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3.Production Process Characterization

The goal of this chapter isto learn how to plan and conduct a Production Process
Characterization Study (PPC) on manufacturing processes. We will learn how to model
manufacturing processes and use these models to design a data collection scheme and to
guide data analysis activities. We will look in detail at how to analyze the data collected
In characterization studies and how to interpret and report the results. The accompanying
Case Studies provide detailed examples of several process characterization studies.
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3. Production Process Characterization

3.1.Introduction to Production Process
Characterization

Overview The goal of this section is to provide an introduction to PPC. We will

Section define PPC and the terminology used and discuss some of the possible
uses of a PPC study. Finally, we will ook at the stepsinvolved in
designing and executing a PPC study.

Contents: 1. What is PPC?
Section 1 2. What are PPC studies used for?
3. What terminology is used in PPC?
1. Location, Spread and Shape
Process Variability

Propagating Error
Popul ations and Sampling
Process Models

a o 0N

6. Experiments and Experimental Design
4. What are the steps of a PPC?

1. Plan PPC

2. Collect Data

3. Analyze and Interpret Data

4. Report Conclusions
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3.1. Introduction to Production Process Characterization

3.1.1.What is PPC?

In PPC, we Process characterization is an activity in which we:
build « identify the key inputs and outputs of a process
data-based : : : .
models « collect data on their behavior over the entire operating range
« estimate the steady-state behavior at optimal operating conditions
« and build models describing the parameter rel ationships across
the operating range
The result of this activity isaset of mathematical process models that
we can use to monitor and improve the process.

Thisisa This activity istypically athree-step process.
three-step The Screening Step

process In this phase we identify all possible significant process inputs
and outputs and conduct a series of screening experimentsin
order to reduce that list to the key inputs and outputs. These
experiments will also allow usto develop initial models of the
relationships between those inputs and outputs.

The Mapping Step
In this step we map the behavior of the key outputs over their

expected operating ranges. We do this through a series of more
detailed experiments called Response Surface experiments.

The Passive Step

In this step we alow the process to run at nominal conditions and
estimate the process stability and capability.

Not all of Thefirst two steps are only needed for new processes or when the

the steps process has undergone some significant engineering change. There are,

need to be however, many times throughout the life of a process when the third

performed step is needed. Examples might be: initial process qualification, control
chart development, after minor process adjustments, after schedule
egui pment maintenance, etc.
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3. Production Process Characterization

3.1. Introduction to Production Process Characterization

3.1.2.What are PPC Studies Used For?

PPCisthecore  Process characterization is an integral part of any continuous

of any Cl improvement program. There are many steps in that program for
program which process characterization is required. These might include:
When process « When we are bringing a new process or tool into use.
characterization « when we are bringing atool or process back up after
isrequired schedul ed/unschedul ed maintenance.
« When we want to compare tools or processes.
« when we want to check the health of our process during the
monitoring phase.
« when we are troubleshooting a bad process.
The techniques described in this chapter are equally applicable to the
other chapters covered in this Handbook. These include:
Process « calibration

characterization
techniques are
applicablein
other areas
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3. Production Process Characterization
3.1. Introduction to Production Process Characterization

3.1.3. Terminology/Concepts

There are just afew fundamental concepts needed for PPC.
This section will review these ideas briefly and provide
links to other sections in the Handbook where they are
covered in more detail.

Distribution(location, For basic data analysis, we will need to understand how to

spread, shape) estimate location, spread and shape from the data. These
three measures comprise what is known as the distribution
of the data. We will ook at both graphical and numerical
techniques.

Process variability We need to thoroughly understand the concept of process
variability. Thisincludes how variation explains the
possible range of expected data values, the various
classifications of variability, and the role that variability
playsin process stability and capability.

Error propagation We also need to understand how variation propagates
through our manufacturing processes and how to
decompose the total observed variation into components
attributable to the contributing sources.

Populations and It isimportant to have an understanding of the various
sampling issues related to sampling. We will define a population and

discuss how to acquire representative random samples from
the population of interest. We will also discuss a useful
formulafor estimating the number of observations required
to answer specific questions.

Modeling For modeling, we will need to know how to identify
important factors and responses. We will also need to know
how to graphically and quantitatively build models of the
relationships between the factors and responses.
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Experiments Finally, we will need to know about the basics of designed
experiments including screening designs and response
surface designs so that we can quantify these relationships.
Thistopic will receive only a cursory treatment in this
chapter. It iscovered in detail in the process improvement

chapter. However, examples of its use are in the case
studies.
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3. Production Process Characterization

3.1. Introduction to Production Process Characterization

3.1.3. Terminology/Concepts

3.1.3.1.Distribution (Location, Spread and

Distributions
are
characterized
by location,
spread and
shape

A primary
goal of PPC
IS to estimate
the
distributions
of the
process
outputs

Shape)

A fundamental concept in representing any of the outputs from a
production processis that of adistribution. Distributions arise because
any manufacturing process output will not yield the same value every
time it ismeasured. There will be a natural scattering of the measured
values about some central tendency value. This scattering about a
central valueis known as adistribution. A distribution is characterized
by three values:

L ocation

The location is the expected value of the output being measured.
For a stable process, thisis the value around which the process
has stabilized.

Spread

The spread is the expected amount of variation associated with
the output. Thistells us the range of possible values that we
would expect to see.

Shape
The shape shows how the variation is distributed about the

location. Thistellsusif our variation is symmetric about the
mean or if it is skewed or possibly multimodal.

One of the primary goals of a PPC study isto characterize our process
outputs in terms of these three measurements. If we can demonstrate
that our processis stabilized about a constant location, with a constant
variance and a known stable shape, then we have a process that is both
predictable and controllable. Thisis required before we can set up
control charts or conduct experiments.
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3.1.3.1. Distribution (Location, Spread and Shape)

Click on The table below shows the most common numerical and graphical
each itemto measures of location, spread and shape.
;?;jj Imore | Parameter | Numerical | Graphical
_ mean scatter plot
Location — boxpl ot
median :
histogram
variance boxlof
oxplo
Spread @gg . histogram
inter-quartile range
boxpl ot
Shape —ikel/vness histogram
KUFOSIS probability plot
NIST . :
SEMATECH [HOME [TOOLS & AIDS [SEARCH [BACK NEXT|

http://www.itl.nist.gov/div898/handbook/ppc/section1/ppcl31.htm (2 of 2) [11/13/2003 5:41:20 PM]


http://www.itl.nist.gov/div898/handbook/eda/section3/eda351.htm#MEAN
http://www.itl.nist.gov/div898/handbook/eda/section3/eda351.htm#MEDIAN
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda356.htm#VARIANCE
http://www.itl.nist.gov/div898/handbook/eda/section3/eda356.htm#RANGE
http://www.itl.nist.gov/div898/handbook/eda/section3/eda356.htm#IQRANGE
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
http://www.itl.nist.gov/div898/handbook/ppc/section1/prob.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org

3.1.3.2. Process Variability

[ P ENGINEERING STATISTICS HANDBOOK

HOME

TOOLS & AIDS [SEARCH [BACK MEXT]|

3. Production Process Characterization

3.1. Introduction to Production Process Characterization

3.1.3. Terminology/Concepts

3.1.3.2.Process Variability

Variability
IS present
everywhere

How does
the
standard
deviation
describe the
spread of
the data?

All manufacturing and measurement processes exhibit variation. For example, when we take sample
data on the output of a process, such as critical dimensions, oxide thickness, or resistivity, we
observethat al the values are NOT the same. This resultsin a collection of observed values
distributed about some location value. Thisiswhat we call spread or variability. We represent
variability numerically with the variance calculation and graphically with a histogram.

The standard deviation (square root of the variance) givesinsight into the spread of the data through
the use of what is known as the Empirical Rule. Thisrule (shown in the graph below) is:

Approximately 60-78% of the data are within a distance of one standard deviation from the average
(X-s X+9).

Approximately 90-98% of the data are within a distance of two standard deviations from the
average (¥ -2s, X +29).

More than 99% of the data are within a distance of three standard deviations from the average (
}?—35, K +39).
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3.1.3.2. Process Variability

Variability
accumul ates
from many
sources

Thereare
also
different

types

Click here
to see
examples

Sable
processes
only exhibit
controlled
variation

0+4 /\
E}éﬁi - 105%
0,3
H90x - 98k
B0E - Fak
0,2
0,1
0 f T T T [ T T T 1

This observed variability is an accumulation of many different sources of variation that have
occurred throughout the manufacturing process. One of the more important activities of process
characterization is to identify and quantify these various sources of variation so that they may be
minimized.

There are not only different sources of variation, but there are also different types of variation. Two
important classifications of variation for the purposes of PPC are controlled variation and
uncontrolled variation.

CONTROLLED VARIATION

Variation that is characterized by a stable and consistent pattern of variation over time. This
type of variation will be randomin nature and will be exhibited by a uniform fluctuation
about a constant level.

UNCONTROLLED VARIATION

Variation that is characterized by a pattern of variation that changes over time and henceis
unpredictable. Thistype of variation will typically contain some structure.

This concept of controlled/uncontrolled variation isimportant in determining if a processis stable.
A processis deemed stableif it runsin a consistent and predictable manner. This means that the
average process value is constant and the variability is controlled. If the variation is uncontrolled,
then either the process average is changing or the process variation is changing or both. The first
process in the example above is stable; the second is not.
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In the course of process characterization we should endeavor to eliminate al sources of uncontrolled
variation.

NIST

— [HOME [TOOLS & AIDS [SEARCH [BACK MNEXT]|
SEMATECH

http://www.itl.nist.gov/div898/handbook/ppc/section1/ppcl32.htm (3 of 3) [11/13/2003 5:41:22 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org

3.1.3.2.1. Controlled/Uncontrolled Variation

Bl ENGINEERING STATISTICS HANDBOOK

HOME TOOLS & AIDS |[SEARCH |[BACK MNEXT|

3. Production Process Characterization

3.1. Introduction to Production Process Characterization
3.1.3. Terminology/Concepts

3.1.3.2. Process Variahility

3.1.3.2.1.Controlled/Uncontrolled Variation

Two trend The two figures below are two trend plots from two different oxide growth processes.

plots Thirty wafers were sampled from each process: one per day over 30 days. Thickness
at the center was measured on each wafer. The x-axis of each graph is the wafer
number and the y-axisis the film thickness in angstroms.

Examples Thefirst processis an example of a processthat is"in control” with random

of"in fluctuation about a process |ocation of approximately 990. The second processis an
control" and  example of aprocessthat is"out of control" with a process location trending upward
"out of after observation 20.

control”
processes
Thisprocess  11E0
exhibits P |
controlled
variation. 120
Note the
random 1100
ﬂ uctuation 1080 T
about a |
constant 1060
|
rrBa.n. -”]an - .
[ | | [ ]
w0 T ™ y =" z " .
| ]
-+ |
1000 . = - -
1 [ | .
980 . n - - g
960 1 n "
aqn T u u .
920
QI:II:I i i i i
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3.1. Introduction to Production Process Characterization

3.1.3. Terminology/Concepts

3.1.3.3. Propagating Error

The When we estimate the variance at a particular process step, this variance
variationwe  istypically not just aresult of the current step, but rather isan
See can accumulation of variation from previous steps and from measurement
come from error. Therefore, an important question that we need to answer in PPC is
many how the variation from the different sources accumulates. This will
sources allow usto partition the total variation and assign the parts to the

various sources. Then we can attack the sources that contribute the

mMost.
How do | Usually we can model the contribution of the various sources of error to
partitionthe  thetotal error through asimple linear relationship. If we have asimple
error? linear relationship between two variables, say,

y=ptoy +
then the variance associated with, y, is given by,
E".:zrl{yjl = sﬁzﬁ".:xr[yljl + ﬁjﬁ".:xrliyjjl + EmﬁCﬂv[yLyz jl

If the variables are not correlated, then there is no covariance and the

last term in the above equation drops off. A good example of thisisthe

case in which we have both process error and measurement error. Since

these are usually independent of each other, the total observed variance

Isjust the sum of the variances for process and measurement.

Remember to never add standard deviations, we must add variances.
How do | Of course, we rarely have the individual components of variation and
calculatethe  wishto know thetotal variation. Usually, we have an estimate of the
individual overal variance and wish to break that variance down into its individual
components?  components. Thisis known as components of variance estimation and is

dealt with in detail in the analysis of variance page later in this chapter.
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3.1. Introduction to Production Process Characterization

3.1.3. Terminology/Concepts

3.1.3.4. Populations and Sampling

We take In survey sampling, if you want to know what everyone thinks about a

samples particular topic, you can just ask everyone and record their answers.

froma Depending on how you define the term, everyone (all the adultsin a

target town, al the malesin the USA, etc.), it may be impossible or

population impractical to survey everyone. The other option isto survey a small

and make group (Sample) of the people whose opinions you are interested in

inferences (Target Population) , record their opinions and use that information to
make inferences about what everyone thinks. Opinion pollsters have
developed a whole body of tools for doing just that and many of those
tools apply to manufacturing aswell. We can use these sampling
techniques to take a few measurements from a process and make
statements about the behavior of that process.

Facts about If it weren't for process variation we could just take one sample and

a sample everything would be known about the target population. Unfortunately

are not thisis never the case. We cannot take facts about the sample to be facts

necessarily about the population. Our job isto reach appropriate conclusions about

facts about the population despite this variation. The more observations we take

apopulation  from a population, the more our sample data resembl es the popul ation.
When we have reached the point at which facts about the sample are
reasonabl e approximations of facts about the population, then we say the
sample is adequate.

Four Adequacy of a sample depends on the following four attributes:

attributes of « Representativeness of the sample (is it random?)

samples

Size of the sample
Variability in the population
o Desired precision of the estimates

We will learn about choosing representative samples of adequate sizein
the section on defining sampling plans.
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3. Production Process Characterization

3.1. Introduction to Production Process Characterization

3.1.3. Terminology/Concepts

3.1.3.5.Process Models

Black box
model and
fishbone
diagram

We use the
black-box
mode to
describe
our
processes

Diagram
of the
black box
model

Aswe will seein Section 3 of this chapter, one of the first stepsin PPC isto model the
process that is under investigation. Two very useful tools for doing this are the
black-box model and the fishbone diagram.

We can use the simple black-box model, shown below, to describe most of the tools and
processes we will encounter in PPC. The process will be stimulated by inputs. These
inputs can either be controlled (such as recipe or machine settings) or uncontrolled (such
as humidity, operators, power fluctuations, etc.). These inputs interact with our process
and produce outputs. These outputs are usually some characteristic of our process that
we can measure. The measurable inputs and outputs can be sampled in order to observe
and understand how they behave and relate to each other.
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These inputs and outputs are also known as Factors and Responses, respectively.
Factors

Observed inputs used to explain response behavior (also called explanatory
variables). Factors may be fixed-level controlled inputs or sampled uncontrolled
inputs.

Responses

Sampled process outputs. Responses may also be functions of sampled outputs
such as average thickness or uniformity.

Factors We further categorize factors and responses according to their Variable Type, which

and indicates the amount of information they contain. As the name implies, this classification
Responses  isuseful for data modeling activities and is critical for selecting the proper analysis
arefurther  technique. The table below summarizes this categorization. The types are listed in order
classified of the amount of information they contain with Measurement containing the most

by information and Nominal containing the least.

variable

type
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Table e
describing Type Description Example
the discrete/continuous, order is particle count, oxide thickness,
different Measurement |, infini
important, infinite range pressure, temperature
variable _ — —
types Ordinal discrete, order isimportant, finite run # wafer # site, bin
range
, good/bad, bin,
Nominal discrete, no order, very few high/medium/low, shift,
possible values
operator

Fishbone We can use the fishbone diagram to further refine the modeling process. Fishbone

diagrams diagrams are very useful for decomposing the complexity of our manufacturing

help to processes. Typically, we choose a process characteristic (either Factors or Responses)

decompose  and list out the genera categories that may influence the characteristic (such as material,

complexity  machine method, environment, etc.), and then provide more specific detail within each
category. Examples of how to do this are given in the section on Case Studies.

Sample
fishbone
diagram Machine Material
Calibration \ Incoming
Environment
\ Maintenance Con=umables

Wear \ Source \
\ \ » Characteristic
/Sa_mpling

Accuracy Operator

Bias / / Recipe

Measurement Method
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3.1. Introduction to Production Process Characterization

3.1.3. Terminology/Concepts

3.1.3.6. Experiments and Experimental

Factors and
responses

We look for
correlations
and causal
relationships

Our goal isto
find causal
relationships

Find
correlations
and then try
to establish
causal
relationships

Design

Besides just observing our processes for evidence of stability and
capability, we quite often want to know about the relationships
between the various Factor s and Responses.

There are generally two types of relationships that we are interested in
for purposes of PPC. They are:

Correlation

Two variables are said to be correlated if an observed changein
the level of one variable is accompanied by a change in the level
of another variable. The change may be in the same direction
(positive correlation) or in the opposite direction (negative
correlation).

Causality

Thereisacausal relationship between two variables if a change
in the level of one variable causes a change in the other variable.

Note that correlation does not imply causality. It ispossible for two
variables to be associated with each other without one of them causing
the observed behavior in the other. When thisisthe caseit isusually
because thereis athird (possibly unknown) causal factor.

Generaly, our ultimate goal in PPC isto find and quantify causal
relationships. Once thisis done, we can then take advantage of these
relationships to improve and control our processes.

Generally, we first need to find and explore correlations and then try to
establish causal relationships. It is much easier to find correlations as
these are just properties of the data. It is much more difficult to prove
causality as this additionally requires sound engineering judgment.
There is a systematic procedure we can use to accomplish thisin an
efficient manner. We do this through the use of designed experiments.
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First we
screen, then
we build
models

Techniques
discussed in
process

I mprovement
chapter

NIST
SEMATECH

When we have many potential factors and we want to see which ones
are correlated and have the potential to be involved in causal
relationships with the responses, we use screening designs to reduce
the number of candidates. Once we have areduced set of influential
factors, we can use response surface designs to model the causal
relationships with the responses across the operating range of the
process factors.

The techniques are covered in detail in the process improvement

section and will not be discussed much in this chapter. Examples of
how the techniques are used in PPC are given in the Case Studies.

'HOME [TOOLS & AIDS [SEARCH [BACK MNEXT]|

http://www.itl. nist.gov/div898/handbook/ppc/section1/ppcl36.htm (2 of 2) [11/13/2003 5:41:23 PM]


http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org

3.1.4. PPC Steps

P ENGINEERING STATISTICS HANDBOOK

[HOME

'TOOLS & AIDS [SEARCH [BACK ~NEXT]

3. Production Process Characterization

3.1. Introduction to Production Process Characterization

3.1.4.PPC Steps

Follow these
4 stepsto
ensure
efficient use
of resources

Sep 1: Plan

Sep 2:
Collect

Sep 3
Analyze and
interpret

The primary activity of a PPC isto collect and analyze data so that we
may draw conclusions about and ultimately improve our production
processes. In many industrial applications, access to production facilities
for the purposes of conducting experimentsisvery limited. Thuswe
must be very careful in how we go about these activities so that we can
be sure of doing them in a cost-effective manner.

The most important step by far is the planning step. By faithfully
executing this step, we will ensure that we only collect datain the most
efficient manner possible and still support the goals of the PPC.
Planning should generate the following:

« astatement of the goals
« adescriptive process model (alist of process inputs and outputs)

« adescription of the sampling plan (including a description of the
procedure and settings to be used to run the process during the
study with clear assignments for each person involved)

« adescription of the method of data collection, tasks and
responsibilities, formatting, and storage

« anoutline of the data analysis

All decisions that affect how the characterization will be conducted
should be made during the planning phase. The process characterization
should be conducted according to this plan, with all exceptions noted.

Data collection is essentially just the execution of the sampling plan part
of the previous step. If agood job were done in the planning step, then
this step should be pretty straightforward. It isimportant to execute to
the plan as closely as possible and to note any exceptions.

Thisisthe combination of quantitative (regression, ANOVA,
correlation, etc.) and graphical (histograms, scatter plots, box plots, etc.)
analysis techniques that are applied to the collected datain order to
accomplish the goals of the PPC.
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3.1.4. PPC Steps

Sep 4: Reporting is an important step that should not be overlooked. By

Report creating an informative report and archiving it in an accessible place, we
can ensure that others have access to the information generated by the
PPC. Often, the work involved in a PPC can be minimized by using the
results of other, similar studies. Examples of PPC reports can be found
in the Case Studies section.

Further The planning and data collection steps are described in detail in the data

information  collection section. The analysis and interpretation steps are covered in
detail in the analysis section. Examples of the reporting step can be seen
in the Case Studies.
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3. Production Process Characterization

3.2.Assumptions / Prerequisites

Primary The primary goal of PPC isto identify and quantify sources of variation.
goal isto Only by doing thiswill we be able to define an effective plan for
identifyand  variation reduction and process improvement. Sometimes, in order to
guantify achieve this goal, we must first build mathematical/statistical models of
sour ces of our processes. In these models we will identify influential factors and
variation the responses on which they have an effect. We will use these models to

understand how the sources of variation are influenced by the important
factors. This subsection will review many of the modeling tools we have
at our disposal to accomplish these tasks. In particular, the models
covered in this section are linear models, Analysis of Variance
(ANOVA) models and discrete models.

Contents: 1. Genera Assumptions
Section 2

2. Continuous Linear

3. Analysis of Variance

1. One-Way
2. Crossed
3. Nested
4. Discrete
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3. Production Process Characterization
3.2. Assumptions/ Prerequisites

3.2.1.General Assumptions

Assumption: In order to employ the modeling techniques described in this section,

Process is sum there are afew assumptions about the process under study that must

of a systematic be made. First, we must assume that the process can adequately be

component and  modeled as the sum of a systematic component and arandom

arandom component. The systematic component is the mathematical model

component part and the random component is the error or noise present in the
system. We aso assume that the systematic component is fixed over
the range of operating conditions and that the random component has
a constant location, spread and distributional form.

Assumption: Finally, we assume that the data used to fit these models are

data used to fit representative of the process being modeled. As aresult, we must
these models additionally assume that the measurement system used to collect the
are data has been studied and proven to be capable of making

representative measurements to the desired precision and accuracy. If thisis not the
of the process case, refer to the Measurement Capability Section of this Handbook.
being modeled
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3.2. Assumptions / Prereguisites

3.2.2.Continuous Linear Model

Description

Model

Estimation

Testing

Assumptions

The continuous linear model (CLM) is probably the most commonly used
model in PPC. It is applicable in many instances ranging from simple
control charts to response surface models.

The CLM is amathematical function that relates explanatory variables
(either discrete or continuous) to a single continuous response variable. Itis
called linear because the coefficients of the terms are expressed as alinear
sum. The terms themselves do not have to be linear.

The genera form of the CLM is:

¥
y=ap+ Y a;f(x) +e

i=1

This equation just says that if we have p explanatory variables then the
response is modeled by a constant term plus a sum of functions of those
explanatory variables, plus some random error term. Thiswill become clear
aswe look at some examples below.

The coefficients for the parametersin the CLM are estimated by the method
of least squares. Thisis amethod that gives estimates which minimize the
sum of the squared distances from the observations to the fitted line or
plane. See the chapter on Process Modeling for a more complete discussion

on estimating the coefficients for these models.

The tests for the CLM involve testing that the model asawholeis agood
representation of the process and whether any of the coefficientsin the
model are zero or have no effect on the overall fit. Again, the details for
testing are given in the chapter on Process Modeling.

For estimation purposes, there are no additional assumptions necessary for
the CLM beyond those stated in the assumptions section. For testing
purposes, however, it is necessary to assume that the error termis
adequately modeled by a Gaussian distribution.
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3.2.2. Continuous Linear Model

Uses The CLM has many uses such as building predictive process models over a
range of process settings that exhibit linear behavior, control charts, process

capability, building models from the data produced by designed
experiments, and building response surface models for automated process
control applications.

Examples Shewhart Control Chart - The simplest example of avery common usage
of the CLM isthe underlying model used for Shewhart control charts. This
model assumes that the process parameter being measured is a constant with
additive Gaussian noise and is given by:

¥=a,+E

Diffusion Furnace - Suppose we want to model the average wafer sheet
resistance as a function of the location or zone in a furnace tube, the
temperature, and the anneal time. In this case, let there be 3 distinct zones
(front, center, back) and temperature and time are continuous explanatory
variables. Thismodel is given by the CLM:

ay if front
¥ =ap+4{ az + astemp + astime +e  if center
az if back

Diffusion Furnace (cont.) - Usually, the fitted line for the average wafer
sheet resistance is not straight but has some curvature to it. This can be
accommodated by adding a quadratic term for the time parameter as

follows:
a; if front
¥ =ap+ { a2 +astemp+ agtime + agtime®e  if center
ay if back
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3.2. Assumptions/ Prerequisites

3.2.3.Analysis of Variance Models
(ANOVA)

ANOVA
allows usto
compare the
effects of
multiple
levels of
multiple
factors

ANOVA
splitsthe
data into
components

Example:
Turned Pins

One of the most common analysis activitiesin PPC is comparison. We
often compare the performance of similar tools or processes. We also
compare the effect of different treatments such as recipe settings. When
we compare two things, such as two tools running the same operation,
we use comparison techniques. When we want to compare multiple
things, like multiple tools running the same operation or multiple tools
with multiple operators running the same operation, we turn to ANOVA
techniques to perform the analysis.

The easiest way to understand ANOV A is through a concept known as
value splitting. ANOV A splits the observed data values into components
that are attributable to the different levels of the factors. Value splitting
Is best explained by example.

The simplest example of value splitting is when we just have one level
of one factor. Suppose we have aturning operation in a machine shop
where we are turning pins to a diameter of .125 +/- .005 inches.
Throughout the course of aday we take five samples of pinsand obtain
the following measurements:. .125, .127, .124, .126, .128.

We can split these data values into a common value (mean) and
residuals (what's left over) asfollows:

[125 [127 [124 [126 [128

(126 [126 [126 [126 [126

+

001 [001 [-002 [000 [.002
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3.2.3. Analysis of Variance Models (ANOVA)

From these tables, also called overlays, we can easily calculate the
location and spread of the data as follows:

mean = .126

std. deviation = .0016.

Other While the above exampleis atrivial structural layout, it illustrates how

layouts we can split data values into its components. In the next sections, we
will look at more complicated structural layouts for the data. In
particular we will look at multiple levels of one factor ( One-Way
ANQOVA ) and multiple levels of two factors (Two-Way ANOVA)

where the factors are crossed and nested.
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3.2.3. Analysis of Variance Models (ANOVA)

3.2.3.1.0ne-Way ANOVA

Description

Model

Estimation

click hereto
see details

of one-way
value

splitting

We say we have a one-way layout when we have a single factor with
severa levels and multiple observations at each level. With this kind of
layout we can cal culate the mean of the observations within each level
of our factor. The residuals will tell us about the variation within each
level. We can also average the means of each level to obtain agrand
mean. We can then look at the deviation of the mean of each level from
the grand mean to understand something about the level effects. Finally,
we can compare the variation within levelsto the variation across levels.
Hence the name analysis of variance.

It is easy to model al of thiswith an equation of the form:

Yy = M +a, + =N
This equation indicates that the jth data value, from level i, is the sum of
three components: the common value (grand mean), the level effect (the
deviation of each level mean from the grand mean), and the residual
(what's left over).

Estimation for the one-way layout can be performed one of two ways.
First, we can calculate the total variation, within-level variation and
across-level variation. These can be summarized in atable as shown
below and tests can be made to determine if the factor levels are
significant. The value splitting example illustrates the calculations

involved.
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3.2.3.1. One-Way ANOVA

ANOVA
table for
one-way
case

Level effects
must sum to
Zero

Testing

In general, the ANOV A table for the one-way caseis given by:

Sour ce Sum of Squares I?:ergeredeeésn?f Mean Square
Factor ! !

levels JZ ':I;' -1 JZ ':I:' /(1-1)

2 z

residuals £, 1(J1) £
ZZ ! ZZ R TAE)

2 2
corrected total Z Z yg‘ Lim 1J-1

The other way is through the use of CLM techniques. If you look at the

model above you will notice that it isin the form of a CLM. The only
problem is that the model is saturated and no unique solution exists. We
overcome this problem by applying a constraint to the model. Since the
level effects are just deviations from the grand mean, they must sum to
zero. By applying the constraint that the level effects must sum to zero,
we can now obtain a unique solution to the CLM equations. Most
analysis programs will handle this for you automatically. See the chapter
on Process Modeling for a more complete discussion on estimating the
coefficients for these models.

The testing we want to do in this case is to seeif the observed data
support the hypothesis that the levels of the factor are significantly
different from each other. The way we do thisis by comparing the
within-level variancs to the between-level variance.

If we assume that the observations within each level have the same
variance, we can calculate the variance within each level and pool these
together to obtain an estimate of the overall population variance. This
works out to be the mean square of the residuals.

Similarly, if there really were no level effect, the mean square across
levels would be an estimate of the overall variance. Therefore, if there
really were no level effect, these two estimates would be just two
different ways to estimate the same parameter and should be close
numerically. However, if thereisalevel effect, the level mean square
will be higher than the residual mean square.
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3.2.3.1. One-Way ANOVA

Assumptions

Uses

Example

Analyze

It can be shown that given the assumptions about the data stated below,
the ratio of the level mean square and the residual mean square follows
an F distribution with degrees of freedom as shown in the ANOVA
table. If the F-valueis significant at a given level of confidence (greater
than the cut-off value in aF-Table), then thereisalevel effect present in
the data

For estimation purposes, we assume the data can adequately be modeled
as the sum of a deterministic component and a random component. We
further assume that the fixed (deterministic) component can be modeled
as the sum of an overall mean and some contribution from the factor
level. Findly, it is assumed that the random component can be modeled
with a Gaussian distribution with fixed location and spread.

The one-way ANOVA is useful when we want to compare the effect of
multiple levels of one factor and we have multiple observations at each
level. The factor can be either discrete (different machine, different
plants, different shifts, etc.) or continuous (different gas flows,
temperatures, etc.).

L et's extend the machining example by assuming that we have five

different machines making the same part and we take five random
samples from each machine to obtain the following diameter data:

| M achine

1 [2 3 [4]5
[125 [118 [123 [126 [118
[127 [122 [125 [128 [129
[125 [120 [125 [126 [127
[126 [124 [124 [127 [120
[128 [119 [126 [129 [121

Using ANOV A software or the techniques of the value-splitting
example, we summarize the datainto an ANOVA table as follows:

Sour ce Sum of Degr ees of Mean E-value
Squares Freedom Square
'I:aCtor 000137 4| .000034|4.86 > 2.87
evels
| residuals | .000132| 20| .OOOOO7|
|corrected total | .000269 | 24| |
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3.2.3.1. One-Way ANOVA

Test By dividing the Factor-level mean square by the residual mean square,
we obtain a F-value of 4.86 which is greater than the cut-off value of
2.87 for the F-distribution at 4 and 20 degrees of freedom and 95%
confidence. Therefore, there is sufficient evidence to reject the
hypothesis that the levels are all the same.

Conclusion From the analysis of these data we can conclude that the factor
"machine" has an effect. Thereis astatistically significant differencein
the pin diameters across the machines on which they were
manufactured.
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3.2.3.1.1. One-Way Value-Splitting
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3.2.3. Analysis of Variance Models (ANOVA)

3.2.3.1. One-Way ANOVA

3.2.3.1.1.0ne-Way Value-Splitting

Example

Calculate
level-means

Sweep level
means

L et's use the data from the machining example to illustrate how to use
the techniques of value-splitting to break each data value into its
component parts. Once we have the component parts, it isthen atrivial
maitter to calculate the sums of squares and form the F-value for the
test.

| Machine
(1 [2[3[4a][5
(125 [118 [123 [126 [118
[127 [122 [125 [128 [129
[125 [120 [125 [126 [127
(126 [124 [124 [127 [120

[128 [119 [126 [129 [121

Remember from our model, ¥ = #1 + &; + 2;, we say each

observation is the sum of acommon value, alevel effect and aresidual
value. Vaue-splitting just breaks each observation into its component
parts. The first step in value-splitting is to calculate the mean values
(rounding to the nearest thousandth) within each machine to get the
level means.

| M achine
| 1 | 2 | 3 |45
I

1262 1206 | 1246 | 1272 [ 123

We can then sweep (subtract the level mean from each associated data
value) the means through the original datatable to get the residuals:
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3.2.3.1.1. One-Way Value-Splitting

Calculate
the grand
mean

Sweep the

grand mean
through the
level means

Calculate
ANOVA
values

Total sum of
sguares

M achine
1 [ 2 [ 3] 45

|

|
[~.0012|-.0026-.0016-.0012-.005
0008|0014 .0004| 0008 .006
I_
I_
|

0012|-.0006 .0004 -.0012| .004
0002 .0034|-.0006 -.0002|-.003
0018|-.0016| .0014| .0018|-.002

The next step isto calculate the grand mean from the individual
machine means as:

Finally, we can sweep the grand mean through the individual level
means to obtain the level effects:

| M achine
1] 2 | 3[4 5
[.00188|-.00372[.00028].00288 -.00132

It is easy to verify that the original data table can be constructed by
adding the overall mean, the machine effect and the appropriate
residual.

Now that we have the data values split and the overlays created, the next
step isto calculate the various values in the One-Way ANOVA table.
We have three values to calculate for each overlay. They are the sums of
squares, the degrees of freedom, and the mean squares.

The total sum of squaresis calculated by summing the squares of all the
data values and subtracting from this number the square of the grand
mean times the total number of data values. We usually don't calculate
the mean square for the total sum of squares because we don't use this
value in any statistical test.
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Residual

sum of
sguares,
degrees of
freedom and
mean sguare

Level sum of
squares,
degrees of
freedom and
mean square

Calculate
F-value
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3.2.3.1.1. One-Way Value-Splitting

The residual sum of squaresis calculated by summing the squares of the
residual values. Thisisequal to .000132. The degrees of freedom isthe
number of unconstrained values. Since the residuals for each level of the
factor must sum to zero, once we know four of them, the last oneis
determined. This means we have four unconstrained values for each
level, or 20 degrees of freedom. This gives a mean square of .000007.

Finally, to obtain the sum of squares for the levels, we sum the squares
of each valuein the level effect overlay and multiply the sum by the
number of observations for each level (in this case 5) to obtain avalue
of .000137. Since the deviations from the level means must sum to zero,
we have only four unconstrained values so the degrees of freedom for
level effectsis 4. This produces a mean sgquare of .000034.

The last step is to calculate the F-value and perform the test of equal
level means. The F- valueisjust the level mean square divided by the
residual mean square. In this case the F-value=4.86. If we look in an
F-table for 4 and 20 degrees of freedom at 95% confidence, we see that
the critical valueis 2.87, which means that we have a significant result
and that there is thus evidence of a strong machine effect. By looking at
the level-effect overlay we see that thisis driven by machines 2 and 4.
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Description
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Estimation
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When we have two factors with at least two levels and one or more
observations at each level, we say we have atwo-way layout. We say
that the two-way layout is crossed when every level of Factor A occurs
with every level of Factor B. With this kind of layout we can estimate
the effect of each factor (Main Effects) aswell as any interaction

between the factors.

If we assume that we have K observations at each combination of |
levels of Factor A and Jlevels of Factor B, then we can model the
two-way layout with an equation of the form:

Yijk = M+ aq + b; + (ab)g; + ez

This equation just says that the kth data value for the jth level of Factor
B and theith level of Factor A isthe sum of five components: the
common value (grand mean), the level effect for Factor A, the level
effect for Factor B, the interaction effect, and the residual. Note that (ab)
does not mean multiplication; rather that there is interaction between the
two factors.

Like the one-way case, the estimation for the two-way layout can be
done either by calculating the variance components or by using CLM

techniques.

For the variance components methods we display the datain atwo
dimensional table with the levels of Factor A in columns and the levels
of Factor B in rows. The replicate observations fill each cell. We can
sweep out the common value, the row effects, the column effects, the
Interaction effects and the residuals using value-splitting techniques.
Sums of squares can be calculated and summarized in an ANOVA table
as shown below.
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3.2.3.2. Two-Way Crossed ANOVA

Degr ees
Source | Sum of Squares of Mean Square
Freedom
rows JKZ.:IE -1 JKZQE -1
columns IKZE};" J1 IKZE};!
/(F1)
2 2
interaction KZZ(HI?); (-)(31) Kzz(ﬂb)y
/(1-1)(F1)
residuals | 3D D €G] NKD (203 Zﬂgjk/IJ(K-l)
2 2
Coigfglted ZE ¥~ Ut | 1k

We can use CLM techniques to do the estimation. We still have the
problem that the model is saturated and no unique solution exists. We

overcome this problem by applying the constraints to the model that the
two main effects and interaction effects each sum to zero.

Testing Like testing in the one-way case, we are testing that two main effects

and the interaction are zero. Again we just form aratio of each main
effect mean sgquare and the interaction mean square to the residual mean
square. If the assumptions stated below are true then those ratios follow
an F-distribution and the test is performed by comparing the F-ratios to
values in an F-table with the appropriate degrees of freedom and
confidence level.

Assumptions  For estimation purposes, we assume the data can be adequately modeled
as described in the model above. It is assumed that the random
component can be modeled with a Gaussian distribution with fixed
location and spread.

Uses The two-way crossed ANOVA is useful when we want to compare the
effect of multiple levels of two factors and we can combine every level
of one factor with every level of the other factor. If we have multiple
observations at each level, then we can also estimate the effects of
Interaction between the two factors.
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3.2.3.2. Two-Way Crossed ANOVA

Example

Analyze

Test

L et's extend the one-way machining example by assuming that we want
to test if there are any differencesin pin diameters due to different types
of coolant. We still have five different machines making the same part
and we take five samples from each machine for each coolant typeto
obtain the following data:

| Machine
|1]2]3]4]5
[125.118[123[.126[ 118
Coolant |.127|.122|.125|.128|.129
A [125[.120[.125[.126|.127
126].124[.124[.127[.120
128[.119|.126[.129[.121
1124[.116|.122[.126[.125
128[.125[.121[.129[.123
1127[.119[.124[.125|.114
1126[.125(.126[.130|.124
1129[.120[.125[.124[.117

Coolant

For analysis details see the crossed two-way value splitting example.
We can summarize the analysis resultsin an ANOVA table asfollows:

| Source | S?qul:z\r(js | [I):?geredefm()f |M ean Square| F-value
| machine | .000303| 4 .000076(8.8 > 2.61
| coolant | .00000392| 1| .00000392|.45 < 4.08
| interaction | .00001468| 4| .00000367 |.42 <261
| residuals | .000346| 40| .0000087|
|corrected total | .000668| 49| |

By dividing the mean square for machine by the mean square for
residuals we obtain an F-value of 8.8 which is greater than the cut-off
value of 2.61 for 4 and 40 degrees of freedom and a confidence of
95%. Likewisethe F-valuesfor Coolant and Interaction, obtained by
dividing their mean squares by the residual mean square, are less than
their respective cut-off values.
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3.2.3.2. Two-Way Crossed ANOVA

Conclusion From the ANOV A table we can conclude that machine is the most
important factor and is statistically significant. Coolant is not significant
and neither is the interaction. These results would lead us to believe that
some tool-matching efforts would be useful for improving this process.

NIST . |
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3.2.3.2.1. Two-way Crossed Value-Splitting Example
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3. Production Process Characterization

3.2. Assumptions/ Prerequisites

3.2.3. Analysis of Variance Models (ANOVA)
3.2.3.2. Two-Way Crossed ANOVA

3.2.3.2.1. Two-way Crossed Value-Splitting

Example
Example: The data table below is five samples each collected from five different
Coolant is lathes each running two different types of coolant. The measurement is
completely the diameter of aturned pin.
crossed with .
. Machine
machine

|
1 1]2]3]4]5
’ 125 |118|123|126|118
Coolant’ 7|122|125|128|129
A ’125|120|125|126|127
L126L124L124L127L120
L128L119L126L129L121
L124L116L122L126L125
L128L125L121L129L123
L127L119L124L125L114
L126L125L126L130L124
L129L120L125L124L117

Coolant

For the crossed two-way case, the first thing we need to do is to sweep
the cell means from the data table to obtain the residual values. Thisis
shown in the tables below.
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3.2.3.2.1. Two-way Crossed Value-Splitting Example

Thefirst

b | Machine

e ot (12345
the cell [ A [ .1262] .1206] .1246| .1272| .123
meansto B [ .1268] .121[.1236|.1268| .1206
obtain the [-0012[-.0026-.0016-.0012| -.005
;ﬁd#]:;s Coolant | 0008|0014 .0004| .0008| 006
A |-0012[-.0006| .0004|-.0012| .004
[-.0002| 0034 -.0006 -.0002| -.003
00180016/ .0014| .0018| -.002
[-.0028| -.005-.0016 -.0008 | .0044
0012|004 -.0026 .0022| .0024
Co‘gam 0002 -.002[ .0004-.0018|-.0066
[-.0008| 004 .0024 .0032| .0034
0022 -.001 .0014|-.0028-.0036

Sweep the The next step is to sweep out the row means. This gives the table below.
row means

| Machine
|1 ]2 |3 |4 ]5

[A[1243(.0019|-.0037 | .0003 0029 - 0013
[B[-1238[ .003[-.0028-.0002[.003 |-.0032

Sweep the Finaly, we sweep the column means to obtain the grand mean, row
column (coolant) effects, column (machine) effects and the interaction effects.
means

| Machine

1 [ 2 3 [47]5
[.1241] .0025|-.0033| .00005 .003-.0023
[A|.0003 -.0006 |-.0005| .00025(.0000 .001
[B[-.0003 | .0006 | .0005 |-.00025(.0000] -.001
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What do
these tables
tell us?

Calculate
sums of
squares and
mean
squares
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By looking at the table of residuals, we see that the residuals for coolant
B tend to be alittle higher than for coolant A. Thisimplies that there
may be more variability in diameter when we use coolant B. From the
effects table above, we see that machines 2 and 5 produce smaller pin
diameters than the other machines. Thereis also avery slight coolant
effect but the machine effect islarger. Finally, there also appearsto be
dlight interaction effects. For instance, machines 1 and 2 had smaller
diameters with coolant A but the opposite was true for machines 3,4 and
5.

We can calculate the values for the ANOV A table according to the
formulae in the table on the crossed two-way page. This gives the table

below. From the F-values we see that the machine effect is significant
but the coolant and the interaction are not.

Sumsof | Degrees of Mean

| Source | Squares | Freedom Square | F-value

| Machine | .000303| 4 .000076|8.8 > 2.61

| Coolant | .00000392| 1| .00000392 |.45 <4.08

| | nteraction | .00001468| 4| .00000367 |.42 <261

[ Residual | .000346| 40[ 0000087 |

Corrected
| Total | .000668| 49| |
[HOME [TOOLS & AIDS [SEARCH [BACK NEXT]
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3. Production Process Characterization

3.2. Assumptions/ Prerequisites

3.2.3. Analysis of Variance Models (ANOVA)

3.2.3.3. Two-Way Nested ANOVA

Description

Model

Estimation

Click here
for nested
value-
splitting
example

Sometimes, constraints prevent us from crossing every level of one factor
with every level of the other factor. In these cases we are forced into what
Is known as a nested layout. We say we have a nested layout when fewer
than all levels of one factor occur within each level of the other factor. An
example of this might be if we want to study the effects of different
machines and different operators on some output characteristic, but we
can't have the operators change the machines they run. In this case, each
operator is not crossed with each machine but rather only runs one
machine.

If Factor B is nested within Factor A, then alevel of Factor B can only
occur within one level of Factor A and there can be no interaction. This
gives the following model:

Y =M+ a; + E:-m

This equation indicates that each data value is the sum of acommon value
(grand mean), the level effect for Factor A, the level effect of Factor B

nested Factor A, and theresidual.

For anested design we typically use variance components methods to
perform the analysis. We can sweep out the common value, the row
effects, the column effects and the residuals using value-splitting

technigques. Sums of squares can be cal culated and summarized in an
ANOVA table as shown below.

It isimportant to note that with this type of layout, since each level of one
factor isonly present with one level of the other factor, we can't estimate
Interaction between the two.
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3.2.3.3. Two-Way Nested ANOVA

ANOVA
table for Source Sum of Squares I?:ergerede%en?f Mean Square
nested case )
ons Y| oY
’ /(-1)
2 2
columns EKZE}J 1(F1) IKZ bi -

residudls | 333 el 1KY 2.2 ZEEjEIIJ(K-l)
corrected Z Z yg ~ | 1xa

total

Aswith the crossed layout, we can aso use CLM techniques. We still have

the problem that the model is saturated and no unique solution exists. We
overcome this problem by applying to the model the constraints that the
two main effects sum to zero.

Testing We are testing that two main effects are zero. Again we just form aratio of
each main effect mean sgquare to the residual mean square. If the
assumptions stated below are true then those ratios follow an F-distribution
and the test is performed by comparing the F-ratios to values in an F-table
with the appropriate degrees of freedom and confidence level.

Assumptions  For estimation purposes, we assume the data can be adequately modeled as
described in the model above. It is assumed that the random component can
be modeled with a Gaussian distribution with fixed location and spread.

Uses The two-way nested ANOVA is useful when we are constrained from
combining all the levels of one factor with all of the levels of the other
factor. These designs are most useful when we have what is called a
random effects situation. When the levels of afactor are chosen at random
rather than selected intentionally, we say we have a random effects model.
An example of thisiswhen we select |ots from a production run, then
select units from the lot. Here the units are nested within lots and the effect
of each factor is random.
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3.2.3.3. Two-Way Nested ANOVA

Example

Analyze

Test

L et's change the two-way machining example slightly by assuming that we
have five different machines making the same part and each machine has
two operators, one for the day shift and one for the night shift. We take five
samples from each machine for each operator to obtain the following data:

| Machine
[1[2[3[4(5
125.118[123].126[ 118
Operator [127|.122[.125|.128|.129
Day [125[.120[.125[.126[.127
.126[.124[.124[.127.120
.128[.119[.126].129|.121
1124[.116[.122].126|.125
.128[.125[.121[.129[.123
.127[.119[.124[.125.114
.126[.125(.126(.130|.124
.129[.120(.125[.124[.117

Operator
Night

For analysis details see the nested two-way value splitting example. We
can summarize the analysis results in an ANOVA table as follows:

Sour ce Sséj Jgrcgs [I):ergeredefn?f Mean Square| F-value
Machine 000303 4l 0000758 8;1;?
. 428 <
Operator(Machine) .0000186 5 .00000372 245
[ Residuds | .000346| 40[ 0000087 |
| Corrected Total | .000668| 49| |

By dividing the mean square for machine by the mean square for residuals
we obtain an F-value of 8.5 which is greater than the cut-off value of 2.61
for 4 and 40 degrees of freedom and a confidence of 95%. Likewisethe
F-value for Operator(Machine), obtained by dividing its mean square by
the residual mean square is less than the cut-off value of 2.45 for 5 and 40
degrees of freedom and 95% confidence.
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3.2.3.3. Two-Way Nested ANOVA

Conclusion From the ANOV A table we can conclude that the Machine is the most
important factor and is statistically significant. The effect of Operator
nested within Machineis not statistically significant. Again, any
improvement activities should be focused on the tools.
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The data table below contains data collected from five different lathes, each run by two
different operators. Note we are concerned here with the effect of operators, so the layout is
nested. If we were concerned with shift instead of operator, the layout would be crossed.
The measurement is the diameter of aturned pin.

. | Sample

Machine Operator| | | 3 | | 5
|Day |125|127|125|126|128
|Night | 124| 128| 127| 126| 129

2 |Day |.118|.122|.120|.124|.119
|Night |.116|.125|.119|.125|.120

3 |Day |.123|.125|.125|.124|.126
|Night |.122|.121|.124|.126|.125

4 |Day |.126|.128|.126|.127|.129
|Night |.126|.129|.125|.130|.124

5 |Day |.118|.129|.127|.120|.121
|Night |.125|.123|.114|.124|.117

For the nested two-way case, just asin the crossed case, the first thing we need to do isto

sweep the cell means from the data table to obtain the residual values. We then sweep the
nested factor (Operator) and the top level factor (Machine) to obtain the table below.

Machine|Operator . ] Sample
Common MachmeOpera'[or’-| 1 2 (3[4 5
[Day 002460003 |-0012] .0008]-.0012|-.0002] .0018
Night ' | .0003 [-.0028[.0012| .002-.0008[ .0022
[Day 003240002 |-.0026] .0014-.0006| .0034|-.0016
Night ' | .0002 [-005 [ .004| -.002] .004| -.001
Day .0005 [-.0016( .0004| .0004 -.0006 | .0014
iW 12404 '00006I -.0005 I 0016I 0026I 0004I 0024I .0014
[Day 002960002 |-0012] .0008|-.0012| -.002 .0018
Night ' | -.0002 [-.0008|.0022-.0018] .0032-.0028
[Day [ .0012 | -.005] .006] .004[ -.003| -.002



http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm

3.2.3.3.1. Two-Way Nested Value-Splitting Example

|5 [Night | | --00224["-0012 [ .0044[ .0024|-.0066| .0034|-.0036|
What By looking at the residuals we see that machines 2 and 5 have the greatest variability.

doesthis  There does not appear to be much of an operator effect but there is clearly a strong machine
tabletell effect.
us?

Calculate  We can calculate the values for the ANOVA table according to the formulae in the table on
sums of the nested two-way page. This produces the table below. From the F-values we see that the

squares machine effect is significant but the operator effect is not. (Hereit is assumed that both

and factors are fixed).

mean

squares
| Sour ce |Sums of Squar es|Degrees of Freedom [Mean Square| F-value
| Machine | .000303| 4/ .0000758|8.77 > 2.61
|Operator (Machine) | .0000186 | 5/ .00000372|.428 < 2.45
[ Resdual | 000346 40[ 0000087 |
| Corrected Total | .000668| 49| |
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3.2. Assumptions / Prereguisites

3.2.4.Discrete Models

Description  There are many instances when we are faced with the analysis of
discrete data rather than continuous data. Examples of this are yield
(good/bad), speed bins (slow/fast/faster/fastest), survey results
(favor/oppose), etc. We then try to explain the discrete outcomes with
some combination of discrete and/or continuous explanatory variables.
In this situation the modeling techniques we have learned so far (CLM
and ANOVA) are no longer appropriate.

Contingency  There are two primary methods available for the analysis of discrete

table response data. The first one applies to situations in which we have
analyssand  discrete explanatory variables and discrete responses and is known as
log-linear Contingency Table Analysis. The model for thisis covered in detail in
model this section. The second model applies when we have both discrete and

continuous explanatory variables and is referred to asa Log-Linear
Model. That model is beyond the scope of this Handbook, but interested
readers should refer to the reference section of this chapter for alist of

useful books on the topic.

Model Suppose we have n individuals that we classify according to two
criteria, A and B. Supposethere arer levels of criterion A and slevels
of criterion B. These responses can be displayed in anr x stable. For
example, suppose we have a box of manufactured parts that we classify
as good or bad and whether they came from supplier 1, 2 or 3.

Now, each cell of this table will have a count of the individuals who fall
into its particular combination of classification levels. Let's call this
count Njj. The sum of all of these counts will be equal to the total

number of individuals, N. Also, each row of the table will sum to N;
and each column will sumto N j .
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3.2.4. Discrete Models

Estimation

Testing

Assumptions

Example

Under the assumption that there is no interaction between the two
classifying variables (like the number of good or bad parts does not
depend on which supplier they came from), we can cal culate the counts
we would expect to see in each cell. Let's call the expected count for any
cell Ejj . Then the expected value for acell isEj; = Nj * N; /N . All we

need to do then is to compare the expected counts to the observed
counts. If there is a consderabl e difference between the observed counts
and the expected values, then the two variables interact in some way.

The estimation is very simple. All we do is make a table of the observed
counts and then cal cul ate the expected counts as described above.

The test is performed using a Chi-Square goodness-of-fit test according
to the following formula:

(observed — expected)’

=22

expected

where the summation is across all of the cellsin the table.

Given the assumptions stated below, this statistic has approximately a
chi-square distribution and is therefore compared against a chi-sguare
table with (r-1)(s-1) degrees of freedom, with r and s as previously
defined. If the value of the test statistic is less than the chi-square value
for agiven level of confidence, then the classifying variables are
declared independent, otherwise they are judged to be dependent.

The estimation and testing results above hold regardless of whether the
sample model is Poisson, multinomial, or product-multinomial. The
chi-sgquare results start to break down if the countsin any cell are small,

say < 5.

The contingency table method isreally just atest of interaction between
discrete explanatory variables for discrete responses. The example given
below isfor two factors. The methods are equally applicable to more
factors, but as with any interaction, as you add more factors the
interpretation of the results becomes more difficult.

Suppose we are comparing the yield from two manufacturing processes.
We want want to know if one process has a higher yield.
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3.2.4. Discrete Models

Make table [ Good [ Bad [ Totals
ofcounts | Process A 8 | 14 | 100
| Process B | 80 | 20 | 100
| Totals | 166 ] 34 ] 200
Table 1. Yields for two production processes
We obtain the expected values by the formula given above. This gives
the table below.
Calculate [ Good | Bad [ Totals
Sxpected | Process A 8 | 17 | 100
| Process B | 83 17| 100
| Totals | 166 ] 34 ] 200

Table 2. Expected values for two production processes

Calculate The chi-square statistic is 1.276. Thisis below the chi-square value for 1
chi-square degree of freedom and 90% confidence of 2.71 . Therefore, we conclude
statisticand  that thereis not a(significant) difference in processyield.

compareto
table value

Conclusion Therefore, we conclude that there is no statistically significant
difference between the two processes.
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SEMATECH

[HOME [TOOLS & AIDS [SEARCH [BACK MNEXT]

http://www.itl.nist.gov/div898/handbook/ppc/section2/ppc24.htm (3 of 3) [11/13/2003 5:41:26 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org

3.3. Data Collection for PPC

P ENGINEERING STATISTICS HANDBOOK

HOME

TOOLS & AIDS |[SEARCH [BACK NEXT]|
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3.3.Data Collection for PPC

Sart with
careful
planning

Many things
can go
wrong in the
data
collection

Table of
Contents
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The data collection process for PPC starts with careful planning. The
planning consists of the definition of clear and concise goals, developing
process models and devising a sampling plan.

This activity of course ends without the actual collection of the data
which is usually not as straightforward as it might appear. Many things
can go wrong in the execution of the sampling plan. The problems can
be mitigated with the use of check lists and by carefully documenting all
exceptions to the original sampling plan.

1. Set Goals
2. Modeling Processes
1. Black-Box Models
2. Fishbone Diagrams
3. Relationships and Sensitivities
3. Define the Sampling Plan
1. Identify the parameters, ranges and resolution

Design sampling scheme

Select sample sizes

Design data storage formats

o~ DN

Assign roles and responsibilities
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3.3.1. Define Goals
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3.3. Data Collection for PPC

3.3.1. Define Goals

Sate concise
goals

Goals
usually
defined in
terms of key
specifications

Example
goal
statements
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The goal statement is one of the most important parts of the
characterization plan. With clearly and concisely stated goals, the rest
of the planning process falls naturally into place.

The goals are usually defined in terms of key specifications or
manufacturing indices. We typically want to characterize a process and
compare the results against these specifications. However, thisis not
always the case. We may, for instance, just want to quantify key
process parameters and use our estimates of those parametersin some
other activity like controller design or process improvement.

Click on each of the links below to see Goal Statements for each of the
case studies.

1. Furnace Case Study (Goal)
2. Machine Case Study (Goal)
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3.3.2. Process Modeling
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3. Production Process Characterization
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3.3.2.Process Modeling

| dentify Process modeling begins by identifying all of the important factors and
influential responses. Thisis usually best done as ateam effort and is limited to the
parameters scope set by the goal statement.

Document This activity is best documented in the form of a black-box model as
with seen in the figure below. In thisfigure al of the outputs are shown on
black-box the right and all of the controllable inputs are shown on the left. Any
models inputs or factors that may be observable but not controllable are shown

on the top or bottom.

Uncontraled Inputs

(Co-Fadors)
=
4=
£ E2 g%
8 £ 8 £
T = O= [N
Discrete

Controlled Inputs
(Factors)
Outputs
{Responses)

Cryr AUmp
Srarftion
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3.3.2. Process Modeling

Model The next step isto model relationships of the previoudly identified
relationships  factors and responses. In this step we choose a parameter and identify
using all of the other parameters that may have an influence on it. This
fishbone processis easily documented with fishbone diagrams asillustrated in
diagrams the figure below. The influenced parameter is put on the center line and

theinfluential factors are listed off of the centerline and can be grouped
into major categories like Tool, Material, Work Methods and

Environment.
Machine Material
Calbibration \ Incoming
Environment
\\ Maintenance Consumables

Wear \ Source \
\ \ » Characteristic
Aampling

Accuracy Operator

Bias / / Recipe

Measurement Method
Document The final step isto document all known information about the
relationships  relationships and sensitivities between the inputs and outputs. Some of
and the inputs may be correlated with each other as well as the outputs.

sensitivities There may be detailed mathematical models available from other
studies or the information available may be vague such asfor a
machining process we know that as the feed rate increases, the quality
of the finish decreases.

It is best to document this kind of information in atable with al of the
inputs and outputs listed both on the left column and on the top row.
Then, correlation information can be filled in for each of the appropriate
cells. See the case studies for an example.
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3.3.2. Process Modeling

Examples Click on each of the links below to see the process models for each of
the case studies.

1. Case Study 1 (Process Moddl)
2. Case Study 2 (Process Model)

NIST
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Sampling
planis
detailed
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Verify and
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A sampling plan is a detailed outline of which measurements will be
taken at what times, on which material, in what manner, and by whom.
Sampling plans should be designed in such away that the resulting
datawill contain arepresentative sample of the parameters of interest
and allow for all questions, as stated in the goals, to be answered.

The steps involved in developing a sampling plan are:

1. identify the parameters to be measured, the range of possible
values, and the required resolution

2. design a sampling scheme that details how and when samples
will be taken

3. select sample sizes

4. design data storage formats

5. assign roles and responsibilities

Once the sampling plan has been developed, it can be verified and then
passed on to the responsible parties for execution.
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3.3.3.1.ldentifying Parameters, Ranges and
Resolution

Our goals and the models we built in the previous steps should
provide all of the information needed for selecting parameters and
determining the expected ranges and the required measurement
resolution.

Goalswill tell  Thefirst step isto carefully examine the goals. Thiswill tell you

us what to which response variables need to be sampled and how. For instance, if
measure and our goal states that we want to determine if an oxide film can be
how grown on awafer to within 10 Angstroms of the target value with a

uniformity of <2%, then we know we have to measure the film
thickness on the wafers to an accuracy of at least +/- 3 Angstroms and
we must measure at multiple sites on the wafer in order to calculate
uniformity.

The goals and the models we build will also indicate which
explanatory variables need to be sampled and how. Since the fishbone
diagrams define the known important relationships, these will be our
best guide as to which explanatory variables are candidates for
measurement.

Ranges help Defining the expected ranges of values is useful for screening outliers.

screen outliers  In the machining example , we would not expect to see many values
that vary more than +/- .005" from nominal. Therefore we know that
any values that are much beyond this interval are highly suspect and
should be remeasured.
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3.3.3.1. Identifying Parameters, Ranges and Resolution

Resolution
hel ps choose
measurement
equipment

Examples
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Finally, the required resolution for the measurements should be
specified. This specification will help guide the choice of metrology
equipment and help define the measurement procedures. As arule of
thumb, we would like our measurement resolution to be at least 1/10
of our tolerance. For the oxide growth example, this means that we
want to measure with an accuracy of 2 Angstroms. Similarly, for the
turning operation we would need to measure the diameter within
.001". This means that vernier calipers would be adequate as the
measurement device for this application.

Click on each of the links below to see the parameter descriptions for
each of the case studies.

1. Case Study 1 (Sampling Plan)
2. Case Study 2 (Sampling Plan)
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3.3.3.2. Choosing a Sampling Scheme
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what data will
be obtained
and how

Passive data
collection

There are two
principles that
guide our
choice of
sampling
scheme

Thefirstis
precision

A sampling scheme is a detailed description of what datawill be
obtained and how thiswill be done. In PPC we are faced with two
different situations for developing sampling schemes. Thefirst is
when we are conducting a controlled experiment. There are very
efficient and exact methods for devel oping sampling schemes for
designed experiments and the reader is referred to the Process

| mprovement chapter for details.

The second situation is when we are conducting a passive data
collection (PDC) study to learn about the inherent properties of a
process. These types of studies are usually for comparison purposes
when we wish to compare properties of processes against each other
or against some hypothesis. Thisis the situation that we will focus on
here.

Once we have selected our response parameters, it would seem to be a
rather straightforward exercise to take some measurements, calculate
some statistics and draw conclusions. There are, however, many
things which can go wrong along the way that can be avoided with
careful planning and knowing what to watch for. There are two
overriding principles that will guide the design of our sampling
scheme.,

Thefirst principleisthat of precision. If the sampling schemeis
properly laid out, the difference between our estimate of some
parameter of interest and its true value will be due only to random
variation. The size of this random variation is measured by a quantity
called standard error. The magnitude of the standard error is known
as precision. The smaller the standard error, the more precise are our
estimates.

http://www.itl.nist.gov/div898/handbook/ppc/section3/ppc332.htm (1 of 3) [11/13/2003 5:41:32 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/main.htm
http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/

3.3.3.2. Choosing a Sampling Scheme

Precision of
an estimate
dependson
several factors

The second is
Systematic
sampling error
(or
confounded
effects)

Stratification
helpsto
overcome
systematic
error

The precision of any estimate will depend on:
« theinherent variability of the process estimator
« the measurement error
« the number of independent replications (sample size)
« theefficiency of the sampling scheme.

The second principleis the avoidance of systematic errors. Systematic
sampling error occurs when the levels of one explanatory variable are
the same as some other unaccounted for explanatory variable. Thisis
also referred to as confounded effects. Systematic sampling error is
best seen by example.

Example 1. We want to compare the effect of two
different coolants on the resulting surface finish from a
turning operation. It is decided to run one lot, change the
coolant and then run another lot. With this sampling
scheme, there is no way to distinguish the coolant effect
from the lot effect or from tool wear considerations.
There is systematic sampling error in this sampling
scheme.

Example 2: We wish to examine the effect of two
pre-clean procedures on the uniformity of an oxide
growth process. We clean one cassette of wafers with
one method and another cassette with the other method.
We |oad one cassette in the front of the furnace tube and
the other cassette in the middle. To complete the run, we
fill the rest of the tube with other lots. With this sampling
scheme, there is no way to distinguish between the effect
of the different pre-clean methods and the cassette effect
or the tube location effect. Again, we have systematic
sampling errors.

The way to combat systematic sampling errors (and at the same time
increase precision) is through stratification and randomization.
Stratification is the process of segmenting our population across
levels of some factor so as to minimize variability within those
segments or strata. For instance, if we want to try severa different
process recipes to see which one is best, we may want to be sure to
apply each of the recipes to each of the three work shifts. This will
ensure that we eliminate any systematic errors caused by a shift effect.
Thisiswherethe ANOVA designs are particularly useful.
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Randomization
helps too

Examples
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Randomization is the process of randomly applying the various
treatment combinations. In the above example, we would not want to
apply recipe 1, 2 and 3 in the same order for each of the three shifts
but would instead randomize the order of the three recipesin each
shift. Thiswill avoid any systematic errors caused by the order of the
recipes.

The issues here are many and complicated. Click on each of the links
below to see the sampling schemes for each of the case studies.

1. Case Study 1 (Sampling Plan)
2. Case Study 2 (Sampling Plan)
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3.3.3. Define Sampling Plan

3.3.3.3.Selecting Sample Sizes

Consider When choosing a sample size, we must consider the following issues.
these things « What population parameters we want to estimate
when Cost of sampling (importance of information)
selecting a * Ping (imp
sample size o How muchisalready known
« Spread (variability) of the population
« Practicality: how hard isit to collect data
« How precise we want the final estimates to be
Cost of The cost of sampling issue helps us determine how precise our
taking estimates should be. Aswe will see below, when choosing sample
samples sizes we need to select risk values. |If the decisions we will make from
the sampling activity are very valuable, then we will want low risk
values and hence larger sample sizes.
Prior If our process has been studied before, we can use that prior
information information to reduce sample sizes. This can be done by using prior
mean and variance estimates and by stratifying the population to
reduce variation within groups.
Inherent We take samples to form estimates of some characteristic of the
variability population of interest. The variance of that estimate is proportional to

the inherent variability of the population divided by the sample size:

Var[p)= 2 /n .

with # denoting the parameter we are trying to estimate. This means

that if the variability of the population islarge, then we must take many
samples. Conversely, a small population variance means we don't have
to take as many samples.
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3.3.3.3. Selecting Sample Sizes

Practicality

Sample size
determination

Sampling
proportions

Of course the sample size you select must make sense. Thisiswhere
the trade-offs usually occur. We want to take enough observations to
obtain reasonably precise estimates of the parameters of interest but we
also want to do this within a practical resource budget. The important
thing is to quantify the risks associated with the chosen sample size.

In summary, the steps involved in estimating a sample size are:

1. There must be a statement about what is expected of the sample.
We must determine what isit we are trying to estimate, how
precise we want the estimate to be, and what are we going to do
with the estimate once we haveit. This should easily be derived
from the goals.

2. We must find some equation that connects the desired precision
of the estimate with the sample size. Thisis a probability
statement. A couple are given below; see your statistician if
these are not appropriate for your situation.

3. Thisequation may contain unknown properties of the population
such as the mean or variance. Thisiswhere prior information
can help.

4. If you are stratifying the population in order to reduce variation,
sampl e size determination must be performed for each stratum.

5. Thefinal sample size should be scrutinized for practicality. If it
Is unacceptable, the only way to reduce it isto accept less
precision in the sample estimate.

When we are sampling proportions we start with a probability
statement about the desired precision. Thisis given by:

Pr(p—P|>8) =a

where

« ¥ isthe estimated proportion
« P isthe unknown population parameter

. @ Is the specified precision of the estimate

« & isthe probability vaue (usualy low)
This equation simply shows that we want the probability that the
precision of our estimate being less than wewant is ¢ . Of course we

liketo set ¥ low, usualy .1 or less. Using some assumptions about
the proportion being approximately normally distributed we can obtain
an estimate of the required sample size as:

http://www.itl.nist.gov/div898/handbook/ppc/section3/ppc333.htm (2 of 4) [11/13/2003 5:41:33 PM]



3.3.3.3. Selecting Sample Sizes

Example

Estimating
location:
relative error

Estimating
location:
absolute
error

A2

where z is the ordinate on the Normal curve corresponding to <¥ .

n=22(2%)

Let's say we have a new process we want to try. We plan to run the
new process and sample the output for yield (good/bad). Our current
process has been yielding 65% (p=.65, g=.35). We decide that we want

the estimate of the new process yield to be accurate to within & =.10

at 95% confidence (¥ = .05, z=2). Using the formula above we get a
sample size estimate of n=91. Thus, if we draw 91 random parts from
the output of the new process and estimate the yield, then we are 95%
sure the yield estimate iswithin .10 of the true process yield.

If we are sampling continuous normally distributed variables, quite
often we are concerned about the relative error of our estimates rather
than the absolute error. The probability statement connecting the
desired precision to the sample size is given by:

(i7]29)-
M

where # isthe (unknown) population mean and ¥ is the sample mean.

Again, using the normality assumptions we obtain the estimated
sample size to be:

2, 2
20

&2 12

with ¢r 2 denoting the population variance.

n =

If instead of relative error, we wish to use absolute error, the equation
for sample size looks alot like the one for the case of proportions:

n 2z (i)
&

where & isthe population standard deviation (but in practiceis
usually replaced by an engineering guesstimate).
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3.3.3.3. Selecting Sample Sizes

Example Suppose we want to sample a stable process that deposits a 500
Angstrom film on a semiconductor wafer in order to determine the
process mean so that we can set up a control chart on the process. We

want to estimate the mean within 10 Angstroms ( & = 10) of the true
mean with 95% confidence (¢¥ = .05, Z = 2). Our initial guess
regarding the variation in the process is that one standard deviation is
about 20 Angstroms. This gives a sample size estimate of n = 16. Thus,
if wetake at least 16 samples from this process and estimate the mean
film thickness, we can be 95% sure that the estimate is within 10% of
the true mean value.
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SEMATECH

'HOME [TOOLS & AIDS [SEARCH [BACK MNEXT]

http://www.itl.nist.gov/div898/handbook/ppc/section3/ppc333.htm (4 of 4) [11/13/2003 5:41:33 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org

3.3.3.4. Data Storage and Retrieval

P ENGINEERING STATISTICS HANDBOOK

[HOME

'TOOLS & AIDS [SEARCH [BACK ~NEXT]
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3.3.3.4.Data Storage and Retrieval

Data control
dependson
facility size

Know the
process
involved

Consult with
support staff
early on

If you are in asmall manufacturing facility or alab, you can simply
design a sampling plan, run the material, take the measurements, fill in
the run sheet and go back to your computer to analyze the results. There
really is not much to be concerned with regarding data storage and
retrieval.

In most larger facilities, however, the people handling the material
usually have nothing to do with the design. Quite often the
measurements are taken automatically and may not even be made in the
same country where the material was produced. Y our data go through a
long chain of automatic acquisition, storage, reformatting, and retrieval
before you are ever ableto seeit. All of these steps are fraught with

peril and should be examined closely to ensure that valuable data are not
lost or accidentally altered.

In the planning phase of the PPC, be sure to understand the entire data
collection process. Things to watch out for include:

« automatic measurement machines rejecting outliers

« only summary statistics (mean and standard deviation) being
saved

« valuesfor explanatory variables (location, operator, etc.) are not
being saved
« how missing values are handled

It isimportant to consult with someone from the organization
responsible for maintaining the data system early in the planning phase
of the PPC. It can also be worthwhile to perform some "dry runs' of the
data collection to ensure you will be able to actually acquire the datain
the format as defined in the plan.
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3. Production Process Characterization

3.3. Data Collection for PPC

3.3.3. Define Sampling Plan

3.3.3.5.Assign Roles and Responsibilities

PPC isateam
effort, get
everyone
involved early

Table showing
rolesand
potential
responsibilities

In today's manufacturing environment, it is unusual when an
investigative study is conducted by asingle individual. Most PPC
studies will be ateam effort. It isimportant that all individuals who
will be involved in the study become a part of the team from the
beginning. Many of the various collateral activities will need
approvals and sign-offs. Be sure to account for that cycle timein your
plan.

A partia list of these individuals along with their roles and potential
responsibilitiesis given in the table below. There may be multiple
occurrences of each of these individuals across shifts or process steps,
so be sure to include everyone.

Tool Owner |Controls Tool « Schedulestool time
Operations « Ensurestool state
o Adviseson
experimental design
Process Owner |Controls Process o Adviseson
Recipe experimental design
« Controlsrecipe settings
Tool Operator |Executes « Executes experimenta
Experimental Plan runs
« May take
measurements
Metrology |Own Measurement « Maintains metrology
Tools equipment
« Conducts gauge studies
« May take
measurements
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3.3.3.5. Assign Roles and Responsibilities

CIM Owns Enterprise Maintains data
Information collection system
System Maintains equipment
interfaces and data
formatters
Maintains databases
and information access
Statistician  |Consultant Consultson

experimental design

Consults on data
analysis

Quality Control |Controls Material

Ensures quality of
Incoming material
Must approve shipment
of outgoing material
(especially for recipe
changes)
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3. Production Process Characterization

3.4.Data Analysis for PPC

In this section we will learn how to analyze and interpret the data we
collected in accordance with our data collection plan.

Clickon This section discusses the following topics:
desired 1. Initial DataAnalysis

topic to read h

more 1. Gather Data

2. Quality Checking the Data

3. Summary Analysis (Location, Spread and Shape)
2. Exploring Relationships

1. Response Correlations

2. Exploring Main Effects

3. Exploring First-Order Interactions
3. Building Models

1. Fitting Polynomial Models

2. Fitting Physical Models

4. Anayzing Variance Structure
5. Assessing Process Stablility
6. Assessing Process Capability
7. Checking Assumptions
NIST . .
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3. Production Process Characterization

3.4. Data Analysis for PPC

3.4.1.First Steps

Gather all After executing the data collection plan for the characterization study,
of the data the data must be gathered up for analysis. Depending on the scope of the
into one study, the data may reside in one place or in many different places. It
place may be in common factory databases, flat files on individual computers,
or handwritten on run sheets. Whatever the case, the first step will beto
collect all of the data from the various sources and enter it into asingle
datafile. The most convenient format for most data analysesisthe
variables-in-columns format. This format has the variable namesin
column headings and the values for the variables in the rows.
Performa The next step isto perform a quality check on the data. Here we are
quality typically looking for data entry problems, unusual data values, missing
checkonthe data etc. The two most useful tools for this step are the scatter plot and
data using the histogram. By constructing scatter plots of all of the response
graphical variables, any data entry problems will be easily identified. Histograms
and of response variables are also quite useful for identifying data entry
numerical problems. Histograms of explanatory variables help identify problems
techniques with the execution of the sampling plan. If the counts for each level of
the explanatory variables are not the same as called for in the sampling
plan, you know you may have an execution problem. Running
numerical summary statistics on all of the variables (both response and
explanatory) also helpsto identify data problems.
Summarize Once the data quality problems are identified and fixed, we should
data by estimate the location, spread and shape for all of the response variables.
estimating Thisis easily done with a combination of histograms and numerical
location, summary statistics.
spread and
shape
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3. Production Process Characterization

3.4. Data Analysis for PPC

3.4.2.Exploring Relationships

Thefirst
analysis of
our datais
exploration

Graph
everything
that makes
sense

Graph
responses,
then
explanatory
Versus
response,
then
conditional
plots
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Once we have adatafile created in the desired format, checked the
dataintegrity, and have estimated the summary statistics on the
response variables, the next step is to start exploring the data and to try
to understand the underlying structure. The most useful tools will be
various forms of the basic scatter plot and box plot.

These techniques will allow pairwise explorations for examining
relationships between any pair of response variables, any pair of
explanatory and response variables, or aresponse variable as a
function of any two explanatory variables. Beyond three dimensions
we are pretty much limited by our human frailties at visualization.

In this exploratory phase, the key isto graph everything that makes
sense to graph. These pictures will not only reveal any additional
quality problems with the data but will also reveal influential data
points and will guide the subsequent modeling activities.

The order that generally proves most effective for data analysisisto
first graph all of the responses against each other in a pairwise fashion.
Then we graph responses against the explanatory variables. Thiswill
give an indication of the main factors that have an effect on response
variables. Finally, we graph response variables, conditioned on the
levels of explanatory factors. Thisiswhat reveals interactions between
explanatory variables. We will use nested boxplots and block plotsto

visualize interactions.
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3.4.2.1.Response Correlations

Make In thisfirst phase of exploring our data, we plot al of the response variables in a pairwise fashion.
scatter Theindividual scatter plots are displayed in a matrix form with the y-axis scaling the same for all
plots of plotsin arow of the matrix.

all of the

response

variables

Checkthe  The scatterplot matrix shows how the response variables are related to each other. If thereisalinear
slope of trend with a positive slope, this indicates that the responses are positively correlated. If thereisa
the data linear trend with a negative slope, then the variables are negatively correlated. If the data appear
onthe random with no slope, the variables are probably not correlated. Thiswill be important information
scatter for subsequent model building steps.

plots

This An example of a scatterplot matrix is given below. In this semiconductor manufacturing example,
scatterplot  three responses, yield (Binl), N-channel 1d effective (NIDEFF), and P-channel Id effective

matrix (PIDEFF) are plotted against each other in a scatterplot matrix. We can see that Binl is positively
shows correlated with NIDEFF and negatively correlated with PIDEFF. Also, as expected, NIDEFF is
examples negatively correlated with PIDEFF. This kind of information will prove to be useful when we build
of both models for yield improvement.

negatively

and

positively

correlated

variables
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cm -] [ =] [Fay [Pl
= B2 2 32 B B
B B2 = E E E=E
— f=d P W W M- s T — v I. I. I. I. I‘ I.
o7 . = — :
10401 e v .
g':l- M ‘II .I'.q. " - ;’I.i |:‘-| LI
B0+ " % ‘“x_. .
ks Bin :
5,‘:]. - -
_.:“:|.
m.
1':"
101 0. 00083
- 0.00082
g : MIDEFF Tl 000031
N - B 0.0008
TR * [0.0007%
_n'c”:”:lsﬁ_ - F0.0D007E
~0.000361 oo -
I -
=0-00033 e e n T PIDEFF
— 0000381 - L e
—0.00038
. S—S—a—a—a—=
= S S S S o
TIST___ [HOME [TOOLS & AIDS [SEARCH [BACK MNEXT|
SEMATECH

http://www.itl.nist.gov/div898/handbook/ppc/section4/ppc421.htm (2 of 2) [11/13/2003 5:41:35 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org

3.4.2.2. Exploring Main Effects

P ENGINEERING STATISTICS HANDBOOK

[HOME TOOLS & AIDS [SEARCH [BACK “NEXT|

3. Production Process Characterization
3.4. Data Analysis for PPC
3.4.2. Exploring Relationships

3.4.2.2. Exploring Main Effects

The next The next step in the exploratory analysis of our datais to see which factors have an effect on which

stepisto response variables and to quantify that effect. Scatter plots and box plots will be the tools of choice

look for here.

main effects

Watch out This step isrelatively self explanatory. However there are two points of caution. First, be cognizant

for varying  of not only the trends in these graphs but also the amount of data represented in those trends. Thisis

sample especially true for categorical explanatory variables. There may be many more observationsin some

sizesacross  levelsof the categorical variable than in others. In any event, take unequal sample sizes into account

levels when making inferences.

Graph The second point is to be sure to graph the responses against implicit explanatory variables (such as

implicit as observation order) as well as the explicit explanatory variables. There may be interesting insights in

well as these hidden explanatory variables.

explicit

explanatory

variables

Example: In the example below, we have collected data on the particles added to awafer during a particular

wafer processing step. We ran anumber of cassettes through the process and sampled wafers from certain

processing dlotsin the cassette. We also kept track of which load lock the wafers passed through. This was done
for two different process temperatures. We measured both small particles (< 2 microns) and large
particles (> 2 microns). We plot the responses (particle counts) against each of the explanatory
variables.

Cassette Thisfirst graph is abox plot of the number of small particles added for each cassette type. The "X™'s

does not in the plot represent the maximum, median, and minimum number of particles.

appear to

bean

important

factor for

small or

large

particles
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3.4.2.2. Exploring Main Effects
SMALL FARTICLES BY CASSETTE
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The second graph is abox plot of the number of large particles added for each cassette type.
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LARGE FARTICLES BY CASSETTE
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We conclude from these two box plots that cassette does not appear to be an important factor for
small or large particles.

Thereisa We next generate box plots of small and large particles for the dot variable. First, the box plot for
difference small particles.

between

slots for

small

particles,

onedlotis

different for

large

particles
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Next, the box plot for large particles.

http://www.itl.nist.gov/div898/handbook/ppc/sectiond/ppcd22.htm (4 of 9) [11/13/2003 5:41:41 PM]

25

20



3.4.2.2. Exploring Main Effects
LARGE FARTICLES BY 5LOT

100
5O —
i i
0
i oo ¥ k!
N
T i
_1|::|I::I ] I ] | 1 I 1 | ] I ]
0 5 10 15 20 o5 0
SLOT

We conclude that there is a difference between slots for small particles. We also conclude that one
slot appears to be different for large particles.

Load lock We next generate box plots of small and large particles for the load lock variable. First, the box plot
may havea  for small particles.

dight effect

for small

and large

particles

http://www.itl.nist.gov/div898/handbook/ppc/sectiond/ppc422.htm (5 of 9) [11/13/2003 5:41:41 PM]



3.4.2.2. Exploring Main Effects
SHMALL PRARTICLES BY LOAD LOCK

2000

1500 —

1000 —

200 —

A=z coo

—500 —

_1|::]|:]|:| 1 I 1 | I I I | 1
0 0.5 1 1.5 2
LOAD LOCK

Next, the box plot for large particles.
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We conclude that there may be a dlight effect for load lock for small and large particles.

For small We next generate box plots of small and large particles for the temperature variable. First, the box
particles, plot for small particles.
temperature

has a

strong

effect on

both

location

and spread.

For large

particles,

there may

be a dlight

temperature

effect but

this may

just be due

to the

outliers
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Next, the box plot for large particles.
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We conclude that temperature has a strong effect on both location and spread for small particles. We
conclude that there might be a small temperature effect for large particles, but this may just be due to
outliers.
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3.4.2.3.

Itis
important
to identify
interactions

The eyes
can be
deceiving -
be careful

Previous
example
continued

For small
particles,
the load
lock effect
isnot as
strong for
high
temperature
asitisfor
low
temperature

Exploring First Order Interactions

The final step (and perhaps the most important one) in the exploration phase isto find any first order
interactions. When the difference in the response between the levels of one factor is not the same for
all of the levels of another factor we say we have an interaction between those two factors. When
we are trying to optimize responses based on factor settings, interactions provide for compromise.

Interactions can be seen visually by using nested box plots. However, caution should be exercised

when identifying interactions through graphical means alone. Any graphically identified interactions
should be verified by numerical methods as well.

To continue the previous example, given below are nested box plots of the small and large particles.
The load lock is nested within the two temperature values. There is some evidence of possible
interaction between these two factors. The effect of load lock is stronger at the lower temperature
than at the higher one. This effect is stronger for the smaller particles than for the larger ones. As
this example illustrates, when you have significant interactions the main effects must be interpreted
conditionally. That is, the main effects do not tell the whole story by themselves.

The following is the box plot of small particles for load lock nested within temperature.
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We conclude from this plot that for small particles, the load lock effect is not as strong for high
temperature asit is for low temperature.

The same The following is the box plot of large particles for load lock nested within temperature.
may be true

for large

particles

but not as

strongly
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We conclude from this plot that for large particles, the load lock effect may not be as strong for high
temperature asit is for low temperature. However, this effect is not as strong asit is for small
particles.
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Black box When we develop a data collection plan we build black box models of the

models process we are studying like the one below:
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processes
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In the Exploring Relationships section, we looked at how to identify the
Input/output relationships through graphical methods. However, if we want to
guantify the relationships and test them for statistical significance, we must
resort to building mathematical models.

There are two cases that we will cover for building mathematical models. If our
goal isto develop an empirical prediction equation or to identify statistically
significant explanatory variables and quantify their influence on output
responses, we typically build polynomial models. Asthe name implies, these are
polynomial functions (typically linear or quadratic functions) that describe the
relationships between the explanatory variables and the response variable.

On the other hand, if our goal isto fit an existing theoretical equation, then we
want to build physical models. Again, as the name implies, this pertainsto the
case when we already have equations representing the physics involved in the
process and we want to estimate specific parameter values.
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Polynomial
models are a
great tool

for
determining
which input
factorsdrive
responses
and in what
direction

We generally
don't need
more than
second-order
equations

Use multiple
regression to
fit
polynomial
models

We use polynomia models to estimate and predict the shape of
response values over arange of input parameter values. Polynomial
models are a great tool for determining which input factors drive
responses and in what direction. These are also the most common
models used for analysis of designed experiments. A quadratic
(second-order) polynomia model for two explanatory variables has the
form of the equation below. The single x-terms are called the main
effects. The squared terms are called the quadratic effects and are used
to model curvature in the response surface. The cross-product terms are
used to model interactions between the explanatory variables.

— 2 2
V=g, taxtax,tax +ax taxs+é

In most engineering and manufacturing applications we are concerned
with at most second-order polynomia models. Polynomial equations
obviously could become much more complicated as we increase the
number of explanatory variables and hence the number of cross-product
terms. Fortunately, we rarely see significant interaction terms above the
two-factor level. This helps to keep the equations at a manageable level.

When the number of factorsis small (lessthan 5), the complete
polynomial equation can be fitted using the technique known as
multiple regression. When the number of factorsis large, we should use
atechnique known as stepwise regression. Most statistical analysis
programs have a stepwise regression capability. We just enter all of the
terms of the polynomia models and let the software choose which
terms best describe the data. For a more thorough discussion of this
topic and some examples, refer to the process improvement chapter.
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Sometimes  Sometimes, rather than approximating response behavior with polynomial

we want models, we know and can model the physics behind the underlying process. In
tousea these cases we would want to fit physical models to our data. This kind of
physical modeling allows for better prediction and is |ess subject to variation than

model polynomial models (as long as the underlying process doesn't change).

We will We will illustrate this concept with an example. We have collected data on a
use a chemical/mechanical planarization process (CMP) at a particular semiconductor
CMP processing step. In this process, wafers are polished using a combination of
processto  chemicalsin apolishing slurry using polishing pads. We polished a number of
illustrate wafers for differing periods of time in order to calculate material removal rates.
CMP From first principles we know that removal rate changes with time. Early on,
removal removal rate is high and as the wafer becomes more planar the removal rate
rate can declines. Thisis easily modeled with an exponential function of the form:

be deled removal rate = pl + p2 x exp P3xtime

vr:/ﬁh a where pl, p2, and p3 are the parameters we want to estimate.

non-linear

eguation

A The equation was fit to the data using a non-linear regression routine. A plot of
non-linear  the original data and the fitted line are given in the image below. Thefit is quite
regression  good. Thisfitted equation was subsequently used in process optimization work.
routine

was used

to fit the

data to

the

eguation
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Sudying One of the most common activities in process characterization work is to study the variation
variationis  associated with the process and to try to determine the important sources of that variation. This
important is called analysis of variance. Refer to the section of this chapter on ANOVA modelsfor a
in PPC discussion of the theory behind this kind of analysis.
_ The key to performing an analysis of variance is identifying the structure represented by the
ThE key 'i data. In the ANOV A models section we discussed one-way layouts and two-way |ayouts where
;ct)r ur;?ﬁet € thefactors are either crossed or nested. Review these sectionsif you want to learn more about
ANOVA structural layouts.
To perform the analysis, we just identify the structure, enter the data for each of the factors and
levelsinto a statistical analysis program and then interpret the ANOV A table and other output.
Thisisall illustrated in the example below.
Example: The example is a furnace operation in semiconductor manufacture where we are growing an
furnace oxide layer on awafer. Each lot of wafersis placed on quartz containers (boats) and then placed
oxide in along tube-furnace. They are then raised to a certain temperature and held for a period of
thickness time in a gas flow. We want to understand the important factors in this operation. The furnaceis
with a broken down into four sections (zones) and two wafers from each lot in each zone are measured
1-way for the thickness of the oxide layer.
layout
Look at Thefirst thing to look at is the effect of zone location on the oxide thickness. Thisisaclassic
effect of one-way layout. The factor is furnace zone and we have four levels. A plot of the data and an
zone ANOVA table are given below.
location on
oxide
thickness
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550 —
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fumace location
ANOVA Analysis of Variance
table
Source DF SS Mean Square F Ratio Prob>F
Zone 3 912.6905 304.23 0.467612 0.70527
Within 164 106699.1 650.604
Let's From the graph there does not appear to be much of a zone effect; in fact, the ANOVA table

account for indicates that it is not significant. The problem isthat variation dueto lotsis so large that it is
lot with a masking the zone effect. We can fix this by adding a factor for lot. By treating this as a nested
nested two-way layout, we obtain the ANOVA table below.

layout

Nowboth — Analysis of Variance
lot and zone

are

revealed as Source

important Lot
Zon€|lot]
Within

DF
20
63

84

SS Mean Square F Ratio Prob > F

61442.29 3072.11 5.37404 1.3%e-7

36014.5 571.659 472864 3.9e-11
10155 120.893

Conclusions  Sincethe"Prob > F" isless than .05, for both lot and zone, we know that these factors are
statistically significant at the 95% level of confidence.
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A processis
stableif it hasa
constant mean
and a constant
variance over
time

The graphical
tool we useto
assess stability
Is the scatter
plot or the
control chart

Numerically,
we assess its
stationarity
using the
autocorrelation
function

Graphical
methods
usually good
enough

A manufacturing process cannot be released to production until it has
been proven to be stable. Also, we cannot begin to talk about process
capability until we have demonstrated stability in our process. A
process is said to be stable when all of the response parameters that
we use to measure the process have both constant means and
constant variances over time, and also have a constant distribution.
Thisisequivaent to our earlier definition of controlled variation.

The graphical tool we use to assess process stability is the scatter
plot. We collect a sufficient number of independent samples (greater
than 100) from our process over a sufficiently long period of time
(this can be specified in days, hours of processing time or number of
parts processed) and plot them on a scatter plot with sample order on
the x-axis and the sample value on the y-axis. The plot should ook
like constant random variation about a constant mean. Sometimes it
is helpful to calculate control limits and plot them on the scatter plot
along with the data. The two plotsin the controlled variation
example are good illustrations of stable and unstable processes.

Numerically, we evaluate process stability through atimes series
analysis concept know as stationarity. Thisisjust another way of
saying that the process has a constant mean and a constant variance.
The numerical technique used to assess stationarity isthe
autocovariance function.

Typically, graphical methods are good enough for evaluating process
stability. The numerical methods are generally only used for
modeling purposes.
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Capability Process capability analysis entails comparing the performance of a process against its specifications.
compares a We say that a process is capableif virtually all of the possible variable values fall within the
process specification limits.
against its
specification
Usea Graphically, we assess process capability by plotting the process specification limits on a histogram
capability of the observations. If the histogram falls within the specification limits, then the process is capable.
chart Thisisillustrated in the graph below. Note how the process is shifted bel ow target and the process
variation istoo large. Thisis an example of an incapable process.
Notice how
the processis
off target and 20 4 MEAM = 0, 696763
has too much
variation : —— ITHEGET = 0,7
T ] | |
] | |
] . |
] | |
157 y ! X LSL = @,69
3 ] H UsL = q.71
| [— | |
- 1 n 1
] | |
1 11 1
] | |
10 — : - '
1 i 1
] | |
| Lirire 1
] | |
1 i 1
] -4 i |
] | |
5 — n ]
| |
| |
| |
- ] 1
| |
' |—|:
D 1 I 1 | 1 I I | I T I I 1
0, EE 0,67 0,68 0,69 0,7 0,71 0,72 0,73
MEAM = 0,B967E3 CP = 0,712397
s0 = 0,00468 CPK = 0,48174%Z

Numerically, we measure capability with a capability index. The general equation for the capability
index, Cy, is:
’ pl
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Numerically,
we use the CIO

index

Interpretation
of the G,

index

Cp does not

account for
process that
is off center

Or the Cpy
index

Cpk accounts

for a process
being off
center
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B USL - LSL
68

This equation just says that the measure of our process capability is how much of our observed
process variation is covered by the process specifications. In this case the process variation is
measured by 6 standard deviations (+/- 3 on each side of the mean). Clearly, if C,, > 1.0, then the

process specification covers amost al of our process observations.

Cp

The only problem with with the C, index is that it does not account for a process that is off-center.
We can modify this equation slightly to account for off-center processes to obtain the C, index as
follows:

USL-x x-LSL
3s ' 35

Cpk min

This equation just says to take the minimum distance between our specification limits and the
process mean and divide it by 3 standard deviations to arrive at the measure of process capability.
Thisisall covered in more detail in the process capability section of the process monitoring chapter.

For the example above, note how the C,, value is less than the C,, value. Thisis because the process
distribution is not centered between the specification limits.

[HOME [TOOLS & AIDS [SEARCH [BACK MNEXT]

http://www.itl.nist.gov/div898/handbook/ppc/section4/ppc46.htm (2 of 2) [11/13/2003 5:41:48 PM]


http://www.itl.nist.gov/div898/handbook/pmr
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org

3.4.7. Checking Assumptions

P ENGINEERING STATISTICS HANDBOOK

[HOME

[TOOLS & AIDS [SEARCH [EACK MNEXT|

3. Production Process Characterization

3.4. Data Analysis for PPC

3.4.7.Checking Assumptions

Check the
normality of
the data

Some causes
of non-
normality

We can
sometimes
transform the
data to make it
ook normal

General
algorithm for
trying to make
non-normal
data
approximately
normal

Many of the techniques discussed in this chapter, such as hypothesis tests, control charts and
capability indices, assume that the underlying structure of the data can be adequately modeled by a
normal distribution. Many times we encounter data where thisis not the case.

There are several things that could cause the data to appear non-normal, such as:

« The data come from two or more different sources. Thistype of datawill often have a
multi-modal distribution. This can be solved by identifying the reason for the multiple sets of
data and analyzing the data separately.

« Thedata come from an unstable process. Thistype of datais nearly impossible to analyze
because the results of the analysis will have no credibility due to the changing nature of the
Process.

« The datawere generated by a stable, yet fundamentally non-normal mechanism. For example,
particle counts are non-normal by the very nature of the particle generation process. Data of
this type can be handled using transformations.

For the last case, we could try transforming the data using what is known as a power
transformation. The power transformation is given by the equation:
A ifA=0
yroif A

A
- In(y) if =0

where Y represents the data and lambda is the transformation value. Lambda s typically any value
between -2 and 2. Some of the more common values for lambda are 0, 1/2, and -1, which give the
following transformations:

In(y), J¥, %

The genera algorithm for trying to make non-normal data appear to be approximately normal isto:
1. Determineif the data are non-normal. (Use normal probability plot and histogram).
2. Find atransformation that makes the datalook approximately normal, if possible. Some data

sets may include zeros (i.e., particle data). If the data set does include zeros, you must first
add a constant value to the data and then transform the results.

http://www.itl.nist.gov/div898/handbook/ppc/section4/ppcd7.htm (1 of 3) [11/13/2003 5:41:51 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm

3.4.7. Checking Assumptions

Example: Asan example, let'slook at some particle count data from a semiconductor processing step. Count
particlecount  dataareinherently non-normal. Below are histograms and normal probability plots for the original
data data and the In, sgrt and inverse of the data. Y ou can see that the log transform does the best job of

making the data appear asif it isnormal. All analyses can be performed on the log-transformed data
and the assumptions will be approximately satisfied.

Theoriginal HLlol UaEHM Ur FHEITLLLED FRUOS FLUdl UF FHETLLLES
datais 20 2000
non-normal, ] ]
thelog 154 1500 -
transform
looks fairly 1
norrnal 10 1000
iy 500
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2000 =1000 0 1000 2000 -3 -2 -1 0 1 2 3
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c ] ]
J Tr‘—
5— ]
41 cN
3_ 5_
o ]
11 4]
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Neither the
sguare root

nor theinverse
transformation
looks normal
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3. Production Process Characterization

3.5.Case Studies

Summary This section presents severa case studies that demonstrate the
application of production process characterizations to specific problems.

Table of The following case studies are available.
Contents 1. Furnace Case Study

2. Machine Case Study
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3. Production Process Characterization
3.5. Case Studies

3.5.1. Furnace Case Study

Introduction  This case study analyzes a furnace oxide growth process.

Table of The case study is broken down into the following steps.

Contents 1. Background and Data
2. Initial Analysis of Response Variable
3. Identify Sources of Variation
4. Analysisof Variance
5. Final Conclusions
6. Work This Example Y ourself
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3. Production Process Characterization

3.5. Case Studies

3.5.1. Furnace Case Study

3.5.1.1.Background and Data

Introduction

Goal

Process
Model

In a semiconductor manufacturing process flow, we have a step
whereby we grow an oxide film on the silicon wafer using a furnace.
In this step, a cassette of wafersis placed in a quartz "boat" and the
boats are placed in the furnace. The furnace can hold four boats. A gas
flow is created in the furnace and it is brought up to temperature and
held there for a specified period of time (which corresponds to the
desired oxide thickness). This study was conducted to determine if the
process was stable and to characterize sources of variation so that a
process control strategy could be devel oped.

The goal of this study isto determine if this processis capable of
consistently growing oxide films with a thickness of 560 Angstroms
+/- 100 Angstroms. An additional goal is to determine important
sources of variation for use in the development of a process control

strategy.

In the picture below we are modeling this process with one output
(film thickness) that is influenced by four controlled factors (gas flow,
pressure, temperature and time) and two uncontrolled factors (run and
zone). The four controlled factors are part of our recipe and will
remain constant throughout this study. We know that thereis
run-to-run variation that is due to many different factors (input
material variation, variation in consumables, etc.). We aso know that
the different zones in the furnace have an effect. A zone is aregion of
the furnace tube that holds one boat. There are four zones in these
tubes. The zonesin the middle of the tube grow oxide alittle bit
differently from the ones on the ends. In fact, there are temperature
offsetsin the recipe to help minimize this problem.
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3.5.1.1. Background and Data

d
] =
= =
s =
¥ L4
ras flow
-
Pressure
- Furnace _ .
. Film Thickness
t Oxide
2
. Growth
time
-
Sengitivity The sensitivity model for this processisfairly straightforward and is
Model given in the figure below. The effects of the machin are mostly related

to the preventative maintenance (PM) cycle. We want to make sure the
guartz tube has been cleaned recently, the mass flow controllers are in
good shape and the temperature controller has been calibrated recently.
The sameis true of the measurement equipment where the thickness
readings will be taken. We want to make sure a gauge study has been
performed. For material, the incoming wafers will certainly have an
effect on the outgoing thickness as well as the quality of the gases used.
Finally, the recipe will have an effect including gas flow, temperature
offset for the different zones, and temperature profile (how quickly we
raise the temperature, how long we hold it and how quickly we cool it
off).
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Machine Material

Wyafers
MWF

\ Temp Control

Pk Cycle Gas Purity
= Thickness
Gas Flow /
Calibration
Accuracy
Temp Offzet
Bias Temp Profile /
Measurement Method

Sampling Given our goal statement and process modeling, we can now define a
Plan sampling plan. The primary goal isto determineif the processis

capable. Thisjust means that we need to monitor the process over some
period of time and compare the estimates of process location and spread
to the specifications. An additional goal isto identify sources of
variation to aid in setting up a process control strategy. Some obvious
sources of variation are incoming wafers, run-to-run variability,
variation due to operators or shift, and variation due to zones within a
furnace tube. One additional constraint that we must work under is that
this study should not have a significant impact on normal production
operations.

Given these constraints, the following sampling plan was selected. It
was decided to monitor the process for one day (three shifts). Because
this process is operator independent, we will not keep shift or operator
information but just record run number. For each run, we will randomly
assign cassettes of wafersto azone. We will select two wafers from
each zone after processing and measure two sites on each wafer. This
plan should give reasonable estimates of run-to-run variation and within
zone variability aswell as good overall estimates of process location and
spread.

We are expecting readings around 560 Angstroms. We would not expect
many readings above 700 or below 400. The measurement equipment is
accurate to within 0.5 Angstroms which is well within the accuracy
needed for this study.

http://www.itl.nist.gov/div898/handbook/ppc/section5/ppc511.htm (3 of 7) [11/13/2003 5:41:52 PM]



3.5.1.1. Background and Data

Data
The following are the data that were collected for this study.

RUN  ZONE WAFER THI CKNESS
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ADNWWNNRFEFRDIMRNWWNNREPADNWWONNRPRARMNWWNNRFRDAMRMNWWONNREADNWWNNERER
NEFENRNRNRPNRPNRPENERENENRENRNRENRNRNRNRPNRPNRPNRENENRENRPNRNRNER
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7 1 1 593
7 1 2 626
7 2 1 584
7 2 2 559
7 3 1 634
7 3 2 598
7 4 1 569
7 4 2 592
8 1 1 522
8 1 2 535
8 2 1 535
8 2 2 581
8 3 1 527
8 3 2 520
8 4 1 532
8 4 2 539
9 1 1 562
9 1 2 568
9 2 1 548
9 2 2 548
9 3 1 533
9 3 2 553
9 4 1 533
9 4 2 521
10 1 1 555
10 1 2 545
10 2 1 584
10 2 2 572
10 3 1 546
10 3 2 552
10 4 1 586
10 4 2 584
11 1 1 565
11 1 2 557
11 2 1 583
11 2 2 585
11 3 1 582
11 3 2 567
11 4 1 549
11 4 2 533
12 1 1 548
12 1 2 528
12 2 1 563
12 2 2 588
12 3 1 543
12 3 2 540
12 4 1 585
12 4 2 586
13 1 1 580
13 1 2 570
13 2 1 556
13 2 2 569
13 3 1 609
13 3 2 625

http://www.itl.nist.gov/div898/handbook/ppc/section5/ppc511.htm (5 of 7) [11/13/2003 5:41:52 PM]



3.5.1.1. Background and Data

13 4 1 570
13 4 2 595
14 1 1 564
14 1 2 555
14 2 1 585
14 2 2 588
14 3 1 564
14 3 2 583
14 4 1 563
14 4 2 558
15 1 1 550
15 1 2 557
15 2 1 538
15 2 2 525
15 3 1 556
15 3 2 547
15 4 1 534
15 4 2 542
16 1 1 552
16 1 2 547
16 2 1 563
16 2 2 578
16 3 1 571
16 3 2 572
16 4 1 575
16 4 2 584
17 1 1 549
17 1 2 546
17 2 1 584
17 2 2 593
17 3 1 567
17 3 2 548
17 4 1 606
17 4 2 607
18 1 1 539
18 1 2 554
18 2 1 533
18 2 2 535
18 3 1 522
18 3 2 521
18 4 1 547
18 4 2 550
19 1 1 610
19 1 2 592
19 2 1 587
19 2 2 587
19 3 1 572
19 3 2 612
19 4 1 566
19 4 2 563
20 1 1 569
20 1 2 609
20 2 1 558
20 2 2 555
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20 3 1 577
20 3 2 579
20 4 1 552
20 4 2 558
21 1 1 595
21 1 2 583
21 2 1 599
21 2 2 602
21 3 1 598
21 3 2 616
21 4 1 580
21 4 2 575
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3.5. Case Studies
3.5.1. Furnace Case Study

3.5.1.2.Initial Analysis of Response Variable

Initial Plots  Theinitia step isto assess data quality and to look for anomalies. Thisis done by generating a
of Response  normal probability plot, a histogram, and a boxplot. For convenience, these are generated on a

Variable single page.

Hormal Probability Plot Eox Plot
700 - TFO07
g
G50 ] o & 6507 X
= BO0 g 6007 .
= 550 = 550
5001 " = 5007 #
450 E 4507
400 % ao0-
a4 2 -1 0 1 2 |
Thecretical Z-Score
Relative Histogram
> 0.02
]
E §
- = i
w 0-0157 it
8 |
5 014 !
] . I|' [
II
'ED.DDE' i| |
[ o _‘1I| |P1

400 &S00 2 &HO00 2 TFOO &40

Conclusions  We can make the following conclusions based on these initial plots.

Fromthe « Thebox plot indicates one outlier. However, thisoutlier is only slightly smaller than the
Plots other numbers.

« Thenormal probability plot and the histogram (with an overlaid normal density) indicate
that this data set is reasonably approximated by a normal distribution.
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3.5.1.2. Initial Analysis of Response Variable

Parameter Parameter estimates for the film thickness are summarized in the
Estimates following table.
Parameter Estimates
Lower (95%) | Upper (95%)
Type Parameter |Estimate| Confidence Confidence
Bound Bound
| Location | Mean 563.0357| 550.1692 | 566.9023
. . Standard
Dispersion Deviation 25.3847 22.9297 28.4331
Quantiles Quantiles for the film thickness are summarized in the following table.
Quantilesfor Film Thickness
1100.0%| Maximum 634.00
1 99.5% 634.00
1 97.5% 615.10
1 90.0% | 595.00
| 75.0% |Upper Quartile 582.75
| 50.0% Median  [562.50
| 25.0% |Lower Quartile|546.25
1 10.0% | 532.90
| 2.5% 514.23
| 0.5% 1487.00
| 0.0% | Minimum |487.00
Capability From the above preliminary analysis, it looks reasonable to proceed with the capability
Analysis analysis.
-3 Melan +33
I I |
LSL Target LISL
15||:| 5|:|u:| 55||:| Ecln:l ESIEI

Dataplot generated the following capabilty analysis.

EZR R R R I S S b b b b S S b b b b S S S S R R S Sk S b b S S b b b b S S S Rk kb

* CAPABI LI TY ANALYSI S *
* NUVBER OF OBSERVATI ONS = 168 *
* VEAN = 563. 03571 *
* STANDARD DEVI ATI ON = 25.38468 *

LR R R R I e S S b b b b S S b b S I S R Rk kb S b b S S R Rk b S S S R

* LOWER SPEC LIMT (LSL) 460. 00000 *
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* UPPER SPEC LIMT (USL) = 660.00000 *
*  TARGET ( TARGET) = 560.00000 *
* USL COST (USLCOST) = UNDEFINED *
LR e I e S S b b b b S S I S I R R S Sk kb b S S S S S R R Sk S kb S S S b b
* CP = 1.31313 *
*  CP LOER 95% Cl = 1.17234 *
*  CP UPPER 95% Cl = 1.45372 *
*  CPL = 1.35299 *
*  CPL LOWER 95% Cl = 1.21845 *
* CPL UPPER 95% Cl = 1.48753 *
*  CPU = 1.27327 *
*  CPU LOMER 95% Cl = 1.14217 *
*  CPU UPPER 95% Cl = 1.40436 *
* CPK = 1.27327 *
*  CPK LOAER 95% Cl = 1.12771 *
*  CPK UPPER 95% Cl = 1.41882 *
* CNPK = 1.35762 *
*  CPM = 1.30384 *
*  CPM LOWER 95% Cl = 1.16405 *
*  CPM UPPER 95% Cl = 1.44344 *
* CC = 0.00460 *
*  ACTUAL % DEFECTI VE = 0.00000 *
*  THEORETI CAL % DEFECTI VE = 0.00915 *
*  ACTUAL (BELOW 9% DEFECTI VE = 0.00000 *
*  THEORETI CAL(BELOW % DEFECTI VE = 0.00247 *
*  ACTUAL (ABOVE) % DEFECTI VE = 0.00000 *
*  THEORETI CAL( ABOVE) % DEFECTI VE = 0.00668 *
*  EXPECTED LOSS = UNDEFINED *
ERE R b b b b b b b b S R R S S b i S S b S S S S S

Summary of  From the above capability analysis output, we can summarize the percent defective (i.e.,
Percent the number of items outside the specification limits) in the following table.

Defective : e _
Per centage Outside Specification Limits

_— Theoretical (%
Specication Value Per cent Actud Based On Normal)
— Percent Below
L ower i?ﬁ[[flcatlon 460 |LSL = 190*@ 0.0000 0.0025%
((LSL -#)/9)
e .. Percent Above
i SLﬁ'tf eatton 660 |USL =100*(1- @ |0.0000 0.0067%
((USL - 1n)/9))
Combined Percent
Specification Target 560 Below LSL and |0.0000 0.0091%
Above USL

| Standard Deviation |25.38468| | |

with @ denoting the normal cumulative distribution function, % the sample mean, and s
the sample standard deviation.
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Summary of  From the above capability analysis output, we can summarize various capability index
Capability statistics in the following table.

o Capability Index Statistics
|Capability Statistic|Index [Lower Cl [Upper CI
| CP 1.313| 1172 | 1454
| CPK [1273[ 1128 | 1419
CPM (1304 1165 | 1442
CPL [1353[ 1218 | 1.488
| CPU [1273[ 1142 | 1404

Conclusions  The above capability analysis indicates that the process is capable and we can proceed
with the analysis.

NIST
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3.5.1.3.ldentify Sources of Variation

The next part of the analysisisto break down the sources of variation.

Box Plot by  Thefollowing isabox plot of the thickness by run number.
Run

Box Plot by Run
640
i X
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i ¥ X
X X
.~ 800 x: : X
= ] X X X X X
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7 | XX W X X x X X
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i 1 X RH X
520 — XX X
i X
500 —
1 X
43“ ) ) ¥ ) I 1 1 ) 1] I ] 1 1 ] I ¥ ) ¥ 1 I )
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Conclusions  We can make the following conclusions from this box plot.
Elrom Box 1. Thereissignificant run-to-run variation.
ot 2. Although the means of the runs are different, there is no discernable trend due to run.

3. In addition to the run-to-run variation, there is significant within-run variation as well. This
suggests that a box plot by furnace location may be useful aswell.
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3.5.1.3. Identify Sources of Variation

Box Plot by  Thefollowing isabox plot of the thickness by furnace location.
Furnace
Location

Box Plot by Furnace Location

640

l ¢
X
620 — X
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X
520 -
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500
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1 2 3 4

Furnace Location

Conclusions  We can make the following conclusions from this box plot.
From Box 1. Thereis considerable variation within a given furnace location.

Plot 2. The variation between furnace locationsis small. That is, the locations and scales of each
of the four furnace locations are fairly comparable (although furnace location 3 seemsto
have afew mild outliers).

Box Plotby  Thefollowingisabox plot of the thickness by wafer.
Wafer
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3.5.1.3. Identify Sources of Variation

Box Plot by Water
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Conclusion  From this box plot, we conclude that wafer does not seem to be a significant factor.
From Box

Plot

Block Plot In order to show the combined effects of run, furnace location, and wafer, we draw a block plot of
the thickness. Note that for aesthetic reasons, we have used connecting lines rather than enclosing
boxes.
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3.5.1.3. Identify Sources of Variation

Block Plot by Furnace Location
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Conclusions  We can draw the following conclusions from this block plot.
From Block 1. Thereissignificant variation both between runs and between furnace locations. The
Plot between-run variation appears to be greater.
2. Run 3 seemsto be an outlier.
NIST : .
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3.5.1. Furnace Case Study

3.5.1.4. Analysis of Variance

Analysis of The next step isto confirm our interpretation of the plots in the previous
Variance section by running an analysis of variance.

In this case, we want to run a nested analysis of variance. Although
Dataplot does not perform a nested analysis of variance directly, in this
case we can use the Dataplot ANOV A command with some additional
computations to generate the needed analysis.

The basic steps are to use a one-way ANOA to compute the appropriate
values for the run variable. We then run a one-way ANOV A with all the
combinations of run and furnace location to compute the "within"
values. The values for furnace location nested within run are then
computed as the difference between the previous two ANOVA runs.

The Dataplot macro provides the details of this computation. This
computation can be summarized in the following table.

Analysisof Variance

Source |Degreesof | Sum of Mean |F Ratio|Prob>F
Freedom Squares Square
Error
| Run | 20 | 61,442.29 | 3,072.11 |5.37404]0.0000001
Furnace 63 36,014.5 571.659 |4.72864| 3.85e-11
L ocation
[Run]
| Within | 84 | 10,155 | 120.893 | ]
| Tota | 167 | 107,611.8 | 644.382 | ]
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3.5.1.4. Analysis of Variance

Components  From the above analysis of variance table, we can compute the
of Variance  components of variance. Recall that for this data set we have 2 wafers
measured at 4 furnace locations for 21 runs. Thisleads to the following
set of equations.
3072.11 = (4*2)*Var(Run) + 2*Var(Furnace Location) +
Var(Within)
571.659 = 2*Var(Furnace Location) + Var(Within)
120.893 = Var(Within)

Solving these equations yields the following components of variance

table.

Components of Variance
Component Variance |Percentof| Sgrt(Variance

Component Total Component)

| Run | 312.55694 | 47.44 | 17.679

Furnace 225.38294 34.21 15.013
L ocation[Run]
| Within | 120.89286 | 18.35 | 10.995
MNIST
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3.5.1.5. Final Conclusions
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3. Production Process Characterization

3.5. Case Studies

3.5.1. Furnace Case Study

3.5.1.5.Final Conclusions

Final
Conclusions

NIST
SEMATECH

This ssimple study of afurnace oxide growth processindicated that the
process is capable and showed that both run-to-run and
zone-within-run are significant sources of variation. We should take
this into account when designing the control strategy for this process.
The results also pointed to where we should look when we perform
process improvement activities.
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3.5.1.6. Work This Example Yourself
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3.5.1.6.Work This Example Yourself

View This page alows you to repeat the analysis outlined in the case study
Dataplot description on the previous page using Dataplot, if you have

Macro for downloaded and installed it. Output from each analysis step below will
this Case be displayed in one or more of the Dataplot windows. The four main

Sudy

windows are the Output window, the Graphics window, the Command
History window and the Data Sheet window. Across the top of the main

windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps

Results and Conclusions

Click on the links below to start Dataplot and run
this case study yourself. Each step may use results
from previous steps, so please be patient. Wait until
the software verifies that the current step is complete
before clicking on the next step.

The links in this column will connect you with more
detailed information about each analysis step fromthe
case study description.

1. Get set up and started.

1. Read in the data.

1. You have read 4 colums of nunbers

Into Dataplot, variables run, zone,

wafer, and filnthic.
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3.5.1.6. Work This Example Yourself

2. Analyze the response variabl e.

1. Nornmal probability plot,

box plot, and histogram of

filmthickness.

2. Conpute summary statistics

and quantiles of film

t hi ckness.

3. Performa capability anal ysis.

Initial plots indicate that the

filmthickness is reasonably

approxi mat ed by a nor nal

distribution with no significant

outliers.

Mean is 563.04 and standard

deviation is 25.38. Data range

from487 to 634.

Capabi lity analysis indicates

that the process is capable.

3.

| dentify Sources of Variation.

1. Generate a box plot by run.

2. CGenerate a box plot by furnace

The box pl ot shows significant

vari ation both between runs and

within runs.

| ocati on.

3. Cenerate a box plot by wafer.

4. Generate a bl ock plot.

The box pl ot shows significant

variation within furnace | ocation

but not between furnace | ocation.

The box plot shows no significant

effect for wafer.

The bl ock pl ot shows both run

and furnace | ocation are

si gni ficant.
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3.5.1.6. Work This Example Yourself

4. Perform an Analysis of Variance
1. Performthe analysis of 1. The results of the ANOVA are
vari ance and conpute the summari zed in _an ANOVA table
conponents of vari ance. and a conponents of variance
tabl e.
L [HOME [TOOLS & AIDS [SEARCH [BACK MNEXT]|
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3.5.2. Machine Screw Case Study
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3. Production Process Characterization
3.5. Case Studies

3.5.2.Machine Screw Case Study

Introduction  This case study analyzes three automatic screw machines with the intent
of replacing one of them.

Table of The case study is broken down into the following steps.
Contents 1. Background and Data

Box Plots by Factor

Analysis of Variance
Throughput

Final Conclusions

Work This Example Y ourself

o gk~ WD
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3.5.2.1. Background and Data
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3. Production Process Characterization
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3.5.2. Machine Screw Case Study

3.5.2.1.Background and Data

Introduction A machine shop has three automatic screw machines that produce
various parts. The shop has enough capital to replace one of the
machines. The quality control department has been asked to conduct a
study and make a recommendation as to which machine should be
replaced. It was decided to monitor one of the most commonly
produced parts (an 1/8t" inch diameter pin) on each of the machines
and see which machine is the least stable.

Goal The goal of this study isto determine which machineisleast stablein
manufacturing a steel pin with adiameter of .125 +/- .003 inches.
Stability will be measured in terms of a constant variance about a
constant mean. If al machines are stable, the decision will be based on
process variability and throughput. Namely, the machine with the
highest variability and lowest throughput will be selected for

replacement.
Process The process model for this operation istrivial and need not be
Model addressed.
Sensitivity The sensitivity model, however, isimportant and is given in the figure
Model below. The material is not very important. All machines will receive

barstock from the same source and the coolant will be the same. The
method is important. Each machine is dightly different and the
operator must make adjustments to the speed (how fast the part
rotates), feed (how quickly the cut is made) and stops (where cuts are
finished) for each machine. The same operator will be running all three
machines simultaneously. Measurement is not too important. An
experienced QC engineer will be collecting the samples and making
the measurements. Finally, the machine condition isreally what this
study is all about. The wear on the ways and the lead screws will
largely determine the stability of the machining process. Also, tool
wear isimportant. The same type of tool inserts will be used on all
three machines. The tool insert wear will be monitored by the operator
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3.5.2.1. Background and Data

and they will be changed as needed.

Machine Material

Bar Stock
Lead Screws

\ Ways

Tool Wear Coolant
» Thickness
Speed/Feed /
Calibration
/ Wear Offset
Operator Stops /

/

Measurement Method

Sampling
Plan

Given our goal statement and process modeling, we can now define a sampling
plan. The primary goal isto determine if the processis stable and to compare the
variances of the three machines. We also need to monitor throughput so that we
can compare the productivity of the three machines.

There is an upcoming three-day run of the particular part of interest, so this
study will be conducted on that run. There is a suspected time-of-day effect that
we must account for. It is sometimes the case that the machines do not perform
aswell in the morning, when they are first started up, asthey do later in the day.
To account for this we will sample partsin the morning and in the afternoon. So
as not to impact other QC operations too severely, it was decided to sample 10
parts, twice aday, for three days from each of the three machines. Daily
throughput will be recorded as well.

We are expecting readings around .125 +/- .003 inches. The parts will be
measured using a standard micrometer with readings recorded to 0.0001 of an
inch. Throughput will be measured by reading the part counters on the machines
at the end of each day.
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Data The following are the data that were collected for this study.
MACHI NE DAY Tl VE SAMPLE DI AVETER
(1-3) (1-3) 1 = AM (1-10) (i nches)
2 = PM
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3 3 2 7 0. 1235
3 3 2 8 0.1242
3 3 2 9 0.1247
3 3 2 10 0.125
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3.5.2.2.Box Plots by Factors

Initial Seps  Theinitia step isto plot box plots of the measured diameter for each of the explanatory variables.

Box Plotby  Thefollowingisabox plot of the diameter by machine.
Machine

Box Plot by Machine

0.128 — X
0.127 — X
E 0.126 |
0.125 —
g . X X
T 0124 L - X
.E i
5 01237 X X
=
0.122 —
0.121 -
7 X
0.120 — X
] l l
1 2 3
Machine

Conclusions  We can make the following conclusions from this box plot.

From Box 1. Thelocation appears to be significantly different for the three machines, with machine 2
Plot having the smallest median diameter and machine 1 having the largest median diameter.
2. Machines 1 and 2 have comparable variability while machine 3 has somewhat larger
variability.
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3.5.2.2. Box Plots by Factors

Box Plot by  Thefollowing isabox plot of the diameter by day.

Day
Box Plot by Day
0.128 — X
0.127 — X X
— 0126 —
E -
& 0125
E .
E 0124 —_ I S XY X
3 0123 __
(=)
0122 —
0.121 - X *
0120 — X
| T T
1 2 3
Day

Conclusions  We can draw the following conclusion from this box plot. Neither the location nor the spread
From Box seem to differ significantly by day.
Plot

Box Plot by  Thefollowing isabox plot of the time of day.
Time of Day
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3.5.2.2. Box Plots by Factors

Box Plot by Time of Day

0.128 — X
0.127 ﬁ
0.126
0.125
0.124 - - X

0123 —

Diameter (inches)

0122 —

0121 =

0120 —

AM PM
Time of Day

Concluson  We can draw the following conclusion from this box plot. Neither the location nor the spread
From Box seem to differ significantly by time of day.
Plot

Box Plot by  Thefollowing isabox plot of the sample number.

Sample
Number
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3.5.2.2. Box Plots by Factors

Box Plot by Sample

0.128 — X
-
0.127 - X ” X {

0126 —|

o

0.125 —

0123 —

Diameter (inches)
»

0122 — ¥ X ¥ X
0121 = X
X

o

0120 —

| | [ | | [ I I I I
1 2 3 4 o 6 T g a9 10

Sample Humber

Conclusion  We can draw the following conclusion from this box plot. Although there are some minor

From Box differencesin location and spread between the samples, these differences do not show a
Plot noticeable pattern and do not seem significant.
NIST
T 0 TOOLS & AIDS SEARCH BACK NEXT
SEMATECH [HOME [ [ | I
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3.5.2.3. Analysis of Variance
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HOME

3. Production Process Characterization

3.5. Case Studies

3.5.2. Machine Screw Case Study

3.5.2.3. Analysis of Variance

Analysis of We can confirm our interpretation of the box plots by running an

Variance analysis of variance. Dataplot generated the following analysis of
using All variance output when all four factors were included.
Factors

R S b S b b b b R Rk b b b b b b S R
ER IR I I kb I b S R R S I b S b b b b b
** 4-\WAY ANALYSI S OF VARI ANCE **
kkkhkhhkkhkhhkkhkhhkhkhhkkhkhhkkhkhkkhkhkkhkhkkhkikkkhkxk*

R I b S b b b b R R b b b S b b R kb S

NUMBER OF OBSERVATI ONS
NUMBER OF FACTORS

NUMBER OF LEVELS FOR FACTOR
NUMBER OF LEVELS FOR FACTOR
NUMBER OF LEVELS FOR FACTOR
NUMBER OF LEVELS FOR FACTOR
BALANCED CASE

RESI DUAL STANDARD DEVI ATI ON
RESI DUAL DEGREES OF FREEDOM
NO REPLI| CATI ON CASE

NUMBER OF DI STI NCT CELLS

A WN PR

kkkhkkkkhkkkhkkkhkkkkhkx*k

*  ANOVA TABLE

R R Ik b b b b b S b b b

*

180
4

ONWW

1

. 13743976597E- 02

165

180

SOURCE DF SUM OF SQUARES MEAN SQUARE F STATISTIC F CDF SI G
TOTAL (CORRECTED) 179 0. 000437 0. 000002

FACTOR 1 2 0. 000111 0. 000055 29. 3159 100. 000% **
FACTOR 2 2 0. 000004 0. 000002 0.9884 62.565%
FACTOR 3 1 0. 000002 0. 000002 1.2478 73.441%
FACTOR 4 9 0. 000009 0. 000001 0.5205 14.172%
RESI DUAL 165 0. 000312 0. 000002

RESI DUAL STANDARD DEVI ATI ON
RESI DUAL DEGREES OF FREEDOM

0. 00137439766
165
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3.5.2.3. Analysis of Variance

kkkhkkkkhkhkkkikkkhkkkk*%x

*  ESTI MATION *

R R b b b b b b b

GRAND MEAN
GRAND STANDARD DEVI ATI ON

0. 12395893037E+00
0. 15631503193E- 02

LEVEL-1D NI VEAN EFFECT SD( EFFECT)
FACTOR 1- - 1. 00000 60 0. 12489 0. 00093 0. 00014
-- 2. 00000 60 0. 12297 - 0. 00099 0. 00014
-- 3. 00000 60 0. 12402 0. 00006 0. 00014
FACTOR 2- - 1. 00000 60 0. 12409 0. 00013 0. 00014
- - 2. 00000 60 0. 12403 0. 00007 0. 00014
-- 3. 00000 60 0. 12376 - 0. 00020 0. 00014
FACTOR 3- - 1. 00000 90 0.12384 -0. 00011 0. 00010
-- 2. 00000 90 0. 12407 0. 00011 0. 00010
FACTOR 4- - 1. 00000 18 0.12371 - 0. 00025 0. 00031
-- 2. 00000 18 0. 12405 0. 00009 0. 00031
-- 3. 00000 18 0. 12398 0. 00002 0. 00031
-- 4.00000 18 0. 12382 -0. 00014 0. 00031
- - 5. 00000 18 0. 12426 0. 00030 0. 00031
-- 6. 00000 18 0. 12379 -0. 00016 0. 00031
-- 7.00000 18 0. 12406 0. 00010 0. 00031
-- 8. 00000 18 0. 12376 - 0. 00020 0. 00031
-- 9. 00000 18 0. 12376 - 0. 00020 0. 00031
-- 10. 00000 18 0. 12440 0. 00044 0. 00031
MODEL RESI DUAL STANDARD DEVI ATI ON
CONSTANT ONLY- - . 0015631503

0

CONSTANT & FACTOR 1 ONLY-- 0. 0013584237
CONSTANT & FACTOR 2 ONLY-- 0. 0015652323
CONSTANT & FACTOR 3 ONLY-- 0. 0015633047
CONSTANT & FACTOR 4 ONLY- - 0. 0015876852
CONSTANT & ALL 4 FACTORS - - 0. 0013743977

Interpretation  Thefirst thing to note is that Dataplot fits an overall mean when

of ANOVA performing the ANOVA. That is, it fits the model
Output V. — ] _ N
ijktm = H 1 + ;ﬁj + T+ ‘;ﬁl + Eijkim
as opposed to the model

Yiiutm = A + By + Cp + Dy + €0m
These models are mathematically equivalent. The effect estimatesin
the first model are relative to the overall mean. The effect estimates for
the second model can be obtained by simply adding the overall mean to
effect estimates from the first model.

We are primarily interested in identifying the significant factors. The
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3.5.2.3. Analysis of Variance

last column of the ANOVA table printsa"**" for statistically
significant factors. Only factor 1 (the machine) is statistically
significant. This confirms what the box plotsin the previous section

had indicated graphically.

Analysis of The previous analysis of variance indicated that only the machine
Variance factor was statistically significant. The following shows the ANOVA
Using Only output using only the machine factor.

Machine

ER I b S b b b b S R R S b S b b b b S R S S b
ER I I I e S e S e I R SRRk Sk S I b I b b b b b S
** 1-WAY ANALYSI S OF VARI ANCE **
khkkhkhhkkhkhhkkhkihkhkihkhkhhkhkhhkhkhkkhkhkkhkikkkixk*k

ER I b S b b b b b S R S S b b S b b S R b b

NUMBER OF OBSERVATI ONS

NUMBER OF FACTORS

NUMBER OF LEVELS FOR FACTOR 1 =
BALANCED CASE

RESI DUAL STANDARD DEVI ATI ON
RESI DUAL DEGREES OF FREEDOM
REPLI CATI ON CASE

REPLI CATI ON STANDARD DEVI ATl ON
REPLI CATI ON DEGREES OF FREEDOM
NUMBER OF DI STI NCT CELLS

kkkhkkkkhkhkhkkhkkikkhkkkhkx*k

*  ANOVA TABLE *

IR E R b S b b S b b S S b b

180
1
3

. 13584237313E- 02

177

. 13584237313E- 02

177
3

30. 0094 100. 000%

* *

SOURCE DF SUM OF SQUARES
TOTAL (CORRECTED) 179 0. 000437
FACTOR 1 2 0.000111
RESI DUAL 177 0. 000327
RESI DUAL  STANDARD DEVI ATI ON =
RESI DUAL  DEGREES OF FREEDOM =

REPLI CATI ON STANDARD DEVI ATI ON =
REPLI CATI ON DEGREES OF FREEDOM =

kkkhkkkkikhkhkkikhkkikkk*x

*  ESTI MATION *

R IR S S S I

GRAND MEAN
GRAND STANDARD DEVI ATI ON

. 000002

0. 00135842373
177

0. 00135842373
177

. 12395893037E+00
. 15631503193E- 02
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3.5.2.3. Analysis of Variance

LEVEL-1D NI VEAN EFFECT SD( EFFECT)
FACTOR 1- - 1. 00000 60. 0. 12489 0. 00093 0. 00014
- - 2. 00000 60. 0. 12297 - 0. 00099 0. 00014
-- 3. 00000 60. 0. 12402 0. 00006 0. 00014
MODEL RESI DUAL STANDARD DEVI ATI ON
CONSTANT ONLY- - 0. 0015631503
CONSTANT & FACTOR 1 ONLY-- 0. 0013584237

Interpretation At this stage, we are interested in the effect estimates for the machine variable. These can be
of ANOVA summarized in the following table.

Output
P Meansfor Oneway Anova
|Level [Number | Mean |Standard Error |Lower 95% CI [Upper 95% Cl
| 1 60 |0.124887 0.00018 | 012454 | 0.12523
2 60 |0.122968 0.00018 0.12262 0.12331
3 60 |0.124022|  0.00018 0.12368 0.12437
The Dataplot macro file shows the computations required to go from the Dataplot ANOVA
output to the numbersin the above table.
Model Asafina step, we validate the model by generating a 4-plot of the residuals.
Validation
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3.5.2.3. Analysis of Variance

Run Sequence Plot

0.0047 0.004
0.003 4
1w 0.0027] = 0.002
Z 0.0011 =
L2 0+ 13 D
2-0.001- 2
-0.002 & -0.002
-0.003
-0.0041] -0.004 7
0 50 100 150 200 -0.004 0002 0 0.002 0.004
Sequence Residuals (i+1)
Histogram Hormal Probability Plot
30 0.004 7 X
oo
4 |-
o 20 = 0.001
2 157 % 07
&) 4
TE 2-0.0m
1 -0.002 7
<l
u_ II|| || _u uuq.,
-0.01 -0.00s 0 0.005 0.01 o I 0 1 2 3
Residuals Theoretical Z-Scores

The 4-plot does not indicate any significant problems with the ANOVA model.
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3.5.2.4. Throughput
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3. Production Process Characterization
3.5. Case Studies
3.5.2. Machine Screw Case Study

3.5.2.4. Throughput

Summary of The throughput is summarized in the following table (this was part of the original data collection,
Throughput not the result of analysis).
IMachine|Day 1|Day 2|Day 3
1 576 | 604 | 583
2 657 | 604 | 586
3 [510 | 546 | 571
This table shows that machine 3 had significantly lower throughput.

Graphical We can show the throughput graphically.
Representation
of Throughput
Throughput by Machine
700 —
650 X
RS X
3 5 X
1 X
X
500
| ] ]
1 2 3
Machine

The graph clearly shows the lower throughput for machine 3.
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3.5.2.4. Throughput

Analysis of
Variance for
Throughput

ER R R I I b b S S R SRR Ik S I b b b b b b
kkkhkhkhkkhkhkkkhkhhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkkkhkikkkkhxk*
** 1-WAY ANALYSI S OF VARI ANCE **
R I b S b b S b S Rk S b S b b b b S

R I I ek S S I R R S e b b b b b b b b

NUMBER OF OBSERVATI ONS

NUMBER OF FACTORS

NUMBER OF LEVELS FOR FACTOR 1 =
BALANCED CASE

RESI DUAL STANDARD DEVI ATI ON
RESI DUAL DEGREES OF FREEDOM
REPLI CATI ON CASE

REPLI CATI ON STANDARD DEVI ATl ON

9
1
3

0. 28953985214E+02
6

0. 28953985214E+02

We can confirm the statistical significance of the lower throughput of machine 3 by running an
analysis of variance.

F CDF SI G

REPLI CATI ON DEGREES OF FREEDOM = 6
NUMBER OF DI STI NCT CELLS = 3
kkkhkkkkhkhkkkikkkhkkkhkx*k
*  ANOVA TABLE *
R IR b b b b b S b b b
SOURCE DF SUM OF SQUARES MEAN SQUARE F STATISTIC
TOTAL ( CORRECTED) 8 13246. 888672 1655. 861084
FACTOR 1 2 8216. 898438 4108. 449219 4. 9007
RESI DUAL 6 5030. 000000 838. 333313
RESI DUAL STANDARD DEVI ATI ON = 28. 95398521423
RESI DUAL DEGREES OF FREEDOM = 6
REPLI CATI ON STANDARD DEVI ATI ON = 28. 95398521423
REPLI CATI ON DEGREES OF FREEDOM = 6

ER R R b b b b b S b b S

* ESTI MATION *

kkkhkkkkhkhkkkikkkhkkk*%x

GRAND MEAN
GRAND STANDARD DEVI ATI ON

LEVEL-1D NI MEAN
1. 00000 3. 587.66669
-- 2. 00000 3. 615.66669

0. 58188891602E+03
0. 40692272186E+02

FACTOR 1--

EFFECT SD( EFFECT)
5.77777  13.64904
33.77777  13.64904
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3.5.2.4. Throughput

-- 3. 00000 3. 542.33331 -39.55560 13
MODEL RESI DUAL STANDARD DEVI ATI ON
CONSTANT ONLY- - 40. 6922721863
CONSTANT & FACTOR 1 ONLY-- 28. 9539852142

Interpretation  We summarize the effect estimates in the following table.

of ANOVA
Output Meansfor Oneway Anova

. 64904

Level INumber | Mean |Standard Error [Lower 95%
Cl Cl

Upper 95%

3 587.667 16.717 546.76 628.57

1 | |
2 | 3 [615667] 16717 | 57476 | 65657
3 | 3 [54233] 16717 | 50143 | 58324

The Dataplot macro file shows the computations required to go from

the Dataplot ANOV A output to the numbersin the above table.

NIST
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3.5.2.5. Final Conclusions
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3. Production Process Characterization

3.5. Case Studies

3.5.2. Machine Screw Case Study

3.5.2.5.Final Conclusions

Final
Conclusions

NIST
SEMATECH

The analysis shows that machines 1 and 2 had about the same
variablity but significantly different locations. The throughput for
machine 2 was also higher with greater variability than for machine 1.
An interview with the operator revealed that he realized the second
machine was not set correctly. However, he did not want to change the
settings because he knew a study was being conducted and was afraid
he might impact the results by making changes. Machine 3 had
significantly more variation and lower throughput. The operator
indicated that the machine had to be taken down several times for
minor repairs. Given the preceeding analysis results, the team
recommended replacing machine 3.
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3.5.2.6. Work This Example Yourself
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3. Production Process Characterization
3.5. Case Studies
3.5.2. Machine Screw Case Study

SEARCH
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3.5.2.6.Work This Example Yourself

View This page allows you to repeat the analysis outlined in the case study

Dataplot
Macro for

this Case
Sudy

description on the previous page using Dataplot, if you have
downloaded and installed it. Output from each analysis step below will

be displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command

History window and the Data Sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps

Results and Conclusions

Click on the links below to start Dataplot and run this
case study yourself. Each step may use results from
previous steps, so please be patient. Wait until the
softwar e verifies that the current step is complete
before clicking on the next step.

The links in this column will connect you with more
detailed information about each analysis step from the
case study description.

1. Get set up and started.

1. Read in the data.

1. You have read 5 colums of nunbers

into Dataplot, variables machine,
day, tinme, sanple, and dianeter.
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3.5.2.6. Work This Example Yourself

2. Box Plots by Factor Variabl es

1. Generate a box plot by nachine. 1. The box plot shows significant
variation for both | ocati on and
spr ead.

2. Generate a box plot by day. 2. The box plot shows no significant
| ocation or spread effects for
day.

3. Cenerate a box plot by time of 3. The box plot shows no significant

day. )
| ocation or spread effects for
time of day.

4. Cenerate a box plot by

sanpl e.

4. The box pl ot shows

no si gni fi cant

| ocation or spread

effects for

sanpl e.

3. Analysis of Variance

1. Performan analysis of variance 1. The analysis of variance shows
with all factors. that only the machi ne factor
is statistically significant.
2. Performan analysis of variance 2. The analysis of variance shows
with only the nachine factor. the overall nmean and the
effect estimates for the | evels
of the machi ne vari abl e.
3. Performnodel validation by

generating a 4-plot of the
resi dual s.

3. The 4-plot of the residuals does
not indicate any significant

problens with the nodel
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3.5.2.6. Work This Example Yourself

4. G aph of Throughput
1. CGenerate a graph of the 1. The graph shows the throughput
t hr oughput . for machine 3 is |ower than
t he ot her nmchi nes.
2. Performan analysis of 2. The effect estimtes fromthe
vari ance of the throughput. ANl VA are qgiven.
NIST __ [HOME [TOOLS & AIDS [SEARCH [BACK NEXT]|
SEMATECH
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