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63.1 Introduction

Estimating the directions of arrival (DOAs) of propagating plane waves is a requirement in a variety of
applications including radar, mobile communications, sonar, and seismology. Due to its simplicity
and high-resolution capability, ESPRIT (Estimation of Signal Parameters via Rotational Invariance
Techniques) [18] has become one of the most popular signal subspace-based DOA or spatial frequency
estimation schemes. ESPRIT is explicitly premised on a point source model for the sources and
is restricted to use with array geometries that exhibit so-called invariances [18]. However, this
requirement is not very restrictive as many of the common array geometries used in practice exhibit
these invariances, or their output may be transformed to effect these invariances.

ESPRIT may be viewed as a complement to the MUSIC algorithm, the forerunner of all signal
subspace-based DOA methods, in that it is based on properties of the signal eigenvectors whereas
MUSIC is based on properties of the noise eigenvectors. This chapter concentrates solely on the
use of ESPRIT to estimate the DOAs of plane waves incident upon an antenna array. It should
be noted, though, that ESPRIT may be used in the dual problem of estimating the frequencies of
sinusoids embedded in a time series [18]. In this application, ESPRIT is more generally applicable
than MUSIC as it can handle damped sinusoids and provides estimates of the damping factors as well
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as the constituent frequencies. The standard ESPRIT algorithm for one-dimensional (1-D) arrays is
reviewed in Section 63.2. There are three primary steps in any ESPRIT-type algorithm:

1. Signal Subspace Estimation computation of a basis for the estimated signal subspace,

2. Solution of the Invariance Equation solution of an (in general) overdetermined system of
equations, the so-called invariance equation, derived from the basis matrix estimated in
Step 1, and

3. Spatial Frequency Estimation computation of the eigenvalues of the solution of the invari-
ance equation formed in Step 2.

Many antenna arrays used in practice have geometries that possess some form of symmetry. For
example, a linear array of equi-spaced identical antennas is symmetric about the center of the linear
aperture it occupies. In Section 63.3.1, an efficient implementation of ESPRIT is presented that
exploits the symmetry present in so-called centro-symmetric arrays to formulate the three steps
of ESPRIT in terms of real-valued computations, despite the fact that the input to the algorithm
needs to be the complex analytic signal output from each antenna. This reduces the computational
complexity significantly. A reduced dimension beamspace version of ESPRIT is developed in Sec-
tion 63.3.2. Advantages to working in beamspace include reduced computational complexity [3],
decreased sensitivity to array imperfections [1], and lower SNR resolution thresholds [11].

With a 1-D array, one can only estimate the angle of each incident plane wave relative to the array
axis. For source localization purposes, this only places the source on a cone whose axis of symmetry is
the array axis. The use of a 2-D or planar array enables one to passively estimate the 2-D arrival angles
of each emitting source. The remainder of the chapter presents ESPRIT-based techniques for use in
conjunction with circular and rectangular arrays that provide estimates of the azimuth and elevation
angle of each incident signal. As in the 1-D case, the symmetries present in these array geometries
are exploited to formulate the three primary steps of ESPRIT in terms of real-valued computations.

63.1.1 Notation

Throughout this chapter, column vectors and matrices are denoted by lower case and upper case
boldfaced letters, respectively. For any positive integer p, Ip is the p ×p identity matrix and 5p the
p × p exchange matrix with ones on its antidiagonal and zeros elsewhere,

5p =




1
1

·
1


 ∈ R

p×p. (63.1)

Pre-multiplication of a matrix by 5p will reverse the order of its rows, while post-multiplication of
a matrix by 5p reverses the order of its columns. Furthermore, the superscripts (·)H and (·)T de-
note complex conjugate transposition and transposition without complex conjugation, respectively.

Complex conjugation by itself is denoted by an overbar (·), such that XH = X
T

. A diagonal matrix
8 with the diagonal elements φ1, φ2, . . . , φd may be written as

8 = diag {φi}di=1 =




φ1
φ2

·
φd


 ∈ C

d×d .

Moreover, matrices Q ∈ C
p×q satisfying

5pQ = Q (63.2)

willbecalled left5-real [10]. Often left5-realmatricesarealsocalledconjugatecentro-symmetric [24].
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63.2 The Standard ESPRIT Algorithm

The algorithm ESPRIT [18] must be used in conjunction with an M-element sensor array composed
of m pairs of pairwise identical, but displaced, sensors (doublets) as depicted in Fig. 63.1. If the
subarraysdonotoverlap, i.e., if theydonot share any elements, M = 2m, but ingeneralM ≤ 2m since
overlapping subarrays are allowed, cf. Fig. 63.2. Let 1 denote the distance between the two subarrays.
Incidentonboth subarrays ared narrowbandnoncoherent1 planarwavefrontswithdistinctdirections

FIGURE 63.1: Planar array composed of m = 3pairwise identical, but displaced, sensors (doublets).

of arrival (DOAs) θi, 1 ≤ i ≤ d , relative to the displacement between the two subarrays.2 Their
complex pre-envelope at an arbitrary reference point may be expressed as si(t) = αi(t)e

j(2πfct+βi(t)),
where fc denotes the common carrier frequency of the d wavefronts. Without loss of generality,
we assume that the reference point is the array centroid. The signals are called narrowband if their
amplitudes αi(t) and phases βi(t) vary slowly with respect to the propagation time across the array τ ,
i.e., if

αi(t − τ) ≈ αi(t) and βi(t − τ) ≈ βi(t). (63.3)

In other words, the narrowband assumption allows the time-delay of the signals across the array τ

to be modeled as a simple phase shift of the carrier frequency, such that

si(t − τ) ≈ αi(t)e
j(2πfc(t−τ)+βi(t)) = e−j2πfcτ si(t).

Figure 63.1 shows that the propagation delay of a plane wave signal between the two identical sensors
of a doublet equals τi = 1 sinθi

c
, where c denotes the signal propagation velocity. Due to the

narrowband assumption (63.3), this propagation delay τi corresponds to the multiplication of the
complex envelope signal by the complex exponential ejµi , referred to as the phase factor, such that

si(t − τi) = e−j
2πfc

c
1 sinθi si(t) = ejµi si(t), (63.4)

where the spatial frequencies µi are given by µi = −2π
λ

1 sinθi . Here, λ = c
fc

denotes the common
wavelength of the signals. We also assume that there is a one-to-one correspondence between the

1 This restriction can be modified later as Unitary ESPRIT can estimate the directions of arrival of two coherent wavefronts
due to an inherent forward-backward averaging effect. Two wavefronts are called coherent if their cross-correlation
coefficient has magnitude one. The directions of arrival of more than two coherent wavefronts can be estimated by using
spatial smoothing as a preprocessing step.
2 θk = 0 corresponds to the direction perpendicular to 1.
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spatial frequencies −π < µi < π and the range of possible DOAs. Thus, the maximum range is
achieved for 1 ≤ λ/2. In this case, the DOAs are restricted to the interval −90◦ < θi < 90◦ to avoid
ambiguities.

In the sequel, the d impinging signals si(t), 1 ≤ i ≤ d, are combined to a column vector s(t).
Then the noise-corrupted measurements taken at the M sensors at time t obey the linear model

x(t) = [
a(µ1) a(µ2) · · · a(µd)

]



s1(t)

s2(t)
...

sd(t)


 + n(t) = As(t) + n(t) ∈ C

M, (63.5)

where the columns of the array steering matrix A ∈ C
M×d , the array response or array steering

vectors a(µi), are functions of the unknown spatial frequencies µi, 1 ≤ i ≤ d. For example, for a
uniform linear array (ULA) of M identical omnidirectional antennas,

a(µi) = e
−j

(
M−1

2

)
µi

[
1 ejµi ej2µi · · · ej(M−1)µi

]T
, 1 ≤ i ≤ d.

Moreover, the additive noise vector n(t) is taken from a zero-mean, spatially uncorrelated random
process with variance σ 2

N , which is also uncorrelated with the signals. Since every row of A corre-
sponds to an element of the sensor array, a particular subarray configuration can be described by two
selection matrices, each choosing m elements of x(t) ∈ C

M , where m, d ≤ m < M , is the number
of elements in each subarray. Figure 63.2, for example, displays the appropriate subarray choices for
three centro-symmetric arrays of M = 6 identical sensors.

FIGURE 63.2: Three centro-symmetric line arrays of M = 6 identical sensors and the corresponding
subarrays required for ESPRIT-type algorithms.

In case of a ULA with maximum overlap, cf. Figure 63.2 (a), J 1 picks the first m = M − 1 rows of A,
while J 2 selects the last m = M −1 rows of the array steering matrix. In this case, the corresponding
selection matrices are given by

J 1 =




1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
... · ...

...

0 0 0 · · · 1 0


 ∈ R

m×M and J 2 =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... · ...

...

0 0 0 · · · 0 1


 ∈ R

m×M.

Notice that J 1 and J 2 are centro-symmetric with respect to one another, i.e., they obey J 2 =
5mJ 15M . This property holds for all centro-symmetric arrays and plays a key role in the derivation
of Unitary ESPRIT [7]. Since we have two identical, but physically displaced subarrays, Eq. (63.4)
indicates that an array steering vector of the second subarray J 2a(µi) is just a scaled version of the
corresponding array steering vector of the first subarray J 1a(µi), namely

J 1a(µi)e
jµi = J 2a(µi), 1 ≤ i ≤ d. (63.6)

c©1999 by CRC Press LLC



This shift invariance property of all d array steering vectors a(µi) may be expressed in compact form
as

J 1A8 = J 2A, where 8 = diag
{
ejµi

}d

i=1 (63.7)

is the unitary diagonal d × d matrix of the phase factors. All ESPRIT-type algorithms are based on
this invariance property of the array steering matrix A, where A is assumed to have full column rank
d .

Let X denote an M × N complex data matrix composed of N snapshots x(tn), 1 ≤ n ≤ N ,

X = [
x(t1) x(t2) · · · x(tN )

]
(63.8)

= A
[

s(t1) s(t2) · · · s(tN )
] + [

n(t1) n(t2) · · · n(tN )
]

= A · S + N ∈ C
M×N.

The starting point is a singular value decomposition (SVD) of the noise-corrupted data matrix X

(direct data approach). Assume that U s ∈ C
M×d contains the d left singular vectors corresponding

to the d largest singular values of X. Alternatively, U s can be obtained via an eigendecomposition
of the (scaled) sample covariance matrix XXH (covariance approach). Then, U s ∈ C

M×d contains
the d eigenvectors corresponding to the d largest eigenvalues of XXH .

Asymptotically, i.e., as the number of snapshots N becomes infinitely large, the range space of U s

is the d-dimensional range space of the array steering matrix A referred to as the signal subspace.
Therefore, there exists a nonsingular d × d matrix T such that A ≈ U sT . Let us express the
shift-invariance property (63.7) in terms of the matrix U s that spans the estimated signal subspace,

J 1U sT 8 ≈ J 2U sT ⇐⇒ J 1U s9 ≈ J 2U s , where 9 = T 8T −1

is a nonsingulard×d matrix. Since8 in Eq. (63.7) is diagonal, T 8T −1 is in the form of an eigenvalue
decomposition. This implies that ejµi , 1 ≤ i ≤ d , are the eigenvalues of 9. These observations form
the basis for the subsequent steps of the algorithm. By applying the two selection matrices to the
signal subspace matrix, the following (in general) overdetermined set of equations is formed,

J 1U s9 ≈ J 2U s ∈ C
m×d . (63.9)

This set of equations, the so-called invariance equation, is usually solved in the least squares (LS) or
total least squares (TLS) sense. Notice, however, that Eq. (63.9) is highly structured if overlapping
subarray configurations are used. Structured least squares (SLS) is a new algorithm to solve the
invariance equation by preserving its structure [8]. Formally, SLS was derived as a linearized iterative
solution of a nonlinear optimization problem. If SLS is initialized with the LS solution of the
invariance equation, only one “iteration”, i.e., the solution of one linear system of equations, is
required to achieve a significant improvement of the estimation accuracy [8].

Then an eigendecomposition of the resulting solution 9 ∈ C
d×d may be expressed as

9 = T 8T −1 with 8 = diag {φi}di=1 . (63.10)

The eigenvalues φi , i.e., the diagonal elements of 8, represent estimates of the phase factors ejµi .
Notice that the φi are not guaranteed to be on the unit circle. Notwithstanding, estimates of the
spatial frequencies µi and the corresponding DOAs θi are obtained via the relationships,

µi = arg(φi) and θi = − λ

2π1
arcsin(µi) , 1 ≤ i ≤ d. (63.11)

To end this section, a brief summary of the standard ESPRIT algorithm is given in Table 63.1.
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TABLE 63.1 Summary of the Standard ESPRIT Algorithm

1. Signal Subspace Estimation: Compute U s ∈ C
M×d

as the d dominant left singular vectors of X ∈ C
M×N

.

2. Solution of the Invariance Equation: Solve

J1U s︸ ︷︷ ︸
Cm×d

9 ≈ J2U s︸ ︷︷ ︸
Cm×d

by means of LS, TLS, or SLS.

3. Spatial Frequency Estimation: Calculate the eigenvalues of the resulting complex-valued solution

9 = T 8 T −1 ∈ C
d×d

with 8 = diag
{
φi

}d
i=1

• µi = arg
(
φi

)
, 1 ≤ i ≤ d

63.3 1-D Unitary ESPRIT

In contrast to the standard ESPRIT algorithm, Unitary ESPRIT is efficiently formulated in terms of
real-valued computations throughout [7]. It is applicable to centro-symmetric array configurations
that possess the discussed invariance structure, cf. Figs. 63.1 and 63.2. A sensor array is called centro-
symmetric [23] if its element locations are symmetric with respect to the centroid. If the sensor
elements have identical radiation characteristics, the array steering matrix of a centro-symmetric
array satisfies

5MA = A, (63.12)

since the array centroid is chosen as the phase reference.

63.3.1 1-D Unitary ESPRIT in Element Space

Before presenting an efficient element space implementation of Unitary ESPRIT, let us define the
sparse unitary matrices

Q2n = 1√
2

[
In jIn

5n −j5n

]
and Q2n+1 = 1√

2


 In 0 jIn

0T
√

2 0T

5n 0 −j5n


 . (63.13)

They are left 5-real matrices of even and odd order, respectively.
Since Unitary ESPRIT involves forward-backward averaging, it can efficiently be formulated in

terms of real-valued computations throughout, due to a one-to-one mapping between centro-
Hermitian and real matrices [10]. The forward-backward averaged sample covariance matrix is
centro-Hermitian and can, therefore, be transformed into a real-valued matrix of the same size,
cf. [12], [15], and [7]. A real-valued square-root factor of this transformed sample covariance matrix
is given by

T (X) = QH
M

[
X 5M X 5N

]
Q2N ∈ R

M×2N, (63.14)

whereQM andQ2N weredefined inEq. (63.13).3 IfM is even, anefficient computationofT (X) from
the complex-valued data matrix X only requires M × 2N real additions and no multiplication [7].
Instead of computing a complex-valued SVD as in the standard ESPRIT case, the signal subspace
estimate is obtained via a real-valued SVD of T (X) (direct data approach). Let Es ∈ R

M×d contain
the d left singular vectors corresponding to the d largest singular values of T (X).4 Then the columns

3 The results of this chapter also hold if QM and Q2N denote arbitrary left 5-real matrices that are also unitary.
4 Alternatively, Es can be obtained through a real-valued eigendecomposition of T (X)T (X)H (covariance approach).
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of
U s = QMEs (63.15)

span the estimated signal subspace, and spatial frequency estimates could be obtained from the eigen-
values of the complex-valued matrix 9 that solves Eq. (63.9). These complex-valued computations,
however, are not required because the transformed array steering matrix

D = QH
MA = [

d(µ1) d(µ2) · · · d(µd)
] ∈ R

M×d (63.16)

satisfies the following shift invariance property

K1D � = K2D, where � = diag
{
tan

(µi

2

)}d

i=1
(63.17)

and the transformed selection matrices K1 and K2 are given by

K1 = 2 · Re{QH
mJ 2 QM} and K2 = 2 · Im{QH

mJ 2 QM}. (63.18)

Here, Re {·} and Im {·} denote the real and the imaginary part, respectively. Notice that Eq. (63.17)
is similar to Eq. (63.7) except for the fact that all matrices in Eq. (63.17) are real-valued.

Let us take a closer look at the transformed selection matrices defined in Eq. (63.18). If J 2 is
sparse, K1 and K2 are also sparse. This is illustrated by the following example. For the ULA with
M = 6 sensors and maximum overlap sketched in Fig. 63.2 (a), J 2 is given by

J 2 =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 ∈ R

5×6.

According to Eq. (63.18), straightforward calculations yield the transformed selection matrices

K1 =




1 1 0 0 0 0
0 1 1 0 0 0
0 0

√
2 0 0 0

0 0 0 1 1 0
0 0 0 0 1 1


 and K2 =




0 0 0 −1 1 0
0 0 0 0 −1 1
0 0 0 0 0 −√

2
1 −1 0 0 0 0
0 1 −1 0 0 0


 .

In this case, applying K1 or K2 to Es only requires (m−1)d real additions and d real multiplications.
Asymptotically, the real-valued matrices Es and D span the same d-dimensional subspace, i.e.,

there is a nonsingular matrix T ∈ R
d×d such that D ≈ EsT . Substituting this into Eq. (63.17)

yields the real-valued invariance equation

K1Es ϒ ≈ K2Es ∈ R
m×d , where ϒ = T � T −1. (63.19)

Thus, the eigenvalues of the solution ϒ ∈ R
d×d to the matrix equation above are

ωi = tan
(µi

2

)
= 1

j

ejµi − 1

ejµi + 1
, 1 ≤ i ≤ d. (63.20)

This reveals a spatial frequency warping identical to the temporal frequency warping incurred in
designing a digital filter from an analog filter via the bilinear transformation. Consider 1 = λ

2
so that µi = −2π

λ
1 sinθi = −π sinθi . In this case, there is a one-to-one mapping between
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−1 < sinθi < 1, corresponding to the range of possible values for the DOAs −90◦ < θi < 90◦, and
−∞ < ωi < ∞.

Note that the fact that the eigenvalues of a real matrix have to either be real-valued or occur in
complex conjugate pairs gives rise to an ad-hoc reliability test. That is, if the final step of the algorithm
yields a complex conjugate pair of eigenvalues, then either the SNR is too low, not enough snapshots
have been averaged, or two corresponding signal arrivals have not been resolved. In the latter case,
taking the tangent inverse of the real part of the eigenvalues can sometimes provide a rough estimate
of the direction of arrival of the two closely spaced signals. In general, though, if the algorithm yields
one or more complex-conjugate pairs of eigenvalues in the final stage, the estimates should be viewed
as unreliable.

The element space implementation of 1-D Unitary ESPRIT is summarized in Table 63.2.

TABLE 63.2 Summary of 1-D Unitary ESPRIT in Element Space

1. Signal Subspace Estimation: Compute Es ∈ R
M×d

as the d dominant left singular vectors of

T (X) ∈ R
M×2N

.

2. Solution of the Invariance Equation: Then solve

K1Es︸ ︷︷ ︸
R

m×d

ϒ ≈ K2Es︸ ︷︷ ︸
R

m×d

by means of LS, TLS, or SLS.

3. Spatial Frequency Estimation: Calculate the eigenvalues of the resulting real-valued solution

ϒ = T � T −1 ∈ R
d×d

with � = diag
{
ωi

}d
i=1

• µi = 2 arctan
(
ωi

)
, 1 ≤ i ≤ d

63.3.2 1-D Unitary ESPRIT in DFT Beamspace

Reduced dimension processing in beamspace, yielding reduced computational complexity, is an
option when one has a priori information on the general angular locations of the incident signals,
as in a radar application, for example. In the case of a uniform linear array (ULA), transformation
from element space to DFT beamspace may be effected by pre-multiplying the data by those rows of
the DFT matrix that form beams encompassing the sector of interest. (Each row of the DFT matrix
forms a beam pointed to a different angle.) If there is no a priori information, one may examine the
DFT spectrum and apply Unitary ESPRIT in DFT beamspace to a small set of DFT values around
each spectral peak above a particular threshold. In a more general setting, Unitary ESPRIT in DFT
beamspace can simply be applied via parallel processing to each of a number of sets of successive DFT
values corresponding to overlapping sectors.

Note, though, that in the development to follow, we will initially employ all M DFT beams for the
sake of notational simplicity. Without loss of generality, we consider an omnidirectional ULA. Let
WH

M ∈ C
M×M be the scaled M-point DFT matrix with its M rows given by

wH
k = e

j

(
M−1

2

)
k 2π

M

[
1 e−jk 2π

M e−j2k 2π
M · · · e−j(M−1)k 2π

M

]
, 0 ≤ k ≤ (M − 1). (63.21)

Notice that WM is left 5-real or column conjugate symmetric, i.e., 5MWM = WM . Thus, as
pointed out for D in Eq. (63.16), the transformed steering matrix of the ULA

B = WH
MA = [

b(µ1) b(µ2) · · · b(µd)
] ∈ R

M×d (63.22)
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is real-valued. It has been shown in [24] that B satisfies a shift invariance property which is similar
to Eq. (63.17), namely

01B � = 02B, where � = diag
{
tan

(µi

2

)}d

i=1
. (63.23)

Here, the selection matrices 01 and 02 of size M × M are defined as

01 =




1 cos
(

π
M

)
0 0 · · · 0 0

0 cos
(

π
M

)
cos

(
2π
M

)
0 · · · 0 0

0 0 cos
(

2π
M

)
cos

(
3π
M

)
· · · 0 0

.

.

.

.

.

.

.

.

.

.

.

. ·
.
.
.

.

.

.

0 0 0 0 · · · cos
(
(M − 2) π

M

)
cos

(
(M − 1) π

M

)
(−1)M 0 0 0 · · · 0 cos

(
(M − 1) π

M

)




(63.24)

02 =




0 sin
(

π
M

)
0 0 · · · 0 0

0 sin
(

π
M

)
sin

(
2π
M

)
0 · · · 0 0

0 0 sin
(

2π
M

)
sin

(
3π
M

)
· · · 0 0

.

.

.

.

.

.

.

.

.

.

.

. ·
.
.
.

.

.

.

0 0 0 0 · · · sin
(
(M − 2) π

M

)
sin

(
(M − 1) π

M

)
0 0 0 0 · · · 0 sin

(
(M − 1) π

M

)




. (63.25)

As an alternative to Eq. (63.14), another real-valued square-root factor of the transformed sample
covariance matrix is given by[

Re {Y } Im {Y } ] ∈ R
M×2N, where Y = WH

MX ∈ C
M×N. (63.26)

The matrix Y can efficiently be computed via an FFT, which exploits the Vandermonde form of
the rows of the DFT matrix, followed by an appropriate scaling, cf. Eq. (63.21). Let the columns
of Es ∈ R

M×d contain the d left singular vectors corresponding to the d largest singular values
of Eq. (63.26). Asymptotically, the real-valued matrices Es and B span the same d-dimensional
subspace, i.e., there is a nonsingular matrix T ∈ R

d×d , such that B ≈ EsT . Substituting this into
Eq. (63.23), yields the real-valued invariance equation

01Es ϒ ≈ 02Es ∈ R
M×d , where ϒ = T � T −1. (63.27)

Thus, the eigenvalues of the solution ϒ ∈ R
d×d to the matrix equation above are also given by

Eq. (63.20).
It is a crucial observation that one row of the matrix equation (63.23) relates two successive compo-

nentsof the transformedarray steeringvectorsb(µi), cf. (63.24) and(63.25). This insight enablesus to
apply only B � M successive rows of WH

M (instead of all M rows) to the data matrix X in Eq. (63.26).
To stress the reduced number of rows, we call the resulting beamforming matrix WH

B ∈ C
B×M . The

number of its rows, B, depends on the width of the sector of interest and may be substantially less
than the number of sensors M . Thereby, the SVD of Eq. (63.26) and, therefore, also Es ∈ R

B×d

and the invariance equation (63.27) will have a reduced dimensionality. Employing the appropri-
ate subblocks of 01 and 02 as selection matrices, the algorithm is the same as the one described
previously except for its reduced dimensionality. In the sequel, the resulting selection matrices of

size (B −1)×B will be called 0
(B)
1 and 0

(B)
2 . The whole algorithm that operates in a B-dimensional

DFT beamspace is summarized in Table 63.3.
Consider, for example, a ULA of M = 8 sensors. The structure of the corresponding selection

matrices 01 and 02 is sketched in Fig. 63.3. Here, the symbol × denotes entries of both selection
matrices that might be nonzero, cf. (63.24) and (63.25). If one employed rows 4, 5, and 6 of WH

8 to
form B = 3 beams in estimating the DOAs of two closely spaced signal arrivals, as in the low-angle
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TABLE 63.3 Summary of 1-D Unitary ESPRIT in DFT Beamspace

0. Transformation to Beamspace: Y = WH
B

X ∈ C
B×N

1. Signal Subspace Estimation: Compute Es ∈ R
B×d

as the d dominant left singular vectors of[
Re {Y } Im {Y } ] ∈ R

B×2N
.

2. Solution of the Invariance Equation: Solve

0
(B)
1 Es︸ ︷︷ ︸

R
(B−1)×d

ϒ ≈ 0
(B)
2 Es︸ ︷︷ ︸

R
(B−1)×d

by means of LS, TLS, or SLS.

3. Spatial Frequency Estimation: Calculate the eigenvalues of the resulting real-valued solution

ϒ = T � T −1 ∈ R
d×d

with � = diag
{
ωi

}d
i=1

• µi = 2 arctan
(
ωi

)
, 1 ≤ i ≤ d

FIGURE 63.3: Structure of the selection matrices 01 and 02 for a ULA of M = 8 sensors. The
symbol × denotes entries of both selection matrices that might be nonzero. The shaded areas
illustrate how to choose the appropriate subblocks of the selection matrices for reduced dimension

processing, i.e., how to form 0
(B)
1 and 0

(B)
2 , if only B = 3 successive rows of WH

8 are applied to the
data matrix X. Here, the following two examples are used: (a) rows 4, 5, and 6. (b) rows 8, 1,
and 2.

radar tracking scheme described by Zoltowski and Lee [26], the corresponding 2× 3 subblock of the
selection matrices 01 and 02 is shaded in Fig. 63.3 (a).5 Notice that the first and the last (Mth) row
of WH

M steer beams that are also physically adjacent to one another (the wrap-around property of the
DFT). If, for example, one employed rows 8, 1, and 2 of WH

8 to form B = 3 beams in estimating the
DOAs of two closely spaced signal arrivals, the corresponding subblocks of the selection matrices 01
and 02 are shaded in Fig. 63.3 (b).6

5 Here, the first row of 0
(3)
1 and 0

(3)
2 combines beams 4 and 5, while the second row of 0

(3)
1 and 0

(3)
2 combines beams

5 and 6.
6Here, the first row of 0

(3)
1 and 0

(3)
2 combines beams 1 and 2, while the second row of 0

(3)
1 and 0

(3)
2 combines beams

1 and 8.
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63.4 UCA-ESPRIT for Circular Ring Arrays

FIGURE 63.4: Definitions of azimuth (−180◦ < φi ≤ 180◦) and elevation (0◦ ≤ θi ≤ 90◦). The
direction cosines ui and vi are the rectangular coordinates of the projection of the corresponding
point on the unit ball onto the equatorial plane.

UCA-ESPRIT [15, 16, 17] is a 2-D angle estimation algorithm developed for use with uniform
circular arrays (UCAs). The algorithm provides automatically paired azimuth and elevation angle
estimates of far-field signals incident on the UCA via a closed-form procedure. The rotational
symmetry of the UCA makes it desirable for a variety of applications where one needs to discriminate
in both azimuth and elevation, as opposed to just conical angle of arrival which is all the ULA can
discriminate on. For example, UCAs are commonly employed as part of an anti-jam spatial filter for
GPS receivers. Some experimental UCA based systems are described in [4]. The development of a
closed-form 2-D angle estimation technique for a UCA provides further motivation for the use of a
UCA in a given application.

Consider an M element UCA in which the array elements are uniformly distributed over the
circumference of a circle of radius R. We will assume that the array is located in the x-y plane, with
its center at the origin of the coordinate system. The elevation angles θi and azimuth angles φi of
the d impinging sources are defined in Fig. 63.4, as are the direction cosines ui and vi, 1 ≤ i ≤ d .
UCA-ESPRIT is premised on phase mode excitation-based beamforming. The maximum phase
mode (integer valued) excitable by a given UCA is

K ≈ 2πR

λ
,

where λ is the common (carrier) wavelength of the incident signals. Phase mode excitation-based
beamforming requires M > 2K array elements (M = 2K + 3 is usually adequate). UCA-ESPRIT
can resolve a maximum of dmax = K −1 sources. As an example, if the array radius is r = λ, K = 6
(the largest integer smaller than 2π) and at least M = 15array elements are needed. UCA-ESPRIT
can resolve five sources in conjunction with this UCA.

UCA-ESPRIT operates in aK ′ = 2K+1dimensional beamspace. It employs aK ′×M beamform-
ing matrix to transform from element space to beamspace. After this transformation, the algorithm
has the same three basic steps of any ESPRIT-type algorithm: (1) the computation of a basis for the
signal subspace, (2) the solution to an (in general) overdetermined system of equations derived from
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the matrix of vectors spanning the signal subspace, and (3) the computation of the eigenvalues of the
solution to the system of equations formed in Step (2). As illustrated in Fig. 63.6, the ith eigenvalue
obtained in the final step is ideally of the form ξi = sinθi ejφi , where φi and θi are the azimuth and
elevation angles of the ith source. Note that

ξi = sinθi ejφi = ui + jvi, 1 ≤ i ≤ d,

where ui and vi are the direction cosines of the ith source relative to the x- and y-axis, respectively,
as indicated in Fig. 63.4.

The formulation of UCA-ESPRIT is based on the special structure of the resulting K ′-dimensional
beamspace manifold. The following vector and matrix definitions are needed to summarize the
algorithm in Table 63.4.

vH
k = 1

M

[
1 ejk 2π

M ej2k 2π
M · · · ej(M−1)k 2π

M

]
(63.28)

V = √
M

[
v−K · · · v−1 v0 v1 · · · vK

] ∈ C
M×K ′

Cv = diag
{

jk
}K

k=−K
∈ C

K ′×K ′

FH
r = QT

K ′CvV
H ∈ C

K ′×M (63.29)

Co = diag
{
sign(k)−k

}K

k=−K
∈ R

K ′×K ′

D = diag
{
(−1)|k|}K

k=−(K−2)
∈ R

(K ′−2)×(K ′−2)

0 = λ

πr
· diag {k}(K−1)

k=−(K−1) ∈ R
(K ′−2)×(K ′−2)

Note that the columns of the matrixV consist of the DFT weight vectorsvk defined in Eq. (63.28). The
beamforming matrix FH

r in Eq. (63.29) synthesizes a real-valued beamspace manifold and facilitates
signal subspace estimation via a real-valued SVD or eigendecomposition. Recall that the sparse left

5-real matrixQK ′ ∈ C
K ′×K ′

has been defined in Eq. (63.13). The complete UCA-ESPRIT algorithm
is summarized in Table 63.4.

63.4.1 Results of Computer Simulations

Simulations were conducted with a UCA of radius R = λ, with K = 6 and M = 19 (perfor-
mance close to that reported below can be expected even if M = 15 elements are employed).
The simulation employed two sources with arrival angles given by (θ1, φ1) = (72.73◦, 90◦) and
(θ2, φ2) = (50.44◦, 78◦). The sources were highly correlated, with the correlation coefficient re-
ferred to the center of the array being 0.9ej

π
4 . The signal-to-noise ratio (SNR) was 10 dB (per array

element) for each source. The number of snapshots was N = 64, and arrival angle estimates were
obtained for 200 independent trials. Figure 63.5 depicts the results of the simulation. Here, the
UCA-ESPRIT eigenvalues ξi are denoted by the symbol ×.7 The results from all 200 trials are super-
imposed in the figure. The eigenvalues are seen to be clustered around the expected locations (the
dashed circles indicate the true elevation angles).

7 The horizontal axis represents Re{ξi }, and the vertical axis represents Im{ξi }.

c©1999 by CRC Press LLC



TABLE 63.4 Summary of UCA-ESPRIT

0. Transformation to Beamspace: Y = FH
r X ∈ C

K′×N

1. Signal Subspace Estimation: Compute Es ∈ R
K′×d

as the d dominant left singular vectors of[
Re {Y } Im {Y } ] ∈ R

K′×2N
.

2. Solution of the Invariance Equation:

• Compute Eu = CoQK′Es . Form the matrix E−1 that consists of all but the last two rows of Eu. Similarly
form the matrix E0 that consists of all but the first and last rows of Eu.

• Compute 9 ∈ C
2d×d

, the least squares solution to the system

[
E−1 D5(K′−2)E−1

]
9 = 0E0 ∈ C

(K′−2)×d
.

Recall that the overbar denotes complex conjugation. Form 9 by extracting the upper d × d block from 9.
Note that 9 can be computed efficiently by solving a real-valued system of 2d equations (see [17]).

3. Spatial Frequency Estimation: Compute the eigenvalues ξi , 1 ≤ i ≤ d, of 9 ∈ C
d×d

. The estimates of the elevation
and azimuth angles of the ith source are

θi = arcsin(|ξi |) and φi = arg(ξi ),

respectively. If direction cosine estimates are desired, we have

ui = Re{ξi } and vi = Im{ξi }.
Again, ξi can be efficiently computed via a real-valued EVD (see [17]).

63.5 FCA-ESPRIT for Filled Circular Arrays

The use of a circular ring array and the attendant use of UCA-ESPRIT is ideal for applications where
the array aperture is not very large as on the top of a mobile communications unit. For much larger
array apertures as in phased array surveillance radars, too much of the aperture is devoid of elements
so that a lot of the signal energy impinging on the aperture is not intercepted. As an example, each of
the four panels comprising either the SPY-1A or SPY-1B radars of the AEGIS series is composed of
4400 identical elements regularly spaced on a flat panel over a circular aperture [19]. The sampling
lattice is hexagonal. Recent prototype arrays for satellite-based communications have also employed
the filled circular array geometry [2].

This section presents an algorithm similar to UCA-ESPRIT that provides the same closed-form
2-D angle estimation capability for a Filled Circular Array (FCA). Similar to UCA-ESPRIT, the far
field pattern arising from the sampled excitation is approximated by the far field pattern arising from
the continuous excitation from which the sampled excitation is derived through sampling. (Note,
Steinberg [20] shows that the array pattern for a ULA of N elements with interelement spacing d is
nearly identical to the far field pattern for a continuous linear aperture of length (N + 1)d , except
near the fringes of the visible region.) That is, it is assumed that the interelement spacings have
been chosen so that aliasing effects are negligible as in the generation of phase modes with a single
ring array. It can be shown that this is the case for any sampling lattice as long as the inter-sensor
spacings is roughly half a wavelength or less on the average and that the sources of interest are at
least 20◦ in elevation above the plane of the array, i.e., we require that the elevation angle of the ith
source satisfies 0 ≤ θi ≤ 70◦. In practice, many phased arrays only provide reliable coverage for
0 ≤ θi ≤ 60o (plus or minus 60◦ away from boresite) due to a reduced aperture effect and the fact
that the gain of each individual antenna has a significant roll-off at elevation angles near the horizon,
i.e., the plane of the array. FCA-ESPRIT has been successfully applied to rectangular, hexagonal,
polar raster, and random sampling lattices.

The key to the development of UCA-ESPRIT was phase-mode (DFT) excitation and exploitation
of a recurrence relationship that Bessel functions satisfy. In the case of a filled circular array, the same
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FIGURE 63.5: Plot of the UCA-ESPRIT eigenvalues ξ1 = sinθ1e
jφ1 and ξ2 = sinθ2e

jφ2 for 200 trials.

type of processing is facilitated by the use of a phase-mode dependent aperture taper derived from
an integral relationship that Bessel functions satisfy.

Consider an M element FCA where the array elements are distributed over a circular aperture of
radius R. We assume that the array is centered at the origin of the coordinate system and contained
in the x-y plane. The ith element is located at a radial distance ri from the origin and at an angle γi

relative to the x-axis measured counter-clockwise in the x-y plane. In contrast to a UCA, 0 ≤ ri ≤ R,
i.e., the elements lie within, rather than on, a circle of radius R. The beamforming weight vectors
employed in FCA-ESPRIT are

wm = 1

M




A1
(

r1
R

)|m|
e−jmγ1

...

Ai

(
ri
R

)|m|
e−jmγi

...

AM

(
rM
R

)|m|
e−jmγM




, (63.30)

where m ranges from −K to K with K ≈ 2πR
λ

. Here Ai is proportional to the area surrounding the
ith array element. Ai is a constant (and can be omitted) for hexagonal and rectangular lattices and
proportional to the radius (Ai = ri) for a polar raster. The transformation from element space to
beamspace is effected through pre-multiplication by the beamforming matrix

W = √
M

[
w−K · · · w−1 w0 w1 · · · wK

] ∈ C
M×K ′

(K ′ = 2K + 1). (63.31)

The following matrix definitions are needed to summarize FCA-ESPRIT.

B = WC ∈ C
M×K ′

(63.32)

C = diag
{
sign(k) · jk

}K

k=−K
∈ C

K ′×K ′
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FIGURE 63.6: Illustrating the form of signal roots (eigenvalues) obtained with UCA-ESPRIT or
FCA-ESPRIT.

Br = BFQ̄K ′ ∈ C
M×K ′

F = diag
(
[(−1)−M−1, · · · , (−1)−2, 1, 1, · · · , 1]

)
∈ R

K ′×K ′

0 = λ

πR
diag([

M−1︷ ︸︸ ︷
−M, · · · , −3, −2, 0,

M−1︷ ︸︸ ︷
2, · · · , M]) ∈ R

(K ′−2)×(K ′−2)

C1 = diag([
M−2︷ ︸︸ ︷

1, · · · , 1, −1, −1,

M−1︷ ︸︸ ︷
1, · · · , 1]) ∈ R

(K ′−2)×(K ′−2)

The whole algorithm is summarized in Table 63.5. The beamforming matrix BH
r synthesizes a

real-valued manifold that facilitates signal subspace estimation via a real-valued SVD or eigenvalue
decomposition in the first step. As in UCA-ESPRIT, the eigenvalues of 9 computed in the final step
are asymptotically of the form sin(θi)e

jφi , where θi and φi are the elevation and azimuth angles of
the ith source, respectively.

63.5.1 Computer Simulation

As an example, a simulation involving a random filled array is presented. The element locations
are depicted in Fig. 63.7. The outer radius is R = 5λ and the average distance between elements
is λ/4. Two plane waves of equal power were incident upon the array. The Signal to Noise Ratio
(SNR) per antenna per signal was 0 dB. One signal arrived at 10◦ elevation and 40◦ azimuth, while
the other arrived at 30◦ elevation and 60◦ azimuth. Figure 63.8 shows the results of 32 independent
trials of FCA-ESPRIT overlaid; each execution of the algorithm (with a different realization of the
noise) produced two eigenvalues. The eigenvalues are observed to be clustered around the expected
locations (the dashed circles indicate the true elevation angles).

63.6 2-D Unitary ESPRIT

For uniform circular arrays and filled circular arrays, UCA-ESPRIT and FCA-ESPRIT provide closed-
form, automaticallypaired2-Dangle estimates as longas thedirectioncosinepairof each signal arrival
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TABLE 63.5 Summary of FCA-ESPRIT

0. Transformation to Beamspace: Y = BH
r X

1. Signal Subspace Estimation: Compute Es ∈ R
K′×d

as the d dominant left singular vector of[
Re {Y } Im {Y } ] ∈ R

K′×2N
.

2. Solution of the Invariance Equation:

• Compute Eu = FQK′Es . Form the matrices E−1, E0, and E1 that consist of all but the last two, first and
last, and first two rows, respectively.

• Compute 9 ∈ C
2d×d

, the least squares solution to the system

[
E−1 C1E1

]
9 = 0E0 ∈ C

(K′−2)×d
.

Form 9 by extracting the upper d × d block from 9.

3. Spatial Frequency Estimation: Compute the eigenvalues ξi , 1 ≤ i ≤ d , of 9 ∈ C
d×d

. The estimates of the
elevation and azimuth angles of the ith source are

θi = arcsin(|ξi |) and φi = arg(ξi ),

respectively.

FIGURE 63.7: Random filled array.

is unique. In this section, we develop 2-D Unitary ESPRIT, a closed-form 2-D angle estimation algo-
rithm that achieves automatic pairing in a similar fashion. It is applicable to 2-D centro-symmetric
array configurations with a dual invariance structure such as uniform rectangular arrays (URAs).
In the derivations of UCA-ESPRIT and FCA-ESPRIT it was necessary to approximate the sampled
aperture pattern by the continuous aperture pattern. Such an approximation is not required in the
development of 2-D Unitary ESPRIT.

Apart from the 2-D extension presented here, Unitary ESPRIT has also been extended to the
R-dimensional case to solve the R-dimensional harmonic retrieval problem, where R ≥ 3. R-D
Unitary ESPRIT is a closed-form algorithm to estimate several undamped R-dimensional modes
(or frequencies) along with their correct pairing. In [6], automatic pairing of the R-dimensional
frequency estimates is achieved through a new simultaneous Schur decomposition of R real-valued,
non-symmetric matrices that reveals their “average eigenstructure”. Like its 1-D and 2-D coun-
terparts, R-D Unitary ESPRIT inherently includes forward-backward averaging and is efficiently
formulated in terms of real-valued computations throughout. In the array processing context, a
three-dimensional extension of Unitary ESPRIT can be used to estimate the 2-D arrival angles and
carrier frequencies of several impinging wavefronts simultaneously.
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FIGURE 63.8: Plot of the FCA-ESPRIT eigenvalues from 32 independent trials.

63.6.1 2-D Array Geometry

Consider a 2-D centro-symmetric sensor array of M elements lying in the x-y plane (Fig. 63.4).
Assume that the array also exhibits a dual invariance, i.e., two identical subarrays of mx elements are
displaced by 1x along the x-axis, and another pair of identical subarrays, consisting of my elements
each, is displaced by 1y along the y-axis. Notice that the four subarrays can overlap and mx is not
required to equalmy . Such array configurations include uniform rectangular arrays (URAs), uniform
rectangular frame arrays (URFAs), i.e., URAs without some of their center elements, and cross arrays
consisting of two orthogonal linear arrays with a common phase center as shown in Fig. 63.9.8

FIGURE 63.9: Centro-symmetric array configurations with a dual invariance structure: (a) URA
with M = 12, mx = 9, my = 8. (b) URFA with M = 12, mx = my = 6. (c) Cross array with
M = 10, mx = 3, my = 5. (d) M = 12, mx = my = 7.

Incident on the array are d narrowband planar wavefronts with wavelength λ, azimuth φi , and
elevation θi , 1 ≤ i ≤ d . Let

ui = cosφi sinθi and vi = sinφi sinθi, 1 ≤ i ≤ d,

denote the direction cosines of the ith source relative to the x- and y-axes, respectively. These
definitions are illustrated in Fig. 63.4. The fact that ξi = ui + jvi = sinθi ejφi yields a simple formula

8 In the examples of Fig. 63.9, all values of mx and my correspond to selection matrices with maximum overlap in both
directions. For a URA of M = Mx · My elements, cf. Fig. 63.9 (a), this assumption implies mx = (Mx − 1)My and
my = Mx

(
My − 1

)
.
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FIGURE 63.10: Subarray selection for a URA of M = 4 ·4 = 16sensor elements (maximum overlap
in both directions: mx = my = 12).

to determine azimuth φi and elevation θi from the corresponding direction cosines ui and vi , namely

φi = arg(ξi) and θi = arcsin(|ξi |) , with ξi = ui + jvi, 1 ≤ i ≤ d. (63.33)

Similar to the 1-D case, the data matrix X is an M ×N matrix composed of N snapshots x(tn), 1 ≤
n ≤ N, of data as columns. Referring to Fig. 63.10 for a URA of M = 4 × 4 = 16 sensors as an
illustrative example, the antenna element outputs are stacked columnwise. Specifically, the first
element of x(tn) is the output of the antenna in the upper left corner. Then sequentially progress
downwards along the positive x-axis such that the fourth element ofx(tn) is the output of the antenna
in the bottom left corner. The fifth element of x(tn) is the output of the antenna at the top of the
second column; the eighth element of x(tn) is the output of the antenna at the bottom of the second
column, etc. This forms a 16× 1 vector at each sampling instant tn.

Similar to the 1-D case, the array measurements may be expressed as x(t) = As(t) + n(t) ∈ C
M .

Due to the centro-symmetry of the array, the steering matrix A ∈ C
M×d satisfies Eq. (63.12). The

goal is to construct two pairs of selection matrices that are centro-symmetric with respect to each
other, i.e.,

Jµ2 = 5mx Jµ15M and J ν2 = 5my J ν15M, (63.34)

and cause the array steering matrix A to satisfy the following two invariance properties,

Jµ1A8µ = Jµ2A and J ν1A8ν = J ν2A, (63.35)

where the diagonal matrices

8µ = diag
{
ejµi

}d

i=1 and 8ν = diag
{
ejνi

}d

i=1 (63.36)

are unitary and contain the desired 2-D angle information. Here µi = 2π
λ

1xui and νi = 2π
λ

1yvi

are the spatial frequencies in x- and y-direction, respectively.
Figure 63.10 visualizes a possible choice of the selection matrices for a URA of M = 4 × 4 = 16

sensor elements. Given the stacking procedure described above and the 1-D selection matrices for a
ULA of 4 elements

J
(4)
1 =


 1 0 0 0

0 1 0 0
0 0 1 0


 and J

(4)
2 =


 0 1 0 0

0 0 1 0
0 0 0 1


 ,

c©1999 by CRC Press LLC



the appropriate selection matrices corresponding to maximum overlap are

Jµ1 = IMy ⊗ J
(Mx)
1 =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0




∈ R
12×16

Jµ2 = IMy ⊗ J
(Mx)
2 =




0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




∈ R
12×16

J ν1 = J
(My)

1 ⊗ IMx =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0




∈ R
12×16
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J ν2 = J
(My)

2 ⊗ IMx =




0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




∈ R
12×16,

where Mx = My = 4. Notice, however, that it is not required to compute all four selection
matrices explicitly, since they are related via Eq. (63.34). In fact, to be able to compute the four
transformed selection matrices for 2-D Unitary ESPRIT, it is sufficient to specify Jµ2 and J ν2,
cf. (63.38) and (63.39).

63.6.2 2-D Unitary ESPRIT in Element Space

Similar to Eq. (63.16) in the 1-D case, let us define the transformed 2-D array steering matrix
as D = QH

MA. Based on the two invariance properties of the 2-D array steering matrix A in
Eq. (63.35), it is a straightforward 2-D extension of the derivation of 1-D Unitary ESPRIT to show
that the transformed array steering matrix D satisfies

Kµ1D · �µ = Kµ2D and Kν1D · �ν = Kν2D, (63.37)

where the two pairs of transformed selection matrices are defined as

Kµ1 = 2 · Re{QH
mx

Jµ2 QM} Kµ2 = 2 · Im{QH
mx

Jµ2 QM} (63.38)

Kν1 = 2 · Re{QH
my

J ν2 QM} Kν2 = 2 · Im{QH
my

J ν2 QM} (63.39)

and the real-valued diagonal matrices

�µ = diag
{
tan

(µi

2

)}d

i=1
and �ν = diag

{
tan

(νi

2

)}d

i=1
(63.40)

contain the desired (spatial) frequency information.
Given the noise-corrupted data matrix X, a real-valued matrix Es , spanning the dominant sub-

space of T (X), is obtained as described in Section 63.3.1 for the 1-D case. Asymptotically or without
additive noise, Es and D span the same d-dimensional subspace, i.e., there is a nonsingular matrix T

of size d×d such that D ≈ EsT . Substituting this relationship into Eq. (63.37) yields two real-valued
invariance equations

Kµ1Esϒµ ≈ Kµ2Es ∈ R
mx×d and Kν1Esϒν ≈ Kν2Es ∈ R

my×d , (63.41)

where ϒµ = T �µ T −1 ∈ R
d×d and ϒν = T �ν T −1 ∈ R

d×d . Thus, ϒµ and ϒν are related with
the diagonal matrices �µ and �ν via eigenvalue preserving similarity transformations. Moreover,
the real-valued matrices ϒµ and ϒν share the same set of eigenvectors. As in the 1-D case, the two
real-valued invariance equations (63.41) can be solved independently via LS, TLS, or SLS [9]. As
an alternative, they may be solved jointly via 2-D SLS, which is a 2-D extension of structured least
squares (SLS) [8].
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63.6.3 Automatic Pairing of the 2-D Frequency Estimates

Asymptotically or without additive noise, the real-valued eigenvalues of the solutions ϒµ ∈ R
d×d

and ϒν ∈ R
d×d to the invariance equations above are given by tan(µi/2) and tan(νi/2), respectively.

If theses eigenvalues were calculated independently, it would be quite difficult to pair the resulting two
distinct sets of frequency estimates. Notice that one can choose a real-valued eigenvector matrix T

such that all matrices that appear in the spectral decompositions of ϒµ = T �µ T −1 and ϒν =
T �ν T −1 are real-valued. Moreover, the subspace spanned by the columns of T ∈ R

d×d is unique.
These observations are critical to achieve automatic pairing of the spatial frequencies µi and νi ,
1 ≤ i ≤ d .

With additive noise and a finite number of snapshots N , however, the real-valued matrices ϒµ

and ϒν do not exactly share the same set of eigenvectors. To determine an approximation of the set
of common eigenvectors from one of these matrices is, obviously, not the best solution, since this
strategy would rely on an arbitrary choice and would also discard information contained in the other
matrix. Moreover, ϒµ and ϒν might have some degenerate (multiple) eigenvalues, while both of
them have well determined common eigenvectors T (for N → ∞ or σ 2

N → 0). 2-D Unitary ESPRIT
circumvents these difficulties and achieves automatic pairing of the spatial frequency estimates µi and
νi by computing the eigenvalues of the “complexified” matrix ϒµ + jϒν since this complex-valued
matrix may be spectrally decomposed as

ϒµ + jϒν = T
(
�µ + j�ν

)
T −1. (63.42)

Here, automatically paired estimates of �µ and �ν in Eq. (63.40) are given by the real and imaginary
parts of the complex eigenvalues of ϒµ + jϒν . The maximum number of sources 2-D Unitary
ESPRIT can handle is the minimum of mx and my , assuming that at least d/2 snapshots are available.
If only a single snapshot is available (or more than two sources are highly correlated), one can
extract d/2 or more identical subarrays out of the overall array to get the effect of multiple snapshots
(spatial smoothing), thereby decreasing the maximum number of sources that can be handled. A
brief summary of the described element space implementation of 2-D Unitary ESPRIT is given in
Table 63.6.

TABLE 63.6 Summary of 2-D Unitary ESPRIT in Element Space

1. Signal Subspace Estimation: Compute Es ∈ R
M×d

as the d dominant left singular vectors of T (X) ∈ R
M×2N

.

2. Solution of the Invariance Equations: Solve

Kµ1Es︸ ︷︷ ︸
Rmx×d

ϒµ ≈ Kµ2Es︸ ︷︷ ︸
Rmx×d

and Kν1Es︸ ︷︷ ︸
R

my×d

ϒν ≈ Kν2Es︸ ︷︷ ︸
R

my×d

by means of LS, TLS, SLS, or 2-D SLS.

3. Spatial Frequency Estimation: Calculate the eigenvalues of the complex-valued d × d matrix

ϒµ + jϒν = T 3 T −1 with 3 = diag
{
λi

}d
i=1

• µi = 2 arctan
(
Re

{
λi

})
, 1 ≤ i ≤ d

• νi = 2 arctan
(
Im

{
λi

})
, 1 ≤ i ≤ d

It is instructive to examine a very simple numerical example. Consider a uniform rectangular
array (URA) of M = 2 × 2 = 4 sensor elements, i.e., Mx = My = 2. Effecting maximum overlap,
we have mx = my = 2. For the sake of simplicity, assume that the true covariance matrix of the
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noise-corrupted measurements

Rxx = E{x(t)xH (t)} = ARssA
H + σ 2

NI4 =




3 0 1− j −1 + j

0 3 1− j 1 − j

1 + j 1 + j 3 0
−1 − j 1 + j 0 3




is known. Here, Rss = E{s(t)sH (t)} ∈ C
d×d denotes the unknown signal covariance matrix.

Furthermore, the measurement vector x(t) is defined as

x(t) = [
x11(t) x12(t) x21(t) x22(t)

]T
. (63.43)

In this example, we have to use a covariance approach instead of the direct data approach summarized
in Table 63.6, since the array measurements x(t) themselves are not known. To this end, we will
compute theeigendecompositionof the realpartof the transformedcovariancematrix as, for instance,
discussed in [25]. According to Eq. (63.13), the left 5-real transformation matrices QM and Qmx

=
Qmy

take the form

Q4 = 1√
2




1 0 j 0
0 1 0 j

0 1 0 −j

1 0 −j 0


 and Q2 = 1√

2

[
1 j

1 −j

]
,

respectively. Therefore, we have

RQ = Re
{
QH

4 RxxQ4

}
= QH

4 RxxQ4 =




2 1 1 −1
1 4 −1 −1
1 −1 4 −1

−1 −1 −1 2


 . (63.44)

The eigenvalues of RQ are given by %1 = 5, %2 = 5, %3 = 1, and %4 = 1. Clearly, %1 and %2 are
the dominant eigenvalues, and the variance of the additive noise is identified as σ 2

N = %3 = %4 = 1.
Therefore, there are d = 2 impinging wavefronts. The columns of

Es =




1 0
1 1
1 −1

−1 0




contain eigenvectors of RQ corresponding to the d = 2 largest eigenvalues %1 and %2. The four
selection matrices

Jµ1 =
[

1 0 0 0
0 0 1 0

]
, Jµ2 =

[
0 1 0 0
0 0 0 1

]
,

J ν1 =
[

1 0 0 0
0 1 0 0

]
, J ν2 =

[
0 0 1 0
0 0 0 1

]
,

are constructed in accordance with Eq. (63.43), cf. Fig. 63.10, yielding

Kµ1 =
[

1 1 0 0
0 0 1 1

]
, Kµ2 =

[
0 0 −1 1
1 −1 0 0

]
,

Kν1 =
[

1 1 0 0
0 0 1 −1

]
, Kν2 =

[
0 0 −1 −1
1 −1 0 0

]
,
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according to Eq. (63.38) and Eq. (63.39). With these definitions, the invariance equations (63.41)
turn out to be[

2 1
0 −1

]
ϒµ ≈

[ −2 1
0 −1

]
and

[
2 1
2 −1

]
ϒν ≈

[
0 1
0 −1

]
.

Solving these matrix equations, we get

ϒµ =
[ −1 0

0 1

]
and ϒν =

[
0 0
0 1

]
.

Finally, the eigenvalues of the “complexified” 2 × 2 matrix ϒµ + jϒν are observed to be λ1 = −1
and λ2 = 1 + j, corresponding to the spatial frequencies

µ1 = −π

2
, ν1 = 0 and µ2 = π

2
, ν2 = π

2
.

If we assume that 1x = 1y = λ/2, the direction cosines are given by ui = µi/π and vi = νi/π, i =
1, 2. According to Eq. (63.33), the corresponding azimuth and elevation angles can be calculated as

φ1 = 180◦, θ1 = 30◦, and φ2 = 45◦, θ2 = 45◦.

63.6.4 2-D Unitary ESPRIT in DFT Beamspace

Here, we will restrict the presentation of 2-D Unitary ESPRIT in DFT beamspace to uniform rectan-
gular arrays (URAs) of M = Mx · My identical sensors, cf. Fig. 63.10.9 Without loss of generality,
assume that the M sensors are omnidirectional and that the centroid of the URA is chosen as the
phase reference.

Let us form Bx out of Mx beams in x-direction and By out of My beams in y-direction, yielding
a total of B = Bx · By beams. Then the corresponding scaled DFT-matrices WH

Bx
∈ C

Bx×Mx and

WH
By

∈ C
By×My are formed as discussed in Section 63.3.2. Now, viewing the array output at a given

snapshot as an Mx ×My matrix, premultiply this matrix by WH
Bx

and postmultiply it by WBy .10 Then
apply the vec{·}-operator, and place the resulting B ×1vector (B = Bx ·By) as a column of a matrix
Y ∈ C

B×N . The vec{·}-operator maps a Bx × By matrix to a B × 1 vector by stacking the columns
of the matrix. Note that if X denotes the M × N complex-valued element space data matrix, it is
easy to show that the relationship between Y and X may be expressed as Y = (WH

By
⊗ WH

Bx
)X [24].

Here, the symbol ⊗ denotes the Kronecker matrix product [5].
Let the columns of Es ∈ R

B×d contain the d left singular vectors of[
Re {Y } Im {Y } ] ∈ R

B×2N (63.45)

corresponding to itsd largest singular values. To setup two invariance equations similar toEq. (63.41),
but with a reduced dimensionality, let us define the selection matrices

0µ1 = IBy ⊗ 0
(Bx)
1 and 0µ2 = IBy ⊗ 0

(Bx)
2 (63.46)

9 In [24], we have also described how to use 2-D Unitary ESPRIT in DFT beamspace for cross arrays as depicted in
Fig. 63.9 (c).
10 This can be achieved via a 2-D FFT with appropriate scaling.
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of size bx × B for the x-direction (bx = (Bx − 1) · By) and

0ν1 = 0
(By)

1 ⊗ IBx and 0ν2 = 0
(By)

2 ⊗ IBx (63.47)

of size by × B for the y-direction (by = Bx · (By − 1)). Then ϒµ ∈ R
d×d and ϒν ∈ R

d×d can be
calculated as the LS, TLS, SLS, or 2-D SLS solution of

0µ1Esϒµ ≈ 0µ2Es ∈ R
bx×d and 0ν1Esϒν ≈ 0ν2Es ∈ R

by×d , (63.48)

respectively. Finally, the desired automatically paired spatial frequency estimates µi and νi , 1 ≤ i ≤
d , are obtained from the real and imaginary part of the eigenvalues of the “complexified” matrix
ϒµ + jϒν as discussed in Section 63.6.2. Here, the maximum number of sources we can handle is
given by the minimum of bx and by , assuming that at least d/2 snapshots are available. A summary
of 2-D Unitary ESPRIT in DFT beamspace is presented in Table 63.7.

TABLE 63.7 Summary of 2-D Unitary ESPRIT in DFT Beamspace

0. Transformation toBeamspace: Computea2-DDFT(withappropriate scaling)of theMx×My matrixof arrayoutputs

at each snapshot, apply the vec{·}-operator, and place the result as a column of Y H⇒ Y =
(
WH

By
⊗ WH

Bx

)
X ∈

C
B×N

(B = Bx · By).

1. Signal Subspace Estimation: Compute Es ∈ R
B×d

as the d dominant left singular vectors of[
Re {Y } Im {Y } ] ∈ R

B×2N
.

2. Solution of the Invariance Equations: Solve

0µ1Es︸ ︷︷ ︸
Rbx×d

ϒµ ≈ 0µ2Es︸ ︷︷ ︸
Rbx×d

and 0ν1Es︸ ︷︷ ︸
R

by×d

ϒν ≈ 0ν2Es︸ ︷︷ ︸
R

by×d

bx = (Bx − 1) · By by = Bx · (By − 1)

by means of LS, TLS, SLS, or 2-D SLS.

3. Spatial Frequency Estimation: Calculate the eigenvalues of the complex-valued d × d matrix

ϒµ + jϒν = T 3 T −1 with 3 = diag
{
λi

}d
i=1

• µi = 2 arctan
(
Re

{
λi

})
, 1 ≤ i ≤ d

• νi = 2 arctan
(
Im

{
λi

})
, 1 ≤ i ≤ d

63.6.5 Simulation Results

Simulations were conducted employing a URA of 8 × 8 elements, i.e., Mx = My = 8, with 1x =
1y = λ/2. The source scenario consisted of d = 3 equi-powered, uncorrelated sources located at
(u1, v1) = (0, 0), (u2, v2) = (1/8, 0), and (u3, v3) = (0, 1/8), where ui and vi are the direction
cosines of the ith source relative to the x- and y-axes, respectively. Notice that sources 1 and 2 have
the same v-coordinates, while sources 2 and 3 have the same u-coordinates. A given trial run at
a given SNR level (per source per element) involved N = 64 snapshots. The noise was i.i.d. from
element to element and from snapshot to snapshot. The RMS error defined as

RMSEi =
√

E{(ûi − ui)2} + E{(v̂i − vi)2}, i = 1, 2, 3, (63.49)

was employed as the performance metric. Let (ûik , v̂ik ) denote the coordinate estimates of the ith
source obtained at the kth run. Sample performance statistics were computed from K = 1000
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FIGURE 63.11: RMS error of source 1 at (u1, v1) = (0, 0) in the u-v plane as a function of the SNR
(8 × 8 sensors, N = 64, 1000trial runs).

FIGURE 63.12: RMS error of source 2 at (u2, v2) = (1/8, 0) in the u-v plane as a function of the
SNR (8 × 8 sensors, N = 64, 1000trial runs).
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FIGURE 63.13: RMS error of source 3 at (u3, v3) = (0, 1/8) in the u-v plane as a function of the
SNR (8 × 8 sensors, N = 64, 1000trial runs).

independent trials as

̂RMSEi =
√√√√ 1

K

T∑
k=1

{
(ûik − ui)2 + (v̂ik − vi)2

}
, i = 1, 2, 3. (63.50)

2-D Unitary ESPRIT in DFT beamspace was implemented with a set of B = 9 beams centered at
(u, v) = (0, 0), using Bx = 3 out of Mx = 8 in x-direction (rows 8, 1, and 2 of WH

8 ) and also
By = 3 out of My = 8 in y-direction (again, rows 8, 1, and 2 of WH

8 ). Thus, the corresponding

subblocks of the selection matrices 01 ∈ R
8×8 and 02 ∈ R

8×8, used to form 0
(Bx)
1 and 0

(Bx)
2 in

Eq. (63.46) and also used to form 0
(By)

1 and 0
(By)

2 in Eq. (63.47), are shaded in Fig. 63.3 (b). The bias
of 2-D Unitary ESPRIT in element space and DFT beamspace was found to be negligible, facilitating
comparison with the Cramér-Rao (CR) lower bound [15]. The resulting performance curves are
plotted in Figs. 63.11, 63.12, and 63.13. We have also included theoretical performance predictions
of both implementations based on an asymptotic performance analysis [13, 14]. Observe that the
empirical RMSEs closely follow the theoretical predictions, except for deviations at low SNRs. The
performance of the DFT beamspace implementation is comparable to that of the element space
implementation. However, the former requires significantly less computations than the latter, since
it operates in a B = Bx · By = 9 dimensional beamspace as opposed to an M = Mx · My = 64
dimensional element space.

For SNRs lower than−9dB, theDFTbeamspace versionoutperformed the element space versionof
2-D Unitary ESPRIT. This is due to fact that the DFT beamspace version exploits a priori information
on the source locations by forming beams pointed in the general directions of the sources.
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