
16

Function Evaluation Algorithms

Commercially available DSP processors are designed to efficiently implement
FIR, IIR, and FFT computations, but most neglect to provide facilities for
other desirable functions, such as square roots and trigonometric functions.
The software libraries that come with such chips do include such functions,
but one often finds these general-purpose functions to be unsuitable for the
application at hand. Thus the DSP programmer is compelled to enter the
field of numerical approximation of elementary functions. This field boasts
a vast literature, but only relatively little of it is directly applicable to DSP
applications.

As a simple but important example, consider a complex mixer of the type
used to shift a signal in frequency (see Section 8.5). For every sample time
t, we must generate both sin@,) and cos(wt,), which is difficult using
the rather limited instruction set of a DSP processor. Lack of accuracy
in the calculations will cause phase instabilities in the mixed signal, while
loss of precision will cause its frequency to drift. Accurate values can be
quickly retrieved from lookup tables, but such tables require large amounts
of memory and the values can only be stored for specific arguments. General
purpose approximations tend to be inefficient to implement on DSPs and
may introduce intolerable inaccuracy.

In this chapter we will specifically discuss sine and cosine generation, as
well as rectangular to polar conversion (needed for demodulation), and the
computation of arctangent, square roots, Puthagorean addition and loga-
rithms. In the last section we introduce the CORDIC family of algorithms,
and demonstrate its applicability to a variety of computational tasks. The
basic CORDIC iteration delivers a bit of accuracy, yet uses only additions
and shifts and so can be implemented efficiently in hardware.

605

Digital Signal Processing: A Computer Science Perspective
Jonathan Y. Stein
Copyright 2000 John Wiley & Sons, Inc.
Print ISBN 0-471-29546-9 Online ISBN 0-471-20059-X

606 FUNCTION EVALUATION ALGORITHMS

16.1 Sine and Cosine Generation

In DSP applications, one must often find sin(&) where the time t is quan-
tizedt=Ict, andf,=i is the sampling frequency.

sin(&) = sin(2r f k tS) = sin

The digital frequency of the sine wave, f / fs(is required to have resolution
&, which means that the physical frequency is quantized to f = gfs. Thus
the functions to be calculated are all of the following form:

sin (2nEk) = sin ($i) irmk=O...N

In a demanding audio application, fs M 50 KHz and we may want the resolu-
tion to be no coarser than 0.1 Hz; thus about N = 500,000 different function
values are required. Table lookup is impractical for such an application.

The best known method for approximating the trigonometric functions
is via the Taylor expansions

13 15 17 sin(x) = x - 3x + 3x - ;iix + .a. (16.1)
. . .

l2 l4 ‘6 cos(x) = 1- TX + TX - 3” + ***
. . .

which converge rather slowly. For any given place of truncation, we can im-
prove the approximation (that is, reduce the error made) by slightly chang-
ing the coefficients of the expansion. Tables of such corrected coefficients are
available in the literature. There are also techniques for actually speeding up
the convergence of these polynomial expansions, as well as alternative ratio-
nal approximations. These approximations tend to be difficult to implement
on DSP processors, although (using Horner’s rule) polynomial calculation
can be pipelined on MAC machines.

For the special case (prevalent in DSP) of equally spaced samples of a
sinusoidal oscillator of fixed frequency, several other techniques are possi-
ble. One technique that we studied in Section 6.11 exploits the fact that
sinusoidal oscillations are solutions of second-order differential or difference
equations, and thus a new sine value may be calculated recursively based on
two previous values. Thus one need only precompute two initial values and
thereafter churn out sine values. The problem with any recursive method of
this sort is error accumulation. Our computations only have finite accuracy,
and with time the computation error builds up. This error accumulation

16.1. SINE AND COSINE GENERATION 607

leads to long-term instability. We can combine recursive computation with
occasional nonrecursive (and perhaps more expensive) calculations, but then
one must ensure that no sudden changes occur at the boundaries.

Another simple technique that recursively generates sinusoids can simul-
taneously produce both the sine and the cosine of the same argument. The
idea is to use the trigonometric sum formulas

sin(&) = sin (w(lc - l)> * cos(w) + cos (w(k - l)> rk sin(w) (16.2)

cos(wk) = cos
(w(k - 4

* cos(w) - sin
(w(k - 4 * sin(w)

with known sin(w) and cos(w). Here one initial value of both sine and cosine
are required, and thereafter only the previous time step must be saved. These
recursive techniques are easily implementable on DSPs, but also suffer from
error accumulation.

Let’s revisit the idea of table lookup. We can reduce the number of values
which must be held in such a table by exploiting symmetries of the trigono-
metric functions. For example, we do not require twice N memory locations
in order to simultaneously generate both the sine and cosine of a given ar-
gument, due to the connection between sine and cosine in equation (A.22).

We can more drastically reduce the table size by employing the trigono-
metric sum formula (A.23). To demonstrate the idea, let us assume one
wishes to save sine values for all integer degrees from zero to ninety degrees.
This would a priori require a table of length 91. However, one could instead
save three tables:

1. sin(O”), sin(lO”), sin(20”), . . . sin(90”)
2. sin(O”), sin(l”), sin(2”), . . . sin(9”)
3. cos(OO), cos(lO), cos(2O), . . . cos(9”)

and then calculate, for example, sin(54”) = sin(50”) cos(4”)+sin(40°) sin(4”).
In this simple case we require only 30 memory locations; however, we must
perform one division with remainder (in order to find 54” = 50” + 4”), two
multiplications, one addition, and four table lookups to produce the desired
result. The economy is hardly worthwhile in this simple case; however, for
our more demanding applications the effect is more dramatic.

In order to avoid the prohibitively costly division, we can divide the
circle into a number of arcs that is a power of two, e.g., 21g = 524,288. Then
every i, 0 5 i 5 524,288 can be written as i = j + k where j = 512(i/512)
(here / is the integer division without remainder) and k = i mod 512 can be
found by shifts. In this case we need to store three tables:

608 FUNCTION EVALUATION ALGORITHMS

1. Major Sine: sin(a 512j) 512 values
2. Minor Sine: sin(gk)

Y
512 values

3. Minor Cosine: cos(Sk) 512 values

which altogether amounts to only 1536 values (for 32-bit words this is 6144
bytes), considerably less than the 524288 values in the straightforward table.

An alternate technique utilizing the CORDIC algorithm will be pre-
sented in Section 16.5.

EXERCISES

16.1.1 Evaluate equation (16.2), successively generating further sine and cosine val-
ues (use single precision). Compare these values with those returned by the
built-in functions. What happens to the error?

16.1.2 Try to find limitations or problems with the trigonometric functions as sup-
plied by your compiler’s library. Can you guess what algorithm is used?

16.1.3 The simple cubic polynomial

approximates sin(s) to within 2% over the range [-i , . . $1. What are the
advantages and disadvantages of using this approximation? How can you
bring the error down to less than l%?

16.1.4 Code the three-table sine and cosine algorithm in your favorite programming
language. Preprepare the required tables. Test your code by generating the
sine and cosine for all whole-degree values from 0 to 360 and comparing with
your library routines.

16.1.5 The signal supplied to a signal processing system turns out to be inverted in
spectrum (that is, f ---) fS - f) due to an analog mixer. You are very much
worried since you have practically no spare processing power, but suddenly
realize the inversion can be carried out with practically no computation. How
do you do it?

16.1.6 You are given the task of designing a mixer-filter, a device that band-pass
filters a narrow bandwidth signal and at the same time translates it from
one frequency to another. You must take undesired mixer by-products into
account, and should not require designing a filter in real-time. Code your
mixer filter using the three-table sine and cosine algorithm. Generate a sig-
nal composed of a small number of sines, mix it using the mixer filter, and
perform an FFT on the result. Did you get what you expect?

16.2. ARCTANGENT 609

16.2 Arctangent

The floating point arctangent is often required in DSP calculations. Most
often this is in the context of a rectangular to polar coordinate transform&
tion, in which case the CORDIC-based algorithm given in Section 16.5 is
usually preferable. For other cases simple approximations may be of use.

First one can always reduce the argument range to 0 5 x 5 1, by ex-
ploiting the antisymmetry of the function for negative arguments, and the
symmetry

tail-1(x) = f - tan-l
1

0
a;

for x > 1.
For arguments in this range, we can approximate by using the Taylor

expansion around zero.

tan-yx) = x - ix3 + 6x5 - 3x7 + 0 l l (16.3)

As for the sine and cosine functions equations (16.1), the approximation can
be improved by slightly changing the coefficients.

EXERCISES

16.2.1 Code the arctangent approximation of equation (16.3), summing up N terms.
What is the maximum error as a function of N?

16.2.2 How can improved approximation coefficients be found?

16.2.3 Look up the improved coefficients for expansion up to fifth order. How much
better is the improved formula than the straight Taylor expansion? Plot the
two approximations and compare their global behavior.

16.2.4 For positive 2 there is an alternative expansion:

tan-l(z) = % + sly + a3y3 + a5y5 + . . .
x- 1

where y E -
x+1

Find the coefficients and compare the accuracy with that of equation (16.3).

16.2.5 Make a phase detector, i.e., a program that inputs a complex exponential

Sn = xn + iy, = A&(wn+dn), c omputes, and outputs its instantaneous phase
$71 = tan-l(yn, xn) - wn using one of the arctangent approximations and
correcting for the four-quadrant arctangent. How can you find w? Is the
phase always accurately recovered?

610 FUNCTION EVALUATION ALGORITHMS

16.3 Logarithm

This function is required mainly for logarithmic AM detection, conversion
of power ratios and power spectra to decibels, as well as for various musical
effects, such as compression of guitar sounds. The ear responds to both
sound intensities and frequencies in approximately logarithmic fashion, and
so logarithmic transformations are used extensively in many perception-
based feature extraction methods. Considerable effort has also been devoted
to the efficient computation of the natural and decimal logarithms in the
non-DSP world.

Due to its compressive nature, the magnitude of the output of the ‘log’
operation is significantly less than that of the input (for large enough inputs).
Thus, relatively large changes in input value may lead to little or no change
in the output. This has persuaded many practitioners to use overly simplistic
approximations, which may lead to overall system precision degradation.

We can concentrate on base-two logarithms without limiting generality
since logarithms of all other bases are simply related.

log&J) = (log&)-l log&)

If only a single bit of a number’s binary representation is set, say the kth
one, then the log is simple to calculate-it is simply k. Otherwise the bits
following the most significant set bit k contribute a fractional part

k k k

X =
c

xi p = 2” + c x&i 2k-i = 2’ 1 + c xk-@ = 2’ (1 + 2)
i=o i=l i=l

with 0 5 x < 1. Now logz(x) = k+loga(l+z) and so 0 2 u = log2(l+z) < 1
as well. Thus to approximate log2(x) we can always determine the most
significant bit set k, then approximate u(z) (which maps the interval [0 . . . l]
onto itself), and finally add the results. The various methods differ in the
approximation for U(2). The simplest approximation is linear interpolation,
which has the additional advantage of requiring no further calculation-just
copying the appropriate bits. The maximum error is approximately 10%
and can be halved by adding a positive constant to the interpolation since
this approximation always underestimates. The next possibility is quadratic
approximation, and an eighth-order approximation can provide at least five
significant digits.

For an alternate technique using the CORDIC algorithm, see Section 16.5.

16.4. SQUARE ROOT AND PYTHAGOREAN ADDITION 611

EXERCISES

16.3.1 Code the linear interpolation approximation mentioned above and compare
its output with your library routine. Where is the maximum error and how
much is it?

16.3.2 Use a higher-order approximation (check a good mathematical handbook for
the coefficients) and observe the effect on the error.

16.3.3 Before the advent of electronic calculators, scientists and engineers used slide
rules in order to multiply quickly. How does a slide rule work? What is the
principle behind the circular slide rule? How does this relate to the algorithm
discussed above?

16.4 Square Root and Pythagorean Addition

Although the square root operation y = fi is frequently required in DSP
programs, few DSP processors provide it as an instruction. Several have
‘square-root seed’ instructions that attempt to provide a good starting point
for iterative procedures, while for others the storage of tables is required.

The most popular iterative technique is the Newton-Raphson algorithm

Yn+l = &L + ;I, h h w ic converges quadratically. This algorithm has an
easily remembered interpretation. Start by guessing y. In order to find out
how close your guess is check it by calculating x = E; if x x y then you are
done. If not, the true square root is somewhere between y and z so their
average is a better estimate than either.

Another possible ploy is to use the obvious relationship

j/z = 22 * x = $log&)

and apply one of the algorithms of the previous section.
When x can only be in a small interval, polynomial or rational approxi-

mations may be of use. For example, when x is confined to the unit interval
0 < x < 1, the quadratic approximation y w -0.5973x2 + 1.4043x + 0.1628
gives a fair approximation (with error less than about 0.03, except near
zero).

More often than not, the square root is needed as part of a ‘Pythagorean
addition’.

612 FUNCTION EVALUATION ALGORITHMS

This operation is so important that it is a primitive in some computer lan-
guages and has been the study of much approximation work. For example,
it is well known that

x: $ y M abmax(z, y) + Ic abmin(z, y)

with abmax (abmin) returning the argument with larger (smaller) absolute
value. This approximation is good when 0.25 5 Ic 5 0.31, with Ic = 0.267304
giving exact mean and Ic = 0.300585 minimum variance.

The straightforward method of calculating z @ y requires two multipli-
cations, an addition, and a square root. Even if a square root instruction is
available, one may not want to use this procedure since the squaring oper-
ations may underflow or overflow even when the inputs and output are well
within the range of the DSP’s floating point word.

Several techniques have been suggested, the simplest perhaps being that
of Moler and Morrison. In this algorithm x and y are altered by transforma-
tions that keep x $ y invariant while increasing x and decreasing y. When
negligible, x contains the desired output.

In pseudocode form:

P + m=44 IYI)
Q + min(l47 Ivl>
while q > 0

r + (g)2
P

--&

p + p+2*s*p
Q + S-P

output p

An alternate technique for calculating the Pythagorean sum, along with
the arctangent, is provided by the CORDIC algorithm presented next.

EXERCISES

16.4.1 Practice finding square roots in your head using Newton-Raphson.

16.4.2 Code Moler and Morrison’s algorithm for the Pythagorean sum. How many
iterations does it require to obtain a given accuracy?

16.4.3 Devise examples where straightforward evaluation of the Pythagorean sum
overflows. Now find cases where underflow occurs. Test Moler and Morrison’s
algorithm on these cases.

16.5. CORDIC ALGORITHMS 613

16.4.4 Can Moler-Morrison be generalized to compute 9 + x; + xi + . . . ?

16.4.5 Make an amplitude detector, i.e., a program that inputs a complex expo-
nential s(t) = x(t) + iy(t) = A(t)eiwt and outputs its amplitude A(t) =

x2(t) + y2(t). Use Moler and Morrison’s algorithm.

16.5 CORDIC Algorithms

The Coordinate Rotation for DIgital Computers (CORDIC) algorithm is
an iterative method for calculating elementary functions using only addition
and binary shift operations. This elegant and efficient algorithm is not new,
having been described by Volder in 1959 (he applied it in building a digi-
tal airborne navigation computer), refined mathematically by Walther and
used in the first scientific hand-held calculator (the HP-35), and is presently
widely used in numeric coprocessors and special-purpose CORDIC chips.

Various implementations of the same basic algorithmic architecture
lead to the calculation of:

l the pair of functions sin@) and cos(Q),

l the pair of functions dm and tan-l(y/z),

l the pair of functions sinh(0) and cash(B),

l the pair of functions dm and tanh-‘(y/z),

l the pair of functions &i and In(a), and

l the function ea.

In addition, CORDIC-like architectures can aid in the computation of
FFT, eigenvalues and singular values, filtering, and many other DSP tasks.
The iterative step, the binary shift and add, is implemented in CORDIC
processors as a basic instruction, analogously to the MAC instruction in
DSP processors.

We first deal with the most important special case, the calculation of
sin(e) and cos(8). It is well known that a column vector is rotated through
an angle 6’ by premultiplying it by the orthogonal rotation matrix.

(16.4)

614 FUNCTION EVALUATION ALGORITHMS

If one knows numerically the R matrix for some angle, the desired functions
are easily obtained by rotating the unit vector along the x direction.

(16.5)

However, how can we obtain the rotation matrix without knowing the values
of sin(e) and cos(e)? We can exploit the sum rule for rotation matrices:

= fiR(oI)
i=o

and SO for 8 = Cr=, ai, using equation (16.4), we find:

R(8) = fJcoG-4 fi (tan;ai)
i=o i=o

- ta;(ai))

n n

= n cos(ai) n Mi
i=o i=o

(16.6)

(16.7)

If we chose the partial angles oi wisely, we may be able to simplify the
arithmetic.

For example, let us consider the angle 0 that can be written as the sum
of ai such that tan@) = 2-i. Then the M matrices in (16.7) are of the very
simple form

and the matrix products can be performed using only right shifts. We can
easily generalize this result to angles 8 that can be written as sums of ai =
Z/Z tan-1(2-i). Due to the symmetry cos(-a) = cos(o), the product of cosines
is unchanged, and the M matrices are either the same as those given above,
or have the signs reversed. In either case the products can be performed
by shifts and possibly sign reversals. Now for the surprise-one can show
that any angle 6’ inside a certain region of convergence can be expressed
as an infinite sum of &cui = & tan-’ (2-i)! The region of convergence turns
out to be 0 5 8 5 1.7433 radians M 99.9”, conveniently containing the first
quadrant. Thus for any angle 8 in the first quadrant, we can calculate sin(@)
and cos(8) in the following fashion. First we express 8 as the appropriate
sum of ai. We then calculate the product of M matrices using only shift
operations. Next we multiply the product matrix by the universal constant
K E HE0 cos(cq) z 0.607. Finally, we multiply this matrix by the unit

16.5. CORDIC ALGORITHMS 615

column vector in the x direction. Of course, we must actually truncate the
sum of CX~ to some finite number of terms, but the quantization error is not
large since each successive M matrix adds one bit of accuracy.

Now let’s make the method more systematic. In the ‘forward rotation’
mode of CORDIC we start with a vector along the x axis and rotate it
through a sequence of progressively smaller predetermined angles until it
makes an angle 0 with the x axis. Then its x and y coordinates are pro-
portional to the desired functions. Unfortunately, the ‘rotations’ we must
perform are not pure rotations since they destroy the normalization; were
we to start with a unit vector we would need to rescale the result by K at
the end. This multiplication may be more costly than all the iterations per-
formed, so we economize by starting with a vector of length K. Assuming
we desire b bits of precision we need to perform b iterations in all. We can
discover the proper expansion of 8 by greedily driving the residual angle to
zero. We demonstrate the technique in the following pseudocode:

x+-K

Yto
xte
for i t 0 to b-l

s + w44
x t x-s.y.2-i

y + y+s*x*2-i
x + x - s l tan-1(2-i)

cos(8) t x
sin(B) + y
error + 2

Of course only additions, subtractions, and right shifts are utilized, and the
b values tan-l (2-i) are precomputed and stored in a table. Beware that in
the loop the two values x and y are to be calculated simultaneously. Thus
to code this in a high-level language place the snippet

for i + 0 to b- 1

s +x
x t <-s.y+

y +-- y+s+2-i

into your code.
Did you understand how 6’ was decomposed into the sum of the ai

angles? First we rotated counterclockwise by the largest possible angle,

616 FUNCTION EVALUATION ALGORITHMS

a0 = tan-l 1 = 45”. If 8 > aa then the second rotation is counterclock-
wise from there by or = tan-’ % M 261” to 71%“; but if 19 < QO then the
second rotation is clockwise to 18$‘. At each iteration the difference be-
tween the accumulated angle and the desired angle is stored in x, and we
simply rotate in the direction needed to close the gap. After b iterations the
accumulated angle approximates the desired one and the residual difference
remains in 2.

In order to calculate the pair of functions dm and ta&(g/z),
we use the ‘backward rotation’ mode of CORDIC. Here we start with a
vector (z, y) and rotate back to zero angle by driving the y coordinate to
zero. We therefore obtain a vector along the positive x axis, whose length is
proportional to the desired square root. The x coordinate accumulates the
required arctangent.

The following pseudocode demonstrates the technique:

xtx

Y+--Y
X+--O
for i+Otob-1

s c W(Y)
x +- x+s*y*2-i
y +- y- s’x’2-2
2 + 2 + s . tan-1(2-i)

dm + Kex
error t y
tan-l(Y/X) t 2

Once again the x and y in the loop are to be computed simultaneously.
As mentioned before, the pseudocodes given above are only valid in the

first quadrant, but there are two ways of dealing with full four-quadrant
angles. The most obvious is to fold angles back into the first quadrant and
correct the resulting sine and cosines using trigonometric identities. When
the input is x, y and -n < 8 < n is desired, a convenient method to convert
CORDIC’s z is to use 8 = a + 4 * x where Q = sgn(x)sgn(y) and a = 0 if
x > 0, while otherwise a = sgn(y)n.

It is also possible to extend the basic CORDIC region of convergence to
the full four quadrants, at the price of adding two addition iterations and
changing the value of K. The extended algorithm is initialized with

rr
tpi +- 1

1 iLO
2-i i 2 0

atani t
{

ilO
t4an-1(2-i) i >, 0

16.5. CORDIC ALGORITHMS 617

and K +- q II!=, cos (tan-‘(2-i)) and, for example, the backward rota-
tion is now carried out by the following algorithm:

x+X

Y+--Y
n-0
for it-2tob-1

s +- W(Y)
x + x+s*y*tpi

Y+Y - s ’ x ’ tpi
z + x+seatq

j/m +- K*x
error + y
tan-l(Y/X) t 2

Up to now we have dealt only with circular functions. The basic CORDIC
iteration can be generalized to

(16.8)

%+1 = Zi + Siti

where for the circular functions m = +l and ti = tan-1(2-i), for the hyper-
bolic functions m = -1 and ti = tanh-1(2-i), and for the linear functions
m= 0 and ti = 2-i. For the circular and hyperbolic cases one must also
renormalize by the constants K = I/ nyZo dp. For the hyperbolic
case additional iterations are always required.

EXERCISES

16.5.1 Code the forward and backward extended-range CORDIC algorithms. Test
them by comparison with library routines on randomly selected problems.

16.5.2 Recode the mixer filter from the exercises of Section 16.1 using CORDIC to
generate the complex exponential.

16.5.3 Code a digital receiver that inputs a complex signal s(t) = A(t)ei(“t+4(t)),
mixes the signal down to zero frequency s(t) = A(t)e@(Q (using forward
CORDIC), and then extracts both the amplitude and phase (using backward
CORDIC).

618 BIBLIOGRAPHICAL NOTES

Bibliographical Notes

The reader is referred to the mathematical handbook of Abramowitz and Stegun [l]
for properties of functions, and polynomial and rational approximation coefficients.
For a basic introduction to numerical techniques I recommend [216].

Techniques for speeding up the convergence of polynomial and rational expan-
sions are discussed in [1381.

Generation of sinusoids by recursively evaluating a second-order difference equa-
tion is discussed in [58].

Mitchell [120] proposed simple linear interpolation for the evaluation of loga-
rithms, while Marino [158] proposed the quadratic approximation.

Knuth’s METRFONT typeface design program (which generates the fonts usually
used with Tj$ and IX&$) is an example of a language that has @ as a primitive. Its
manual and entire source code are available in book form [134]. The abmax-abmin
formula for $ was apparently first discussed in [222] but later covered in many
sources, e.g., [184]. The Moler and Morrison algorithm was first present&d in (1751
and was developed for software that evolved into the present MATLAB [go].

The CORDIC algorithm was proposed by Volder [266] in 1959, and refined
mathematically by Walther [269]. Its use in the first full-function scientific calculator
(the HP-35) is documented in [38]. CORDIC’s approximation error is analyzed
in [107]. Extending CORDIC to a full four-quadrant technique was proposed by
[105], while its use for computation of the inverse trigonometric functions is in
[162]. CORDIC-like architectures can aid in the computation of the FFT [51, 521,
eigenvalues and singular values [60], and many other DSP tasks [106].

