
COMMUNICATIONS SIGNAL PROCESSING 680 

18.8.5 

18.8.6 

Early calculations based on Shannon’s theorem set the maximum rate of 
information transfer lower than that which is now achieved. The resolution 
of this paradox is the improvement of SNR and methods to exploit more of 
the bandwidth. Calculate the channel capacity of a telephone line that passes 
from 200 Hz to 3400 Hz and has a signal-to-noise ratio of about 20-25 dB. 
Calculate the capacity for a digital telephone line that passes from 200 Hz to 
3800 Hz and encodes using logarithmic PCM (12-13 bits). 

The ‘maximum reach’ of a DSL modem is defined to be the distance over 
which it can function when the only source of interference is thermal white 
noise. The attenuation of a twisted pair of telephone wires for frequencies 
over 250 KHz can be approximated by 

A(f) = e -s(nq/7+nsf)L 

where L is the cable length in Km. For 24-gauge wire ~1 = 2.36. 10s3, K,Z = 
-0.34.10-8 and for thinner 26-gauge wire i~r = 2.98e10-3, ~2 = -1.06~10-8. 
Assume that the transmitter can transmit 13 dBm between 250 KHz and 5 
MHz and that the thermal noise power is -140 dBm per Hz. Write a program 
to determine the optimal transmitter power distribution and the capacity for 
lengths of 1, 2, 3, 4, and 5 Km. 

18.9 Error Correcting Codes 

In order to approach the error-free information rate guaranteed by Shannon, 
modem signals and demodulators have become extremely sophisticated; but 
we have to face up to the fact that no matter how optimally designed the 
demodulator, it will still sometimes err. A short burst of noise caused by a 
passing car, a tone leaking through from another channel, changes in channel 
frequency characteristics due to rain or wind on a cable, interference from 
radio transmitters, all of these can cause the demodulator to produce a bit 
stream that is not identical to that intended. Errors in the reconstructed 
bit stream can be catastrophic, generating annoying clicks in music, causing 
transferred programs to malfunction, producing unrecoverable compressed 
files, and firing missile banks when not intended. In order to reduce the 
probability of such events, an error correcting code (ECC) may be used. 

Using the terminology of Section 18.7, an ECC is a method of channel 
encoding designed to increase reliability. Error correcting codes are indepen- 
dent of the signal processing aspects of the bit transfer (line coding); they 
are purely mathematical mechanisms that detect whether bits have become 



18.9. ERROR CORRECTING CODES 681 

corrupted and how to recover the intended information. How can bit errors 
be detected? Were we to send 00011011 and 01011010 was received instead, 
how could this possibly be discovered? The strategy is that after optimizing 
the source coding to use the minimal number of bits possible, the channel 
coding adds new bits in order to be able to detect errors. A parity bit is 
a simple case of this; to seven data bits we can add an eighth bit that en- 
sures that the number of ones is even. Any single-bit error will be detected 
because there will be an odd number of ones, but we will not know which 
bit is in error. A simplistic error correction scheme could send each bit three 
times in succession (e.g., send 000000000111111000111111 rather than di- 
rectly sending the message 00011011). Were any single bit to be incorrectly 
received (e.g. 000010000111111000111111), we could immediately detect this 
and correct it. The same is true for most combinations of two bit errors, but 
if the two errors happen to be the same bit triplet, we would be able to 
detect the error but not to correctly correct it. 

The error detection and correction method we just suggested is able 
to correct single-bit errors, but requires tripling the information rate. It 
turns out that we can do much better than that. There is a well-developed, 
mathematically sophisticated theory of ECCs that we will not be able to 
fully cover. This and the next two sections are devoted to presentation of 
concepts of this theory that we will need. 

All ECCs work by allowing only certain bit combinations, known as 
codewords. The parity code only permits codewords with an even number of 
ones; thus only half the possible bitvectors are codewords. The bit tripling 
ECC works because only two of the eight possible bit triplets are allowed; 
thus of the 2 31c bitvectors of length 3k, only one out of every eight are 
codewords. 

The second essential concept is that of distance between bitvectors. The 
most commonly used distance measure is the Humming distance cl&, b2). 
(the same Hamming as the window). The Hamming distance is defined as the 
number of positions in which two bitvectors disagree (e.g., d(0011,0010) = 
1). For bitvectors of length N, 0 5 d(bl, bz) 5 N and d(bl, b2) = 0 if and 
only if br = bf2. 

If we choose codewords such that the minimum Hamming distance dmin 
between any two is M, then the code will be able to detect up to M-l errors. 
Only if M errors occur will the error go unnoticed. Similarly, a code with 
minimum Hamming distance M will be able to correct less than i M errors. 
Only if there are enough errors to move the received bitvector closer to 
another codeword (i.e., half the minimum Hamming distance) will choosing 
the closest codeword lead to an incorrect result. 



682 COMMUNICATIONS SIGNAL PROCESSING 

How do we protect a message using an error correcting code? One way 
is to break the bits of information into blocks of length k. We then change 
this k-dimensional bitvector into a codeword in n-dimensional space, where 
n > k. Such a code is called an n/k rate block code (e.g., parity is a 8/7 block 
code while the bit tripling code is a 3/l block code). The codewords are sent 
over the channel and decoded back into the original k bits at the receiver. 
The processing is similar to performing FFTs on nonoverlapping blocks. 
Sometimes we need to operate in real-time and can’t afford to wait for a 
block to fill up before processing. In such cases we use a convolutional code 
that is reminiscent of a set of n FIR filters. Each clock period k new bits are 
shifted into a FIFO buffer that contains previously seen bits, the k oldest bits 
are shifted out, and then n bit-convolution computations produce n output 
bits to be sent over the channel. The buffer is called a shift register since the 
elements into and from which bits are shifted are single-bit registers. 

We can now formulate the ECC design task. First, we decide whether 
a block or convolutional code is to be used. Next, the number of errors 
that must be detected and the number that must be corrected are specified. 
Finally, we find a code with minimal rate increase factor n/k that detects 
and corrects as required. 

At first glance finding such codes seems easy. Consider a block code 
with given k. From the requirements we can derive the minimal Hamming 
distance between codewords, and we need only find a set of 2’ codewords 
with that minimal distance. We start with some guess for n and if we can’t 
find 2’ codewords (e.g., by random search) that obey the constraint we 
increase n and try again. For large block lengths k the search may take a 
long time, but it need be performed only once. We can now randomly map 
all the possible k-dimensional bitvectors onto the codewords and can start 
encoding. Since the encoding process is a simple table lookup it is very fast. 
The problem is with decoding such a code. Once we have received an n- 
dimensional bitvector we need to compute the Hamming distances to each 
of the 2k codewords and then pick the closest. This is a tremendous amount 
of work even for small k and completely out of the question for larger block 
lengths. 

Accordingly we will tighten up our definition of the ECC design problem. 
Our task is to find a code with minimal n/k that can be eficiently decoded. 
Randomly chosen codes will always require brute force comparisons. In order 
to reduce the computational complexity of the decoding we have to add 
structure to the code. This is done using algebra. 



18.10. BLOCK CODES 683 

EXERCISES 

18.9.1 Consider the bit-tripling code. Assume the channel is such that the probabil- 
ity of an error is p (and thus the probability of a bit being correctly detected 
is 1 -p). Show that the average probability of error of the original bit stream 
is Per, = 3p2 (1 - p) + p3. Obviously, Per,. = p for p = 0 and p = 1. What is 
P,,,. for p = i? Graph Per,. as a function of p. For i < p < 1 we see that 
P,,,. > p, that is, our error correction method increases the probability of 
error. Explain. 

18.9.2 The bit-tripling code can correct all single-bit errors, and most two-bit errors. 
Starting with eight information bits, what percentage of the two-bit errors 
can be corrected? What percentage of three-bit errors can be detected? 

18.9.3 A common error detection method is the checksum. A checksum-byte is gen- 
erated by adding up all the bytes of the message modulo 256. This sum is then 
appended to the message and checked upon reception. How many incorrectly 
received bytes can a ‘checkbyte’ detect? How can this be improved? 

18.10 Block Codes 

About a year after Shannon’s publication of the importance of channel codes, 
Hamming actually came up with an efficiently decodable ECC. To demon- 
strate the principle, let’s divide the information to be encoded into four-bit 
blocks d&&do. Hamming suggested adding three additional bits in order 
to form a 7/4 code. A code like this that contains the original k informa- 
tion bits unchanged and simply adds n - k checkbits is called a systematic 
code. In the communications profession it is canonical to send the data first, 
from least to most significant bits and the checkbits afterward, thus the 
seven-dimensional codewords to be sent over the channel are the vectors 

(aOala2a3a4a5a6) = (&I!~&~~coc~c~). The checkbits are computed as linear 
combinations of the information bits 

CO = do + dl + d3 

Cl = dl+ d2 +d3 (18.21) 

c2 = do + d2 + d3 

where the addition is performed modulo 2 (i.e., using xor). If information 
bit do is received incorrectly then checkbits CO and cl will not check out. 
Similarly, an incorrectly received dr causes problems with co and ~2, a flipped 



684 COMMUNICATIONS SIGNAL PROCESSING 

d2 means cl and c2 will not sum correctly, and finally a mistaken d3 causes 
all three checkbits to come out wrong. What if a checkbit is incorrectly 
received? Then, and only then, a single ci will not check out. If no checkbits 
are incorrect the bitvector has been correctly received (unless a few errors 
happened at once). 

The Hamming code is a linear code; it doesn’t matter if you sum (xor) 
two messages and then encode them or encode the two messages and then 
sum them. It is thus not surprising that the relationship between the Ic- 
dimensional information bitvector d and the n-dimensional codeword a can 
be expressed in a more compact fGhion using matrices, a = Gd - - -- - 

where all the operations are to be understood modulo 2. The n-by-k matrix 
G is called the generator matrix since it generates the codeword from the 
= 
information bits. All linear ECCs can be generated using a generator matrix; 
all systematic codes have the Ic-by-lc identity matrix as the top IG rows of G. 

The Hamming 7/4 code can correct all single-bit errors, and it is optim% 
since there are no 6/4 codes with this characteristic. Although it does make 
the job of locating the bit in error simpler than checking all codewords, Ham- 
ming found a trick that makes the job easier still. He suggested sending the 
bits in a different order, d3d2dlcldocpzo and calling them h7h&&&3h&. 
Now hr, h2 and h4 are both received and computed, and the correction pro- 
cess is reduced to simply adding the indices of the incorrect checkbits. For 
example, if hl and h2 don’t check out then h1+2 = h3 should be corrected. 

Hamming’s code avoids searching all the codewords by adding algebraic 
structure to the code. To see this more clearly let’s look at all the codewords 
(in the original order) 

0000000 1000101 0010110 1010011 
0001011 1001110 0011101 1011000 
0100111 1100010 0110001 1110100 

(18.22) 

0101100 1101001 0111010 1111111 

and note the following facts. Zero is a codeword and the sum (modulo 2) of 
every two codewords is a codeword. Since every bitvector is its own additive 



18.10. BLOCK CODES 685 

inverse under modulo 2 arithmetic we needn’t state that additive inverses 
exist for every codeword. Thus the codewords form a four-dimensional sub- 
space of the seven-dimensional space of all bitvectors. Also note that the 
circular rotation of a codeword is a codeword as well, such a code being 
called a cyclic code. 

The weight of a bitvector is defined as the number of ones it contains. 
Only the zero vector can have weight 0. For the Hamming 7/4 code the min- 
imal weight of a nonzero codeword is 3 (there are seven such codewords); 
then there are seven codewords of weight 4, and one codeword of weight 7. 
If the zero codeword is received with a single-bit error the resulting bitvec- 
tor has weight 1, while two errors create bitvectors of weight 2. One can 
systematically place all possible bitvectors into a square array based on the 
code and weight. The first row contains the codewords, starting with the 
zero codeword at the left. The first column of the second row contains a 
bitvector of weight 1, (a bitvector that could have been received instead of 
the zero codeword were a single-bit error to have taken place). The rest of 
the row is generated by adding this bitvector to the codeword at the top of 
the column. The next row is generated the same way, starting with a dif- 
ferent bitvector of weight 1. After all weight 1 vectors have been exhausted 
we continue with vectors of weight 2. For the 7/4 Hamming code this array 
has eight rows of 16 columns each: 

0000000 
1000000 
0100000 
0010000 
0001000 
0000100 
0000010 
0000001 

1000101 
0000101 
1100101 
1010101 
1001101 
1000001 
1000111 
1000100 

0100110 
1100110 
0000110 
0110110 
0101110 
0100010 
0100100 
0100111 

. . . 1011001 0111010 

. . . 0011001 1111010 

. . . 1111001 0011010 

. . . 1001001 0101010 

. . . 1010001 0110010 

. . . 1011101 0111110 

. . . 1011011 0111000 

. . . 1011000 0111011 

1111111 
0111111 
1011111 
1101111 
1110111 
1111011 
1111101 
1111110 

In error correcting code terminology the rows are called cosets, and the 
leftmost element of each row the coset leader. Each coset consists of all the 
bitvectors that could arise from a particular error (coset leader). You can 
think of this array as a sort of addition table; an arbitrary element v is 
obtained by adding (modulo 2) the codeword at the top of its column a to - 
the coset leader at the left of its row e (i.e., v = a + e). 

The brute force method of decoding is now e&y to formulate. When a 
particular bitvector v is received, one searches for it in the array. If it is in 
the first row, then we conclude that there were no errors. If it is not, then 
the codeword at the top of its column is the most probable codeword and 



686 COMMUNICATIONS SIGNAL PROCESSING 

the coset leader is the error. This decoding strategy is too computationally 
complex to actually carry out for large codes, so we add a mechanism for 
algebraically locating the coset leader. Once the coset leader has been found, 
subtracting it (which for binary arithmetic is the same as adding) from the 
received bitvector recovers the most probable original codeword. 

In order to efficiently find the coset leader we need to introduce two 
more algebraic concepts, the parity check matrix and the syndrome. The 
codewords form a k-dimensional subspace of n space; from standard linear 
algebra we know that there must be an (n - k)-dimensional subspace of 
vectors all of which are orthogonal to all the codewords. Therefore there is 
an (n - k)-by-n matrix H called the parity check matrix, such that Ha = 0 -- 
for every codeword a. ItTactually easy to find H from the generatormatrix 

G since we require % Gd = 0 for all possible information vectors d, which 
= --- -- 
means the (n - k)-by-k matrix H G must be all zeros. Hence the parity check -- -- 
matrix for the 7/4 Hamming code is 

1101100 
H= 0111010 
= 

1011001 

as can be easily verified. The parity check matrix of a systematic n/k code 
has the (n - k)-by-(n - k) identity matrix as its rightmost n - k columns, 
and the rest is the transpose of the nonidentity part of the generator matrix. 

What happens when the parity check matrix operates on an arbitrary 
n-dimensional bitvector v = a + e? By definition the codeword does not 
contribute, hence H v = He the right-hand side being a (n - k)-dimensional -- -- 
vector called the syndro6. The syndrome is thus zero for every codeword, 
and is a unique indicator of the coset leader. Subtracting (adding) the coset 
from the bitvector gives the codeword. So our efficient method of decoding a 
linear code is simply to multiply the incoming bitvector by the parity check 
matrix to obtain the syndrome, and then adding the coset leader with that 
syndrome to the incoming bitvector to get the codeword. 

By mapping the encoding and decoding of linear ECCs onto operations 
of linear algebra we have significantly reduced their computational load. 
But there is an even more sophisticated algebraic approach to ECCs, one 
that not only helps in encoding and decoding, but in finding, analyzing, 
and describing codes as well. This time rather than looking at bitstreams 
as vectors we prefer to think of them as polynomials! If that seems rat her 
abstract, just remember that the general digital signal can be expanded as 
a sum over shifted unit impulses, which is the same as a polynomial in the 



18.10. BLOCK CODES 687 

time delay operator x -l. The idea here is the same, only we call the dummy 
variable x rather than z-l, and the powers of x act as place keepers. The 
k bits of a message (d&r&~& . . . &-r) are represented by the polynomial 
d(x) = de + drx + d2x2 + d3x3 + . . . + dk-lx”-‘; were we to take x = 2 this 
would simply be the bits understood as a binary number. 

The polynomial representation has several advantages. Bit-by-bit addi- 
tion (xor) of two messages naturally corresponds to the addition (modulo 
2) of the two polynomials (not to the addition of the two binary numbers). 
Shifting the components of a bitvector to the left by r bits corresponds to 
multiplying the polynomial by xr. Hence a s.ystematic n/k code that encodes 
a k-bit message d into an n-bit codeword a by shifting it (n - k) bits to the 
left and adding (n - k) checkbits c, can be thought of as a transforming of a 
(k - l)-degree polynomial d(x) into a code polynomial a(x) of degree (n - 1) 
by multiplying it by the appropriate power of x and then adding the degree 
(n. - k - 1) polynomial c(x). 

a(x) = xn+d(x) + c(x) (18.23) 

Of course multiplication and division are defined over the polynomials, 
and these will turn out to be useful operations-operations not defined in 
the vector representation. In particular, we can define a code as the set of 
all the polynomials that are multiples of a particular generator polynomial 
g(x). The encoding operation then consists of finding a c(x) such that a(x) 
in equation (18.23) is a multiple of g(x). 

Becoming proficient in handling polynomials over the binary field takes 
some practice. For example, twice anything is zero, since anything xored with 
itself gives zero, and thus everything equals its own negative. In particular, 
x+x = 0 and thus x2 + 1 = x2 + (x + x) + 1 = (x + l)2; alternatively, 
we could prove this by x2 + 1 = (x + 1) (x - 1) which is the same since 
-1x 1. How can we factor x4 + l? x4 + 1 = x4 - 1 = (x2 + 1)(x2 - 1) = 
(x2 + 1)2 = (x + l)4. As a last multiplication example, it’s easy to show 
that (x3 + x2 + 1)(x2 + x + 1) = x5 + x + 1. Division is similar to the usual 
long division of polynomials, but easier. For example, dividing x5 + x + 1 
by x2 + x + 1 is performed as follows. First x5 divided by x2 gives x3, so 
we multiply x3 (x2 + x + 1) = x5 + x4 + x3. Adding this (which is the same 
as subtracting) leaves us with x4 + x3 + x + 1 into which x2 goes x2 times. 
This time we add x4 + x3 + x2 and are left with x2 + x + 1, and therefore 
the answer is x3 + x2 + 1 as expected, 

With this understanding of binary polynomial division we can now de- 
scribe how c(x) is found, given the generator polynomial g(x) and the mes- 
sage polynomial d(x). We multiply d(x) by xn-lc and then divide by g(x), the 



688 COMMUNICATIONS SIGNAL PROCESSING 

remainder being taken to be c(z). This works since dividing x~-“~(x) + c(z) 
by g(x) will now leave a remainder 2c(z) = 0. For example, the 23/12 Golay 
code has the generator polynomial g(x) = 1+z+25+Z6+57+Zg+511; in 
order to use it we must take in 12 bits at a time, building a polynomial of 
degree 22 with the message bits as coefficients of the 12 highest powers, and 
zero coefficients for the 11 lowest powers. We then divide this polynomial 
by g(x) and obtain a remainder of degree 10, which we then place in the 
positions previously occupied by zeros. 

The polynomial representation is especially interesting for cyclic codes 
due to an algebraic relationship between the polynomials corresponding to 
codewords related by circular shifts. A circular shift by m bits of the bitvec- 
tor (aoal . . . a,-~) corresponds to the modulo n addition of r-n to all the 
powers of z in the corresponding polynomial. 

aox O+m mod n 
+ a12 

l+mmodn+ 
. . . + un-lx(n-l)+m mod n 

This in turn is equivalent to multiplication of the polynomial by xm modulo 
xn + 1. To see this consider multiplying a polynomial u(x) by x to form 
xu(x) = U()X+U1X2+...+Un-lXn. In general, this polynomial is of degree n 
and thus has too many bits to be a codeword, but by direct division we see 
that xn + 1 goes into it an-1 times with a remainder G(x) = an-1 + uex + 
C&1X2 + . . . + Un-2Xnw1. Looking carefully at G(Z) we see that it corresponds 
to the circular shift of the bits of u(x). We can write 

xu(x) = Un-l(Xn + 1) + C(X) 

and thus say that xu(x) and G(x) are the same modulo xn + 1. Simi- 
larly, (x2u(x)) mod (xn + 1) corresponds to a circular shift of two bits, 
and (xmu(z)) mod (xn + 1) to a circular shift of m bits. Thus cyclic codes 
have the property that if u(x) corresponds to a codeword, then so does 
(x%(x)) mod (xn + 1). 

In 1960, two MIT researchers, Irving Reed and Gustave Solomon, realized 
that encoding bit by bit is not always the best approach to error detection 
and correction. Errors often come in bursts, and a burst of eight consecutive 
bit errors would necessitate an extremely strong ECC that could correct 
any eight-bit errors; but eight consecutive bit errors are contained in at 
most two bytes, thus if we could work at the byte level, we would only need 
a two-byte correcting ECC. The simplest byte-oriented code adds a single 
checkbyte that equals the bit-by-bit xor of all the data bytes to a block of 
byte-oriented data. This is equivalent to eight interleaved parity checks and 
can detect any single byte error and many multibyte ones, but cannot correct 



18.10. BLOCK CODES 689 

any errors. What Reed and Solomon discovered is that by using r checkbytes 
one can detect any T errors and correct half as many errors. Discussing the 
theory of Reed-Solomon codes would take us too far astray, but the basic 
idea is to think of the bytes as polynomials with bits as coefficients 

B(x) = b7x7 + b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + blx + bo 

where the b, are bits. Dividing the bit stream into TI bytes and adding all 
these bytes together as polynomials 

co = Be(x) + Bl(X) + B2(x) + * * l + &-1 

results in the checkbyte mentioned above. Additional checkbytes can be 
generated that allow detection of the position of the error. 

EXERCISES 

18.10.1 A systematic code adds r = n - k checkbits and thus allows for 2r - 1 
different errors to be corrected. So for all single-bit errors (including errors 
of the checkbits themselves) to be corrected we require 2’ - 1 2 n = k + r. 
For k = 4 we require at least r = 3, i.e., a 7/4 code. What does this bound 
predict for the minimum sizes of systematic codes for k = 3,5,8,11,12,16? 

18.10.2 Find the codewords of the 7/4 Hamming code in Hamming’s order. Show that 
the inverse of every Hamming 7/4 codeword is a code word. Show that the 
sum (modulo 2) of every two codewords is a codeword. What is the minimum 
Hamming distance dmin ? Show that the code is not cyclic but that the code 
in the original order (as given in the text) is. 

18.10.3 In the 7/4 Hamming code the inverse of every codeword (i.e., with ones and 
zeros interchanged) is a codeword as well. Why? 

18.10.4 Why are systematic codes often preferred when the error rate is high? 

18.10.5 Find equations for the checkbits of the 9/5 Hamming code. How can the bits 
be arranged for the sum of checkbit indices to point to the error? How should 
the bits be arranged for the code to be cyclic? 

18.10.6 Show that over the binary field xn + 1 = (x + l)(xnwl + xnw2 + . . . + 1). 

18.10.7 The 16-bit cyclic redundancy check (CRC) error detection code uses the 
polynomial 1 + x5 + x12 + x l6 Write a routine that appends a CRC word . 
to a block of data, and one that tests a block with appended CRC. How can 
the encoding and decoding be made computationally efficient? Test these 
routines by adding errors and verifying that the CRC is incorrect. 



690 COMMUNICATIONS SIGNAL PROCESSING 

18.10.8 To learn more about block codes write four programs. The first bencode 
inputs a file and encodes it using a Hamming code; the second channel inputs 
the output of the first and flips bits with probability p (a parameter); the third 
bdecode decodes the file with errors; the last compare compares the original 
and decoded files and reports on the average error Per,.. Experiment with 
binary files and plot the empirical P e,-,. as a function of p. Experiment with 
text files and discover how high p can be for the output to be decipherable. 

18.11 Convolutional Codes 

The codes we discussed in the previous section are typically used when 
the bits come in natural blocks, but become somewhat constraining when 
bits are part of real-time ‘bit signals’. The reader who prefers filtering by 
convolution rather than via the FFT (Section 15.2) will be happy to learn 
that convolutional codes can be used instead of block codes. Convolutional 
encoders are actually analogous to several simultaneous convolutions; for 
each time step we shift a bit (or more generally k bits) into a static bit 
buffer, and then output n bits that depend on the K bits in this buffer. We 
have already mentioned that in ECC terminology the static buffer is called 
a shift register, since each time a new bit arrives the oldest bit in the shift 
register is discarded, while all the other bits in the registers are shifted over, 
making room for the new bit. 

The precise operation of a convolutional encoder is as follows. First the 
new bit is pushed into the shift register, then all n convolutions are computed 
(using modulo two arithmetic), and finally these bits are interleaved into a 
new bit stream. If n convolutions are computed for each input bit the code’s 
rate is n/l. Since this isn’t flexible enough, we allow k bits to be shifted into 
the register before the n outputs bits are computed, and obtain an n/k rate 
code. 

The simplest possible convolutional code consists of a two-bit shift reg- 
ister and no nontrivial arithmetic operations. Each time a new bit is shifted 
into the shift register the bit left in the register and the new bit are out- 
put; In other words, denoting the input bits x~, the outputs bits at time n 
are x, and ~~-2. If the input bit signal is 1110101000 the output pn will 
be 11111100110011000000. A shift register diagram of the type common in 
the ECC world and the equivalent DSP flow diagram are depicted in Fig- 
ure 18.12. 



18.11. CONVOLUTIONAL CODES 691 

A 

* Y2n 

Al B AL 

Xn k - Xn G-1 Xn 

1r 
l? 

Y2n+l Y2n+l 

Figure 18.12: A trivial convolutional code. In (A) we see the type of diagram used in 
error correcting code texts, while in (B) we have the conventional DSP flow diagram 
equivalent. The output bit signal is formed by interleaving the two outputs into a single 
bit stream, although this parallel to serial conversion is not explicitly shown. 

Why does this code work? As for block codes the idea is that not every 
combination of bits is a valid output sequence. We cannot say that given a 
bit the next bit must be the same, since we do not know whether the present 
bit is already the replica of the previous one. However, an isolated zero or 
one, as in the bit triplets 010 and 101, can never appear. This fact can be 
used to detect a single-bit error and even some double-bit errors (e.g., the 
two middle bits of 00001111). Actually all single-bit errors can be corrected, 
since with few errors we can easily locate the transitions from 1 to 0 and 
back and hence deduce the proper phase. 

In Figure 18.13 we see a somewhat more complex convolutional code. 
This code is universally the first presented in textbooks to demonstrate the 

A 

X,--t- Xn Xn-1 G-2 x:I...y: Y2n 

llY2n+ 1 

Figure 18.13: A simple convolutional code (the one universally presented in ECC texts). 
In (A) we see the ECC style diagram, while in (B) we have the conventional DSP flow 
diagram equivalent. Note that the addition in the latter diagram is modulo 2 (xor). 



692 COMMUNICATIONS SIGNAL PROCESSING 

state input output new state 
O(O0) 0 WO) NW 
O(O0) 1 301) WO) 
l(O1) 0 Vl) ww 
l(O1) 1 w4 2w 
2(10) 0 Vl) Vl) 
2(10) 1 2(10) W) 
3(11) 0 2w ww 
3(H) 1 ml) 3(11) 

Figure 18.14: The function table and diagram for the simple convolutional code. There 
are four states and both the output and the new state are dependent on the state and 
the input bit. The new state is obtained by shifting the present state to the right and 
placing the input bit into the two’s place. In the diagram each arc is labeled by two binary 
numbers, input/output. 

principles of convolutional codes, and we present it in order not to balk 
tradition. Since there are two delay elements and at each time two bits are 
output, any input bit can only influence six output bits. We would like to 
call this number the ‘influence time’, but ECC terminology constrains us 
to call it the ‘constraint length’. Since the constraint length is six, not all 
combinations of seven or more consecutive bits are possible. For example, 
the sequence 00000010 is not a possible output, since six consecutive OS 
imply that the shift register now contains OS, and inputting a 1 now causes 
two 1s to be output. 

We have specified the output of a convolutional encoder in terms of the 
present and past input bits, just as we specify the output of an FIR filter in 
terms of the present and past input values. The conventional methodology 
in the ECC literature prefers the state-space description (see Section 6.3) 
where the present output bits are computed based on the present input and 
the internal state of the encoder. The natural way to define the internal 
state of the encoder is via the two bits x,-r and x,-2, or by combining 
these two bits into s = 2x,-r +x,+2 which can take on values 0, 1, 2, and 3. 
The encoder output can now be described as a function of the present input 
and the value of the internal state s. We tabulate this function and depict 
it graphically in Figure 18.14. In the figure each arc is labeled by a pair of 
numbers in binary notation. The first number is the input required to cause 
the transition from the pre-arc state to the post-arc one; the second number 
is the output emitted during such a transition. 



18.11. CONVOLUTIONAL CODES 693 

n=O n=l n=2 n=3 n=4 n=5 n=6 

Figure 18.15: Trellis diagram for the simple convolutional code. We draw all the paths 
from state zero at n = 0 that return to state zero at time n = 6. 

Accepting the state-space philosophy, our main focus of interest shifts 
from following the output bits to following the behavior of the encoder’s 
internal state as a function of time. The main purpose of the encoder is to 
move about in state-space under the influence of the input bits; the output 
bits are only incidentally generated by the transitions from one state to 
another. We can capture this behavior best using a trellis, an example of 
which is given in Figure 18.15. A trellis is a graph with time advancing from 
left to right and the encoder states from top to bottom. Each node represents 
a state at a given time. In the figure we have drawn lines to represent all 
the possible paths of the encoder through the trellis that start from state 0 
and end up back in state 0 after six time steps. Each transition should be 
labeled with input and output bits as in Figure 18.14, but these labels have 
been hidden for the sake of clarity. 

How are convolutional codes decoded? The most straightforward way is 
by exhaustive search, that is, by trying all possible inputs to the encoder, 
generating the resulting outputs, and comparing these outputs with the 
received bit signal. The decoder selects the output bit sequence that is closest 
(in Hamming distance) to the bit signal, and outputs the corresponding 
input. In Table 18.2 we tabulate the output of the traditional convolutional 
code of Figure 18.13 for all possible six-bit inputs. Upon receiving twelve 
bits that are claimed to be the output of this coder from the all-zero initial 
state, we compare them to the right-hand column, select the row closest 
in the Hamming sense, and output the corresponding left-hand entry. This 
exhaustive decoding strategy rapidly gets out of hand since the number of 
input signals that must be tried increases exponentially with the number of 
bits received. We need to find a more manageable algorithm. 

The most commonly employed decoding method is the Viterbi algorithm, 
which is a dynamic programming algorithm, like the DTW algorithm of 



694 COMMUNICATIONS SIGNAL PROCESSING 

000010 000000001110 000001 000000000011 ~~~~1 
010000 001110110000 010010 001110111110 

001000 000011101100 001010 000011100010 001001 000011101111 

~~~~~~ 
000101 000000111000 000111 000000110110 

010101 001110001000 010111 001110000110 

~~~~~‘~1 
011101 001101100100 011111 001101101010 
111101 110110100100 111111 110110101010 

Table 18.2: Exhaustive enumeration of the simple convolutional code (the one universally 
presented in ECC texts). We input all possible input sequences of six bits and generate 
the outputs (assuming the shift register is reset to all zeros each time). These outputs can 
be compared with received bit signal. 

Section 8.7. To understand this algorithm consider first the following related 
problem. You are given written directions to go from your house to the 
house of a fellow DSP enthusiast in the next town. A typical portion of the 
directions reads something like ‘take the third right turn and proceed three 
blocks to the stop sign; make a left and after two kilometers you see a bank 
on you right’. Unfortunately, the directions are handwritten on dirty paper 
and you are not sure whether you can read them accurately. Was that the 
third right or the first? Does it say three blocks or two blocks? One method 
to proceed is to follow your best bet at each step, but to keep careful track of 
all supplied information. If you make an error then at some point afterward 
the directions no longer make any sense. There was supposed to be a bank 
on the right but there isn’t any, or there should have been a stop sign after 
3 blocks but you travel 5 and don’t see one. The logical thing to do is to 
backtrack to the last instruction in doubt and to try something else. This 
may help, but you might find that the error occurred even earlier and there 
just happened to be a stop sign after three blocks in the incorrect scenario. 

This kind of problem is well known in computer science, where it goes 
under the name of the ‘directed search’ problem. Search problems can be 
represented as trees. The root of the tree is the starting point (your home) 
and each point of decision is a node. Solving a search problem consists of 
going from node to node until the goal is reached (you get to the DSP 
enthusiast’s house). A search problem is ‘directed’ when each node can be 
assigned a cost that quantifies its consistency with the problem specification 



18.11. CONVOLUTIONAL CODES 695 

(how well it matches the directions so far). Directed search can be solved 
more systematically than arbitrary search problems since choosing nodes 
with lower cost brings us closer to the goal. 

There are two main approaches to solving search problems. ‘Depth-first’ 
solution, such as that we suggested above, requires continuing along a path 
until it is obviously wrong, and then backtracking to the point of the last 
decision. One then continues along another path until it becomes impossible. 
The other approach is ‘breadth-first’. Breadth-first solution visits all decision 
nodes of the same depth (the same distance from the starting node) before 
proceeding to deeper nodes. The breadth-first solution to the navigation 
problem tries every possible reading of the directions, going only one step. 
At each such step you assign a cost, but resist the temptation to make any 
decision even if one node has a low cost (i.e., matches the description well) 
since some other choice may later turn out to be better. 

The decoding of a convolutional code is similar to following directions. 
The algebraic connection between the bits constitute a consistency check 
very much like the stop sign after three blocks and the bank being on the 
right. The Viterbi algorithm is a breadth-first solution that exploits the 
state-space description of the encoder. Assume that we know that the en- 
coder is in state 0 at time n = 0 and start receiving the encoded (output) 
bits. Referring back to Figure 18.15, just as the decoder generated particular 
transitions based on the input bits (the first number of the input/output pair 
in Figure 18.14) the Viterbi decoder tries to guess which transition took place 
based on the output bits (the second number of the pair). Were the received 
bit signal error free, the task would be simple and uniquely defined. In the 
presence of bit errors sometimes we will make an improper transition, and 
sometimes we cannot figure out what to do at all. The breadth-first dynamic 
programming approach is to make all legal transitions, but to calculate the 
Hamming distance between the received bits and the encoder output bits 
that would actually have caused this transition. We store in each node of the 
trellis the minimal accumulated Hamming distance for paths that reach that 
node. We have thus calculated the minimal number of errors that need to 
have occurred for each possible internal state. We may guess that the path 
with minimal number of errors is the correct one, but this would be too 
hasty a decision. The proper way to identify the proper path in state-space 
is to have patience and watch it emerge. 

To see how this happens let’s work out an example, illustrated in Fig- 
ure 18.16. We’ll use as usual the simple convolutional code of Figure 18.13 
and assume that the true input to the encoder was all zeros. The encoder 
output was thus all zeros as well, but the received bit signal has an erroneous 



696 COMMUNICATIONS SIGNAL PROCESSING 

n=O n=l n=2 n=3 n=4 n=S n=6 n=7 n=8 

00 01 00 00 00 00 00 00 

Figure 18.16: Viterbi decoding for the simple convolutional code. The bottom line con- 
tains the received bit signal, which contains a single bit error. The trellis nodes are labeled 
with the accumulated number of bit errors and the arcs with the output bits corresponding 
to the transition. Dash arcs are ones that do not survive because there is a path to the 
post-arc node that has fewer bit errors. The single bit error is corrected after 6 time steps. 

one due to noise. We assign costs to the nodes in the trellis starting from 
state zero at time n = 0. In the first time step we can reach state 0 if 00 were 
transmitted and state 2 were 11 transmitted. Since 00 is received, state 0 is 
labeled as being reachable without bit errors, while state 2 is labeled with 
a 2 representing two bit errors. In the next time step the bit error occurs. 
From the 0 state at n = 1 the code can transition either to itself or to state 
2, implying single-bit errors. From state 2 at n = 1 we would arrive at state 
1 assuming the 01 that was received was indeed transmitted, thus accruing 
no additional error; the state 1 node at n = 2 is thus labeled with total error 
2 since the entire path from state 0 at n = 0 was 1101 as compared with 
the 0001 that was received. From state 2 at n = 1 we could also arrive at 
state 3 at n = 2 were 10 to have been sent, resulting in the maximal total 
number of bit errors (1110 as compared to 0001). 

In this way we may continue to compute the total number of bit errors to 
reach a given state at a given time. In the next step we can reach the 0 state 
via two different paths. We can transition from state 0 at n = 2, implying 
that the total bit sequence transmitted was 000000, or we can get there from 
state 2 at n = 2 were the sequence transmitted to have been 110111. Which 
cost do we assign to the node? Viterbi’s insight (and the basis of all ‘dynamic 
programming’ algorithms) was that we need only assign the lower of the two 
costs. This reasoning is not hard to follow, since we are interested in finding 
the lowest-cost path (i.e., the path that assumes the fewest bit errors in the 
received bit signal). Suppose that later on we determine that the lowest-cost 
path went through this node, and we are interested in determining how the 
states evolved up to this point. It is obvious that the lowest-error path that 



18.11. CONVOLUTIONAL CODES 697 

reaches this node must have taken the route from the 0 state at n = 2. So 
the global optimum is found by making the local decision to accept the cost 
that this transition implies. In the figure we draw the transition that was 
ruled out as a dashed line, signifying that the best path does not go through 
here. So at each time only four surviving paths must be considered. 

In general, at time step n we follow all legal transitions from nodes 0, I, 
2, and 3 at time n - 1, add the new Hamming distance to the cost already 
accrued in the pre-arc node, and choose the lower of the costs entering 
the post-arc node. In the figure the transitions that give minimal cost are 
depicted by solid lines. If two transitions give the same accumulated cost we 
show both as solid lines, although in practical implementations usually one 
is arbitrarily chosen. The reader should carefully follow the development of 
the trellis in the figure from left to right. 

Now that we have filled in the trellis diagram, how does this help us 
decode the bit signal? You might assume that at some point we must break 
down and choose the node with minimal cost. For example, by time n = 5 
the path containing only state 0 is clearly better than the other four paths, 
having only one error as compared with at least three errors for all other 
paths. However, there is no need to make such risky quantitative decisions. 
Continuing on until time n = 8 the truth regarding the error in the fourth 
bit finally comes to light. Backtracking through the chosen transitions (solid 
lines in the figure) shows that all the surviving paths converge on state 0 at 
time n = 6. So without quantitatively deciding between the different states 
at time n = 8 we still reach the conclusion that the most likely transmitted 
bit signal started 00000000, correcting the mistakenly received bit. It is easy 
to retrace the arcs of the selected path, but this time using the encoder 
input bits (the first number from Figure 18.13) to state that the uncoded 
information started 000. 

In a more general setting, the Viterbi decoder for a convolutional code 
which employs m delays (i.e., has s = 2” possible internal states), fills in a 
trellis of s vertical states. At each time step there will be s surviving paths, 
and each is assigned a cost that equals the minimal number of bit errors 
that must have occurred for the code to have reached this state. Backtrack- 
ing, we reach a time where all the surviving paths converge, and we accept 
the bits up to this point as being correct and output the original informa- 
tion corresponding to the transitions made. In order to save computational 
time most practical implementations do not actually check for convergence, 
but rather resume that all paths have converged some fixed time L in the 
past. The Viterbi decoder thus outputs predictions at each time step, these 
information bits being delayed by L. 



698 COMMUNICATIONS SIGNAL PROCESSING 

EXERCISES 

18.11.1 In exercise 8.7.1 we introduced the games of doublets. What relationships 
exist between this game and the decoding of convolutional codes? 

18.11.2 Each of the convolutions that make up a convolutional code can be identified 
by its impulse response, called the generator sequence in coding theory. What 
is the duration of the impulse response if the shift register is of length K? 
The constraint length is defined to be the number of output bits that are 
influenced by an input bit. What is the constraint length if the shift register 
length is K, and each time instant Ic bits are shifted in and n are output? 

18.11.3 Which seven-tuples of bits never 
tional code given in the text? 

appear as outputs of the simple convolu- 

18.11.4 Repeat the last exercise of the previous section for convolutional codes. You 
need to replace the first program with cencode and the third with cdecode. 
Use the Viterbi algorithm. 

18.11.5 The convolutional code yzn = xn + x,,+1,~2~+1 = x, + x,+2 is even simpler 
than the simple code we discussed in the text, but is not to be used. To find 
out why, draw the trellis diagram for this code. Show that this code suffers 
from catastrophic error propagation, that is, misinterpreted bits can lead to 
the decoder making an unlimited number of errors. (Hint: Assume that all 
zeros are transmitted and that the decoder enters state 3.) 

18.12 PAM and FSK 

Shannon’s information capacity theorem is not constructive, that is, it tells 
us what information rate can be achieved, but does not actually supply us 
with a method for achieving this rate. In this section we will begin our quest 
for efficient transmission techniques, methods that will approach Shannon’s 
limit on real channels. 

Let’s try to design a modem. We assume that the input is a stream of 
bits and the output a single analog signal that must pass through a noisy 
band-limited channel. Our first attempt will be very simplistic. We will send 
a signal value of +l for every one in the input data stream, and a 0 for every 
zero bit. We previously called this signal NRZ, and we will see that it is the 
simplest type of Pulse Amplitude Modulation (PAM). As we know, the 
bandwidth limitation will limit the rate that our signal can change, and so 
we will have a finite (in fact rather low) information transmission rate. 


