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The Fast Fourier Transform 

It is difficult to overstate the importance of the FFT algorithm for DSP. We 
have often seen the essential duality of signals in our studies so far; we know 
that exploiting both the time and the frequency aspects is critical for signal 
processing. We may safely say that were there not a fast algorithm for going 
back and forth between time and frequency domains, the field of DSP as we 
know it would never have developed. 

The discovery of the first FFT algorithm predated the availability of 
hardware capable of actually exploiting it. The discovery dates from a pe- 
riod when the terms calculator and computer referred to people, particularly 
adept at arithmetic, who would perform long and involved rote calculations 
for scientists, engineers, and accountants. These computers would often ex- 
ploit symmetries in order to save time and effort, much as a contempo- 
rary programmer exploits them to reduce electronic computer run-time and 
memory. The basic principle of the FFT ensues from the search for such 
time-saving mechanisms, but its discovery also encouraged the development 
of DSP hardware. Today’s DSP chips and special-purpose FFT processors 
are children of both the microprocessor age and of the DSP revolution that 
the FFT instigated. 

In this chapter we will discuss various algorithms for calculating the 
DFT, all of which are known as the FFT. Without a doubt the most popular 
algorithms are radix-2 DIT and DIF, and we will cover these in depth. These 
algorithms are directly applicable only for signals of length N = 2m, but with 
a little ingenuity other lengths can be accommodated. Radix-4, split radix, 
and FFT842 are even faster than basic radix-2, while mixed-radix and prime 
factor algorithms directly apply to N that are not powers of two. There are 
special cases where the fast Fourier transform can be made even faster. 
Finally we present alternative algorithms that in specific circumstances may 
be faster than the FFT. 
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14.1 Complexity of the DFT 

Let us recall the previously derived formula (4.32) for the N-point DFI’ 

N-l 

n=O 

where the Nth root of unity is defined as 

-i2” 
WNze N =cos($) - isin 

How many calculations must we perform to find one XI, from a set of N 
time domain values x *? Assume that the complex constant WN and its pow- 
ers W$ have all been precalculated and stored for our use. Looking closely 
at (4.32) we see N complex multiplications and N - 1 complex additions are 
performed in the loop on n. Now to find the entire spectrum we need to do 
N such calculations, one for each value of k. So we expect to have to carry 
out N2 complex multiplications, and N(N - 1) complex additions. 

This is actually a slight overestimate. By somewhat trickier programming 
we can take advantage of the fact that Wk = 1, so that each of the Xk>O 
takes N - 1 multiplications and additions, while X0 doesn’t require any 
multiplications. We thus really need only (N - 1) 2 complex multiplications. 

A complex addition requires the addition of real and imaginary parts, 
and is thus equivalent to two real additions. A complex multiplication can 
be performed as four real multiplications and two additions (a + ib)(c + 
id) = (ac - bd) + i(bc + ad) or as three multiplications and five additions 

(a+ib)(c+id) = u(c+d)-d(u+b)+i (u(c+d) +c(b-a)). Thelatter form 

may be preferred when multiplication takes much more time than addition, 
but can be less stable numerically. Other combinations are possible, but it 
can be shown that there is no general formula for the complex product with 
less than three multiplications. Using the former, more common form, we 
find that the computation of the entire spectrum requires 4(N - 1)2 real 
multiplications and 2(N - 1)(2N - 1) real additions. 

Actually, the calculation of a single XI, can be performed more efficiently 
than we have presented so far. For example, Goertzel discovered a method of 
transforming the iteration in equation (4.32) into a recursion. This has the 
effect of somewhat reducing the computational complexity and also saves 
the precomputation and storage of the W table. Goertzel’s algorithm, to be 
presented in Section 14.8, still has asymptotic complexity of order O(N) per 

calculated XI,, although with a somewhat smaller constant than the direct 
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method. It thus leaves the complexity of calculation of the entire spectrum at 
O(N2), while the FFT algorithms to be derived presently are less complex. 
Goertzel’s algorithm thus turns out to be attractive when a single, or only 
a small number of XI, values are needed, but is not the algorithm of choice 
for calculating the entire spectrum. 

Returning to the calculation of the entire spectrum, we observe that both 
the additions and multiplications increase as O(N2) with increasing N. Were 
this direct calculation the only way to find the DFT, real-time calculation 
of large DFTs would be impractical. It is general rule in DSP programming 
that only algorithms with linear asymptotic complexity can be performed 
in real-time for large N. Let us now see why this is the case. 

The criterion for real-time calculation is simple for algorithms that pro- 
cess a single input sample at a time. Such an algorithm must finish all its 
computation for each sample before the next one arrives. This restricts the 
number of operations one may perform in such computations to the number 
performable in a sample interval t,. This argument does not directly apply 
to the DFT since it is inherently a block-oriented calculation. One cannot 
perform a DFT on a single sample, since frequency is only defined for signals 
that occupy some nonzero interval of time; and we often desire to process 
large blocks of data since the longer we observe the signal the more accurate 
frequency estimates will be. 

For block calculations one accumulates samples in an array, known as a 
buffer, and then processes this buffer as a single entity. A technique known 
as double-buflering is often employed in real-time implementations of block 
calculations. With double-buffering two buffers are employed. While the 
samples in the processing bu$er are being processed, the acquisition buffer 
is acquiring samples from the input source. Once processing of the first buffer 
is finished and the output saved, the buffers are quickly switched, the former 
now acquiring samples and the latter being processed. 

How can we tell if block calculations can be performed in real-time? 
As for the single sample case, one must be able to finish all the processing 
needed in time. Now ‘in time’ means completing the processing of one entire 
buffer, before the second buffer becomes full. Otherwise a condition known 
as data-overrun occurs, and new samples overwrite previously stored, but as 
yet unprocessed, ones. It takes NAt seconds for N new samples to arrive. 
In order to keep up we must process all N old samples in the processing 
buffer before the acquisition buffer is completely filled. If the complexity is 
linear (i.e., the processing time for N samples is proportional to N), then 
C = qN for some Q. This q is the efective time per sample since each sample 
effectively takes q time to process, independent of N. Thus, the selection of 
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buffer size is purely a memory issue, and does not impact the ability to keep 
up with real-time. However, if the complexity is superlinear (for example, 
T processing = qNp with p > 1) , then as N increases we have less and less 
time to process each sample, until eventually some N is reached where we 
can no longer keep up, and data-overrun is inevitable. 

Let’s clarify this by plugging in some numbers. Assume we are acquiring 
input at a sample rate of 1000 samples per second (i.e., we obtain a new 
sample every millisecond) and are attempting to process blocks of length 
250. We start our processor, and for one-quarter of a second, we cannot do 
any processing, until the first acquisition buffer fills. When the buffer is full 
we quickly switch buffers, start processing the 250 samples collected, while 
the second buffer of length 250 fills. We must finish the processing within 
a quarter of second, in order to be able to switch buffers back when the 
acquisition buffer is full. When the dependence of the processing time on 
buffer length is strictly linear, Tpro,-essing = qN, then if we can process a 
buffer of N = 250 samples in 250 milliseconds or less, we can equally well 
process a buffer of 500 samples in 500 milliseconds, or a buffer of N = 1000 
samples in a second. Effectively we can say that when the single sample 
processing time is no more than q = 1 millisecond per sample, we can 
maintain real-t ime processing. 

What would happen if the buffer processing time depended quadratically 
on the buffer siz~Tproce+n~ = qN2? Let’s take q to be 0.1 millisecond per 
sample squared. Then for a small lo-millisecond buffer (length N = lo), 
we will finish processing in Tprocessing = 0.1 l lo2 = 10 milliseconds, just 
in time! However, a lOO-millisecond buffer of size N = 100 will require 
T processing = 0.1 l 1002 milliseconds, or one second, to process. Only by 
increasing our computational power by a factor of ten would we be able to 
maintain real-time! However, even were we to increase the CPU power to 
accommodate this buffer-size, our 250-point buffer would still be out of our 
reach. 

As we have mentioned before, the FFT is an algorithm for calculating 
the DFT more efficiently than quadratically, at least for certain values of N. 
For example, for powers of two, N = 2’, its complexity is 0( N log2 N). This 
is only very slightly superlinear, and thus while technically the FFT is not 
suitable for real-time calculation in the asymptotic N --) 00 limit, in practice 
it is computable in real-time even for relatively large N. To grasp the speed- 
up provided by the FFT over direct calculation of (4.29)) consider that the 
ratio between the complexities is proportional to ,*N. For N = 24 = 16 the 

FFT is already four times faster than the direct DFT, for N = 21° = 1024 
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it is over one hundred times faster, and for N = 216 the ratio is 4096! It 
is common practice to compute lK- or 64.Kpoint FFTs in real-time, and 
even much larger sizes are not unusual. 

The basic idea behind the FFT is the very exploitation of the N2 com- 
plexity of the direct DFT calculation. Due to this second-order complexity, 
it is faster to calculate a lot of small DFTs than one big one. For example, to 
calculate a DFT of length N will take N2 multiplications, while the calcula- 
tion of two DFTs of length $ will take 2($)2 = $, or half that time. Thus 
if we can somehow piece the two partial results together to one spectrum in 
less than T time then we have found a way to save time. In Sections 14.3 
and 14.4 we will see several ways to do just that. 

EXERCISES 

14.1.1 Finding the maximum of an N-by-N array of numbers can be accomplished in 
O(N2) time. Can this be improved by partitioning the matrix and exploiting 
the quadratic complexity as above? 

14.1.2 In exercise 4.7.4 you found explicit equations for the N = 4 DFT for N = 4. 
Count up the number of complex multiplications and additions needed to 
compute X0, Xi, X2, and Xs. How many real multiplications and additions 
are required? 

14,1.3 Define temporary variables that are used more than once in the above equa- 
tions. How much can you save? How much memory do you need to set aside? 
(Hint: Compare the equations for X0 and X2.) 

14.1.4 Up to now we have not taken into account the task of finding the trigonomet- 
ric W factors themselves, which can be computationally intensive. Suggest at 
least two solutions, one that requires a large amount of auxiliary memory but 
practically no CPU, and one that requires little memory but is more CPU 
intensive. 

.4.1.5 A computational system is said to be ‘real-time-oriented’ when the time 
it takes to perform a task can be guaranteed. Often systems rely on the 
weaker criterion of statistical real-time, which simply means that on-the- 
average enough computational resources are available. In such cases double 
buffering can be used in the acquisition hardware, in order to compensate 
for peak MIPS demands. Can hardware buffering truly make an arbitrary 
system as reliable as a real-time-oriented one? 

14.1.6 Explain how double-buffering can be implemented using a single circular 
buffer. 
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14.2 Two Preliminary Examples 

Before deriving the FFT we will prepare ourselves by considering two some- 
what more familiar examples. The ideas behind the FFT are very general 
and not restricted to the computation of equation (14.1). Indeed the two 
examples we use to introduce the basic ideas involve no DSP at all. 

How many comparisons are required to find the maximum or minimum 
element in a sequence of N elements? It is obvious that N-l comparisons are 
absolutely needed if all elements are to be considered. But what if we wish 
to simultaneously find the maximum and minimum? Are twice this number 
really needed? We will now show that we can get away with only 1; times 
the number of comparisons needed for the first problem. Before starting we 
will agree to simplify the above number of comparisons to N, neglecting the 
1 under the asymptotic assumption N >> 1. 

A fundamental tool employed in the reduction of complexity is that 
of splitting long sequences into smaller subsequences. How can we split a 
sequence with N elements 

x0, Xl, x2, x3, . . . 2N-2, XN-1 

into two subsequences of half the original size (assume for simplicity’s sake 
that N is even)? One way is to consider pairs of adjacent elements, such as 
xi, x2 or x3, x4, and place the smaller of each pair into the first subsequence 
and the larger into the second. For example, assuming x0 < x1, 22 > x3 and 
XN-2 < x&r, we obtain 

x0 x3 . . . min(xzz, x21+1) l l ’ XN-2 

Xl x2 . . . m=(x2Z, x21+1) - - - XN-1 

This splitting of the sequence requires % comparisons. Students of sorting 
and searching will recognize this procedure as the first step of the Shell sort. 

Now, the method of splitting the sequence into subsequences guarantees 
that the minimum of the entire sequence must be one of the elements of the 
first subsequence, while the maximum must be in the second. Thus to com- 
plete our search for the minimum and maximum of the original sequence, we 
must find the minimum of the first subsequence and the maximum of the sec- 
ond. By our previous result, each of these searches requires $ comparisons. 
Thus the entire process of splitting and two searches requires 9 + 29 = y 
comparisons, or li times that required for the minimum or maximum alone. 

Can we further reduce this factor? What if we divide the original se- 

quence into adjacent quartets, choosing the minimum and maximum of the 
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four? The splitting would then cost four comparisons per quartet, or N 
comparison altogether, and then two $ searches must be carried out. Thus 
we require N + 2: and a factor of l$ is still needed. Indeed, after a little 
reflection, the reader will reach the conclusion that no further improvement 
is possible. This is because the new problems of finding only the minimum 
or maximum of a subsequence are simpler than the original problem. 

When a problem can be reduced recursively to subproblems similar to the 
original, the process may be repeated to attain yet further improvement. We 
now discuss an example where such recursive repetition is possible. Consider 
multiplying two (N+ 1)-digit numbers A and B to get a product C using long 
multiplication (which from Section 6.8 we already know to be a convolution). 

AN AN-~ *a* Al A0 

BN BN-~ *** B1 Bo 
BOAN BoAN-~ -0 * BoAl BoAo 

&AN &AN-I . . . &Ao 

BNAN a*- BN& BNAO 

c5’N -** cN+l CN CN-1 *” cl CO 

Since we must multiply every digit in the top number by every digit in 
the bottom number, the number of one-digit multiplications is N2. You are 
probably used to doing this for decimal digits, but the same multiplication 
algorithm can be utilized for N-bit binary numbers. The hardware-level 
complexity of straightforward multiplication of two N-bit numbers is pro- 
portional to N2. 

Now assume N is even and consider the left $ digits and the right G 
digits of A and B separately. It does not require much algebraic prowess to 
convince oneself that 

A = AL2+ +AR 

B = BL2+ +BR (14.1) 

C = ALBUMS + (ALBR + ARBL)2+ + ARBR 

= ALB~(~~ + 23) + (AL - AR)(B~ - BL)2+ + ARBR(2+ + 1) 

involving only three multiplications of T-length numbers. Thus we have 
reduced the complexity from N2 to 3( 9)” = iN2 (plus some shifting and 
adding operations). This is a savings of 25%, but does not reduce the asymp- 
totic form of the complexity from O(N2). However, in this case we have only 
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just begun! Unlike for the previous example, we have reduced the original 
multiplication problem to three similar but simpler multiplication problems! 

We can now carry out the three 
similarly (assuming that $ 

$-bit multiplications in equation (14.1) 
is still even) and continue recursively. Assum- 

ing N to have been a power of two, we can continue until we multiply 
individual bits. This leads to an algorithm for multiplication of two N-bit 
numbers, whose asymptotic complexity is O(N’O~Z(~)) M 0( N1*585). The 
slightly more sophisticated Toom-Cook algorithm divides the N-bit num- 
bers into more than two groups, and its complexity can be shown to be 

O(N log(N)2-). Th’ is is still not the most efficient way to multiply 
numbers. Realizing that each column sum of the long multiplication in equa- 
tion (14.1) can be cast into the form of a convolution, it turns out that the 
best way to multiply large numbers is to exploit the FFT! 

EXERCISES 

14.2.1 The reader who has implemented the Shell sort may have used a different 
method of choosing the pairs of elements to be compared. Rather than com- 
paring adjacent elements x21 and x21+1, it is more conventional to consider 
elements in the same position in the first and second halves the sequence, 
21, and x++k Write down a general form for the new sequence. How do we 
find the minimum and maximum elements now? These two ways of dividing 
a sequence into two subsequences are called decimation and partition. 

14.2.2 Devise an algorithm for finding the median of N numbers in O(N log N). 

14.2.3 The product of two two-digit numbers, ab and cd, can be written ab * cd = 
(10 * a + b) * (10 * c + d) = 1OOac + lO(ad + bc) + bd. Practice multiplying 
two-digit numbers in your head using this rule. Try multiplying a three-digit 
number by a two-digit one in similar fashion. 

14.2.4 We often deal with complex-valued 
as vectors in two ways, interleaved 

signals. Such signals can be represented 

qxl)s(xl), 9(x2), 3(x2), * ’ * qxIv>, ww) 

or separated 

Devise an efficient in-place algorithm changing between interleaved and sep- 
arated representations. Efficient implies that each element accessed is moved 
immediately to its final location. In-place means here that if extra memory is 
used it must be of constant size (independent of N). What is the algorithm’s 
complexity? 
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14.3 Derivation of the DIT FFT 

Without further ado, we turn to the derivation of the our first FFT algo- 
rithm. As mentioned in the previous section, we want to exploit the fact 
that it is better to compute many small DFTs than a single large one; as a 
first step let’s divide the sequence of signal values into two equal parts. 

There are two natural ways of methodically dividing a sequence into two 
subsequences, partition and decimation. By partition we mean separating 
the sequence at the half-way point 

{x0,21, ’ * ’ > XN-2, XN-1) 

J \ 

(x0, Xl, * * * x+-1 1 { XN ,*..xN-1) 

Low PARTITION HIGH PARTITION 

while decimation 
elements . 

is the separation of the even-indexed from odd-indexed 

(x0, Xl, * * * 9 XN-2, XN-1) 

J \ 

(20, x2, * - - XN-2) {xl, x3, l l l XN-1) 
EVEN DECIMATION ODD DECIMATION 

Put another way, partition divides the sequence into two groups according 
to the MSB of the index, while decimation checks the LSB. 

Either partition and decimation may be employed to separate the orig- 
inal signal into half-sized signals for the purpose of computation reduction. 
Decimation in time implies partition in frequency (e.g., doubling the time 
duration doubles the frequency resohtion), while partition in time signifies 
decimation in frequency. These two methods of division lead to somewhat 
different FFT algorithms, known conventionally as the Decimation In Time 
(DIT) and Decimation In Frequency (DIF) FFT algorithms. We will here 
consider radix-2 partition and decimation, that is, division into two equal- 
length subsequences. Other partition and decimation radixes are possible, 
leading to yet further FFT algorithms. 

We will now algebraically derive the radix-2 DIT algorithm. We will need 
the following trigonometric identities. 

w,N = 1 

w; = -1 (14.2) 

W2 N = WN 
v 
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The FFT’s efficiency results from the fact that in the complete DFT 
many identical multiplications are performed multiple times. As a matter of 
fact, in XI, and Xk+T N all the multiplications are the same, although every 

other addition has to be changed to a subtraction. 

N-l 

n=O 
N-l 

N-l 

= C Xn WEk (-l)n 
n=O 

The straightforward computation of the entire spectrum ignores this fact 
and hence entails wasteful recalculation. 

In order to derive the DIT algorithm we separate the sum in (4.32) into 
sums over even- and odd-indexed elements, utilizing the identities (14.2) 

N-l -- 
Y l 

XI, = c XnWEk = 
c( 

+ x2*+1 w?+ljk) 
n=O n=O -- ; l -- T l = c x,E wr + w; c x; wtk (14.3) 
n=O n=O 

where we have defined even and odd subsequences. 

xE = 
N 

n 32n for n = 0, 1, . . . 2 - 1 

0 x, = XZn+l 

After a moment of contemplation it is apparent that the first term is the 
DFT of the even subsequence, while the second is W& times the DFT of 
the odd subsequence; therefore we have discovered a recursive procedure for 
computing the DFT given the DFTs of the even and odd decimations. 

Recalling the relationship between XI, and Xk+$ we can immediately 
write 

-- Y l -- T l 
x,++ = c xf wgk - w; c x; wgk 

n=O 
2 n=O 2 

this being the connection between parallel elements in different partitions of 
the frequency domain. 
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Now let us employ the natural notation 

-- T l -- T l x,E= c x,0 = c 
n=O 

x,E wik 
n=O 

x,0 wik 
and write our results in the succinct recursive form 

XI, = x,E + w;x,o 
xk++ = xf-w$x,o 

(14.4) 

which is a computational topology known as a butterfly (for reasons soon to 
be apparent). In this context the W$ factor is commonly called a twiddle 
factor (for reasons that we won’t adequately explain). We note that the 
butterfly is basically an in-place computation, replacing two values with 
two new ones. Using our standard graphical notation we can depict equation 
(14.4) in the following way: 

which, not accidentally, is very similar to the two-point DFT diagram pre- 
sented in Section 12.2 (actually, remembering the second identity of (14.2) 
we recognize the two-point FFT as a special case of the DIT butterfly). Ro- 
tating the diagram by 90” and using some imagination clarifies the source 
of the name ‘butterfly’. We will soon see that the butterfly is the only oper- 
ation needed in order to perform the FFT, other than calculation (or table 
lookups) of the twiddle factors. 

Now, is this method of computation more efficient than the straightfor- 
ward one? Instead of (N - 1)2 multiplications and N(N - 1) additions for 
the simultaneous computation of XI, for all k, we now have to compute two 
g-point DFTs, one additional multiplication (by the twiddle factor), and 

two new additions, for a grand total of 2(+ - 1)2 + 1 = g - 2N + 3 multi- 

plications and 2 (6 ($ - 1)) + 2 = y - N + 2 additions. The savings may 

already be significant for large enough N! 
But why stop here? We are assuming that XF and Xf were computed 

by the straightforward DFT formula! We can certainly save on their compu- 
tation by using the recursion as well! For example, we can find Xf by the 
following butterfly. 

xp--y+&-xf 
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As in any recursive definition, we must stop somewhere. Here the obvious 
final step is the reduction to a two-point DFT, computed by the simplest 
butterfly. Thus the entire DFT calculation has been recursively reduced to 
computation of butterflies. 

We graphically demonstrate the entire decomposition for the special case 
of N = 8 in the series of Figures 14.1-14.4. The first figure depicts the needed 
transform as a black box, with ~0 through x7 as inputs, and X0 through X7 
as outputs. The purpose of the graphical derivation is to fill in this box. 

In Figure 14.2 we slightly rearrange the order of the inputs, and decom- 
pose the eight-point transform into two four-point transforms, using equa- 
tion (14.3). We then continue by decomposing each four-point transform 
into two two-point transforms in Figure 14.3, and finally substitute our dia- 
gram for the two-point butterfly in order to get Figure 14.4. The final figure 
simply rearranges the inputs to be in the same order as in the first figure. 
The required permutation is carried out in a black box labeled Bit Reversal; 
the explanation for this name will be given later. 

For a given N, how many butterflies must we perform to compute an 
N-point DFT? Assuming that N = 2m is a power of 2, we have 772 = log2 N 
layers of butterflies, with 9 butterflies to be computed in each layer. Since 
each butterfly involves one multiplication and two additions (we are slightly 
overestimating, since some of the multiplications are trivial), we require 
about $ log, N complex multiplications and N log:! N complex additions. 
We have thus arrived at the desired conclusion, that the complexity of the 
DIT FFT is 0 (N log N) (the basis of the logarithm is irrelevant since all 
logarithms are related to each other by a multiplicative constant). 

Similarly for radix-R DIT FFT, we would find logR N layers of g but- 
terflies, each requiring R - 1 multiplications. The improvement for radixes 
greater than two is often not worth the additional coding effort, but will be 
discussed in Section 14.4. 

The DIT FFT we have derived and depicted here is an in-place algorithm. 
At each of its m layers we replace the existing array with a new one of 
identical size, with no additional array allocation needed. There is one last 
technical problem related to this in-place computation we need to solve. 
After all the butterflies are computed in-place we obtain all the desired XI,, 
but they are not in the right order. In order to obtain the spectrum in 
the correct order we need one final in-place stage to unshuffle them (see 
Figure 14.5). 

To understand how the XI, are ordered at the end of the DIT FFT, 
note that the butterflies themselves do not destroy ordering. It is only the 
successive in-place decimations that change the order. We know that dec- 
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x0- -X0 

x1- -x1 

x2- -x2 

x3- 8-point -x3 

x4- DFT ---x4 

x5- --x5 

a- -X3 

x7- -x7 

Figure 14.1: An eight-point DFT. 

53 f ’ 

55 b 

4-point 
DFT 

Figure 14.2: An eight-point DFT, divided into two four-point FFTs. 
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a-point 
DFT 

2-point 
DFT 

t -’ w- 

Figure 14.3: An eight-point DFT, divided into four two-point FFTs. 

Figure 14.4: The full eight-point radix-2 DIT DFT. 
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x0 - 

x3 = 

x4 : 

Bit 
Reversal 

26 = 

Figure 14.5: The full eight-point radix-2 DIT DFT, with bit reversal on inputs. 

imation uses the LSB of the indices to decide how to divide the sequence 
into subsequences, so it is only natural to investigate the effect of in-place 
decimation on the binary representation of the indices. For example, for 24 
element sequences, there are four stages, the indices of which are permuted 
as follows. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15 
0000 0010 0100 0110 1000 1010 1100 1110 0001 0011 0101 0111 1001 1011 1101 1111 

0 4 8 12 2 6 10 14 1 5 9 13 3 7 11 15 
0000 0100 1000 1100 0010 0110 1010 1110 0001 0101 1001 1101 0011 0111 1011 1111 

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15 
0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111 

Looking carefully we observe that the elements of the second row can be 
obtained from the matching ones of the first by a circular left shift. Why is 
that? The first half of the second row, 0246. . ., is obtained by an arithmetic 
left shift of the first row elements, while the second half is identical except 
for having the LSB set. Since the second half of the first row has the MSB 
set the net effect is the observed circular left shift. 

The transition from second to third row is a bit more complex. Elements 
from the first half and second half of the second row are not intermingled, 
rather are separately decimated. This corresponds to clamping the LSB and 
circularly left shifting the more significant bits, as can be readily verified 
in the example above. Similarly to go from the third row to the fourth we 
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clamp the two least significant bits and circularly shift the rest. The net 
effect of the m stages of in-place decimation of a sequence of length 2m is 
bit reversal of the indices. 

In order to unshuffle the output of the DIT FFT we just need to perform 
an initial stage of bit reversal on the xn, as depicted in Figure 14.5. Although 
this stage contains no computations, it may paradoxically consume a lot of 
computation time because of its strange indexing. For this reason many 
DSP processors contain special addressing modes that facilitate efficient 
bit-reversed access to vectors. 

EXERCISES 

14.3.1 Draw the flow diagram for the 16-point DIT FFT including bit reversal. 
(Hint: Prepare a large piece of paper.) 

14.3.2 Write an explicitly recursive program for computation of the FFT. The main 
routine FFT(N ,X> should first check if N equals 2, in which case it replaces 
the two elements of X with their DFT. If not, it should call FFT(N/2, Y) as 
needed. 

14.3.3 Write a nonrecursive DIT FFT routine. The main loop should run m = 
log, N times, each time computing 2 J!L butterflies. Test the routine on sums 
of sinusoids. Compare the run time of this routine with that of N straight- 
forward DFT computations. 

14.3.4 Rather than performing bit reversal as the first stage, we may leave the inputs 
and shuffle the outputs into the proper order. Show how to do this for an 
eight-point signal. Are there any advantages to this method? 

14.3.5 Write an efficient high-level-language routine that performs bit reversal on 
a sequence of length N = 2m. The routine should perform no more than N 
element interchanges, and use only integer addition, subtraction, comparison, 
and single bit shifts. 

14.4 Other Common FFT Algorithms 

In the previous section we saw the radix-2 DIT algorithm, also known as 
the Cooley-Tukey algorithm. Here we present a few more FFT algorithms, 
radix-2 DIF, the prime factor algorithm (PFA), non-power-of-two radixes, 
split-radix, etc. Although different in details, there is a strong family re- 
semblance between all these algorithms. All reduce the N2 complexity of 
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the straightforward DFT to N log N by restructuring the computation, all 
exploit symmetries of the kVkk, and all rely on the length of the signal N 
being highly composite. 

First let us consider the decimation in frequency (DIF) FFT algorithm. 
The algebraic derivation follows the same philosophy as that of the DIT. 

We start by partitioning the time sequence, into left and right subsequences 

x; = xn 

XR n = X n+$ 

and splitting the DFT sum into two sums. 

N-l 

XI, = c XnWEk = 
n=O 

-- Y l N-l 

c 

kE 
XnWEk + C XnWzkWN2 

n=O N n=- 
2 

-- : l 

N 
for 72 = 0, 1, . . . y - 1 

-- 
T  l = c x; wgk + c x,R WEk 

n=O n=O 

(14.5) 

1 Now let’s compare the even and odd XI, (decimation in the frequency ao- 
main). Using the fact that Wi = W+ 

-- i l 
x2k = CC 

n=O 

x,L wtk + x,R w;k W,““) 

-- 
T l 

x2k+l = C( 
n=O 

x,L W$k + xf wtk Wjyk) WE 

and then substituting WkN = 1 and Wj = -1 we find 

-- Y l 
x2k = c (x,” + x,“) qk 

n=O 

-- 
: l 

X2k+l = C( 
L 

xn - 
n=O 

x,“) wtk w;;: 

which by linearity of the DFT gives the desired expression. 

X2k = (XL + m 

X2k+l = (x: - x,R>w; 

(14.6) 
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Just as for the DIT we found similarity between Fourier components in 
different frequency partitions, for DIF we find similarity between frequency 
components that are related by decimation. 

It is thus evident that the DIF butterfly can be drawn 

which is different from the DIT butterfly, mainly in the position of the 
twiddle factor. 

x0 x0 = . ‘, x0 

x4 = = Xl 

- x2 

t- 
x6 

I-- x7 
I I 

Figure 14.6: Full eight-point radix-2 DIF DFT, with bit reversal on outputs. 

We leave as an exercise to complete the decomposition, mentioning that 
once again bit reversal is required, only this time it is the outputs that need 
to be bit reversed. The final eight-point DIF DFT is depicted in Figure 14.6. 

Next let’s consider FFT algorithms for radixes other than radix-2 in more 
detail, the most important of which is radix-4. The radix-4 DIT FFT can 
only be used when N is a power of 4, in which case, of course, a radix-2 al- 
gorithm is also applicable; but using a higher radix can reduce the computa- 
tional complexity at the expense of more complex programming. The deriva- 
tion of the radix-4 DIT FFT is similar to that of the radix-2 algorithm. The 
original sequence is decimated into four subsequences z4j, z4j+r, ~4j+2, z4j+3 

(for j = 0.. .4 - l), each of which is further decimated into four subsubse- 
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quences, etc. The basic ‘butterfly’ is based on the four-point DFT 

x(-j = x0 + Xl + x2 + 23 

X1 = 20 - izr - x2 + ix3 
x2 = x0 - Xl + x2 - 23 

(14.7) 

x3 = X0 + izl - x2 - ix3 

which graphically is 

X0 

Xl 

x2 

x3 

where we have employed two ad-hoc short-hand notations, namely that a 
line above an arrow means multiplication by - 1, while a line before an 
arrow means multiplication by i. We see that the four-point DFT requires 
12 complex additions but no true multiplications. In fact only the radix- 
2 and radix-4 butterflies are completely multiplication free, and hence the 
popularity of these radixes. 

Now if we compare this butterfly with computation of the four-point 
DFT via a radix-2 DIT 

X0 

Xl 

x2 

x3 

we are surprised to see that only eight complex additions and no multipli- 
cations are needed. Thus it is more efficient to compute a four-point DFT 
using radix-2 butterflies than radix-4! However, this does not mean that for 
large N the radix-2 FFT is really better. Recall that when connecting stages 
of DIT butterflies we need to multiply half the lines with twiddle factors, 
leading to 0( g log2 N) multiplications. Using radix-4 before every stage we 
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multiply three-quarters of the lines by nontrivial twiddle factors, but there 
are only log4 N = i log2 N stages, leading to g log, N multiplications. So a 
full radix-4 decomposition algorithm needs somewhat fewer multiplications 
than the radix-2 algorithm, and in any case we could compute the basic 
four-point DFT using radix-2 butterflies, reducing the number of additions 
to that of the radix-2 algorithm. 

Of course a radix-4 decomposition is only half as applicable as a radix-2 
one, since only half of the powers of two are powers of four as well. However, 
every power of two that is not a power of four is twice a power of four, so 
two radix-4 algorithms can be used and then combined with a final radix-2 
stage. This is the called the FFT42 routine. Similarly, the popular FFT842 
routine performs as many efficiently coded radix-8 (equation (4.52)) stages 
as it can, finishing off with a radix-4 or radix-2 stage as needed. 

Another trick that combines radix-2 and radix-4 butterflies is called the 
split-radix algorithm. The starting point is the radix-2 DIF butterfly. Recall 
that only the odd-indexed Xsk+r required a twiddle factor, while the even- 
indexed Xzk did not. Similarly all even-indexed outputs of a full-length 2m 
DIF FFT are derivable from those of the two length 2m-1 FFTs without 
multiplication by twiddle factors (see Figure 14.6), while the odd-indexed 
outputs require a twiddle factor each. So split-radix algorithms compute 
the even-indexed outputs using a radix-2 algorithm, but the odd-indexed 
outputs using a more efficient radix-4 algorithm. This results in an unusual 
‘L-shaped’ butterfly, but fewer multiplications and additions than any of the 
standard algorithms. 

For lengths that are not powers of two the most common tactic is to use 
the next larger power of two, zero-padding all the additional signal points. 
This has the definite advantage of minimizing the number of FFT routines 
we need to have on hand, and is reasonably efficient if the zero padding is 
not excessive and a good power-of-two routine (e.g., split-radix or FFT842) 
is used. The main disadvantage is that we don’t get the same number of 
spectral points as there were time samples. For general spectral analysis this 
may be taken as an advantage since we get higher spectral resolution, but 
some applications may require conservation of the number of data points. 

Moreover, the same principles that lead us to the power-of-two FFT 
algorithms are applicable to any N that is not prime. If N = Rm then radix- 
R algorithms are appropriate, but complexity reduction is possible even for 
lengths that are not simple powers. For example, assuming N = Nl N2 we 
can decompose the original sequence of length N into N2 subsequences of 
length Nr. One can then compute the DFT of length N by first computing 
N2 DFTs of length Nr, multiplying by appropriate twiddle factors, and 



14.4. OTHER COMMON FFT ALGORITHMS 551 

finally computing Nl DFTs of length NQ. Luckily these computations can 
be performed in-place as well. Such algorithms are called mixed-radix FFT 
algorithms. When Nr and N2 are prime numbers (or at least have no common 
factors) it is possible to eliminate the intermediate step of multiplication by 
twiddle factors, resulting in the prime factor FFT algorithm. 

An extremely multiplication-efficient prime factor algorithm was devel- 
oped by Winograd that requires only O(N) multiplications rather than 
0( N log N), at the expense of many more additions. However, it cannot 
be computed in-place and the indexing is complex. On DSPs with pipelined 
multiplication and special indexing modes (see Chapter 17) Winograd’s FFT 
runs slower than good implementations of power-of-two algorithms. 

EXERCISES 

14.4.1 Complete the derivation of the radix-2 DIF FFT both algebraically and 
graphically. Explain the origin of the bit reversal. 

14.4.2 Redraw the diagram of the eight-point radix-2 DIT so that its inputs are 
in standard order and its outputs bit reversed. This is Cooley and Tukey’s 
original FFT! How is this diagram different from the DIF? 

14.4.3 Can a radix-2 algorithm with both input and output in standard order be 
performed in-place? 

14.4.4 In addition to checking the LSB (decimation) and checking the MSB (par- 
tition) we can divide sequences in two by checking other bits of the binary 
representation of the indices. Why are only DIT and DIF FFT algorithms 
popular? Design an eight-point FFT based on checking the middle bit. 

14.4.5 A radix-2 DIT FFT requires a final stage of bit reversal. What is required 
for a radix-4 DIT FFT? Demonstrate this operation on the sequence 0. . .63. 

14.4.6 Write the equations for the radix-8 DFT butterfly. Explain how the FFT842 
algorithm works. 

14.4.7 Filtering can be performed in the frequency domain by an FFT, followed by 
multiplying the spectrum by the desired frequency response, and finally an 
IFFT. Do we need the bit-reversal stage in this application? 

14.4.8 Show how to compute a 15-point FFT by decimating the sequence into five 
subsequences of length three. First express the time index n = 0. . .14 as 
n = 3ni + n2 with n1 = 0, 1,2,3,4 and n2 = 0, 1,2 and the frequency index 
in the opposite manner k = ICI + 5k2 with ICI = 0, 1,2 and Cc2 = 0, 1,2 (these 
are called inclez maps). Next rewrite the FFT substituting these expressions 
for the indices. Finally rearrange in order to obtain the desired form. What is 
the computational complexity? Compare with the straightforward DFT and 
with the 16-point radix-2 FFT. 
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14.4.9 Research the prime factor FFT. How can the 15-point FFT be computed 
now? How much complexity reduction is obtained? 

14.4.10 Show that if N = IIni then the number of operations required to perform 
the DFT is about (Eni)(IIn,). 

14.5 The Matrix Interpretation of the FFT 

In Section 4.9 we saw how to represent the DFT as a matrix product. For 
example, we can express the four-point FFT of equation (14.7) in the matrix 
form 

(g)=(/; -j -j(;z) 

by using the explicit matrix given in (4.51). 
Looking closely at this matrix we observe that rows 0 and 2 are similar, 

as are rows 1 and 3, reminding us of even/odd decimation! Pursuing this 
similarity it is not hard to find that 

which is a factoring of the DFT matrix into the product of two sparser 
matrices. So far we have not gained anything since the original matrix mul- 
tiplication X = W4x took 42 = 16 multiplications, while the rightmost - -- 
matrix times x takes eight and then the left matrix times the resulting vec- 
tor requires a-further eight. However, in reality there were in the original 
only six nontrivial multiplications and only four in the new representation. 

Now for the trick. Reversing the middle two columns of the rightmost 
matrix we find that we can factor the matrix in a more sophisticated way 
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that can be written symbolically as 

(14.8) 

where I2 is the two-by-two identity matrix, T2 is a two-by-two diagonal 

matrix yith twiddle factors as elements (@ z and IV; = -i), W2 is the 

two-point DFT matrix (butterfly), 02 is the two-by-two null matrix,nd C4 

is a four-by-four column permutatiz matrix. 
S 

This factorization has essentially reduced the four-dimensional DFT com- 
putation (matrix product) into two two-dimensional ones, with some rear- 
ranging and a bit reversal. This decomposition is quite general 

(14.9) 

where Tm is the diagonal m-by-m matrix with elements IVim, the twiddle 
factors for the 2m-dimensional DFT. 

Looking carefully at the matrices we recognize the first step in the de- 
composition of the DFT that leads to the radix-2 DIT algorithm. Reading 
from right to left (the way the multiplications are carried out) the column 
permutation Cm is the in-place decimation that moves the even-numbered 
elements up front; the two Wm are the half size DFTs, and the leftmost 
matrix contains the twiddle factors. Of course, we can repeat the process for 
the blocks of the middle matrix in order to recurse down to W2. - 

EXERCISES 

14.5.1 Show that by normalizing WN by -& we obtain a unitary matrix. What are 
Z 

its eigenvalues? 

14.5.2 Define pi to be the DFT matrix after bit-reversal permutation of its rows. 

Write d= mz and m.. Show that md can be written as follows. 
C C C 

To which FFT algorithm does this factorization correspond? 
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14.5.3 The Hadamard matrix of order 2 is defined to be 

1 1 
H2= 1 -1 C ( > 

and for all other powers of two we define by recursion. 

) 

Build the Hadamard matrices for m = 2 and 3. Show that they are symmetric 
and orthogonal. What is the inverse of Hsm ? 

14.5.4 Use the Hadamard matrix instead of W to define a transform. How many 
additions and multiplications are needed0 compute the transform? What are 
the twiddle factors? What about bit reversal? Can we compute the Hadamard 
transform faster by using higher radix algorithms? 

14.6 Practical Matters 

A few more details must be worked out before you are ready to properly com- 
pute FFTs in practice. For concreteness we discuss the radix-2 FFT (either 
DIT or DIF) although similar results hold for other algorithms. First, we 
have been counting the multiplications and additions but neglecting compu- 
tation of the twiddle factors. Repeatedly calling library routines to compute 
sine and cosine functions would take significantly more time than all the 
butterfly multiplications and additions we have been discussing. There are 
two commonly used tactics: storing the I4’II in a table, and generating them 
in real-time using trigonometric identities. 

By far the most commonly used method in real-time implementations is 
the use of twiddle factor tables. For a 16-point FFT we will need to store 
IV& = 1, W,l, = cos(g) - isin( . . . W,7, = cos(T) - isin( requir- 
ing 16 real memory locations. When these tables reside in fast (preferably 
‘on-chip’) memory and the code is properly designed, the table lookup time 
should be small (but not negligible) compared with the rest of the compu- 
tation. So the only drawback is the need for setting aside memory for this 
purpose. When the tables must be ‘off-chip’ the toll is higher, and the au- 
thor has even seen poorly written code where the table lookup completely 
dominated the run-time. 
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Where do the tables come from? For most applications the size N of the 
FFT is decided early on in the code design, and the twiddle factor tables can 
be precomputed and stored as constants. Many DSP processors have special 
‘table memory’ that is ideal for this purpose. For general-purpose (library) 
routines the twiddle factor tables are usually initialized upon the call to the 
FFT routine. On general-purpose computers one can usually get away with 
calling the library trigonometric functions to fill up the tables; but on DSPs 
one either stores only entire table in program code memory, or stores only 
WN itself and derives the rest of the required twiddle factors using 

or the equivalent trigonometric identities (A.23). When N is large numeric 
errors may accumulate while recuying, and it is preferable to periodically 

reseed the recursion (e.g., with W$ = -i). 
For those applications where the twiddle factors cannot be stored, they 

must be generated in real-time as required. Once again the idea is to know 
only WN and to generate WEk as required. In each stage we can arrange 
the butterfly computation so that the required twiddle factor exponents 
form increasing sequences of the form Wk, W$, WE, . . . . Then the obvious 
identity 

wgk = WN b-l>k w$ 

or its trigonometric equivalent can be used. This is the reason that general- 
purpose FFT routines, rather than having two loops (an outside loop on 
stages and a nested loop on butterflies), often have three loops. Inside the 
loop on stages is a loop on butterfEy groups (these groups are evident in 
Figures 14.5 and 14.6), each of which has an increasing sequence of twiddle 
factors, and nested inside this loop is the loop on the butterflies in the group. 

Another concern is the numeric accuracy of the FFT computation. Ev- 
ery butterfly potentially contributes round-off error to the calculation, and 
since each final result depends on log2 N butterflies in series, we expect 
this numeric error to increase linearly with log, N. So larger FFTs will be 
less accurate than smaller ones, but the degradation is slow. However, this 
prediction is usually only relevant for floating point computation. For fixed 
point processors there is a much more serious problem to consider, that of 
overflow. Overflow is always a potential problem with fixed point process- 
ing, but the situation is particularly unfavorable for FFT computation. The 
reason for this is not hard to understand. For simplicity, think of a single 
sinusoid of frequency $ so that an integer number of cycles fits into the 
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FFT input buffer. The FFT output will be nonzero only in the lath bin, and 
so all the energy of the input signal will be concentrated into a single large 
number. For example, if the signal was pure DC zn = 1, the only nonzero 
bin is Xe = C xn = N, and similarly for all other single-bin cases. It is thus 
clear that if the input signal almost filled the dynamic range of the fixed 
point word, then the single output bin will most certainly overflow it. 

The above argument may lead you to believe that overflow is only of 
concern in special cases, such as when only a single bin or a small number of 
bins are nonzero. We will now show that it happens even for the opposite case 
of white noise, when all the output bins are equal in size. Prom Parseval’s 
relation for the DFT (4.42) we know that (using our usual normalization), if 
the sum of the input squared is E2, then the sum of the output squared will 
be NE2. Hence the rms value of the output is greater by a factor fl than 
the input rms. For white noise this implies that the typical output value is 
greater than a typical input value by this factor! 

Summarizing, narrow-band FFT components scale like N while wide- 
band, noise-like components scale like fl. For large N both types of out- 
put bins are considerably larger than typical input bins, and hence there is 
a serious danger of overflow. The simplest way to combat this threat is to 
restrict the size of the inputs in order to ensure that no overflows can occur. 
In order to guarantee that the output be smaller than the largest allowed 
number, the input must be limited to k of this maximum. Were the input 
originally approximately full scale, we would need to divide it by N; result- 
ing in a scaling of the output spectrum by k as well. The problem with this 
prescaling is that crudely dividing the input signal by a factor of N increases 
the numeric error-to-signal ratio. The relative error, which for floating point 
processing was proportional to log2 N, becomes approximately proportional 
to N. This is unacceptably high. 

In order to confine the numeric error we must find a more sophisticated 
way to avoid overflows; this necessitates intervening with the individual com- 
putations that may overflow, namely the butterflies. Assume that we store 
complex numbers in two memory locations, one containing the real part and 
the other the imaginary part, and that each of these memories can only store 
real numbers between -1 and +l. Consider butterflies in the first stage of 
a radix-2 DIT. These involve only addition and subtraction of pairs of such 
complex numbers. The worst case is when adding complex numbers both of 
which are equal to +l, -1, +i or -i, where the absolute value is doubled. 
Were this worst case to transpire at every stage, the overall gain after log2 N 
stages would be 2@’ = N, corresponding to the case of a single spectral 
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line. For white noise xn we see from the DIT butterfly of equation (14.4) 

XI, = x,E + w;x,o 
xk++ = x,E - w;x,o 

that I&l2 + Ixk+q12 = 2 ( IX,E12 + IXF12) and if the expected values of 
1 

all Xk are the same (as for white random inputs) then each must be larger 
than the corresponding butterfly input by a factor of a. In such a case the 

overall gain is alog JV = fl as predicted above. 
It is obvious that the worst-case butterfly outputs can only be guaran- 

teed to fit in our memory locations if the input real and imaginary parts are 
limited in absolute value to i. However, the butterfly outputs, now them- 
selves between -1 and +l, become inputs to the next stage and so may 
cause overflow there. In order to eliminate this possibility, we must limit the 
original inputs to + in absolute value. Since the same analysis holds for the 
other butterflies, we reach the previous conclusion that the input absolute 
values must be prescaled by alog N ’ . =- 

Even with this prescaling we are &t completely safe. The worst case 
we discussed above was only valid for the first stage, where only additions 
and subtractions take place. For stages with nontrivial twiddle factors the 
increase can exceed even a factor of two. For example, consider a butterfly 
containing a rotation by 45”, Xf = 1, Xf = 1 + i. After rotation 1 + i 
becomes a, which is added to 1 to become 1 + 4 M 2.414. Hence, the 
precise requirement for the complex inputs is for their length not to exceed 
$. With this restriction, there will be no overflows. 

There is an alternative way of avoiding overflow at the second stage of 
butterflies. Rather than reducing the input to the first stage of butterflies 
to $ to + we can directly divide the input to the second butterfly by 2. For 
the radix-2 DIT case thiy translates to replacing our standard DIT by 

a failsafe butterfly computation that inherently avoids fixed point overflow. 
We can now replace all butterflies in the FFT with this failsafe one, resulting 
in an output spectrum divided by N, just as when we divided the input by N. 
The advantage of this method over input prescaling is that the inputs to each 
stage are always the maximum size they can be without being susceptible to 
overflow. With input prescaling only the last butterflies have such maximal 
inputs; all the previous ones receiving smaller inputs. 
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Due to the butterflies working with maximal inputs the round-off error is 
significantly reduced as compared with that of the input prescaling method. 
Some numeric error is introduced by each butterfly, but this noise is itself 
reduced by a factor of two by the failsafe butterfly; the overall error-to-signal 
ratio is proportional to fi. A further trick can reduce the numeric error 
still more. Rather than using the failsafe butterfly throughout the FFT, we 
can (at the expense of further computation) first check if any overflows will 
occur in the present stage. If yes, we use the failsafe butterfly (and save the 
appropriate scaling factor), but if not, we can use the regular butterfly. We 
leave as an exercise to show that this data-dependent prescaling, does not 
require double computation of the overflowing stages. 

EXERCISES 

14.6.1 We can reduce the storage requirements of twiddle factor tables by using 
trigonometric symmetries (A.22). What is the minimum size table needed 
for N = 8? In general? Why are such economies of space rarely used? 

14.6.2 What is the numeric error-to-signal ratio for the straightforward computation 
of the DFT, for floating and fixed point processors? 

14.6.3 In the text we discussed the failsafe prescaling butterfly. An alternative is 
the failsafe postscaling butterfly, which divides by two after the butterfly is 
computed. What special computational feature is required of the processor 
for postscaling to work? Explain data-dependent postscaling. How does it 
solve the problem of double computation? 

14.6.4 In the text we ignored the problem of the finite resolution of the twiddle 
factors. What do you expect the effect of this quantization to be? 

14.7 Special Cases 

The FFT is fast, but for certain special cases it can be made it even faster. 
The special cases include signals with many zeros in either the time or 
frequency domain representations, or with many values about which we do 
not care. We can save computation time by avoiding needless operations 
such as multiplications by zero, or by not performing operations that lead 
to unwanted results. You may think that such cases are unusual and not wish 
to expend the effort to develop special code for them, but certain special 
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signals often arise in practice. These most common applications cases are 
zero-padding, interpolation, zoom-FFT and real-valued signals. 

We have mentioned the use of zero-padding (adding zeros at the end of 
the signal) to force a signal to some useful length (e.g., a power of two) or 
to increase spectral resolution. It is obvious that some savings are obtain- 
able in the first FFT stage, since we can avoid multiplications with zero 
inputs. Unfortunately, the savings do not carry over to the second stage 
of either standard DIT or DIF, since the first-stage butterflies mix signal 
values from widely differing places. Only were the zero elements to be close 
in bit-reversed order would the task of pruning unnecessary operations be 
simple. 

However, recalling the time partitioning of equation (14.5) we can per- 
form the FFT of the fully populated left half and that of the sparse right half 
separately, and then combine them with a single stage of DIF butterflies. Of 
course the right half is probably not all zeros, and hence we can’t realize all 
the savings we would wish; however, its right half may be all-zero and thus 
trivial, and the combining of its two halves can also be accomplished in a 
single stage. 

Another application that may benefit from this same ploy is interpo- 
lation. Zero-padding in the time domain increased spectral resolution; the 
dual to this is that zero-padding in the frequency domain can increase time 
resolution (i.e., perform interpolation). To see how the technique works, as- 
sume we want to double the sampling rate, adding a new signal value in 
between every two values. Assume further that the signal has no DC com- 
ponent. We take the FFT of the signal to be interpolated (with no savings), 
double the number of points in the spectrum by zero-padding, and finally 
take the IFFT. This final IFFT can benefit from heeding of zeros; and were 
we to desire a quadrupling of the sampling rate, the IFFT’s argument would 
have fully three-quarters of its elements zero. 

Using a similar ploy, but basing ourselves in the time decimation of 
equation (14.3), we can save time if a large fraction of either the even- 
or odd-indexed signal values are zero. This would seem to be an unusual 
situation, but once again it has its applications. 

Probably the most common special case is that of real-valued signals. 
The straightforward way of finding their FFT is to simply use a complex 
FFT routine, but then many complex multiplications and additions are per- 
formed with one component real. In addition the output has to be Hermi- 
tian symmetric (in the usual indexation this means XN-~ = Xz) and so 
computation of half of the outputs is redundant. We could try pruning the 
computations, both from the input side (eliminating all operations involv- 
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ing zeros) and from the output side (eliminating all operations leading to 
unneeded results), but once again the standard algorithms don’t lend them- 
selves to simplification of the intermediate stages. Suppose we were to make 
the mistake of inputting the vector of 2N real signal values Ri into a com- 
plex N-point FFT routine that expects interleaved input (Rc, la, RI, 11, . . . 
where xi = Ri + i&). Is there any way we could recover? The FFT thinks 
that the signal is x0 = & + iRr, x1 = RQ + iR3, etc. and computes a single 
spectrum XI,. If the FFT routine is a radix-2 DIT the even and odd halves 
are not mixed until the last stage, but for any FFT we can unmix the FFTs 
of the even and odd subsequences by the inverse of that last stage of DIT 
butterflies. 

x,E = ;(xk + x;;-k> 

x,0 = ;(xk - x&-k) 

The desired FFT is now given (see equation (14.4)) by 

&=X,E + w,lE,xf k=O...N-1 

RI, = x,fi, - w&x,0_, k=N...2N-1 

and is clearly Hermitian symmetric. 
The final special case we mention is the zoom FFT used to zoom in on 

a small area of the spectrum. Obviously for a very high spectral resolution 
the uncertainty theorem requires an input with very large N, yet we are 
only interested in a small number of spectral values. Pruning can be very 
efficient here, but hard to implement since the size and position of the zoom 
window are usually variable. When only a very small number of spectral 
lines are required, it may be advantageous to compute the straight DFT, or 
use Goertzel’s algorithm. Another attractive method is mix the signal down 
so that the area of interest is at DC, low-pass filter and reduce the sampling 
rate, and only then perform the FFT. 

EXERCISES 

14.7.1 How can pruning be used to reduce the complexity of zero-padded signals? 
Start from the diagram of the eight-point DIF FFT and assume that only 
the first two points are nonzero. Draw the resulting diagram. Repeat with 
the first four points nonzero, and again with the first six points. 

14.7.2 How can the FFT of two real signals of length N be calculated using a single 
complex FFT of length N? 



14.8. GOERTZEL’S ALGORITHM 561 

14.7.3 How can the FFT of four real symmetric (2~~~ = s,) signals of length N 
be calculated using a single complex FFT of length N? 

14.7.4 We are interested only in the first two spectral values of an eight-point FFT. 
Show how pruning can reduce the complexity. Repeat with the first four and 
six spectral values. 

14.8 Goertzel’s Algorithm 

The fast Fourier transform we have been studying is often the most efficient 
algorithm to use; however, it is not a panacea. The prudent signal processing 
professional should be familiar with alternative algorithms that may be more 
efficient in other circumst antes. 

In the derivation of the FFT algorithm our emphasis was on finding 
computations that were superfluous due to their having been previously 
calculated. This leads to significant economy when the entire spectrum is 
required, due to symmetries between various frequency components. How- 
ever, the calculation of each single Xh is not improved, and so the FFT is not 
the best choice when only a single frequency component, or a small number 
of components are needed. It is true that the complexity of the computation 
of any component must be at least 0(N), since every xn must be taken into 
account! However, the coefficient of the N in the complexity may be reduced, 
as compared with the straightforward calculation of equation (14.1). This is 
the idea behind Goertzel’s algorithm. 

There are many applications when only a single frequency component, or 
a small number of components are required. For example, telephony signal- 
ing is typically accomplished by the use of tones. The familiar push-button 
dialing employs a system known as Dual Tone Multiple Frequency (DTMF) 
tones, where each row and each column determine a frequency (see figure 
14.7). For example, the digit 5 is transmitted by simultaneously emitting 
the two tones L2 and H2. To decode DTMF digits one must monitor only 
eight frequencies. Similarly telephone exchanges use a different multifre- 
quency tone system to communicate between themselves, and modems and 
fax machines also use specific tones during initial stages of their operation. 

One obvious method of decoding DTMF tones is to apply eight band- 
pass filters, calculate the energy of their outputs, pick the maximum from 
both the low group and the high group, and decode the meaning of this 
pair of maxima as a digit. That’s precisely what we suggest, but we propose 
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Hl H2 H3 H4 

Ll- 

L2- 

L3- 

L4- 

Tone 1 Frequency (Hz) 

‘;I 

1 H4 1 1633 1 

Figure 14.7: The DTMF telephony signaling method. (Note: The A, B, C, and D tones 
are not available on the standard telephone, being reserved for special uses.) 

using Goertzel’s DFT instead of a band-pass filter. Of course we could use a 
regular FFT as a bank of band-pass filters, but an FFT with enough bins for 
the required frequency resolution would be much higher in computational 
complexity. 

When we are interested only in a single frequency component, or a small 
number of them that are not simply related, the economies of the FFT are 
to no avail, and the storage of the entire table of trigonometric constants 
wasteful. Assuming all the required WN nk to be precomputed, the basic DFT 
formula for a single XI, requires N complex multiplications and N - 1 com- 
plex additions to be calculated. In this section we shall assume that the xn 
are real, so that this translates to 2N real multiplications and 2(N - 1) real 
additions. 

Recalling the result of exercise 4.7.2, we need only know Wh and calcu- 
late the other twiddle factors as powers. In particular, when we are interested 

in only the kth spectral component, we saw in equation (4.55) that the DFT 

becomes a polynomial in W E Wk E e-‘F. 

N-l 

& = 
c 

XnWEk = x0 + Xlw + X2w2 + . . s XN-lWN-l 
n=O 

This polynomial is best calculated using Horner’s rule 

& = ’ ’ ’ (XN-1w + 2N4)w + . . . +x2) w+x1) w+xo 

which can be written as a recursion. 
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Given: xn for n t O...N-1 

PN-1 + XN-1 

for 72 t N - 1 down to 0 

8-h + Pn+lW + Xn 

Xk c PO 

We usually prefer recursion indices to run in ascending order, and to do 
this we define V = W-l = W$ - e+iq. Since VN = 1 we can write 

N-l 

xk = 
c 

xnvN-n = x()vN + xlvN-l + . . . + xN-2v2 + XN-lv 

n=O 

which looks like a convolution. Unfortunately the corresponding recursion 
isn’t of the right form; by multiplying & by a phase factor (which won’t 
effect the squared value) we get 

xi = xOvN-l + xlvN-2 + . . . + 32N4V + LEN-1 
which translates to the following recursion. 

Given: xn for n t O...N-1 

PO + x0 
for n t 1 to N- 1 

pn + P,-1v + xn 
XL + P&l 

This recursion has an interesting geometric interpretation. The complex 
frequency component & can be calculated by a sequence of basic N - 1 
moves, each of which consists of rotating the previous result by the angle 
y and adding the new real xn. 

Each rotation is a complex multiply, contributing either 4(N - 1) real 
multiplications and 2( N - 1) real additions or 3(N - 1) and 5(N - 1) re- 
spectively. The addition of a real xn contributes a further (N - 1) additions, 
We see that the use of the recursion rather than expanding the polynomial 
has not yet saved any computation time. This is due to the use of complex 
state variables P. Were the state variables to be real rather than complex< 
we would save about half the multiplies. We will now show that the com- 
plex state variables can indeed be replaced by real ones, at the expense oj 
introducing another time lag (i.e., recursion two steps back). 

Since we are assuming that x, are real, we see from our basic recursior 
step Pn + P,-IV + xn that Pn - P,-IV must be real at every step. 
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We can implicitly define a sequence Qn as follows 

pn = Qn - WQn--l (14.10) 

and will now show that the Q are indeed real-valued. Substituting into the 
recursion step 

pn + Xn + Pn-1V 

Qn - W&n-l + xn + (Qn-1 - W&n-2) V 

Qn + xn + (V + W)Qn-1 + (WV)Qn-2 
Qn + xn + A&n-l - Qn-2 

where A s v + w  = 2cos(9 ). Since the inputs xn are real and A is real, 
assuming the Qs start off real (and we can start with zero) they remain real. 

The new algorithm is: 

Given: xn for n=O...N-1 

Q-2 + 0, Q -1 + 0 

Qo + x0 
for n t 1 to N- 1 

Qn + xn + A&n-l - Qn-2 

xf, + QN-I - WQN-=! 

and the desired energy 

l&cl2 = 9%~1 + Q&4 - AQN-&N-S 

must be computed at the end. This recursion requires only a single frequency- 
dependent coefficient A and requires keeping two lags of Q. Computationally 
there is only a single real multiplication and two real additions per iteration, 
for a total of N - 1 multiplications and 2(N - 1) additions. 

There is basically only one design parameter to be determined before 
using Goertzel’s algorithm, namely the number of points N. Goertzel’s al- 
gorithm can only be set up to detect frequencies of the form f = fifs where 
fs is the sampling frequency; thus selecting larger N allows finer resolution 
in center frequencies. In addition, as we shall see in the exercises, larger N 
implies narrower bandwidth as well. However, larger N also entails longer 
computation time and delay. 
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EXERCISES 

14.8.1 Since Goertzel’s algorithm is equivalent to the DFT, the power spectrum 

response (for w  = 2&/N) is P(k) = Show that the half 
power point is at 0.44, i.e., the half power‘ bandwidth is 0.88 bin, where each 
bin is simply $. What is the trade-off between time accuracy and frequency 
accuracy when using Goertzel’s algorithm as a tone detector? 

14.8.2 DTMF tones are allowed to be inaccurate in frequency by 1.5%. What would 
be the size of an FFT that has bins of about this size? How much computation 
is saved by using Goertzel’s algorithm? 

14.8.3 DTMF tones are used mainly by customers, while telephone companies use 
different multitone systems for their own communications. In North America, 
telephone central offices communicate using MF trunk tones 700, 900, 1100, 
1300, 1500, 1700, 2600 and 3700 Hz, according to the following table. 

14.8.4 

Tone 1 2 3 I 4 5 6 
Frequencies 700+900 700+1100 900+1100 700+1300 900+1300 1100+1300 

Tone 7 8 9 0 KP ST 
Frequencies 700+ 1500 900+ 1500 1100+1500 1300+1500 1 1100+1700 1500+1700 

All messages start with KP and end with ST. Assuming a sampling rate of 8 
KHz, what is the minimum N that exactly matches these frequencies? What 
will the accuracy (bandwidth) be for this N? Assuming N is required to be 
a power of two, what error will be introduced? 

Repeat the previous question for DTMF tones, which are purposely chosen to 
be nonharmonically related. The standard requires detection if the frequen- 
cies are accurate to within 51.5% and nonoperation for deviation of 53.5% 
or more. Also the minimal on-time is 40 milliseconds, but tones can be trans- 
mitted at a rate of 10 per second. What are the factors to be considered when 
choosing N? 

14.9 FIFO Fourier Transform 

The FFT studied above calculates the spectrum once; when the spectrum 
is required to be updated a~ a function of time the FFT must be reapplied 
for each time shift. The worst case is when we wish to slide through the 
data one sample at a time, calculating DFT(Q . . . z&, DFT(zl . . . z~), 
etc. When this must be done M times, the complexity using the FFT is 
0 (MN log IV). For this case there is a more efficient algorithm, the FIFO 

Fourier transform, which instead of completely recalculating XI, for each 
shift, updates the previous one. 
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There is a well-known trick for updating a moving simple average 
N-l 

A, = c Xm+n 
n=O 

that takes computation time that is independent of N. The trick employs a 
FIFO of length N, holding the samples to be summed. First we wait until 
the FIFO is full, and then sum it up once to obtain Ao. Thereafter, rather 
than summing N elements, we update the sum using 

A m+l = Am + xm+N - xrn 

recursively. For example, the second sum Al is derived from A0 by removing 
the unnecessary x0 and adding the new term XN. 

Unfortunately, this trick doesn’t generalize to moving averages with co- 
efficients, such as general FIR filters. However, a slightly modified version 
of it can be used for the recursive updating of the components of a DFT 

m-i-N-1 

Xkm = c Xn WKk (14.11) 
n=m 

where in this case we do not ‘reset the clock’ as would be the case were we 
to call a canned FFT routine for each m. After a single initial DFT or FFT 
has been computed, to compute the next we need only update via the FIFO 
Fourier Transform (FIFOFT) 

Xkm+l = Xkm + (xm+N - xrn)wFk (14.12) 

requiring only two complex additions and one complex multiplication per 
desired frequency component. 

Let’s prove equation (14.12). Rewriting equation (14.11) for m and m + 1 

Xkm = 

Xkm+l = 

N-l 

c Xm+n Wkm+n)” 
n=O 

N-l 
(m+l+n)k 

C Xm+l+nWN 
n=O 

N 
(m+n)k 

C Xm+nWN 
n=l 

N-l 
(m+n)k 

c xm+nwN 
(m+N)k 

- xrnwEk + xm+NwN 
n=O 

and since Wlk = 1 we obtain equation (14.12). 



14.9. FIFO FOURIER TRANSFORM 567 

When all N frequency components are required, the FIFOFT requires N 
complex multiplications and 2N complex additions per shift. For N > 4 this 
is less than the 6 log, N multiplications and N log2 N additions required by 
the FFT. Of course after N shifts we have performed O(N2) multiplications 
compared with 0( N log N) for a single additional FFT, but we have received 
a lot more information as well. 

Another, perhaps even more significant advantage of the FIFOFT is the 
fact that it does not introduce notable delay. The FFT can only be used 
in real-time processing when the delay between the input buffer being filled 
and FFT result becoming available is small enough. The FIFOFT is truly 
real-time, similar to direct computation of a convolution. Of course the first 
computation must somehow be performed (perhaps not in real-time), but 
in many applications we can just start with zeros in the FIFO and wait for 
the answers to become correct. The other problem with the FIFOFT is that 
numeric errors may accumulate, especially if the input is of large dynamic 
range. In such cases the DFT should be periodically reinitialized by a more 
accurate computation. 

EXERCISES 

14.9.1 For what types of MA filter coefficients are there FIFO algorithms with 
complexity independent of N? 

14.9.2 Sometimes we don’t actually need the recomputation for every input sample, 
but only for every T samples. For what r does it become more efficient to use 
the FFT rather than the FIFOFT? 

14.9.3 Derive a FIFOFT that uses N complex additions and multiplications per 
desired frequency component, for the case of resetting the clock. 

N-l 

xk, = c 
xm + nWEk 

n=O 

(14.13) 

14.9.4 The FIFOFT as derived above does not allow for windowing of the input 
signal before transforming. For what types of windows can we define a moving 
average FT with complexity independent of N? 
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Bibliographical Notes 

More detail on the use of FFT like algorithms for multiplication can be found in 
Chapter 4 of the second volume of Knuth (1361. 

An early reference to computation of Fourier transforms is the 1958 paper by 
Blackman and Tukey that was later reprinted as a book [19]. 

The radix-2 DIT FFT was popularized in 1965 by James Cooley of IBM and 
John Tukey of Princeton [45]. Cooley recounts in [43] that the complexity reduction 
idea was due to Tukey, and that the compelling applications were military, including 
seismic verification of Russian compliance with a nuclear test ban and long-range 
acoustic detection of submarines. Once Cooley finished his implementation, IBM 
was interested in publishing the paper in order to ensure that such algorithms did 
not become patented. The first known full application of the newly published FFT 
was by an IBM geophysicist named Lee Alsop who was studying seismographic 
records of an earthquake that had recently taken place in Alaska. Using 2048 data 
points, the FFT reduced the lengthy computation to seconds. 

Gordon Sande, a student of Tukey’s at Princeton, heard about the complexity 
reduction and worked out the DIF algorithm. After Cooley sent his draft paper 
to Tukey and asked the latter to be a co-author, Sande decided not to publish his 
work. 

Actually, radix-2 FFT-like algorithms have a long history. In about 1805 the 
great mathematician Gauss [177] used, but did not publish, an algorithm essentially 
the same as Cooley and Tukey’s two years before Fourier’s presentation of his 
theorem at the Paris Institute! Although eventually published posthumously in 
1866, the idea did not attract a lot of attention. Further historical information is 
available in [44]. 

The classic reference for special real-valued FFT algorithms is [248]. The split- 
radix algorithm is discussed in [57, 247, 561. 

The prime factor FFT was introduced in [137], based on earlier ideas (e.g. 
[240, 291) d an an in-place algorithm given in [30]. The extension to real-valued 
signals is given in [98]. 

Winograd’s prime factor FFT [283, 2841 is based on a reduction of a DFT of 
prime length N into a circular convolution of length N - 1 first published as a 
letter by Rader [214]. A good account is found in the McClellan and Rader book 
on number theory in DSP [166]. 

Goertzel’s original article is [77]. The MAFT is treated in [7, 2491. The zoom 
FFT can be found in [288]. 

A somewhat dated but still relevant review of the FFT and its applications can 
be found in [16] and much useful material including FORTRAN language sources 
came out of the 1968 Arden House workshop on the FFT, reprinted in the June 
1969 edition of the IEEE Transactions on Audio and Electroacoustics (AU-17(2) 
pp. 66-169). Many original papers are reprinted in [209, 1661). Modern books on 
the FFT include [26, 28,31, 2461 and Chapter 8 of [241]. Actual code can be found 
in the last reference, as well as in (311, [30, 247, 171, [41, 1981 etc. 


