
general, when the sequence is of the form sn = cmnm + cm-mm-’ + . . . + 
tin + Q, the m + 1 order finite differences are zero. This fact can be used 
to identify sequences. Find the finite differences for the following sequences, 
and then identify the sequence. 

3 6 9 12 15 18 a.. 
3 6 11 18 27 38 . . . 
3 6 13 24 39 58 . . . 
3 6 17 42 87 158 . . . 
3 6 27 84 195 378 . . . 

6.10.4 Find the first, second, and third finite difference sequences for the following 
sequences. 

1. sn =an 
2. sn = bn2 
3. Sn = cn3 

4. sn = bn2 + an 
5. sn = cn3 + bn2 + an 

6.10.5 Show that if xn = ci aknk then the (L + l)th finite difference is zero. 

6.10.6 Plot the first, second and third differences of sn = sin(27rfn) for frequencies 
f = 0.1,0.2,0.3,0.4. 

6.10.7 UOXn +UlX n-1 can be written Aoxn +ArAs, where al = -Al and uo = A0 + 
Al. What is the connection between the coefficients of acxn+arx,-1 +cQx~-~ 
and Aex,+AiAz,+A2A2~,? What about aOx,+alx,-1+a2x,-2+a3xn-3 
and Aax,+AiAxn+A2A2x,+AsA3x,? Generalize and prove that all ARMA 
equations can be expressed as difference equations. 
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6.11 The Sinusoid’s Equation 

The usefulness of MA and AR filters can be clarified via a simple example. 
The analog sinusoid s(t) = Asin(Slt + 4) not only has a simple spectral 
interpretation, but also obeys the second-order diferential equation 

S(t) + s12s(t) = 0 (6.50) 

commonly called the equation of simple harmonic motion. Indeed this equa- 
tion can be considered to be the defining equation for the family of analog 
sinusoidal signals, and its simplicity can be used as an alternate explanation 
of the importance of these signals. 

In the digital domain we would expect digital sinusoids to obey a second- 
order diference equation. That this is indeed the case can be shown using 
the trigonometric identities (A.23) 

sin 
( 
O(t - 2T)) = sin fit cos 20T - cos i;2t sin 2StT 

= sin SZt (2 cos2 flT - 1) + cos Rt (2 sin RT cos RT) 

= - sin Rt + 2 cos SZT 
( 
2 sin RT cos RT 

> 
= - sin Ot + 2 cos RT sin i2(t - T) 

which can easily be shown to be 

s(t - 2T) - 2cos(S1T)s(t - T) + s(t) = 0 (6.51) 

or in digital form 
Sn + ClSn-1 + C2S7-~-2 = 0 (6.52) 

where cl = -2cosClT and c2 = 1. 
This difference equation, obeyed by all sinusoids, can be exploited in 

several different ways. In the most direct implementation it can be used as a 
digital oscillator or tone generator, i.e., an algorithm to generate sinusoidal 
signals. Given the desired digital oscillation frequency tid, amplitude A, and 
initial phase 4, we precompute the coefficient 

f-2 
Cl = -2 cos flT = -2 cos - = -2 cos f&j 

f 5 
and the first two signal values 

SO = Asin 

Sl = Asin(SZT + 4) = Asin(% -I- 4) 
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where Szd is the digital frequency (we will omit the subscript from here on). 
The difference equations now recursively supply all signal values: 

s2 = - (Wl + so> 

s3 = - (w2 + Sl) 

sq = - (ClS3 + s2) 

and so on. This digital oscillator requires only one multiplication, one ad- 
dition, and one sign reversal per sample point! This is remarkably efficient 
when compared with alternative oscillator implementations such as approxi- 
mation of the sine function by a polynomial, table lookup and interpolation, 
or direct application of trigonometric addition formulas. The main prob- 
lems with this implementation, like those of al purely recursive algorithms, 
are those of accuracy and stability. Since each result depends on the previ- 
ous two, numerical errors tend to add up, and eventually swamp the actual 
calculation. This disadvantage can be rectified in practice by occasionally 
resetting with precise values. 

Another application of the difference equation (6.51) is the removal of an 
interfering sinusoid. Given an input signal xn contaminated with an interfer- 
ing tone at known frequency R; we can subtract the sinusoidal component 
at this frequency by the following MA filter 

Yn = Xn + ClX:,-1 + Xn-2 

where cl is found from Q. The frequency 
an arbitrary complex exponential eiwn 

response is found by substituting 

Yn = e 
iwn _ 2 cos neiw(n-I) + ,iw(n-2) 

= 
( 

1 _ 2 cos ne-iw + ,-2iw 
) 

,iwn 

= e--L eiw 
( 

- 2 cos 0 + emiw > eiun 

= e -iw 
(2 cos w - 2 cos Cl) eiwn 

which can be written in the form yn = H(w)xn. The square of H(w) is 
depicted in Figure 6.11 for digital frequency i. Note that no energy remains 
at the interfering frequency; the system is a notch filter. 

Finally the difference equation (6.52) can be used to estimate the fre- 
quency of a sine buried in noise. The idea is to reverse the equation, and 
using observed signal values to estimate the value of cl. From this the fre- 
quency w can be derived. Were no noise to be present we could guarantee 

X7-t + G-2 
Cl = - 

G-1 
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Figure 6.11: The (squared) frequency response of the MA notch filter set to one-half the 
Nyquist frequency. Note that no energy remains at the notched frequency. 

but with noise this only holds on average 

the second form being that most commonly used. 

EXERCISES 

6.11.1 Show that the signal sn = eqn obeys the equation sn = as,-1 where a = eQ. 

6.11.2 Show that the signal sn = sin(S2n) obeys the equation sn = ars,-1 +azsn-2 
with coefficients ai determined by the equation 1 - alz-’ - CZ~Z-~ = 0 having 
solutions z = efm, 

6.11.3 Show that if a signal is the sum of p exponentials 

P 

sn = 
c 

&y&n 

i=l 

then the equation 1 - ‘& akzek = 0 has roots z = eqi. 

6.11.4 Generalize the previous exercises and demonstrate that the sum of p sines 
obeys a recursion involving 2p previous values. What is the equation and how 
are its coefficients determined? 
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6.12 System Identification-The Easy Case 

Assume that someone brings you a signal processing system enclosed in a 
black box. The box has two connectors, one marked input and the other 
output. Other than these labels there are no identifying marks or documen- 
tation, and nothing else is known about what is hidden inside. What can you 
learn about such a system? Is there some set of measurements and calcula- 
tions that will enable you to accurately predict the system’s output when 
an arbitrary input is applied? This task is known as system identifkation. 

You can consider system identification as a kind of game between your- 
self and an opponent. The game is played in the following manner. Your 
opponent brings you the black box (which may have been specifically fabri- 
cated for the purpose of the game). You are given a specified finite amount 
of time to experiment with the system. Next your opponent specifies a test 
input and asks you for your prediction- were this signal to be applied what 
output would result? The test input is now applied and your prediction put 
to the test. 

Since your opponent is an antagonist you can expect the test input to be 
totally unlike any input you have previously tried (after all, you don’t have 
time to try every possible input). Your opponent may be trying to trick you 
in many ways. Is it possible to win this game? 

This game has two levels of play. In this section we will learn how to 
play the easy version; in the next section we will make a first attempt at 
a strategy for the more difficult level. The easy case is when you are given 
complete control over the black box. You are allowed to apply controlled 
inputs and observe the resulting output. The difficult case is when you are 
not allowed to control the box at all. The box is already hooked up and 
operating. You are only allowed to observe the input and output. 

The latter case is not only more difficult, it may not even be possible 
to pass the prediction test. For instance, you may be unlucky and during 
the entire time you observe the system the input may be zero. Or the input 
may contain only a single sinusoid and you are asked to predict the output 
when the input is a sinusoid of a different frequency. In such cases it is quite 
unreasonable to expect to be able to completely identify the hidden system. 
Indeed, this case is so much harder than the first that the term system 
identification is often reserved for it. 

However, even the easy case is far from trivial in general. To see this 
consider a system that is not time-invariant. Your opponent knows that 
precisely at noon the system will shut down and its output will be zero 
thereafter. You are given until 11:59 to observe the system and give your 
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prediction a few seconds before noon. Of course when the system is tested 
after noon your prediction turns out to be completely wrong! I think you 
will agree that the game is only fair if we limit ourselves to the identification 
of time-invariant systems. 

Your opponent may still have a trick or two left! The system may have 
been built to be sensitive to a very specific trigger. For example, for almost 
every input signal the box may pass the signal unchanged; but for the trigger 
signal the output will be quite different! A signal that is different from the 
trigger signal in any way, even only having a slightly different amplitude 
or having an infinitesimal amount of additive noise, does not trigger the 
mechanism and is passed unchanged. You toil away trying a large variety 
of signals and your best prediction is that the system is simply an identity 
system. Then your opponent supplies the trigger as the test input and the 
system’s output quite astounds you. 

The only sensible way to avoid this kind of pitfall is to limit ourselves to 
linear systems. Linear systems may still be sensitive to specific signals. For 
example, think of a box that contains the identity system and in parallel a 
narrow band-pass filter with a strong amplifier. For most signals the output 
equals the input, but for signals in the band-pass filter’s range the output is 
strongly amplified. However, for linear systems it is not possible to hide the 
trigger signal. Changing the amplitude or adding some noise will still allow 
triggering to occur, and once the effect is observed you may home in on it. 

So the system identification game is really only fair for linear time- 
invariant systems, that is, for filters. It doesn’t matter to us whether the 
filters are MA, AR, ARMA, or even without memory; that can be deter- 
mined from your measurements. Of course since the black box is a real 
system, it is of necessity realizable as well, and in particular causal. There- 
fore from now on we will assume that the black box contains an unknown 
causal filter. If anyone offers to play the game without promising that the 
box contains a causal filter, don’t accept the challenge! 

Our task in this section is to develop a winning strategy for the easy 
case. Let’s assume you are given one hour to examine the box in any way 
you wish (short of prying off the top). At the end of precisely one hour 
your opponent will reappear, present you with an input signal and ask you 
what you believe the box’s response will be. The most straightforward way 
of proceeding would be to quickly apply as many different input signals as 
you can and to record the corresponding outputs. Then you win the game 
if your opponent’s input signal turns out to be essentially one of the inputs 
you have checked. Unfortunately, there are very many possible inputs, and 
an hour is to short a time to test even a small fraction of them. To economize 
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we can exploit the fact that the box contains a linear time-invariant system. 
If we have already tried input x7, there is no point in trying uxn or xnwm, 
but this still leaves a tremendous number of signals to check. 

Our job can be made more manageable in two different ways, one of 
which relies on the time domain description of the input signal, and the 
other on its frequency domain representation. The frequency domain ap- 
proach is based on Fourier’s theorem that every signal can be written as the 
weighted sum (or integral) of basic sinusoids. Assume that you apply to the 
unknown system not every possible signal, but only every possible sinusoid. 
You store the system’s response to each of these and wait for your opponent 
to appear. When presented with the test input you can simply break it down 
to its Fourier components, and exploit the filter’s linearity to add the stored 
system responses with the appropriate Fourier coefficients. 

Now this task of recording the system outputs is not as hard as it appears, 
since sinusoids are eigensignals of filters. When a sinusoid is input to a filter 
the output is a single sinusoid of the same frequency, only the amplitude 
and phase may be different. So you need only record these amplitudes and 
phases and use them to predict the system output for the test signal. For 
example, suppose the test signal turns out to be the sum of three sinusoids 

xn = X1 sin&n) + X2 sin(w2n) + X3 sin@374 

the responses of which had been measured to be 

HI sin(wln + $I>, HZ sin(w2n + +2), and H3 sin(w37-h + 43) 

respectively. Then, since the filter is linear, the output is the sum of the 
three responses, with the Fourier coefficients. 

yn = HlXl sin(wln + 41) + &.X2 sir&n + 42) + H3X3 sin(w3n + 43) 

More generally, any finite duration or periodic test digital signal can be 
broken down by the DFT into the sum of a denumerable number of complex 
exponentials 

1 N-l 

X7-b =- 
N c 

Xkei+h 

k=O 

and the response of the system to each complex exponential is the same 
complex exponential multiplied by a number Hk. 
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Using these Hk we can predict the response to the test signal. 

I N-l 

Yn =- 
c 

i2”kn 

N 
&&e N 

k=O 

The Hk are in general complex (representing the gains and phase shifts) and 
are precisely the elements of the frequency response. A similar decomposition 
solves the problem for nonperiodic analog signals, only now we have to test 
a nondenumerable set of sinusoids. 

The above discussion proves that the frequency response provides a com- 
plete description of a filter. Given the entire frequency response (i.e., the 
response of the system to all sinusoids), we can always win the game of 
predicting the response for an arbitrary input. 

The frequency response is obviously a frequency domain quantity; the 
duality of time and frequency domains leads us to believe that there should 
be a complete description in the time domain as well. There is, and we 
previously called it the impulse response. To measure it we excite the system 
with a unit impulse (a Dirac delta function s(t) for analog systems or a unit 
impulse signal 6,,0 for digital systems) and measure the output as a function 
of time (see equation 6.22). For systems without memory there will only be 
output for time t = 0, but in general the output will be nonzero over an 
entire time interval. A causal system will have its impulse response zero for 
times t < 0 but nonzero for t 2 0. A system that is time-variant (and hence 
not a filter) requires measuring the response to all the SUIs, a quantity 
known as the Green’s function. 

Like the frequency response, the impulse response may be used to predict 
the output of a filter when an arbitrary input is applied. The strategy is 
similar to that we developed above, only this time we break down the test 
signal in the basis of SUIs (equation (2.26)) rather than using the Fourier 
expansion. We need only record the system’s response to each SUI, expand 
the input signal in SUIs, and exploit the linearity of the system (as we 
have already done in Section 6.5). Unfortunately, the SUIs are not generally 
eigensignals of filters, and so the system’s outputs will not be SUIs, and we 
need to record the entire output. However, unlike the frequency response 
where we needed to observe the system’s output for an infinite number of 
basis functions, here we can capitalize on the fact that all SUIs are related by 
time shifts. Exploiting the time-invariance property of filters we realize that 
after measuring the response of an unknown system to a single SUI (e.g., the 
unit impulse at time zero), we may immediately deduce its response to all 
SUIs! Hence we need only apply a single input and record a single response 
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in order to be able to predict the output of a filter when an arbitrary input 
is applied! The set of signals we must test in order to be able to predict 
the output of the system to an arbitrary input has been reduced to a single 
signal! This is the strength of the impulse response. 

The impulse response may be nonzero only over a finite interval of time 
but exactly zero for all times outside this interval. In this case we say the 
system has a finite impulse response, or more commonly we simply call it 
an FIR filter. The MA systems studied in Sections 6.6 and 6.7 are FIR 
filters. To see this consider the noncausal three-point averaging system of 
equation (6.33). 

yn = ix,-1 + fxn + ix,+1 

As time advances so does this window of time, always staying centered on 
the present. What happens when the input is an impulse? At time n = fl 
we find a i multiplying the nonzero signal value at the origin, returning i; 
of course, the n = 0 has maximum output $. At any other time the output 
will be zero simply because the window does not overlap any nonzero input 
signal values. The same is the case for any finite combination of input signal 
values. Thus all the systems that have the form of equation (6.13), which 
we previously called FIR filters, are indeed FIR. 

Let’s explicitly calculate the impulse response for the most general causal 
moving average filter. Starting from equation (6.30) (but momentarily re- 
naming the coefficients) and using the unit impulse as input yields 

L 

Yn = ~dl-L+l,O 
I=0 

= SOSn-L,O +g16n-L+l,O + g2&-L+2,0 + **. +gL-l&--1,0 +gL&z,O 

which is nonzero only when n = 0 or n = 1 or . . . or n = L. Furthermore, 
when n = 0 the output is precisely ho = gL, when n = 1 the output is 
precisely hl = gL-1, etc., until hL = go. Thus the impulse response of 
a general MA filter consists exactly of the coefficients that appear in the 
moving average sum, but in reverse order! 

The impulse response is such an important attribute of a filter that it is 
conventional to reverse the definition of the moving average, and define the 
FIR filter via the convolution in which the indices run in opposite directions, 
as we did in equation (6.13). 

It is evident that were we to calculate the impulse response of the nonter- 
minating convolution of equation (6.14) it would consist of the coefficients 
as well; but in this case the impulse response would never quite become zero. 
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If we apply a unit impulse to a system and its output never dies down to 
zero, we say that the system is Infinite Impulse Response (IIR). Systems of 
the form (6.15), which we previously called IIR filters, can indeed sustain 
an impulse response that is nonzero for an infinite amount of time. To see 
this consider the simple case 

Yn = Xn + ;Yn-1 

which is of the type of equation (6.15). For negative times n the output is 
zero, Yn = 0, but at time zero yc = 1, at time one yi = i and thereafter 
yn is halved every time. It is obvious that the output at time r~ is precisely 
Yn = 2 -+, which for large 72 is extremely small, but never zero. 

Suppose we have been handed a black box and measure its impulse 
response. Although there may be many systems with this response to the 
unit impulse, there will be only one filter that matches, and the coefficients 
of equation (6.14) are precisely the impulse response in reverse order. This 
means that if we know that the box contains a filter, then measuring the 
impulse response is sufficient to uniquely define the system. In particular, we 
needn’t measure the frequency response since it is mathematically derivable 
from the impulse response. 

It is instructive to find this connection between the impulse response 
(the time domain description) and the frequency response (the frequency 
domain description) of a filter. The frequency response of the nonterminating 
convolution system 

00 
Yn = c hixn-i 

i=-00 

is found by substituting a sinusoidal input for xn, and for mathematical 
convenience we will use a complex sinusoid xn = eiwn. We thus obtain 

H(U) xn = yn = 2 hkeiw(n-k) 
k=-co 

00 

= 
c 

hk ,-iwk eiwn 

k=-oo 

= Hk Xn 

(6.53) 

where we identified the Fourier transform of the impulse response hk and 
the input signal. We have once again shown that when the convolution 
system has a sinusoidal input its output is the same sinusoid multiplied 
by a (frequency-dependent) gain. This gain is the frequency response, but 
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here we have found the FT of the impulse response; hence the frequency 
response and the impulse response are an FT pair. Just as the time and 
frequency domain representations of signals are connected by the Fourier 
transform, the simplest representations of filters in the time and frequency 
domains are related by the FT. 

EXERCISES 

6.12.1 Find the impulse response for the following systems. 
1. yn =xn 
2. yn = Xn + Xn-2 +X72-4 

3. yn = Xn + 2X,-1 + 3Xn-2 

4. yn = xi aix,-i 
5. Yn=Xn+Yn-1 

6. Yn = xn + i(yn-1 + yn-2) 

6.12.2 An ideal low-pass filter (i.e., one that passes without change signals under 
some frequency but entirely blocks those above it) is unrealizable. Prove this 
by arguing that the Fourier transform of a step function is nonzero over the 
entire axis and then invoking the connection between frequency response and 
impulse response. 

6.12.3 When determining the frequency response we needn’t apply each sinusoidal 
input separately; sinusoid orthogonality and filter linearity allow us to apply 
multiple sinusoids at the same time. This is what is done in probe signals 
(cf. exercise 2.6.4). Can we apply all possible sinusoids at the same time and 
reduce the number of input signals to one? 

6.12.4 Since white noise contains all frequencies with the same amplitude, applying 
white noise to the system is somehow equivalent to applying all possible 
sinusoids. The white noise response is the response of a system to white 
noise. Prove that for linear systems the spectral amplitude of the white noise 
response is the amplitude of the frequency response. What about the phase 
delay portion of the frequency response? 

6.12.5 The fact that the impulse and frequency responses are an FT pair derives 
from the general rule that the FT relates convolution and multiplication 
FT(x * y) = FT(x)FT(y). P rove this general statement and relate it to the 
Wiener-K hintchine theorem. 

6.12.6 Donald S. Perfectionist tries to measure the frequency response of a system 
by measuring the output power while injecting a slowly sweeping tone of 
constant amplitude. Unbeknownst to him the system contains a filter that 
passes most frequencies unattenuated, and amplifies a small band of frequen- 
cies. However, following the filter is a fast Automatic Gain Control (AGC) 
that causes all Donald’s test outputs to have the same amplitude, thus com- 
pletely masking the filter. What’s wrong? 
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6.13 System Identification-The Hard Case 

Returning to our system identification game, assume that your opponent 
presents you with a black box that is already connected to an input. We 
will assume first that the system is known to be an FIR filter of known 
length L + 1. If the system is FIR of unknown length we need simply assume 
some extremely large L + 1, find the coefficients, and discard all the zero 
coefficients above the true length. 

The above assumption implies that the system’s output at time n is 

Yn = u()xn + a1x 
n-l + @P&-2 + l l * + ULXn-L 

and your job is to determine these coefficients al by simultaneously observing 
the system’s input and output. It is clear that this game is riskier than the 
previous one. You may be very unlucky and during the entire time we observe 
it the system’s input may be identically zero; or you may be very lucky and 
the input may be a unit impulse and we readily derive the impulse response. 

Let’s assume that the input signal was zero for some long time (and the 
output is consequently zero as well) and then suddenly it is turned on. We’ll 
reset our clock to call the time of the first nonzero input time zero (i.e., xn is 
identically zero for n < 0, but nonzero at n = 0). According to the defining 
equation the first output must be 

Yo = a()xo 

and since we observe both x0 and yo we can easily find 

which is well defined since by definition x0 # 0. Next, observing the input 
and output at time n = 1, we have 

Yl = aox + a1xo 

which can be solved 
Yl - a0xl al = 

x0 

since everything needed is known, and once again x0 # 0. 
Continuing in this fashion we can express the coefficient a, at time n in 

terms of ~0.. . xn, 90.. . yn, and ~0.. . an-r, all of which are known. To see 
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this explicitly write the equations 

Yo = aoxo 

Yl = Npl + a120 

Y2 = aox2 + a121 + u2xt-j 

Y3 = aox3 + am + a221 + ~3x0 

Y4 = ~ox4+~lx3+a2x2+a3xl +u4q-) 

and so on, and note that these can be recursively solved 

al = 
Yl - aox 

x0 
Y2 - aox2 - ~1x1 

a2 = 
X0 

Y3 - aoxg - a122 - a2xl 
a3 = 

X0 
Y4 - aox4 - alxg - a222 - aax1 

a4 = 
x0 

(6.54) 

(6.55) 

one coefficient at a time. 
In order to simplify the arithmetic it is worthwhile to use linear algebra 

notation. We can write equation (6.54) in matrix form, with the desired 
coefficients on the right-hand side 

(6.56) 

and identify the matrix containing the input values as being lower triangu- 
lar and Toeplitz. The solution of (6.55) is simple due to the matrix being 

lower triangular. Finding the Ith coefficient requires I multiplications and 
subtractions and one division, so that finding all L + 1 coefficients involves 
LL L + 1) multiplications and subtractions and L + 1 divisions. 2 ( 

The above solution to the ‘hard’ system identification problem was based 
on the assumption that the input signal was exactly zero for n < 0. What 
can we do in the common case when we start observing the signals at an 
arbitrary time before which the input was not zero? For notational simplicity 
let’s assume that the system is known to be FIR with L = 2. Since we 
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need to find three coefficients we will need three equations, so we observe 
three outputs, yn, gn+r and yn+2. Now these outputs depend on five inputs, 
x,-2, x,-r, x,, xn+r, and xn+2 in the following way 

Yn = ao% + al&-l + U2Xn-2 

Yn+l = aoXn+i + al% + QXn-1 (6.57) 

Yn+2 = (Jo%+2 + al%+1 + RG-8 

which in matrix notation can be written 

92 Xn-1 G-2 
Xn+l Xn G-1 (6.58) 

Xn+2 Xn+l Xn 

or in other words y = X a, where X is a nonsymmetric Toeplitz matrix. The - -- - 
solution is obviously a = X-‘y but the three-by-three matrix is not lower 

triangular, and so itsinv=ion is no longer trivial. For larger number of 
coefficients L we have to invert an N = L + 1 square matrix; although most 
direct N-by-N matrix inversion algorithms have computational complexity 
O(N3), it is possible to invert a general matrix in O(N’Og2 7, N O(N2a807) 
time. Exploiting the special characteristics of Toeplitz matrices reduces the 
computational load to O(IV2). 

What about AR filters? 

M 

Yn = xn + C b,y,-, 
m=l 

Can we similarly find their coefficients in the hard system identification 
case? Once again, for notational simplicity we’ll take M = 3. We have three 
unknown b coefficients, so we write down three equations, 

Yn = G-t + hyn-1 + bzyn-2 + b3yn-3 

Yn+l = Xn+l + hyn + hyn-1 + b3yn-2 (6.59) 

Yn+2 = Xn+2 + hyn+l + b2yn + bayn-1 

or in matrix notation 

(g,,)=( 2)’ 
Yn-1 Yn-2 Yn-3 

Yn Yn-1 Yn-2 

lyn+l Yn Yn-1 

(6.60) 
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or simply y = x + Y b. The answer this time is b = Y -’ ( y - x), which once - - -- - - 
again necessitates inverting a nonsymmetric Toeplit; matrix. 

Finally, the full ARMA with L = 2 and &! = 3 

L M 

Yn = xalxn-l+ C bmyn-m 
l=O m=l 

has six unknowns, and so we need to take six equations. 

Yn = aoXn + ai%-1 + a2x n-2+hYn-1 +b2Yn-2+b3Yn-3 

Yn+l = aoXn+i + ai% + a22 n-l+hYn+b2Yn-l+b3Yn-2 

Yn+2 = aoxn+z+alxn+l+aaxn+blyn+l +bzYn+b~Yn--I 

Yn+3 = aoxn+3 + alxn+2 + a2xn+l+ hYn+2 + b2Yn+l+ b3Yn 

Yn+4 = aoxn+4+a1xn+3+a2xn+2+blYn+3+b2Yn+2+b3Yn+l 

Yn+5 = aOxn+5+ alxn+4+a2xn+3+blYn+4+b2Yn+3+b3Yn+2 

This can be written compactly 

’ Yn 
Yn+l 

Yn+2 

Yn+3 

Yn+4 

\ Yn+5 

= 

/ Xn Xn- 1 h-2 Yn-1 Yn-2 h-3 

Xn+l Xn h-1 Yn Yn-1 Yn-2 

X734-2 %+l X72 Yn+l Yn Yn-1 

Xn+3 Xn-k2 Xn+l Yn+2 Yn+l Yn 

xn+4 Xn+3 Xn+2 Yn+3 Yn+2 Yn+l 

\ Xn+5 Xn+4 Xn+3 Yn+4 Yn+3 Yn+2 

f a0 

al 

a2 

bl 

kit 

\ b3 

(6.61) 

and the solution requires inverting a six-by-six nonsymmetric non-Toeplitz 
matrix. The ARMA case is thus more computationally demanding than the 
pure MA or AR cases. 

Up to now we have assumed that we observe xn and yn with no noise 
whatsoever. In all practical cases there will be at least some quantization 
noise, and most of the time there will be many other sources of additive 
noise. Due to this noise we will not get precisely the same answers when 
solving equations (6.58), (6.60), or (6.61) for two different times. One rather 
obvious tactic is to solve the equations many times and average the result- 
ing coefficients. However, the matrix inversion would have to be performed a 
very large number of times and the equations (especially (6.60) and (6.61)) 
often turn out to be rather sensitive to noise. A much more successful tac- 
tic is to average before solving the equations, which has the advantages of 
providing more stable equations and requiring only a single matrix inversion. 
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Let’s demonstrate how this is carried out for the MA case. 

L 

Yn = c akxn-k (6.62) 
k=O 

In order to average we multiply both sides by xn-q and sum over as many 
n as we can get our hands on. 

c Yn%-q = t ak c%-kxn-q 
n k=O n 

We define the x autocorrelation and the x-y crosscorrelation (see Chapter 9) 

c3c(k) = ~&x%-k &z(k) = c %x%-k 
n n 

and note the following obvious symmetry. 

Cx(-k) = Cx(k) 

The deconvolution equations can now be written simply as 

cgx(d = c akC,h - k) 
k 

(6.63) 

and are called the Wiener-Hopf equations. For L = 2 the Wiener-Hopf equa- 
tions look like this: 

Cx(O) Cx(-1) Cx(-2) 
Cx(l> Cx(O) Cx(-1) 

Cx(2) Cx(l) 

and from the aforementioned symmetry we immediately recognize the matrix 
as symmetric Toeplitz, a fact that makes them more stable and even faster 
to solve. 

For a black box containing an AR filter, there is a special case where the 
input signal dies out (or perhaps the input happens to be an impulse). Once 
the input is zero 

Yn = 5 bmYn-m 
??a=1 

multiplying by Yn-q and summing over n we find 

c YnYn-q = 5 bmxYn-mYn-q 
n m=l n 
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in which we identify y autocorrelations. 

F Cdb - alha = C&l) 
m=l 

For M = 3 these equations look like this. 

WV c,(l) c,(2) 

c,(l) c,(O) c,(l) 

c,(2) c,(l) c,(O) 

(6.64) 

These are the celebrated Yule-Walker equations, which will turn up again 
in Sections 9.8 and 9.9. 

EXERCISES 

6.13.1 Write a program that numerically solves equation (6.55) for the coefficients of 
a causal MA filter given arbitrary inputs and outputs. Pick such a filter and 
generate outputs for a pseudorandom input. Run your program for several 
different input sequences and compare the predicted coefficients with the 
true ones (e.g., calculate the squared difference). What happens if you try 
predicting with too long a filter? Too short a filter? If the input is a sinusoid 
instead of pseudorandom? 

6.13.2 Repeat the previous exercise for AR filters (i.e., solve equation (6.60)). If the 
filter seems to be seriously wrong, try exciting it with a new pseudorandom 
input and comparing its output with the output of the intended system. 

6.13.3 In the text we assumed that we knew the order 
the order of the system being identified? 

L and M. How can we find 

6.13.4 Assume that gn is related to xn by a noncausal MA filter with coefficients 
a-M . . . aM. Derive equations for the coefficients in terms of the appropriate 
number of inputs and outputs. 

6.13.5 In deriving the Wiener-Hopf equations we could have multiplied by Y~.-~ to 
get the equations 

k 

rather than multiplying by x+.*. Why didn’t we? 

6.13.6 In the derivation of the Wiener-Hopf equations we assumed that Cz and CYz 
depend on Ic but not n. What assumption were we making about the noisy 
signals? 
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6.13.7 In an even harder system identification problem not only don’t you have 
control over the system’s input, you can’t even observe it. Can the system 
be identified based on observation of the output only? 

6.13.8 Assume that the observed input sequence X~ is white, i.e., that all autocor- 
relations are zero except for CZ(0). What is the relationship between the 
crosscorrelation CPZ(n) and the system’s impulse response? How does this 
simplify the hard system identification task? 

6.14 System Identification in the z Domain 

In the previous section we solved the hard system identification problem 
in the time domain. The solution involved solving sets of linear equations, 
although for many cases of interest these equations turn out to be relatively 
simple. Is there a method of solving the hard system identification problem 
without the need for solving equations? For the easy problem we could in- 
ject an impulse as input, and simply measure the impulse response. For the 
hard problem we extended this technique by considering the input to be the 
sum of SUIs x, = C x,&2 - m and exploiting linearity. Realizing that each 
output value consists of intertwined contributions from many SUI inputs, 
we are forced to solve linear equations to isolate these individual contribu- 
tions. There is no other way to disentangle the various contributions since 
although the SUI basis functions from which the input can be considered to 
be composed are orthogonal’and thus easily separable by projection without 
solving equations, the time-shifted impulse responses are not. 

This gives us an idea; we know that sinusoids are eigenfunctions of fil- 
ters, and that they are mutually orthogonal. Hence the input at w can be 
derived from the output at that same frequency, with no other frequencies 
interfering. We can thus recover the frequency response by converting the 
input and output signals into the frequency domain and merely dividing the 
output at every frequency by the input at that same frequency. 

Y(w) = H(w)X(w) + H(w) = z 
W 

What could be easier? If we wish we can even recover the impulse response 
from the frequency response, by using equation (6.53). So it would seem best 
to solve the easy system identification problem in the time domain and the 
hard problem in the frequency domain. 
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One must be careful when using this frequency domain approach to the 
hard system identification problem. To see why, think of an MA all-pass 
system that simply delays the input by L samples yn = x~-L. Had we 
observed the system when the input was of the form xn = sin(2nF + 4) for 
any k we would conclude that we were observing the identity system yn = x,! 
This mistake is obviously due to the input being periodic and the system 
looking back in time by precisely an integer number of periods; equivalently 
in the frequency domain this input consists of a single line, and thus we can 
only learn about H(w) at this single frequency. The lesson to be learned 
is more general than this simple example. In order to uniquely specify a 
system the input must excite it at all frequencies. There are often frequencies 
for which the system produces no output at all, and based on these we 
certainly would not be able to identify the system. The unit impulse is a 
single excitation that squeezes all possible information out of the system; due 
to orthogonality and the eigenfunction property a single sinusoid contributes 
only an infinitesimal amount of information about the system. 

The frequency response is a great tool for FIR systems, but not as good 
for IIR systems since they may become unstable. When an IIR system’s 
output increases without limit for a frequency w, this is a sign that its fre- 
quency response is infinite there. For example, a typical frequency response 
is depicted in Figure 6.12. As usual, the horizontal axis is from DC to half 
the sampling rate. We see that the frequency response goes to zero for a 
digital frequency of 0.2. This means that when the input is a sinusoid of 

Figure 6.12: The frequency response of an ARMA filter with a zero at frequency 0.2fs 
and a pole at 0.35f,. 
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this frequency there will be no output. We call such frequencies zeros of 
the frequency response. Around digital frequency 0.35 something different 
occurs. Input signals in this region are strongly amplified, and at 0.35 it- 
self the output grows without limit. We recall from Section (4.11) that the 
Fourier transform is not the proper tool to describe this type of behavior; 
the z transform is. 

So let’s see how the zT can be used in system identification. We know 
that the effect of any filter can be expressed as convolution by the impulse 
response y = h t CC, although for non-FIR systems this convolution is in 
principle infinite. In view of the connection between convolution and multi- 
plication (see Section 6.8) we would like somehow to write h = y/x, a process 
known as deconvolution. The zT is the tool that transforms convolutions into 
algebraic multiplications, so we apply it now. 

Similarly to the result for FT and DFT, convolution in the time domain 
becomes multiplication in the z domain 

Y(z) = H(z) X(z) (6.65) 

and this is simple to prove. 

00 

Y(z) = c ynifn 
n=-00 

= C hk C xn-kZsn 
k=-m n=-W 00 = c hkz-k 5 xmfm 
k=-co m=-cm 

= W) X(4 

The z transform of the impulse response h is called the transfer function, 
and this name implies that we can think of the operation of the system as 
transferring X(z) into Y(Z) by a simple multiplication. Of course, thinking of 
2 = reiw, the transfer function is seen to be a generalization of the frequency 
response. Evaluated on the unit circle r = 1 (i.e., z = eiw) the transfer 
function is precisely the frequency response, while for other radii we obtain 
the response of the system to decaying (r < 1) or growing (r > 1) sinusoids 
as in equation (2.12). 
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So the complete solution of the hard system identification problem is 
easy. The transfer function of the system in question is 

Y(4 
w4 = x(z> 

with frequency response obtainable by evaluating H(z) on the unit circle 
2 = eiw and impulse response derivable from the frequency response. 

Let’s use this method to identify a nontrivial system. Assume that the 
unknown system is equation (6.39) with ,B = $ 

Yn = i(Yn-1 + 2,) (6.66) 

and that the input is observed to turn on at n = 0 and is DC from then on 
Xn = Un- Observing the input and output you compose the following table: 

Using the time domain method of equation (6.55) after some work you 
could deduce that the coefficients of the nonterminating convolution are 
h, = ;-@+l) , but some inspiration would still be required before the ARMA 
form could be discovered. So let’s try the zT line of attack. The zTs of the 
input and output are easily 

X(z) = ZT un 

zT 2n+‘-1 
p+i U7-i 

found by using equation (4.63). 

1 
=n ROC Izl > 1 

1 1 =--- 
1 - z-1 :: 1 - iz-l 

= i 

(1 - z-1)(1 - +z-‘) 
ROC Izl > ; 

Now the transfer function is the ratio 

w i 
H(z) = x(z> = 1 _ 4,-l 

so that the difference equation Y(z) = H(z)X(z) is 

( 1 - $z-1) Y(z) = $X(z) 
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which from the meaning of z-l in the time domain is simply 

Yn -- ;Yn-1 = +Xn 

and equation (6.66) has magically appeared! 

EXERCISES 

6.14.1 As we shall learn in Chapter 18, modem signals are distorted by the tele- 
phone lines through which they travel. This distortion can be modeled as a 
filter, and removed by appropriate inverse filtering (equalizing). Can you ex- 
plain why modems transmit known pseudonoise signals during their start-up 
procedures? 

6.14.2 You observe a system when its input consists of the sum of two different 
sinusoids. Find two systems that cannot be distinguished based on this input. 
Do the same for an input composed of M sinusoids. 

6.14.3 What is the transfer function of two systems connected in series (cascaded 
so that y = HOW, w = Hiz)? Of two systems connected in parallel (i.e., so 
that y = Hlx + Hgy)? 

6.14.4 Prove that ARMA systems commute. 

6.14.5 Deconvolution is equivalent to finding the inverse system for a filter. Explain 
how to carry out deconvolution using the transfer function. 

6.14.6 Prove (as in exercise 6.4.1) that the inverse system of an MA filter is AR and 
vice versa. 

6.14.7 Many communication channels both distort the information carrying signal 
by an unknown filter and add nonwhite noise to it. The frequency charac- 
teristics of both the channel filter and the noise can be directly measured 
by inputting a signal consisting of a comb of equidistant sinusoids each with 
known amplitude and phase, and measuring the output at these frequencies. 
The input signal is conveniently generated and the output recovered using 
the DFT. In order to combat noise the procedure should be repeated N times 
and the output averaged. We denote the input in bin k by XI, and the mea- 
sured output at repetition m by Yi”]. Explain how to measure the SNR of 
bin k. 

6.14.8 Continuing the previous exercise, a Frequency EQualizer (FEQ) tries to 
remove the frequency distortion introduced by the channel filter by directly 
multiplying each output Yk by complex number ek in order to recover the 
input XI, = f?!kYk. Explain how to find the FEQ coefficients ek. 

6.14.9 Continuing the previous exercises, the frequency magnitude response lHk12 
(the ratio of the output to input energies) as measured at repetition m is 

(Yy2 
) Him1 I2 = -J+ . Express IHk I2 in terms of ek and SNRk. 

k 
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Bibliographical Notes 

Signal processing systems are treated in all the standard signal processing texts, 
[186, 185, 187, 200, 189, 252, 159, 1671, as well as books specifically on system 
design [126]. 

The word convolution was used as early as 1935 by mathematicians, but seems 
to have been picked up by the signal processing community rather later. Norbert 
Wiener, in his classic 1933 text [277], uses the German Faltung noting the lack of 
an appropriate English-language word. In his later book of the 1940s [278] there is 
a conspicuous absence of the word. Rice, in an influential 1944-45 article on noise 
[220] gives the FT of a product in an appendix, calling the convolution simply ‘the 
integral on the right’. In 1958 Blackman and Tukey [19] use the word convolution 
freely, although they mention several other possible names as well. 

The impulse response, known in other fields as the Green’s function, was first 
published by Green in 1828 [86]. 

Amazingly, the Wiener-Hopf equations were originally derived in the early 1930s 
to solve a problem involving radiation equilibrium in stars [281]. While working on 
defense-related problems during World War II, Wiener discovered that these same 
equations were useful for prediction and filtering. Several years before Eberhard 
Hopf had returned to Nazi Germany in order to accept a professorship at Leipzig 
that had been vacated by a cousin of Wiener’s who had fled Germany after the 
rise of Hitler ([280]). Despite this turn of events Wiener always referred to the 
‘Hopf-Wiener’ equations. 

The great Cambridge statistician George Udny Yule formulated the Yule-Walker 
equations for signals containing one or two sinusoidal components in the late 1920s 
in an attempt to explain the periodicity of sunspot numbers [289]. A few years later 
Sir Gilbert Walker expanded on this work [267], discovering that the autocorrela- 
tions were much smoother than the noisy signal itself, and applying this technique 
to a meteorological problem. 

Otto Toeplitz was one of the founders of operator theory, as well as a great 
teacher and historian of math [21, 141. In operator theory he was one of Hilbert’s 
principle students, emphasizing matrix methods and considering Banach’s methods 
too abstract. In teaching he was a disciple of Felix Klein (who considered group 
theory too abstract). In Bonn he would lecture to packed audiences of over 200 
students, and was said to recognize each student’s handwriting and writing style. He 
indirectly influenced the development of Quantum Mechanics by teaching his friend 
Max Born matrix methods; Born later recognized that these were the mathematical 
basis of Heisenberg’s theory. Toeplitz was dismissed from his university position on 
racial grounds after the Niirnberg laws of 1935, but stayed on in Germany until 
1939 representing the Jewish community and helping minority students emigrate. 
He finally left Germany in 1939, traveling to Jerusalem where he assumed the post 
of scientific advisor to the Hebrew University, a position he held less than a year 
until his death in 1940. 


