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Speech Signal Processing 

In this chapter we treat of one of the most intricate and fascinating signals 
ever to be studied, human. speech. The reader has already been exposed 
to the basic models of speech generation and perception in Chapter 11. In 
this chapter we apply our knowledge of these mechanisms to the practical 
problem of speech modeling. 

Speech synthesis is the artificial generation of understandable, and (hope- 
fully) natural-sounding speech. If coupled with a set of rules for reading text, 
rules that in some languages are simple but in others quite complex, we get 
text-to-speech conversion. We introduce the reader to speech modeling by 
means of a naive, but functional, speech synthesis system. 

Speech recognition, also called speech-to-text conversion, seems at first to 
be a pattern recognition problem, but closer examination proves understand- 
ing speech to be much more complex due to time warping effects. Although 
a difficult task, the allure of a machine that converses with humans via natu- 
ral speech is so great that much research has been and is still being devoted 
to this subject. There are also many other applications-speaker verifica- 
tion, emotional content extraction (voice polygraph), blind voice separation 
(cocktail party effect), speech enhancement, and language identification, to 
name just a few. While the list of applications is endless many of the basic 
principles tend to be the same. We will focus on the deriving of ‘features’, 
i.e., sets of parameters that are believed to contain the information needed 
for the various tasks. 

Simplistic sampling and digitizing of speech requires a high information 
rate (in bits per second), meaning wide bandwidth and large storage re- 
quirements. More sophisticated methods have been developed that require 
a significantly lower information rate but introduce a tolerable amount of 
distortion to the original signal. These methods are called speech coding 
or speech compression techniques, and the main focus of this chapter is 
to follow the historical development of telephone-grade speech compression 
techniques that successively halved bit rates from 64 to below 8 Kb/s. 
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19.1 LPC Speech Synthesis 

We discussed the biology of speech production in Section 11.3, and the 
LPC method of finding the coefficients of an all-pole filter in Section 9.9. 
The time has come to put the pieces together and build a simple model 
that approximates that biology and can be efficiently computed. This model 
is often called the LPC speech model, for reasons that will become clear 
shortly, and is extremely popular in speech analysis and synthesis. Many of 
the methods used for speech compression and feature extraction are based on 
the LPC model and/or attempts to capture the deviations from it. Despite 
its popularity we must remember that the LPC speech model is an attempt 
to mimic the speech production apparatus, and does not directly relate to 
the way we perceive speech. 

Recall the essential elements of the biological speech production system. 
For voiced speech the vocal chords produce a series of pulses at a frequency 
known as the pitch. This excitation enters the vocal tract, which resonates 
at certain frequencies known as formants, and hence amplifies the pitch 
harmonics that are near these frequencies. For unvoiced speech the vocal 
chords do not vibrate but the vocal tract remains unchanged. Since the 
vocal tract mainly emphasizes frequencies (we neglect zeros in the spectrum 
caused by the nasal tract) we can model it by an all-pole filter. The entire 
model system is depicted in Figure 19.1. 

Figure 19.1: LPC speech model. The U/V switch selaects one of two possible excitation 
signals, a pulse train created by the pitch generator, or white noise created by the noise 
generator. This excitation is input to an all-pole filter. 
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This extremely primitive model can already be used for speech synthesis 
systems, and indeed was the heart of a popular chip set as early as the 1970s. 
Let’s assume that speech can be assumed to be approximately stationary 
for at least T seconds (T is usually assumed to be in the range from 10 to 

100 milliseconds). Then in order to synthesize speech, we need to supply our 
model with the following information every T seconds. First, a single bit 
indicating whether the speech segment is voiced or unvoiced. If the speech 
is voiced we need to supply the pitch frequency as well (for convenience 
we sometimes combine the U/V bit with the pitch parameter, a zero pitch 
indicating unvoiced speech). Next, we need to specify the overall gain of 
the filter. Finally, we need to supply any set of parameters that completely 
specify the all-pole filter (e.g., pole locations, LPC coefficients, reflection 
coefficients, LSP frequencies). Since there are four to five formants, we expect 
the filter to have 8 to 10 complex poles. 

How do we know what filter coefficients to use to make a desired sound? 
What we need to do is to prepare a list of the coefficients for the various 
phonemes needed. Happily this type of data is readily available. For example, 
in Figure 19.2 we show a scatter plot of the first 
based on the famous Peterson-Barney data. 
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Figure 19.2: First two formants from Peterson-Barney vowel data. The horizontal axis 
represents the frequency of the first formant between 200 and 1250 Hz, while the vertical 
axis is the frequency of the second formant, between 500 and 3500 Hz. The data consists of 
each of ten vowel sounds pronounced twice by each of 76 speakers. The two letter notations 
are the so-called ARPABET symbols. IY stands for the vowel in heat, IH for that in hid, 
and likewise EH head, AE had, AH hut, AA hot, A0 fought, UH hood, UW hoot, ER 
heard. 
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Can we get a rough estimate of the information rate required to drive 
such a synthesis model? Taking T to be 32 milliseconds and quantizing the 
pitch, gain, and ten filter coefficients with eight bits apiece, we need 3 Kb/s. 
This may seem high compared to the information in the original text (even 
speaking at the rapid pace of three five-letter words per second, the text 
requires less than 150 b/s) but is amazingly frugal compared to the data 
rate required to transfer natural speech. 

The LPC speech model is a gross oversimplification of the true speech 
production mechanism, and when used without embellishment produces syn- 
thetic sounding speech. However, by properly modulating the pitch and gain, 
and using models for the short time behavior of the filter coefficients, the 
sound can be improved somewhat. 

EXERCISES 

19.1.1 The Peterson-Barney data is easily obtainable in computer-readable form. 
Generate vowels according to the formant parameters and listen to the result. 
Can you recognize the vowel? 

19.1.2 Source code for the Klatt formant synthesizer is in the public domain. Learn 
its parameters and experiment with putting phonemes together to make 
words. Get the synthesizer to say ‘digital signal processing’. How natural- 
sounding is it? 

19.1.3 Is the LPC model valid for a flute? What model is sensible for a guitar? What 
is the difference between the excitation of a guitar and that of a violin? 

19.2 LPC Speech Analysis 

The basic model of the previous section can be used for more than text-to- 
speech applications, and it can be used as the synthesis half of an LPC-based 
speech compression system. In order to build a complete compression system 
we need to solve the inverse problem, given samples of speech to determine 
whether the speech is voiced or not, if it is to find the pitch, to find the gain, 
and to find the filter coefficients that best match the input speech. This will 
allow us to build the analysis part of an LPC speech coding system. 

Actually, there is a problem that should be solved even before all the 
above, namely deciding whether there is any speech present at all. In most 
conversations each conversant tends to speak only about half of the time, and 
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there is no reason to try to model speech that doesn’t exist. Simple devices 
that trigger on speech go under the name of VOX, for Voice Operated 
X (X being a graphic abbreviation for the word ‘switch’), while the more 
sophisticated techniques are now called Voice Activity Detection. Simple 
VOXes may trigger just based on the appearance of energy, or may employ 
NRT mechanisms, or use gross spectral features to discriminate between 
speech and noise. The use of zero crossings is also popular as these can 
be computed with low complexity. Most VADs utilize parameters based on 
autocorrelation, and essentially perform the initial stages of a speech coder. 
When the decision has been made that no voice is present, older systems 
would simply not store or transfer any information, resulting in dead silence 
upon decoding. The modern approach is to extract some basic statistics of 
the noise (e.g., energy and bandwidth) in order to enable Comfort Noise 
Generation, (CNG). 

Once the VAD has decided that speech is present, determination of the 
voicing (U/V) must be made; and assuming the speech is voiced the next 
step will be pitch determination. Pitch tracking and voicing determination 
will be treated in Section 19.5. 

The finding of the filter coefficients is based on the principles of Sec- 
tion 9.9, but there are a few details we need to fill in. We know how to find 
LPC coefficients when there is no excitation, but here there is excitation. 
For voiced speech this excitation is nonzero only during the glottal pulse, 
and one strategy is to ignore it and live with the spikes of error. These spikes 
reinforce the pitch information and may be of no consequence in speech com- 
pression systems. In pitch synchronous systems we first identify the pitch 
pulse locations, and correctly evaluate the LPC coefficients for blocks start- 
ing with a pulse and ending before the next pulse. A more modern approach 
is to perform two separate LPC analyses. The one we have been discussing 
up to now, which models the vocal tract, is now called the short-term predic- 
tor. The new one, called the long-term predictor, estimates the pitch period 
and structure. It typically only has a few coefficients, but is updated at a 
higher rate. 

There is one final parameter we have neglected until now, the gain G. 
Of course if we assume the excitation to be zero our formalism cannot be 
expected to supply G. However, since G simply controls the overall volume, it 
carries little information and its adjustment is not critical. In speech coding 
it is typically set by requiring the energy of the predicted signal to equal the 
energy in the original signal. 
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EXERCISES 

19.2.1 Multipulse LPC uses an excitation with several pulses per pitch period. Ex- 
plain how this can improve LPC quality. 

19.2.2 Mixed Excitation Linear Prediction (MELP) does switch between periodic 
and noise excitation, rather uses an additive combination of the two. Why 
can this produce better quality speech than LPC? 

19.2.3 Record some speech and display its sonogram. Compute the LPC spectrum 
and find its major peaks. Overlay the peaks onto the sonogram. Can you 
recognize the formants? What about the pitch? 

19.2.4 Synthesize some LPC data using a certain number of LPC coefficients and 
try to analyze it using a different number of coefficients. What happens? How 
does the reconstruction SNR depend on the order mismatch? 

19.3 Cepstrum 

The LPC model is not the only framework for describing speech. Although 
it is currently the basis for much of speech compression, cepstral coefficients 
have proven to be superior for speech recognition and speaker identification. 

The first time you hear the word cepstrum you are convinced that the 
word was supposed to be spectrum and laugh at the speaker’s spoonerism. 
However, there really is something pronounced ‘cepstrum’ instead of ‘spec- 
trum’, as well as a ‘quefrency’ replacing ‘frequency’, and ‘liftering’ displacing 
‘filtering’. Several other purposefully distorted words have been suggested 
(e.g., ‘alanysis’ and ‘saphe’) but have not become as popular. 

To motivate the use of cepstrum in speech analysis, recall that voiced 
speech can be viewed as a periodic excitation signal passed through an all- 
pole filter. The excitation signal in the frequency domain is rich in harmonics, 
and can be modeled as a train of equally spaced discrete lines, separated by 
the pitch frequency. The amplitudes of these lines decreases rapidly with in- 
creasing frequency, with between 5 and 12 dB drop per octave being typical. 
The effect of the vocal tract filtering is to multiply this line spectrum by a 
window that has several pronounced peaks corresponding to the formants. 

Now if the spectrum is the product of the pitch train and the vocal tract 
window, then the logarithm of this spectrum is the sum of the logarithm of 
the pitch train and the logarithm of the vocal tract window. This logarithmic 
spectrum can be considered to be the spectrum of some new signal, and since 
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the FT is a linear operation, this new signal is the sum of two signals, one 
deriving from the pitch train and one from the vocal tract filter. This new 
signal, derived by logarithmically compressing the spectrum, is called the 
cepstrum of the original signal. It is actually a signal in the time domain, 
but since it is derived by distorting the frequency components its axis is 
referred to as qzlefrency. Remember, however, that the units of quefrency 
are seconds (or perhaps they should be called ‘cesonds’). 

We see that the cepstrum decouples the excitation signal from the vocal 
tract filter, changing a convolution into a sum. It can achieve this decou- 
pling not only for speech but for any excitation signal and filter, and is thus 
a general tool for deconvolution. It has therefore been applied to various 
other fields in DSP, where it is sometimes referred to as homomorphic de- 
convolution. This term originates in the idea that although the cepstrum is 
not a linear transform of the signal (the cepstrum of a sum is not the sum 
of the cepstra), it is a generalization of the idea of a linear transform (the 
cepstrum of the convolution is the sum of the cepstra). Such parallels are 
called ‘homomorphisms’ in algebra. 

The logarithmic spectrum of the excitation signal is an equally spaced 
train, but the logarithmic amplitudes are much less pronounced and decrease 
slowly and linearly while the lines themselves are much broader. Indeed 
the logarithmic spectrum of the excitation looks much more like a sinusoid 
than a train of impulses. Thus the pitch contribution is basically a line 
at a well defined quefrency corresponding to the basic pitch frequency. At 
lower quefrencies we find structure corresponding to the higher frequency 
formants, and in many cases high-pass liftering can thus furnish both a 
voiced/unvoiced indication and a pitch frequency estimate. 

Up to now our discussion has been purposefully vague, mainly because 
the cepstrum comes in several different flavors. One type is based on the 
z transform S(Z), which being complex valued, is composed of its absolute 
value R(z) and its angle 8(z). Now let’s take the complex logarithm of S(z) 
(equation (A.14)) and call the resulting function S(Z). 

S(z) = log S(Z) = log R(z) + iB(z) 

We assumed here the minimal phase value, although for some applications 
it may be more useful to unwrap the phase. Now S(Z) can be considered to 
be the zT of some signal sVn, this signal being the complex cepstrum of s,. 
To find the complex cepstrum in practice requires computation of the izT, 
a computationally arduous task; however, given the complex cepstrum the 
original signal may be recovered via the zT. 
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The power cepstrum, or real cepstrum, is defined as the signal whose PSD 
is the logarithm of the PSD of sn. The power cepstrum can be obtained as 
an iFT, or for digital signals an inverse DFT 

Y 1 = 
Sn =- J 27r -r 

log (S(w) leiwn dw 

and is related to the complex cepstrum. 

” 

Sn = $(Sn + S*-n) 

Although easier to compute, the power cepstrum doesn’t take the phase of 
S(w) into account, and hence does not enable unique recovery of the original 
signal. 

There is another variant of importance, called the LPC cepstrum. The 
LPC cepstrum, like the reflection coefficients, area ratios, and LSP coeffi- 
cients, is a set of coefficients ck that contains exactly the same information 
as the LPC coefficients. The LPC cepstral coefficients are defined as the 
coefficients of the zT expansion of the logarithm of the all-pole system func- 
tion. From the definition of the LPC coefficients in equation (9.21), we see 
that this can be expressed as follows: 

1% 
G 

l- c,M,1 b,rm = k c 
‘lcz 

-k (19.1) 

Given the LPC coefficients, the LPC cepstral coefficients can be computed 
by a recursion that can be derived by series expansion of the left-hand side 
(using equations (A.47) and (A.15)) and equating like terms. 

co = 1ogG 

cl = bl (19.2) 
1 k-l 

ck = bk -k x c mcmbk-m 
m=l 

This recursion can even be used for cI, coefficients for which k > M’by taking 
bk = 0 for such k. Of course, the recursion only works when the original LPC 
model was stable. 

LPC cepstral coefficients derived from this recursion only represent the 
true cepstrum when the signal is exactly described by an LPC model. For 
real speech the LPC model is only an approximation, and hence the LPC 
cepstrum deviates from the true cepstrum. In particular, for phonemes that 
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are not well represented by the LPC model (e.g., sounds like f, s, and sh that 
are produced at the lips with the vocal tract trapping energy and creating 
zeros), the LPC cepstrum bears little relationship to its namesakes. Nonethe- 
less, numerous comparisons have shown the LPC cepstral coefficients to be 
among the best features for both speech and speaker recognition. 

If the LPC cepstral coefficients contain precisely the same information 
as the LPC coefficients, how can it be that one set is superior to the other? 
The difference has to do with the other mechanisms used in a recognition 
system. It turns out that Euclidean distance in the space of LPC cepstral 
coefficients correlates well with the Itakuru-Saito distance, a measure of how 
close sounds actually sound. This relationship means that the interpretation 
of closeness in LPC cepstrum space is similar to that our own hearing system 
uses, a fact that aids the pattern recognition machinery. 

EXERCISES 

19.3.1 The signal z(t) is corrupted by a single echo to become y(t) = ~(t)+aa(t--7). 
Show that the log power spectrum of y is approximately that of x with an 
additional ripple. Find the parameters of this ripple. 

19.3.2 Complete the proof of equation (19.2). 

19.3.3 The reconstruction of a signal from its power cepstrum is not unique. When 
is it correct? 

19.3.4 Record some speech and plot its power cepstrum. Are the pitch and formants 
easily separable? 

19.3.5 Write a program to compute the LPC cepstrum. Produce artificial speech 
from an exact LPC model and compute its LPC cepstrum. 

19.4 Other Features 

The coefficients we have been discussing all describe the fine structure of 
the speech spectrum in some way. LPC coefficients are directly related to 
the all-pole spectrum by equation (13.24); the LSP frequencies are them- 
selves frequencies; and the cepstrum was derived in the previous section as 
a type of spectrum of (log) spectrum. Not all speech processing is based on 
LPC coefficients; bank-of-filter parameters, wavelets, mel- or Bark-warped 
spectrum, auditory nerve representations, and many more representations 
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are also used. It is obvious that all of these are spectral descriptions. The 
extensive use of these parameters is a strong indication of our belief that 
the information in speech is stored in its spectrum, more specifically in the 
position of the formants. 

We can test this premise by filtering some speech in such a way as to con- 
siderably whiten its spectrum for some sound or sounds. For example, we can 
create an inverse filter to the spectrum of a common vowel, such as the e in 
the word ‘feet’. The spectrum will be completely flat when this vowel sound 
is spoken, and will be considerably distorted during other vowel sounds. Yet 
this ‘inverse-E’ filtered speech turns out to be perfectly intelligible. Of course 
a speech recognition device based on one of the aforementioned parameter 
sets will utterly fail. 

So where is the information if not in the spectrum? A well-known fact 
regarding our senses is that they respond mainly to change and not to steady- 
state phenomena. Strong odors become unnoticeable after a short while, our 
eyes twitch in order to keep objects moving on our retina (animals without 
the eye twitch only see moving objects) and even a relatively loud stationary 
background noise seems to fade away. Although our speech generation sys- 
tem is efficient at creating formants, our hearing system is mainly sensitive 
to changes in these formants. 

One way this effect can be taken into account in speech recognition 
systems is to use derivative coefficients. For example, in addition to using 
LPC cepstral coefficients as features, some systems use the so-called delta 
cepstral coefficients, which capture the time variation of the cepstral coeffi- 
cients. Some researchers have suggested using the delta-delta coefficients as 
well, in order to capture second derivative effects. 

An alternative to this empirical addition of time-variant information is to 
use a set of parameters specifically built to emphasize the signal’s time varia- 
tion. One such set of parameters is called RASTA-PLP (Relative Spectra- 
Perceptual Linear Prediction). The basic PLP technique modifies the short 
time spectrum by several psychophysically motivated transformations, in- 
cluding resampling the spectrum into Bark segments, taking the logarithm 
of the spectral amplitude and weighting the spectrum by a simulation of the 
psychophysical equal-loudness curve, before fitting to an all-pole model. The 
RASTA technique suppresses steady state behavior by band-pass filtering 
each frequency channel, in this way removing DC and slowly varying terms. 
It has been found that RASTA parameters are less sensitive to artifacts; 
for example, LPC-based speech recognition systems trained on microphone- 
quality speech do not work well when presented with telephone speech. The 
performance of a RASTA-based system degrades much less. 
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Even more radical departures from LPC-type parameters are provided 
by cochlear models and auditory nerve parameters. Such parameter sets 
attempt to duplicate actual signals present in the biological hearing system 

(see Section 11.4). Although there is an obvious proof that such parameters 
can be effectively used for tasks such as speech recognition, their success to 
date has not been great. 

Another set of speech parameters that has been successful in varied tasks 
is the so-called ‘sinusoidal representation’. Rather than making a U/V deci- 
sion and modeling the excitation as a set of pulses, the sinusoidal represen- 
tation uses a sum of L sinusoids of arbitrary amplitudes, frequencies, and 
phases. This simplifies computations since the effect of the linear filter on 
sinusoids is elementary, the main problem being matching of the models at 
segment boundaries. A nice feature of the sinusoidal representation is that 
various transformations become relatively easy to perform. For example, 
changing the speed of articulation without varying the pitch, or conversely 
varying the pitch without changing rate of articulation, are easily accom- 
plished since the effect of speeding up or slowing down time on sinusoids is 
straightforward to compute. 

We finish off our discussion of speech features with a question. How many 
features are really needed? Many speech recognition systems use ten LPC or 
twelve LPC cepstrum coefficients, but to these we may need to add the delta 
coefficients as well. Even more common is the ‘play it safe’ approach where 
large numbers of features are used, in order not to discard any possibly 
relevant information. Yet these large feature sets contain a large amount of 
redundant information, and it would be useful, both theoretically and in 
practice, to have a minimal set of features. Such a set might be useful for 
speech compression as well, but not necessarily. Were these features to be 
of large range and very sensitive, each would require a large number of bits 
to accurately represent, and the total number of bits needed could exceed 
that of traditional methods. 

One way to answer the question is by empirically measuring the dimen- 
sionality of speech sounds. We won’t delve too deeply into the mechanics of 
how this is done, but it is possible to consider each set of N consecutive sam- 
ples as a vector in N-dimensional space, and observe how this N-dimensional 
speech vector moves. We may find that the local movement is constrained to 
M < N dimensions, like the movement of a dot on a piece of paper viewed 
at some arbitrary angle in three-dimensional space. Were this the case we 
would conclude that only M features are required to describe the speech sig- 
nal. Of course these M features will probably not be universal, like a piece 
of paper that twists and curves in three-dimensional space, its directions 
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changing from place to place. Yet as long as the paper is not crumpled into 
a three-dimensional ball, its local dimensionality remains two. Performing 
such experiments on vowel sounds has led several researchers to conclude 
that three to five local features are sufficient to describe speech. 

Of course this demonstration is not constructive and leaves us totally 
in the dark as to how to find such a small set of features. Attempts are 
being made to search for these features using learning algorithms and neural 
networks, but it is too early to hazard a guess as to success and possible 
impact of this line of inquiry. 

EXERCISES 

19.4.1 Speech has an overall spectral tilt of 5 to 12 dB per octave. Remove this tilt 
(a pre-emphasis filter of the form 1 - 0.99z-1 is often used) and listen to the 
speech. Is the speech intelligible? Does it sound natural? 

19.4.2 If speech information really lies in the changes, why don’t we differentiate 
the signal and then perform the analysis? 

19.5 Pitch Tracking and Voicing Determination 

The process of determining the pitch of a segment of voiced speech is usually 
called pitch trucking, since the determination must be updated for every 
segment. Pitch determination would seem to be a simple process, yet no-one 
has ever discovered an entirely reliable pitch tracking algorithm. Moreover, 
even extremely sophisticated pitch tracking algorithms do not usually suffer 
from minor accuracy problems; rather they tend to make gross errors, such as 
isolated reporting of double the pitch period. For this reason postprocessing 
stages are often used. 

The pitch is the fundamental frequency in voiced speech, and our ears are 
very sensitive to pitch changes, although in nontonal languages their content 
is limited to prosodic information. Filtering that removes the pitch frequency 
itself does not strongly impair our perception of pitch, although it would 
thwart any pitch tracking technique that relies on finding the pitch spectral 
line. Also, a single speaker’s pitch may vary over several octaves, for example, 
from 50 to 800 Hz, while low-frequency formants also occupy this range 
and may masquerade as pitch lines. Moreover, speech is neither periodic nor 
even stationary over even moderately long times, so that limiting ourselves to 
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times during which the signal is stationary would provide unacceptably large 
uncertainties in the pitch determination. Hoarse and high-pitched voices are 
particularly difficult in this regard. 

All this said, there are many pitch tracking algorithms available. One 
major class of algorithms is based on finding peaks in the empirical autocor- 
relation. A typical algorithm from this class starts by low-pass filtering the 
speech signal to eliminate frequency components above 800 or 900 Hz. The 
pitch should correspond to a peak in the autocorrelation of this signal, but 
there are still many peaks from which to choose. Choosing the largest peak 
sometimes works, but may result in a multiple of the pitch or in a formant 
frequency. Instead of immediately computing the autocorrelation we first 
center clip (see equation (8.7)) the signal, a process that tends to flatten out 
vocal tract autocorrelation peaks. The idea is that the formant periodicity 
should be riding on that of the pitch, even if its consistency results in a larger 
spectral peak. Accordingly, after center clipping we expect only pitch-related 
phenomena to remain. Of course the exact threshold for the center clipping 
must be properly set for this preprocessing to work, and various schemes 
have been developed. Most schemes first determine the highest sample in 
the segment and eliminate the middle third of the dynamic range. Now au- 
tocorrelation lags that correspond to valid pitch periods are computed. Once 
again we might naively expect the largest peak to correspond to the pitch 
period, but if filtering of the original signal removed or attenuated the pitch 
frequency this may not be the case. A better strategy is to look for con- 
sistency in the observed autocorrelation peaks, choosing a period that has 
the most energy in the peak and its multiples. This technique tends to work 
even for noisy speech, but requires postprocessing to correct random errors 
in isolated segments. 

A variant of the autocorrelation class computes the Average Magnitude 
Difference Function 

AMDF(m) = c lxn - zn+ml 
n 

(AMDF) rather than the autocorrelation. The AMDF is a nonnegative func- 
tion of the lag m that returns zero only when the speech is exactly periodic. 
For noisy nearly periodic signals the AMDF has a strong minimum at the 
best matching period. The nice thing about using a minimum rather than 
maximum is that we needn’t worry as much about the signal remaining sta- 
tionary. Indeed a single pitch period should be sufficient for AMDF-based 
pitch determination. 
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Another class of pitch trackers work in the frequency domain. It may 
not be possible to find the pitch line itself in the speech spectrum, but 
finding the frequency with maximal harmonic energy is viable. This may be 
accomplished in practice by compressing the power spectrum by factors of 
two, three, and four and adding these to the original PSD. The largest peak 
in the resulting ‘compressed spectrum’ is taken to be the pitch frequency. 

In Section 19.3 we mentioned the use of power cepstrum in determining 
the pitch. Assuming that the formant and pitch information is truly sep- 
arated in the cepstral domain, the task of finding the pitch is reduced to 
picking the strongest peak. While this technique may give the most accu- 
rate results for clean speech, and rarely outputs double pitch, it tends to 
deteriorate rapidly in noise. 

The determination of whether a segment of speech is voiced or not is 
also much more difficult than it appears. Actually, the issue needn’t even 
be clear cut; speech experts speak of the ‘degree of voicing’, meaning the 
percentage of the excitation energy in the pitch pulses as compared to the 
total excitation. The MELP and Multi-Band Exitation (MBE) speech com- 
pression methods abandon the whole idea of an unambiguous U/V decision, 
using mixtures or per-frequency- band decisions respectively. 

Voicing determination algorithms lie somewhere between VADs and pitch 
trackers. Some algorithms search separately for indications of pitch and noise 
excitation, declaring voiced or unvoiced when either is found, ‘silence’ when 
neither is found, and ‘mixed’ when both are. Other algorithms are integrated 
into pitch trackers, as in the case of the cepstral pitch tracker that returns 
‘unvoiced’ when no significant cepstral peak is found. 

In theory one can distinguish between voiced and unvoiced speech based 
on amplitude constancy. Voiced speech is only excited by the pitch pulse, 
and during much of the pitch period behaves as a exponentially decaying 
sinusoid. Unvoiced speech should look like the output of a continuously 
exited filter. The difference in these behaviors may be observable by taking 
the Hilbert transform and plotting the time evolution in the I-Q plane. Voice 
speech will tend to look like a spiral while unvoiced sections will appear as 
filled discs. For this technique to work the speech has to be relatively clean, 
and highly oversampled. 

The degree of periodicity of a signal should be measurable as the ratio 
of the maximum to minimum values of the autocorrelation (or AMDF). 
However, in practice this parameter too is overrated. Various techniques 
supplement this ratio with gross spectral features, zero crossing and delta 
zero crossing, and many other inputs. Together these features are input to a 
decision mechanism that may be hard-wired logic, or a trainable classifier. 
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EXERCISES 

19.5.1 In order to minimize time spent in computation of autocorrelation lags, one 
can replace the center clipping operation with a three-level slicing operation 
that only outputs -1, 0 or +l. How does this decrease complexity? Does this 
operation strongly affect the performance of the algorithm? 

19.5.2 Create a signal that is the weighted sum of a few sinusoids interrupted every 
now and then by short durations of white noise. You can probably easily 
separate the two signal types by eye in either time or frequency domains. 
Now do the same using any of the methods discussed above, or any algorithm 
of your own devising. 

19.5.3 Repeat the previous exercise with additive noise on the sinusoids and narrow 
band noise instead of white noise. How much noise can your algorithm toler- 
ate? How narrow-band can the ‘unvoiced’ sections be and still be identifiable? 
Can you do better ‘by eye’ than your algorithm? 

19.6 Speech Compression 

It is often necessary or desirable to compress digital signals. By compression 
we mean the representation of N signal values, each of which is quantized 
to b bits, in less than Nb bits. Two common situations that may require 
compression are transmission and storage. Transmission of an uncompressed 
digital music signal (sampled at 48 KHz, 16 bits per sample) requires at least 
a 768 Kb/s transmission medium, far exceeding the rates usually available 
for users connected via phone lines. Storage of this same signal requires 
almost 94 KB per second, thus gobbling up disk space at about 5; MB per 
minute. Even limiting the bandwidth to 4 KHz (commonly done to speech in 
the public telephone system) and sampling at 16 bits leads to 128 Kb/s, far 
exceeding our ability to send this same information over the same channel 
using a telephony-grade modem. This would lead us to believe that digital 
methods are less efficient than analog ones, yet there are methods of digitally 
sending multiple conversations over a single telephone line. 

Since further reduction in bandwidth or the number of quantization bits 
rapidly leads to severe quality degradation we must find a more sophisti- 
cated compression method. What about general-purpose data compression 
techniques? These may be able to contribute another factor-of-two improve- 
ment, but that is as far as they go. This is mainly because these methods 
are lossless, meaning they are required to reproduce the original bit stream 
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without error. Extending techniques that work on general bit streams to the 
lossy regime is fruitless. It does not really make sense to view the speech 
signal as a stream of bits and to minimize the number of bit errors in the 
reconstructed stream. This is because some bits are more significant than 
others-an error in the least significant bit is of much less effect than an 
error in a sign bit! 

It is less obvious that it is also not optimal to view the speech signal 
as a stream of sample values and compress it in such a fashion as to mini- 
mize the energy of error signal (reconstructed signal minus original signal). 
This is because two completely different signals may sound the same since 
hearing involves complex physiological and psychophysical processes (see 
Section 11.4). 

For example, by delaying the speech signal by two samples, we create a 
new signal completely indistinguishable to the ear but with a large ‘error 
signal’. The ear is insensitive to absolute time and thus would not be able 
to differentiate between these two ‘different’ signals. Of course simple cross 
correlation would home-in on the proper delay and once corrected the error 
would be zero again. But consider delaying the digital signal by half a sample 
(using an appropriate interpolation technique), producing a signal with com- 
pletely distinct sample values. Once again a knowledgeable signal processor 
would be able to discover this subterfuge and return a very small error. Sim- 
ilarly, the ear is insensitive to small changes in loudness and absolute phase. 
However, the ear is also insensitive to more exotic transformations such as 
small changes in pitch, formant location, and nonlinear warping of the time 
axis. 

Reversing our point-of-view we can say that speech-specific compression 
techniques work well for two related reasons. First, speech compression tech- 
niques are lossy (i.e., they strive to reproduce a signal that is similar but not 
necessarily identical to the original); significantly lower information rates can 
be achieved by introducing tolerable amounts of distortion. Second, once we 
have abandoned the ideal of precise reconstruction of the original signal, we 
can go a step further. The reconstructed signal needn’t really be similar to 
the original (e.g., have minimal mean square error); it should merely sound 
similar. Since the ear is insensitive to small changes in phase, timing, and 
pitch, much of the information in the original signal is unimportant and 
needn’t be encoded at all. 

It was once common to differentiate between two types of speech coders. 
‘Waveform coders’ exploit characteristics of the speech signal (e.g., energy 
concentration at low frequencies) to encode the speech samples in fewer bits 
than would be required for a completely random signal. The encoding is a 
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lossy transformation and hence the reconstructed signal is not identical to 
the original one. However, the encoder algorithm is built to minimize some 
distortion measure, such as the squared difference between the original and 
reconstructed signals. ‘Vocoders’ utilize speech synthesis models (e.g., the 
speech model discussed in Section 9.9) to encode the speech signal. Such a 
model is capable of producing speech that sounds very similar to the speech 
that we desire to encode, but requires the proper parameters as a function 
of time. A vocoder-type algorithm attempts to find these parameters and 
usually results in reconstructed speech that sounds similar to the original 
but as a signal may look quite different. The distinction between waveform 
encoders and vocoders has become extremely fuzzy. For example, the dis- 
tortion measure used in a waveform encoder may be perception-based and 
hence the reconstructed signal may be quite unlike the original. On the other 
hand, analysis by synthesis algorithms may find a vocoder’s parameters by 
minimizing the squared error of the synthesized speech. 

When comparing the many different speech compression methods that 
have been developed, there are four main parameters that should be taken 
into consideration, namely rate, quality, complexity, and delay. Obviously, 
there are trade-offs between these parameters, lowering of the bit rate re- 
quires higher computational complexity and/or lower perceived speech qual- 
ity; and constraining the algorithm’s delay while maintaining quality results 
in a considerable increase in complexity. For particular applications there 
may be further parameters of interest (e.g., the effect of background noise, 
degradation in the presence of bit errors). 

The perceived quality of a speech signal involves not only how under- 
standable it is, but other more elusive qualities such as how natural sounding 
the speech seems and how much of the speaker’s identity is preserved. It is 
not surprising that the most reliable and widely accepted measures of speech 
quality involve humans listening rather than pure signal analysis. In order 
to minimize the bias of a single listener, a psychophysical measure of speech 
quality called the Mean Opinion Score (MOS) has been developed. It is 
determined by having a group of seasoned listeners listen to the speech in 
question. Each listener gives it an opinion score: 1 for ‘bad’ (not understand- 
able), 2 for ‘poor’ (understandable only with considerable effort), 3 for ‘fair’ 
(understandable with moderate effort), 4 for ‘good’ (understandable with 
no apparent effort), and 5 for ‘excellent’. The mean score of all the listeners 
is the MOS. A complete description of the experimental procedure is given 
in ITU-T standard P.830. 

Speech heard directly from the speaker in a quiet room will receive a 
MOS ranking of 5.0, while good 4 KHz telephone-quality speech (termed 
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toll quality) is ranked 4.0. To the uninitiated telephone speech may seem 
almost the same as high-quality speech, however, this is in large part due 
to the brain compensating for the degradation in quality. In fact different 
phonemes may become acoustically indistinguishable after the band-pass 
filtering to 4 KHz (e.g. s and f), but this fact often goes unnoticed, just as 
the ‘blind spots’ in our eyes do. MOS ratings from 3.5 to 4 are sometimes 
called ‘communications quality’, and although lower than toll quality are 
acceptable for many applications. 

Usually MOS tests are performed along with calibration runs of known 
MOS, but there still are consistent discrepancies between the various labo- 
ratories that perform these measurements. The effort and expense required 
to obtain an MOS rating for a coder are so great that objective tests that 
correlate well with empirical MOS ratings have been developed. Perceptual 
Speech Quality Measure (PSQM) and Perceptual Evaluation of Speech 
Quality (PESQ) are two such which have been standardized by the ITU. 

EXERCISES 

19.6.1 Why can’t general-purpose data compression techniques be lossy? 

19.6.2 Assume a language with 64 different phonemes that can be spoken at the 
rate of eight phonemes per second. What is the minimal bit rate required? 

19.6.3 Try to compress a speech file with a general-purpose lossless data (file) com- 
pression program. What compression ratio do you get? 

19.6.4 Several lossy speech compression algorithms are readily available or in the 
public domain (e.g., LPC-lOe, CELP, GSM full-rate). Compress a file of 
speech using one or more of these compressions. Now listen to the ‘before’ and 
‘after’ files. Can you tell which is which? What artifacts are most noticeable 
in the compressed file? What happens when you compress a file that had 
been decompressed from a previous compression? 

19.6.5 What happens when the input to a speech compression algorithm is not 
speech? Try single tones or DTMF tones. Try music. What about ‘babble 
noise’ (multiple background voices)? 

19.6.6 Corrupt a file of linear 16-bit speech by randomly flipping a small percentage 
of the bits. What percentage is not noticed? What percentage is acceptable? 
Repeat the experiment by corrupting a file of compressed speech. What can 
you conclude about media for transmitting compressed speech? 
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19.7 PCM 

In order to record and/or process speech digitally one needs first to acquire 
it by an A/D. The digital signal obtained in this fashion is usually called 
‘linear PCM’ (recall the definition of PCM from Section 2.7). Speech con- 
tains significant frequency components up to about 20 KHz, and Nyquist 
would thus require a 40 KHz or higher sampling rate. From experimentation 
at that rate with various numbers of sample levels one can easily become 
convinced that using less than 12 to 14 bits per sample noticeably degrades 
the signal. Eight bits definitely delivers inferior quality, and since conven- 
tional hardware works in multiples of 8-bit bytes, we usually digitize speech 
using 16 bits per sample. Hence the simplistic approach to capturing speech 
digitally would be to sample at 40 KHz using 16 bits per sample for a total 
information rate of 640 Kb/s. A ssuming a properly designed microphone, 
speaker, A/D, D/A, and filters, 640 Kb/s digital speech is indeed close to 
being indistinguishable from the original. 

Our first step in reducing this bit rate is to sacrifice bandwidth by low- 
pass filtering the speech to 4 KHz, the bandwidth of a telephone channel. 
Although 4 KHz is not high fidelity it is sufficient to carry highly intelligible 
speech. At 4 KHz the Nyquist sampling rate is reduced to 8000 samples per 
second, or 128 Kb/s. 

From now on we will use more and more specific features of the speech 
signal to further reduce the information rate. The first step exploits the 
psychophysical laws of Weber and Fechner (see Section 11.2). We stated 
above that 8 bits were not sufficient for proper digitizing of speech. What we 
really meant is that 256 equally spaced quantization levels produces speech 
of low perceived quality. Our perception of acoustic amplitude is, however, 
logarithmic, with small changes at lower amplitudes more consequential than 
equal changes at high amplitudes. It is thus sensible to try unevenly spaced 
quantization levels, with high density of levels at low amplitudes and much 
fewer levels used at high amplitudes. The optimal spacing function will be 
logarithmic, as depicted in Figure 19.3 (which replaces Figure 2.25 for this 
case). Using logarithmically spaced levels 8 bits is indeed adequate for toll 
quality speech, and since we now use only 8000 eight-bit samples per second, 
our new rate is 64 Kb/s, half that of linear PCM. In order for a speech 
compression scheme to be used in a communications system the sender and 
receiver, who may be using completely different equipment, must agree as 
to its details. For this reason precise standards must be established that 
ensure that different implementations can interoperate. The ITU has defined 
a number of speech compression schemes. The G.711 standard defines two 
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Figure 19.3: Quantization noise created by logarithmically digitizing an analog signal. 
In (A) we see the output of the logarithmic digitizer as a function of its input. In (B) the 
noise is the rounding error, (i.e., the output minus the input). 

options for logarithmic quantization, known as p-law (pronounced mu-law) 
and A-law PCM respectively. Unqualified use of the term ‘PCM’ in the 
context of speech often refers to either of the options of this standard. 

p-law is used in the North American digital telephone system, while A- 
law serves the rest of the world. Both p-law and A-law are based on rational 
approximations to the logarithmic response of Figure 19.3, the idea being 
to minimize the computational complexity of the conversions from linear to 
logarithmic PCM and back. p-law is defined as 

s = en(s) Las: 1+&j& 
l+& 

(19.3) 

where smaz is the largest value the signal may attain, g,,, is the largest 
value we wish the compressed signal to attain, and p is a parameter that 
determines the nonlinearity of the transformation. The use of the absolute 
value and the sgn function allow a single expression to be utilized for both 
positive and negative Z. Obviously, p = 1 forces B = x: while larger p causes 
the output to be larger than the input for small input values, but much 
smaller for large s. In this way small values of s are emphasized before 
quantization at the expense of large values. The actual telephony standard 
uses ~1 = ‘255 and further reduces computation by approximating the above 
expression using 16 staircase segments, eight for positive signal values and 
eight for negative. Each speech sample is encoded as a sign bit, three segment 
bits and four bits representing the position on the line segment. 
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The theoretical A-law expression is given by 

and although it is hard to see this from the expression, its behavior is very 
similar to that of p-law. By convention we take A = 87.56 and as in the 
p-law case approximate the true form with 16 staircase line segments. It 
is interesting that the A-law staircase has a rising segment at the origin 
and thus fluctuates for near-zero inputs, while the approximated p-law has 
a horizontal segment at the origin and is thus relatively constant for very 
small inputs. 

EXERCISES 

19.7.1 Even 640 Kb/s does not capture the entire experience of listening to a speaker 
in the same room, since lip motion, facial expressions, hand gestures, and 
other body language are not recorded. How important is such auxiliary infor- 
mation? When do you expect this information to be most relevant? Estimate 
the information rates of these other signals. 

19.7.2 Explain the general form of 1-1 and A laws. Start with general logarithmic 
compression, extend it to handle negative signal values, and finally force it 
to go through the origin. 

19.7.3 Test the difference between high-quality and toll-quality speech by perform- 
ing a rhyme test. In a rhyme test one person speaks out-of-context words 
and a second records what was heard. By using carefully chosen words, such 
as lift-list, lore-more-nor, jeep-cheep, etc., you should be able to both esti- 
mate the difference in accuracy between the two cases and determine which 
phonemes are being confused in the toll-quality case. 

19.7.4 What does p-law (equation (19.3)) re t urn for zero input? For maximal input? 
When does y = Z? Plot p-law for 16-bit linear PCM, taking xmaZ = 215 = 
32768, for various p from 1 to 255. What is the qualitative difference between 
the small and large 1-1 cases? 

19.7.5 Plot the p-law (with p = 255) and A-law (with A = 87.56) responses on 
the same axes. By how much do they differ? Plot them together with true 
logarithmic response. How much error do they introduce? Research and plot 
the 16 line segment approximations. How much further error is introduced? 



760 SPEECH SIGNAL PROCESSING 

19.8 DPCM, DM, and ADPCM 

The next factor-of-two reduction in information rate exploits the fact that 
long time averaged spectrum of speech does not look like white noise filtered 
to 4 KHz. In fact the spectrum is decidedly low-pass in character, due to 
voiced speech having pitch harmonics that decrease in amplitude as the 
frequency increases (see Section 11.3). 

In Section 9.8 we studied the connection between correlation and predic- 
tion, here we wish to stress the connection between prediction and compres- 
sion. Deterministic signals are completely predictable and thus maximally 
compressible; knowing the signal’s description, (e.g., as a explicit formula 
or difference equation with given initial conditions) enables one to precisely 
predict any signal value without any further information required. White 
noise is completely unpredictable; even given the entire history from the 
beginning of time to now does not enable us to predict the next signal value 
with accuracy any better than random guessing. Hence pure white noise is 
incompressible; we can do no better than to treat each sample separately, 
and N samples quantized to b bits each will always require Nb bits. 

Most signals encountered in practice are somewhere in between; based 
on observation of the signal we can construct a model that captures the 
predictable (and thus compressible) component. Using this model we can 
predict the next value, and then we need only store or transmit the residual 
error. The more accurate our prediction is, the smaller the error signal will 
be, and the fewer bits will be needed to represent it. For signals with most 
of their energy at low frequencies this predictability is especially simple in 
naturethe next sample will tend to be close to the present sample. Hence 
the difference between successive sample values tends to be smaller than 
the sample values themselves. Thus encoding these differences, a technique 
known as Ddelta-PCM (DPCM), will usually require fewer bits. This same 
term has come to be used in a more general way to mean encoding the 
difference between the sample value and a predicted version of it. 

To see how this generalized DPCM works, let’s use the previous value 
s,-1 , or the previous N values &-N . . . ~~-1, to predict the signal value at 
time n. 

sn = P(%-1, h-2, l l l %x-N) (19.5) 

If the predictor function p is a filter 

N 
Sn = 

c Pi%+ 
i=l 

(19.6) 
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Figure 19.4: Unquantized DPCM. The encoder predicts the next value, finds the pre- 
diction error en = sn - - ,sn, and transmits this error through the communications channel 
to the receiver. The receiver, imitating the transmitter, predicts the next value based on 
all the values it has recovered so far. It then corrects this prediction based on the error E~ 
received. 

we call the predictor a linear predictor. If the predictor works well, the 
prediction error 

E, = sn - sn (19.7) 

is both of lower energy and much whiter than the original signal sn. The 
error is all we need to transmit for the receiver to be able to reconstruct the 
signal, since it too can predict the next signal value based on the past values. 
Of course this prediction Zn is not completely accurate, but the correction E~ 
is received, and the original value easily recovered by sn = s”,+en. The entire 
system is depicted in Figure 19.4. We see that the encoder (linear predictor) 
is present in the decoder, but that there it runs as feedback, rather than 
feedforward as in the encoder itself. 

The simplest DPCM system is Delta Modulation (DM). Delta modula- 
tion uses only a single bit to encode the error, this bit signifying whether the 
true value is above or below the predicted one. If the sampling frequency is 
so much higher than required that the previous value ~~-1 itself is a good 
predictor of sn, delta modulation becomes the sigma-delta converter of Sec- 
tion 2.11. In a more general setting a nontrivial predictor is used, but we 
still encode only the sign of the prediction error. Since delta modulation 
provides no option to encode zero prediction error the decoded signal tends 
to oscillate up and down where the original was relatively constant. This 
annoyance can be ameliorated by the use a post-jilter, which low-pass filters 
the reconstructed signal. 

There is a fundamental problem with the DPCM encoders we have just 
described. We assur;led that the true value of the prediction error E~ is 
transferred over the channel, while in fact we can only transfer a quantized 
version rnQ. The very reason we perform the prediction is to save bits after 
quantization. Unfortunately, this quantization may have a devastating effect 
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on the decoder. The problem is not just that the correction of the present 
prediction is not completely accurate; the real problem is that because of 
this inaccuracy the receiver never has reliable sn with which to continue 
predicting the next samples. To see this, define snQ as the decoder’s predicted 
value corrected by the quantized error. In general, sz does not quite equal 
sn, but we predict the next sample values based on these incorrect corrected 
predictions! Due to the feedback nature of the decoder’s predictor the errors 
start piling up and after a short time the encoder and decoder become ‘out 
of sync’. 

The prediction we have been using is known as open-loop prediction, 
by which we mean that we perform linear prediction of the input speech. 
In order to ensure that the encoder and decoder predictors stay in sync, we 
really should perform linear prediction on the speech as reconstructed by the 
decoder. Unfortunately, the decoder output is not available at the encoder, 
and so we need to calculate it. To perform closed-loop prediction we build an 
exact copy of the entire decoder into our encoder, and use its output, rather 
than the input speech, as input to the predictor. This process is diagrammed 
in Figure 19.5. By ‘closing the loop’ in this fashion, the decoded speech is 
precisely that expected, unless the channel introduces bit errors. 

The international standard for 32 Kb/s toll quality digital speech is based 
on Adaptive Delta-PCM (ADPCM). The ‘adaptive’ is best explained by 
returning to the simple case of delta modulation. We saw above that the 
DM encoder compares the speech signal value with the predicted (or simply 
previous) value and reports whether this prediction is too high or too low. 
How does a DM decoder work? For each input bit it takes its present esti- 
mate for the speech signal value and either adds or subtracts some step size 
A. Assuming A is properly chosen this strategy works well for some range 
of input signal frequencies; but as seen in Figure 19.6 using a single step 

in 

AL 1r 

-PF-t 

.out 

Figure 19.5: Closed-loop prediction. In this figure, Q stands for quantizer, IQ inverse 
quantizer, PF prediction filter. Note that the encoder contains an exact replica of the 
decoder and predicts the next value based on the reconstructed speech. 
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Figure 19.6: The two types of errors in nonadaptive delta modulation. We superpose 
the reconstructed signal on the original. I f  the step size is too small the reconstructed 
signal can’t keep up in areas of large slope and may even completely miss peaks (as in 
the higher-frequency area at the beginning of the figure). I f  the step size is too large the 
reconstructed signal will oscillate wildly in areas where the signal is relatively constant 
(as seen at the peaks of the lower-frequency area toward the end of the figure). 

size cannot satisfy all frequencies. If A is too small the reconstructed signal 
cannot keep up when the signal changes rapidly in one direction and may 
even completely miss peaks (as in the higher-frequency area at the begin- 
ning of the figure), a phenomenon called ‘slope overload’. If A is too large 
the reconstructed signal will oscillate wildly when the signal is relatively 
constant (as seen at the peaks of the lower-frequency area toward the end 
of the figure), which is known as ‘granular noise’. 

While we introduced the errors introduced by improper step size for 
DM, the same phenomena occur for general DPCM. In fact the problem 
is even worse. For DM the step size A is only used at the decoder, since 
the encoder only needs to check the sign of the difference between the signal 
value and its prediction. For general delta-PCM the step size is needed at the 
encoder as well, since the difference must be quantized using levels spaced 
A apart. Improper setting of the spacing between the quantization levels 
causes mismatch between the digitizer and the difference signal’s dynamic 
range, leading to improper quantization (see Section 2.9). 
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The solution is to adapt the step size to match the signal’s behavior. 
In order to minimize the error we increase A when the signal is rapidly 
increasing or decreasing, and we decrease it when the signal is more constant. 
A simplistic way to implement this idea for DM is to use the bit stream itself 
to determine whether the step size is too small or too large. A commonly 
used version uses memory of the previous delta bit; if the present bit is 
the same as the previous we multiply A by some constant K (K = 1.5 is 
a common choice), while if the bits differ we divide by K. In addition we 
constrain A to remain within some prespecified range, and so stop adapting 
when it reaches its minimum or maximum value, 

While efficient computationally, the above method for adapting A is 
completely heuristic. A more general tactic is to set the step size for adap- 
tive DPCM to be a given percentage of the signal’s standard deviation. In 
this way A would be small for signals that do vary much, minimizing gran- 
ular noise, but large for wildly varying signals, minimizing slope overload. 
Were speech stationary over long times adaptation would not be needed, 
but since the statistics of the speech signal vary widely as the phonemes 
change, we need to continuously update our estimate of its variance. This 
can be accomplished by collecting N samples of the input speech signal in 
a buffer, computing the standard deviation, setting A accordingly, and only 
then performing the quantization, N needs to be long enough for the vari- 
ance computation to be accurate, but not so long that the signal statistics 
vary appreciably over the buffer. Values of 128 (corresponding to 16 mil- 
liseconds of speech at 8000 Hz) through 512 (64 milliseconds) are commonly 
used. 

There are two drawbacks to this method of adaptively setting the scale of 
the quantizer. First, the collecting of N samples before quantization requires 
introducing buffer delay; in order to avoid excessive delay we can use an 
IIR filter to track the variance instead of computing it in a buffer. Second, 
the decoder needs to know A, and so it must be sent as side information, 
increasing the amount of data transferred. The overhead can be avoided by 
having the decoder derive A, but if A is derived from the input signal, this 
is not possible. The decoder could try to use the reconstructed speech to 
find A, but this would not exactly match the quantization step used by the 
encoder. After a while the encoder and decoder would no longer agree and 
the system would break down. As you may have guessed, the solution is to 
close the loop and have the encoder determine A using its internal decoder, 
a technique called backward adaptation. 
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EXERCISES 

19.8.1 Obtain a copy of the G.726 ADPCM standard and study the main block 
diagrams for the encoder and decoder. Explain the function and connections 
of the adaptive predictor, adaptive quantizer, and inverse adaptive quantizer. 
Why is the standard so detailed? 

19.8.2 Now study the expanded block diagram of the encoder. What is the purpose 
of the blocks marked ‘adaptation speed control’ and ‘tone and transition 
detector’ ? 

19.8.3 How does the MIPS complexity of the G.726 encoder compare with that of 
modern lower-rate encoders? 

19.8.4 Show that the open-loop prediction results in large error because the quanti- 
zation error is multiplied by the prediction gain. Show that with closed-loop 
prediction this does not occur. 

19.9 Vector Quantization 

For white noise we can do no better than to quantize each sample separately, 
but for other signals it may make sense to quantize groups of samples to- 
gether. This is called Vector Quantization (VQ). 

Before discussing vector quantization it is worthwhile to reflect on what 
we have accomplished so far in scalar quantization. The digitization of the 
A/D converters discussed in Section 2.7 was input independent and uniform. 
By this we mean that the positions of the quantization levels were preset 
and equidistant. In order to minimize the quantization noise we usually 
provide an amplifier that matches the analog signal to the predetermined 
dynamic range of the digitizer. A more sophisticated approach is to set the 
digitizer levels to match the signal, placing the levels close together for small 
amplitude signals, and further apart for stronger signals. When the range 
of the signal does not vary with time and is known ahead of time, it is 
enough to set this spacing once; but if the signal changes substantially with 
time we need to adapt the level spacing according to the signal. This leads 
to adaptive PCM, similar to but simpler than the ADPCM we studied in 
Section 19.8. 

With adaptive PCM the quantization levels are not preset, but they are 
still equidistant. A more sophisticated technique is nonuniform quantization, 
such as the logarithmic PCM of Section 19.7. The idea behind logarithmic 
PCM was that low levels are more prevalent and their precision perceptually 
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more important than higher ones; thus we can reduce the average (percep- 
tual) error by placing the quantization levels closer together for small signal 
values, and further apart for large values. 

We will return to the perceptual importance later; for now we assume all 
signal values to be equally important and just ask how to combine adaptivity 
with nonequidistant quantization thresholds. Our objective is to lower the 
average quantization error; and this can be accomplished by placing the 
levels closer together where the signal values are more probable. 

Rather than adapting quantization thresholds, we can adapt the mid- 
points between these thresholds. We call these midpoints ‘centers’, and the 
quantization thresholds are now midway between adjacent centers. It is then 
obvious that classifying an input as belonging to the nearest ‘center’ is equiv- 
alent to quantizing according to these thresholds. The set of all values that 
are classified as closest to a given center (i.e., that lie between the two 
thresholds) is called its ‘cluster’. 

The reason we prefer to set centers is that there is an easily defined 
criterion that differentiates between good sets of centers and poor ones, 
namely mean square error (MSE) . Accordingly, if we have observed N signal 
values {~~}~=r, we want to place M centers {c,}!$r in such a way that we 
minimize the mean square quantization error. 

1 N 
E = N c Izn - c,12 

n=l 

We have used here the short-hand notation cn to mean that center closest 
t0 Xn- 

Algorithms that perform this minimization given empirical data are 
called ‘clustering’ algorithms. In a moment we will present the simplest of 
these algorithms, but even it already contains many of the elements of the 
most complex of these algorithms. 

There is another nomenclature worth introducing. Rather than thinking 
of minimal error clustering we can think of quantization as a form of encod- 
ing, whereby a real signal value is encoded by the index of the interval to 
which it belongs. When decoding, the index is replaced by the center’s value, 
introducing a certain amount of error. Because of this perspective the center 
is usually called a codeword and the set of M centers {cj)jM,r the codebook. 

How do we find the codebook given empirical data? Our algorithm will 
be iterative. We first randomly place the M centers, and then move them in 
such a way that the average coding error is decreased. We continue to iterate 
until no further decrease in error is possible. The question that remains is 
how to move the centers in order to reduce the average error. 
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Figure 19.7: Quantization thresholds found by the scalar quantization algorithm for 
uniform and Gaussian distributed data. For both cases 1000 points were generated, and 
16 centers found by running the basic scalar quantization algorithm until convergence. 

Were we to know which inputs should belong to a certain cluster, then 
minimizing the sum of the squared errors would require positioning the 
center at the average of these input values. The idea behind the algorithm is 
to exploit this fact at each iteration. At each stage there is a particular set of 
M centers that has been found. The best guess for associating signal values 
to cluster centers is to classify each observed signal value as belonging to the 
closest center. For this set of classifications we can then position the centers 
optimally at the average. In general this correction of center positions will 
change the classifications, and thus we need to reclassify the signal values 
and recompute the averages. Our iterative algorithm for scalar quantization 
is therefore the following. 

Given: signal values {zi}Er, 
the desired codebook size M 

Initialize: randomly choose M cluster centers {cj}gl 
Loop : 

Classification step: 
for i + l... N 

for j + l...M 
compute dfj = Ixi - cji2 

classify xi as belonging to Cj with minimal dfj 
Expectation step: 

for j + l...M 
correct center Cj + & CicCj xi 

Here Nj stands for the number of xi that were classified as belonging to 
cluster Cj. If Nj = 0 then no values are assigned to center j and we discard 
it. 

Note that there are two steps in the loop, a classification step where we 
find the closest center k, and an expectation step where we compute the av- 
erage of all values belonging to each center cm and reposition it. We thus say 
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that this algorithm is in the class of expectation-classificution algorithms. In 
the pattern recognition literature this algorithm is called ‘k-means’, while in 
speech coding it is called the LBG algorithm (after Linde, BUZO, and Gray). 
An example of two runs of LBG on scalar data is presented in Figure 19.7. 

We now return to vector quantization. The problem is the same, only 
now we have N input vectors in D-dimensional space, and we are interested 
in placing M centers in such fashion that mean encoding error is minimized. 
The thresholds are more complex now, the clusters defining Voronoy regions, 
but precisely the same algorithm can be used. All that has to be done is to 
interpret the calculations as vector operations. 

Now that we know how to perform VQ what do we do with it? It turns out 
not to be efficient to directly VQ blocks of speech samples, but sets of LPC 
coefficients (or any of the other alternative features) and the LPC residual 
can be successfully compressed using VQ. Not only does VQ encoding of 
speech parameters provide a compact representation for speech compression, 
it is also widely used in speech recognition. 

EXERCISES 

19.9.1 Prove the point closest to all points in a cluster is their average. 

19.9.2 Generate bimodal random numbers, i.e., ones with a distribution with two 
separated peaks. Determine the error for the best standard quantization. Now 
run the LBG algorithm with the same number of levels and check the error 
again. How much improvement did you get? 

19.9.3 Generate random vectors that are distributed according to a ‘Gaussian mix- 
ture’ distribution. This is done as follows. Choose M cluster centers in N- 
dimensional space. For each number to be generated randomly select the 
cluster, and then add to it Gaussian noise (if the noise has the same variance 
for all elements then the clusters will be hyperspherical). Now run the LBG 
algorithm. Change the size of the codebook. How does the error decrease 
with codebook size? 

19.10 SBC 

The next factor-of-two can be achieved by noticing that the short time spec- 
trum tends to have a only a few areas with significant energy. The SubBand 
Coding (SBC) technique takes advantage of this feature by dividing the 
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spectrum into a number (typically 8 to 16) of subbands. Each subband sig- 
nal, created by QMF band-pass filtering, is encoded separately. This in itself 
would not conserve bits, but adaptively deciding on the number of bits (if 
any) that should be devoted to each subband, does. 

Typical SBC coders of this type divide the bandwidth from DC to 4 KHz 
into 16 bands of 250 Hz each, and often discard the lowest and highest of 
these, bands that carry little speech information. Each of the remaining sub- 
bands is decimated by a factor of 16, and divided into time segments, with 
32 milliseconds a typical choice. 32 milliseconds corresponds to 256 samples 
of the original signal, but only 16 samples for each of the decimated sub- 
bands. In order to encode at 16 Kb/s the output of all the subbands together 
cannot exceed 512 bits, or an average of 32 bits per subband (assuming 16 
subbands). Since we might be using only 14 subbands, and furthermore sub- 
bands with low energy may be discarded with little effect on the quality, the 
number of bits may be somewhat larger; but the bit allocation table and 
overall gain (usually separately encoded) also require bits. So the task is 
now to encode 16 decimated samples in about 32 bits. 

After discarding the low-energy subbands the remaining ones are sorted 
in order of dynamic range and available bits awarded accordingly. Subbands 
with relatively constant signals can be replaced by scalar-quantized aver- 
ages, while for more complex subbands vector quantization is commonly 
employed. 

An alternative to equal division of the bandwidth is hierarchical loga- 
rithmic division, as described in Section 13.9. This division is both more 
efficient to compute (using the pyramid algorithm) and perceptually well 
motivated. 

EXERCISES 

19.10.1 Can we always decimate subbands according to their bandwidth? (Hint: Re- 
call the ‘band-pass sampling theorem’.) 

19.10.2 When dividing into equal-bandwidth bands, in which are more bits typically 
needed, those with lower or higher frequencies? Is this consistent with what 
happens with logarithmic division? 

19.10.3 Will dividing the bandwidth into arbitrary bands adaptively matched to the 
signal produce better compression? 
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19.11 LPC Speech Compression 

We now return to the LPC speech analysis and synthesis methods of sections 
19.1 and 19.2 and discuss ‘U.S. Standard 1015’ more commonly known as 
LPC-1Oe. This standard compresses 8000 sample-per-second speech to 2.4 
Kb/s using 10 LPC coefficients (hence its name). 

LPC-10 starts by dividing the speech into 180-sample blocks, each of 
which will be converted into 53 bits to which one synchronization bit is 
added for a total of 54 bits. The 54 bits times 8000/180 results in precisely 
2400 b/s. The U/V decision and pitch determination is performed using an 
AMDF technique and encoded in 7 bits. The gain is measured and quantized 
to 5 bits and then the block is normalized. If you have been counting, 41 bits 
are left to specify the LPC filter. LPC analysis is performed using the co- 
variance method and ten reflection coefficients are derived. The first two are 
converted to log area ratios and all are quantized with between 3 and 6 bits 
per coefficient. Actually by augmenting LPC-10 with vector quantization we 
can coax down the data rate to less than 1 Kb/s. 

Unfortunately, although highly compressed, straight LPC-encoded speech 
is of rather poor quality. The speech sounds synthetic and much of the 
speaker information is lost. The obvious remedy in such cases is to com- 
pute and send the error signal as well. In order to do this we need to add 
the complete decoder to the encoder, and require it to subtract the recon- 
structed signal from the original speech and to send the error signal through 
the channel. At the decoder side the process would then be to reconstruct 
the LPC-encoded signal and then to add back the error signal to obtain the 
original speech signal. 

The problem with the above idea is that in general such error signals, 
sampled at the original sampling rate (8 KHz) may require the same number 
of bits to encode as the original speech. We can only gain if the error signal 
is itself significantly compressible. This was the idea we used in ADPCM 
where the difference (error) signal was of lower dynamic range than the 
original speech. The LPC error signal is definitely somewhat smaller than 
the original speech, but that is no longer enough. We have already used up 
quite a few bits per second on the LPC coefficients, and we need the error 
signal to be either an order-of-magnitude smaller or highly correlated in the 
time domain for sufficient compression to be possible. 

Observing typical error signals is enlightening. The error is indeed smaller 
in magnitude than the speech signal, but not by an order-of-magnitude. It 
also has a very noticeable periodic component. This periodicity is at the 
pitch frequency and is due to the LPC analysis only being carried out for 
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times longer than those of the pitch frequency. Our assumption that the 
pitch excitation could be modeled as a single pulse per pitch period and 
otherwise zero has apparently been pushed beyond its limits. If we remove 
the residual pitch period correlations the remaining error seems to be white 
noise. Hence, trying to efficiently compress the error signal would seem to 
be a useless exercise. 

EXERCISES 
19.11.1 You can find code for LPC-1Oe in the public domain. Encode and then decode 

some recorded speech. How do you rate the quality? Can you always under- 
stand what is being said? Can you identify the speaker? Are some speakers 
consistently hard to understand? 

19.11.2 In Residual Excited Linear Prediction (RELP) the residual is low-pass fil- 
tered to about 1 KHz and then decimated to lower its bit rate. Diagram 
the RELP encoder and decoder. For what bit rates do you expect RELP to 
function well? 

19.12 CELP Coders 

In the last section we saw that straight LPC using a single pulse per pitch 
period is an oversimplification. Rather than trying to encode the error signal, 
we can try to find an excitation signal that reduces the residual error. If this 
excitation can be efficiently encoded and transmitted, the decoder will be 
able to excite the remote predictor with it and reproduce the original speech 
to higher accuracy with tolerable increase in bit rate. 

There are several different ways to encode the excitation. The most naive 
technique uses random codebooks. Here we can create, using VQ, a lim- 
ited number 2m of random N-vectors that are as evenly distributed in N- 
dimensional space as possible. These vectors are known both to the encoder 
and to the decoder. After performing LPC analysis, we try each of these 
random excitations, and choose the one that produces the lowest prediction 
error. Since there are 2m possible excitations, sending the index of the best 
excitation requires only m bits. Surprisingly, this simple technique already 
provides a significant improvement in quality as compared to LPC, with 
only a modest increase in bit rate. The problem, of course, is the need to 
exhaustively search the entire set of 2m excitation vectors. For this reason 
CELP encoders are computationally demanding. 



772 SPEECH SIGNAL PROCESSING 

As an example of a simple CELP coder consider federal standard 1016. 
This coder operates at 4.8 Kb/s using a fixed random codebook and attains a 
MOS rating of about 3.2. The encoder computes a tenth-order LPC analysis 
on frames of 30 milliseconds (240 samples), and then bandwidth expansion 
of 15 Hz is performed. By bandwidth expansion we mean that the LPC poles 
are radially moved toward the origin by multiplication of LPC coefficient b, 
by a factor of ym where y = 0.994. This empirically improves speech quality, 
but is mainly used to increase stability. The LPC coefficients are converted 
to line spectral pairs and quantized using nonuniform scalar quantization. 
The 240-sample frame is then divided into four subframes, each of which 
is allowed a separate codeword from of a set of 256, so that eight bits are 
required to encode the excitation of each subframe, or 32 bits for the entire 
frame. 

This same strategy of frames and subframes is used in all modern CELP 
coders. The codebook search is the major computational task of the encoder, 
and it is not practical to use a codebook that covers an entire frame. It is 
typical to divide each frame into four subframes, but the excitation search 
needn’t be performed on the subframes that belong to the analysis frame. 
Forward prediction with lookahead uses an analysis window that stretches 
into the future, while backward analysis inputs excitation vectors into LPC 
coefficients calculated from past samples. For example, let’s number the sub- 
frames 1,2,3, and 4. Backward prediction may use the LPC coefficients com- 
puted from subframes 1,2,3, and 4 when trying the excitations for subframes 
5,6,7, and 8. Forward prediction with lookahead of 2 subframes would use 
coefficients computed from subframes 3,4,5, and 6 when searching for exci- 
tations on subframes 1,2,3, and 4. Note that lookahead introduces further 
delay, since the search cannot start until the LPC filter is defined. Not only 
do coders using backward prediction not add further delay, they needn’t 
send the coefficients at all, since by using closed-loop prediction the decoder 
can reproduce the coefficients before they are needed. 

If random codebooks work, maybe even simpler strategies will. It would 
be really nice if sparse codebooks (i.e., ones in which the vectors have most of 
their components zero) would work. Algebraic codebooks are sets of excitation 
vectors that can be produced when needed, and so needn’t be stored. The 
codewords in popular algebraic codebooks contain mostly zeros, but with a 
few nonzero elements that are either +l or -1. With algebraic codebooks 
we needn’t search a random codebook; instead we systematically generate 
all the legal codewords and input each in turn to the LPC filter. It turns 
out that such codebooks perform reasonably well; toll-quality G.729 and the 
lower bit rate of G.723.1 both use them. 
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Coders that search codebooks, choosing the excitation that minimizes 
the discrepancy between the speech to be coded and the output of the 
excitation-driven LPC synthesis filter, are called Analysis By Synthesis 
(ABS) coders. The rationale for this name is clear. Such coders analyze 
the best excitation by exhaustively synthesizing all possible outputs and 
empirically choosing the best. What do we mean by the best excitation? Up 
to now you may have assumed that the output of the LPC synthesis filter 
was rated by SNR or correlation. This is not optimal since these measures 
do not correlate well with subjective opinion as to minimal distortion. 

The main effect that can be exploited is ‘masking’ (recall exercise 11.4.2). 
Due to masking we needn’t worry too much about discrepancies that result 
from spectral differences close to formant frequencies, since these are masked 
by the acoustic energy there and not noticed. So rather than using an error 
that is equally weighted over the bandwidth, it is better perceptually to use 
the available degrees of freedom to match the spectrum well where error 
is most noticeable. In order to take this into account, ABS CELP encoders 
perform perceptual weighting of both the input speech and LPC filter output 
before subtracting to obtain the residual. However, since the perceptual 
weighting is performed by a filter, we can more easily subtract first and 
perform a single filtering operation on the difference. 

The perceptual weighting filter should de-emphasize spectral regions 
where the LPC has peaks. This can be achieved by using a filter with the 
system function 

H(z) c $%-bz-* 
= C y~PrnZ-* 

(19.9) 

where 0 < 72 < y1 5 1. Note that both the numerator and denominator 
are performing bandwidth expansion, with the denominator expanding more 
than the numerator. By properly choosing yr and 72 this weighting can be 
made similar to the psychophysical effect of masking. 

Something seems to have been lost in the ABS CELP coder as compared 
with the LPC model. If we excite the LPC filter with an entry from a random 
or algebraic codebook, where does the pitch come from? To a certain ex- 
tent it comes automatically from the minimization procedure. The algebraic 
codewords can have nonzero elements at pitch onset, and random codewords 
will automatically be chosen for their proper spectral content. However, were 
we to build the CELP coder as we have described it so far, we would find 
that its residual error displays marked pitch periodicity, showing that the 
problem is not quite solved. Two different ways have been developed to 
put the pitch back into the CELP model, namely long-term prediction and 
adaptive codebooks. 
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Figure 19.8: ABS CELP encoder using short- and long-term prediction. Only the essen- 
tial elements are shown; CB is the codebook, PP the pitch (short-term) predictor, LPC the 
long-term predictor, PW the perceptual weighting filter, and EC the error computation. 
The input is used directly to find LPC coefficients and estimate the pitch and gain. The 
error is then used in ABS fashion to fine tune the pitch and gain, and choose the optimal 
codebook entry. 

We mentioned long-term prediction in Section 19.2 as conceptually hav- 
ing two separate LPC filters. The short-term predictor, also called the LPC 
filter, the formant predictor, or the spectral envelope predictor, tracks and 
introduces the vocal tract information. It only uses correlations of less than 
2 milliseconds or so and thus leaves the pitch information intact. The long- 
term predictor, also called the pitch predictor or the fine structure predictor, 
tracks and introduces the pitch periodicity. It only has a few coefficients, but 
these are delayed by between 2 and 20 milliseconds, according to the pitch 
period. Were only a single coefficient used, the pitch predictor system func- 
tion would be 

1 

%G> = 1 ;+ (19.10) - 

where D is the pitch period. D may be found open loop, but for high quality 
it should be found using analysis by synthesis. For unvoiced segments the 
pitch predictor can be bypassed, sending the excitation directly to the LPC 
predictor, or it can be retained and its delay set randomly. A rough block 
diagram of a complete CELP encoder that uses this scheme is given in 
Figure 19.8. 

Adaptive codebooks reinforce the pitch period using a different method. 
Rather than actually filtering the excitation, we use an effective excitation 
composed of two contributions. One is simply the codebook, now called the 
fixed codebook. To this is added the contribution of the adaptive codebook, 
which is formed from the previous excitation by duplicating it at the pitch 
period. This contribution is thus periodic with the pitch period and supplies 
the needed pitch-rich input to the LPC synthesis filter. 

One last trick used by many CELP encoders is ‘post-filtering’. Just as 
for ADPCM, the post-filter is appended after the decoder to improve the 
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subjective quality of the reconstructed speech. Here this is accomplished 
by further strengthening the formant structure (i.e., by emphasizing the 
peaks and attenuating the valleys of the LPC spectrum), using a filter like 
the perceptual weighting filter (19.9). This somewhat reduces the formant 
bandwidth, but also reduces the residual coding noise. In many coders the 
post-filter is considered optional, and can be used or not according to taste. 

EXERCISES 

19.12.1 Explain why replacing LPC coefficient b, with yyb, with 0 < y < 1 is called 
bandwidth expansion. Show that 15 Hz expansion is equivalent to y = 0.994. 

19.12.2 The G.723.1 coder when operating at the 5.3 Kb/s rate uses an algebraic 
codebook that is specified by 17 bits. The codewords are of length 60 but 
have no more than four nonzero elements. These nonzero elements are either 
all in even positions or all in odd positions. If in even positions, their indexes 
modulo 8 are all either 0, 2, 4, or 6. Thus 1 bit is required to declare whether 
even or odd positions are used, the four pulse positions can be encoded using 
3 bits, and their signs using a single bit. Write a routine that successively 
generates all the legal codewords. 

19.12.3 Explain how to compute the delay of an ABS CELP coder. Take into account 
the buffer, lookahead, and processing delays. What are the total delays for 
G.728 (frame 20 samples, backward prediction), G.729 (frame 80 samples, 
forward prediction), and G.723.1 (frame 240 samples, forward prediction)? 

19.12.4 Obtain a copy of the G.729 standard and study the main block diagram. 
Explain the function of each block. 

19.12.5 Repeat the previous exercise with the G.723.1 standard. What is the differ- 
ence between the two rates? How does G.723.1 differ from G.729? 

19.13 Telephone-Grade Speech Coding 

This section can be considered to be the converse of Section 18.20; the 
purpose of a telephone-grade modem is to enable the transfer of data over 
voice lines (data over voice), while the focus of speech compression is on 
the transfer of voice over digital media (voice over data). Data over voice 
is an important technology since the Public Switched Telephone Network 
(PSTN) is the most widespread communications medium in the world; yet 
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the PSTN is growing at a rate of about 5% per year, while digital com- 
munications use is growing at several hundred percent a year. The amount 
of data traffic exceeded that of voice sometime during the year 2000, and 
hence voice over data is rapidly becoming the more important of the two 
technologies . 

The history of telephone-grade speech coding is a story of rate halving. 
Our theoretical rate of 128 Kb/s was never used, having been reduced to 
64 Kb/s by the use of logarithmic PCM, as defined in ITU standard G.711. 
So the first true rate halving resulted in 32 Kb/s and was accomplished 
by ADPCM, originally designated G.721. In 1990, ADPCM at rates 40, 32, 
24, and 16 Kb/ s were merged into a single standard known as G.726. At 
the same time G.727 was standardized; this ‘embedded’ ADPCM covers 
these same rates, but is designed for use in packetized networks. It has the 
advantage that the bits transmitted for the lower rates are subsets of those of 
the higher rates; congestion that arises at intermediate nodes can be relieved 
by discarding least significant bits without the need for negotiation between 
the encoder and decoder. 

Under 32 Kb/s the going gets harder. The G.726 standard defines 24 and 
16 Kb/s rates as well, but at less than toll-quality. Various SBC coders were 
developed for 16 Kb/s, either dividing the frequency range equally and us- 
ing adaptive numbers of bits per channel, or using hierarchical wavelet-type 
techniques to divide the range logarithmically. Although these techniques 
were extremely robust and of relatively high perceived quality for the com- 
putational complexity, no SBC system was standardized for telephone-grade 
speech. In 1988, a coder, dubbed G.722, was standardized that encoded 
wideband audio (7 KHz sampled at 16,000 samples per second, 14 bits per 
sample) at 64 Kb/s. This coder divides the bandwidth from DC to 8 KHz 
into two halves using QMFs and encodes each with ADPCM. 

In the early 199Os, the ITU defined performance criteria for a 16 Kb/s 
coder that could replace standard 32 Kb/s ADPCM. Such a coder was re- 
quired to be of comparable quality to ADPCM, and with delay of less than 
5 milliseconds (preferably less than 2 milliseconds). The coder, selected in 
1992 and dubbed G.728, is a CELP with backward prediction, with LPC 
order of 50. Such a high LPC order is permissible since with closed-loop 
prediction the coefficients need not be transmitted. Its delay is 5 samples 
(0.625 ms), but its computational complexity is considerably higher than 
ADPCM, on the order of 30 MIPS. 

The next breakthrough was the G.729 8 Kb/s CELP coder. This was ac- 
cepted simultaneously with another somewhat different CELP-based coder 
for 6.4 and 5.4 Kb/s. The latter was named G.723.1 (the notation G.723 
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having been freed up by the original merging into G.726). Why were two 
different coders needed? The G.729 specification was originally intended for 
toll-quality wireless applications. G.728 was rejected for this application be- 
cause of its rate and high complexity. The frame size for G.729 was set at 
10 ms. and its lookahead at 5 ms. Due to the wireless channel, robustness 
to various types of bit errors was required. The process of carefully evaluat- 
ing the various competing technologies took several years. During that time 
the urgent need arose for a low-bit-rate coder for videophone applications. 
Here toll-quality was not an absolute must, and it was felt by many that 
G.729 would not be ready in the alloted time. Thus an alternative selection 
process, with more lax testing, was instigated. For this application it was de- 
cided that a long 30 millisecond frame was acceptable, that a lower bit rate 
was desirable, but that slightly lower quality could be accommodated. In 
the end both G.729 and G.723.1 were accepted as standards simultaneously, 
and turned out to be of similar complexity. 

The G.729 coder was extremely high quality, but also required over 20 
MIPS of processing power to run. For some applications, including ‘voice 
over modem’, this was considered excessive. A modified coder, called G.729 
Annex A, was developed that required about half the complexity, with al- 
most negligible MOS reduction. This annex was adopted using the quick 
standardization strategy of G.723.1. G.723.1 defined as an annex a standard 
VAD and CNG mechanism, and G.729 soon followed suit with a similar 
mechanism as its Annex B. More recently, G.729 has defined annexes for 
additional bit rates, including a 6.4 Kb/s one. 

At this point in time there is considerable overlap (and rivalry) between 
the two standards families. G.723.1 is the default coder for the voice over 
IP standard H.323, but G.729 is allowed as an option. G.729 is the default 
for the ‘frame relay’ standard FRF.11, but G.723.1 is allowed there as an 
option. In retrospect it is difficult to see a real need for two different coders 
with similar performance. 

For even lower bit rates one must decide between MIPS and MOS. On the 
low MIPS low MOS front the U.S. Department of Defense initiated an effort 
in 1992 to replace LPC-1Oe with a 2.4 Kb/s encoder with quality similar to 
that of the 4.8 Kb/s CELP. After comparing many alternatives, in 1997 a 
draft was published based on MELP. The excitation used in this encoder 
consists of a pulse train and a uniform-distributed random noise generator 
filtered by time-varying FIR filters. MELP’s quality is higher than that of 
straight LPC-10 because it addresses the latter’s main weaknesses, namely 
voicing determination errors and not treating partially-voiced speech. 

For higher MOS but with significantly higher MIPS requirements there 
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are several alternatives, including the Sinusoidal Transform Coder (STC) 
and Waveform Interpolation (WI). Were we to plot the speech samples, or 
the LPC residual, of one pitch period of voiced speech we would obtain some 
characteristic waveform; plotting again for some subsequent pitch period 
would result in a somewhat different waveform. We can now think of this 
waveform as evolving over time, and of its shape at any instant between the 
two we have specified as being determinable by interpolation. To enforce 
this picture we can create two-dimensional graphs wherein at regular time 
intervals we plot characteristic waveforms perpendicular to the time axis. 

Waveform interpolation encoders operate on equally spaced frames. For 
each voiced frame the pitch pulses located and aligned by circular shifting, 
the characteristic waveform is found, and the slowly evolving waveform is ap- 
proximated as a Fourier series. Recently waveform interpolation techniques 
have been extended to unvoiced segments as well, although now the charac- 
teristic waveform evolves rapidly from frame to frame. The quantized pitch 
period and waveform description parameters typically require under 5 Kb/s. 
The decompression engine receives these parameters severely undersampled, 
but recreates the required output rate by interpolation as described above. 

The ITU has launched a new effort to find a 4 Kb/s toll-quality coder. 
With advances in DSP processor technology, acceptable coders at this, and 
even lower bit rates, may soon be a reality. 

EXERCISES 

19.13.1 Cellular telephony networks use a different set of coders, including RPE-LTP 
(GSM) and VSELP (IS-54). What are the principles behind these coders and 
what are their parameters? 
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Bibliographical Notes 

There is a plethora of books devoted to speech signal processing. The old standard 
references include [210, 2111, and of the newer generation we mention [66]. A rel- 
atively up-to-date book on speech recognition is [204] while [176] is an interesting 
text that emphasizes neural network techniques for speech recognition. 

The first artificial speech synthesis device was created by Wolfgang von Kem- 
pelen in 1791. The device had a bellows that supplied air to a reed, and a manually 
manipulated resonance chamber. Unfortunately, the machine was not taken seri- 
ously after von Kempelen’s earlier invention of a chess-playing machine had been 
exposed as concealing a midget chess expert. In modern times Homer Dudley from 
Bell Labs [55] was an early researcher in the field of speech production mechanisms. 
Expanding on the work of Alexander Graham Bell, he analyzed the human speech 
production in analogy to electronic communications systems, and built the VODER 
(Voice Operation DEmonstratoR), an analog synthesizer that was demonstrated 
at the San Francisco and New York World’s Fairs. An early digital vocoder is de- 
scribed in [80]. In the 198Os, Dennis Klatt presented a much improved formant 
synthesizer [130, 1311. 

The LPC model was introduced to speech processing by Atal [lo] in the U.S. 
and Itakura [ill] in Japan. Many people were initially exposed to it in the popular 
review [155] or in the chapter on LPC in [210]. The power cepstrum was introduced 
in [20]; the popular DSP text [186] devotes a chapter to homomorphic processing; 
and [37] is worth reading. We didn’t mention that there is a nonrecursive connection 
between the LPC and LPC cepstrum coefficients [239]. 

Distance measures, such as the Itakura-Saito distance, are the subject of (112, 
113, 110, 841. The inverse-E filtering problem and RASTA-PLP are reviewed in 
[102, 1011. The sinusoidal representation has an extensive literature; you should 
start with [163, 2011. 

For questions of speech as a dynamical system and its fractal dimension consult 
[259, 156, 172, 2261. Unfortunately, there is as yet no reference that specifies for the 
optimal minimal set of features. 

Pitch detectors and U/V decision mechanisms are the subject of [205, 206,121]. 
Similar techniques for formant tracking are to be found in [164, 2301. 

Once, the standard text on coding was [116], but the field has advanced tremen- 
dously since then. Vector quantization is covered in a review article [85] and a text 
[69], while the LBG algorithm was introduced in [149]. 

Postfiltering is best learnt from [35]. The old standard coders are reviewed in [23] 
while the recent ones are described in [47]. For specific techniques and standards, 
LPC and LPC-10: [9, 261, 1211; MELP: [170]; b asic CELP: [ll]; federal standard 
1016: [122]; G.729 and its annexes: [231, 228, 229, 151; G.728: [34]; G.723.1: no 
comprehensive articles; waveform interpolation: [132]. 


