
1

Enhanced Fractal Image Compression using Haar Wavelet

C. S. Tong* and K. P. Cheuk

Department of Mathematics, Hong Kong Baptist University

Kowloon Tong, Hong Kong

Email: cstong@hkbu.edu.hk

Abstract

Fractal image compression offers a high compression ratio with extremely short

decompression time. However, it suffered from long compression time. In this paper,

a new block classification method based on the Haar wavelet transform is

introduced. When used in conjunction with our domain block pool reduction scheme,

the enhanced method can improve the speed of compression over 50 times with

minimal loss of decompression accuracy.

Keywords: Fractal Image Compression, Haar Wavelet, Enhancing Compression

Speed, Domain Block Pool Reduction

* Corresponding author: Tel: +852 2339 7023; fax: +852 2336 1505; email: cstong@hkbu.edu.hk

2

1. Introduction

As computers become more and more powerful, the temptation to use digital images

become irresistible. Along with this comes the serious issue of storing and

transferring the huge volume of data that represent digital images. Fractal Image

Compression is one of many techniques that can store images more efficiently.

Based on the properties of fractal images [1], Fractal Image Compression was first

introduced by Michael F. Barnsley [2]. Using the Iterated Function System (IFS)

algorithm [3-4], it can achieve a high compression ratio with a short decompression

time. However, the compression time is typically extremely long. Some of the

methods used to decrease the encoding time are reviewed in [5-7] and it is also

possible to enhance the decoding time [8]. With the help of Haar Wavelet Transform

and a domain block pool reduction scheme, we will show in this paper that we can

increase the speed of compression by up to 50 times with only a small drop in the

Signal-to-Noise Ratio (SNR) of the decompressed image.

2. The Iterated Function Systems

An IFS [9-10] is a collection of contractive affine transformations

{ }nii ,,1|: 22
�=→ 55ω which maps the plane 2

5 to itself. This collection of

transformations defines a map W:

.)()(
1
�

n

i
iW

=

•=• ω

Two conditions are usually imposed on the contractive affine transformations iω ,

namely, (i) they preserve shapes, and (ii) they satisfy the Open Set Condition (i.e. iω

maps disjoint open sets to disjoint open sets).

The Contractive Mapping Fixed Point Theorem [10] states that for every contractive

map W on a space of images, then there is a unique special image, called the

attractor and denoted wx , which is a fixed point of W, i.e.

ww xxW =)(.

3

Moreover, given any arbitrary input image 0I ,

(*))(lim 0 ��������IWx n

n
w

∞→
=

The problem of Fractal Image Compression (FIC) can now be formulated as follows.

Given an image I to be encoded, we wish to find a corresponding contractive map W

for which I is its fixed point. Then the image I can be represented (or coded) by the

parameters which define the contractive map. To decode and recover the original

image, we use equation (*) which tells us that repeated iteration of the contractive

map on any starting image will converge to its fixed point, i.e. converge to I, as

required. The convergence, hence the decompression, is usually very fast and is

indeed one of the advantage of FIC.

In practice, it may not be possible to find the exact map W. Fortunately the Collage

Theorem [10] ensures that a good approximation for W will have a fixed point that is

close to the fixed point of W. This gives us the flexibility to trade off compression

accuracy with compression time and compression ratio by choosing the level of

approximation for W.

3. Basic Fractal Image Compression (BFIC)

The basic fractal image compression algorithm as described in [5] will serve as the

benchmark in this paper. First of all, we form a pool of nn 22 × domain blocks by

sliding a nn 22 × window around the image pixel by pixel, each such block can be

indexed by the coordinates of its top left pixel. For a NN × image, this would

generate a large domain block pool of size 2)1(+− nN . Each domain block is now

spatially contracted, denoted)(•ζ , to nn × blocks by replacing each disjoint 22 ×

sub-blocks by their neighbourhood averages. This collection of spatially contracted

nn × blocks forms a virtual codebook that will be used to generate the contractive

map.

The key concept of fractal image compression is self-similarity. In order to satisfy

the Open Set Condition, the input image is partitioned into disjoint nn × blocks

called range blocks, and for each range block we find the corresponding contractive

affine transformation for it by searching through the virtual codebook generated

4

above. Specifically, we identify the affine transformed, spatially contracted domain

block which best match the given range block.

To satisfy the shape-preserving condition, we shall restrict the geometric part of the

affine transformations to 8 isometries, denoted)(•ρ , which represent rotating the

nn × blocks by multiples of 90 degrees, and/or flipping them about the horizontal

and vertical axes [5]. Lastly, we apply so called massic transformations, σ , to the

image intensities),(jif of the pixels in the form:

βασ +=),()),((jifjif ,

where α controls the contrast scaling, and β controls the luminance shift. These

parameters are usually quantized to increase compression ratios [5].

Thus the contractive map W we sought is a collection of affine transformations of the

form:

ζρσω $$=i .

4. Haar Wavelet Transformation

The 1-D mother Haar wavelet (see Figure 1) is defined as:

<<−
<<

=
otherwise. ,0

,1for ,1

0for ,1

)(
2

1

,
2

1

t

t

tϕ

In 2-D, the Haar wavelet transform can be summarized in the scheme below:

1. Given an input block. Take the mean of the intensity of the block to obtain the

first wavelet coefficient 1e .

2. Divide the block into four equal sub-blocks. Take the mean values of each sub-

blocks and subtract these sub-block means from the overall mean (i.e. of the

input block before the division) to obtain the next 4 coefficients, 52 to ee .

5

3. Repeat the procedure in step 2 for each sub-block (see Figure 2) until we reach

the pixel level.

Note that some of the coefficients can be derived from the others so that they are not

all independent. We shall make use of some of these coefficients to classify the

range and domain blocks.

5. Classified-Blocks Fractal Image Compression Algorithm (CFIC)

In the Basic Fractal Image Compression Algorithm (BFIC), we have a lot of domain

blocks in the domain block pool and the search through such a large pool for each

and every range block constitutes the bulk of the computation cost in compression.

Clearly, we could substantially reduce the search time if we can classify the blocks

into different types and restrict the search to blocks of the same type. An example of

block classification uses a measure of edge content in each block for classification

[5]. It achieves a reasonable speed up, but the technique is difficult to fine-tune and

the measure of edge content is arbitrary.

In this paper, we note that Haar wavelet coefficients provide information on the

distribution of relative intensities and can be used to classify blocks. The first

coefficient describes the overall mean of the block and is not particularly useful as

the massic transformation part of the affine transformation can take care of such

differences between blocks. However, the next four coefficients, 52 to ee , are very

useful. By sorting these four coefficients, we effectively rank the four sub-blocks in

intensities. Since there are 4! = 24 permutations, we may classify the blocks into 24

types and substantially reduce the pool size for each search within blocks of the

same type. Furthermore, as in [5], blocks which are essentially uniform should be

treated in a class of its own, and these are identified when all the coefficients 52 to ee

are equal (or to within a tolerance level).

Furthermore, we can classify blocks within each type by using the next level of Haar

wavelet coefficients to build up a tree-structure classification scheme, somewhat

similar to the quadtree fractal compression scheme proposed in [10]. This may be

particularly useful when large range block sizes are used as in some parent-child

multi-level fractal compression schemes [5].

6

6. Domain Pool Reduction

To further enhance the speed of compression, we now consider reducing the size of

the domain pool further by skipping blocks that differ by just one pixel-wide

columns or rows. This reduces the pool to a quarter of its size and thus is expected to

lead to an extra speed up factor of about 4. On the face of it, this reduction of search

time is only achieved at the expense of reducing the spatial resolution. However, this

needs not be the case since all domain blocks are spatially contracted and this has the

effect of converting the loss of spatial resolution to a loss of intensity resolution.

This effect is demonstrated in Figure 3 where two edge blocks with gray level

transition of ∆ are spatially contracted. Edge blocks A and B differed in one pixel-

column, but after contraction, both became the same spatially-sized edge-blocks,

except that in the case of block B, the gray level transition dropped from ∆ to ∆/2.

But this change in intensity can be exactly compensated for by a massic

transformation!

For general blocks, it may not be possible to exactly compensate for the loss of

intensity resolution after spatial contraction, but with an appropriate choice of massic

transformation, we could minimize such loss which is present in any case because

we need to quantize massic transformation coefficients for high compression

anyway. We thus conclude that our proposed scheme for domain block pool

reduction is justified. Fractal Image Compression using both the block classification

scheme discussed in section 5 and the domain block pool reduction scheme proposed

here will henceforth be referred to as the Enhanced Fractal Image Compression

(EFIC) scheme.

7. Results and Conclusions

All the three compression schemes discussed above, namely, BFIC, CFIC, and

EFIC, have been implemented on a 486 PC, with the customary choice of 4=n .

The compression results on the 256256 × Lena image are summarized in Table 4.

The decompressed images are shown in Figure 5, and visually they are practically

identical to the original image. The BFIC method took over 50 hours to compress,

but the CFIC method was faster by a factor of 14, whilst the EFIC method is faster

7

still by a factor of 4, as expected. In all three methods, the decompressions were very

fast, with convergence by about the tenth iterations. The signal-to-noise ratio (SNR)

of the decompressed images for all three methods are comparable, with only a slight

drop from 33.9780 dB for the BFIC method to 32.6556 dB for the EFIC method. The

compression ratios are just under 5 in these experiments. They could be improved by

changing block sizes and adjusting the quantizations for the transformation

parameters, but that is outside the scope of this paper.

We further tested the methods on 5 different 256256 × images (see Figure 6) and

the results are summarized in Table 7. The speed up of the CFIC over BFIC varied

from 6.5 to 16.5. But the extra speed up in going from CFIC to EFIC was around 4

in all 5 cases, just as we expected. Moreover the SNR for the EFIC images remain

very close to the corresponding CFIC images, differing by at most 1 dB. These

results confirmed our justification for the Domain Block Pool Reduction scheme.

The CFIC images were all nearly identical to those generated by the BFIC, with

SNR differing by less than 0.4 dB. For images A & E, the CFIC decompressed

images were actually slightly superior to the BFIC in terms of the SNR, with an

increase of 0.05 dB for image A and 0.01 for image E. This very minor improvement

was probably due to the slight discrepancies in the convergence during

decompressions. These results clearly demonstrated that our block classification

scheme is robust and can lead to substantial speed up in compression with virtually

no change in compression quality.

Comparing the EFIC method to the BFIC method, the compression time has been

speeded up by about 50 times, with the exception of image A which showed a speed

up factor of over 25. Since the EFIC images were very close to the CFIC images

which in turn were virtually identical to the BFIC images, the EFIC method has thus

gained very good speed up in compression at a very minor loss of around 1 dB in

SNR.

To conclude, we find that the CFIC method has achieved quite impressive speed up

in compression time over the BFIC method with virtually no difference in the quality

of compression. The adoption of our Domain Block Pool Reduction scheme has

yielded an extra speed up factor of 4 at the expense of a minor drop of compression

8

quali ty of around 1 dB which is normally unnoticeable visually. Moreover, our

compression schemes, both the CFIC and the EFIC, can be used in conjunction with

other speed-enhancing techniques such as the classification scheme based on edge-

content suggested by Jacquin [5] and the tree-arrangement of domain blocks

proposed by Bani-Eqbal [6].

References

[1] M. F. Barnsley, “Fractal Everywhere” , Academic Press, 1993.

[2] M. F. Bransley and A.D. Sloan, “A Better Way to Compress Images” , Byte,

pp. 215-223, January 1988.

[3] J. C. Hart, “Fractal Image Compression and Recurrent Iterated Function

Systems”, IEEE Computer Graphics and Applications, pp. 25-33, 1996.

[4] E. W. Jacobs, Y. Fisher, R. D. Boss, “ Image Compression: a study of the

iterated transform method”, Signal Process. 29, pp. 251-263, 1992.

[5] A. Jacquin. “Fractal image coding based on a theory of iterated contractive

image transformations” . SPIE Vol. 1360 Visual Communications and Image

Processing ’90, pp. 227-237, 1990.

[6] B. Bani-Eqbal, “Enchancing the speed of fractal image compression” , Optical

Engineering, Vol. 34, No. 6, pp. 1705-1710, June 1995.

[7] D. R. McGregor, R. J. Fryer, P. Cockshott and P. Murray, “Faster Fractal

Compression” , Dr. Dobb’s Journal, pp. 34-40, January 1996.

[8] Sarah B. M. Bell , “Fractals: a fast, accurate and ill uminating algorithm”, Image

and Vision Computing, Vol. 13, No. 4, pp. 253-257, May 1995.

[9] M. F. Barnsley and L. P. Hurd, “Fractal Image Compression” , AK Peter Ltd.,

1993.

[10] Y. Fisher, “Fractal Image Compression: Theory and Application” , Springer-

Verlag New York, 1995.

9

1

-1

0 0.5 1
t

)(tϕ

Figure 1

Figure 2

m1

m2 m3

m4 m5

m6 m7
m8 m9

Spatial contraction

Ö

Edge Block A

Spatial contraction

Ö

Edge Block B

Figure 3: Effect of Spatial Contraction on Edge Blocks

10

BFIC CFIC EFIC

Compression
Time (mins) 3204 227 56

Speed Up 1 14 57

SNR
10 iterations

33.9780 33.6783 32.6556

Drop in SNR N/A 0.2997 1.3224

Compression
Ratio

4.57 4.57 4.92

Table 4 Compression Results for the Lena image

 (a) Original Lena Image (b) BFIC compression

 (c) CFIC compression (d) EFIC compression

Figure 5 Compressed images of Lena

11

 Image E

Figure 6: Images A, B, C on Top Row, D & E on Bottom Row

BFIC CFIC EFIC

Images SNR
Compression

Time
SNR

Speed
up

SNR Speed up

A 43.5420 54h 50m 43.5907 6.5 43.3863 25.5

B 33.7764 54h 50m 33.7303 16.5 32.7665 56.7

C 31.6121 54h 20m 31.2761 14.7 30.5356 56.2

D 32.5601 54h 22m 32.3141 14.9 31.3087 58.3

E 40.1402 54h 10m 40.1525 12.5 39.6352 48.5

Table 7 Compression Results for Images in Figure 6

