
11 

Biological Signal Processing 

At first it may seem a bit unusual to find a chapter on biological signal pro- 
cessing in a book dedicated to digital signal processing; yet this is in reality 
no more peculiar than motivating DSP by starting with the analogous prin- 
ciples of analog signal processing. Indeed the biological motivation should 
be somewhat closer to our hearts (or eyes, ears and brains). In this book we 
have chosen to introduce analog and digital signal processing together, but 
have confined our discussion of biological signal processing to this chapter. 

In the first two sections we examine how we map external signal param- 
eters into internal (biological/psychological) representations. This question 
belongs to the realm of psychophysics, the birth of which we describe. Our 
senses are highly sensitive and yet have a remarkably large dynamic range; 
we would like to understand and emulate this ability. We will see that a 
form of universal compression is employed, one that is useful in many DSP 
contexts. 

The majority of the signals we acquire from the outside world and pro- 
cess in our brains are visual, and much interesting signal processing takes 
place in our visual system. Much has been discovered about the function- 
ing of this system but here we concentrate on audio biological mechanisms 
since the focus of this book is one-dimensional signals. Hearing is the sense 
with the second largest bandwidth, and speech is our primary method of 
communications. We will devote a section each to speech production and 
perception mechanisms. In a later chapter we will study a DSP model of 
speech production that is based on this simplified biology. 

After studying the signal input and output mechanisms we proceed to 
the processing apparatus, namely the brain. We discuss the basic processor, 
the neuron, and compare its architecture with that of processors with which 
we are more familiar. We introduce a simple model neuron and the concept 
of a neural network, and conclude with a performance comparison of man 
vs. machine. 
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11.1 Weber’s Discovery 

Ernst Weber was professor of physiology and anatomy at the university of 
Leipzig in the first half of the nineteenth century. His investigations involved 
the sensitivity of the senses. His initial studies dealt with the tactile sense, 
for example, the effect of temperature, pressure and location on the sense of 
touch. One of his discoveries was that cold objects felt subjectively heavier 
than hot objects of the same weight. 

In his laboratory Weber would study the effect of different stimuli on 
human subjects. In order to measure subjective sensitivity he invented the 
idea of the Just Noticeable Difference (JND), which is the minimal change 
in the physical world that produces a noticeable difference to the subject’s 
senses. For example, he studied the minimal separation required between 
two points of contact with the skin, in order to be noticeable. He found 
that this varied widely, with large separations required on the back while 
very small separations could be distinguished on the fingertips. From this 
he could infer the relative densities of neural coverage. 

In order to study the subjective feeling of weight he defined the JND to 
be the minimal weight that must be added in order for a subject to perceive 
them as different. In a typical experiment (from about 1830) a subject would 
be given two bags of coins to hold, one placed on each hand. Let’s assume 
that there were 29 coins on the left hand and 30 coins on the right. If most 
subjects could reliably report the right-hand bag as heavier than the left, 
Weber would be able to conclude that the threshold was equal or less than 
the weight of a single coin. 

Weber’s most important discovery that the JND varied with total weight. 
Adding a single coin to 29 coins produced a discernible difference, but 59 
coins were indistinguishable from 58. Albeit subjects could reliably and re- 
peatably distinguish between 58 and 60 coins. Likewise, most subjects could 
not reliably feel the difference between 116 coins in one hand and 118 or 119 
in the other, only the addition of 4 coins caused a reliably distinguishable 
effect. Thus the JND definitely increased with increasing total weight. 

Upon closer examination Weber noticed something even more signifi- 
cant. The threshold was a single coin when the total weight was that of 29 
coins, two coins for 58, 4 coins for 116. The conclusion was obvious-the 
ratios (1:29, 2:58, 4:116) were all the same. Weber stated this result as ‘the 
sensitivity of a subject to weight is in direct proportion to the weight itself’, 
which translated into mathematics looks like this. 

AW=KW K x 0.034 
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This means that in order for a change in weight to be noticeable, one has to 
add a specific percentage of the present weight, not an absolute weight value. 

This radically changed the way Weber understood the JND. He set out 
to check the dependence of other sensitivity thresholds on total stimulus 
intensity and found similar relationships. 

AI = KII (11.1) 

In each case the ratio KI, called Weber’s constant, was different, but the 
linear dependence of the JND on total stimulus was universal. 

Although this relationship surprised Weber it really is quite familiar. 
Have you ever lain awake in the middle of the night and heard the ticking of 
a clock or the barking of a distant dog? These sounds are not heard during 
the day when the ambient noise is higher, but seem quite loud at night when 
the total stimulus is low. Yet they must be there during the day even if not 
discernible. It is simply that the addition of the ticking or distant barking to 
the other sounds does not increase the total sound by a sufficient percentage. 

You get out of bed and open the window. You remember how the stars 
were so bright when you were a child, yet seem so dim now. During the day 
you can’t see them at all. Yet they must be there during the day even if 
not discernible. It is simply that with no light from the sun the starlight 
is a more significant fraction of the total stimulus. With the expansion of 
cities and the resulting ‘light pollution’ the stars are disappearing, and one 
has to go further and further out into the countryside in order to see them. 
You close the window and strike a match in the dark room. The entire room 
seems to light up, yet had you struck the same match during the day no 
change in illumination would have been noticed. 

Let’s now consider the sequence of physical values that are perceivably 
different. Think of turning on the radio and slowly increasing the volume 
until you just begin to hear something. You then turn a bit more until you 
notice that the sound has definitely grown louder. Continuing this way we 
can mark the points on the volume control where the sound has become 
noticeably louder. A direct application of Weber’s law tells us that these 
marks will not be evenly spaced. 

Assume for the purpose of argument that the particular stimulus we 
are studying just becomes detectable at one physical unit 10 = 1 and that 
Weber’s constant for this stimulus is a whopping 100%. Then the second 
distinguishable level will be 11 = 2 because any value of I that adds less 
than one unit is indistinguishable from lo. Continuing, we must now add 
KI1 = 2 units to the existing two in order to obtain the third distinguishable 
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level I3 = 4. It is easy to see that Il = 2”, i.e., that the levels of Just 
Noticeable Differences (JNDs) form a geometric progression. Similarly, the 
distinguishable intensity levels for a stimulus that just becomes detectable 
at 10 physical units, and for which Weber’s constant is KI, obey 

Iz = lo(l + &)l (11.2) 

which is an alternative statement of Weber’s law. 
Weber’s law, equation (11.1) or (11.2), has been found to hold, at least 

approximately, for hundreds of different stimuli. Scientists have measured 
the required increase in the length of lines, the amount of salt that must be 
added to soup, and even the extra potency perfume requires. At extremely 
low and high stimuli there are deviations from Weber’s law, but over most 
of the range the linear relationship between threshold and stimulus holds 
astonishingly well. 

EXERCISES 

11.1.1 Try Weber’s coin experiment. Can you measure Weber’s constant? 

11.1.2 Write a computer program that presents a random rectangle on one part of 
the graphics screen, and allows subjects to reproduce it as closely as possible 
somewhere else on the screen. What is K here? 

11.1.3 Allow a subject to listen for a few seconds to a pure sinusoid of constant 
frequency and then attempt to adjust the frequency of a sinusoid to match it. 
What is K here? Repeat the experiment with amplitude instead of frequency. 

11 .1.4 Patterns of dots can be hidden by randomly placing large numbers of dots 
around them. The original pictures stand out if the dots are of different color 
or size, are made to slowly move, etc. Devise an experiment to determine 
different people’s thresholds for detecting patterns in random dot pictures. 

11.2 The Birth of Psychophysics 

Psychophysics is precisely what its name implies, the subject that combines 
psychology and physics. At first, such a combination sounds ridiculous, how 
could there possibly be any relationship between physics, the queen of the 
rationalistic empirical sciences, and psychology, the most subjective and hard 
to predict study? On second thought scientists learn everything they know 
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by observing the world with their senses. So even scientists are completely 
dependent on the subjective in order to arrive at the objective. 

The English philosopher Berkeley was fond of saying ‘esse est percipi’, 
that is, ‘existence is being perceived’. We have all heard the famous conun- 
drum about a tree falling in a forest not making a sound if there is no one 
around to hear it. A physical signal that is not captured by our senses might 
as well not exist. This capturing of physical signals and their translation 
into internal representations is called perception. 

The connection between physical signals and psychological manifesta- 
tions is by no means simple. The cover of this book looks the same in di- 
rect sunlight, under a fluorescent lamp, and by the light of a candle. Your 
mother’s voice sounds the same outside, in a train car, and over the phone. 
Your friend seems the same height when he is standing close to you, when 
he has walked across the street, and even on television. In all these cases the 
physical signals varied widely but the internal psychological representation 
remained the same. Our perception of quite different physical phenomena 
may be the nearly the same. 

Is it possible to say anything quantitative about internal psychologi- 
cal representations? Can feelings be measured? Surely our perceptions and 
thoughts are personal and unobservable to the outside world. How then can 
we talk about representing them quantitatively? Although consideration of 
such questions has convinced many sages to completely reject psychophysics, 
these very same questions can be raised regarding much of modern science. 
We cannot directly observe quarks, electrons, protons, or even atoms, but 
we become convinced of their existence by indirectly perceiving their effects. 
Individual cells cannot be seen, but biologists are convinced of their exis- 
tence. We cannot hold the Milky way galaxy in our hand, yet astronomers 
have deduced its existence. Feelings may not be openly witnessed, but their 
existence may be inferred from psychophysical experiments. 

Notwithstanding the importance and wide applicability of Weber’s law, it 
is not a true psychophysical law. Psychophysical laws should relate external 
physical signals to internal psychological representations. Weber’s law relates 
the intensity threshold AI to the total stimulus I, both of which are physical 
entities. Yet another step is needed to make a true psychophysical law. 

The first direct attempt to quantitatively pin down feelings was made by 
one of Weber’s students, Gustav Theodor Fechner. Fechner initially studied 
medicine, but after graduation was more involved in physics. Weber’s discov- 
eries retriggered his interest in psychophysics. Fechner started studying color 
perception, and later performed a series of experiments on the persistence 
of color after a bright light has been removed. 
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One series of experiments involved viewing sunlight filtered through col- 
ored lenses. Fechner, who acted as his own subject, was tragically blinded 
from the prolonged exposure to direct sunlight. Without his eyesight his 
promising scientific career was finished. Fechner became depressed and took 
up the study of philosophy, religion, and mysticism. His main interest was in 
the so-called ‘body and mind’ problem. Unlike many of his contemporaries, 
Fechner believed that the external physical world and the world as viewed 
internally by the mind were two aspects of one entity. 

Then, in 1850, his eyesight miraculously returned. Fechner was convinced 
that this was a sign that he was to complete the solution to the body and 
mind problem once and for all. His unique background, combining medicine, 
physics, and philosophy, allowed him to make a mental leap that his con- 
temporaries were not able or willing to achieve. The solution came to him 
in what is called a ‘Eureka experience’ while lying in bed on the morning 
of October 22, 1850. The anniversaries of this day are celebrated the world 
over as ‘Fechner day’. 

Fechner’s solution was made up of two parts, a physical part and a 
psychological part. For the physical part Fechner assumed that Weber’s law 
was correct, namely that equation (11.2) regarding the geometric progression 
of JND levels holds. For the psychological part Fechner made the simple 
assumption that all just noticeable changes were somehow equivalent. When 
we feel that the music has become noticeably louder, or that the light has 
become brighter, or the soup just a little saltier, or the joke just noticeably 
funnier, these all indicate an internal change of one unit. 

Fechner invented three different methods of experimentally determin- 
ing the connection between physical and psychological variables. We will 
demonstrate one by considering a scientist sitting on a mountaintop wait- 
ing for the sun to rise. The scientist has brought along nothing save a light 
meter (which measures physical units 1) and a pair of eyes (which regis- 
ter psychological units Y). Sometime before the scientist notices anything 
happening the light meter shows an increase in the illumination. Suddenly 
the scientist perceives the light and records that Y = 0 corresponds to the 
physical reading lo. When the light becomes just noticeably brighter the 
scientist records that Y = 1 corresponds to I1 = Io( 1 + KI). The next event 
is recorded as Y = 2, which corresponds to IQ = 1o(l + Q2. In general 
we see that the scientist’s personal feeling of Y corresponds to a physical 
reading of I’ = Io( 1+ KI)~. We are more interested in knowing the converse 
connection-given the physical event of intensity I, what is the psychological 
intensity Y? It is easy to show that 
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Y=AlogI+B (11.3) 

i.e., that apart from an additive constant that derives from the minimum 
biological sensitivity, the psychological intensity is proportional to the loga- 
rithm of the physical intensity. 

We know that the logarithm is an extremely compressive function. A log- 
arithmic psychophysical connection would explain the fantastic ranges that 
our senses can handle. Under proper conditions we can hear a sound that 
corresponds to our ear drum moving less than the diameter of a hydrogen 
atom, and we can actually see single photons. Yet we can also tolerate the 
sound of a jet engine corresponding to 1012 times the minimum intensity 
and see (for short periods of time as Fechner learned) direct sunlight 15 or- 
ders of magnitude stronger. In order to quantitatively compare two signals 
that may differ by such large amounts we introduce the BeZ (named after 
Alexander Graham), defined as the base 10 logarithm of the ratio of the 
powers of the two signals. In other words, if the power of the second signal 
is greater than that of the first by a factor of ten, we say that it is one Be1 
(1 B) stronger. In turns out that the Be1 is a bit too large a unit for most 
purposes, and so we usually use the decibel (dB), which is ten times smaller. 

Pl d(m) = lOlog g (11.4) 

Since power is the integral of the square of the signal values, if we know RMS 
signal values we can directly compute the difference between two signals. 

Sl d(m) = 2Olog g (11.5) 

The JND for strong sounds is about 0.5 dB, while at the threshold of hearing 
about 3 dB is needed. 

An audio signal’s amplitude is not the only characteristic that is per- 
ceived approximately logarithmically. Humans can hear from about 20 Hz 
(lower than that is felt rather than heard) to over 20 KHz (the precise upper 
limit depending on age). This corresponds to about 10 octaves, each octave 
being a doubling of frequency. Sinusoids separated by whole octaves sound 
similar to us, this fact being the principle behind the musical scale. Inside 
each octave the conventional western (‘well-tempered’) division is into twelve 
chromatic keys, each having frequency ‘$6 higher than the previous one. 
These keys sound to us approximately equally spaced, pointing once again 
to a logarithmic perception scale. 
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The mel (from ‘melody’) frequency scale is designed to correspond to the 
subjective psychophysical sensation of a tone’s pitch. The perceived pitch 
of a 1 KHz tone at 40 dB above the hearing threshold is defined to be 1000 
mels. Equal me1 intervals correspond to equal pitch perception differences; 
under about 1 KHz the me1 scale is approximately linear in frequency, but 
at higher frequencies it is approximately logarithmic. 

M = lOOOlog,(f,,, + 1) 

The Bark (named after the acoustician H.G. Barkhausen) scale approxi- 
mates the natural frequency scale of the auditory system. Psychophysically, 
signals heard simultaneously are perceived as separate sounds when sep- 
arated by one Bark or more since they excite different basilar membrane 
regions. A Bark is about 100 Hz for frequencies under 500 Hz, is about 150 
Hz at 1 KHz, and a full KHz at about 5 KHz. 

1 BarkH, M 25 + 75(1 + 1.4f,2,,)“.6g 

If we divide the entire audio range into nonoverlapping regions of one Bark 
bandwidth we get 24 ‘critical bands’. Both the me1 and Bark scales are 
approximately logarithmic in frequency. 

EXERCISES 

11.2.1 Derive equation (11.3). What is the meaning of A and B? What should be 
the base of the logarithm? 

11.2.2 How long does a tone have to be on for its frequency to be identifiable? 
Experiment! 

11.2.3 The well-tempered scale is a relatively recent invention, having become pop- 
ular with the invention of keyboard-based instruments such as the piano. 
Using a computer with a programmable sound generator, test the difference 
between a linearly divided scale and a well-tempered one. Play a series of 
notes each higher than the previous one by 50 Hz. Do the differences sound 
to same? Play a simple tune on the well-tempered scale and on a linearly 
divided octave scale. Can you hear the difference? Can you describe it? 

11.2.4 Since we perceive sound amplitudes logarithmically, we should quantize them 
on a logarithmic scale as well. Compare the p-law and A-law quantizations 
prevalent in the public telephone system (equations (19.3) and (19.4)) with 
logarithmic response. How are negative values handled? Can you guess why 
these particular forms are used? 
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11.2.5 Two approximations to the Bark warping of frequency are 

B M 13 tanA’(0.76f,,,) + 3.5 tan-’ 

= 7 sinh-‘(f&/0.65) 

while the Mel warping was given in the text. Compare these three empirical 
formulas with true logarithmic behavior cy ln( 1 + z) in the range from 50 Hz 
to 5 KHz. 

11.2.6 Recent research has shown that Fechner’s law is only correct over a certain 
range, failing when the stimuli are either very weak or very strong. Stevens 
proposed a power law Y = ICI” where k and n are parameters dependent 
on the sense being described. Research Stevens’ law. For what cases does 
Stevens’ law fit the empirical data better than Fechner’s law? 

11.2.7 Toward the end of his life Fechner studied aesthetically pleasing shapes. Write 
a program that allows the user to vary the ratio of the sides of a rectangle 
and allow a large number of people to find the ‘nicest’ rectangle that is 
not a square. What ratio do people like? (This ratio has been employed in 
architecture since the Greeks.) 

11.3 Speech Production 

In this section we introduce the biological generation mechanism for one of 
the most important signals we process, namely human speech. We give a 
quick overview of how we use our lungs, throats, and mouths to produce 
speech signals. The next section will describe speech perception, i.e., how 
we use our ears, cochlea, and auditory nerves to detect speech. 

It is a curious fact that although we can input and process much more 
visual information than acoustic, the main mode of communications between 
humans is speech. Wouldn’t it have been more efficient for us to communicate 
via some elaborate sign language or perhaps by creating rapidly changing 
color patterns on our skin? Apparently the main reason for our preferring 
acoustic waves is their long wavelengths and thus their diffraction around 
obstacles. We can broadcast our speech to many people in different places; we 
can hear someone talking without looking at the mouth and indeed without 
even being in the same room. These advantages are so great that we are 
willing to give up bandwidth for them; and speech is so crucial to the human 
race that we are even willing to risk our lives for it. 
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To understand this risk we have to compare our mouth and throat re- 
gions with those of the other primates. Comparing the profile of a human 
with that of a chimpanzee reveals that the chimpanzee’s muzzle protrudes 
much further, while the human has a longer pharynx (throat) and a lower 
larynx (voice box). These changes make it easy for the human to change 
the resonances of the vocal cavity, but at the expense of causing the respi- 
ratory and alimentary tracts to overlap. Thus food can ‘go down the wrong 
way’, impeding breathing and possibly even leading to death by choking. 
However, despite this importance of spoken communication, the speech gen- 
eration mechanism is still basically an adapted breathing and eating appa- 
ratus, and the speech acquisition mechanism is still essentially the acoustic 
predator/prey detection apparatus. 

It is convenient to think of speech as being composed of a sequence of ba- 
sic units called phonemes. A phoneme is supposed to be the smallest unit of 
speech that has independent meaning, and thus can be operationally defined 
as the minimal amount of speech that if replaced could change the mean- 
ing of what has been said. Thus b and k are distinct phonemes in English 
(e.g., ‘book’ and ‘cook’ have different meanings), while 1 and r are indis- 
tinguishable to speakers of many oriental languages, b and p are the same 
in Arabic, and various gutturals and clicks are not recognized by speakers 
of Latin-based languages. English speakers replace the French or Spanish r 
with their own because the originals do not exist in English and are thus 
not properly distinguished. Different sources claim that there are between 42 
and 64 phonemes in spoken English, with other languages having typically 
between 25 and 100. Although the concept of a phoneme is an approxima- 
tion to the whole story, we will posit speech generation and perception to 
be the production and detection of sequences of phonemes. 

Speech generation commences with air being exhaled from the lungs 
through the ‘trachea’ (windpipe) to the ‘larynx’ (voice box). The ‘vocal 
cords’ are situated in the larynx. While simply breathing these folds of 
tissue are held open and air passes through them unimpeded, but when 
the laryngeal muscles stretch them taut air must pass through the narrow 
opening between the cords known as the ‘glottis’. The air flow is interrupted 
by the opening and closing of the glottis, producing a periodic series of 
pulses, the basic pulse rate being between 2.5 and 20 milliseconds. The 
frequency corresponding to this pulse interval is called the pitch. The tighter 
the cords are stretched, the faster the cycle of opening the cords, releasing the 
air, and reclosing, and so the higher the pitch. Voice intensities result from 
the pressure with which the expelled air is forced through the vocal cords. 
The roughly triangular-shaped pulses of air then pass into the vocal tract 
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consisting of the ‘pharynx’ (throat), mouth cavity, tongue, lips, and nose 
and are finally expelled. There are two door-like mechanisms that prohibit 
or allow air to flow. Two passages proceed downward from the pharynx, 
the ‘esophagus’ (food pipe) and trachea. The ‘epiglottis’ separates the two 
by closing the air passage during swallowing. In addition, air can enter the 
nasal tract only when the ‘velum’ is open. 

The air pulses exiting the vibrating vocal cords can be thought of as a 
signal with a basic periodicity of between 50 and 400 Hz (typically 50-250 
for men, 150-400 for women) but rich in harmonics. Thus the spectrum 
of this signal consists of a set of equally spaced lines, typically decreasing 
in amplitude between 6 and 12 dB per octave. Because of its physical di- 
mensions, the vocal tract resonates at various frequencies called formants, 
corresponding to the length of the throat (between 200 and 800 Hz), length 
of the nasal passage (500-1500 Hz), and size of the mouth between throat 
and teeth (1000-3000 Hz). These resonances enhance applicable frequen- 
cies in the glottal signal, in the manner of a set of filters. The result is the 
complex waveform that carries the speech information. The spectrum thus 
consists of a set of lines at harmonics of the pitch frequency, with amplitudes 
dependent on the phoneme being spoken. 

The vocal cords do not vibrate for all speech sounds. We call phonemes 
for which they vibrate voiced while the others are unvoiced. Vowels (e.g., a, e, 
i, o, u) are always voiced unless spoken in a whisper, while some consonants 
are voiced while others are not. You can tell when a sound is voiced by 
placing your fingers on your larynx and feeling the vibration. For example, 
the sound s is unvoiced while the sound z is voiced. The vocal tract is the 
same in both cases, and thus the formant frequencies are identical, but z 
has a pitch frequency while s doesn’t. Similarly the sounds t and d share 
vocal tract positions and hence formants, but the former is unvoiced and 
the latter voiced. When there is no voicing the excitation of the vocal tract 
is created by restricting the air flow at some point. Such an excitation is 
noise-like, and hence the spectrum of unvoiced sounds is continuous rather 
than discrete. The filtering of a noise-like signal by vocal tract resonances 
results in a continuous spectrum with peaks at the formant frequencies. 

The unvoiced fricatives f, s, and h are good examples of this; f is gener- 
ated by constricting the air flow between the teeth and lip, s by constricting 
the air flow between the tongue and back of the teeth, and h results from a 
glottal constriction. The h spectrum contains all formants since the excita- 
tion is at the beginning of the vocal tract, while other fricatives only excite 
part of the tract and thus do not exhibit all the formants. 
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Nasal phonemes, such as m and n, are generated by closing the mouth 
and forcing voiced excitation through the nose. They are weaker than the 
vowels because the nasal tract is smaller in cross sectional area than the 
mouth. The closed mouth also results in a spectral zero, but this is not well 
detected by the human speech recognition apparatus. Glides and liquids, 
such as w and 1, are also voiced but weaker than vowels, this time because 
the vocal tract is more closed than for vowels. They also tend to be shorter in 
duration than vowels. Stops, such as b and t, may be voiced or unvoiced, and 
are created by first completely blocking the vocal tract and then suddenly 
opening it. Thus recognition of stops requires observing the signal in the 
time domain. 

We have seen that all phonemes, and thus all speech, can be created by 
using a relatively small number of basic building blocks. We need to create an 
excitation signal, either voiced or unvoiced, and to filter this signal in order 
to create formants. In 1791, Wolfgang von Kempelen described a mechanical 
mechanism that could produce speech in this fashion, and Charles Wheat- 
stone built such a device in the early 1800s. A bellows represented the lungs, 
a vibrating reed simulated the vocal cords, and leather pipes performed as 
mouth and nasal passages. By placing and removing the reed, varying the 
cross-sectional area of the pipes, constricting it in various places, blocking 
it and releasing, etc., Wheatstone was able to create intelligible short sen- 
tences. Bell Labs demonstrated an electronic synthesizer at the 1939 World’s 
Fair in New York. Modern speech synthesizers are electronic and comput- 
erized, digitally creating the excitation and filtering using methods of DSP. 
We will return to this subject in Section 19.1. 

EXERCISES 

11.3.1 What are the main differences between normal speaking 
whispering, singing, and shouting on the other? 

on the one hand and 

11.3.2 Why do some boys’ voices change during adolescence? 

11.3.3 Match the following unvoiced consonants with their voiced counterparts: t, 
s, k, p, f, ch, sh, th (as in think), wh. 

11.3.4 Simulate the speech production mechanism by creating a triangle pulse train 
of variable pitch and filtering with a 3-4 pole AR filter. Can you produce 
signals that sound natural? 

11.3.5 Experiment with a more sophisticated software speech synthesizer (source 
code may be found on the Internet). How difficult is it to produce natural- 
sounding sentences? 
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11.4 Speech Perception 

The human ear along with the human brain are a most impressive sound 
receiver. We can actually detect sounds that are so weak that the air pressure 
density fluctuations are less than one billionth of the average density. These 
sounds are so weak that the ear drum moves only about the diameter of a 
single hydrogen atom! But we can also hear very strong sounds, sounds so 
strong that the ear drum moves a millimeter. The frequency range of the ear 
is also quite remarkable. Not only can we hear over ten octaves (our visual 
system is sensitive over only about one octave), most people can distinguish 
between 998 Hz and 1002 Hz, a difference of a few parts per thousand. Piano 
tuners tune to within much better than this by using beat frequencies. Even 
the most tone deaf can easily distinguish a great variety of timbres, which 
are effects of lack of sinusoidality. 

Sound perception commences with sound waves impinging on the outer 
ear, and being funneled into the ‘auditory canal’ toward the middle ear. The 
sound waves are amplified as they progress along the somewhat narrowing 
canal, and at its end hit the ‘tympanic membrane’ or eardrum and set it into 
vibration. The physical dimensions of the outer ear also tend to band-pass 
the sound waves, enhancing frequencies in the range required for speech. 
The eardrum separates the outer ear from the middle ear, which is a small 
air-filled space, with an opening called the ‘Eustachian tube’ that leads 
to the nasal tract. The Eustachian tube equalizes the air pressure on both 
sides of the eardrum, thus allowing it to vibrate unimpeded. A chain of three 
movable bones called ‘ossicles’ (and further named the ‘hammer’, ‘anvil’ and 
‘stirrup’) traverses the middle ear connecting the eardrum with the inner ear. 
The vibrations of the eardrum set the hammer ossicle into motion, and that 
in turn moves the anvil and it the stirrup. The vibrations are eventually 
transmitted to a second membrane, called the ‘oval window’, which forms 
the boundary between the middle and inner ear. Since the base of the stirrup 
is much smaller than the surface of the eardrum, the overall effect of this 
chain of relay stations is once again to amplify the sound signal. 

Prom the oval window the vibrations are transmitted into a liquid-filled 
tube, coiled up like a snail, called the ‘cochlea’. Were the cochlear tube to 
be straightened out it would be about 3 centimeters in length, but coiled up 
as a 2$- to 3-turn spiral it is only about 0.5 cm. The cochlea is divided in 
half along its length by the ‘basilar membrane’, and contains the organ of 
Corti; both the basilar membrane and the ‘organ of Corti’ spiral the length 
of the cochlea. Vibrations of the oval window excite waves in the liquid in the 
cochlea setting the basilar membrane into mechanical vibration. Were we to 
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straighten the cochlea out we would observe that its width tapers from about 
a half-centimeter near the oval window to very small at its apex; however, 
the basilar membrane is stiff near the oval window and more flexible near 
the apex. Combined, these two characteristics make the basilar membrane 
frequency selective. High frequencies cause the basilar membrane to vibrate 
most strongly near the oval window, and as the frequency is lowered the 
point of strongest vibration moves along the length of the basilar membrane 
toward the apex of the cochlea. 

The organ of Corti transduces the mechanical vibrations into electric 
signals. It has about 15,000 sensory receptors called ‘hair cells’ that contact 
the basilar membrane and stimulate over 30,000 motion sensitive neurons 
that create electric pulses that are transmitted along the auditory nerve to 
the brain. There are two types of hair cells, three rows of ‘outer’ hair cells 
and one row of ‘inner’ hair cells. Motion of the basilar membrane moves the 
hair cells back and forth causing them to release neurotransmitter chemicals 
that cause auditory neurons to fire. Since different parts of the membrane re- 
spond to different frequencies, auditory neurons that are activated by inner 
hair cells that contact a particular location on the basilar membrane respond 
mainly to the frequency appropriate to that location. Complex sounds acti- 
vate the basilar membrane to different degrees along its entire length, thus 
creating an entire pattern of electric auditory response. Similarly the outer 
hair cells are intensity selective, different sound intensities stimulate different 
hair cells and create different neuron activity patterns. 

We can roughly describe the operation of the cochlea as a bank of filters 
spectral decomposition with separate gain measurement. As different sounds 
arrive at the inner ear the hair cell response changes creating a varying 
spatial representation. The neural outputs are passed along the auditory 
nerve toward the cortex without disturbing this representation; the spatial 
layout of the neurons in the nuclei (groups of nerve cells that work together) 
closely resembles that of the hair cells in the inner ear. Indeed in all nuclei 
along this path tonotopic organization is observed; this means that nearby 
neurons respond to similar frequencies, and as one moves across the nucleus 
the frequency of optimal response smoothly varies. 

The auditory nerve from each ear feeds a cochlear nucleus in the au- 
ditory brainstem for that ear. From both cochlear nuclei signals are sent 
both upward toward the primary auditory cortex and sideways to the supe- 
rior olivary complex, from which they proceed to the pathway belonging to 
the opposite ear. This pathway mixing enables binaural hearing as well as 
mechanisms for location and focus. 
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What about the auditory cortex itself? We started the previous section 
by contrasting the vocal tracts of the human with those of other primates, 
yet the difference in our brain structure between ourselves and the apes is 
even more remarkable. The human brain is not the most massive of any 
animal’s, but our brain mass divided by body mass is truly extraordinary, 
and our neocortex is much larger than that of any other animal. There 
are two cortical regions that deal specifically with speech, Broca’s area and 
Wernicke’s area, and these areas are much more highly developed in humans 
than in other species. Broca’s area is connected with motor control of speech 
production apparatus, while Wernicke’s area is somehow involved in speech 
comprehension. 

To summarize, the early stages of the biological auditory system perform 
a highly overlapped bank of filters spectral analysis, and it is this represen- 
tation that is passed on to the auditory cortex. This seems to be a rather 
general-purpose system, and is not necessarily the optimal match to the 
speech generation mechanism. For example, there is no low-level extraction 
of pitch or formants, and these features have to be derived based on the 
spectral representation. While the biology of speech generation has histor- 
ically had a profound influence on speech synthesis systems, we are only 
now beginning to explore how to exploit knowledge of the hearing system in 
speech recognition systems. 

EXERCISES 

11.4.1 Experiment to find if the ear is sensitive to phase. Generate combinations of 
evenly spaced sines with different phase differences. Do they sound the same? 

11.4.2 Masking in the context of hearing refers to the psychophysical phenomenon 
whereby weak sounds are covered up by stronger ones at nearby frequencies. 
Generate a strong tone at 1 KHz and a weaker one with variable frequency. 
How far removed in frequency does the tone have to be for detection? Atten- 
uate the weaker signal further and repeat the experiment. 

11.4.3 Sit in a room with a constant background noise (e.g., an air-conditioner) and 
perform some simple task (e.g., read this book). How much time elapses until 
you no longer notice the noise? 

11.4.4 Go to a (cocktail or non-drinking) party and listen to people speaking around 
the room. What effects your ability to separate different voices (e.g. physical 
separation, pitch, gender, topic discussed)? 

11.4.5 Have someone who speaks a language with which you are unfamiliar speak 
a few sentences. Listen carefully and try to transcribe what is being said as 
accurately as you can. How well did you do? 
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11.4.6 Talk to someone about speech recognition and then quickly ask ‘Do you know 
how to wreck a nice peach?‘. Ask your partner to repeat what you just said. 
What does this prove? 

11.4.7 Most of the time and energy of the speech signal is spent in the vowels, and 
hence the speech perception mechanism performs best in them. But do vowels 
carry most of the information? You can find out by performing the following 
experiment. Select several sentences at random from this book. From each 
sentence create two character strings, one in which all consonants are replaced 
by question marks, and one in which all vowels are. Now present these strings 
to subjects and ask them to fill in the blanks. What are your findings? 

11.4.8 Explain the possible mechanisms for acoustic source location. Take into ac- 
count the width of the head, the fact that localization is most accurate for 
high-frequency sounds with sharp attack times, and the idea that the head 
will absorb some sounds casting an acoustic shadow (about 3 dB at 500 
Hz, 20 dB at 6 KHz). How is height determined? Devise a neurobiologically 
plausible model for a time-of-arrival crosscorrelator. 

11.4.9 Simulate the sound perception mechanism by building a bank of overlapping 
band-pass filters (at least 100 are needed) and graphically displaying the 
output power with time as horizontal axis and filter number as vertical axis. 
Test by inputting a sinusoid with slowly varying frequency. Input speech and 
try to segment the words on the graphic display. 

11.5 Brains and Neurons 

The human brain is certainly a remarkable computer and signal processor. 
We have seen above how it can communicate with other brains using audio 
frequency waves in the air by coercing the mouth (an organ developed for 
eating and breathing) to broadcast messages and obliging the ear (originally 
for detecting predators and prey) to capture these messages. It can also com- 
municate by using the hands to write and eyes to read; it can process visual 
information at high speed, recognizing human faces and familiar objects in 
real time; it can instruct the hands to manipulate objects, and enable the 
body to avoid obstacles and navigating in order to get to wherever it wants. 
The brain can use tools, create new tools, find rules in complex phenomena; 
it can write music and poetry, do mathematical calculations, learn to do 
things it didn’t know how to do previously. It can even create new thinking 
machines and signal processing machines that excel in areas where it itself 
is limited. 
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This section contains a short introduction to the brain’s hardware archi- 
tecture. Our purpose is not the study the brain’s physiology per se; rather 
we wish to understand its prominent features in order to gain inspiration 
that may lead to the building of better signal processing and computing 
machines. In the following section we will introduce artificial neural net- 
works, which are models that attempt to capture the essential properties 
of the brain’s computational architecture and are used both to explain the 
functioning of the biological brain and to solve practical problems. 

The brain as an organ had been studied by the ancients, and by the 
mid-nineteenth century it was known that certain well-defined areas of the 
brain were responsible for specific functions such as speech. It was Santiago 
Ramon y Cajal who first convincingly demonstrated, in the latter half of 
the 1880s that the brain is not simply a large mass of fibers, but a vast 
number of richly interconnected brain cells, which we call ‘neurons’. Using 
a cell staining technique earlier developed by Camillo Golgi (with whom he 
shared the 1906 Nobel prize for Physiology or Medicine) he both observed 
neurons and mapped their anatomy. 

Neurons are a specialized type of cell, of which there are over 10 billion 
( lOlo) in the human brain. Prom a functional point of view we can roughly 
categorize neurons into three classes, namely ‘sensory neurons’ (such as those 
in the retina of the eye that are sensitive to light), ‘motor neurons’ (e.g., those 
which activate and control the motion of our fingers), and ‘higher processing 
neurons’ (those in the neocortex). We will discuss mainly the last of these 
categories, but even of these neurobiologists have discovered many different 
varieties, such as pyramidal cells, Golgi cells, spiny stellate cells, smooth 
stellate cells, interneurons, etc. Our description will be so simplified that 
the differences between these various varieties will be unimportant. 

The classical processing neuron, depicted schematically in Figure 11.1, 
is made up of three anatomical structures-the ‘soma’, the ‘axons’, and the 
‘dendritic tree’. The soma is the cell body and is responsible for the process- 
ing itself. The dendrites supply inputs to the neuron, while the axon carries 
the neuron’s output. We can think of the neuron as a simple processing ele- 
ment that inputs multiple signals (about lo* to lo5 is typical) and outputs 
a single signal. 

What kind of signals are input and output? The interior of a neuron 
is usually electrically negative relative to the outside, due to the cell mem- 
brane selectively passing ions from inside the cell outward and from outside 
inward. The membrane’s electric potential is not constant however, and its 
behavior as a function of time can be viewed as a signal. Perhaps the most 
significant type of behavior is the ‘action potential’. This is a very fast event, 
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axon 

Figure 11.1: A highly schematic diagram of the classic higher processing neuron. The 
dendrites at the left are the inputs, the axon at the right is the output, and the processing 
is performed by the soma. 

occupying about a millisecond, although afterward slow oscillations can oc- 
cupy a further 100 milliseconds. The event itself starts with the membrane 
potential becoming even more negative than usual followed by short sign 
reversal. This spike can travel along the neuron’s axon without decrease 
in amplitude; this propagation is not like electric current in a conductor, 
rather it is due to the axon being made of active material with each sec- 
tion exciting the next to spike. Due to the all-or-none nature of the action 
potential we will usually refer to the neuron as ‘firing’ if it has developed 
an action potential, or ‘quiescent’ if it has not. After a spike there is an 
‘absolute refractory period’ during which the neuron cannot fire again, and 
a ‘relative refractory period’ during which the neuron is less susceptible to 
spiking. Although rates of several hundred spikes per second are possible, 
more typical frequencies are on the order of 10 Hz. 

A ‘synapse’ is formed where one neuron touches and influences another. 
While there are other possibilities we will discuss synapses formed by the 
axon of the presynaptic neuron touching a dendrite of the postsynaptic neu- 
ron. At the synapse the two cell membranes touch but cellular material does 
not indiscriminately flow between the cells, the influence of the presynaptic 
potential being indirect. For example, in chemical synapses a presynaptic 
spike causes a transmitter substance to be released that changes the post- 
synaptic membrane permeability. Synapses may be ‘excitatory’, meaning 
that the firing of the presynaptic neuron increases the probability of the 
postsynaptic neuron firing as well; or ‘inhibitory’ if that firing decreases the 
postsynaptic neuron’s chance of firing. 
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No single neuron is really that significant; only the ‘network’ of myriad 
neurons is of consequence. Each neuron’s dendrites are contacted by axons 
of other neurons, and its own axon contacts, in turn, many other neurons. 
Thus the emerging picture is that of a huge number (about lOlo) of neurons, 
each firing or quiescent. The decision whether to fire is made in the soma, 
based on the input from all the (about 105) neurons that make synapses 
upon its dendrites. Once fired the action potential rapidly propagates from 
the soma down the axon to influence the firing of yet more (about 105) 
neurons. 

Neurons in contact need not be physically close, nor do physically close 
neurons need to be in direct contact. Thus in our quest to understand brain 
function we are led to consider large areas of brain matter. The brain is 
highly organized, with specific locales responsible for specific functions, and 
various task geometries mapped onto brain geometries. As early as 1861, 
Paul Broca described a patient who had lost his ability to speak although 
he did understand spoken language. After the patient’s death he tied this 
to a lesion in a specific position in the brain, now called Broca’s area. Hubel 
and Wiesel earned the 1981 Nobel prize in medicine for their description 
of the early visual system. They discovered formations they called hyper- 
columns. The neurons in each hypercolumn respond to lines in certain areas 
of the visual field, with nearby hypercolumns responding to lines in nearby 
locations. As one travels along a hypercolumn the angle of the detected line 
slowly rotates. These facts and more lead us to conclude that the entire brain 
is a large interconnected network of neurons that can be broken down into 
task-specific subnetworks that are tightly connected with other subnetworks. 

Since the days of Cajal and Golgi, neurobiologists have studied in depth 
the characteristics of single isolated neurons, and although much progress 
has been made, this study does not seem to lead to any deep explanation of 
brain function. Others have studied the larger-scale structure of the brain 
and discovered the mappings between function and specific areas of the 
brain, but even this immensely valuable information explains where but not 
how or why. In order to gain insight into the connection between the brain’s 
anatomy and its function it is necessary to simplify things. 

EXERCISES 

11.5.1 The central nervous system is composed of the spinal cord, the brain stem, the 
cerebellum, the midbrain, and the left and right hemispheres of the neocortex. 
What are the functions of these different components? How do we know? 
What creatures (reptiles, mammals, primates) have each component? 
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11.5.2 In addition to neurons the brain also contains glia cells; in fact there are 
more glia than neurons. Why did we focus on neurons and neglect glia cells 
in our explanation? 

11.5.3 There are many morphologies other than the classical model described in 
this section. For example, there are neurons with no axon or many axons, 
synapses may occur between two axons, or between two dendrites, or even 
on the cell body. Research several such variations. What is the function of 
these cells? 

11.5.4 Research the Nobel prize-winning contribution of Hubel and Wiesel to the 
understanding of the neurons in the mammalian visual system. What are 
simple cells, complex cells, and hypercomplex cells? What is a hypercolumn 
and how are the cells arranged geometrically? 

11.6 The Essential Neural Network 

The single neuron does not perform any significant amount of computa- 
tion; computation is performed by large collections of neurons organized 
into ‘neural networks’. The term ‘neural network’ is actually misleading; the 
concept is not that of a network that has neural characteristics, but simply 
a network Of neurons. Perhaps the term should be ‘neuron network’, but the 
original term has become entrenched. By association, other collections of 
interconnected processors, including ones we can make ourselves, are often 
called neural networks as well. However, the term is only fitting when the 
collection of processors is somehow inspired by the brain. A LAN of per- 
sonal computers is a collection of interconnected processors that would not 
normally be considered a neural network. 

When does a collection of processors become a neural network? Any 
definition we give will be subjective, and probably the number of different 
definitions equals the number of people working in the field. However, there 
are a number of requirements that most researchers would agree upon. My 
own definition goes something like this. 

Definition: neural network 
A neural network is a large set of simple, richly interconnected processing 
units that exhibits collective behavior after learning. D 

There must be a large number of processors, at least in the hundreds, 
reach the before we leave the more conventional ‘parallel processing’ and 
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regime where collective behavior is meaningful. The individual neuron must 
be simple, performing one basic operation like calculating the dot product of 
its input with stored weights, or finding the distance between its input and 
a stored pattern. We definitely don’t want to depend on multifunctional, 
highly precise, processors here. Some people would require nonlinearity of 
the neuron’s operation, but we will be lax in this regard. To make up for 
the simplicity of the individual processor, and to exploit the large number of 
processors, we want them to be richly interconnected. Conventional parallel 
processing techniques prefer to connect processors to nearest neighbors on 
a grid or with hypercubic geometry. Biological networks may not be fully 
interconnected, but the connectivity is quite high. 

The robustness to failure of conventional computers is infinitesimal. Were 
one to remove a randomly selected circuit from a personal computer or even 
simply cut a randomly selected conductor, the probability of total system 
failure is very high. This should be contrasted with the brain which loses 
large numbers of neurons daily without serious performance degradation. 
How is this robustness obtained? 

A clue is the fundamentally different methods of storing information in 
the two competing architectures. The conventional computer uses Location 
Addressable Memory (LAM) wherein information is stored in a particular 
location. In order to retrieve this information the location must be known. 
The brain uses content addressable memory (CAM). For example, once an 
image is stored we can present it and ask whether it is a known image. A 
generalization of this idea is associative memow, by which we mean that 
we can present an image and ask if there is a stored picture that is similar 
(the association). In this fashion we can recognize a friend’s face even with 
sunglasses and a different hair cut. 

We can now try to piece the puzzle together. The real motive for the high 
connectivity of neural networks is to obtain collective behavior, also called 
self-organization and related to distributed representations. Were each mem- 
ory to be stored, as in an LAM, in a specific neuron or definite small set of 
neurons, then failure of that neuron would wipe out that memory. Instead it 
seems plausible that memories are stored as eigenstates of the entire network. 
The mechanism that brings this about is spontaneous collective behavior, 
or self-organization. 

Learning refers to the method of introducing memories and storing pro- 
cedures. Conventional computers must be laboriously programmed; each 
new task requires expensive and time-consuming outside intervention. Brains 
learn from experience, automatically adapt to changing environments, and 
tend to be much more forgiving to ‘bugs’. 
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EXERCISES 

11.6.1 Which of the following are neural networks according to the definition given 
in the text? 

1. transistors on the substrate of an integrated circuit 
2. arithmetic registers in a microprocessor 
3. CPUs in a parallel processing environment 
4. cells in the spinal column 
5. neurons in an aplysia 

11.6.2 By introspection, make a rough order-of-magnitude estimate of the amount 
of information (in bits) passed to the brain by the various senses. For vision, 
for example, estimate the size of the main field of vision, the pixel density, 
the dynamic range, and the number of pictures transferred per second. Based 
on the above estimates, how much information must the brain store in a day? 
A year? A lifetime? The brain contains about lOlo neurons. Does the above 
estimate make sense? 

11.7 The Simplest Model Neuron 

In this section we will consider a simple model neuron. This model does not 
do justice to the real biological neuron. Even using a single model, no matter 
how complex, is a gross simplification. Real neurons have complex time- 
dependent properties that we will completely ignore in this simple model; 
and the functioning of our model will be a mere caricature of the real thing. 

So why should we attempt to model the neuron? An analogy is useful 
here. The reader will remember the ideal gas law PV = ?&BT, which re- 
liably relates the pressure, volume and temperature for a large number of 
gases. This law is only approximate, and indeed it breaks down at very high 
pressures or a temperatures close to the condensation temperature of the 
particular gas. However, it is a good approximation for a very large number 
of gases over a large regions of P, V, and T, and furthermore corrections 
can be added to better approximate the actual behavior. The ideal gas law 
can be derived in statistical physics from the microscopic behavior of the gas 
molecules under the assumption that they are essentially ping pong balls. 
By this we mean that the gas molecules are assumed to be small spheres 
of definite size, which only interact with other molecules by colliding with 
them. Upon collision the molecules change their velocities as colliding ping 
pong balls would. Using techniques of statistical physics, which is a math- 
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ematical formalism designed to derive macroscopic ‘average’ laws from the 
behavior of huge numbers of simple particles, the ideal gas can be derived. 

No-one really believes that the gas molecules are ping pong balls. They 
are definitely not spheres of well-defined radius-they are composed of a 
nucleus with protons and neutrons surrounded by electron ‘clouds’. They 
definitely do not interacting like ping pong balls-there are electromagnetic 
fields that act at a distance and the dynamics is inherently quantum me- 
chanical. So why does the ideal gas law work? 

The answer is that it doesn’t. When the pressure is high or the tem- 
perature low, the molecules are close together and the model breaks down 
miserably. The gas condenses into a liquid, and the temperature at which 
this happens is different for different gases. But for a large range of pa- 
rameters the most important thing is that there are a very large number of 
molecules that interact only weakly with the others, except for short periods 
of time when they are close. Thus any model that obeys these constraints 
will give approximately the same behavior, so we might as well pick the 
easiest model to work with. Since the ping pong ball model is the simplest 
to handle mathematically, it is the natural starting point. 

Let’s return to the neuron. There is a large variety of types, and each is 
an extremely complex entity; but we believe that as a first approximation 
the most important features are the huge number of neurons, and the fact 
that these are so richly interconnected. In the spirit of statistical physics 
we search for the simplest ‘ping pong ball’ model of a neuron. This is the 
McCulloch-Pitts model, first proposed in the early 1940s. 

The McCulloch-Pitts neuron was originally designed to show that a sim- 
ple neuron-like device could calculate logical functions such as AND and OR. 
The neuronal output is calculated by comparing a weighted linear combina- 
tion (convolution) of the inputs to a threshold. Only if the linear combination 
is above the threshold will the neuron fire. Such a function is often called a 
linear threshold function. 

In order to state this description mathematically, we must introduce 
some notation. The output of the neuron under consideration will be called 
0, while its N inputs will be called Ij with j = 1. . . N. At this early stage 
the neural computation community already divides into two rival camps. 
Both camps represent the neuron firing as 0 = +l, but one uses 0 = 0 
for quiescence, while the other prefers 0 = -1. The synaptic efficacy of 
the connection from input j will be represented by a real number Wj. For 
excitatory synapses Wj > 0, while for inhibitory ones Wj < 0. The absolute 
value of wj is also important since not all inputs affect the output in the 
same measure. If Wj = 0 then the input does not affect the output at all 
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(there is no synapse). If 1 lVj 1 is large then the effect of this input is significant, 
while small IVV” 1 means the input only marginally affects the output. 

The linear combination of the McCulloch-Pitts neuron means that the 
cell’s potential is assumed to be 

N 

h=CWjIj 
j=l 

(11.6) 

and the neuron will fire when this potential surpasses the threshold potential 
required to excite an action potential 8. Using the 0,l representation we can 
write 

O=O(h-8)=@ (11.7) 

where 0 is the step function. With the fl representation we write 

0= sgn(h - 0) = I (11.8) 

where the Signum function sgn returns the sign of its argument. Note that 
the meaning of this latter equation is somewhat different from the previous 
one; here neurons that are not firing also contribute to the sum. 

The McCulloch-Pitts neuron is the simplest possible neuron model. The 
inputs are combined in a simple deterministic way. The decision is made 
based on a simple deterministic comparison. The summation and comparison 
are instantaneous and time-independent. Yet this completely nonbiological 
formal neuron is already strong enough to perform nontrivial computations. 
For example, consider the following image processing problem. We are pre- 
sented with a black-and-white image, such as a fax, that has been degraded 
by noise. The classic DSP approach would be to filter this binary-valued 
image with a two-dimensional low-pass filter, which could be implemented 
by averaging neighboring pixels with appropriate coefficients. This would 
leave a gray-scale image that could be converted back to a black-and-white 
image by thresholding. This combination of the linear combination of input 
pixels in neighborhoods followed by thresholding can be implemented by a 
two-dimensional array of McCulloch-Pitts neurons. This same architecture 
can implement a large variety of other image processing operators. 

What is the most general operation a single linear threshold function 
can implement? For every possible input vector the McCulloch-Pitts neuron 
outputs 0 or 1 (or &l). Such a function is called a ‘decision function’ or 
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a dichotomy. Thinking of the 2N possible input configurations as points in 
N-dimensional space, the linear combination is obviously the equation for 
a N - l-dimensional hyperplane, and the thresholding separates the inputs 
that cause positive output (which are all on one side of the hyperplane) 
from the others. Thus we see that the threshold linear function implements 
linearly separable dichotomies. 

This is only a tiny fraction of all the dichotomizations we might need to 
use. If this were all neuron models could do, they would find little practical 
use. The modern reincarnation of neural networks exploits such architectures 
as the multilayer perceptron (see Section 8.4), which broaden the scope of 
implementable dichotomies. In fact, feedforward networks of neurons can 
implement arbitrarily complex functions. 

How does the brain learn the weights it needs to function? Hebb proposed 
a principle that can be interpreted at the neuron level in the following way. 

Theorem: Hebb’s Principle 
The synaptic weight increases when the input to a neuron and its output 
tend to fire simultaneously. Using the notation W..j for the weight that con- 
nects presynaptic neuron sj with postsynaptic neuron si, 

Wij + Wij + ASiSj (11.9) 

where the si are either 0,l or 33. n 

This form, where weights are updated accordingly to a constant times 
the product of the input and output, strongly reminds us of the LMS rule, 
only there the product is of the input and error. However, this difference 
is only apparent since if the postsynaptic neuron fires si = +l when it 
shouldn’t have the error is 1 - (-1) = 2 while in the opposite case the error 
is -1 - (+l) = -2 and the difference is only a factor of two that can be 
absorbed into A. The true difference is that the desired si can only take on 
the discrete values (0,l or &l); so rather than converging to the true answer 
like LMS, we expect a neuron-motivated adaptation algorithm to eventually 
attain precisely the right answer. The first such algorithm, the ‘perceptron 
learning algorithm’ was actually discovered before the LMS algorithm. It 
can be shown to converge to an answer in a finite number of steps, assuming 
there is an answer to the problem at hand. 

The problem with the perceptron learning algorithm is that it does not 
readily generalize to the more capable architectures, such as the multilayer 
perceptron. The most popular of the modern algorithms is based on a variant 
of LMS. 
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EXERCISES 

11.7.1 One can convert 0,l neurons into fl neurons by using the transformation 
S -+ 2s - 1. Show that equations (11.7) and (11.8) are equivalent by thus 
transforming the Ij and finding transformations for Wj and 8. 

11.7.2 Show that AND and OR gates of in-degree N can be implemented using 
McCulloch-Pitts neurons. That is, specify Wj and 8 such that the neuron 
will fire only if all inputs fire, or if at least one input fires. 

11.7.3 Draw and label the possible input configurations of a three-input linear 
threshold function as vertices of a cube. Show graphically which dichotomies 
can be implemented with zero threshold. 

11.7.4 Extend the results of the previous problem to general McCulloch-Pitts neu- 
rons (nonzero threshold) . 

11.7.5 The McCulloch-Pitts neuron can be used as a signal detection mechanism. 
Assume we wish to detect a signal s, of N samples and report the time that it 
appears. One builds a neuron with N continuous inputs and weights precisely 
Wj = sj. We then have the input flow past the neuron, so that at any time 
the neuron sees N consecutive inputs. Consider the fl representation and 
show that the PSP will be maximal when the required signal is precisely 
lined up with the neural inputs. How should the threshold be set (take noise 
and false alarms into account)? To what signal processing technique does this 
correspond? 

11.7.6 Extend the results of the previous exercise to image recognition. Would such 
an approach be useful for recognition of printed characters on a page? If not 
why not? What about cursive handwriting? 

11.7.7 Discuss the use of McCulloch-Pitts neurons for associative memory. 

11.7.8 What is the difference between Hebb’s principle for 0,l neurons and f 1 
neurons? 

11.8 Man vs. Machine 

Now that we have a basic understanding of the brain’s computational archi- 
tecture we can attempt a quantitative comparison between the brain and the 
conventional computer. The pioneers of the modern computer were aware 
of the basic facts of the previous section, and were interested in eventually 
building a brain-like device. However, the prospect of lOlo parallel process- 
ing elements was quite daunting to these early computer engineers, who thus 
compromised on a single processing element as a kind of first approximation. 
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Surprisingly, by making this one processing element faster and more pow- 
erful, this computer evolved into a completely different architecture, quite 
powerful in its own right. Only now, with computer speeds approaching the 
absolute limits that physics imposes, is parallel processing being once again 
seriously considered; but even now when computer engineers talk about par- 
allel processing they are referring to small numbers of CPUs, such as two, 
four, or eight. A comparison of the human brain to a conventional com- 
puter, based on the information of the last few sections, is to be found in 
Table 11.1. 

processors 
processor 

complexity 
processor 

speed 
inter-processor 

communications 
learning mode 

failure 
robustness 

memory 
organization 

Brain 
x 10 billion neurons 
(massively parallel) 
simple 
inaccurate 
slow 
(millisec) 
fast 

bsf4 
learn from experience 
many neurons die 
without drastic effect 
content addressable 
(CAM) 

Computer 
1 CPU 
(intrinsically serial) 
complex 
accurate 
fast 
(nanosec) 
slow 
(millisec) 
manual programming 
single fault often 
leads to svstem failure 
location addressable 
(LAM) 

Table 11.1: A quantitative and functional comparison of the human brain and a serial 
processing computer. 

The term architecture as applied to computers was invented to describe 
all the aspects of the computer’s hardware that software must take into ac- 
count. Two computers of identical architectures but different speeds can be 
uniquely compared as to strength-if the clock speed of one is twice that of 
the other, every program will run on it twice as fast. Two computers of sim- 
ilar, but not identical architectures are not uniquely comparable, and thus 
different programs will run at slightly different speed-up ratios. The more 
the architectures differ, the greater will be the divergence of the benchmark- 
ing results. This does not mean that we cannot say that a supercomputer 
is stronger than a desktop computer! There is another way to define the 
concept of ‘stronger’. 



454 BIOLOGICAL SIGNAL PROCESSING 

Many engineering workstations today come with software emulations of 
personal computer environments. These emulations can run actual applica- 
tions designed for the personal computer by emulating that entire platform 
in software. When a PC program is input to the emulation, all the PC op- 
codes must be read and interpreted and the required operation precisely 
simulated by an appropriate workstation command or routine. Were the 
program to run on the workstation emulation faster than on the target PC, 
we would be justified in concluding that the workstation is stronger than 
the PC, even though their architectures are dissimilar. Can we make such a 
comparison between the conventional computer and the brain? 

To answer this question definitively we require an estimate as to the 
number of computers required to emulate a human brain at the hardware 
level. Prom the previous section we know that to emulate the simplest pos- 
sible neuron, we would have to carry out N multiplications and accumu- 
late operations (see Section 17.1) every ‘clock’ period. Here the number of 
synapses N = lo5 and the clock period is about 5 milliseconds, and so a sin- 
gle neuron would require at least 2107 MACs per second, and lOlo neurons 
would require over 21017 MAC/ sec. Assuming even an extremely fast CPU 
that could carry out a MAC in 5 nanoseconds, we would require 10’ such 
computers in parallel to simulate a single human brain! 

So the brain is equivalent to 1 gigacomputer! This sounds quite impres- 
sive, even without taking the small physical size and low power requirements 
into account. Now let’s ask the converse question. How many humans would 
be required to emulate this same 5 nanosecond computer? Even assuming 
that a human could carry out the average operation in five seconds (and it 
is doubtful that many of us can perform an arbitrary 16-bit multiplication 
in this time, let alone 32-bit divisions) the computer would have carried out 
log operations in this same 5 seconds, and so we would need 10’ humans 
in parallel to emulate the computer! So the computer is equivalent to a 
gigahuman as well. 

How could these comparisons have turned out so perverse? The reason 
is that the underlying architectures are so very different. In such a case 
cross-emulation is extremely inefficient and direct comparison essentially 
meaningless. Certain benchmarking programs will run much faster on one 
machine while others will demonstrate the reverse behavior. The concept of 
‘stronger’ must be replaced with the idea of ‘best suited’. 

Thus when two quite different computational architectures are avail- 
able and a new problem presents itself, the would-be solver must first ask 
‘Which architecture is more suited to this problem?‘. Although it may in- 
deed be possible to solve the problem using either architecture, choosing the 
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wrong one may make the solution extremely inefficient or even unsolvable in 
practice. For example, were we required to calculate the 137th root of a SO- 
digit number, I believe that most readers would agree that the conventional 
number-crunching computer is more suited to the task than the human (or 
chimpanzee). However, when the problem is the understanding of spoken 
language, the reading of cursive handwriting, or the recognition of faces, the 
architecture of the brain has proved the more viable. Indeed for these tasks 
there is at least an existence proof for a neural network solution, but none 
has yet been proffered for the serial computer! 

Despite the above argument for neural computation, the neural network 
approach has had only limited success so far. Optical Character Recognition 
(OCR) engines based on neural networks have indeed eclipsed other tech- 
nologies, yet progress on speech recognition has been slow. At least part of 
the fault lies in the size of network we can presently build, see Figure 11.2. 
Our largest systems seem to be on the level of a mentally retarded mosquito! 
We are forced to conclude that our previous ‘existence proof’ for neural so- 
lutions to ASR, OCR, face recognition, and other problems is contrived at 
best. The only way our present-day artificial neural networks will be able 
to solve practical problems is by being more efficient than biology by many 
orders of magnitude. 

connections 
set 
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0 human 
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Figure 11.2: The speed and complexity of various neural networks. The horizontal axis 
is the number of synapses in the network, a number that determines both the information 
capacity and the complexity of processing attainable. The vertical axis is the number of 
synaptic calculations that must be performed per second to emulate the network on a 
serial computer, and is an estimate of the network’s speed. 
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EXERCISES 

11.8.1 The ‘expert system’ approach to artificial intelligence is based on the tenet 
that anything a human (or other rational agent) can do a standard computer 
can be programmed to do. Discuss the veracity and relevance of this hypoth- 
esis. What types of problems have been solved using expert systems? What 
AI problems have eluded prolonged attempts at solution? 

11.8.2 In the Hopfield model there are N neurons {si}i=r...~ each of which can take 

th on the values fl, where si = +l means that the 2 neurons is firing. The 
synapse from presynaptic neuron j to postsynaptic neuron i is called Wij, 
and the matrix of synaptic efficacies has zeros on the diagonal Wii = 0 and is 
symmetric Wij = Wji. At any given time only one neuron updates its state; 

the updating of the ith neuron is according to 

sip + 1) = sgn 5 WijSj(t) 
j=l 

11.8.3 

after which some other neuron updates. Write a program that generates a ran- 
dom symmetric zero diagonal synaptic matrix, starts at random initial states, 
and implements this dynamics. Display the state of the network graphically 
as a rectangular image, with si = fl represented as different colored pixels. 
What can you say about the behavior of the network after a long enough 
time? What happens if you update all the neurons simultaneously based on 
the previous values of all the neurons? What happens in both of these cases 
if the synaptic matrix is antisymmetric? General asymmetric? 

Given P N-bit memories {~~}~~ir::;v’ t o b e stored, the Hebbian synaptic 
matrix is defined as 

which is the sum of outer products of the memories. Enhance the program 
written for the previous exercise by adding a routine that inputs desired 
memory images and computes the Hebbian matrix. Store P < O.lN memories 
and run the dynamics starting near one of the memories. What happens? 
What happens if you start far from any of the memories? Store P > 0.2N 
memories and run the dynamics again. What happens now? 
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Bibliographical Notes 

Good general introductions to psychophysics can be found in [50, 711. 
Alexander Graham Bell’s original vocation was speech production and much of 

the early research on speech generation mechanisms was performed at Bell Labs 
[54, 551. Th e c assic formant tables [193] and the ear sensitivity curves [62] also 1 
originated there. 

Speech production mechanisms are presented in many books on speech pro- 
cessing, such as [211] and in more depth in [253]. Speech perception is covered in 
[253, 195, 1291. The Bark scale is formally presented in [290, 232, 61 and the me1 
scale was defined in [254]. Cochlear modeling is reviewed in [5]. The application of 
the psychophysical principle of masking to speech compression is discussed in [232]. 

The McCulloch-Pitts neuron was introduced in [171]. In 1957 a team led by 
Frank Rosenblatt and Charles Wightman built an electronic neural network, which 
they called the Murk I Perceptron. This device was designed to perform charac- 
ter recognition. It was Rosenblatt who discovered and popularized the perceptron 
learning algorithm [224]. Minsky and Papert’s charming book [174] both thoroughly 
analyzed the algorithm and dampened all interest in neural network research by 
its gloomy predictions regarding the possibility of algorithms for more capable net- 
works. 

For a light introduction to the functioning of the brain, I suggest [32], while a 
more complete treatment can be found in [180]. [8] is a thorough introduction to 
neuron modeling from a physicist’s point of view. [168] is a seminal work on neural 
network modeling and [169] is the companion book of computer exercises. 


