
15

Digital Filter Implementation

In this chapter we will delve more deeply into the practical task of using
digital filters. We will discuss how to accurately and efficiently implement
FIR and IIR filters.

You may be asking yourself why this chapter is important. We already
know what a digital filter is, and we have (or can find) a program to find the
coefficients that satisfy design specifications. We can inexpensively acquire
a DSP processor that is so fast that computational efficiency isn’t a concern,
and accuracy problems can be eliminated by using floating point processors.
Aren’t we ready to start programming without this chapter?

Not quite. You should think of a DSP processor as being similar to a jet
plane; when flown by a qualified pilot it can transport you very quickly to
your desired destination, but small navigation errors bring you to unexpected
places and even the slightest handling mistake may be fatal. This chapter is
a crash course in digital filter piloting.

In the first section of this chapter we discuss technicalities relating to
computing convolutions in the time domain. The second section discusses
the circular convolution and how it can be used to filter in the frequency
domain; this is frequently the most efficient way to filter a signal. Hard
real-time constraints often force us to filter in the time domain, and so we
devote the rest of the chapter to more advanced time domain techniques.
We will exploit the graphical techniques developed in Chapter 12 in order
to manipulate filters. The basic building blocks we will derive are called
structures, and we will study several FIR and IIR structures. More complex
filters can be built by combining these basic structures.

Changing sampling rate is an important application for which special
filter structures known as polyphuse filters have been developed. Polyphase
filters are more efficient for this application than general purpose structures.

We also deal with the effect of finite precision on the accuracy of filter
computation and on the stability of IIR filters.

569

Digital Signal Processing: A Computer Science Perspective
Jonathan Y. Stein
Copyright  2000 John Wiley & Sons, Inc.
Print ISBN 0-471-29546-9 Online ISBN 0-471-20059-X

570 DIGITAL FILTER IMPLEMENTATION

15.1 Computation of Convolutions

We have never fully described how to properly compute the convolution sum
in practice. There are essentially four variations. Two are causal, as required
for real-time applications; the other two introduce explicit delays. Two of the
convolution procedures process one input at a time in a real-time-oriented
fashion (and must store the required past inputs in an internal FIFO), the
other two operate on arrays of inputs.

First, there is the causal FIFO way

L-l

Yn = c al Xn-1
l=O

(15.1)

which is eminently suitable for real-time implementation. We require two
buffers of length L-one constant buffer to store the filter coefficients, and a
FIFO buffer for the input samples. The FIFO is often unfortunately called
the static bufler; not that it is static---it is changing all the time. The name
is borrowed from computer languages where static refers to buffers that
survive and are not zeroed out upon each invocation of the convolution
procedure. We usually clear the static buffer during program initialization,
but for continuously running systems this precaution is mostly cosmetic,
since after L inputs all effects of the initialization are lost. Each time a
new input arrives we push it into the static buffer of length L, perform
the convolution on this buffer by multiplying the input values by the filter
coefficients that overlap them, and accumulating. Each coefficient requires
one multiply-and-accumulate (MAC) operation. A slight variation supported
by certain DSP architectures (see Section 17.6), is to combine the push
and convolve operations. In this case the place shifting of the elements in
the buffer occurs as part of the overall convolution, in parallel with the
computation.

In equation (15.1) the index of summation runs over the filter coefficients.
We can easily modify this to become the causal array method

n

Yn = c an-i Xi

i=n-(L-l)

(15.2)

where the index i runs over the inputs, assuming these exist. This variation
is still causal in nature, but describes inputs that have already been placed in
an array by the calling application. Rather than dedicating further memory
inside our convolution routine for the FIFO buffer, we utilize the existing
buffering and its indexation. This variation is directly suitable for off-line

15.1. COMPUTATION OF CONVOLUTIONS 571

computation where we compute the entire output vector in one invocation.
When programming we usually shift the indexes to the range 0 . . . L - 1 or
1 L. . . .

In off-line calculation there is no need to insist on explicit causality since
all the input values are available in a buffer anyway. We know from Chapter 6
that the causal filter introduces a delay of half the impulse response, a delay
that can be removed by using a noncausal form. Often the largest filter
coefficients are near the filter’s center, and then it is even more natural
to consider the middle as the position of the output. Assuming an odd
number of taps, it is thus more symmetric to index the L = 2X + 1 taps
as (2-A.. .a(). . . a~, and the explicitly noncausal FIFO procedure looks like
this.

A

Yn = c Wh-1 (15.3)
1=-X

The corresponding noncausal arraybased procedure is obtained, once again,
by a change of summation variable

n-l-X

Yn = c an-i Xi (15.4)
i=n-X

assuming that the requisite inputs exist. This symmetry comes at a price;
when we get the n th input, we can compute only the (n- X) th output. This
form makes explicit the buffer delay of X between input and output.

In all the above procedures, we assumed that the input signal existed
for all times. Infinite extent signals pose no special challenge to real-time
systems but cannot really be processed off-line since they cannot be placed
into finite-length vectors. When the input signal is of finite time duration and
has only a finite number N of nonzero values, some of the filter coefficients
will overlap zero inputs. Assume that we desire the same number of outputs
as there are inputs (i.e., if there are N inputs, n = 0,. . . N - 1, we expect N
outputs). Since the input signal is identically zero for n < 0 and n 2 N, the
first output, yo, actually requires only X + 1 multiplications, namely uoxo,
~1x1, through U-XXX, since al through a~ overlap zeros.

a A ax-1 . . . a2 al ~0 a-1 a-2 . . . a-A+1 a-A
0 0 . . . 0 0 x0 Xl x2 . . . xx-1 xx Xx+1.. .

Only after X shifts do we have the filter completely overlapping signal.

aA aA- aA- . . . al a0 a-1 . . . a-A+1 a-A

x0 Xl x2 . . . xx-1 xx xx+1 l ** X2X-l x2x 52x+1 **a

572 DIGITAL FILTER IMPLEMENTATION

Likewise the last X outputs have the filter overlapping zeros as well.

. . . a A ax-1 . . . a2 al a0 a-1 a-2 . . . a-x+1 a-A

. . . XN-1 XN-2 . . . 2N-2 XN-1 XN 0 0 . . . 0 0
The programming of such convolutions can take the finite extent into ac-
count and not perform the multiplications by zero (at the expense of more
complex code). For example, if the input is nonzero only for N samples
starting at zero, and the entire input array is available, we can save some
computation by using the following sums.

min(N-1,n) min(N-l,n+X)

Yn = c an-iXi = c an-iXi (15.5)
i=max(O,n-(l-l)) i=max(O,n-A)

The improvement is insignificant for N >> L.
We have seen how to compute convolutions both for real-time-oriented

cases and for off-line applications. We will see in the next section that these
straightforward computations are not the most efficient ways to compute
convolutions. It is almost always more efficient to perform convolution by
going to the frequency domain, and only harsh real-time constraints should
prevent one from doing so.

EXERCISES

15.1.1 Write two routines for array-based noncausal convolution of an input signal
x by an odd length filter a that does not perform multiplications by zero.
The routine convolve (N, L, x, a, y> should return an output vector y of
the same length N as the input vector. The filter should be indexed from 0
to L- 1 and stored in reverse order (i.e., a0 is stored in a [L-II) . The output
yi should correspond to the middle of the filter being above xi (e.g., the first
and last outputs have about half the filter overlapping nonzero input signal
values). The first routine should have the input vector’s index as the running
index, while the second should use the filter’s index.

15.1.2 Assume that a noncausal odd-order FIR filter is symmetric and rewrite the
above routines in order to save multiplications. Is such a procedure useful for
real-time applications?

15.1.3 Assume that we only want to compute output values for which all the filter
coefficients overlap observed inputs. How many output values will there be?
Write a routine that implements this procedure. Repeat for when we want
all outputs for which any inputs are overlapped.

15.2. FIR FILTERING IN THE FREQUENCY DOMAIN 573

15.2 FIR Filtering in the Frequency Domain

After our extensive coverage of convolutions, you may have been led to be-
lieve that FIR filtering and straightforward computation of the convolution
sum as in the previous section were one and the same. In particular, you
probably believe that to compute N outputs of an L-tap filter takes NL
multiplications and N(L - 1) additions. In this section we will show how
FIR filtering can be accomplished with significantly fewer arithmetic oper-
ations, resulting both in computation time savings and in round-off error
reduction.

If you are unconvinced that it is possible to reduce the number of multi-
plications needed to compute something equivalent to N convolutions, con-
sider the simple case of a two-tap filter (a~, al). Straightforward convolution
of any two consecutive outputs yn and yn+r requires four multiplications
(and two additions). However, we can rearrange the computation

Yn = al&a + aox,+ = a1(xn + Xn+l) - (a1 - ao)xn+1

Yn+l = al&b+1 + aOXn+2 = ao(Xn+l + X,+2) + (al - Q~O)xn+l

so that only three multiplications are required. Unfortunately, the number of
additions was increased to four (al - a0 can be precomputed), but nonethe-
less we have made the point that the number of operations may be decreased
by identifying redundancies. This is precisely the kind of logic that led us
to the FFT algorithm, and we can expect that similar gains can be had for
FIR filtering. In fact we can even more directly exploit our experience with
the FFT by filtering in the frequency domain.

We have often stressed the fact that filtering a signal in the time domain
is equivalent to multiplying by a frequency response in the frequency domain.
So we should be able to perform an FFT to jump over to the frequency do-
main, multiply by the desired frequency response, and then iFFT back to
the time domain. Assuming both signal and filter to be of length N, straight
convolution takes O(N2) operations, while the FFT (O(N log N)), multipli-
cation (O(N)), and iFFT (once again 0(N log N)) clock in at 0 (N log N) .
This idea is almost correct, but there are two caveats. The first problem
arises when we have to filter an infinite signal, or at least one longer than
the FFT size we want to use; how do we piece together the individual results
into a single coherent output? The second difficulty is that property (4.47)
of the DFT specifies that multiplication in the digital frequency domain cor-
responds to circular convolution of the signals, and not linear convolution.

As discussed at length in the previous section, the convolution sum con-
tains shifts for which the filter coefficients extend outside the signal. There

574 DIGITAL FILTER IMPLEMENTATION

XN-

il
x2

a0

Figure 15.1: Circular convolution for a three-coefficient filter. For shifts where the index
is outside the range 0.. . N - 1 we assume it wraps around periodically, as if the signal
were on a circle.

we assumed that when a nonexistent signal value is required, it should be
taken to be zero, resulting in what is called linear convolution. Another
possibility is circular convolution, a quantity mentioned before briefly in
connection with the aforementioned property of the DFT. Given a signal
with L values x0, x1 . . . XL-~ and a set of A4 coefficients ao, al . . . aM- 1 we
defined the circular (also called cyclic) convolution to be

Yl =a@xf c %-II x(l-m) mod L

m

where mod is the integer modulus operation (see appendix A.2) that always
returns an integer between 0 and L - 1. Basically this means that when the
filter is outside the signal range rather than overlapping zeros we wrap the
signal around, as depicted in Figure 15.1.

Linear and circular convolution agree for all those output values for which
the filter coefficients overlap true signal values; the discrepancies appear
only at the edges where some of the coefficients jut out. Assuming we have
a method for efficiently computing the circular convolution (e.g., based on

the FFT), can it somehow be used to compute a linear convolution? It’s not
hard to see that the answer is yes, for example, by zero-padding the signal
to force the filter to overlap zeros. To see how this is accomplished, let’s take
a length-l signal x0 . . . XL- 1, a length M filter a0 . . . aM- 1, and assume that
M < L. We want to compute the L linear convolution outputs ye . . . y~-i.
The L - M + 1 outputs YM-1 through y~-r are the same for circular and
linear convolution, since the filter coefficients all overlap true inputs. The
other M - 1 outputs yo through PM-2 would normally be different, but if we
artificially extend the signal by x-M+1 = 0, through x-r = 0 they end up
being the same. The augmented input signal is now of length N = L+ M - 1,
and to exploit the FFT we may desire this N to be a power of two.

15.2. FIR FILTERING IN THE FREQUENCY DOMAIN 575

It is now easy to state the entire algorithm. First we append M - 1 zeros
to the beginning of the input signal (and possibly more for the augmented
signal buffer to be a convenient length for the FFT). We similarly zero-pad
the filter to the same length. Next we FFT both the signal and the filter.
These two frequency domain vectors are multiplied resulting in a frequency
domain representation of the desired result. A final iFFT retrieves N values
yn, and discarding the first M - 1 we are left with the desired L outputs.

If N is small enough for a single FFT to be practical we can compute
the linear convolution as just described. What can be done when the input
is very large or infinite? We simply break the input signal into blocks of
length N. The first output block is computed as described above; but from
then on we needn’t pad with zeros (since the input signal isn’t meant to be
zero there) rather we use the actual values that are available. Other than
that everything remains the same. This technique, depicted in Figure 15.2,
is called the overlap save method, since the FFT buffers contain M - 1 input
values saved from the previous buffer. In the most common implementations
the M - 1 last values in the buffer are copied from its end to its beginning,
and then the buffer is filled with N new values from that point on. An even
better method uses a circular buffer of length L, with the buffer pointer
being advanced by N each time.

You may wonder whether it is really necessary to compute and then dis-
card the first M - 1 values in each FFT buffer. This discarding is discarded
in an alternative technique called overlap add. Here the inputs are not over-
lapped, but rather are zero-padded at their ends. The linear convolution can
be written as a sum over the convolutions of the individual blocks, but the
first M - 1 output values of each block are missing the effect of the previ-
ous inputs that were not saved. To compensate, the corresponding outputs
are added to the outputs from the previous block that corresponded to the
zero-padded inputs. This technique is depicted in Figure 15.3.

If computation of FIR filters by the FFT is so efficient, why is straight-
forward computation of convolution so prevalent in applications? Why do
DSP processors have special hardware for convolution, and why do so many
software filters use it exclusively? There are two answers to these questions.
The first is that the preference is firmly grounded in ignorance and laziness.
Straightforward convolution is widely known and relatively simple to code
compared with overlap save and add. Many designers don’t realize that sav-
ings in real-time can be realized or don’t want to code FFT, overlap, etc.
The other reason is more fundamental and more justifiable. In real-time ap-
plications there is often a limitation on delay, the time between an input
appearing and the corresponding output being ready. For FFT-based tech-

576 DIGITAL FILTER IMPLEMENTATION

Figure 15.2: Overlap save method of filtering in the frequency domain. The input signal
zn is divided into blocks of length 15, which are augmented with M - 1 values saved from
the previous block, to fill a buffer of length N = L + M - 1. Viewed another way, the
input buffers of length N overlap. The buffer is converted to the frequency domain and
multiplied there by N frequency domain filter values. The result is converted back into
the time domain, M - 1 incorrect values discarded, and L values output.

15.2. FIR FILTERING IN THE FREQUENCY DOMAIN 577

Figure 15.3: Overlap add method of filtering in the frequency domain. The input signal
x,, is divided into blocks of length L, to which are added M - 1 zeros to fill a buffer of
length N = L + M - 1. This buffer is converted to the frequency domain and multiplied
there by N frequency domain filter values. The result is converted back into the time
domain, M - 1 partial values at the beginning of the buffer are overlapped and then added
to the M - 1 last values from the previous buffer.

578 DIGITAL FILTER IMPLEMENTATION

niques this delay is composed of two parts. First we have to fill up the signal
buffer (and true gains in efficiency require the use of large buffers), resulting
in bufer delay, and then we have to perform the entire computation (FFT,
block multiplication, iFFT), resulting in algorithmic delay. Only after all
this computation is completed can we start to output the yn. While the
input sample that corresponds to the last value in a buffer suffers only the
algorithmic delay, the first sample suffers the sum of both delays. For appli-
cations with strict limitations on the allowed delay, we must use techniques
where the computation is spread evenly over time, even if they require more
computation overall.

EXERCISES

15.2.1 Explain why circular convolution requires specification of the buffer size while
linear convolution doesn’t. Explain why linear convolution can be considered
circular convolution with an infinite buffer.

15.2.2 The circular convolution yc = aeze + alzl, yi = aizo + aczl implies four
multiplications and two additions. Show that it can be computed with two
multiplications and four additions by precomputing Go = 3 (a0 + ai), G1 =
$<a0 - al), and for each 20, ~1 computing zo = ~0 + ~1 and ~1 = ~0 - ~1.

15.2.3 Convince yourself that overlap save and overlap add really work by coding
routines for straightforward linear convolution, for OA and for OS. Run all
three and compare the output signals.

15.2.4 Do you expect OA/OS
forward convolution in

numerically to be more or less
the time domain?

accurate than straight-

15.2.5 Compare the number of operations per time required for filtering an infinite
signal by a filter of length M, using straightforward time domain convolution
with that using the FFT. What length FFT is best? When is the FFT method
worthwhile?

15.2.6 One can compute circular convolution using an algorithm designed for linear
convolution, by replicating parts of the signal. By copying the L - 2 last
values before ~0 (the cyclic prefix) and the L - 2 first values after ZN- 1 (the
cyclic sufix), we obtain a signal that looks like this.

070, x N-L+l,XN-L+2,*.*XN-2,XN-l,

x0,x1, *. * XN-2,xN-1,

x0, Xl, * * * XL-37 XL-29 f 0,o

Explain how to obtain the desired circular convolution.

15.2.7 Can IIR filtering be performed in the frequency domain using techniques
similar to those of this section? What about LMS adaptive filtering?

15.3. FIR STRUCTURES 579

15.3 FIR Structures

In this section we return to the time domain computation of convolution of
Section 15.1 and to the utilization of graphic techniques for FIR filtering
commenced in Section 12.2. In the context of digital filters, graphic imple-
mentations are often called structures.

Figure 15.4: Direct form implementation of the FIR filter. This form used to be known
as the ‘tapped delay line’, as it is a direct implementation of the weighted sum of delayed
taps of the input signal.

In Figure 12.5, reproduced here with slight notational updating as Fig-
ure 15.4, we saw one graphic implementation of the linear convolution. This
structure used to be called the ‘tapped delay line’. The image to be conjured
up is that of the input signal being delayed by having to travel with finite
velocity along a line, and values being tapped off at various points corre-
sponding to different delays. Today it is more commonly called the direct
form structure. The direct form implementation of the FIR filter is so preva-
lent in DSP that it is often considered sufficient for a processor to efficiently
compute it to be considered a DSP processor. The basic operation in the
tapped delay line is the multiply-and-accumulate (MAC), and the number
of MACs per second (i.e., the number of taps per second) that a DSP can
compute is the universal benchmark for DSP processor strength.

Figure 15.5: Thnsposed form implementation of the FIR filter. Here the present input
zn is multiplied simultaneously by all L filter coefficients, and the intermediate products
are delayed and summed.

580 DIGITAL FILTER IMPLEMENTATION

W
x = - a,b = = E . c,& + y =

L
x.-b--p&q-WY

Figure 15.6: Cascading simple filters. On the left the output y is created by filtering WI,
itself the output of filtering x. On the right is the equivalent single filter system.

Another graphic implementation of the FIR filter is the transposed struc-
ture depicted in Figure 15.5. The most striking difference between this form
and the direct one is that here the undelayed input xn is multiplied in par-
allel by all the filter coefficients, and it is these intermediate products that
are delayed. Although theoretically equivalent to the direct form the fact
that the computation is arranged differently can lead to slightly different
numeric results in practice. For example, the round-off noise and overflow
errors will not be the same in general.

The transposed structure can be advantageous when we need to partition
the computation. For example, assume you have at your disposal digital filter
hardware components that can compute L’ taps, but your filter specification
can only be satisfied with L > L’ taps. Distributing the computation over
several components is somewhat easier with the transposed form, since we
need only provide the new input xn to all filter components in parallel, and
connect the upper line of Figure 15.5 in series. The first component in the
series takes no input, and the last component provides the desired output.
Were we to do the same thing with the direct form, each component would
need to receive two inputs from the previous one, and provide two outputs
to the following one.

However, if we really want to neatly partition the computation, the best
solution would be to satisfy the filter specifications by cascading several
filters in series. The question is whether general filter specifications can be
satisfied by cascaded subfilters, and if so how to find these subfilters.

In order to answer these questions, let’s experiment with cascading sim-
ple filters. As the simplest case we’ll take the subfilters to depend on the
present and previous inputs, and to have unity DC gain (see Figure 15.6).

wn = axn + bxn-1 a+b=l

Yn = Cwn + dwn-1 c+d=l (15.6)

Substituting, we see that the two in series are equivalent to a single filter
that depends on the present and two past inputs.

15.3. FIR STRUCTURES 581

Yn = C(UXn + bXn--1) + d(UXn-1 + bXn-2)

= acx, + (ad+b~)x,-.-~ + bdx,.e2 (15.7)

= Ax, + Bx,-1 + CX~-2

Due to the unity gain constraints the original subfilters only have one free
parameter each, and it is easy to verify that the DC gain of the combined
filter is unity as expected (A + B + C = 1). So we started with two free
parameters, ended up with two free parameters, and the relationship from
a, b, c, d to A, B, C is invertible. Given any unity DC gain filter of the form
in the last line of equation (15.7) we can find parameters a, b, c, d such that
the series connection of the two filters in equation (15.6) forms an equivalent
filter. More generally, if the DC gain is nonunity we have four independent
parameters in the cascade form, and only three in the combined form. This
is because we have the extra freedom of arbitrarily dividing the gain between
the two subfilters.

This is one of the many instances where it is worthwhile to simplify
the algebra by using the zT formalism. The two filters to be cascaded are
described by

Wn = (u+bz-l)x,

Yn = (c+dz-‘)wn

and the resultant filter is given by the product.

Yn = (c + dz-‘)(a + bz-‘) xn

=
(
UC + (ad + bc)z-’ + bdze2) xn

=
(
A + Bz-’ + CzB2 xn >

We see that the A, B, C parameters derived here by formal multiplication
of polynomials in z-l are exactly those derived above by substitution of the
intermediate variable wn. It is suggested that the reader experiment with
more complex subfilters and become convinced that this is always the case.

Not only is the multiplication of polynomials simpler than the substitu-
tion, the zT formalism has further benefits as well. For example, it is hard
to see from the substitution method that the subfilters commute, that is,
had we cascaded

vn = cxn + dxn-1 c+d=l

Vn = awn + bwn-1 u+b=l

582 DIGITAL FILTER IMPLEMENTATION

Figure 15.7: Cascade form implementation of the FIR filter. Here the input is filtered
successively by M ‘second-order sections’, that is, simple FIR filters that depend on the
present input and two past inputs. The term ‘second-order’ refers to the highest power of
z -’ being two, and ‘section’ is synonymous with what we have been calling ‘subfilter’. If
C m = 0 the section is first order.

we would have obtained the same filter. However, this is immediately obvious
in the zT formalism, from the commutativity of multiplication of polynomi-
als.

(c + cEz-l)(a + bz-l) = (a + bz-‘)(c + dz-l)

Even more importantly, in the zT formalism it is clear that arbitrary filters
can be decomposed into cascades of simple subfilters, called sections, by
factoring the polynomial in zT. The fundamental theorem of algebra (see
Appendix A.6) guarantees that all polynomials can be factored into linear
factors (or linear and quadratic if we use only real arithmetic); so any filter
can be decomposed into cascades of ‘first-order’ and ‘second-order’ sections.

ho + h1z-l h() + h1z-l+ h2z-2

The corresponding structure is depicted in Figure 15.7.
The lattice structure depicted in Figure 15.8 is yet another implemen-

tation that is built up of basic sections placed in series. The diagonal lines
that give it its name make it look very different from the structures we
have seen so far, and it becomes even stranger once you notice that the two
coefficients on the diagonals of each section are equal. This equality makes
the lattice structure numerically robust, because at each stage the numbers
being added are of the same order-of-magnitude.

15.3. FIR STRUCTURES 583

. . .

. . .

Figure 15.8: Lattice form implementation of the FIR filter. Here the input is filtered
successively by M lattice stages, every two of which is equivalent to a direct form second-
order section.

In order to demonstrate that arbitrary FIR filters can be implemented
as lattices, it is sufficient to show that a general second-order section can be.
Then using our previous result that general FIR filters can be decomposed
into second-order sections the proof is complete. A second-order section has
three free parameters, but one degree of freedom is simply the DC gain. For
simplicity we will use the following second-order section.

Yn = Xn + hlxn-1 + h2xn-2

A single lattice stage has only a single free parameter, so we’ll need two
stages to emulate the second-order section. Following the graphic imple-
mentation for two stages we find

Yn = xn + hxn-1 + k2(klxn-l+ xn-2)

= xn + kl(1 + k2)xn-l+ ksxn-2

and comparing this with the previous expression leads to the connection
between the two sets of coefficients (assuming h2 # -1).

h = kl(l+ka) kl = &
h2 = k2 k2 = h2

EXERCISES

15.3.1 Consider the L-tap FIR filter hu = 1, hi = X, h2 = X2,. , . hL-1 = XL-l.
Graph the direct form implementation. How many delays and how many
MACS are required? Find an equivalent filter that utilizes feedback. How
many delays and arithmetic operations are required now?

15.3.2 Why did we discuss series connection of simple FIR filter sections but not
parallel connection?

584 DIGITAL FILTER IMPLEMENTATION

15.3.3 We saw in Section 7.2 that FIR filters are linear-phase if they are either
symmetric h-, = h, or antisymmetric h-, = -h,. Devise a graphic imple-
mentation that exploits these symmetries. What can be done if there are an
even number of coefficients (half sample delay)? What are the advantages of
such a implementation? What are the disadvantages?

15.3.4 Obtain a routine for factoring polynomials (these are often called polynomial
root finding routines) and write a program that decomposes a general FIR
filter specified by its impulse response h, into first- and second-order sections.
Write a program to filter arbitrary inputs using the direct and cascade forms
and compare the numeric results.

15.4 Polyphase Filters

The structures introduced in the last section were general-purpose (i.e., ap-
plicable to most FIR filters you may need). In this section we will discuss
a special purpose structure, one that is applicable only in special cases;
but these special cases are rather prevalent, and when they do turn up the
general-purpose implementations are often not good enough.

Consider the problem of reducing the sampling frequency of a signal
to a fraction & of its original rate. This can obviously be carried out by
decimation by M, that is, by keeping only one sample out of each M and
discarding the rest. For example, if the original signal sampled at fS is

. . . X-12, X-11, X-10, X-9, X-8, X-7, X-6, X-5,

X-4, X-3, X-2, X-l, x0, Xl, X2, X3,

X4, x5, X6, X7, x0, x9, X10, X11, *a’

decimating by 4 we obtain a new signal yn with sampling frequency 4.

Yn = . . . X-12, X-8, X-4, x0, X4, X8, l --

Of course

Yn = . . . x-11, X-7, X-3, Xl, X5, xg, . . .

Yn = l l l x-10, X-6, X-2, X2, X6, X10, * *.

yn = l . .
x-9, X-5, X-l, X3, X7, X11, l ’ *

corresponding to different phases of the original signal, would be just as
good.

15.4. POLYPHASE FILTERS 585

Actually, just as bad since we have been neglecting aliasing. The original
signal x can have energy up to $‘, while the new signal y must not have
appreciable energy higher than A. In order to eliminate the illegal compo-
nents we are required to low-pass filter the original signal before decimating.
For definiteness assume once again that we wish to decimate by 4, and to
use a causal FIR antialiasing filter h of length 16. Then

wo = hoxo + hlxel + h2xv2 + h3xe3 + . . . + h15xs15
Wl = hoxl + hlxo + f-w-1 + h3x-2 + . . . + h15x-14
w2 = km + hm + h2xo + hzx-1 + . . . + h15x-13 (15.8)

w3 = hox3 + hm + h2xl + h3xo + l . l + hisx-12
w4 = hox4 + hlxs + h2x2 + h3x1 + . . . + h15x-ll

but since we are going to decimate anyway

yn = . . . w-12, ‘w-0, ‘w-4, wo, w4, w3, - * l

we needn’t compute all these convolutions. Why should we compute wr,
~2, or ws if they won’t affect the output in any way? So we compute only

wo,w4,w,‘*~, each requiring 16 multiplications and 15 additions.
More generally, the proper way to reduce the sample frequency by a

factor of M is to eliminate frequency components over & using a low-pass
filter of length L. This would usually entail L multiplications and additions
per input sample, but for this purpose only L per output sample (i.e., only an
average of h per input sample are really needed). The straightforward real-
time implementation cannot take advantage of this savings in computational
complexity. In the above example, at time 72 = 0, when x0 arrives, we need
to compute the entire 16-element convolution. At time n = 1 we merely
collect xi but need not perform any computation. Similarly for 72 = 2 and
YL = 3 no computation is required, but when x4 arrives we have to compute
another 16-element convolution. Thus the DSP processor must still be able
to compute the entire convolution in the time between two samples, since
the peak computational complexity is unchanged.

The obvious remedy is to distribute the computation over all the times,
rather than sitting idly by and then having to race through the convolution.
We already know of two ways to do this; by partitioning the input signal or
by decimating it. Focusing on we, partitioning the input leads to structuring
the computation in the following way:

wo = hoxo + hlx-1 + hp-2 + h3x-3
+ h4x-4 + h5x-5 + h&L-6 + h7x-7
t hgz-g t hgz-9 + box-lo + hx-11
+ hx-12 + hw-. 13 + hx-14 + hw-15

586 DIGITAL FILTER IMPLEMENTATION

Decimation implies the following order:

wo = hoxo + h4z-4 + h8X-8 + h12x,12
+ hlx-1 + h5x-5 + h9x-9 + hw-13
+ hzx-2 + hjx-6 + hlox-lo + h14xv14
+ hzx-3 + h7x-7 + hllx-ll + h15xw15

In both cases we should compute only a single row of the above equations
during each time interval, thus evenly distributing the computation over the
M ‘time intervals.

Now we come to a subtle point. In a real-time system the input signal
x, will be placed into a buffer E. In order to conserve memory this buffer
will usually be taken to be of length L, the length of the low-pass filter. The
convolution is performed between two buffers of length L, the input buffer
and the filter coefficient table; the coefficient table is constant, but a new
input xn is appended to the input buffer every sampling time.

In the above equations for computing wa the subscripts of xn are absolute
time indices; let’s try to rephrase them using input buffer indices instead.
We immediately run into a problem with the partitioned form. The input
values in the last row are no longer available by the time we get around to
wanting them. But this obstacle is easily avoided by reversing the order.

wo = h12~--12 + hw--13 + h14xD14 + h15xs15
+ h8X-8 + hgx-g + box-lo + he-11
+ hx-4 + h5x-5 + hsX-6 + h7Xe7
+ hoxo + hlx-1 + h2xs2 + h3xe3

With the understanding that the input buffer updates from row to row, and
using a rather uncommon indexing notation for the input buffer, we can now
rewrite the partitioned computation as

wo = h12E- 12 + hC3 + h&-l4 + h15Z15
+ h&-g + &E--lo + hlo5s11 + hllE12
+ h&-6 + h5E7 + h&-8 + h7Zg
+ hoEe3 + hlZ4 + h2Z5 + h3%6

and the decimated one as follows.

wo = ho% 3 + h4L7 + h&l1 + h&-15
+ hlS-3 + h5ZB7 + hgEmll + h13E15
+ h2Z-3 + h&-7 + hloS-ll + h14E15
+ h3Z- 3 + M-7 + hE--ll + h15Z15

15.4. POLYPHASE FILTERS 587

decimate @I

decimate /$I * = (

decimate =

Figure 15.9: The polyphase decimation filter. We depict the decimation of an input signal
xn by a factor of four, using a polyphase filter. Each decimator extracts only inputs with
index divisible by 4, so that the combination of delays and decimators results in all the
possible decimation phases. hIk] for k = 0, 1,2,3 are the subfilters; h[‘l = (ho, hl , hz, ha),
h[‘l = (hd, hg, he, h7), etc.

While the partitioned version is rather inelegant, the decimated structure
is seen to be quite symmetric. It is easy to understand why this is so. Rather
than low-pass filtering and then decimating, what we did is to decimate and
then low-pass filter at the lower rate. Each row corresponds to a different
decimation phase as discussed at the beginning of the section. The low-pass
filter coefficients are different for each phase, but the sum of all contributions
results in precisely the desired full-rate low-pass filter.

In the general case we can describe the mechanics of this algorithm as
follows. We design a low-pass filter that limits the spectral components to
avoid aliasing. We decimate this filter creating M subfilters, one for each
of the M phases by which we can decimate the input signal. This set of M
subfilters is called a polyphase filter. We apply the first polyphase subfilter
to the decimated buffer; we then shift in a new input sample and apply
the second subfilter in the same way. We repeat this procedure M times to
compute the first output. Finally, we reset and commence the computation
of the next output. This entire procedure is depicted in Figure 15.9.

A polyphase filter implementation arises in the problem of interpolation
as well. By interpolation we mean increasing the sampling frequency by an

588 DIGITAL FILTER IMPLEMENTATION

integer factor N. A popular interpolation method is xero insertion, insert-
ing N - 1 zeros between every two samples of the original signal x. If we
interpret this as a signal of sampling rate Nf,, its spectrum under $ is the
same as that of the original signal, but new components appear at higher
frequencies. Low-pass filtering this artificially generated signal removes the
higher-frequency components, and gives nonzero values to the intermediate
samples.

In a straightforward implementation of this idea we first build a new
signal wn at N times the sampling frequency. For demonstration purposes
we take N = 4.

. . . w-16 = z-4, w-15 = 0, w-14 = 0, w-13 = 0,

w-12 =x-3, w-11 =o, w-10 =o, w-g =o,

W-8 =x-2, w-7=0, w-6 =o, W-5 =o,

w-4 =x-1, w-3=0, w-2=0, w-1=0, wo=x(), . . .

Now the interpolation low-pass filter performs the following convolution.

Yo = howo + hw-I + hw-2 + h3w-3 + . , , + h15wS15
Yl = howl + hlwo + &w-l + hw-2 + . . e + h15wv14
Y2 = how + hlwl + h2wo + hw-1 + . . . + h15ws13
Y3 = how + hlw2 + h2w + km + . . . + h15ww12

However, most of the terms in these convolutions are zero, and we can save
much computation by ignoring them.

Yo = howo + hw-4 + hgww8 + h12ww12

= hoxo + M-1 + h8x-2 + h12xs3

Yl = hwo + bw-4 + hgws8 + h13we12

= hxo + kz-1 + hgx-.-2 + h13x..m3

Y2 = hzwo + hciw-4 + hlowqj + h14wD12

= h2xo + hw-1 + h10x-2 + h14xv3

Y3 = h3wo + hw-4 + hllw+ + h15wB12

= h350 + hm-1 + hllxs2 + h15xv3

Once again this is a polyphase filter, with the input fixed but the subfil-
ters being changed; but this time the absolute time indices of the signal
are fixed, not the buffer-relative ones! Moreover, we do not need to add the
subfilter outputs; rather each contributes a different output phase. In actual
implementations we simply interleave these outputs to obtain the desired

15.4. POLYPHASE FILTERS 589

Figure 15.10: The polyphase interpolation filter. We depict the interpolation of an input
signal xn by a factor of four, using a polyphase filter. Each subfilter operates on the same
inputs but with different subfilters, and the outputs are interleaved by zero insertion and
delay.

interpolated signal. For diagrammatic purposes we can perform the inter-
leaving by zero insertion and appropriate delay, as depicted in Figure 15.10.

We present this rather strange diagram for two reasons. First, because its
meaning is instructive. Rather than zero inserting and filtering at the high
rate, we filter at the low rate and combine the outputs. Second, comparison
with Figure 15.9 emphasizes the inverse relationship between decimation
and interpolation. Transposing the decimation diagram (i.e., reversing all
the arrows, changing decimators to zero inserters, etc.) converts it into the
interpolation diagram.

Polyphase structures are useful in other applications as well. Decima-
tion and interpolation by large composite factors may be carried out in
stages, using polyphase filters at every stage. More general sampling fre-
quency changes by rational factors $$ can be carried out by interpolating
by N and then decimating by M. Polyphase filters are highly desirable in
this case as well. Filter banks can be implemented using mixers, narrow-
band filters, and decimators, and once again polyphase structures reduce
the computational load.

590 DIGITAL FILTER IMPLEMENTATION

EXERCISES

15.4.1 A commutator is a diagrammatic element that chooses between M inputs
1 . . . M in order. Draw diagrams of the polyphase decimator and interpolator
using the commutator.

15.4.2 Both 32 KHz and 48 KHz are common sampling frequencies for music, while
CDs uses the unusual sampling frequency of 44.1 KHz. How can we convert
between all these rates?

15.4.3 The simple decimator that extracts inputs with index divisible by M is not
a time-invariant system, but rather periodically time varying. Is the entire
decimation system of Figure 15.9 time-invariant?

15.4.4 Can the polyphase technique be used for IIR filters?

15.4.5 When the decimation or interpolation factor M is large, it may be worthwhile
to carry out the filtering in stages. For example, assume M = Ml M2, and that
we decimate by Ml and then by M2. Explain how to specify filter responses.

15.4.6 A half-band filter is a filter whose frequency response obeys the symmetry
H(w) = 1 - H(w,id - w) around the middle of the band wrnid = 4. For
every low-pass half-band filter there is a high-pass half-band filter called its
‘mirror filter’. Explain how mirror half-band filters can be used to efficiently
compute a bank of filters with 2m bands.

15.5 Fixed Point Computation

Throughout this book we stress the advantages of DSP as contrasted with
analog processing. In this section we admit that digital processing has a dis-
advantage as well, one that derives from the fact that only a finite number
of bits can be made available for storage of signal values and for computa-
tion. In Section 2.7 we saw how digitizing an analog signal inevitably adds
quantization noise, due to imprecision in representing a real number by a
finite number of bits. However, even if the digitizer has a sufficient number
of bits and we ensure that analog signals are amplified such that the digi-
tizer’s dynamic range is optimally exploited, we still have problems due to
the nature of digital computation.

In general, the sum of two b-bit numbers will have b + 1 bits. When
floating point representation (see Appendix A.3) is being used, a (b + 1)-bit
result can be stored with b bits of mantissa and a larger exponent, causing
a slight round-off error. This round-off error can be viewed as a small ad-
ditional additive noise that in itself may be of little consequence. However,

15.5. FIXED POINT COMPUTATION 591

since hundreds of computations may need to be performed the final result
may have become hopelessly swamped in round-off noise. Using fixed point
representation exacerbates the situation, since should b + 1 exceed the fixed
number of bits the hardware provides, an overflow will occur. To avoid over-
flow we must ensure that the terms to be added contain fewer bits, reducing
dynamic range even when overflow would not have occurred. Hence fixed
point hardware cannot even consistently exploit the bits it potentially has.

Multiplication is even worse than addition since the product of two num-
bers with b bits can contain 2b bits. Of course the multiply-and-accumulate
(MAC) operation, so prevalent in DSP, is the worst offender of all, endlessly
summing products and increasing the number of required bits at each step!
This would certainly render all fixed point DSP processors useless, were it
not for accumulators. An accumulator is a special register with extra bits
that is used for accumulating intermediate results. The MAC operation is
performed using an accumulator with sufficient bits to prevent overflow;
only at the end of the convolution is the result truncated and stored back
in a normal register or memory. For example, a 16-bit processor may have
a 48-bit accumulator; since each individual product returns a 32-bit result,
an FIR filter of length 16 can be performed without prescaling with no fear
of overflow.

We can improve our estimate of the required input prescaling if we know
the filter coefficients al. The absolute value of the convolution output is

where x,,, is the maximal absolute value the input signal takes. In order
to ensure that y, never overflows in an accumulator of b bits, we need to
ensure that the maximal x value does not exceed the following bound.

2b

xmax ’ Cl lhll
(15.9)

This worst-case analysis of the possibility of overflow is often too ex-
treme. The input scaling implied for even modest filter lengths would so
drastically reduce the SNR that we are usually willing to risk possible but
improbable overflows. Such riskier scaling methods are obtained by replacing
the sum of absolute values in equation (15.9) with different combinations of
the hl coefficients. One commonly used criterion is

592 DIGITAL FILTER IMPLEMENTATION

which results from requiring the output energy to be sufficiently low; another
is

2b
Xmax

’ Hmax

where Hmax is the maximum value of the filter’s frequency response, re-
sulting from requiring that the output doesn’t overflow in the frequency
domain.

When a result overflow does occur, its effect is hardware dependent.
Standard computers usually set an overflow flag to announce that the re-
sult is meaningless, and return the meaningless least significant bits. Thus
the product of two positive numbers may be negative and the product of
two large numbers may be small. Many DSP processors have a saturation
arithmetic mode, where calculations that overflow return the largest avail-
able number of the appropriate sign. Although noise is still added in such
cases, its effect is much less drastic. However, saturation introduces clipping
nonlinearity, which can give rise to harmonic distortion.

Even when no overflow takes place, digital filters (especially IIR filters)
may act quite differently from their analog counterparts. As an example,
take the simple AR filter

Yn = Xn - 0.9yn-1 (15.10)

whose true impulse response is h, = (-0.9)‘%,. For simplicity, let’s ex-
amine the somewhat artificial case of a processor accurate to within one
decimal digit after the decimal point (i.e., we’ll assume that the multiplica-
tion 0.9yn-1 is rounded to a single decimal digit to the right of the point).
Starting with x0 = 1 the true output sequence should oscillate while de-
caying exponentially. However, it is easy to see that under our quantized
arithmetic -0.9 . -0.4 = +0.4 and conversely -0.9 . 0.4 = -0.4 so that
0.4, -0.4 is a cycle, called a limit cycle. In Figure 15.11 we contrast the two
behaviors.

The appearance of a limit cycle immediately calls to mind our study of
chaos in Section 5.5, and the relationship is not coincidental. The fixed point
arithmetic transforms the initially linear recursive system into a nonlinear
one, one whose long time behavior displays an attractor that is not a fixed
point. Of course, as we learned in that section, the behavior could have been
even worse!

There is an alternative way of looking at the generation of the spurious
oscillating output. We know that stable IIR filters have all their poles inside
the unit circle, and thus cannot give rise to spurious oscillations. However,

15.5. FIXED POINT COMPUTATION 593

0.6

0.4

0.2

0

a.2

0.4

Figure 15.11: The behavior of a simple AR filter using fixed point arithmetic. The
decaying plot depicts the desired behavior, while the second plot is the behavior that
results from rounding to a single digit after the decimal point.

the quantization of the filter coefficients causes the poles to stray from their
original positions, and in particular a pole may wander outside the unit
circle. Once excited, such a pole causes oscillating outputs even when the
input vanishes.

This idea leads us to investigate the effect of coefficient quantization on
the position of the filter’s poles and zeros, and hence on its transfer function.
Let’s express the transfer function

H()
z

AW1> z-z cko a1 2
-1

l-g& - Cd

B(z-l) 1 - CEcl bmrm = nf$,(~ - n,)
(15.11)

and consider the effect of quantizing the bm coefficients on the pole positions
n,. The quantization introduces round-off error, so that the effective coeffi-
cient is bm+Sbm, and assuming that this round-off error is small, its effect on
the position of pole k may be approximated by the first-order contributions.

m

After a bit of calculation we can find that

(15.12)

i.e., the effect of variation of the m th coefficient on the k th pole depends on
the positions of all the poles.

594 DIGITAL FILTER IMPLEMENTATION

In particular, if the original filter has poles that are close together (i.e.,
for which rrl, - 7~j is small), small coefficient round-off errors can cause signif-
icant movement of these poles. Since close poles are a common occurrence,
straightforward implementation of IIR filters as difference equations often
lead to instability when fixed point arithmetic is employed. The most com-
mon solution to this problem is to implement IIR filters as cascades of sub-
filters with poles as far apart as possible. Since each subfilter is separately
computed, the round-off errors cannot directly interact, and pole movement
can be minimized. Carrying this idea to the extreme we can implement IIR
filters as cascades of second-order sections, each with a single pair of conju-
gate poles and a single pair of conjugate zeros (if there are real poles or zeros
we use first-order structures). In order to minimize strong gains that may
cause overflow we strive to group together zeros and poles that are as close
together as possible. This still leaves considerable freedom in the placement
order of the sections. Empirically, it seems that the best strategy is to order
sections monotonically in the radius of their poles, either from smallest to
largest (those nearest the unit circle) or vice versa. The reasoning is not
hard to follow. Assume there are poles with very small radius. We wouldn’t
want to place them first since this would reduce the number of effective
bits in the signal early on in the processing, leading to enhanced round-off
error. Ordering the poles in a sequence with progressively decreasing radius
ameliorates this problem. When there are poles very close to the unit circle
placing them first would increase the chance of overflow, or require reducing
the dynamic range in order to avoid overflow. Ordering the poles in a se-
quence with progressively increasing radius is best in this case. When there
are both small and large poles it is hard to know which way is better, and
it is prudent to directly compare the two alternative orders. Filter design
programs that include fixed point optimization routines take such pairing
and ordering considerations into account.

EXERCISES

15.5.1 A pair of conjugate poles with radius r < 1 and angles 33 contribute a
second-order section

(2 - 79)(x - remie) = ~5’ (1 - 2r cos t9z-l + r2zw2)

with coefficients br = 2r cos 8 and bp = -r2. If we quantize these coefficients
to b bits each, how many distinct pole locations are possible? To how many
bits has the radius r been quantized? Plot all the possible poles for 4-8 bits.
What can you say about the quantization of real poles?

15.6. IIR STRUCTURES 595

15.5.2 As we discussed in Section 14.6, fixed point FFTs are vulnerable to numer-
ical problems as well. Compare the accuracy and overflow characteristics of
frequency domain and time domain filtering.

15.5.3 Develop a strategy to eliminate limit cycles, taking into account that limit
cycles can be caused by round-off or overflow errors.

15.5.4 Complete the derivation of the dependence of nk on &,.

15.5.5 What can you say about the dependence of zero position cl on small changes
in numerator coefficients al ? Why do you think fixed point FIR filters are so
often computed in direct form rather than cascade form?

15.5.6 We saw that it is possible to prescale the input in order to ensure that an
FIR filter will never overflow. Is it possible to guarantee that an IIR filter
will not overflow?

15.5.7 In the text we saw a system whose impulse response should have decayed to
zero, but due to quantization was a a-cycle. Find a system whose impulse
response is a nonzero constant. Find a system with a 4-cycle. Find a system
that goes into oscillation because of overflow.

15.6 IIR Structures

We return now to structures for general filters and consider the case of
IIR filters. We already saw how to diagram the most general IIR filter in
Figures 12.8.B and 12.11, but know from the previous section that this direct
form of computation is not optimal from the numerical point of view. In this
section we will see better approaches.

The general cascade of second-order IIR sections is depicted in Fig-
ure 15.12. Each section is an independent first- or second-order ARMA
filter, with its own coefficients and static memory. The only question left
is how to best implement this second-order section. There are three differ-
ent structures in common use: the direct form (also called the direct form r)
depicted in Figure 15.13, the canonical form (also called direct form II> de-
picted in Figure 15.14, and the transposed form (also called transposed form
14 depicted in Figure 15.15. Although all three are valid implementations
of precisely the same filter, numerically they may give somewhat different
results.

596 DIGITAL FILTER IMPLEMENTATION

$1 = $1 $1 = #

. . .

ypl = $..-4
a[K-‘1+,IK-4,-~+,l~-~l~-2

l-biK -1~,-l~b[K-‘lz-2
2

Figure 15.12: General cascade implementation of an IIR filter. Each section implements
an independent (first- or) second-order section symbolized by the transfer function ap-
pearing in the rectangle. Note that a zero in any of these subfilters results in a zero of the
filter as a whole.

Figure 15.13: Direct form implementation of a second-order IIR section. This structure
is derived by placing the MA (all-zero) filter before the AR (all-pole) one.

15.6. IIR STRUCTURES 597

Figure 15.14: Canonical form implementation of a second-order IIR section. This struc-
ture is derived by placing the AR (all-pole) filter before the MA (all-zero) one and com-
bining common elements. (Why didn’t we draw a filled circle for wfl”!,?)

$L-+-

-1

a lkl
n

w’“’ la 1

c
-1

Ikl
7%

-,lkl

Figure 15.15: Transposed form implementation of a second-order IIR section. Here only
the intermediate variables are delayed. Although only three adders are shown the center
one has three inputs, and so there are actually four additions.

598 DIGITAL FILTER IMPLEMENTATION

An IIR filter implemented using direct form
follows:

loop over time n

xl] + x
loop onnsaction number k + 0 to K -

sections is computed as

In real-time applications the loop over time will normally be an infinite loop.
Each new input sample is first MA filtered to give the intermediate signal
w!]

w!l = #xn + a1 x+1+ upxn-~ PI

and then this signal is AR filtered to give the section’s output

YF = q&J] - g-1 yF!l - ($1 y;!2

the subtraction either being performed once, or twice, or negative coefficients
being stored. This section output now becomes the input to the next section

Xi] t y!.y

and the process repeats until all K stages are completed. The output of the
final stage is the desired result.

W-11 Yn = Yn

Each direct form stage requires five multiplications, four additions, and four
delays. In the diagrams we have emphasized memory locations that have to
be stored (static memory) by a circle. Note that wn is generated each time
and does not need to be stored, so that there are only two saved memory
locations.

As we saw in Section 12.3 we can reverse the order of the MA and AR
portions of the second-order section, and then regroup to save memory loca-
tions. This results in the structure known as canonical (meaning ‘accepted’
or ‘simplest’) form, an appellation well deserved because of its use of the least
number of delay elements. While the direct form requires delayed versions
of both xn and yn, the canonical form only requires storage of wn.

15.6. IIR STRUCTURES 599

The computation is performed like this

loop over time n

$1 +- L-c
loop onkxtion number k t 0 to K-l

and once again we can either stored negative b coefficients or perform sub-
traction(s). Each canonical form stage requires five multiplications, four ad-
ditions, two delays, and two intermediate memory locations.

The transposed form is so designated because it can be derived from the
canonical form using the transposition theorem, which states that reversing
all the arc directions, changing adders to tee connections and vice-versa,
and interchanging the input and output does not alter the system’s transfer
function. It is also canonical in the sense that it also uses only two delays,
but we need to save a single value of two different signals (which we call
u, and vn), rather than two lags of a single intermediate signal. The full
computation is

loop over time n

3$ + z
loop onnsection number k t 0 to K - 1

?$I + apzi$ _ @&+I

Un + U~‘Ll$’ - Jpy2”l + p1 1
n-

yn t y!f-l

Don’t be fooled by Figure 15.15 into thinking that there are only three ad-
ditions in the transposed form. The center adder is a three-input adder,
which has to be implemented as two separate additions. Hence the trans-
posed form requires five multiplications, four additions, two delays, and two
intermediate memory locations, just like the canonical form.

The cascade forms we have just studied are numerically superior to direct
implementation of the difference equation, especially when pole-zero pairing
and ordering are properly carried out. However, the very fact that the signal
has to travel through section after section in series means that round-off

600 DIGITAL FILTER IMPLEMENTATION

Xn =
aP1+,Iol,-1+,Iol,-2

1-bpz-‘-b$-2

a111+,[11,-1+,Pl,-2

l-b+-I--b$-2
; Yn

a[K-‘I+,[K-11Z-1+,(K-11,-2

l-b~K-‘]z-l-b~K-‘],-2 2

Figure 15.16: Parallel form implementation of the IIR filter. In this form the subfilters
are placed in parallel, and so round-off errors do not accumulate. Note that a pole in any
of these subfilters results in a pole of the filter as a whole.

errors accumulate. Parallel connection of second-order sections, depicted in
Figure 15.16, is an alternative implementation of the general IIR filter that
does not suffer from round-off accumulation. The individual sections can be
implemented in direct, canonical, or transposed form; and since the outputs
are all simply added together, it is simpler to estimate the required number
of bits.

The second-order sections in cascade form are guaranteed to exist by
the fundamental theorem of algebra, and are found in practice by factoring
the system function. Why are general system functions expressible as sums
of second-order filters, and how can we perform this decomposition? The
secret is the ‘partial fraction expansion’ familiar to all students of indefinite
integration. Using partial fractions, a general system function can be written
as the sum of first-order sections

(15.13)

with I’k and yk possibly complex, or as the sum of second-order sections

H(z) = 2 AI, + Bkz-’

k=l I+ a& + w2
(15.14)

15.6. IIR STRUCTURES 601

with all coefficients real. If there are more zeros than poles in the system
function, we need an additional FIR filter in parallel with the ARMA sec-
tions.

The decomposition is performed in practice by factoring the denominator
of the system function into real first- and second-order factors, writing the
partial fraction expansion, and comparing. For example, assume that the
system function is

H(z) =
1+ az-l + bz-2

(1 + cz-l)(l + dz-l + ezv2)

then we write

H(z) =

=

and compare. This
and C.

EXERCISES

A B + Cz-l
1 + cz-l

+
1 + dz-l + eze2

(A + B) + (Ad + Bc + C)z-’ + (Ae + Cc)ze2

Cl+ cz-l>(1 + dz-l + ez-2)

results in three equations for the three variables A, B,

15.6.1 An arbitrary IIR filter can always be factored into cascaded first-order sec-
tions, if we allow complex-valued coefficients. Compare real-valued second-
order sections with complex-valued first-order sections from the points of
view of computational complexity and numerical stability.

15.6.2 A second-order all-pass filter section has the following transfer function.

c + dz-l + z-~
1 + dz-l + cz-2

Diagram it in direct form. How many multiplications are needed? Redraw
the section emphasizing this.

15.6.3 Apply the transposition theorem to the direct form to derive a noncanonical
transposed section.

15.6.4 The lattice structure presented for the FIR filter in Section 15.3 can be
used for IIR filters as well. Diagram a two-pole AR filter. How can lattice
techniques be used for ARMA filters?

602 DIGITAL FILTER IMPLEMENTATION

15.7 FIR vs. IIR

Now that we have seen how to implement both FIR and IIR filters, the
question remains as to which to use. Once again we suggest first considering
whether it is appropriate to filter in the frequency domain. Frequency do-
main filtering is almost universally applicable, is intrinsically stable, and the
filter designer has complete control over the phase response. The run-time
code is often the most computationally efficient technique, and behaves well
numerically if the FFTs are properly scaled. Phase response is completely
controllable. Unfortunately, it does introduce considerable buffer and algo-
rithmic delay; it does require more complex code; and it possibly requires
more table and scratch memory. Of course we cannot really multiply any
frequency component by infinity and so true poles on the frequency axis
are not implementable, but IIR filters with such poles would be unstable
anyway.

Assuming you have come to the conclusion that time domain filtering is
appropriate, the next question has to do with the type of filter that is re-
quired. Special filters (see Section 7.3) have their own special considerations.
In general, integrators should be IIR, differentiators even order FIR (unless
the half sample delay is intolerable), Hilbert transforms odd order FIR with
half the coefficients zero (although IIR designs are possible), decimators and
integrators should be polyphase FIR, etc. Time-domain filter specifications
immediately determine the FIR filter coefficients, but can also be converted
into an IIR design by Prony’s method (see Section 13.6). When the sole
specification is one of the standard forms of Section 7.1, such as low-pass,
IIR filters can be readily designed while optimal FIR designs require more
preparation. If the filter design must be performed in run-time then this
will often determine the choice of filter type. Designing a standard IIR filter
reduces to a few equations, and the suboptimal windowing technique for de-
signing FIR filters can sometimes be used as well. From now on we’ll assume
that we have a constant prespecified frequency domain specification.

It is important to determine whether a true linear-phase filter or only
a certain degree of phase linearity is required (e.g., communications sig-
nals that contain information in their phase, or simultaneous processing of
multiple signals that will later be combined). Recall from Section 7.2 that
symmetric or antisymmetric FIR filters are precisely linear-phase, while IIR
filters can only approximate phase linearity. However, IIR filters can have
their phase flattened to a large degree, and if sufficient delay is allowed
the pseudo-IIR filter of exercise 7.2.5 may be employed for precise phase
linearity.

15.7. FIR VS. IIR 603

Assuming that both FIR and IIR filters are still in the running (e.g.,
only the amplitude of the frequency response is of interest), the issue of
computational complexity is usually the next to be considered. IIR filters
with a relatively small number of coefficients can be designed to have very
sharp frequency response transitions (with the phase being extremely non-
linear near these transitions) and very strong stop-band attenuation, For a
given specification elliptical IIR filters will usually have dramatically lower
computational complexity than FIR filters, with the computational require-
ments ratio sometimes in the thousands. Only if the filters are relatively
mild and when a large amount of pass-band ripple can be tolerated will the
computational requirements be similar or even in favor of the FIR. Cheby-
shev IIR filters are less efficient than elliptical designs but still usually better
performers than FIR filters. Butterworth designs are the least flexible and
hence require the highest order and the highest computational effort. If phase
linearity compensation is attempted for a Butterworth IIR filter the total
computational effort may be comparable to that of an FIR filter.

The next consideration is often numerical accuracy. It is relatively simple
to determine the worst-case number of bits required for overflow-free FIR
computation, and if sufficient bits are available in the accumulator and the
quantized coefficients optimized, the round-off error will be small. Of course
long filters and small registers will force us to prescale down filter coefficients
or input signals causing 6 dB of SNR degradation for each lost bit. For IIR
filters determining the required number of bits is much more complex, de-
pending on the filter characteristics and input signal frequency components.
FIR filters are inherently stable, while IIR filters may be unstable or may
become unstable due to numerical problems. This is of overriding impor-
tance for filters that must be varied as time goes on; an IIR filter must be
continuously monitored for stability (possibly a computationally intensive
task in itself) while FIR filters may be used with impunity.

Finally, all things being equal, personal taste and experience comes into
play. Each DSP professional accumulates over time a bag of fully honed and
well-oiled tools. It is perfectly legitimate that the particular tool that ‘feels
right’ to one practitioner may not even be considered by another. The main
problem is that when you have only a hammer every problem looks like a
nail. We thus advise that you work on as many different applications as
possible, collecting a tool or two from each.

604 BIBLIOGRAPHICAL NOTES

Bibliographical Notes

Most general DSP texts, e.g., [186, 2001 and Chapters 6 and 7 of [241], cover dig-
ital filter structures to some degree. Also valuable are libraries and manuals that
accompany specific DSP processors.

The idea of using the DFT to compute linear convolutions appears to have been
invented simultaneously at MIT [124], at Bell Labs [loo] and by Sande at Princeton.

Polyphase filtering was developed extensively at Bell Labs, and a good review
of polyphase filters for interpolation and decimation is (481.

The effect of numerical error on filters has an extensive bibliography, e.g., [151,
215, 114, 1151.

