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71.1 Introduction

Signals generated by chaotic systems represent a potentially rich class of signals both for detecting and
characterizing physical phenomena and in synthesizing new classes of signals for communications,
remote sensing, and a variety of other signal processing applications.

In classical signal processing a rich set of tools has evolved for processing signals that are deter-
ministic and predictable such as transient and periodic signals, and for processing signals that are
stochastic. Chaotic signals associated with the homogeneous response of certain nonlinear dynamical
systems do not fall in either of these classes. While they are deterministic, they are not predictable in
any practical sense in that even with the generating dynamics known, estimation of prior or future
values from a segment of the signal or from the state at a given time is highly ill-conditioned. In
many ways these signals appear to be noise-like and can, of course, be analyzed and processed using
classical techniques for stochastic signals. However, they clearly have considerably more structure
than can be inferred from and exploited by traditional stochastic modeling techniques.

The basic structure of chaotic signals and the mechanisms through which they are generated are
described in a variety of introductory books, e.g., [1, 2] and summarized in [3].

Chaotic signals are of particular interest and importance in experimental physics because of the
wide range of physical processes that apparently give rise to chaotic behavior. From the point of
view of signal processing, the detection, analysis, and characterization of signals of this type present
a significant challenge. In addition, chaotic systems provide a potentially rich mechanism for signal
design and generation for a variety of communications and remote sensing applications.
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71.2 Modeling and Representation of Chaotic Signals

The state evolution of chaotic dynamical systems is typically described in terms of the nonlinear
state equation ẋ(t) = F [x(t)] in continuous time or x[n] = F(x[n − 1]) in discrete time. In a
signal processing context, we assume that the observed chaotic signal is a nonlinear function of the
state and would typically be a scalar time function. In discrete-time, for example, the observation
equation would be y[n] = G(x[n]). Frequently the observation y[n] is also distorted by additive
noise, multipath effects, fading, etc.

Modeling a chaotic signal can be phrased in terms of determining from clean or distorted obser-
vations, a suitable state space and mappings F(·) and G(·) that capture the aspects of interest in the
observed signal y. The problem of determining from the observed signal a suitable state space in
which to model the dynamics is referred to as the embedding problem. While there is, of course, no
unique set of state variables for a system, some choices may be better suited than others. The most
commonly used method for constructing a suitable state space for the chaotic signal is the method
of delay coordinates in which a state vector is constructed from a vector of successive observations.

It is frequently convenient to view the problem of identifying the map associated with a given
chaotic signal in terms of an interpolation problem. Specifically, from a suitably embedded chaotic
signal it is possible to extract a codebook consisting of state vectors and the states to which they
subsequently evolve after one iteration. This codebook then consists of samples of the function
F spaced, in general, non-uniformly throughout state space. A variety of both parametric and
nonparametric methods for interpolating the map between the sample points in state space have
emerged in the literature, and the topic continues to be of significant research interest. In this section
we briefly comment on several of the approaches currently used. These and others are discussed and
compared in more detail in [4].

Oneapproach isbasedon theuseof locally linear approximations toF throughout the state space [5,
6]. This approach constitutes a generalization of autoregressive modeling and linear prediction and
is easily extended to locally polynomial approximations of higher order. Another approach is based
on fitting a global nonlinear function to the samples in state space [7].

A fundamentally rather different approach to the problem of modeling the dynamics of an em-
bedded signal involves the use of hidden Markov models [8, 9, 10]. With this method, the state
space is discretized into a large number of states, and a probabilistic mapping is used to characterize
transitions between states with each iteration of the map. Furthermore, each state transition spawns
a state-dependent random variable as the observation y[n]. This framework can be used to simulta-
neously model both the detailed characteristics of state evolution in the system and the noise inherent
in the observed data. While algorithms based on this framework have proved useful in modeling
chaotic signals, they can be expensive both in terms of computation and storage requirements due
to the large number of discrete states required to adequately capture the dynamics.

While many of the above modeling methods exploit the existence of underlying nonlinear dy-
namics, they do not explicitly take into account some of the properties peculiar to chaotic nonlinear
dynamical systems. For this reason, in principle, the algorithms may be useful in modeling a broader
class of signals. On the other hand, when the signals of interest are truly chaotic, the special prop-
erties of chaotic nonlinear dynamical systems ought to be taken into account, and, in fact, may
often be exploited to achieve improved performance. For instance, because the evolution of chaotic
systems is acutely sensitive to initial conditions, it is often important that this numerical instability
be reflected in the model for the system. One approach to capturing this sensitivity is to require
that the reconstructed dynamics exhibit Lyapunov exponents consistent with what might be known
about the true dynamics. The sensitivity of state evolution can also be captured using the hidden
Markov model framework since the structural uncertainty in the dynamics can be represented in
terms of the probabilistic state transactions. In any case, unless sensitivity of the dynamics is taken
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into account during modeling, detection and estimation algorithms involving chaotic signals often
lack robustness.

Another aspect of chaotic systems that can be exploited is that the long term evolution of such
systems lies on an attractor whose dimension is not only typically non-integral, but occupies a small
fraction of the entire state space. This has a number of important implications both in the modeling
of chaotic signals and ultimately in addressing problems of estimation and detection involving these
signals. For example, it implies that the nonlinear dynamics can be recovered in the vicinity of
the attractor using comparatively less data than would be necessary if the dynamics were required
everywhere in state space.

Identifying the attractor, its fractal dimension, and related invariant measures governing, for
example, the probability of being in the neighborhood of a particular state on the attractor, are also
important aspects of the modeling problem. Furthermore, we can often exploit various ergodicity
and mixing properties of chaotic systems. These properties allow us to recover information about
the attractor using a single realization of a chaotic signal, and assure us that different time intervals
of the signal provide qualitatively similar information about the attractor.

71.3 Estimation and Detection

A variety of problems involving the estimation and detection of chaotic signals arises in potential
application contexts. In some scenarios, the chaotic signal is a form of noise or other unwanted
interference signal. In this case, we are often interested in detecting, characterizing, discriminating,
and extracting known or partially known signals in backgrounds of chaotic noise. In other scenarios,
it is the chaotic signal that is of direct interest and which is corrupted by other signals. In these
cases we are interested in detecting, discriminating, and extracting known or partially known chaotic
signals in backgrounds of other noises or in the presence of other kinds of distortion.

The channel through which either natural or synthesized signals are received can typically be
expected to introduce a variety of distortions including additive noise, scattering, multipath effects,
etc. There are, of course, classical approaches to signal recovery and characterization in the presence
of such distortions for both transient and stochastic signals. When the desired signal in the channel is
a chaotic signal, or when the distortion is caused by a chaotic signal, many of the classical techniques
will not be effective and do not exploit the particular structure of chaotic signals.

The specific properties of chaotic signals exploited in detection and estimation algorithms depend
heavily on the degree of a priori knowledge of the signals involved. For example, in distinguishing
chaotic signals from other signals, the algorithms may exploit the functional form of the map, the
Lyapunov exponents of the dynamics, and/or characteristics of the chaotic attractor such as its
structure, shape, fractal dimension and/or invariant measures.

To recover chaotic signals in the presence of additive noise, some of the most effective noise
reduction techniques proposed to date take advantage of the nonlinear dependence of the chaotic
signal by constructing accurate models for the dynamics. Multipath and other types of convolutional
distortion can best be described in terms of an augmented state space system. Convolution or filtering
of chaotic signals can change many of the essential characteristics and parameters of chaotic signals.
Effects of convolutional distortion and approaches to compensating for it are discussed in [11].

71.4 Use of Chaotic Signals in Communications

Chaotic systems provide a rich mechanism for signal design and generation, with potential appli-
cations to communications and signal processing. Because chaotic signals are typically broadband,
noise-like, and difficult to predict, they can be used in various contexts in communications. A partic-
ularly useful class of chaotic systems are those that possess a self-synchronization property [12, 13, 14].
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This property allows two identical chaotic systems to synchronize when the second system (receiver)
is driven by the first (transmitter). The well-known Lorenz system is used below to further describe
and illustrate the chaotic self-synchronization property.

The Lorenz equations, first introduced by E. N. Lorenz as a simplified model of fluid convec-
tion [15], are given by

ẋ = σ(y − x)

ẏ = rx − y − xz

ż = xy − bz ,

(71.1)

where σ, r, and b are positive parameters. In signal processing applications, it is typically of interest
to adjust the time scale of the chaotic signals. This is accomplished in a straightforward way by
establishing the convention that ẋ, ẏ, and ż denote dx/dτ, dy/dτ , and dz/dτ , respectively, where
τ = t/T is normalized time and T is a time scale factor. It is also convenient to define the normalized
frequency ω = �T , where � denotes the angular frequency in units of rad/s. The parameter values
T = 400µsec, σ = 16, r = 45.6, and b = 4 are used for the illustrations in this chapter.

Viewing the Lorenz system (71.1) as a set of transmitter equations, a dynamical receiver system
that will synchronize to the transmitter is given by

ẋr = σ(yr − xr)

ẏr = rx(t) − yr − x(t)zr

żr = x(t)yr − bzr .

(71.2)

In this case, the chaotic signal x(t) from the transmitter is used as the driving input to the receiver
system. In Section 71.4.1, an identified equivalence between self-synchronization and asymptotic
stability is exploited to show that the synchronization of the transmitter and receiver is global, i.e.,
the receiver can be initialized in any state and the synchronization still occurs.

71.4.1 Self-Synchronization and Asymptotic Stability

A close relationship exists between the concepts of self-synchronization and asymptotic stability.
Specifically, self-synchronization in the Lorenz system is a consequence of globally stable error dy-
namics. Assuming that the Lorenz transmitter and receiver parameters are identical, a set of equations
that govern their error dynamics is given by

ėx = σ(ey − ex)

ėy = −ey − x(t)ez

ėz = x(t)ey − bez.

(71.3)

where

ex(t) = x(t) − xr(t)

ey(t) = y(t) − yr(t)

ez(t) = z(t) − zr(t).

A sufficient condition for the error equations to be globally asymptotically stable at the origin can be
determined by considering a Lyapunov function of the form

E(e) = 1

2
(

1

σ
e2
x + e2

y + e2
z ).

Since σ and b in the Lorenz equations are both assumed to be positive, E is positive definite and Ė

is negative definite. It then follows from Lyapunov’s theorem that e(t) → 0 as t → ∞. Therefore,
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synchronization occurs as t → ∞ regardless of the initial conditions imposed on the transmitter
and receiver systems.

For practical applications, it is also important to investigate the sensitivity of the synchronization to
perturbations of the chaotic drive signal. Numerical experiments are summarized in Section 71.4.2,
which demonstrates the robustness and signal recovery properties of the Lorenz system.

71.4.2 Robustness and Signal Recovery in the Lorenz System

When a message or other perturbation is added to the chaotic drive signal, the receiver does not
regenerate a perfect replica of the drive; there is always some synchronization error. By subtracting
the regenerated drive signal from the received signal, successful message recovery would result if the
synchronization error was small relative to the perturbation itself. An interesting property of the
Lorenz system is that the synchronization error is not small compared to a narrowband perturbation;
nevertheless, the message can be recovered because the synchronization error is nearly coherent
with the message. This section summarizes experimental evidence for this effect; a more detailed
explanation has been given in terms of an approximate analytical model [16].

The series of experiments that demonstrate the robustness of synchronization to white noise
perturbations and the ability to recover speech perturbations focus on the synchronizing properties
of the transmitter Eqs. (71.1) and the corresponding receiver equations,

ẋr = σ(yr − xr)

ẏr = rs(t) − yr − s(t)zr

żr = s(t)yr − bzr .

(71.4)

Previously, it was stated that with s(t) equal to the transmitter signal x(t), the signals xr , yr , and zr

will asymptotically synchronize to x, y, and z, respectively. Below, we examine the synchronization
error when a perturbation p(t) is added to x(t), i.e., when s(t) = x(t) + p(t).

First, we consider the case where the perturbation p(t) is Gaussian white noise. In Fig. 71.1,
we show the perturbation and error spectra for each of the three state variables vs. normalized
frequency ω. Note that at relatively low frequencies, the error in reconstructing x(t) slightly exceeds
the perturbation of the drive but that for normalized frequencies above 20 the situation quickly
reverses. An analytical model closely predicts and explains this behavior [16]. These figures suggest
that the sensitivity of synchronization depends on the spectral characteristics of the perturbation
signal. For signals that are bandlimited to the frequency range 0 < ω < 10, we would expect that
the synchronization errors will be larger than the perturbation itself. This turns out to be the case,
although the next experiment suggests there are additional interesting characteristics as well.

In a second experiment, p(t) is a low-level speech signal (for example a message to be transmitted
and recovered). The normalizing time parameter is 400 µsec and the speech signal is bandlimited
to 4 kHz or equivalently to a normalized frequency ω of 10. Figure 71.2 shows the power spectrum
of a representative speech signal and the chaotic signal x(t). The overall chaos-to-perturbation ratio
in this experiment is approximately 20 dB.

To recover the speech signal, the regenerated drive signal is subtracted at the receiver from the
received signal. In this case, the recovered message is p̂(t) = p(t) + ex(t). It would be expected
that successful message recovery would result if ex(t) was small relative to the perturbation signal.
For the Lorenz system, however, although the synchronization error is not small compared to the
perturbation, the message can be recovered because ex(t) is nearly coherent with the message. This
coherence has been confirmed experimentally and an explanation has been developed in terms of an
approximate analytical model [16].
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FIGURE 71.1: Power spectra of the error signals: (a) Ex(ω). (b) Ey(ω). (c) Ez(ω).

71.4.3 Circuit Implementation and Experiments

In Section 71.4.2, we showed that, theoretically, a low-level speech signal could be added to the
synchronizing drive signal and approximately recovered at the receiver. These results were based on
an analysis of the exact Lorenz transmitter and receiver equations. When implementing synchronized
chaotic systems in hardware, the limitations of available circuit components result in approximations
of the defining equations. The Lorenz transmitter and receiver equations can be implemented
relatively easily with standard analog circuits [17, 20, 21]. The resulting system performance is in
excellent agreement with numerical and theoretical predictions. Some potential implementation
difficulties are avoided by scaling the Lorenz state variables according to u = x/10, v = y/10, and
w = z/20. With this scaling, the Lorenz equations are transformed to

u̇ = σ(v − u)

v̇ = ru − v − 20uw

ẇ = 5uv − bw.

(71.5)

For this system, which we refer to as the circuit equations, the state variables all have similar dynamic
range and circuit voltages remain well within the range of typical power supply limits. Below, we
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FIGURE 71.2: Power spectra of x(t) and p(t) when the perturbation is a speech signal.

discuss and demonstrate some applied aspects of the Lorenz circuits.
In Fig. 71.3, we illustrate a communication scenario that is based on chaotic signal masking and

recovery [18, 19, 20, 21]. In this figure, a chaotic masking signal u(t) is added to the information-
bearing signal p(t) at the transmitter, and at the receiver the masking is removed. By subtracting the
regenerated drive signal ur(t) from the received signal s(t) at the receiver, the recovered message is

p̂(t) = s(t) − ur(t) = p(t) + [u(t) − ur(t)] .

In this context, eu(t), the error between u(t) and ur(t), corresponds directly to the error in the
recovered message.

FIGURE 71.3: Chaotic signal masking and recovery system.

For this experiment, p(t) is a low-level speech signal (the message to be transmitted and recovered).
The normalizing time parameter is 400 µsec and the speech signal is bandlimited to 4 kHz or,
equivalently, to a normalized frequency ω of 10. In Fig. 71.4, we show the power spectrum of p(t)

and p̂(t), where p̂(t) is obtained from both a simulation and from the circuit. The two spectra for
p̂(t) are in excellent agreement, indicating that the circuit performs very well. Because p̂(t) includes
considerable energy beyond the bandwidth of the speech, the speech recovery can be improved by
lowpass filtering p̂(t). We denote the lowpass filtered version of p̂(t) by p̂f (t). In Fig. 71.5(a) and (b),
we show a comparison of p̂f (t) from both a simulation and from the circuit, respectively. Clearly, the
circuit performs well and, in informal listening tests, the recovered message is of reasonable quality.

Although p̂f (t) is of reasonable quality in this experiment, the presence of additive channel noise
will produce message recovery errors that cannot be completely removed by lowpass filtering; there
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will always be some error in the recovered message. Because the message and noise are directly added
to the synchronizing drive signal, the message-to-noise ratio should be large enough to allow a faithful
recovery of the original message. This requires a communication channel that is nearly noise free.

FIGURE 71.4: Power spectra of p(t) and p̂(t) when the perturbation is a speech signal.

An alternative approach to private communications allows the information-bearing waveform to
be exactly recovered at the self-synchronizing receiver(s), even when moderate-level channel noise
is present. This approach is referred to as chaotic binary communications [20, 21]. The basic idea
behind this technique is to modulate a transmitter parameter with the information-bearing waveform
and to transmit the chaotic drive signal. At the receiver, the parameter modulation will produce a
synchronization error between the received drive signal and the receiver’s regenerated drive signal
with an error signal amplitude that depends on the modulation. Using the synchronization error,
the modulation can be detected.

This modulation/detection process is illustrated in Fig. 71.6. To illustrate the approach, we use a
periodic square-wave for p(t) as shown in Fig. 71.7(a). The square-wave has a repetition frequency
of approximately 110 Hz with zero volts representing the zero-bit and one volt representing the
one-bit. The square-wave modulates the transmitter parameter b with the zero-bit and one-bit
parameters given by b(0) = 4 and b(1) = 4.4, respectively. The resulting drive signal u(t) is
transmitted and the noisy received signal s(t) is used as the driving input to the synchronizing receiver
circuit. In Fig. 71.7(b), we show the synchronization error power e2(t). The parameter modulation
produces significant synchronization error during a “1” transmission and very little error during a
“0” transmission. It is plausible that a detector based on the average synchronization error power,
followed by a threshold device, could yield reliable performance. We illustrate in Fig. 71.7(c) that
the square-wave modulation can be reliably recovered by lowpass filtering the synchronization error
powerwaveformandapplying a threshold test. The thresholddeviceused in this experiment consisted
of a simple analog comparator circuit.

The allowable data rate of this communication technique is, of course, dependent on the synchro-
nization response time of the receiver system. Although we have used a low bit rate to demonstrate
the technique, the circuit time scale can be easily adjusted to allow much faster bit rates.

While the results presented above appear encouraging, there are many communication scenarios
where it is undesirable to be restricted to the Lorenz system, or for that matter, any other low-
dimensional chaotic system. In private communications, for example, the ability to choose from a
wide variety of synchronized chaotic systems would be highly advantageous. In the next section,
we briefly describe an approach for synthesizing an unlimited number of high-dimensional chaotic
systems. The significance of this work lies in the fact that the ability to synthesize high-dimensional
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FIGURE 71.5: (a) Recovered speech (simulation). (b) Recovered speech (circuit).

chaotic systems further enhances their applicability for practical applications.

71.5 Synthesizing Self-Synchronizing Chaotic Systems

An effective approach to synthesis is based on a systematic four step process. First, an algebraic model
is specified for the transmitter and receiver systems. As shown in [22, 23], the chaotic system models
can be very general; in [22] the model represents a large class of quadratically nonlinear systems,
while in [23] the model allows for an unlimited number of Lorenz oscillators to be mutually coupled
via an N-dimensional linear system.

The second step in the synthesis process involves subtracting the receiver equations from the
transmitter equations and imposing a global asymptotic stability constraint on the resulting error
equations. Using Lyapunov’s direct method, sufficient conditions for the error system’s global sta-

FIGURE 71.6: Communicating binary-valued bit streams with synchronized chaotic systems.
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FIGURE 71.7: (a) Binary modulation waveform. (b) Synchronization error power. (c) Recovered
binary waveform.

bility are usually straightforward to obtain. The sufficient conditions determine constraints on the
free parameters of the transmitter and receiver which guarantee that they possess the global self-
synchronization property.

The third step in the synthesis process focuses on the global stability of the transmitter equations.
First, a familyof ellipsoids in state space is definedand then sufficient conditions aredeterminedwhich
guarantee the existence of a trapping region. The trapping region imposes additional constraints on
the free parameters of the transmitter and receiver equations.

The final step involves determining sufficient conditions that render all of the transmitter’s fixed
points unstable. In most cases, this involves numerically integrating the transmitter equations and
computing the system’s Lyapunov exponents and/or attractor dimension. If stable fixed points exist,
the system’s bifurcation parameter is adjusted until they all become unstable. Below, we demonstrate
the synthesis approach for linear feedback chaotic systems.

Linear feedback chaotic systems (LFBCSs) are composed of a low-dimensional chaotic system and
a linear feedback system as illustrated in Fig. 71.8. Because the linear system is N-dimensional,
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considerable design flexibility is possible with LFBCSs. Another practical property of LFBCSs is that
they synchronize via a single drive signal while exhibiting complex dynamics.

FIGURE 71.8: Linear feedback chaotic systems.

While many types of LFBCSs are possible, two specific cases have been considered in detail: (1) the
chaotic Lorenz signal x(t) drives an N-dimensional linear system and the output of the linear system
is added to the equation for ẋ in the Lorenz system; and (2) the Lorenz signal z(t) drives an N-
dimensional linear system and the output of the linear system is added to the equation for ż in the
Lorenz system. In both cases, a complete synthesis procedure was developed.

Below, we summarize the procedure; a complete development is given elsewhere [24].

Synthesis Procedure

1. Choose any stable A matrix and any N × N symmetric positive definite matrix Q.

2. Solve PA + AT P + Q = 0 for the positive definite solution P .

3. Choose any vector B and set C = −BT P/r .

4. Choose any D such that σ − D > 0.

The first step of the procedure is simply the self-synchronization condition; it requires the linear
system to be stable. Clearly, many choices for A are possible. The second and third steps are akin
to a negative feedback constraint, i.e., the linear feedback tends to stabilize the chaotic system. The
last step in the procedure restricts σ − D > 0 so that the ẋ equation of the Lorenz system remains
dissipative after feedback is applied.

For the purpose of demonstration, consider the following five-dimensional x-input/x-output
LFBCS.

ẋ = σ(y − x) + ν

ẏ = rx − y − xz

ż = xy − bz[
l̇1
l̇2

]
=

[ −1
2 10

−10 −1
2

] [
l1
l2

]
+

[
1
1

]
x

ν = − [
1 1

] [
l1
l2

]
(71.6)
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FIGURE 71.9: Lyapunov dimension of a 5-D LFBCS.

FIGURE 71.10: Self-synchronization in a 5-D LFBCS.
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It can be shown in a straightforward way that the linear system satisfies the synthesis procedure for
suitable choices of P, Q, and R. For the numerical demonstrations presented below, the Lorenz
parameters chosen are σ = 16and b = 4; the bifurcation parameter r will be varied.

In Fig. 71.9, we show the computed Lyapunov dimension as r is varied over the range, 20 <

r < 100. This figure demonstrates that the LFBCS achieves a greater Lyapunov dimension than the
Lorenz system without feedback. The Lyapunov dimension could be increased by using more states
in the linear system. However, numerical experiments suggest that stable linear feedback creates only
negative Lyapunov exponents, limiting the dynamical complexity of LFBCSs. Nevertheless, their
relative ease of implementation is an attractive practical feature.

In Fig. 71.10, we demonstrate the rapid synchronization between the transmitter and receiver sys-
tems. The curve measures the distance in state space between the transmitter and receiver trajectories
when the receiver is initialized from the zero state. Synchronization is maintained indefinitely.
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