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5.1.Introduction

Thissection  This section introduces the basic concepts, terminology, goals and

describes procedures underlying the proper statistical design of experiments.
the basic Design of experiments is abbreviated as DOE throughout this chapter
concepts of (an alternate abbreviation, DEX, isused in DATAPLOT).

the Design :

of Topics covered are:

Experiments o What is experimental design or DOE?

(DOE or « What are the goals or uses of DOE?

DEX)

e What arethe stepsin DOE?
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5.1.1.What is experimental design?

Experimental  In an experiment, we deliberately change one or more process variables (or

Design (or factors) in order to observe the effect the changes have on one or more response

DOE) variables. The (statistical) design of experiments (DOE) is an efficient procedure
economically  for planning experiments so that the data obtained can be analyzed to yield valid
maximizes and objective conclusions.

information

DOE begins with determining the objectives of an experiment and selecting the
process factors for the study. An Experimental Design isthe laying out of a

detailed experimental plan in advance of doing the experiment. Well chosen
experimental designs maximize the amount of "information" that can be obtained
for a given amount of experimental effort.

The statistical theory underlying DOE generally begins with the concept of
process models.

Process Modelsfor DOE

Black box It is common to begin with a process model of the "black box' type, with severa
Process discrete or continuous input factors that can be controlled--that is, varied at will
model by the experimenter--and one or more measured output responses. The output

responses are assumed continuous. Experimental data are used to derive an
empirical (approximation) model linking the outputs and inputs. These empirical
models generally contain first and second-order terms.

Often the experiment has to account for a number of uncontrolled factors that
may be discrete, such as different machines or operators, and/or continuous such
as ambient temperature or humidity. Figure 1.1 illustrates this situation.
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FIGURE 1.1 A "Black Box' Process Model Schematic
Models for The most common empirical models fit to the experimental data take either a
DOE's linear form or quadratic form.

Linear model A linear model with two factors, X; and X,, can be written as
Y=o+ S5+ 5+ 285 9 + experimental error

Here, Y isthe response for given levels of the main effects X; and X, and the
X1X5 term isincluded to account for a possible interaction effect between X; and
X. The constant (3, is the response of Y when both main effects are 0.

For a more complicated example, alinear model with three factors X, X,, X3

and one response, Y, would look like (if al possible terms were included in the
model)
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Y=o+ A&+ Xy + frXs + fad &y
+ A3 01X 5+ fas i s+ PrasX 1 XA
+ expenimental error

The three terms with single " X's" are the main effects terms. There are k(k-1)/2 =
3*2/2 = 3 two-way interaction terms and 1 three-way interaction term (which is
often omitted, for simplicity). When the experimental data are analyzed, al the
unknown " ﬁ parameters are estimated and the coefficients of the "X" terms are
tested to see which ones are significantly different from O.

Quadratic A second-order (quadratic) model (typically used in response surface DOE's
model with suspected curvature) does not include the three-way interaction term but
adds three more terms to the linear model, namely
BuX; + B X3 + fuX;

Note: Clearly, afull model could include many cross-product (or interaction)
termsinvolving squared X's. However, in general these terms are not needed and
most DOE software defaults to leaving them out of the mode!.

NIST

'HOME [TOOLS & AIDS [SEARCH [BACK MNEXT]
SEMATECH

http://www.itl.nist.gov/div898/handbook/pri/section1/prill.htm (3 of 3) [11/14/2003 5:53:00 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/

5.1.2. What are the uses of DOE?

B ENGINEERING STATISTICS HANDBOOK

[HOME

[TOOLS & AIDS [SEARCH [BEACK “NEXT|

5. Process | mprovement

5.1. Introduction

5.1.2.What are the uses of DOE?

DOEisa
multi pur pose
tool that can
help in many
situations

A common
useis
planning an
experiment
to gather
data to make
a decision
between two
or more
alternatives

Types of
comparitive
studies

Below are seven examplesillustrating situations in which experimental design can be used
effectively:

o Choosing Between Alternatives

o Selecting the Key Factors Affecting a Response

o Response Surface Modeling to:

0 HitaTarget
0 Reduce Variability

o Maximize or Minimize a Response

0 Make a Process Robust (i.e., the process gets the "right” results even though there
are uncontrollable "noise" factors)

0 Seek Multiple Goals
o Regression Modeling

Choosing Between Alter natives (Compar ative Experiment)

Supplier A vs. supplier B? Which new additive is the most effective? Is catalyst "x' an
improvement over the existing catalyst? These and countless other choices between alternatives
can be presented to us in a never-ending parade. Often we have the choice made for us by outside
factors over which we have no control. But in many cases we are also asked to make the choice.
It helpsif one has valid data to back up one's decision.

The preferred solution is to agree on a measurement by which competing choices can be
compared, generate a sample of data from each alternative, and compare average results. The
'best' average outcome will be our preference. We have performed a comparative experiment!

Sometimes this comparison is performed under one common set of conditions. Thisisa
comparative study with anarrow scope - which is suitable for some initial comparisons of
possible aternatives. Other comparison studies, intended to validate that one alternative is
perferred over awide range of conditions, will purposely and systematically vary the background
conditions under which the primary comparison is made in order to reach a conclusion that will
be proven valid over a broad scope. We discuss experimental designs for each of these types of
comparisonsin Sections 5.3.3.1 and 5.3.3.2.

Selecting the Key Factors Affecting a Response (Screening Experiments)
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Selecting the
few that
matter from
the many
possible
factors

Some
reasonsto
model a
process

Often we
want to "fine
tune" a
process to
consistently
hit a target

Often there are many possible factors, some of which may be critical and others which may have
little or no effect on aresponse. It may be desirable, as agoal by itself, to reduce the number of
factorsto arelatively small set (2-5) so that attention can be focussed on controlling those factors
with appropriate specifications, control charts, etc.

Screening experiments are an efficient way, with aminimal number of runs, of determining the
important factors. They may also be used as afirst step when the ultimate goal isto model a
response with a response surface. We will discuss experimental designs for screening alarge
number of factorsin Sections 5.3.3.3, 5.3.3.4 and 5.3.3.5.

Response Surface Modeling a Process

Once one knows the primary variables (factors) that affect the responses of interest, a number of
additional objectives may be pursued. These include:

o Hitting a Target

« Maximizing or Minimizing a Response

e Reducing Variation

« Making a Process Robust
e Seeking Multiple Goals

What each of these purposes have in common is that experimentation is used to fit amodel that
may permit arough, local approximation to the actual surface. Given that the particular objective
can be met with such an approximate model, the experimental effort is kept to a minimum while
still achieving the immediate goal.

These response surface modeling objectives will now be briefly expanded upon.
Hitting a Target

Thisis afrequently encountered goal for an experiment.

One might try out different settings until the desired target is "hit' consistently. For example, a
machine tool that has been recently overhauled may require some setup “tweaking' before it runs
on target. Such action is a small and common form of experimentation. However, rather than
experimenting in an ad hoc manner until we happen to find a setup that hits the target, one can fit
amodel estimated from a small experiment and use this model to determine the necessary
adjustments to hit the target.

More complex forms of experimentation, such as the determination of the correct chemical mix
of a coating that will yield a desired refractive index for the dried coat (and simultaneously
achieve specifications for other attributes), may involve many ingredients and be very sensitive to
small changes in the percentages in the mix. Fitting suitable models, based on sequentially
planned experiments, may be the only way to efficiently achieve this goal of hitting targets for
multiple responses simultaneously.

Maximizing or Minimizing a Response
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5.1.2. What are the uses of DOE?

Many processes are being run at sub-optimal settings, some of them for years, even though each
factor has been optimized individually over time. Finding settings that increase yield or decrease
the amount of scrap and rework represent opportunities for substantial financial gain. Often,

however, one must experiment with multiple inputs to achieve a better output. Section 5.3.3.6 on

second-order designs plus material in Section 5.5.3 will be useful for these applications.

}r--rn e

iy
Ty
e P
oL % s
TR

[t

e

FIGURE 1.1 Pathway up the processresponse surfaceto an “optimum'
Reducing Variation

A process may be performing with unacceptable consistency, meaning itsinternal variation istoo
high.

Excessive variation can result from many causes. Sometimesit is due to the lack of having or
following standard operating procedures. At other times, excessive variation is due to certain
hard-to-control inputs that affect the critical output characteristics of the process. When this latter
situation is the case, one may experiment with these hard-to-control factors, looking for aregion
where the surface is flatter and the processis easier to manage. To take advantage of such flatness
in the surface, one must use designs - such as the second-order designs of Section 5.3.3.6 - that

permit identification of these features. Contour or surface plots are useful for elucidating the key
features of these fitted models. See also 5.5.3.1.4.
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Figure 1.2 Process before variation reduced

It might be possible to reduce the variation by altering the setpoints (recipe) of the process, so that
it runsin amore “stable' region.

Graph of
data after
process
variation
reduced
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Thelessa
process or
product is
affected by
external
conditions,
the better it
is-thisis
called
"Robustness"
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Figure 1.3 Process after variation reduced

Finding this new recipe could be the subject of an experiment, especidly if there are many input
factors that could conceivably affect the output.

Making a Process Robust

An item designed and made under controlled conditions will be later “field tested' in the hands of
the customer and may prove susceptible to failure modes not seen in the lab or thought of by
design. An example would be the starter motor of an automobile that is required to operate under
extremes of external temperature. A starter that performs under such awide range is termed
“robust' to temperature.

Designing an item so that it is robust calls for a special experimental effort. It is possible to stress
theitem in the design lab and so determine the critical components affecting its performance. A
different gauge of armature wire might be a solution to the starter motor, but so might be many
other alternatives. The correct combination of factors can be found only by experimentation.

Seeking Multiple Goals
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5.1.2. What are the uses of DOE?

Sometimes A product or process seldom has just one desirable output characteristic. There are usually
we have several, and they are often interrelated so that improving one will cause a deterioration of another.
multiple For example: rate vs. consistency; strength vs. expense; etc.
outputs and . . . . - .
we F;]ave to Any product is a trade-off between these various desirable final characteristics. Understanding the
compromise boundaries of the trade-off allows one to make the correct choices. Thisis done by either
to achieve constructing some weighted objective function ("desirability function’) and optimizing it, or
desirable examining contour plots of responses generated by a computer program, as given below.
outcomes -
DOE can
help here
Sample Deposition Rate, Estimated Cp (Variance Components)
contour plot Bottom OfTset 10; Pressure 150, Total Flow 225
of deposition
rate and _]“Ef —pp——
capability » %
12
T-134
L1
P-14
0 15 = Dep Rale
II: —— Est Cp {(Var Comp)
g -16 1
L
t-17
-18
19
-20

Center Temperature
FIGURE 1.4 Overlaid contour plot of Deposition Rate and Capability (Cp)

Regression Modeling

Regression Sometimes we require more than a rough approximating model over alocal region. In such cases,
models the standard designs presented in this chapter for estimating first- or second-order polynomial
(Chapter 4) models may not suffice. Chapter 4 covers the topic of experimental design and analysis for fitting
are used to general models for a single explanatory factor. If one has multiple factors, and either a nonlinear
fit more model or some other special model, the computer-aided designs of Section 5.5.2 may be useful.
precise
models
NIST : .
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5.1.3. What are the steps of DOE?
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5.1.3.What are the steps of DOE?

Key steps for Obtaining good results from a DOE involves these seven steps.

DOE 1

. Set objectives

2. Select process variables

w

o &

Select an experimental design

Execute the design

Check that the data are consistent with the experimental
assumptions

6. Analyze and interpret the results

7. Use/present the results (may lead to further runs or DOE'S).
A checklist of Important practical considerationsin planning and running
practical experiments are

considerations

Check performance of gauges/measurement devices first.

K eep the experiment as simple as possible.

Check that all planned runs are feasible.

Watch out for process drifts and shifts during the run.

Avoid unplanned changes (e.g., swap operators at halfway
point).

Allow some time (and back-up material) for unexpected events.
Obtain buy-in from all partiesinvolved.

Maintain effective ownership of each step in the experimental
plan.

Preserve all the raw data--do not keep only summary averages!
Record everything that happens.
Reset equipment to its original state after the experiment.

The Sequential or Iterative Approach to DOE
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5.1.3. What are the steps of DOE?

Planning to
do a sequence
of small
experimentsis
often better
than relying
on one big
experiment to
giveyou all
the answers

Each stage
provides
insight for
next stage

NIST
SEMATECH

It is often a mistake to believe that “one big experiment will give the
answer.'

A more useful approach to experimental design isto recognize that
while one experiment might provide a useful result, it is more
common to perform two or three, or maybe more, experiments before
acomplete answer is attained. In other words, an iterative approach is
best and, in the end, most economical. Putting all one's eggsin one
basket is not advisable.

The reason an iterative approach frequently works best is because it is
logical to move through stages of experimentation, each stage
providing insight as to how the next experiment should be run.
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5. Process |mprovement

5.2.Assumptions

We should In all model building we make assumptions, and we also require
check the certain conditions to be approximately met for purposes of estimation.
engineering This section looks at some of the engineering and mathematical

and assumptions we typically make. These are:

”Ddd't:_U”dlng « Arethe measurement systems capable for all of your
assumptions FeSONSES?

that are made L

in most DOE's  Isyour process stable?

o Arevyour responses likely to be approximated well by ssmple
polynomia models?

o Aretheresiduals (the difference between the model predictions
and the actual observations) well behaved?

NIST
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5.2.1. Is the measurement system capable?
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5.2. Assumptions

5.2.1.1s the measurement system capable?

Metrology It is unhelpful to find, after you have finished all the experimental
capabilities runs, that the measurement devices you have at your disposal cannot
are a key measure the changes you were hoping to see. Plan to check this out

factor in most before embarking on the experiment itself. M easurement process
experiments characterization is covered in Chapter 2.

SPC check of In addition, it is advisable, especidly if the experimental material is

measur ement planned to arrive for measurement over a protracted period, that an

devices SPC (i.e., quality control) check is kept on al measurement devices
from the start to the conclusion of the whole experimental project.
Strange experimental outcomes can often be traced to “hiccups in the
metrology system.

NIST
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5.2.2. Is the process stable?
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5.2. Assumptions

5.2.2.1s the process stable?

Plan to
examine
process
stability as
part of your
experiment

NIST
SEMATECH

Experimental runs should have control runs that are made at the
“standard' process setpoints, or at least at some standard operating

recipe. The experiment should start and end with such runs. A plot of
the outcomes of these control runswill indicate if the underlying process
itself has drifted or shifted during the experiment.

It is desirable to experiment on a stable process. However, if this cannot
be achieved, then the process instability must be accounted for in the
analysis of the experiment. For example, if the mean is shifting with
time (or experimental trial run), then it will be necessary to include a
trend term in the experimental model (i.e., include atime variable or a
run number variable).
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5.2.3. Is there a simple model?
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5.2. Assumptions

5.2.3.Is there a simple model?

Polynomial

approximation

In this chapter we restrict ourselves to the case for which the response
variable(s) are continuous outputs denoted as Y. Over the experimental

models only range, the outputs must not only be continuous, but also reasonably
work for smooth. A sharp faloff in Y valuesis likely to be missed by the
smoothly approximating polynomials that we use because these polynomials
varying assume a smoothly curving underlying response surface.
outputs
Piecewise If the surface under investigation is known to be only piecewise
smoothness smooth, then the experiments will have to be broken up into separate
requires experiments, each investigating the shape of the separate sections. A
separ ate surface that is known to be very jagged (i.e., non-smooth) will not be
experiments successfully approximated by a smooth polynomial.
Examples of
piecewise
smooth and
jagged
responses

................... i ...................k‘:

Piecewise Smooth Jagged
FIGURE 2.1 Examplesof Piecewise
Smooth and Jagged Responses
NIST . .
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5.2.4. Are the model residuals well-behaved?
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5. Process Improvement

5.2. Assumptions

5.2.4. Are the model residuals well-behaved?

Residualsare
the
differences
between the
observed and
predicted
responses

Residualsare
elements of
variation
unexplained
by fitted
model

Assumptions
for residuals

Departures
indicate
inadequate
model

Plots for
examining
residuals

Residuals are estimates of experimental error obtained by subtracting the observed responses
from the predicted responses.

The predicted response is calculated from the chosen model, after al the unknown model
parameters have been estimated from the experimental data.

Examining residuals is akey part of all statistical modeling, including DOE's. Carefully looking
at residuals can tell us whether our assumptions are reasonable and our choice of model is

appropriate.

Residuals can be thought of as elements of variation unexplained by the fitted model. Since thisis
aform of error, the same general assumptions apply to the group of residual s that we typically use
for errorsin general: one expects them to be (roughly) normal and (approximately) independently

distributed with a mean of 0 and some constant variance.

These are the assumptions behind ANOVA and classical regression analysis. This means that an
analyst should expect aregression model to err in predicting aresponse in arandom fashion; the
model should predict values higher than actual and lower than actual with equal probability. In
addition, the level of the error should be independent of when the observation occurred in the
study, or the size of the observation being predicted, or even the factor settingsinvolved in
making the prediction. The overall pattern of the residuals should be similar to the bell-shaped
pattern observed when plotting a histogram of normally distributed data.

We emphasi ze the use of graphical methods to examine residuals.

Departures from these assumptions usually mean that the residuals contain structure that is not
accounted for in the model. Identifying that structure and adding term(s) representing it to the
origina model leadsto a better model.

Testsfor Residual Nor mality

Any graph suitable for displaying the distribution of a set of datais suitable for judging the
normality of the distribution of a group of residuals. The three most common types are:

1. histograms,
2. normal probability plots, and

3. dot plots.
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5.2.4. Are the model residuals well-behaved?

Histogram

0.1 —

3
1

Relative Frequency
a
(=]
t
| L
™~

\
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-25 -15 -5 ] 16 25
Residuals

Figure 2.2

The histogram is afrequency plot obtained by placing the datain regularly spaced cells and
plotting each cell frequency versus the center of the cell. Figure 2.2 illustrates an approximately
normal distribution of residuals produced by a model for a calibration process. We have
superimposed anormal density function on the histogram.

Small sample  Sample sizes of residuals are generally small (<50) because experiments have limited treatment
sizes combinations, so a histogram is not be the best choice for judging the distribution of residuals. A
more sensitive graph is the normal probability plot.

Normal The stepsin forming a normal probability plot are:
plrotbabl lity « Sort the residual s into ascending order.
plo

« Calculate the cumulative probability of each residual using the formula:
P(i-th residual) = i/(N+1)
with P denoting the cumulative probability of apoint, i isthe order of the valuein the list
and N is the number of entriesin thelist.
« Plot the calculated p-values versus the residual value on normal probability paper.

The normal probability plot should produce an approximately straight line if the points come
from anormal distribution.
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5.2.4. Are the model residuals well-behaved?

Sample
normal
probability
plot with
overlaid dot
plot

"S' shaped
curves
indicate
bimodal
distribution

Run sequence
plot

Figure 2.3 below illustrates the normal probability graph created from the same group of residuals
used for Figure 2.2.

30
] X
20 =
P |
n —
1wt
N BT
oy
=20 T T T I T T T T T I T
-3 -2 -1 a 1 2 3
Thearetical
Figure 2.3

This graph includes the addition of adot plot. The dot plot is the collection of points along the left
y-axis. These are the values of the residuals. The purpose of the dot plot isto provide an
indication the distribution of the residuals.

Small departures from the straight line in the normal probability plot are common, but a clearly
"S" shaped curve on this graph suggests a bimodal distribution of residuals. Breaks near the
middle of this graph are also indications of abnormalitiesin the residual distribution.

NOTE: Studentized residuals are residuals converted to a scale approximately representing the
standard deviation of an individual residual from the center of the residual distribution. The
technique used to convert residuals to this form produces a Student's t distribution of values.

Independence of Residuals Over Time

If the order of the observations in a data table represents the order of execution of each treatment
combination, then aplot of the residuals of those observations versus the case order or time order
of the observations will test for any time dependency. These are referred to as run sequence plots.
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Interpretation
of the sample
run sequence
plots

Check for
increasing
residuals as
size of fitted
value
increases

Residuals

a b 10 156 20 25 30
Sequence Number

Figure 2.5

Theresidualsin Figure 2.4 suggest atime trend, while those in Figure 2.5 do not. Figure 2.4
suggests that the system was drifting slowly to lower values as the investigation continued. In
extreme cases a drift of the equipment will produce models with very poor ability to account for
the variability in the data (low R?2).

If the investigation includes centerpoints, then plotting them in time order may produce a more
clear indication of atimetrend if one exists. Plotting the raw responses in time sequence can also
sometimes detect trend changes in a process that residual plots might not detect.

Plot of Residuals Versus Corresponding Predicted Values

Plotting residuals versus the value of afitted response should produce a distribution of points
scattered randomly about O, regardless of the size of the fitted value. Quite commonly, however,
residual values may increase as the size of the fitted value increases. When this happens, the
residual cloud becomes "funnel shaped” with the larger end toward larger fitted values; that is, the
residuals have larger and larger scatter as the value of the response increases. Plotting the
absolute values of the residuals instead of the signed values will produce a "wedge-shaped"
distribution; a smoothing function is added to each graph which helps to show the trend.
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Sample
residuals
versus fitted
values plot
showing
increasing
residuals
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Figure 2.6
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Figure 2.7

A residual distribution such asthat in Figure 2.6 showing atrend to higher absolute residuals as
the value of the response increases suggests that one should transform the response, perhaps by
modeling its logarithm or square root, etc., (contractive transformations). Transforming a
response in this fashion often simplifiesits relationship with a predictor variable and leads to
simpler models. Later sections discuss transformation in more detail. Figure 2.7 plots the

residual s after a transformation on the response variable was used to reduce the scatter. Notice the
difference in scales on the vertical axes.

Independence of Residuals from Factor Settings

Sample
residuals
versus factor
setting plot
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Interpreation  Figure 2.8 shows that the size of the residuals changed as a function of a predictor's settings. A

of residuals graph like this suggests that the model needs a higher-order term in that predictor or that one

versus factor should transform the predictor using alogarithm or square root, for example. Figure 2.9 shows

setting plots the residuals for the same response after adding a quadratic term. Notice the single point widely
separated from the other residualsin Figure 2.9. This point isan "outlier.” That is, its position is
well within the range of values used for this predictor in the investigation, but its result was
somewhat lower than the model predicted. A signal that curvature is present is atrace resembling
a"frown" or a"smile" in these graphs.

Sample
residuals
versus factor
setting plot
lacking one
or more
higher-order
terms
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Interpretation
of plot

Graph
indicates
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Additional
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residual
analysis
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The example given in Figures 2.8 and 2.9 obviously involves five levels of the predictor. The
experiment utilized a response surface design. For the simple factorial design that includes center
points, if the response model being considered lacked one or more higher-order terms, the plot of
residuals versus factor settings might appear asin Figure 2.10.

While the graph gives a definite signal that curvature is present, identifying the source of that
curvature is not possible due to the structure of the design. Graphs generated using the other
predictorsin that situation would have very similar appearances.

Note: Residuals are an important subject discussed repeatedly in this Handbook. For example,
graphical residual plots using Dataplot are discussed in Chapter 1 and the general examination of

residuals as a part of model building is discussed in Chapter 4.
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5.3. Choosing an experimental design
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5.3.Choosing an experimental design

Contents of This section describes in detail the process of choosing an experimental
Section 3 design to obtain the results you need. The basic designs an engineer
needs to know about are described in detail.

Note that 1. Set objectives

this section 2. Select process variables and levels
describes _ .

the basic 3. Sdlect experimental design

designs used 1. Completely randomized designs
for most 2. Randomized block designs
engineering

and 1. Latin squares

scientific 2. Graeco-L atin squares
applications

3. Hyper-Graeco-L atin squares

3. Full factorial designs

1. Two-level full factorial designs

2. Full factorial example

3. Blocking of full factorial designs

4. Fractional factorial designs
1. A 23-1 half-fraction design
How to construct a 23-1 design

Confounding

Design resolution

Use of fractional factorial designs

Screening designs

N o g bk~ 0 DN

Fractional factorial designs summary tables

5. Plackett-Burman designs

6. Response surface (second-order) designs

1. Central composite designs
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5.3.1. What are the objectives?
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5.3. Choosing an experimental design

5.3.1.What are the objectives?

Planning an
experiment
begins with
carefully
considering
what the
objectives
(or goals)
are

Types of
designs

The objectives for an experiment are best determined by ateam
discussion. All of the objectives should be written down, even the
"unspoken" ones.

The group should discuss which objectives are the key ones, and which
ones are "nice but not really necessary". Prioritization of the objectives
helps you decide which direction to go with regard to the selection of
the factors, responses and the particular design. Sometimes prioritization
will force you to start over from scratch when you realize that the
experiment you decided to run does not meet one or more critical
objectives.

Examples of goals were given earlier in Section 5.1.2, in which we

described four broad categories of experimental designs, with various
objectives for each. These were:

o Comparative designsto:

0 choose between alternatives, with narrow scope, suitable
for an initial comparison (see Section 5.3.3.1)

0 choose between alternatives, with broad scope, suitable for
a confirmatory comparison (see Section 5.3.3.2)

« Screening designs to identify which factorg/effects are important

0 when you have 2 - 4 factors and can perform afull factorial
(Section 5.3.3.3)

o when you have more than 3 factors and want to begin with
as small adesign as possible (Section 5.3.3.4 and 5.3.3.5)

o when you have some qualitative factors, or you have some
quantitative factors that are known to have a
non-monotonic effect (Section 3.3.3.10)

Note that some authors prefer to restrict the term screening design
to the case where you are trying to extract the most important
factorsfrom alarge (say > 5) list of initial factors (usually a
fractional factorial design). We include the case with a smaller
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5.3.1. What are the objectives?

Based on
objective,
where to go
next
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number of factors, usually afull factorial design, since the basic
purpose and analysisis similar.
« Response Surface modeling to achieve one or more of the
following objectives:
o hit atarget
0 maximize or minimize aresponse

0 reduce variation by locating a region where the processis
easier to manage

0 make a process robust (note: this objective may often be
accomplished with screening designs rather than with
response surface designs - see Section 5.5.6)

« Regression modeling

0 to estimate a precise model, quantifying the dependence of
response variable(s) on process inputs.

After identifying the objective listed above that corresponds most
closely to your specific goal, you can
« proceed to the next section in which we discuss selecting
experimental factors
and then

« Select the appropriate design named in section 5.3.3 that suits
your objective (and follow the related links).
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5.3.2.How do you select and scale the process
variables?

Guidelines Process variables include both inputs and outputs - i.e., factors and responses. The
toassistthe  selection of these variablesis best done as ateam effort. The team should

_engi neering « Include all important factors (based on engineering judgment).

Jl;%%gnéf « Bebold, but not foolish, in choosing the low and high factor levels.

gel ecting o Check the factor settings for @mpractical or impossible combinations - i.e.,
process very low pressure and very high gas flows.

variables « Include all relevant responses.

for a DOE « Avoid using only responses that combine two or more measurements of the

process. For example, if interested in selectivity (the ratio of two etch
rates), measure both rates, not just the ratio.

Be careful We have to choose the range of the settings for input factors, and it iswise to give
when this some thought beforehand rather than just try extreme values. In some cases,
choosing extreme values will give runsthat are not feasible; in other cases, extreme ranges
the might move one out of a smooth area of the response surface into some jagged
allowable region, or close to an asymptote.

range for

each factor

Two-level The most popular experimental designs are two-level designs. Why only two
designs levels? There are a number of good reasons why two is the most common choice

havejusta  amongst engineers: one reason isthat it isideal for screening designs, simple and
"high" and  economical; it also gives most of the information required to go to a multilevel
a"low" response surface experiment if one is needed.

setting for

each factor
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Consider
adding
some
center
points to
your
two-level
design

Matrix
notation for
describing
an
experiment

Coding the
data

5.3.2. How do you select and scale the process variables?

The term "two-level design” is something of a misnomer, however, asit is
recommended to include some center points during the experiment (center points
are located in the middle of the design "box’).

Notation for 2-Level Designs

The standard layout for a 2-level design uses +1 and -1 notation to denote the
"high level" and the "low level" respectively, for each factor. For example, the
matrix below

Factor 1 (X1) Factor 2 (X2)
Tria 1 -1 -1
Tria 2 +1 -1
Tria 3 -1 +1
Trid 4 +1 +1

describes an experiment in which 4 trials (or runs) were conducted with each
factor set to high or low during arun according to whether the matrix had a+1 or
-1 set for the factor during that trial. If the experiment had more than 2 factors,
there would be an additional column in the matrix for each additional factor.

Note: Some authors shorten the matrix notation for atwo-level design by just
recording the plus and minus signs, leaving out the "1's".

The use of +1 and -1 for the factor settingsis called coding the data. Thisaidsin
the interpretation of the coefficientsfit to any experimental model. After factor
settings are coded, center points have the value "0". Coding is described in more
detail in the DOE glossary.

The Model or AnalysisMatrix
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If weadd an"I" column and an "X1* X2" column to the matrix of 4 trialsfor a
two-factor experiment described earlier, we obtain what is known as the model or
analysis matrix for this simple experiment, which is shown below. The model
matrix for athree-factor experiment is shown later in this section.

I X1 X2 X1*X2
+1 -1 -1 +1
+1 +1 -1 -1
+1 -1 +1 -1
+1 +1 +1 +1

The model for this experiment is
Y =G4+ 51X, + G Xs + 312X, X5 + experimental error

and the"I" column of the design matrix has all 1'sto provide for the ﬁo term. The

X1* X2 columnis formed by multiplying the "X1" and "X2" columns together,
row element by row element. This column gives interaction term for each trial.

In matrix notation, we can summarize this experiment by
Y = X{3 + experimental error

for which Xisthe 4 by 4 design matrix of 1'sand -1's shown above, ﬂ IS the vector

of unknown model coefficients(f3g, /31, J2, f12) and Y is avector consisting of
the four trial response observations.

Orthogonal Property of Scaling in a 2-Factor Experiment

Coding is sometime called "orthogonal coding" since al the columns of a coded
2-factor design matrix (except the 1" column) are typically orthogonal. That is,
the dot product for any pair of columns is zero. For example, for X1 and X2:
(-1)(-1) + (+D(-D) + (-1)(+1) + (+1)(+1) = 0.
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5.3. Choosing an experimental design

5.3.3.How do you select an experimental
design?

Adesignis The choice of an experimental design depends on the objectives of the
selected experiment and the number of factorsto be investigated.

based on the

experimental

objective

and the

number of

factors

Experimental Design Objectives

Types of Types of designs are listed here according to the experimental objective
designsare they meet.
listed here

« Comparative objective: If you have one or several factors under

according to
the
experimental
objective
they meet

investigation, but the primary goal of your experiment isto make
a conclusion about one a-priori important factor, (in the presence
of, and/or in spite of the existence of the other factors), and the
guestion of interest is whether or not that factor is "significant”,
(i.e., whether or not there is a significant change in the response
for different levels of that factor), then you have a comparative
problem and you need a compar ative design solution.

Screening objective: The primary purpose of the experiment is
to select or screen out the few important main effects from the
many less important ones. These screening designs are also
termed main effects designs.

Response Surface (method) objective: The experiment is
designed to alow usto estimate interaction and even quadratic
effects, and therefore give us an idea of the (local) shape of the
response surface we are investigating. For this reason, they are
termed response surface method (RSM) designs. RSM designs are
used to:

o Find improved or optimal process settings
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5.3.3. How do you select an experimental design?
o Troubleshoot process problems and weak points

0 Make aproduct or process more robust against external
and non-controllable influences. "Robust”" means relatively
insensitive to these influences.

« Optimizing responses when factors are proportions of a
mixtur e objective: If you have factors that are proportions of a
mixture and you want to know what the "best" proportions of the
factors are so as to maximize (or minimize) aresponse, then you
need a mixture design.

« Optimal fitting of aregression model objective: If you want to
model aresponse as a mathematical function (either known or
empirical) of afew continuous factors and you desire "good"
model parameter estimates (i.e., unbiased and minimum
variance), then you need aregression design.

Mixtureand  Mixture designs are discussed briefly in section 5 (Advanced Topics)

reg_ron and regression designs for a single factor are discussed in chapter 4.
designs Selection of designs for the remaining 3 objectives is summarized in the

following table.

Summary TABLE 3.1 Design Selection Guideline
table for Spey——
choosing an Number | Comparative Screening %
exp_erlmental of Factors Objective Objective Obi ective
design for —DJ Ve
compar ative, 1-factor
screening, L completely
and randomized - -
response design
surface o
designs - Randomized Full or fractional o rﬁgte or
block design factorial B—Lox—B chnken
5 or more Randomized Fractional factorial i((;r;een flrstt;[o
: reduce number
block design | or Plackett-Burman of factors
Resources Choice of adesign from within these various types depends on the
and degree amount of resources available and the degree of control over making
of control wrong decisions (Type | and Type I errorsfor testing hypotheses) that
over wrong the experimenter desires.

decisions
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Save some It is agood idea to choose a design that requires somewhat fewer runs
runs for than the budget permits, so that center point runs can be added to check

center points  for curvature in a 2-level screening design and backup resources are
and"redos’  available to redo runs that have processing mishaps.

that might

be needed
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5.3.3.1. Completely randomized designs
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5.3.3. How do you select an experimental design?

5.3.3.1.Completely randomized designs

These designs
are for studying
the effects of
one primary
factor without
the need to take
other nuisance
factorsinto
account

Randomization
typically
performed by
computer
software

Three key
numbers

Here we consider completely randomized designs that have one
primary factor. The experiment compares the values of aresponse
variable based on the different levels of that primary factor.

For completely randomized designs, the levels of the primary factor
are randomly assigned to the experimental units. By randomization,

we mean that the run sequence of the experimental unitsis

determined randomly. For example, if there are 3 levels of the
primary factor with each level to be run 2 times, then there are 6
factorial possible run sequences (or 6! waysto order the
experimental trials). Because of the replication, the number of unique
orderingsis 90 (since 90 = 6!/(2!*2!*2!)). An example of an
unrandomized design would be to always run 2 replications for the
first level, then 2 for the second level, and finally 2 for the third
level. To randomize the runs, one way would be to put 6 dlips of
paper in abox with 2 having level 1, 2 having level 2, and 2 having
level 3. Before each run, one of the slips would be drawn blindly
from the box and the level selected would be used for the next run of
the experiment.

In practice, the randomization is typically performed by a computer
program (in Dataplot, see the Generate Random Run Sequence menu
under the main DEX menu). However, the randomization can aso be
generated from random number tables or by some physical
mechanism (e.g., drawing the slips of paper).

All completely randomized designs with one primary factor are
defined by 3 numbers:

k = number of factors (= 1 for these designs)
L = number of levels
n = number of replications

and the total sample size (number of runs) isN = kx L xn.
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5.3.3.1. Completely randomized designs

Balance

Typical
example of a
completely
randomized
design

A sample
randomized
sequence of
trials

Moddl for a
compl etely
randomized
design

Balance dictates that the number of replications be the same at each
level of the factor (thiswill maximize the sensitivity of subsequent
statistical t (or F) tests).

A typical example of acompletely randomized design isthe
following:
k =1 factor (X1)
L = 4 levels of that single factor (called 1", "2","3", and "4")
n = 3 replications per level
N =4levels* 3replications per level = 12 runs

The randomized sequence of trials might look like:

whmphwl—\mmhl—\wﬁ

Note that in this example there are 12!/(3!* 3!* 3!* 3!) = 369,600 ways
to run the experiment, all equally likely to be picked by a
randomization procedure.

The model for the responseis
Yij = fA+ T + random error

with
Y; j being any observation for which X1 =i
#4 (or mu) is the general ocation parameter
T; isthe effect of having treatment level i

Estimates and Statistical Tests
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Estimatingand  Estimatefor fi: ¥ =theaverage of al the data

testing model _ _

factor levels Estimatefor T;: ¥, -y
with ¥; = average of all Y for which X1 = 1.
Statistical testsfor levels of X1 are shown in the section on one-way
ANOVA in Chapter 7.
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5.3.3.2.Randomized block designs

Blocking to
"remove’ the
effect of
nuisance
factors

Blocking used
for nuisance
factors that
can be
controlled

Definition of
blocking
factors

Block for a
few of the
most
Important
nuisance
factors

For randomized block designs, there is one factor or variable that is of
primary interest. However, there are al'so several other nuisance
factors.

Nuisance factors are those that may affect the measured result, but are
not of primary interest. For example, in applying a treatment, nuisance
factors might be the specific operator who prepared the treatment, the
time of day the experiment was run, and the room temperature. All
experiments have nuisance factors. The experimenter will typically
need to spend some time deciding which nuisance factors are
important enough to keep track of or control, if possible, during the
experiment.

When we can control nuisance factors, an important technique known
as blocking can be used to reduce or eliminate the contribution to
experimental error contributed by nuisance factors. The basic concept
isto create homogeneous blocks in which the nuisance factors are held
constant and the factor of interest is allowed to vary. Within blocks, it
is possible to assess the effect of different levels of the factor of
interest without having to worry about variations due to changes of the
block factors, which are accounted for in the analysis.

A nuisance factor is used as a blocking factor if every level of the
primary factor occurs the same number of times with each level of the
nuisance factor. The analysis of the experiment will focus on the
effect of varying levels of the primary factor within each block of the
experiment.

The generd ruleis:
"Block what you can, randomize what you cannot."

Blocking is used to remove the effects of afew of the most important
nuisance variables. Randomization is then used to reduce the
contaminating effects of the remaining nuisance variables.
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5.3.3.2. Randomized block designs

Table of One useful way to look at a randomized block experiment isto
randomized consider it as a collection of completely randomized experiments, each
block designs  run within one of the blocks of the total experiment.

Randomized Block Designs (RBD)

Name of Number of Number of
Design Factors Runs
k n
2-factor RBD 2 Ly* Lo
3-factor RBD 3 Ly *Ly* Ly
4-factor RBD 4 Li*Lo*Lg* Ly
k-factor RBD k Ly*Lo* .. * Ly
with

L, = number of levels (settings) of factor 1
L, = number of levels (settings) of factor 2
L3 = number of levels (settings) of factor 3
L, = number of levels (settings) of factor 4

L, = number of levels (settings) of factor k

Example of a Randomized Block Design

Example of a Suppose engineers at a semiconductor manufacturing facility want to

randomi zed test whether different wafer implant material dosages have a

block design significant effect on resistivity measurements after a diffusion process
taking place in afurnace. They have four different dosages they want
to try and enough experimental wafers from the same lot to run three
wafers at each of the dosages.

Furnace run The nuisance factor they are concerned with is"furnace run" sinceit is
Isa nuisance known that each furnace run differs from the last and impacts many
factor process parameters.
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method
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experiment

Design trial
before
randomization

5.3.3.2. Randomized block designs

An ideal way to run this experiment would be to run all the 4x3=12
wafers in the same furnace run. That would eliminate the nuisance
furnace factor completely. However, regular production wafers have
furnace priority, and only afew experimental wafers are allowed into
any furnace run at the same time.

A non-blocked way to run this experiment would be to run each of the
twelve experimental wafers, in random order, one per furnace run.
That would increase the experimental error of each resistivity
measurement by the run-to-run furnace variability and make it more
difficult to study the effects of the different dosages. The blocked way
to run this experiment, assuming you can convince manufacturing to
let you put four experimental wafers in afurnace run, would be to put
four wafers with different dosages in each of three furnace runs. The
only randomization would be choosing which of the three wafers with
dosage 1 would go into furnace run 1, and similarly for the wafers
with dosages 2, 3 and 4.

Let X1 be dosage "level" and X2 be the blocking factor furnace run.
Then the experiment can be described as follows:

k = 2 factors (1 primary factor X1 and 1 blocking factor X2)
L, =4 levelsof factor X1

L, = 3 levels of factor X2
n =1 replication per cell
N=L;*L,=4*3=12runs

Before randomization, the design trials look like:

X1 X2
1

AP BB DDWOWWWDNNNEERPR
WNNEFPWNPFPWNREPWDN
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Matrix An alternate way of summarizing the design trials would be to use a

representation  4x3 matrix whose 4 rows are the levels of the treatment X1 and whose
columns are the 3 levels of the blocking variable X2. The cellsin the
matrix have indices that match the X1, X2 combinations above.

By extension, note that the trials for any K-factor randomized block
design are simply the cell indices of a K dimensional matrix.

Model for a Randomized Block Design

Model for a The model for arandomized block design with one nuisance variable
randomized IS
block design Y;j = f4+ T, + By + random error

where

Yid- Isany observation for which X1 =i and X2 =]
X1 is the primary factor

X2 isthe blocking factor
j1 isthe general location parameter (i.e., the mean)

T; isthe effect for being in treatment i (of factor X1)
B; isthe effect for being in block j (of factor X2)

Estimatesfor a Randomized Block Design

Estimating Estimate for f4: ¥ = the average of al the data
factor effects _ _

for a Estimate for T; : Y. Y

randomized with ¥; = average of al Y for which X1 = .
block design b

Estimate for Bj : Y:: - 17

with 17} = average of all Y for which X2 =].
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5.3.3.2.1. Latin square and related designs
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5. Process Improvement

5.3. Choosing an experimental design

5.3.3. How do you select an experimental design?
5.3.3.2. Randomized block designs

5.3.3.2.1.Latin square and related designs

Latin square L atin square designs, and the related Graeco-L atin square and
(and related) Hyper-Graeco-L atin square designs, are a special type of comparative

designsare design.
efficient . _ _ _
designsto Thereisasingle factor of primary interest, typically called the

treatment factor, and several nuisance factors. For Latin square designs

block from 2 : : )

to4nuisance  thereare 2 nuisance factors, for Graeco-Latin square designs there are

factors 3 nuisance factors, and for Hyper-Graeco-L atin square designs there
are 4 nuisance factors.

Nuisance The nuisance factors are used as blocking variables.

factors used 1. For Latin square designs, the 2 nuisance factors are divided into

as blocking atabular grid with the property that each row and each column

variables receive each treatment exactly once.

2. Aswith the Latin square design, a Graeco-L atin square design is
akxk tabular grid in which k is the number of levels of the
treatment factor. However, it uses 3 blocking variables instead
of the 2 used by the standard L atin square design.

3. A Hyper-Graeco-L atin square design is also a kxk tabular grid
with k denoting the number of levels of the treatment factor.
However, it uses 4 blocking variables instead of the 2 used by
the standard Latin square design.
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5.3.3.2.1. Latin square and related designs

Advantages The advantages of Latin square designs are:

and 1. They handle the case when we have several nuisance factors and

disadvantages we either cannot combine them into a single factor or we wish to

of Latin keep them separate.

(quegzrr?s 2. They allow experiments with arelatively small number of runs.
The disadvantages are:

1. The number of levels of each blocking variable must equal the
number of levels of the treatment factor.

2. The Latin square model assumes that there are no interactions
between the blocking variables or between the treatment
variable and the blocking variable.

Note that Latin square designs are equivalent to specific fractional
factorial designs (e.g., the 4x4 Latin square design is equivalent to a
43-fractional factorial design).

Summary of Several useful designs are described in the table below.

designs
g Some Useful L atin Square, Graeco-L atin Square and

Hyper-Graeco-L atin Squar e Designs

Name of Number of Number of
Design Factors Runs
k N
3-by-3 Latin Square 3 9
4-by-4 Latin Square 3 16
5-by-5 Latin Square 3 25
3-by-3 Graeco-L atin Square 4 9
4-by-4 Graeco-L atin Square 4 16
5-by-5 Graeco-L atin Square 4 25
4-by-4 Hyper-Graeco-L atin Square 5 16
5-by-5 Hyper-Graeco-L atin Square 5 25

Model for Latin Square and Related Designs

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3321.htm (2 of 6) [11/14/2003 5:53:04 PM]



5.3.3.2.1. Latin square and related designs

Latin square
design model
and estimates
for effect
levels

Estimates

Randomize as
much as
design allows

The model for aresponse for alatin square design is
Y = p+ Ry + O + Ty + random errar
with
Yijk denoting any observation for which
X1=i,X2=j,X3=k

X1 and X2 are blocking factors
X3 isthe primary factor

¢ denoting the general location parameter
R denoting the effect for block i
C;  denoting the effect for block j
T denoting the effect for treatment k

Models for Graeco-L atin and Hyper-Graeco-L atin squares are the

obvious extensions of the Latin square model, with additional blocking
variables added.

Estimatesfor Latin Square Designs

Estimate for Ji: Y = the average of all the data
Estimate for R;: 17-; ¥

E = average of all Y for which X1 =i
Estimate for Cj:ffj-?

17;:‘ = average of al Y for which X2 = j
Estimate for Ty 171: ¥

17* = average of al Y for which X3 =k

Designsfor Latin squares with 3-, 4-, and 5-level factors are given
next. These designs show what the treatment combinations should be
for each run. When using any of these designs, be sure to randomize
the treatment unitsand trial order, as much asthe design allows.

For example, one recommendation is that a L atin square design be
randomly selected from those available, then randomize the run order.

L atin Square Designsfor 3-, 4-, and 5-L evel Factors
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5.3.3.2.1. Latin square and related designs

Designs for 3-Level Factors

3-level X1 X2 X3
factors (and 2 row column treatment
nuisance or blocking blocking factor

blocking factor factor
factors)

=
=

WWWMNDNDN PP
WNNPFPWNPEFPWN
P WNDNPEFPWWN PR

with
k = 3 factors (2 blocking factors and 1 primary factor)
L, = 3 levelsof factor X1 (block)
L, = 3 levels of factor X2 (block)
L3 = 3 levels of factor X3 (primary)
N=L1*L2=9runs

This can alternatively be represented as

A | B | C
¢ | A | B
| B [ C | A
Designs for 4- evel Factors
4-level X1 X2 X3
factors (and 2 row column treatment
nuisance or blocking blocking factor
blocking factor factor
factors)
1 1 1
1 2 2
1 3 4
1 4 3
2 1 4
2 2 3
2 3 1
2 4 2
3 1 2
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5.3.3.2.1. Latin square and related designs

A A DDWWW
A OWONEPPWODN
ANPFPWOPFP WM

with
k = 3 factors (2 blocking factors and 1 primary factor)
L, =4 levels of factor X1 (block)

L, = 4 levels of factor X2 (block)
L3 =4 levels of factor X3 (primary)
N=L1*L2=16runs

This can alternatively be represented as

A b | €

O|m O
>0 0w

A [ B
c [ A
B | D

Designs for 5-L evel Factors

5-level X1 X2 X3
factors (and 2 row column treatment
nuisance or blocking blocking factor

blocking factor factor
factors)

=

P WWWWWNNNNMNNREPRPREPPRE
P OO R_rWONRFRPORRWNPEPORAWDNLERE
NPDAWODNPUONRPFPORRWOORAWDNE
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5.3.3.2.1. Latin square and related designs

(SN TS, IS TS, I NG N NG N
ORAWNROMWN
WNRODMRPL O~

with
k = 3 factors (2 blocking factors and 1 primary factor)
L, =5 levelsof factor X1 (block)
L, =5 levels of factor X2 (block)
L3 =5 levels of factor X3 (primary)
N=L1*L2=25runs

This can alternatively be represented as

A | BJC|DJE
| C|IDJEJA|B
| E|A[BJC]|D
| B|C|DJEJA
| DJEJA]B]C
Further More details on Latin square designs can be found in Box, Hunter, and
information Hunter (1978).
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5.3.3.2.2. Graeco-Latin square designs
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5. Process Improvement

5.3. Choosing an experimental design

5.3.3. How do you select an experimental design?
5.3.3.2. Randomized block designs

5.3.3.2.2.Graeco-Latin square designs

These Graeco-L atin squares, as described on the previous page, are efficient
designs designs to study the effect of one treatment factor in the presence of 3
handle 3 nuisance factors. They are restricted, however, to the case in which all
nuisance the factors have the same number of levels.
factors
Randomize Designsfor 3-, 4-, and 5-level factors are given on this page. These
as much as designs show what the treatment combinations would be for each run.
design When using any of these designs, be sure to randomize the treatment
allows unitsand trial order, as much asthe design allows.
For example, one recommendation is that a Graeco-L atin square design
be randomly selected from those available, then randomize the run
order.
Graeco-Latin Square Designsfor 3-, 4-, and 5-L evel Factors
Designs for 3-Level Factors
3-level X1 X2 X3 X4
factors row  column blocking treatment
blocking blocking factor factor
factor factor
1 1 1 1
1 2 2 2
1 3 3 3
2 1 2 3
2 2 3 1
2 3 1 2
3 1 3 2
3 2 1 3
3 3 2 1
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5.3.3.2.2. Graeco-Latin square designs
with
k = 4 factors (3 blocking factors and 1 primary factor)
L, = 3 levels of factor X1 (block)
L, = 3 levels of factor X2 (block)
L3 = 3 levels of factor X3 (primary)
L, = 3 levels of factor X4 (primary)
N=L1*L2=9runs
This can alternatively be represented as (A, B, and C represent the
treatment factor and 1, 2, and 3 represent the blocking factor):

AT [ B2 [ C3
[ C2 [ A3 | BI
B3 [ C1 [ A2

Designs for 4-Level Factors
4-level X1 X2 X3 X4
factors row  column blocking treatment

blocking blocking factor factor
factor factor

1 1 1 1
1 2 2 2
1 3 3 3
1 4 4 4
2 1 2 4
2 2 1 3
2 3 4 2
2 4 3 1
3 1 3 2
3 2 4 1
3 3 1 4
3 4 2 3
4 1 4 3
4 2 3 4
4 3 2 1
4 4 1 2

with
k = 4 factors (3 blocking factors and 1 primary factor)
L, = 3 levels of factor X1 (block)
L, = 3 levels of factor X2 (block)
L3 = 3 levels of factor X3 (primary)
L, = 3 levels of factor X4 (primary)

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3322.htm (2 of 4) [11/14/2003 5:53:05 PM]



5.3.3.2.2. Graeco-Latin square designs
N=L1*L2=16runs

This can aternatively be represented as (A, B, C, and D represent the
treatment factor and 1, 2, 3, and 4 represent the blocking factor):

[ A1 [ B2 [ C3 [ D4
[ D2 [ C1 | B4 [ A3
[ B3 [ A4 [ D1 [ C2
[ C4 [ D3 | A2 | BL
Designs for 5-Level Factors
5-level X1 X2 X3 X4
factors row column blocking treatment
blocking blocking factor factor
factor factor
1 1 1 1
1 2 2 2
1 3 3 3
1 4 4 4
1 5 5 5
2 1 2 3
2 2 3 4
2 3 4 5
2 4 5 1
2 5 1 2
3 1 3 5
3 2 4 1
3 3 5 2
3 4 1 3
3 5 2 4
4 1 4 2
4 2 5 3
4 3 1 4
4 4 2 )
4 5 3 1
5 1 5 4
5 2 1 5
5 3 2 1
5 4 3 2
5 ) 4 3

with
k = 4 factors (3 blocking factors and 1 primary factor)
L, = 3 levels of factor X1 (block)
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5.3.3.2.2. Graeco-Latin square designs

L, = 3 levels of factor X2 (block)

L3 = 3 levels of factor X3 (primary)

L, = 3 levels of factor X4 (primary)

N=L1*L2=25runs
This can aternatively be represented as (A, B, C, D, and E represent the
treatment factor and 1, 2, 3, 4, and 5 represent the blocking factor):

| A1 | B2 | C3 | D4 | E5
[ C2 [ D3 [ E4 [ A5 [ BL
| E3 | A4 | B5 | C1 | D2
| B4 | C5 | D1 | E2 | A3
|D5|E1|A2|B3]C4

Further More designs are given in Box, Hunter, and Hunter (1978).

information —
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5.3.3.2.3. Hyper-Graeco-Latin square designs
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5. Process |mprovement

5.3. Choosing an experimental design

5.3.3. How do you select an experimental design?

5.3.3.2. Randomized block designs

5.3.3.2.3.Hyper-Graeco-Latin square

These designs
handle 4
nuisance
factors

Randomize as
much as
design allows

Designs for
4-level factors
(there are no
3-level factor
Hyper-Graeco
Latin square
designs)

designs

Hyper-Graeco-L atin squares, as described earlier, are efficient designs
to study the effect of one treatment factor in the presence of 4 nuisance
factors. They arerestricted, however, to the case in which al the
factors have the same number of levels.

Designsfor 4- and 5-level factors are given on this page. These
designs show what the treatment combinations should be for each run.
When using any of these designs, be sure to randomize the treatment
units and trial order, as much asthe design allows.

For example, one recommendation is that a hyper-Graeco-L atin square
design be randomly selected from those available, then randomize the
run order.

Hyper-Graeco-L atin Square Designsfor 4- and 5-L evel Factors

4-L evel Factors
X1 X2 X3 X4 X5

row column blocking blocking treatment
blocking blocking factor factor factor
factor factor
1 1 1 1 1
1 2 2 2 2
1 3 3 3 3
1 4 4 4 4
2 1 4 2 3
2 2 3 1 4
2 3 2 4 1
2 4 1 3 2
3 1 2 3 4

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3323.htm (1 of 3) [11/14/2003 5:53:05 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm

5.3.3.2.3. Hyper-Graeco-Latin square designs

APADMDdOWOWWW
A WOMNEPPR~AWDN
NEFEMAWWNPR
P NWANE DN
WHARNRFEPNDW®W

with

k = 5 factors (4 blocking factors and 1 primary factor)

L, =4 levels of factor X1 (block)

L, = 4 levels of factor X2 (block)

L3 =4 levels of factor X3 (primary)

L, = 4 levels of factor X4 (primary)

Ls = 4 levels of factor X5 (primary)

N=L1*L2=16runs
This can alternatively be represented as (A, B, C, and D represent the
treatment factor and 1, 2, 3, and 4 represent the blocking factors):

A1l [ B22 [ C33 [ D44
[C42 [ D31 [ A24 | B13
[D23 [ C14 [ B4l [ A32
B34 [A43 [ D12 [ C21

Designs for 5-L evel Factors
5-level factors X1 X2 X3 X4 X5
row column blocking blocking treatment
blocking blocking factor factor factor
factor factor

=

WWWNNNNNERE PR R
WNRPORMRWNRORMN®WNR
ORAWFRODMNWONUODMWN R
NRUONRFRPOOMNWOODNWN R
RWOWNWNROONMNODNWNR
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5.3.3.2.3. Hyper-Graeco-Latin square designs

OO OaOMDMRMADNOO®
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with
k = 5 factors (4 blocking factors and 1 primary factor)
L, =5 levels of factor X1 (block)
L, =5 levels of factor X2 (block)
L3 =5 levels of factor X3 (primary)
L, =5 levels of factor X4 (primary)
Ls = 5 levels of factor X5 (primary)
N=L1*L2=25runs
This can alternatively be represented as (A, B, C, D, and E represent

the treatment factor and 1, 2, 3, 4, and 5 represent the blocking
factors):

A1l [B22 [ C33 [ D44 | ES5
D23 [E34 [A45 [B51 [ Cl12
B35 [C41 [ D52 | E3L [ A24
[E42 [A53 [ B14 [ C25 [ D31
[C54 [D15 [ E21 [ A32 [ B43

Further More designs are given in Box, Hunter, and Hunter (1978).
information
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5.3.3.3. Full factorial designs
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5. Process |mprovement

5.3. Choosing an experimental design

5.3.3. How do you select an experimental design?

5.3.3.3. Full factorial designs

Adesignin
which every
setting of
every factor
appearswith
every setting
of every other
factor isa
full factorial
design

Full factorial
designs not
recommended
for 5 or more
factors

NIST

SEMATECH

Full factorial designsin two levels

A common experimental design is one with all input factors set at two
levels each. These levels are called "high' and “low' or "+1' and "-1',
respectively. A design with all possible high/low combinations of all
theinput factorsis called afull factorial design in two levels.

If there are k factors, each at 2 levels, a full factorial design has 2k
runs.

TABLE 3.2 Number of Runsfor a 2k Full Factorial

Number of Factors Number of Runs
2 4
8
16
32
64
128

N O O AW

As shown by the above table, when the number of factorsis5 or
greater, afull factorial design requires alarge number of runsand is
not very efficient. As recommended in the Design Guideline Table, a
fractional factorial design or a Plackett-Burman design is a better
choice for 5 or more factors.
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5.3.3.3.1. Two-level full factorial designs
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5. Process Improvement

5.3. Choosing an experimental design

5.3.3. How do you select an experimental design?
5.3.3.3. Full factorial designs

5.3.3.3.1. Two-level full factorial designs

Description

Graphical Consider the two-level, full factorial design for three factors, namely

representation  the 23 design. Thisimplies eight runs (not counting replications or

of atwo-level  center point runs). Graphically, we can represent the 23 design by the

designwith3  cube shown in Figure 3.1. The arrows show the direction of increase of

factors the factors. The numbers "1' through "8’ at the corners of the design
box reference the “Standard Order' of runs (see Figure 3.1).

FIGURE 3.1 A 23two-level, full factorial design; factors X1, X2,
X3

4
k.
__________________ O
7
~
3
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5.3.3.3.1. Two-level full factorial designs

The design
matrix

Rule for
writing a 2k
full factorial
in "standard
order"

In tabular form, thisdesign is given by:

TABLE 3.3 A 23two-levd, full factorial design
table showing runsin "Standard Order’

run X1 X2 X3
1 -1 -1 -1
2 1 -1 -1
3 -1 1 -1
4 1 1 -1
5 -1 -1 1
6 1 -1 1
7 -1 1 1
8 1 1 1

The left-most column of Table 3.3, numbers 1 through 8, specifiesa
(non-randomized) run order called the "Standard Order.' These
numbers are also shown in Figure 3.1. For example, run 1 is made at
the “low' setting of all three factors.

Standard Order for a 2k Level Factorial Design

We can readily generalize the 23 standard order matrix to a 2-level full
factorial with k factors. The first (X1) column starts with -1 and
alternatesin sign for all 2K runs. The second (X2) column starts with -1
repeated twice, then aternates with 2 in arow of the opposite sign
until all 2k places are filled. The third (X3) column starts with -1
repeated 4 times, then 4 repeats of +1's and so on. In genera, thei-th
column (X;) starts with 2i-1 repeats of -1 folowed by 2i-1 repeats of +1.

Example of a 23 Experiment
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5.3.3.3.1. Two-level full factorial designs

Analysis
matrix for the
3-factor
complete
factorial

Eliminate
correlation
between
estimates of
main effects
and
Interactions

NIST
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An engineering experiment called for running three factors; namely,
Pressure (factor X1), Table speed (factor X2) and Down force (factor
X3), each at a "high' and "low" setting, on a production tool to
determine which had the greatest effect on product uniformity. Two
replications were run at each setting. A (full factorial) 23 design with 2
replications calls for 8*2=16 runs.

TABLE 3.4 Modd or AnalysisMatrix for a 23 Experiment

Model Matrix Response

Variables

Rep Rep

| X1 X2 X1*X2 X3 X1*X3X2*X3X1*X2*X3 1 2
+1 -1 -1 +1 -1 +1 +1 -1 -3 -1
+1 +1 -1 -1 -1 -1 +1 +1 0 -1
+1 -1 +1 -1 -1 +1 -1 +1 -1 0
+1 +1 +1 +1 -1 -1 -1 -1 +2 +3
+1 -1 -1 +1 +1 -1 -1 +1 -1 0
+1 +1 -1 -1 +1 +1 -1 -1 +2 +1
+1 -1 +1 -1 +1 -1 +1 -1 +1 +1
+1 +1 +1 +1 +1 +1 +1 +1 +6 +5

The block with the 1'sand -1'sis called the Model Matrix or the
Analysis Matrix. The table formed by the columns X1, X2 and X3 is
called the Design Table or Design Matrix.

Orthogonality Propertiesof AnalysisMatricesfor 2-Factor
Experiments

When al factors have been coded so that the high valueis"1" and the
low valueis"-1", the design matrix for any full (or suitably chosen
fractional) factorial experiment has columnsthat are al pairwise
orthogonal and all the columns (except the 1" column) sum to O.

The orthogonality property isimportant because it eliminates
correlation between the estimates of the main effects and interactions.
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5.3.3.3.2. Full factorial example
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5. Process Improvement
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A Full Factorial Design Example

Anexampleof  Thefollowing isan example of afull factorial design with 3 factors that
afull factorial  asoillustrates replication, randomization, and added center points.

design with 3 _ _ _ o _
factors Suppose that we wish to improve the yield of a polishing operation. The

three inputs (factors) that are considered important to the operation are
Speed (X1), Feed (X2), and Depth (X3). We want to ascertain the relative
importance of each of these factorson Yield (Y).

Speed, Feed and Depth can all be varied continuously along their
respective scales, from alow to a high setting. Yield is observed to vary
smoothly when progressive changes are made to the inputs. This leads us
to believe that the ultimate response surface for Y will be smooth.

Table of factor TABLE 3.5 High (+1), Low (-1), and Standard (0)
level settings Settingsfor a Polishing Operation
| | Low (-1) | Standard (0) | High (+1) | Units
| Speed | 16| 20| 24| rpm
| Feed | 0.001 | 0.003| 0.005| cm/sec
| Depth | 0.01| 0.015| 0.02| cm/sec

Factor Combinations
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5.3.3.3.2. Full factorial example

Graphical
representation
of the factor
level settings

23 implies 8
runs

Full Model

We want to try various combinations of these settings so as to establish
the best way to run the polisher. There are eight different ways of
combining high and low settings of Speed, Feed, and Depth. These eight
are shown at the corners of the following diagram.

FIGURE 3.2 A 23 Two-level, Full Factorial Design; Factors X1, X2,
X3. (The arrows show the direction of increase of the factors.)

8

)

Note that if we have k factors, each run at two levels, there will be 2k
different combinations of the levels. In the present case, k= 3 and 23 = 8.

Running the full complement of all possible factor combinations means
that we can estimate all the main and interaction effects. There are three
main effects, three two-factor interactions, and a three-factor interaction,
al of which appear in the full model asfollows:

Y = H+4X+ Xe +3X+
PraX) * Xo + flog * Xo # X3 + 13X, * X3+
Praa Xy * Xg * X
A full factorial design allows usto estimate all eight "beta coefficients

{Bo, s Bras}

Standard order
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5.3.3.3.2. Full factorial example

The numbering of the corners of the box in the last figure refersto a
standard way of writing down the settings of an experiment called
“standard order'. We see standard order displayed in the following tabular
representation of the eight-cornered box. Note that the factor settings have
been coded, replacing the low setting by -1 and the high setting by 1.

TABLE 3.6 A 23 Two-level, Full Factorial Design
Table Showing Runsin "Standard Order'

| | X1 ] X2 | X3
0 1 |7 1 7 1
|2 | +1 | -1 | -1
N -1 | +1 | -1
| 4 | +1 | +1 | -1
| 5 | -1 ] -1 | +1
| 6 | +1 ] -1 | +1
|7 -1 | +1 | +1
| 8] +#1 ] +# ] +#
Replication

Running the entire design more than once makes for easier data analysis
because, for each run (i.e., “corner of the design box’) we obtain an
average value of the response as well as some idea about the dispersion
(variability, consistency) of the response at that setting.

One of the usual analysis assumptionsis that the response dispersion is
uniform across the experimental space. The technical termis
"homogeneity of variance'. Replication allows usto check this assumption
and possibly find the setting combinations that give inconsistent yields,
allowing us to avoid that area of the factor space.
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5.3.3.3.2. Full factorial example

Factor settings  We now have constructed a design table for atwo-level full factorial in

in standard three factors, replicated twice.

order with _ _

replication TABLE 3.7 The 23 Full Factorial Replicated

Twice and Presented in Standard Order
| | Speed, X1 | Feed,X2 | Depth, X3
EN 16, -1 | .001,-1 | 01, -1
| 2 | 24, +1 | .001,-1 | .01, -1
| 3 | 16, -1 | .005,+1 | 01, -1
|4 | 24+1 | .005+1 | .01,-1
| 5 | 16, -1 | .001,-1 | 02, +1
|6 | 24+1 | .00L,-1 | .02,+1
|7 | 16, -1 | .005,+1 | 02, +1
18 | 24,+1 | .005,+1 | .02,+1
IEN 16, -1 | .001,-1 | 01, -1
/10| 24,+1 | .00L,-1 | .01,-1
|11 | 16, -1 | .005, +1 | 01, -1
112 | 24, +1 | .005,+1 | 01, -1
113 | 16, -1 | .001,-1 | 02, +1
|14 | 24, +1 | .001,-1 | 02, +1
115 | 16, -1 | .005,+1 | 02, +1
116 | 24,+1 | .005+1 | .02,+1
Randomization

No If we now ran the design as is, in the order shown, we would have two

randomization  deficiencies, namely:

and no center 1. no randomization, and

points

2. Nno center points.
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5.3.3.3.2. Full factorial example

Randomi zation
provides
protection
against
extraneous
factors
affecting the
results

Table of factor
settingsin
randomized
order

The more freely one can randomize experimental runs, the more insurance
one has against extraneous factors possibly affecting the results, and
hence perhaps wasting our experimental time and effort. For example,
consider the "Depth’ column: the settings of Depth, in standard order,
follow a “four low, four high, four low, four high' pattern.

Suppose now that four settings are run in the day and four at night, and
that (unknown to the experimenter) ambient temperature in the polishing
shop affects Yield. We would run the experiment over two days and two
nights and conclude that Depth influenced Yield, when in fact ambient
temperature was the significant influence. So the moral is. Randomize
experimental runs as much as possible.

Here's the design matrix again with the rows randomized (using the
RAND function of EXCEL). The old standard order column is a'so shown
for comparison and for re-sorting, if desired, after therunsarein.

TABLE 3.8 The 23 Full Factorial Replicated
Twicewith Random Run Order I ndicated

| Random | Standard | | |
Order Order X1 | X2 | X3
| 1| 5| —1| -1| +1
| 2| 15| -1f +1| +1
| 3| 9| -1| -1| -1
| 4 7| -1 +1] #1
| 5| 3 -1 +1f -1
| 6| 12 +1] +1 -1
| 7| 6] +1| -1] +1
| 8| 4| +1| +1| -1
| 9| 2| +1| -1 -1
| 10| 13| -1| -1| +1
| 11 8| +1| +1| +1
| 12| 16) +1| +1| +1
| 13| 1| —1| —1| -1
| 14 14| +1| -1 +1
| 15| 11 1] +1[ -1
| 16| 10/ +1f -1| -1
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5.3.3.3.2. Full factorial example

Tableshowing  Thisdesign would be improved by adding at least 3 centerpoint runs
design matrix placed at the beginning, middle and end of the experiment. The final

with design matrix is shown below:

randomization _ _

and center TABLE 3.9 The 23 Full Factorial Replicated

points Twice with Random_Run Order Indicated and

Center Point Runs Added
| Random | Standard | | |
Order Order X1 | X2 | X3

| 1] | O o ©
| 2| 5/ 1] -1f +1
| 3] 15 -1 +1] +1
| 4| of -1[ -1f 1
| 5| 7[ 1 +1[ 41
| 6| 3[ -1 +1 -1
| 7| 12 +1] +1] -1
| 8| 6 +1[ -1f +1
| 9| o[ o] O
| 10 4 +1 +1] 1
| 11] 2| +1[ 1] 1
| 12| B3 -1 -1 #1
| 13| 8] +1] +1| +1
| 14| 16] +1] +1[ +1
| 15| 1 1] 1 1
| 16| 4] +1] -1] #1
| 17| 11 -1 +1[ -1
| 18] 10 +1] -1 -1
| 19] o] o o
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5.3.3.3.3.Blocking of full factorial designs

Eliminate the
influence of
extraneous
factors by
"blocking"

Blockingin a
23 factorial
design

Example

We often need to eliminate the influence of extraneous factors when
running an experiment. We do this by "blocking".

Previously, blocking was introduced when randomized block designs
were discussed. There we were concerned with one factor in the
presence of one of more nuisance factors. In this section we look at a
general approach that enables us to divide 2-level factorial
experiments into blocks.

For example, assume we anticipate predictable shifts will occur while
an experiment is being run. This might happen when one has to
change to a new batch of raw materials halfway through the
experiment. The effect of the change in raw materialsiswell known,
and we want to eliminate its influence on the subsequent data analysis.

In this case, we need to divide our experiment into two halves (2
blocks), one with the first raw material batch and the other with the
new batch. The division hasto balance out the effect of the materials
change in such away asto eliminate itsinfluence on the analysis, and
we do this by blocking.

Example: An eight-run 23 full factorial has to be blocked into two
groups of four runs each. Consider the design “box' for the 23 full
factorial. Blocking can be achieved by assigning the first block to the
dark-shaded corners and the second block to the open circle corners.
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5.3.3.3.3. Blocking of full factorial desighs

Graphical FIGURE 3.3 Blocking Scheme for a 23 Using Alternate Corners
representation

of blocking

scheme 6

b
% | %, (

O ?

+

.. ¢ 3

Three-factor This works because we are in fact assigning the “estimation’ of the
interaction (unwanted) blocking effect to the three-factor interaction, and because

confounded of the special property of two-level designs called orthogonality. That

withtheblock s, the three-factor interaction is "confounded" with the block effect as
effect will be seen shortly.

Orthogonality  Orthogonality guarantees that we can always estimate the effect of one
factor or interaction clear of any influence due to any other factor or
interaction. Orthogonality is avery desirable property in DOE and this
isamajor reason why two-level factorials are so popular and
successful.
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5.3.3.3.3. Blocking of full factorial desighs

Formally, consider the 23 design table with the three-factor interaction
column added.

TABLE 3.10 Two Blocks for a 23 Design

| SPEED | FEED | DEPTH | BLOCK
X1 X2 X3 X1* X2* X3
| 1 | 1 | 1 | -1 | [
T [ 1 [ 1 [+ [
-1 | 41 -1 | +1 | |
|+l | +1 | -1 | -1 | I
-1 | -1 | 41 +1 | I
o+ | -1 | 41 -1 o
1 | o+ | o+l | -1 | I
|+l | +1 | 41 +1 | I

Rows that have a *-1' in the three-factor interaction column are
assigned to ‘Block I' (rows 1, 4, 6, 7), while the other rows are
assigned to "Block 11" (rows 2, 3, 5, 8). Note that the Block | rows are
the open circle corners of the design "box' above; Block |1 are
dark-shaded corners.

The general rule for blocking is: use one or a combination of
high-order interaction columnsto construct blocks. Thisgivesusa
formal way of blocking complex designs. Apart from simple casesin
which you can design your own blocks, your statistical/DOE software
will do the blocking if asked, but you do need to understand the
principle behind it.

The price you pay for blocking by using high-order interaction
columns isthat you can no longer distinguish the high-order
interaction(s) from the blocking effect - they have been "confounded,’
or "aliased.' In fact, the blocking effect is now the sum of the blocking
effect and the high-order interaction effect. Thisisfine aslong as our
assumption about negligible high-order interactions holds true, which
it usually does.

Within a block, center point runs are assigned as if the block were a
separate experiment - which in asense it is. Randomization takes place

within ablock asit would for any non-blocked DOE.
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Later
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designs -
these are
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2-Level
fractional
factorial
designs
emphasi zed

The ASQC (1983) Glossary & Tablesfor Statistical Quality Control
defines fractional factorial design in the following way: "A factorial
experiment in which only an adequately chosen fraction of the
treatment combinations required for the complete factorial experiment
Is selected to be run.”

Even if the number of factors, k, in adesign is small, the 2K runs
specified for afull factorial can quickly become very large. For
example, 26 = 64 runsisfor atwo-level, full factorial design with six
factors. To this design we need to add a good number of centerpoint
runs and we can thus quickly run up avery large resource requirement
for runs with only a modest number of factors.

The solution to this problem isto use only afraction of the runs
specified by the full factorial design. Which runs to make and which to
leave out is the subject of interest here. In general, we pick afraction
such as Y%, ¥4, etc. of the runs called for by the full factorial. We use
various strategies that ensure an appropriate choice of runs. The
following sections will show you how to choose an appropriate fraction
of afull factorial design to suit your purpose at hand. Properly chosen
fractional factorial designs for 2-level experiments have the desirable
properties of being both balanced and orthogonal.

Note: We will be emphasizing fractions of two-level designsonly. This
Is because two-level fractional designs are, in engineering at least, by
far the most popular fractional designs. Fractional factorials where
some factors have three levels will be covered briefly in Section

5.3.3.10.
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5.3.3.4.1. A 23-1 design (half of a 23)

We canrun a Consider the two-level, full factorial design for three factors, namely
fraction of a the 23 design. Thisimplies eight runs (not counting replications or

full factorial center points). Graphically, as shown earlier, we can represent the 23

experiment design by the following cube:

and still be

ableto FIGURE 3.4 A 23 Full Factorial Design;

estimate main Factors X4, X,, X3. (Thearrows show thedirection of increase of
effects the factors. Numbers "1' through "8' at the cornersof the design

cubereferencethe "Standard Order' of runs)
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5.3.3.4.1. A 23-1 design (half of a 23)

In tabular form, this design (also showing eight observations y;'
(=1..,.8) isgiven by

TABLE 3.11 A 23Two-level, Full Factorial Design Table Showing
Runsin "Standard Order," Plus Observations (y;)

[ Xt [ x2 [ X3 | Y
1 -1 -1 -1 y1 =33
2 +1 -1 -1 Y, =63
3 -1 +1 -1 y3=41
4 +1 +1 -1 Y, =57
5 -1 -1 +1 ys5 =57
6 +1 -1 +1 Y = 51
7 -1 +1 +1 y7 =59
8 +1 +1 +1 yg =53

The right-most column of the table lists "y,' through "yg' to indicate the

responses measured for the experimental runs when listed in standard
order. For example, "y;' isthe response (i.e., output) observed when

the three factors were all run at their “low' setting. The numbers
entered in the"y" column will be used to illustrate cal culations of
effects.

From the entries in the table we are able to compute all “effects such
as main effects, first-order “interaction’ effects, etc. For example, to
compute the main effect estimate "c,' of factor X;, we compute the

average response at all runswith X, at the “high' setting, namely
(1/4)(y, + y4 + Yg + Yg), minus the average response of all runs with X;
Set at “low," namely (1/4)(y, + y3 + Y5 +y7). That is,

Cr=(14) (Yo +Ys+Ye+VYg) - (VA)(y1 +Yy3+Ys+yy)or
¢, = (U/4)(63+57+51+53 ) - (L/4)(33+41+57+59) = 8.5

Suppose, however, that we only have enough resources to do four
runs. Isit still possible to estimate the main effect for X;? Or any other

main effect? The answer is yes, and there are even different choices of
the four runsthat will accomplish this.
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5.3.3.4.1. A 23-1 design (half of a 23)

For example, suppose we select only the four light (unshaded) corners
of the design cube. Using these four runs (1, 4, 6 and 7), we can still
compute ¢, as follows:

C1=(V2) (Ya+VYe) - (V2) (yr +Yyy) OF
¢y = (1/2) (57+51) - (1/2) (33+59) = 8.

Simarly, we would compute c,, the effect dueto X5, as

Co = (V2) (y4+y7) - (12) (y1 + Ye) OF
¢, = (1/2) (57+59) - (1/2) (33+51) = 16.

Finally, the computation of c3 for the effect due to Xz would be

C3=(V2) (Yo + y7) - (1/2) (y1 +Yg) OF
Cs = (1/2) (51+59) - (1/2) (33+57) = 10.

We could also have used the four dark (shaded) corners of the design
cube for our runs and obtained similiar, but dlightly different,
estimates for the main effects. In either case, we would have used half
the number of runsthat the full factorial requires. The half fraction we
used is a new design written as 23-1. Note that 23-1 = 23/2 =22 =4,
which is the number of runsin this half-fraction design. In the next
section, a general method for choosing fractions that “work" will be

discussed.

Example: An engineering experiment calls for running three factors,
namely Pressure, Table speed, and Down force, each at a "high' and a
“low" setting, on a production tool to determine which has the greatest
effect on product uniformity. Interaction effects are considered
negligible, but uniformity measurement error requires that at least two
separate runs (replications) be made at each process setting. In
addition, several “standard setting' runs (centerpoint runs) need to be
made at regular intervals during the experiment to monitor for process
drift. As experimental time and material are limited, no more than 15
runs can be planned.

A full factorial 23 design, replicated twice, calls for 8x2 = 16 runs,
even without centerpoint runs, so thisis not an option. However a 23-1
design replicated twice requires only 4x2 = 8 runs, and then we would
have 15-8 = 7 spare runs: 3 to 5 of these spare runs can be used for
centerpoint runs and the rest saved for backup in case something goes
wrong with any run. Aslong as we are confident that the interactions
are negligbly small (compared to the main effects), and aslong as
complete replication is required, then the above replicated 23-1
fractional factorial design (with center points) isavery reasonable
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5.3.3.4.1. A 23-1 design (half of a 23)
choice.

On the other hand, if interactions are potentially large (and if the

replication required could be set aside), then the usual 23 full factorial
design (with center points) would serve as a good design.
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5.3.3.4.2.Constructing the 23-1 half-fraction
design

Construction  First note that, mathematically, 23-1 = 22, This gives us the first step,
ofa23lhalf  whichisto start with aregular 22 full factorial design. That is, we start

fraction with the following design table.
design by
staring with TABLE 3.12 A Standard Order
a 22 full 22 Full Factorial Design Table
factorial | | X1 | X2
design 1 -1 | -1

2 | +1 | -1

3 | -1 | +1

EX T
Assign the This design has four runs, the right number for a half-fraction of a 23,
third factor but thereis no column for factor X3. We need to add athird column to
to the _ take care of this, and we do it by adding the X1* X2 interaction column.
Interaction Thiscolumniis, as you will recall from full factorial designs,
columnofa  constructed by multiplying the row entry for X1 with that of X2 to
22 design obtain the row entry for X1* X2.

TABLE 3.13 A 22 Design Table

Augmented with the X1* X2
Interaction Column “X1*X2'

] | X1 | X2 | X1*X2

] 1 | -1 | -1 | +1

2] +1 | -1 | -1

13| -1 | +1 | -1

4]+ [ +1 ] #
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5.3.3.4.2. Constructing the 23-1 half-fraction design

Design table

with X3 set
to X1* X2

Design table

with X3 set
to -X1* X2

Main effect
estimates
from
fractional
factorial not
asgood as
full factorial

Example

We may now substitute "X3' in place of "X1*X2' in this table.

TABLE 3.15 A 231 Design Table
with Column X3 set to X1* X2

| X1 | X2 | X3
1) -1 | -1 | +1
2| +1 | -1 | -1
(3] -1 [ +1 [ -1
4] +#1 | +#1 ] +1

Note that the rows of Table 3.14 give the dark-shaded corners of the
designin Figure 3.4. If we had set X3 = -X1*X2 astherulefor

generating the third column of our 23-1 design, we would have obtained:

TABLE 3.15 A 231 Design Table
with Column X3 set to - X1*X2

| X1 | X2 | X3
1| -1 | -1 | -1
2| +1 | -1 | +1
3] -1 | +#1 [ +1
4 +1 | +1 [ -1

This design gives the light-shaded corners of the box of Figure 3.4. Both
23-1 designs that we have generated are equally good, and both save half
the number of runs over the original 23 full factorial design. If ¢, C,
and c3 are our estimates of the main effects for the factors X1, X2, X3

(i.e., the difference in the response due to going from "low" to "high"
for an effect), then the precision of the estimates c,, c,, and c3 are not
quite as good as for the full 8-run factorial because we only have four
observations to construct the averages instead of eight; thisis one price
we haveto pay for using fewer runs.

Example: For the "Pressure (P), Table speed (T), and Down force (D)’
design situation of the previous example, here's areplicated 23-1in
randomized run order, with five centerpoint runs ('000") interspersed

among the runs. This design table was constructed using the technique
discussed above, with D = P*T.
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5.3.3.4.2. Constructing the 23-1 half-fraction design

Design table TABLE 3.16 A 23-1 Design Replicated Twice,
for the with Five Centerpoint Runs Added
example Center
| Pattern | P | T | D | Point
1 | 000 | 0] 0] O 1
| 2 | +-- | 1] -1 -1 0
| 3 | —+- | -1 +1 -1 0
| 4 | 000 | 0| 0] O 1
[ 5] 4+ |+l +1] +1 0
| 6 | -+ | -1 1] +1 0
7 o0 | of o o 1
| 8 | +-- | +1 -1 -1 0
|9 | -+ | -1 -1 +1 0
| 10 | 000 | 0| 0] O 1
[11 | 4+ |+l +1] +1 0
| 12 | -+ -1 o+ -1 0
| 13 | 000 | 0] 0] O 1
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5.3.3.4.3. Confounding (also called aliasing)
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5.3.3. How do you select an experimental design?

5.3.3.4. Fractional factorial designs

5.3.3.4.3.Confounding (also called aliasing)

Confounding
means we
have lost the
ability to
estimate
some effects
and/or
interactions

Sparsity of
effects
assumption

A short way
of writing
factor column
multiplication

One price we pay for using the design table column X1* X2 to obtain
column X3 in Table 3.14 is, clearly, our inability to obtain an estimate of

the interaction effect for X1* X2 (i.e., ¢;,) that is separate from an estimate
of the main effect for X3. In other words, we have confounded the main
effect estimate for factor X3 (i.e., c3) with the estimate of the interaction
effect for X1 and X2 (i.e., with c;5). The whole issue of confounding is

fundamental to the construction of fractional factorial designs, and we will
spend time discussing it below.

In using the 23-1 design, we also assume that ¢4, is small compared to c;
thisis called a "sparsity of effects assumption. Our computation of czisin
fact acomputation of c3 + ¢q. If the desired effects are only confounded
with non-significant interactions, then we are OK.

A Notation and M ethod for Generating Confounding or Aliasing

A short way of writing "X3 = X1*X2' (understanding that we are talking
about multiplying columns of the design table together) is. 3= 12"
(smilarly 3 =-12 refersto X3 = -X1* X2). Note that 12’ refersto column
multiplication of the kind we are using to construct the fractional design
and any column multiplied by itself gives the identity column of al 1's.

Next we multiply both sides of 3=12 by 3 and obtain 33=123, or 1=123
since 33=I (or acolumn of all 1's). Playing around with this "algebra’, we
see that 21=2123, or 2=2123, or 2=1223, or 2=13 (since 21=2, 22=1, and
113=13). Similarly, 1=23.
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factorial
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5.3.3.4.3. Confounding (also called aliasing)

=123 is called adesign generator or agenerating relation for this
23-1design (the dark-shaded corners of Figure 3.4). Since thereis only one
design generator for thisdesign, it is aso the defining relation for the
design. Equally, I1=-123 is the design generator (and defining relation) for
the light-shaded corners of Figure 3.4. We call 1=123 the defining relation
for the 23-1 design because with it we can generate (by "multiplication") the
complete confounding pattern for the design. That is, given 1=123, we can
generate the set of {1=23, 2=13, 3=12, 1=123}, which is the complete set of
aliases, asthey are called, for this 23-1 fractional factorial design. With

=123, we can easily generate al the columns of the half-fraction design
231,

Note: We can replace any design generator by its negative counterpart and
have an equivalent, but different fractional design. The fraction generated
by positive design generators is sometimes called the principal fraction.

The confounding pattern described by 1=23, 2=13, and 3=12 tells us that

all the main effects of the 23-1 design are confounded with two-factor
interactions. That is the price we pay for using this fractional design. Other
fractional designs have different confounding patterns; for example, in the
typical quarter-fraction of a 26 design, i.e., in a 26-2 design, main effects are
confounded with three-factor interactions (e.g., 5=123) and so on. In the
case of 5=123, we can also readily see that 15=23 (etc.), which alerts usto
the fact that certain two-factor interactions of a 26-2 are confounded with
other two-factor interactions.

Summary: A convenient summary diagram of the discussion so far about
the 23-1 design is as follows:

FIGURE 3.5 Essential Elements of a 231 Design
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The next section will add one more item to the above box, and then we will
be able to select the right two-level fractional factorial design for awide
range of experimental tasks.
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5.3.3. How do you select an experimental design?
5.3.3.4. Fractional factoria designs

5.3.3.4.4.Fractional factorial design
specifications and design

resolution
Generating We considered the 23-1 design in the previous section and saw that its
relationand  generator writtenin "l = ..." formis{l = +123}. Next welook a a
diagramfor e gighth fraction of a 28 design, namely the 28-3 fractional factorial
the 2_8'3 design. Using adiagram similar to Figure 3.5, we have the following:
fractional
factorial FIGURE 3.6 Specificationsfor a 28-3 Design
design

8

T 6=345
T 7=1245
+ 8=1235

28-3 design Figure 3.6 tells us that a 28-3 design has 32 runs, not including

has 32 runs centerpoint runs, and eight factors. There are three generators since this
isa1/8 = 2-3 fraction (in general, a 2kP fractional factorial needs p
generators which define the settings for p additional factor columnsto
be added to the 2P full factorial design columns - see the following
detailed description for the 28-3 design).
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5.3.3.4.4. Fractional factorial design specifications and design resolution

How to Construct a Fractional Factorial Design From the
Specification

In order to construct the design, we do the following:

1. Write down afull factorial design in standard order for k-p
factors (8-3 = 5 factors for the example above). In the
specification above we start with a 25 full factorial design. Such a
design has 25 = 32 rows.

2. Add a sixth column to the design table for factor 6, using 6 = 345

(or 6 =-345) to manufacture it (i.e., create the new column by
multiplying the indicated old columns together).

3. Do likewise for factor 7 and for factor 8, using the appropriate
design generators given in Figure 3.6.

4. The resultant design matrix givesthe 32 tria runsfor an 8-factor
fractional factorial design. (When actually running the
experiment, we would of course randomize the run order.

We note further that the design generators, writtenin 'l = ..." form, for
the principal 28-3 fractional factorial design are:

{1 =+3456; | =+ 12457; 1 = +12358 } .

These design generators result from multiplying the "6 = 345" generator
by "6" to obtain "I = 3456" and so on for the other two genergators.

The total collection of design generators for afactorial design, including
all new generators that can be formed as products of these generators,
is called a defining relation. There are seven "words", or strings of
numbers, in the defining relation for the 28-3 design, starting with the
original three generators and adding all the new "words' that can be
formed by multiplying together any two or three of these original three
words. These seven turn out to be | = 3456 = 12457 = 12358 = 12367 =
12468 = 3478 = 5678. In general, there will be (2P -1) wordsin the
defining relation for a 2%P fractional factorial.

The length of the shortest word in the defining relation is called the
resolution of the design. Resolution describes the degree to which
estimated main effects are aliased (or confounded) with estimated
2-level interactions, 3-level interactions, etc.
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Notation for
resolution
(Roman
numerals)

Diagram for
a 283 design
showing
resolution

Resolution
and
confounding

The length of the shortest word in the defining relation for the 28-3
designisfour. Thisiswritten in Roman numeral script, and subscripted

as 277, Note that the 221 design has only oneword, "I = 123" (or "I =

-123"), in its defining relation since there is only one design generator,
and so thisfractional factorial design has resolution three; that is, we

may write 24 1.

Now Figure 3.6 may be completed by writing it as:
FIGURE 3.7 Specificationsfor a 28-3, Showing Resolution |V

T 7=1245
L 8=1235

The design resolution tells us how badly the design is confounded.
Previoudly, in the 23-1 design, we saw that the main effects were
confounded with two-factor interactions. However, main effects were
not confounded with other main effects. So, at worst, we have 3=12, or
2=13, etc., but we do not have 1=2, etc. In fact, aresolution || design
would be pretty useless for any purpose whatsoever!

Similarly, in aresolution IV design, main effects are confounded with at
worst three-factor interactions. We can see, in Figure 3.7, that 6=345.
We also see that 36=45, 34=56, etc. (i.e., some two-factor interactions
are confounded with certain other two-factor interactions) etc.; but we
never see anything like 2=13, or 5=34, (i.e., main effects confounded
with two-factor interactions).
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5.3.3.4.4. Fractional factorial design specifications and design resolution

The complete confounding pattern, for confounding of up to two-factor
interactions, arising from the design given in Figure 3.7 is

34=56=78

35=46

36 =45

37 =148

38 =47

57 =68

58 =67

All of these relations can be easily verified by multiplying the indicated
two-factor interactions by the generators. For example, to verify that
38= 47, multiply both sides of 8=1235 by 3 to get 38=125. Then,
multiply 7=1245 by 4 to get 47=125. From that it follows that 38=47.

For this 23~ fractional factorial design, 15 two-factor interactions are

aliased (confounded) in pairs or in agroup of three. The remaining 28 -
15 = 13 two-factor interactions are only aliased with higher-order
interactions (which are generally assumed to be negligible). Thisis
verified by noting that factors "1" and "2" never appear in alength-4
word in the defining relation. So, all 13 interactionsinvolving "1" and
"2" are clear of aliasing with any other two factor interaction.

If one or two factors are suspected of possibly having significant
first-order interactions, they can be assigned in such away asto avoid
having them aliased.

A resolution IV design is "better" than aresolution |11 design because
we have less-severe confounding pattern in the "1V’ than in the 111"
situation; higher-order interactions are less likely to be significant than
low-order interactions.

A higher-resolution design for the same number of factorswill,
however, require more runs and so it is “worse' than alower order
design in that sense.
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5.3.3.4.4. Fractional factorial design specifications and design resolution

Similarly, with aresolution V design, main effects would be
confounded with four-factor (and possibly higher-order) interactions,
and two-factor interactions would be confounded with certain
three-factor interactions. To obtain aresolution V design for 8 factors

requires more runs than the 28-3 design. One option, if estimating all
main effects and two-factor interactions is areguirement, is a2,
design. However, a 48-run alternative (John's 3/4 fractional factorial) is
also available.

Note: There are other E%,‘H fractional designs that can be derived

starting with different choices of design generators for the"6", " 7" and
"8" factor columns. However, they are either equivaent (in terms of the
number of words of length of length of four) to the fraction with
generators 6 = 345, 7 = 1245, 8 = 1235 (obtained by relabeling the
factors), or they are inferior to the fraction given because their defining
relation contains more words of length four (and therefore more

confounded two-factor interactions). For example, the 27~ design with

generators 6 = 12345, 7 = 135, and 8 = 245 has five length-four words
in the defining relation (the defining relationis | = 123456 = 1357 =
2458 = 2467 = 1368 = 123478 = 5678). As aresult, this design would
confound more two factor-interactions (23 out of 28 possible two-factor
interactions are confounded, leaving only "12", "14", 23", "27" and
"34" as estimable two-factor interactions).

As an example of an equivalent "best" 2%_.‘3 fractional factorial design,
obtained by "relabeling”, consider the design specified in Figure 3.8.

FIGURE 3.8 Another Way of Generating the 283 Design
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Minimum
aberration

Commonly
used design
Resolutions

This design is equivalent to the design specified in Figure 3.7 after
relabeling the factors as follows: 1 becomes 5, 2 becomes 8, 3 becomes
1, 4 becomes 2, 5 becomes 3, 6 remains 6, 7 becomes 4 and 8 becomes
7.

A table given later in this chapter gives a collection of useful fractional

factorial designsthat, for agiven k and p, maximize the possible
resolution and minimize the number of short wordsin the defining
relation (which minimizes two-factor aliasing). The term for thisis
"minimum aberration"”.

Design Resolution Summary

The meaning of the most prevalent resolution levelsis asfollows:
Resolution |11 Designs

Main effects are confounded (aliased) with two-factor interactions.
Resolution 1V Designs

No main effects are aliased with two-factor interactions, but two-factor
interactions are aliased with each other.

Resolution V Designs

No main effect or two-factor interaction is aliased with any other main
effect or two-factor interaction, but two-factor interactions are aliased
with three-factor interactions.
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5.3. Choosing an experimental design

5.3.3. How do you select an experimental design?

5.3.3.4. Fractional factorial designs

5.3.3.4.5.Use of fractional factorial designs

Use
low-resolution
designs for
screening among
main effects and
use
higher-resolution
designs when
interaction effects
and response
surfaces need to
be investigated

Different

pur poses for
screening/RSM
designs

The basic purpose of afractional factorial designisto
economically investigate cause-and-effect relationships of
significance in a given experimental setting. This does not differ in
essence from the purpose of any experimental design. However,
because we are able to choose fractions of afull design, and hence
be more economical, we also have to be aware that different
factorial designs serve different purposes.

Broadly speaking, with designs of resolution three, and sometimes

four, we seek to screen out the few important main effects from the
many less important others. For this reason, these designs are often
termed main effects designs, or screening designs.

On the other hand, designs of resolution five, and higher, are used
for focusing on more than just main effects in an experimental
situation. These designs allow us to estimate interaction effects and
such designs are easily augmented to complete a second-order
design - adesign that permits estimation of afull second-order
(quadratic) model.

Within the screening/RSM strategy of design, there are a number
of functional purposes for which designs are used. For example, an
experiment might be designed to determine how to make a product
better or a process more robust against the influence of external
and non-controllable influences such as the weather. Experiments
might be designed to troubleshoot a process, to determine
bottlenecks, or to specify which component(s) of a product are
most in need of improvement. Experiments might also be designed
to optimize yield, or to minimize defect levels, or to move a
process away from an unstable operating zone. All these aims and
purposes can be achieved using fractional factorial designs and
their appropriate design enhancements.
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5.3.3.4.6. Screening designs

Screening
designsare an
efficient way to
identify
significant main
effects
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designs when you
have many
factorsto
consider

Screening
designsare
usually
resolution I11 or
v

Plackett-Burman
designs

Economical
plans for
determing
significant main
effects

The term "Screening Design' refers to an experimental plan that is
intended to find the few significant factors from alist of many
potential ones. Alternatively, we refer to a design as a screening
designif its primary purpose isto identify significant main effects,
rather than interaction effects, the latter being assumed an order of
magnitude less important.

Even when the experimental goal isto eventually fit a response
surface model (an RSM analysis), the first experiment should be a
screening design when there are many factorsto consider.

Screening designs are typically of resolution I11. The reason is that

resolution |11 designs permit one to explore the effects of many
factors with an efficient number of runs.

Sometimes designs of resolution |V are also used for screening
designs. In these designs, main effects are confounded with, at
worst, three-factor interactions. Thisis better from the confounding
viewpoint, but the designs require more runs than aresolution 111
design.

Another common family of screening designsisthe
Plackett-Burman set of designs, so named after itsinventors. These
designs are of resolution I11 and will be described |ater.

In short, screening designs are economical experimental plans that
focus on determining the relative significance of many main
effects.
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5.3.3.4.7.Summary tables of useful

fractional factorial designs

Useful There are very useful summaries of two-level fractional factorial designs
fractional for up to 11 factors, originally published in the book Statistics for
factorial Experimenters by G.E.P. Box, W.G. Hunter, and J.S. Hunter (New
designs for Y ork, John Wiley & Sons, 1978). and also given in the book Design and
up to 10 Analysis of Experiments, 5th edition by Douglas C. Montgomery (New
factorsare Y ork, John Wiley & Sons, 2000).

summarized

here

Generator They differ in the notation for the design generators. Box, Hunter, and
col umn Hunter use numbers (aswe did in our earlier discussion) and

hotation can M ontgomery uses capital letters according to the following scheme:

use either

numbers or

|etters for 1 2 3 4 5 & 7 8 % 10 11

the factor

Notice the absence of the letter |. Thisisusualy reserved for the
intercept column that isidentically 1. As an example of the letter
notation, note that the design generator "6 = 12345" isequivalent to "F =
ABCDE".
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5.3.3.4.7. Summary tables of useful fractional factorial desighs

Details of TABLE 3.17 catalogs these useful fractional factorial designs using the
the design notation previously described in FIGURE 3.7.

generators,

thedefining  Clicking on the 2;—1‘“ specification for a given design provides details
relation, the  (courtesy of Dataplot files) of the design generators, the defining
confounding  relation, the confounding structure (as far as main effects and two-level

structure, interactions are concerned), and the design matrix. The notation used
S”d the follows our previous labeling of factors with numbers, not |etters.
esign
matrix
Click on the TABLE 3.17 Summary of Useful Fractional Factorial Designs
design . o
spec?fication | Number of Factors, k | Design Specification | Number of Runs N
in the table | | |
below and a 3 2,3t 4
text file with — 1
details 4 2v== 8
about the 5 2,51 16
design can —
be viewed or 5 2122 8
saved 6 2,81 32
6 282 16
6 288 8
7 2y 64
7 22 32
7 23 16
7 24 8
8 2yt 128
8 2,82 64
8 283 32
8 2% 16
9 2y %2 128
9 23 64
9 24 32
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5.3.3.4.7. Summary tables of useful fractional factorial designs

9 222 16
10 gyﬁ 128
10 2102 32
10 2406 16
11 214 128
11 2| == 11-7 16
15 2I =1l 15-11 16
31 2| |20 31-26 32
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5.3.3.5. Plackett-Burman designs
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5. Process Improvement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.5. Plackett-Burman designs

Plackett- In 1946, R.L. Plackett and J.P. Burman published their now famous paper "The Design
Burman of Optimal Multifactorial Experiments"’ in Biometrika (vol. 33). This paper described
designs the construction of very economical designs with the run number a multiple of four

(rather than a power of 2). Plackett-Burman designs are very efficient screening designs
when only main effects are of interest.

These Plackett-Burman (PB) designs are used for screening experiments because, in a PB

designs design, main effects are, in general, heavily confounded with two-factor interactions.

have run The PB design in 12 runs, for example, may be used for an experiment containing up to

numbers 11 factors.

that area

multiple of

4

12-Run TABLE 3.18 Plackett-Burman Design in 12 Runsfor up to 11 Factors

Plackett- - ™™ pattern X1 [X2[X3[X4 [X5 [X6 [X7 [X8[X9 [X10 [X11

gg;g?]m | 1| bbbttt (4141 [+ [ +1 [+1 [ +1 [+1 [+1 [+1 | +1 | +1
B B G R G G Y A Y !
E e E R R A AR N
e A E AR C AR N
|5 | Attt 141 -1 -1 [+ -1 (414141 -1 | -]
e E R E AR A
| 7| -ttt -1 11411 -1 |11 41 41 |+
18| -ttt (41| -1 -1 -1 (41 (-1 -1+ -1 +1 | 41
e L LR E R G N
110 | A+ttt [+L1[+1 (41 |-1 -1 -1 (+1|-1 (-1 +1 | -1
111 -ttt 141 (#1411 -1 -1 (41 ]-1 | -1 |+
e 1 B A A CA R Y B B N
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5.3.3.5. Plackett-Burman designs

Saturated
Main Effect
designs

20-Run
Plackett-
Burnam
design

24-Run
Plackett-
Burnam
design

PB designs also exist for 20-run, 24-run, and 28-run (and higher) designs. With a 20-run
design you can run a screening experiment for up to 19 factors, up to 23 factorsin a
24-run design, and up to 27 factorsin a 28-run design. These Resolution |11 designs are
known as Saturated Main Effect designs because all degrees of freedom are utilized to
estimate main effects. The designs for 20 and 24 runs are shown below.

TABLE 3.19 A 20-Run Plackett-Burman Design

[ [X1[X2[X3[X4[X5[X6[X7 [X8[X9[X10[X11[X12[X13[X14[X15[X16[X17 [X18[X19
]T|+1|+1]+1|+1]+1 +1[+1[+1[+1] +1 [ +1 [+1 [ +1 [+1 [+1 [+1 [+1 [+1 |+1
[2[-1[+a[-1[-1[+1[+1[+1[+2[-L[+2 [ -2 [+1[-2 [-1[-1[-1[+1[+1]-1
[B[-1[-1[+1[-1[-1[+1[+2[+1[+2[ -1 [+1[ 1 [+1 -1 [-1[-1[-1[+1[+1
’T|+1|-1]—1|+1]—1|—1]+1|+1|+1| +1 -1 [+1[-1|[+1|-1|-1|-1|-1|+1

[S[+1[+1]-1[-1[+1[-1[-1[+1[+1[+1 [+1[-1 [+1 -1 [+1[-1[-1[-1[-1
(6 [-T[+1[+1[-1[-T[+1[-1[-1[+2[+1 [+1[+1[-1 [+1[-1 [+1[-1[-1[-1
(7 [-1[-1[+1[+2][-1 -1 [+1[-1[-1[+1 [+ [+1 [+ -2 [+ [-1[+1[-1[-1
(8 [-1[-1[-1[+1[+1[-1[-1[+1[-1[-1 [+1[+1[+1[+1 -1 [+1[-1[+1]1
[of-1[-1[-1f[-1[+1[+1[-1[-1[+ai[ T [T [+1 [+ [+ [+ [-1[+21[-1[+1

[1O[+1[-1[-1[-1[-1[+1[+1[-1[-1[+1[-1[-1 [+1 [+1[+1[+1[-1 [+1[-1
Mi[-1[+1[-1[-1[-1[-1[+1[+1[-1[-1 [+1[-1 -1 [+ [+#1[+1[+1[-1[+1
[2+1[-1[+1[-1[-1[-1[-1[+i[+2[ L [-L [+1 [T [-1 [+ [+ [+1[+1 -1
[B[-1[+1[-1[+1[-1[-1[-1[-1[+1[+1[-1 [-1 [+1[-1[-1[+1[+1[+1[+1
[LA[+1[-1[+1[-1[+1[-1[-1[-1[-1 [+ [+1[-1 [-1 [+1[-1[-1[+1[+1[+1

[A5[+1[+1[-1[+1[-T[+1[-1[-1[-1[-1 [+1[+1 -1 [T [+1[-1[-1[+1[+1
[6[+1[+1[+1[-1[+1[-1[+1[-1[-1[ -1 [T [+1[+1[-1[-1[+1[-1[-1[+1
[17[+1[+1[+1[+1[-1[+21[-1[+2[-1[ -1 [-L [T [+1[+21[-1[-1[+1[-1[-1
[18[-1[+1[+1[+1[+1[-1[+1[-1[+1[ -1 [-1[-1 [-1 [+1[+1[-1[-1[+1[-1
[Mo[-1[-1[+1[+1[+1[+1[-1[+1[-1[+1[-1[-1 [-1 [-1[+1[+1[-1[-1[+1

’2—0|+1|-1]—1|+1]+1|+1]+1|-1|+1| -1 |+1 | -1 | -1 | -1 ] -1 ]+1 |+1 | -1 | -1

TABLE 3.20 A 24-Run Plackett-Burman Design
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5.3.3.5. Plackett-Burman designs

No defining
relation

Economical
for
detecting
large main
effects
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These designs do not have a defining relation since interactions are not identically equal
to main effects. With the 2;‘,;1? designs, amain effect column X; is either orthogonal to
XX or identical to plus or minus X;X;. For Plackett-Burman designs, the two-factor

interaction column X;X; is correlated with every X, (for k not equa toi or j).

However, these designs are very useful for economically detecting large main effects,
assuming al interactions are negligible when compared with the few important main
effects.
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5.3.3.6. Response surface designs
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5. Process |mprovement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.6.Response surface designs

Response Earlier, we described the response surface method (RSM) objective. Under
surface some circumstances, amodel involving only main effects and interactions
modelsmay  may be appropriate to describe a response surface when

mv_olve Just 1. Analysisof the results revealed no evidence of "pure quadratic”
main effects curvature in the response of interest (i.e., the response at the center
gnd . approximately equals the average of the responses at the factorial
interactions runs)

or they ma '

o e 2. The design matrix originally used included the limits of the factor
quadratic settings available to run the process.

and possibly

cubic terms

to account

for curvature

Equationsfor  In other circumstances, a complete description of the process behavior might

guadratic require a quadratic or cubic model:
and cubic :
models Quadratic

¥=by+bpe, tbox, +box, +hpm, b, thanx,
2 2 2

Cubic
# = euadratic model +br®.%, +bauir, +bLuin,
2 2 2 2 3
by H by EE: HbypEi®s +hogx, i +byE
3 3

These are the full models, with al possible terms, rarely would all of the
terms be needed in an application.
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5.3.3.6. Response surface designs

Quadratic
models
almost
always
sufficient for
industrial
applications

General
guadratic
surface types

If the experimenter has defined factor limits appropriately and/or taken
advantage of all the tools available in multiple regression analysis
(transformations of responses and factors, for example), then finding an
industrial process that requires athird-order model is highly unusual.

Therefore, we will only focus on designs that are useful for fitting quadratic
models. Aswe will see, these designs often provide lack of fit detection that

will help determine when a higher-order model is needed.

Figures 3.9 to 3.12 identify the general quadratic surface types that an
investigator might encounter

::: _\-\_'"-\—\_\_\_\x\\\_-: . "'q_' :_.‘:""'-\.h "\.xx ""'-\.Hx H'H-x k“"-x -H,x -\.EH "'\-..hx "'\-.\,hx " . \.\_
G T T B T T T Y T NS
e ' = _ :;H'R‘x ““-._h ", ““-x ., Y, " ‘-\H -
" ~, e . R " W - H\. - H\. \"\-‘
L EE T - -'-:_3‘.,_‘\. . T L ""-\ . ™ . - -
_— . -\-\\ _:__.,:“ " ", x.x x\x'\ .. ., b b \H
.-»\\\\m \m’h . S = xx " ™, o, . H&x . \"Hx H‘.‘. -
?- R _\_\_\_\_H; "-\.: W?%-K_W;hvm_\‘%x-m_xm-\.}-L_Eqm_xhx_x&% x?-_-
- — T S B
- \ - 'h\‘\xh\“\\ RN SN -
S LT NSNS N N NN N
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FIGURE 3.11 A Response
Surface" Rising Ridge"

u
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FIGURE 3.12 A Response
Surface" Saddle"

Factor Levelsfor Higher-Order Designs
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5.3.3.6. Response surface designs

Possible
behaviors of
responses as
functions of
factor
settings

A two-level
experiment
with center
points can
detect, but
not fit,
guadratic
effects

Three-level
factorial
design

Four-level
factorial
design

Figures 3.13 through 3.15 illustrate possible behaviors of responses as
functions of factor settings. In each case, assume the value of the response
increases from the bottom of the figure to the top and that the factor settings
increase from left to right.

FIGURE 3.13 FIGURE 3.14 FIGURE 3.15
Linear Function Quadratic Function Cubic Function

If aresponse behaves asin Figure 3.13, the design matrix to quantify that
behavior need only contain factors with two levels -- low and high. This
model is a basic assumption of simple two-level factorial and fractional
factorial designs. If aresponse behaves asin Figure 3.14, the minimum
number of levelsrequired for afactor to quantify that behavior isthree. One
might logically assume that adding center pointsto atwo-level design would
satisfy that requirement, but the arrangement of the treatmentsin such a
matrix confounds all quadratic effects with each other. While a two-level
design with center points cannot estimate individual pure quadratic effects, it
can detect them effectively.

A solution to creating a design matrix that permits the estimation of simple
curvature as shown in Figure 3.14 would be to use athree-level factorial
design. Table 3.21 explores that possibility.

Finally, in more complex cases such asillustrated in Figure 3.15, the design
matrix must contain at least four levels of each factor to characterize the
behavior of the response adequately.
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3-level
factorial
designs can
fit quadratic
models but
they require
many runs
when there
aremore
than 4 factors

Fractional
factorial
designs
created to
avoid such a
large number
of runs

Number of
runs large
even for
modest
number of
factors

Complex
alias
structure and
lack of
rotatability
for 3-level
fractional
factorial
designs

5.3.3.6. Response surface designs

TABLE 3.21 Three-level Factorial Designs
Number Treatment Combinations Number of Coefficients

of Factors 3k Factorial Quadratic Empirical Model
2 9 6
3 27 10
4 81 15
5 243 21
6 729 28

Two-level factorial designs quickly become too large for practical application
as the number of factors investigated increases. This problem was the
motivation for creating “fractional factorial’ designs. Table 3.21 shows that
the number of runs required for a 3k factorial becomes unacceptable even
more quickly than for 2K designs. The last column in Table 3.21 shows the
number of terms present in a quadratic model for each case.

With only a modest number of factors, the number of runsisvery large, even
an order of magnitude greater than the number of parameters to be estimated
when k isn't small. For example, the absolute minimum number of runs
required to estimate all the terms present in afour-factor quadratic model is
15: the intercept term, 4 main effects, 6 two-factor interactions, and 4
guadratic terms.

The corresponding 3k design for k = 4 requires 81 runs.

Considering afractional factorial at three levelsisalogical step, given the
success of fractional designs when applied to two-level designs.
Unfortunately, the alias structure for the three-level fractional factorial
designsis considerably more complex and harder to define than in the
two-level case.

Additionally, the three-level factorial designs suffer amgjor flaw in their lack
of “rotatability.’

Rotatability of Designs
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5.3.3.6. Response surface designs

"Rotatability"  In arotatable design, the variance of the predicted values of y is afunction of
iIsadesirable thedistance of apoint from the center of the design and is not a function of
property not the direction the point lies from the center. Before a study begins, little or no
present in knowledge may exist about the region that contains the optimum response.
3-level Therefore, the experimental design matrix should not bias an investigation in
factorial any direction.
designs
Contours of In arotatable design, the contours associated with the variance of the
variance of predicted values are concentric circles. Figures 3.16 and 3.17 (adapted from
predicted Box and Draper, "Empirical Model Building and Response Surfaces,’ page
valuesare 485) illustrate a three-dimensional plot and contour plot, respectively, of the
concentric “information function' associated with a 32 design.
circles
Information Theinformation function is:
function 1
Vi

with V denoting the variance (of the predicted value y).

Each figure clearly shows that the information content of the design is not

only afunction of the distance from the center of the design space, but also a

function of direction.
Graphsof the  Figures 3.18 and 3.19 are the corresponding graphs of the information
information function for arotatable quadratic design. In each of these figures, the value of

function for a

rotatable
guadratic
design

the information function depends only on the distance of a point from the
center of the space.
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5.3.3.6. Response surface designs

FIGURE 3.16
Three-Dimensional FIGURE 3.17
[llustration for the Contour Map of the Information Function
Information Function of a for a 32 Design
32 Design

-
=

a

N I A N

H

FIGURE 3.18
Three-Dimensional
[llustration of the
I nformation Function for a
Rotatable Quadratic Design
for Two Factors

FIGURE 3.19 Contour Map of the
Information Function for a Rotatable
Quadratic Design for Two Factors

Classical Quadratic Designs

Central Introduced during the 1950's, classical quadratic designs fall into two broad
composite categories. Box-Wilson central composite designs and Box-Behnken designs.
and The next sections describe these design classes and their properties.
Box-Behnken
designs
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5.3.3.6.1. Central Composite Designs (CCD)
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5. Process |mprovement

5.3. Choosing an experimental design

5.3.3. How do you select an experimental design?

5.3.3.6. Response surface designs

5.3.3.6.1.Central Composite Designs (CCD)

CCD designs
start with a
factorial or
fractional
factorial
design (with
center points)
and add
"star" points
to estimate
curvature

Diagram of
central
composite
design
generation for
two factors

Box-Wilson Central Composite Designs

A Box-Wilson Central Composite Design, commonly called "a central
composite design,' contains an imbedded factorial or fractional
factorial design with center points that is augmented with a group of
“star points that allow estimation of curvature. If the distance from the
center of the design space to afactorial point is =1 unit for each factor,
the distance from the center of the design space to a star point is +¢x
with |¢x| > 1. The precise value of ¢x depends on certain properties
desired for the design and on the number of factorsinvolved.

Similarly, the number of centerpoint runs the design isto contain also
depends on certain properties required for the design.

FIGURE 3.20 Generation of a Central Composite Design for Two
Factors
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5.3.3.6.1. Central Composite Designs (CCD)

A CCD design A central composite design always contains twice as many star points

with k factors  asthere are factors in the design. The star points represent new

has 2k star extreme values (low and high) for each factor in the design. Table 3.22

points summarizes the properties of the three varieties of central composite
designs. Figure 3.21 illustrates the relationships among these varieties.

Description of TABLE 3.22 Central Composite Designs

3 types of Central Composite .

CCD designs, Design Type Terminology Comments
which depend CCC designs are the original
on wherethe

form of the central composite
design. The star points are at
some distance ¢x from the center
based on the properties desired
for the design and the number of
factorsin the design. The star
points establish new extremes for
the low and high settings for all
factors. Figure 5 illustrates a
CCC design. These designs have
circular, spherical, or
hyperspherical symmetry and
require 5 levels for each factor.
Augmenting an existing factorial
or resolution V fractiona
factorial design with star points
can produce this design.

For those situations in which the
limits specified for factor settings
are truly limits, the CCI design
uses the factor settings as the star
points and creates a factorial or
fractional factorial design within
Inscribed CCl those limits (in other words, a
CCl designisascaled down
CCC design with each factor
level of the CCC design divided
by ¢x to generate the CCl design).
Thisdesign aso requires 5 levels
of each factor.

star points
are placed

Circumscribed CCC
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5.3.3.6.1. Central Composite Designs (CCD)

In this design the star points are
at the center of each face of the

factorial space, so¢x =+ 1. This
variety requires 3 levels of each

Face Centered CCF ) .
factor. Augmenting an existing
factorial or resolution V design
with appropriate star points can
also produce this design.

Pictorial
representation -1 +1
of where the
star points
are placed for i
the 3 types of coc 9
CCD designs !
1]
.-'I
/
&
"
. [
CCF
[= ]
o—a—=0
e
CClI

FIGURE 3.21 Comparison of the Three Typesof Central
Composite Designs
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oy 1Schosen to
maintain
rotatability

Values of ¢x
depending on
the number of
factorsinthe
factorial part
of the design

5.3.3.6.1. Central Composite Designs (CCD)

The diagramsin Figure 3.21 illustrate the three types of central
composite designs for two factors. Note that the CCC explores the
largest process space and the CCl explores the smallest process space.
Both the CCC and CCI are rotatable designs, but the CCF is not. In the

CCC design, the design points describe a circle circumscribed about
the factorial square. For three factors, the CCC design points describe
a sphere around the factorial cube.

Determining ¢x in Central Composite Designs

To maintain rotatability, the value of ¢x depends on the number of

experimental runsin the factorial portion of the central composite
design:

= [numb ar of factorial mns]lM

If the factorial isafull factorial, then

1/4
= [2}1

However, the factorial portion can also be afractional factorial design
of resolution V.

Table 3.23 illustrates some typical values of ¢x as a function of the
number of factors.

TABLE 3.23 Determining ¢x for Rotatability

Number of Factorial Scaled Valuefor ¢x
Factors Portion Relativeto £1
2 22 2214 = 1.414
3 23 23/4 = 1.682
4 24 2414 = 2,000
5 2>1 244 = 2.000
5 25 25/4 = 2 378
6 26-1 25/4 = 2378
6 26 26/4 = 2 828
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Orthogonal The value of ¢x also depends on whether or not the design is

blocking orthogonally blocked. That is, the question is whether or not the
designis divided into blocks such that the block effects do not affect
the estimates of the coefficients in the 2nd order model.

Example of Under some circumstances, the value of ¢x alows simultaneous
both rotatability and orthogonality. One such example for k = 2 is shown
rotatability bel ow:
and
orthogonal | BLOCK | X1 | X2
blocking for | | |
two factors | 1 | -1 | -1
| 1 | 1 | -1
| 1 | -1 | 1
| 1 | 1 | 1
| 1 | 0 | 0
| 1 | 0 | 0
| 2 | -1.414 | 0
| 2 | 1.414 | 0
| 2 | 0 | -1.414
| 2 | 0 | 1.414
| 2 | 0 | 0
| 2 | 0 | 0
Additional Examples of other central composite designs will be given after
central Box-Behnken designs are described.
composite
designs
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5.3. Choosing an experimental design

5.3.3. How do you select an experimental design?
5.3.3.6. Response surface designs

5.3.3.6.2.Box-Behnken designs

Analternate  The Box-Behnken design is an independent quadratic design in that it

choice for does not contain an embedded factorial or fractional factorial design. In
fitting this design the treatment combinations are at the midpoints of edges of
guadratic the process space and at the center. These designs are rotatable (or near
model s that rotatable) and require 3 levels of each factor. The designs have limited
requires 3 capability for orthogonal blocking compared to the central composite
levels of designs.

each factor

andis Figure 3.22 illustrates a Box-Behnken design for three factors.
rotatable (or

"nearly"

rotatable)

Box-Behnken FIGURE 3.22 A Box-Behnken Design for Three Factors
design for 3

factors
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5.3.3.6.2. Box-Behnken designs

Geometry of  The geometry of this design suggests a sphere within the process space

the design such that the surface of the sphere protrudes through each face with the
surface of the sphere tangential to the midpoint of each edge of the
Space.

Examples of Box-Behnken designs are given on the next page.
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(CCl), CCF,
and
Box-Behnken
designs for
three factors

designs

Choosing a Response Surface Design

Table 3.24 contrasts the structures of four common quadratic designs one might
use when investigating three factors. The table combines CCC and CCI designs
because they are structurally identical.

For three factors, the Box-Behnken design offers some advantage in requiring a
fewer number of runs. For 4 or more factors, this advantage disappears.

TABLE 3.24 Structural Comparisonsof CCC (CCl), CCF, and
Box-Behnken Designsfor Three Factors

| CCC (CClI) | CCF | Box-Behnken
[Rep[ X1 [ X2 | X3 [Rep [X1[X2[X3[Rep [X1[X2[X3
1| -1 | -1 | -1 |1 |-1|1f1]1[-1|-1]|0
1 [+ [ 1 | 1 |1 [+1][1]1] 1 [+1][-1]0
11 [ +1 [ 1 [ 1 [a(+1[1[1 [1[+1]0
1 [+ | +1 | -1 [ 1 [+1[+1[-1] 1 [+1[+1]0O
1| -1 | 1 [+ [ 1 [1][1][+1] 1 [-1]0]-1
1|+ | -1 [ +1 [ 1 [+1[-1[+1] 1 [+1|0 [-1
|1 -1 | 41 | +1 | 1 |[-1|+1|+1| 1 |-1|0 |+l
|1 | +1 | +1 | +1 | 1 [+1|+1[+1| 1 [+1 |0 |[+1
11682 0 [ 0 [ 1 [1[0ofo0[ 1 [of-1]1
|1 |1682| 0 | O [ 1 [+1|0 |0 | 1 [O [+1|-1
/1| O |-1682| 0 | 1 [O|-1|0| 1 |O |-1|+
1] 0 |1682| 0 [ 1 [O[+1[0 | 1 [0 [+1|+1
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5.3.3.6.3. Comparisons of response surface designs

/1] 0 | O |-1682| 1 [0 O |-1| 3 [0|O0]|O

1 [ o [0 (1682 1 [o[o0[+x] [ [ |

(6] 0 J o0 o e jojojoj | | |

| Total Runs=20 | Total Runs=20 | Total Runs=15
Factor Table 3.25 illustrates the factor settings required for a central composite
settings for circumscribed (CCC) design and for a central composite inscribed (CCI) design
CCC and (standard order), assuming three factors, each with low and high settings of 10
CCl three and 20, respectively. Because the CCC design generates new extremes for all
factor factors, the investigator must inspect any worksheet generated for such adesign
designs to make certain that the factor settings called for are reasonable.

In Table 3.25, treatments 1 to 8 in each case are the factorial pointsin the design;
treatments 9 to 14 are the star points; and 15 to 20 are the system-recommended
center points. Notice in the CCC design how the low and high values of each
factor have been extended to create the star points. In the CCI design, the
specified low and high values become the star points, and the system computes
appropriate settings for the factorial part of the design inside those boundaries.

TABLE 3.25 Factor Settingsfor CCC and CCI Designsfor Three

Factors
Central Composite |7 Central Composite
Circumscribed CCC Inscribed CCI

Sequence | | | |7 Sequence | | |

Number X1 | X2 | X3 Number X1 | X2 | X3
| 1 10 [ 10 [ 10 | | 1 [12 [ 12 [ 12
| 2 20 [ 10 [ 10 | | 2 [18[12 |12
| 3 10 [ 20 [ 10 | | 3 |12 [ 18 [ 12
| 4 20 [ 20 [ 10 | | 4 |18 [ 18 | 12
| 5 10 [ 10 [ 20 | | 5 [12 [ 12 [ 18
| 6 20 [ 10 [ 20 | | 6 (18 [12 [ 18
| 7 10 [ 20 [ 20 | | 7 |12 [ 12 | 18
| 8 20 [ 20 [ 20 | | 8 |18 [ 18 [ 18
| 9 66 | 15 [ 15 [*] 9 [10[15 15
| 10 (234 15 [ 15 [*] 10 |20 [ 15 [ 15
| 11 |15 [ 66 [ 15 [*] 11 [15[10 [ 15
| 12 [ 15 [234 [ 15 || 12 [15[20 [ 15
| 13 15 | 15 [ 66 |*| 13 [15[15 [ 10
| 14 | 15 | 15 [ 234 || 14 [15[15 [ 20
| 15 15 [ 15 [ 158 | | 15 [15[15 [ 15
| 16 15 [ 15 [ 158 | | 16 |15 [ 15 [ 15
| 17 15 [ 15 [ 15 | | 17 [15[15 [ 15
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5.3.3.6.3. Comparisons of response surface designs

Factor
settings for
CCF and
Box-Behnken
three factor
designs

| 18 15 [ 15 [ 15 | | 18 |15 [15 [ 15
| 19 15 [ 15 [ 15 | | 19 [15[15 [ 15
| 20 15 [ 15 [ 158 | | 20 |15 [ 15 [ 15

* are star points

Table 3.26 illustrates the factor settings for the corresponding central composite
face-centered (CCF) and Box-Behnken designs. Note that each of these designs
provides three levels for each factor and that the Box-Behnken design requires
fewer runsin the three-factor case.

TABLE 3.26 Factor Settingsfor CCF and Box-Behnken Designs for

Three Factors
Central Composite r Box-Behnken
Face-Centered CCC

Sequence | | | r Sequence | | |

Number X1 | X2 | X3 Number X1 | X2 | X3
| 1 10 [ 10 [ 10 | | 1 (10 [10 [ 10
| 2 20 [10 [ 10 [ | 2 |20 [ 10 [ 15
| 3 10 [20 [ 10 [ | 3 [10 [20 [ 15
| 4 20 [20 [ 10 | | 4 20 [20 [ 15
| 5 10 [10 [ 20 [ | 5 [10 [ 15 [ 10
| 6 20 [10 [ 20 [ | 6 [20 [ 15 [ 10
| 7 10 [20 [ 20 | | 7 [10 [15 [ 20
| 8 20 [20 [ 20 [ | 8 [20 [ 15 [ 20
| 9 10 [ 15 [ 15 [* ] 9 15 [ 10 [ 10
| 10 20 [ 15 [ 15 [*] 10 1520 | 10
| 11 [ 15 [ 10 [ 15 [*| 11 1510 [ 20
| 12 |15 [ 20 [ 15 [* | 12 15[ 20 [ 20
| 13 |15 [ 15 [ 10 [* | 13 |15 [15 [ 15
| 14 |15 [ 15 [ 20 [*| 14 15 [ 15 [ 15
| 15 |15 [ 15 [ 15 [ | 15 15 [15 [ 15
[ 16 [15[15[15 [ | ]
1w [5[15 15 | ]
[ 18 [15[15 15 | ]
[ 19 [ [15[15 | ]
[ 20  [15[15[35 [ | T

* are star points for the CCC
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Propertiesof  Table 3.27 summarizes properties of the classical quadratic designs. Use this table

classical for broad guidelines when attempting to choose from among available designs.
response : : :
sﬁ??ace TABLE 3.27 Summary of Properties of Classical Response Surface Designs

designs | Design Type | Comment

CCC designs provide high quality predictions over the entire
design space, but require factor settings outside the range of the
factorsin the factorial part. Note: When the possibility of running
cCC a CCC design is recognized before starting afactorial experiment,
factor spacings can be reduced to ensure that + ¢x for each coded
factor corresponds to feasible (reasonable) levels.

Requires 5 levels for each factor.

CCI designs use only points within the factor ranges originally
specified, but do not provide the same high quality prediction
CCl over the entire space compared to the CCC.

Requires 5 levels of each factor.

CCF designs provide relatively high quality predictions over the
entire design space and do not require using points outside the
CCF original factor range. However, they give poor precision for
estimating pure quadratic coefficients.

Requires 3 levels for each factor.

These designs require fewer treatment combinations than a
central composite design in cases involving 3 or 4 factors.

The Box-Behnken design is rotatable (or nearly so) but it contains
regions of poor prediction quality like the CCI. Its"missing
corners’ may be useful when the experimenter should avoid
combined factor extremes. This property prevents a potential loss
of datain those cases.

Box-Behnken

Requires 3 levels for each factor.
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Number of
runs
required by
central
composite
and
Box-Behnken
designs

A summary
of desirable
properties
for response
surface
designs

NIST
SEMATECH

Table 3.28 compares the number of runs required for a given number of factors
for various Central Composite and Box-Behnken designs.

TABLE 3.28 Number of Runs Required by Central Composite and

Box-Behnken Designs

INumber of Factors| Central Composite |Box-Behnken
] 2 ] 13 (5 center points) ] -
| 3 | 20 (6 centerpoint runs) | 15
] 4 ] 30 (6 centerpoint runs) ] 27
] 5 33 (fractional factorial) or 52 (full factorial) | 46
| 6 |54 (fractional factorial) or 91 (full factoridl) | 54

Desirable Featuresfor Response Surface Designs

G. E. P. Box and N. R. Draper in "Empirical Model Building and Response
Surfaces," John Wiley and Sons, New Y ork, 1987, page 477, identify desirable
properties for a response surface design:

» Satisfactory distribution of information across the experimental region.

- rotatability
Fitted values are as close as possible to observed values.

- minimize residuals or error of prediction
« Good lack of fit detection.
« Internal estimate of error.
« Constant variance check.
« Transformations can be estimated.
« Suitability for blocking.
« Sequential construction of higher order designs from ssimpler designs
e Minimum number of treatment combinations.
« Good graphical analysis through simple data patterns.
« Good behavior when errorsin settings of input variables occur.
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5. Process |mprovement

5.3. Choosing an experimental design

5.3.3. How do you select an experimental design?
5.3.3.6. Response surface designs

5.3.3.6.4.Blocking aresponse surface design

How can we block a response surface design?

When If an investigator has run either a 2k full factorial or a 2k-P fractional factorial
augmenting design of at least resolution V, augmentation of that design to a central
aresolution  composite design (either CCC of CCF) iseasily accomplished by adding an
V design to additional set (block) of star and centerpoint runs. If the factorial experiment
aCCC indicated (viathet test) curvature, this composite augmentation is the best
design by follow-up option (follow-up options for other situations will be discussed |ater).
adding star

points, it

may be

desirable to

block the

design

An An important point to take into account when choosing a response surface
orthogonal design isthe possibility of running the design in blocks. Blocked designs are
blocked better designsif the design allows the estimation of individual and interaction
response factor effects independently of the block effects. This condition is called
surface orthogonal blocking. Blocks are assumed to have no impact on the nature and
design has shape of the response surface.

advantages

CCF The CCF design does not allow orthogonal blocking and the Box-Behnken
designs designs offer blocking only in limited circumstances, whereas the CCC does
cannot be permit orthogonal blocking.

orthogonally

blocked

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3364.htm (1 of 5) [11/14/2003 5:53:18 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm

5.3.3.6.4. Blocking a response surface design

Axial and In general, when two blocks are required there should be an axial block and a
factorial factorial block. For three blocks, the factorial block is divided into two blocks
blocks and the axial block is not split. The blocking of the factorial design points

should result in orthogonality between blocks and individual factors and
between blocks and the two factor interactions.

The following Central Composite design in two factors is broken into two

blocks.
Table of TABLE 3.29 CCD: 2 Factors, 2 Blocks
CCD design Pattern Block X1 X2 Comment
with 2
factors and . +1 -1 -1 Full Factorial
2 blocks -+ +1 -1 +1 Full Factorial
+- +1 +1 -1 Full Factorial
++ +1 +1 +1 Full Factorial
00 +1 0 0 Center-Full Factoria
00 +1 0 0 Center-Full Factorial
00 +1 0 0 Center-Full Factorial
-0 +2 1414214 0 Axidl
+0 +2  +1.414214 0 Axidl
0- +2 0 -1.414214 Axidl
O+ +2 0 +1.414214 Axidl
00 +2 0 0 Center-Axial
00 +2 0 0 Center-Axial
00 +2 0 0 Center-Axial
Note that the first block includes the full factorial points and three centerpoint
replicates. The second block includes the axial points and another three
centerpoint replicates. Naturally these two blocks should be run as two separate
random sequences.
Table of The following three examples show blocking structure for various designs.
\(IIVi(tZrI]D?’desgn TABLE 3.30 CCD: 3 Factors 3 Blocks, Sorted by Block
factors and Pattern Block X1 X2 X3 Comment
3 blocks — 1 1 1 1 Full Factorial
-++ 1 -1 +1 +1 Full Factorial
+-+ 1 +1 -1 +1 Full Factorial
++- 1 +1 +1 -1 Full Factorial
000 1 0 0 0 Center-Full Factorial
000 1 0 0 0 Center-Full Factorial
-+ 2 -1 -1 +1 Full Factorial
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5.3.3.6.4. Blocking a response surface design

-+- 2 -1 +1 -1 Full Factorial
+-- 2 +1 -1 -1 Full Factorial
+++ 2 +1 +1 +1 Full Factorid
000 2 0 0 0 Center-Full Factorial
000 2 0 0 0 Center-Full Factorial
-00 3 -1.681793 0 0 Axidl
+00 3 +1.681793 0 0 Axidl
0-0 3 0 -1.681793 0 Axial
0+0 3 0 +1.681793 0 Axial
00- 3 0 0 -1.681793 Axial
00+ 3 0 0 +1.681793 Axial
000 3 0 0 0 Axial
000 3 0 0 0 Axial
Table of TABLE 3.31 CCD: 4 Factors, 3 Blocks
C$E4d95i gn Pattern  Block X1 X2 X3 X4 Comment
wi
factors and ---+ 1 -1 -1 -1 +1 Full Factorial
3 blocks -—+- 1 -1 -1 +1 -1 Full Factorial
-+-- 1 -1 +41 -1 -1 Full Factorial
-+++ 1 -1 +1 +1 +1 Full Factorial
+--- 1 +1 -1 -1 -1 Full Factorial
+-++ 1 +1 -1 +1 +1 Full Factorial
++-+ 1 +1 +1 -1 +1 Full Factorial
++4+- 1 +1 +1 +1 -1 Full Factorial
0000 1 O 0O 0 O Center-Full Factorial
0000 1 O 0O 0 O Center-Full Factorial
2 -1 1 -1 -1 Full Factorial
--++ 2 -1 -1 +1 +1 Full Factorial
-+-+ 2 -1 +1 -1 +1 Full Factorial
-++- 2 -1 +1 +1 -1 Full Factorial
+--+ 2 +1 -1 -1 +1 Full Factorial
+-+- 2 +1 -1 +1 -1 Full Factorial
++-- 2 +1 +1 -1 -1 Full Factorial
++++ 2 +1 +1 +1 +1 Full Factorial
0000 2 O 0O 0 O Center-Full Factorial
0000 2 O 0O 0 O Center-Full Factorial
-000 3 -2 0 0 O Axia
+000 3 +2 0 0 O Axia
+000 3 +2 0 0 O Axia
0-00 3 O -2 0 O Axia
0+00 3 O +2 0 O Axia
00-0 3 O 0 -2 O Axia
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Table
of
CCD
design
with 5
factors
and 2
blocks
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00+0 3 O 0 +2 0 Axial
000- 3 O 0O 0 -2 Axidl
000+ 3 O O 0 +2 Axia
0000 3 O 0O 0 O Center-Axial
TABLE 3.32 CCD: 5 Factors, 2 Blocks
Pattern Block X1 X2 X3 X4 X5 Comment
-+ 1 -1 -1 -1 -1 +1 Fractional Factorid
-——+- 1 -1 -1 -1 +1 -1 Fractional Factoridl
-—+-- 1 -1 -1 +1 -1 -1 Fractional Factorid
-—+++ 1 -1 -1 +1 +1 +1 Fractional Factorial
-+--- 1 -1 +1 -1 -1 -1 Fractional Factorial
-+-++ 1 -1 +1 -1 +1 +1 Fractional Factorial
-++-+ 1 -1 +1 +1 -1 +1 Fractional Factorial
-+++- 1 -1 +1 +1 +1 -1 Fractional Factorial
+---- 1 +1 -1 -1 -1 -1 Fractional Factoridl
+--++ 1 +1 -1 -1 +1 +1 Fractional Factoridl
+-+-+ 1 +1 -1 +1 -1 +1 Fractional Factoridl
+-++- 1 +1 -1 +1 +1 -1 Fractional Factoridl
++--+ 1 +1 +1 -1 -1 +1 Fractional Factoridl
++-+- 1 +1 +1 -1 +1 -1 Fractional Factorid
+++-- 1 +1 +1 +1 -1 -1 Fractional Factorid
+++++ 1 +1 +1 +1 +1 +1 Fractional Factorid
00000 1 0 0 0 0 0 Center-Fractional
Factorial
00000 1 0 0 0 0 0 Center-Fractional
Factorial
00000 1 0 0 0 0 0 Center-Fractional
Factorial
00000 1 0 0 0 0 0 Center-Fractional
Factorial
00000 1 0 0 0 0 0 Center-Fractional
Factorial
00000 1 0 0 0 0 0 Center-Fractional
Factorial
-0000 2 -2 0 0 0 0 Axidl
+0000 2 +2 0 0 0 0 Axial
0-000 2 0 -2 0 0 0 Axidl
0+000 2 0 +2 0 0 0 Axial
00-00 2 0 0 -2 0 0 Axidl
00+00 2 0 0 +2 0 0 Axial
000-0 2 0 0 0 -2 0 Axial
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000+0 2 o 0 0 42
0000- 2 o o o o
0000+ 2 0 0 0 0
00000 2 o o o o
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5. Process |mprovement

5.3. Choosing an experimental design

5.3.3. How do you select an experimental design?

5.3.3.7.Adding centerpoints

Centerpoint
runs provide
a check for
both process
stability and
possible
curvature

Centerpoint
runs are not
randomized

Rough rule
of thumb is
toadd3to5
center point
runsto your
design

Center point, or "Control' Runs

As mentioned earlier in this section, we add centerpoint runs
Interspersed among the experimental setting runs for two purposes:

1. To provide ameasure of process stability and
inherent variability

2. To check for curvature.

Centerpoint runs should begin and end the experiment, and should be
dispersed as evenly as possible throughout the design matrix. The
centerpoint runs are not randomized! There would be no reason to
randomize them as they are there as guardians against process instability
and the best way to find instability is to sample the process on aregular
basis.

With thisin mind, we have to decide on how many centerpoint runs to
do. Thisis atradeoff between the resources we have, the need for
enough runs to seeif there is process instability, and the desire to get the
experiment over with as quickly as possible. As a rough guide, you
should generally add approximately 3 to 5 centerpoint runsto a full or
fractional factorial design.
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5.3.3.7. Adding centerpoints

Table of In the following Table we have added three centerpoint runs to the
randomized,  otherwise randomized design matrix, making atotal of nineteen runs.
rziﬂll:ﬁated TABLE 3.32 Randomized, Replicated 23 Full Factorial Design
factorial Matrix with Centerpoint Control Runs Added
designwith | | Random Order | Standard Order |SPEED |FEED | DEPTH
centerpoints  [1 [ notapplicable | notapplicable | 0 | 0 [ O
2| 1 | 5 1 [ 1 [ 1
13| 2 ] 15 -1 1 | 1
4| 3 | 9 1 [ 1| 1
|5 | 4 ] 7 -1 1 | 1
6 | 5 | 3 a1 [ 1 [ 1
17| 6 | 12 1 | 1 | 1
8| 7 | 6 1 [ 1 [ 1
9| 8 | 4 1 [ 1 | 1
110| not applicable | notapplicable | 0 | 0 | O
11| 9 | 2 1 [ 1 [ 1
12| 10 | 13 -1 ] 1 ] 1
13| 11 | 8 1 1 | 1
114 | 12 | 16 1 1 | 1
115| 13 ] 1 R
116 14 ] 14 1 | 1 | 1
|17| 15 ] 11 -1 | 1 |
18| 16 | 10 1 | 1 | A1
119| not applicable | notapplicable | 0 | 0 | O

Preparinga  To prepare aworksheet for an operator to use when running the

wor ksheet experiment, delete the columns "RandOrd' and “Standard Order.' Add an
for operator  additional column for the output (Yield) on theright, and change all -1,
of "0, and "1' to original factor levels asfollows.

experiment
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Operator
wor ksheet

Center
points for
discrete
factors

TABLE 3.33 DOE Worksheet Ready to Run

Sequence | | | |

Number Speed Feed Depth Yield
| 1 [ 20 [ 0003 | 0015 |
| 2 16 [ o001 | 002 |
| 3 | 16 | 0005 | 002 |
| 4 | 16 | 0001 | 001 |
| 5 | 16 | 0005 | 002 |
| 6 16 [ 0005 | o001 |
| 7 [ 24 [ 0005 | o001 |
| 8 24 [ o001 | 002 |
| 9 | 24 | 0005 | 001 |
| 10 | 20 | 0003 | 0015 |
| 11 24 [ 0001 | 001 |
| 12 [ 16 [ oool | 002 |
| 13 24 [ 0005 | 002 |
| 14 24 [ 0005 | 002 |
| 15 | 16 | 0001 | 001 |
| 16 24 [ 0001 | 002 |
| 17 | 16 | 0005 | 001 |
| 18 [ 24 [ o001 | o001 |
| 19 20 [ 0003 | 0015 |

Note that the control (centerpoint) runs appear at rows 1, 10, and 19.

This worksheet can be given to the person who is going to do the
runs/measurements and asked to proceed through it from first row to last
in that order, filling in the Yield values as they are obtained.

Pseudo Center points

One often runs experiments in which some factors are nominal. For
example, Catalyst "A" might be the (-1) setting, catalyst "B" might be
coded (+1). The choice of whichis"high" and which is"low" is
arbitrary, but one must have some way of deciding which catalyst
setting is the "standard” one.

These standard settings for the discrete input factors together with center
points for the continuous input factors, will be regarded as the "center
points' for purposes of design.
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5.3.3.7. Adding centerpoints

Center Pointsin Response Surface Designs

In an unblocked response surface design, the number of center points
controls other properties of the design matrix. The number of center
points can make the design orthogonal or have "uniform precision." We
will only focus on uniform precision here as classical quadratic designs
were set up to have this property.

Uniform precision ensures that the variance of prediction is the same at
the center of the experimental space asit is at a unit distance away from
the center.

In aresponse surface context, to contrast the virtue of uniform precision
designs over replicated center-point orthogonal designs one should also
consider the following guidance from Montgomery ("Design and
Analysis of Experiments," Wiley, 1991, page 547), "A uniform precision
design offers more protection against bias in the regression coefficients
than does an orthogonal design because of the presence of third-order
and higher termsin the true surface.

Myers, Vining, et a, ["Variance Dispersion of Response Surface
Designs,” Journal of Quality Technology, 24, pp. 1-11 (1992)] have
explored the options regarding the number of center points and the value
of «x somewhat further: An investigator may control two parameters, ¢x
and the number of center points (n.), given k factors. Either set ¢y =

2(K4) (for rotatability) or ﬁ -- an axial point on perimeter of design
region. Designs are similar in performance with ﬁ preferable as k

increases. Findings indicate that the best overall design performance
occurs wWith oy sy 4/ and 2 n, < 5.
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5.3.3.8. Improving fractional factorial design resolution
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5. Process |mprovement
5.3. Choosing an experimental design
5.3.3. How do you select an experimental design?

5.3.3.8. Improving fractional factorial
design resolution

Foldover Earlier we saw how fractional factorial designs resulted in an alias

designs structure that confounded main effects with certain interactions. Often it

Increase Is useful to know how to run afew additional treatment combinations to

resolution remove alias structures that might be masking significant effects or

Interactions.

Partial Two methods will be described for selecting these additional treatment

foldover combinations:

designs « Mirror-image foldover designs (to build a resolution

br:cail;ilép IV design from aresolution 111 design)

Zﬂ as « Alternative foldover designs (to break up specific

NIST
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5.3.3.8.1. Mirror-Image foldover designs
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5. Process | mprovement

5.3. Choosing an experimental design

5.3.3. How do you select an experimental design?

5.3.3.8. Improving fractional factorial design resolution

5.3.3.8.1.Mirror-Image foldover designs

A foldover
designis
obtained
froma
fractional
factorial
design by
reversing the
signsof all
the columns

A resolution
[11 design,
combined
with its
mirror-image
foldover,
becomes
resolution 1V

A mirror-image fold-over (or foldover, without the hyphen) designis
used to augment fractional factorial designsto increase the resolution

of 23— and Plackett-Burman designs. It is obtained by reversing the

signs of all the columns of the original design matrix. The original
design runs are combined with the mirror-image fold-over design runs,
and this combination can then be used to estimate all main effects clear
of any two-factor interaction. Thisisreferred to as: breaking the alias
link between main effects and two-factor interactions.

Before we illustrate this concept with an example, we briefly review
the basic concepts involved.

Review of Fractional 2k-P Designs

In general, adesign type that uses a specified fraction of the runs from
afull factorial and is balanced and orthogonal is called a fractional
factorial.

A 2-level fractional factorial is constructed as follows: Let the number
of runs be 2kP, Sart by constructing the full factorial for the k-p
variables. Next associate the extra factors with higher-order
interaction columns. The Table shown previously details how to do this

to achieve a minimal amount of confounding.

For example, consider the 252 design (aresolution |11 design). The full
factoria for k = 5 requires 2° = 32 runs. The fractional factorial can be
achieved in 252 = 8 runs, called a quarter (1/4) fractional design, by
setting X4 = X1* X2 and X5 = X1* X3,
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5.3.3.8.1. Mirror-Image foldover designs

Design
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25-2
fractional
factorial

Increase to
resolution IV
design by
augmenting
design matrix

Augmented
runs for the
design matrix

The design matrix for a 25-2 fractional factorial looks like:

TABLE 3.34 Design Matrix for a 252 Fractional Factorial

| run |Xl ’XZ |X3 | X4 = X1X2 | X5 = X1X3
|1 |-1]-1|-1| +1 | +1
| 2 [+1]-1]-1] -1 | -1
| 3 |1 [+1]-1] -1 | +1
|4 | +1[+1 -1 | +1 | -1
| 5 |1 ]-1]+1] +1 | -1
| 6 |[+1|-1[+1 -1 | +1
|7 | -1 [ +1 | +1 | -1 | -1
| 8 [+1[+1]+1] +1 | +1

Design Generators, Defining Relation and the Mirror-Image
Foldover

In this design the X1X2 column was used to generate the X4 main

effect and the X1X3 column was used to generate the X5 main effect.
The design generators are: 4 = 12 and 5 = 13 and the defining relation
Is| =124 = 135 = 2345. Every main effect is confounded (aliased) with
at least one first-order interaction (see the confounding structure for

this design).

We can increase the resolution of thisdesign to IV if we augment the 8
original runs, adding on the 8 runs from the mirror-image fold-over
design. These runs make up another 1/4 fraction design with design

generators4 =-12 and 5 = -13 and defining relation | =-124 =-135=
2345. The augmented runs are:
| run |X1 |X2 |X3 | X4 = -X1X2 | X5 =-X1X3
|9 | +1|+1|+1| -1 | -1
| 10 | -1 |+1|+1 | +1 | +1
| 11 | +1 ] -1 |+1 | +1 | -1
| 12 | -1 | -1 | +1 | -1 | +1
| 13 [+1[+1 | -1 | -1 | +1
|14 [-1[+1 -1 | +1 | -1
| 15 |+1|-1]-1| +1 | +1
16 [ 1 |-1]|-1| 1 | 1
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A mirror-image foldover design isthe original design with all signs
reversed. It breaks the alias chains between every main factor and
two-factor interactionof aresolution |11 design. That is, we can
estimate all the main effects clear of any two-factor interaction.

A 1/16 Design Generator Example

Now we consider a more complex example.

We would like to study the effects of 7 variables. A full 2-level
factorial, 27, would require 128 runs.

Assume economic reasons restrict us to 8 runs. We will build a27-4 =
23 full factorial and assign certain products of columns to the X4, X5,
X6 and X7 variables. Thiswill generate aresolution |11 design in which
al of the main effects are aliased with first-order and higher interaction
terms. The design matrix (see the previous Table for a complete

description of this fractional factorial design) is:

Design Matrix for a 27-3 Fractional Factorial

| | | X4 = | X5 = X6 = X7 =
run|X1|X2|X3| X1X2 | X1X3 | X2X3 X1X2X3
|1 [-1f-1f1] +1 [ +1 [ +1 | -1
|2 |[+1]-1(-1| -1 | -1 | +1 | +1
|3 |-1[+1f-1| -1 | +1 | -1 | +1
|4 [+1|+1|-1| +1 | -1 | -1 | -1
|5 [-1]-1f+1] +1 | -1 | -1 | +1
|6 [+1|-1|+1| -1 | +1 | -1 | -1
|7 |-1j+1+1) -1 | -1 | 41| -1
[ 8 [*1+1+1] +1 | +1 | +#1 | +1

The design generators for this 1/16 fractional factorial design are:
4=12,5=13,6=23and 7 =123
From these we obtain, by multiplication, the defining relation:

| =124 =135=236=347=257/=167 =456 = 1237 =
2345 = 1346 = 1256 = 1457 = 2467 = 3567 = 1234567/.
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5.3.3.8.1. Mirror-Image foldover designs

Using this defining relation, we can easily compute the alias structure
for the complete design, as shown previously in the link to the

fractional design Table given earlier. For example, to figure out which
effects are aliased (confounded) with factor X1 we multiply the
defining relation by 1 to obtain:
1=24=35=1236=1347 = 1257 = 67 = 1456 = 237 = 12345 =
346 = 256 = 457 = 12467 = 13567 = 234567
In order to simplify matters, let usignore all interactions with 3 or
more factors; we then have the following 2-factor alias pattern for X1.
1 =24 =35=67 or, using the full notation, X1 = X2* X4 = X3*X5 =
X6* X7.

The same procedure can be used to obtain all the other aliases for each
of the main effects, generating the following list:

1=24=35=67
2=14=36=57
3=15=26=47
4=12=37=56
5=13=27=46
6=17=23=45
7=16=25=34

The chosen design used a set of generators with all positive signs. The
mirror-image foldover design uses generators with negative signs for
terms with an even number of factorsor, 4=-12,5=-13,6=-23and 7
= 123. This generates a design matrix that is equal to the original

design matrix with every sign in every column reversed.

If we augment theinitial 8 runs with the 8 mirror-image foldover
design runs (with all column signs reversed), we can de-alias al the
main effect estimates from the 2-way interactions. The additional runs
are:
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Design Matrix for the Mirror-Image Foldover Runs of the
27-3 Fractional Factorial

| | | X4= | X5= | X6= | X7 =
run|X1[X2|X3| X1X2 | XIX3 | X2X3 | XIX2X3
|1 |+1f+1j+1] -1 | -1 | -1 | 41
|2 [-1[+1j+1] +1 | +1 | -1 | -1
|3 [+1]-1f+1] +1 | -1 | +1 | -1
|4 |-1[-1+1] -1 | +1 | +1 | +1
|5 [+1[+1]-1| -1 | +1 | +1 | -1
|6 |-1|+1-1| +1 | -1 | +1 | +1
|7 [+1]-1f-2] +1 | +1 | -1 | +1
'8 |-1f-1j-1f -1 | -1 | -1 | -1

Following the same steps as before and making the same assumptions
about the omission of higher-order interactions in the alias structure,
we arrive at:

1=-24=-35=-67
2=-14=-36=-57
3=-15=-26=-47
4=-12=-37=-56
5=-13=-27=-46
6=-17=-23=-45
7=-16=-25=-34

With both sets of runs, we can now estimate all the main effects free
from two factor interactions.

Note: In general, a mirror-image foldover design is a method to build
aresolution 1V design froma resolution |11 design. It is never used to
follow-up a resolution 1V design.
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5.3.3.8.2. Alternative foldover designs

Alternative The mirror-image foldover (in which signsin al columns are reversed)
foldover isonly one of the possible follow-up fractions that can be run to
designs can augment afractional factorial design. It isthe most common choice

be an when the original fraction isresolution I11. However, dternative
economical foldover designs with fewer runs can often be utilized to break up

way to break  selected alias patterns. We illustrate this by looking at what happens
up aselected  when the signs of asingle factor column are reversed.

alias pattern

Exampl e of Previously, we described how we de-alias all the factors of a
de-aliasinga  27-4 experiment. Suppose that we only want to de-alias the X4 factor.

single factor

This can be accomplished by only changing the sign of X4 = X1X2 to
X4 = -X1X2. The resulting designis:

Table TABLE 3.36 A "Reverse X4" Foldover Design
Zhowi ng run X1 X2 X3 X4 =-X1X2 X5=-X1X3 X6 = X2X3 X7 = X1X2X3
esign
matr%xofa 1 -1-1-1 -1 +1 +1 -1
reverse X4 2 +1-1 -1 +1 -1 +1 +1
foldover 3 -1+1 -1 +1 +1 -1 +1
design 4 +1+1 -1 -1 -1 -1 -1
5 -1 -1 +1 -1 -1 -1 +1
6 +1 -1 +1 +1 +1 -1 -1
7 -1 +41+1 +1 -1 +1 -1
8 +1+1+1 -1 +1 +1 +1
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5.3.3.8.2. Alternative foldover designs

The two-factor alias patterns for X4 are: Original experiment: X4 =
XIX2 = X3X7 = X5X6; "Reverse X4" foldover experiment: X4 = -X1X2
= -X3X7 = -X5X6.

T—d

The following effects can be estimated by combining the original 2 I

with the "Reverse X4" foldover fraction:

X1 + X3X5 + X6X7
X2 + X3X6 + X5X7
X3 + X1IX5 + X2X6
X4

X5 + X1X3 + X2X7
X6 + X2X3 + X1X7
X7 + X2X5 + X1X6
X1X4

X2X4

X3X4

X4X5

X4X6

X4ax7

XIX2 + X3X7 + X5X6

Note: The 16 runs allow estimating the above 14 effects, with one
degree of freedom left over for a possible block effect.

The advantage of this follow-up design isthat it permits estimation of
the X4 effect and each of the six two-factor interaction termsinvolving
X4.

The disadvantage is that the combined fractions still yield aresolution
I11 design, with all main effects other than X4 aliased with two-factor
interactions.

Reversing a single factor column to obtain de-aliased two-factor
interactions for that one factor works for any resolution |11 or IV design.
When used to follow-up aresolution IV design, there are relatively few

new effects to be estimated (as compared to Eijjf designs). When the

original resolution IV fraction provides sufficient precision, and the
purpose of the follow-up runsis simply to estimate all two-factor
interactions for one factor, the semifolding option should be considered.

Semifolding
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on John's 3/4
designs
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For resolution 1V fractions, it is possible to economize on the number of
runs that are needed to break the alias chains for all two-factor
interactions of a single factor. In the above case we needed 8 additional
runs, which is the same number of runs that were used in the original
experiment. This can be improved upon.

We can repeat only the points that were set at the high levels of the
factor of choice and then run them at their low settings in the next
experiment. For the given example, this means an additional 4 runs
instead 8. We mention this technique only in passing, more details may
be found in the references (or see John's 3/4 designs).
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5.3.3.9. Three-level full factorial designs
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5.3.3.9. Three-level full factorial designs

Three-level
designsare
useful for
investigating
guadratic
effects

Three-level
design may
require
prohibitive
number of
runs

The simplest
3-level design
- with only 2
factors

The three-level design iswritten as a 3k factorial design. It means that k factors
are considered, each at 3 levels. These are (usually) referred to aslow,
intermediate and high levels. These levels are numerically expressed as 0, 1,
and 2. One could have considered the digits -1, 0, and +1, but this may be
confusing with respect to the 2-level designs since O isreserved for center
points. Therefore, we will use the 0, 1, 2 scheme. The reason that the three-level
designs were proposed is to model possible curvature in the response function
and to handle the case of nominal factors at 3 levels. A third level for a
continuous factor facilitates investigation of a quadratic relationship between
the response and each of the factors.

Unfortunately, the three-level design is prohibitive in terms of the number of
runs, and thus in terms of cost and effort. For example atwo-level design with
center pointsis much less expensive while it still isavery good (and simple)
way to establish the presence or absence of curvature.

The 32 design

Thisisthe simplest three-level design. It has two factors, each at three levels.
The 9 treatment combinations for this type of design can be shown pictorialy as
follows:

FIGURE 3.23 A 32 Design Schematic
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5.3.3.9. Three-level full factorial designs

The model
and treatment
runsfor a 3
factor, 3-level
design

2 - ¢ [ ] [
02 12 22
m
2 1 [ ] [ ] 0
& 01 11 21
0 - ¢ [ ] 0
00 10 20
| | |
0 1 2
Factor A

A notation such as "20" meansthat factor A isat its high level (2) and factor B
isat itslow level (0).

The 33 design

Thisisadesign that consists of three factors, each at three levels. It can be
expressed asa 3 x 3 x 3 = 33 design. The mode! for such an experiment is

Yy = pit A+ B+ ABy + Cy + ATy + BTy + ABCy + 5,

where each factor isincluded as a nominal factor rather than as a continuous
variable. In such cases, main effects have 2 degrees of freedom, two-factor
interactions have 22 = 4 degrees of freedom and k-factor interactions have 2k
degrees of freedom. The model contains2+2+ 2+ 4+ 4+ 4 + 8 = 26 degrees
of freedom. Note that if thereis no replication, the fit is exact and thereis no
error term (the epsilon term) in the model. In this no replication case, if one
assumes that there are no three-factor interactions, then one can use these 8
degrees of freedom for error estimation.

Inthismodel we seethat i = 1, 2, 3, and similarly for j and k, making 27
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treatments for
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representation
of the 33
design

treatments.

These treatments may be displayed as follows:

TABLE 3.37 The 33 Design

Factor A
Factor B Factor C 0 1 2
0 0 000 100 200
0 1 001 101 201
0 2 002 102 202
1 0 010 110 210
1 1 011 111 211
1 2 012 112 212
2 0 020 120 220
2 1 021 121 221
2 2 022 122 222

The design can be represented pictorially by

L o [ N T - B I S Y = B A R LR

FIGURE 3.24 A 33 Design Schematic
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5.3.3.9. Three-level full factorial designs

Two types of Two types of fractions of 3K designs are employed:

3k designs « Box-Behnken designs whose purpose is to estimate a second-order model
for quantitative factors (discussed earlier in section 5.3.3.6.2)

« 3P orthogonal arrays.
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5.3.3.10. Three-level, mixed-level and fractional factorial designs
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5.3.3.10. Three-level, mixed-level and
fractional factorial designs

Mixed level ~ The 2k and 3k experiments are special cases of factorial designs. In a
designshave  factorial design, one obtains data at every combination of the levels.
somefactors  Theimportance of factorial designs, especially 2-level factorial designs,
with, say, 2 was stated by Montgomery (1991): It is our belief that the two-level

levels, and factorial and fractional factorial designs should be the cornerstone of
some with 3 industrial experimentation for product and process devel opment and
levelsor 4 improvement. He went on to say: There are, however, some situationsin
levels which it is necessary to include a factor (or a few factors) that have

mor e than two levels.

This section will look at how to add three-level factors starting with
two-level designs, obtaining what is called a mixed-level design. We
will also look at how to add a four-level factor to atwo-level design.
The section will conclude with alisting of some useful orthogonal
three-level and mixed-level designs (afew of the so-called Taguchi "L"
orthogonal array designs), and a brief discussion of their benefits and
disadvantages.

Generating a Mixed Three-Level and Two-Level Design

Montgomery  Montgomery (1991) suggests how to derive avariable at three levels

scheme for from a 23 design, using arather ingenious scheme. The objectiveisto
generatinga  generate adesign for one variable, A, at 2 levels and another, X, at three
mixed levels. Thiswill be formed by combining the -1 and 1 patterns for the B
design and C factors to form the levels of the three-level factor X:

TABLE 3.38 Generating a Mixed Design

Two-L evel Three-Leve
B C X
-1 -1 X1
+1 -1 X2
-1 +1 X2
+1 +1 X3

Similar to the 3K case, we observe that X has 2 degrees of freedom,
which can be broken out into alinear and a quadratic component. To
illustrate how the 23 design | eads to the design with one factor at two
levels and one factor at three levels, consider the following table, with
particular attention focused on the column labels.
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Table
illustrating
the
generation
of adesign
with one
factor at 2
levelsand
another at 3
levelsfroma
23 design

If quadratic
effect
negligble,
we may
include a
second
two-level
factor

3-Leve
factors from
24 and 25
designs

Constructing
adesign
with one
4-level

factor and
two 2-level
factors

Table
showing
design with
4-level, two
2-level
factorsin 16
runs

A XL X AX_ AX_ XQ AXQ TRT MNT
Run A B C AB AC BC ABC A X

1 -1 -1 -1 +1 +1 +1 -1 Low Low
2 +1 -1 -1 -1 -1 +1 +1 High Low
3 -1 +#1 -1 -1 +1 -1 +1 Low Medium
4 +1 +1 -1 +1 -1 -1 -1 High Medium
5 -1 -1 +1 +1 -1 -1 +1 Low Medium
6 +1 -1 +1 -1 +1 -1 -1 High Medium
7 -1 +41 +1 -1 -1 41 -1 Low High

If we believe that the quadratic effect is negligible, we may include a
second two-level factor, D, with D = ABC. In fact, we can convert the
design to exclusively amain effect (resolution I11) situation consisting
of four two-level factors and one three-level factor. Thisis
accomplished by equating the second two-level factor to AB, the third
to AC and the fourth to ABC. Column BC cannot be used in this
manner because it contains the quadratic effect of the three-level factor
X.

Morethan onethree-level factor

We have seen that in order to create one three-level factor, the starting
design can be a 23 factorial . Without proof we state that a 24 can split
off 1, 2 or 3 three-level factors; a 25 is able to generate 3 three-level
factors and still maintain afull factorial structure. For more on this, see
Montgomery (1991).

Generating a Two- and Four-Level Mixed Design

We may use the same principles as for the three-level factor examplein
creating afour-level factor. We will assume that the goal isto construct
adesign with one four-level and two two-level factors.

Initially we wish to estimate al main effects and interactions. It has
been shown (see Montgomery, 1991) that this can be accomplished via
a24 (16 runs) design, with columns A and B used to create the four
level factor X.

TABLE 3.39 A Single Four-level Factor and Two
Two-level Factorsin 16 runs

Run (A B) =X C D
1 -1 -1 X1 -1 -1
2 +1 -1 Xo -1 -1
3 -1 +1 X3 -1 -1
4 +1  +1 X4 -1 -1
5 -1 -1 X1 +1 -1
6 +1 -1 Xo +1 -1
7 -1 +1 X3 +1 -1
8 +1  +1 X4 +1 -1
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Some Useful (Taguchi) Orthogonal "L" Array Designs

Lg- A 3*2Fractional Factorial Design 4 Factors

at ThreeLevels (9 runs)

design

X4

X3

X2

X1

Run

L1g- A 2x 373 Fractional Factorial (Mixed-L evel) Design
1 Factor at Two Levelsand Seven Factorsat 3 Levels (18 Runs)

Lisg

design

X1 [X2 [ X3 [ X4 [ X5 [ X6 [ X7 [ X8

Run
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Advantages and Disadvantages of Three-Level and Mixed-L evel
"L" Designs

The good features of these designs are:

« They are orthogona arrays. Some analysts believe this
simplifies the analysis and interpretation of results while other
analysts believe it does not.

» They obtain alot of information about the main effectsin a
relatively few number of runs.

« You can test whether non-linear terms are needed in the model,

at least as far asthe three-level factors are concerned.

On the other hand, there are several undesirable features of these
designsto consider:

« They provide limited information about interactions.

« They require more runs than a comparable 2k-Pdesign, and a
two-level design will often suffice when the factors are
continuous and monotonic (many three-level designs are used
when two-level designs would have been adequate).
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Assuming you have a starting model that you want to fit to your
experimental data and the experiment was designed correctly for your
objective, most DOE software packages will analyze your DOE data.
This section will illustrate how to analyze DOE's by first going over the
generic basic steps and then showing software examples. The contents
of the section are:

DOE analysis steps

Plotting DOE data

Modeling DOE data

Testing and revising DOE models
Interpreting DOE results

Confirming DOE results

DOE examples

o Full factorial example

0 Fractional factorial example

0 Response surface example

The examplesin this section assume the reader is familiar with the
concepts of

ANOVA tables (see Chapter 3 or Chapter 7)

p-values

Residual analysis

Model Lack of Fit tests

Data transformations for normality and linearity
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5.4.1. What are the steps in a DOE analysis?
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5.4.1.What are the steps in a DOE analysis?

General Flowchart of DOE Analysis Steps
flowchart e
for - i
analyzing Look al the data H’Hﬂm\xﬁh i
DOE data f”f’h sials ™ B _ »
! 7 L | Itme I-EE{ E_als u;‘x Ho 1311 Ty iran sforming
I / o Tandomiy and Nomnally = the response data
| s [T distibuted 7
- . -~
;/’.Jﬂ./_rlswers o™ o ey m';';f'd -
! < grestions ,-*;b_ ‘RH i
~.., ohwions? -~ ’
: . u;f,.» \f Fes 1= graphs to identify
T " a_,i\ . the source of the Lol
. If feasible, edif the
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-~ /t:tlfﬂe :my\ . _f_'!.r-""' made] to correct. If
| ;]&'emeﬂ?; {\H Lack of ) P not, re:;l;?igrdt or augment
I eore Fite iz design.
i toadel] HNRL //
|
I Ha P
i l ¥ 7N Use tl “'
| Eatimatethe actunl - S se the reaults
il ;,Tnil,; f!;; ||-,g Examine the | “Further ﬂmli_-lff il to answer the
‘ | data(simplify ANOVA table ™ the ’m‘df'] i fquestionz in
! if possible) ~gppropriale.~ Vour experimental
! ™ objectives
; S — i Yes
DOE Analysis Steps
Analysis The following are the basic stepsin a DOE analysis.
steps: 1. Look at the data. Examine it for outliers, typos and obvious problems. Construct as many
gk:aphI(;S, | graphs as you can to get the big picture.
:megreletlca o Response distributions (histograms, box plots, etc.)
actual 0 Responses versus time order scatter plot (a check for possible time effects)
model, 0 Responses versus factor levels (first look at magnitude of factor effects)
validate _ .
moddl use o Typical DOE plots (which assume standard models for effects and errors)
model = Main effects mean plots

= Block plots
= Normal or haf-normal plots of the effects
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= Interaction plots

o Sometimes the right graphs and plots of the data lead to obvious answers for your
experimental objective questions and you can skip to step 5. In most cases, however,
you will want to continue by fitting and validating a model that can be used to
answer your questions.

. Create the theoretical model (the experiment should have been designed with this model in

mind!).

. Create amodel from the data. Simplify the model, if possible, using stepwise regression

methods and/or parameter p-value significance information.

. Test the model assumptions using residual graphs.

o If none of the model assumptions were violated, examine the ANOVA.

= Simplify the model further, if appropriate. If reduction is appropriate, then
return to step 3 with a new model.

o If model assumptions were violated, try to find a cause.
= Are necessary terms missing from the model?

= Will atransformation of the response help? If atransformation is used, return
to step 3 with a new model.

. Usethe results to answer the questions in your experimental objectives -- finding important

factors, finding optimum settings, etc.

Note: The above flowchart and sequence of steps should not be regarded as a "hard-and-fast rule"
for analyzing all DOE's. Different analysts may prefer a different sequence of steps and not all
types of experiments can be analyzed with one set procedure. There still remains some art in both
the design and the analysis of experiments, which can only be learned from experience. In
addition, the role of engineering judgment should not be underestimated.
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5.4.2. How to "look" at DOE data
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5.4. Analysis of DOE data

5.4.2.How to "look" at DOE data

The
importance
of looking at
the data with
awide array
of plots or
visual
displays
cannot be
over-stressed

Plots for
viewing the
response
data

The right graphs, plots or visual displays of a dataset can uncover
anomalies or provide insights that go beyond what most quantitative
techniques are capable of discovering. Indeed, in many cases
quantitative techniques and models are tools used to confirm and extend
the conclusions an analyst has already formulated after carefully
"looking" at the data.

Most software packages have a selection of different kinds of plots for
displaying DOE data. Dataplot, in particular, has awide range of
options for visualizing DOE (i.e., DEX) data. Some of these useful
ways of looking at data are mentioned below, with links to detailed
explanations in Chapter 1 (Exploratory Data Analysis or EDA) or to
other places where they are illustrated and explained. In addition,
examples and detailed explanations of visual (EDA) DOE techniques
can be found in section 5.5.9.

First "Look" at the Data
o Histogram of responses

o Run-sequence plot (pay specia attention to results at center
points)
o Scatter plot (for pairs of response variables)

o Lagplot
o Normal probability plot
« Autocorrelation plot
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5.4.2. How to "look" at DOE data

Plots for
viewing
main effects
and 2-factor
Interactions,
explanation
of normal or
half-normal
plots to
detect
possible
important
effects

Plots for
testing and
validating
models

Plots for
model
prediction

Subsequent Plots: Main Effects, Comparisons and 2-Way
| nteractions

Quantile-quantile (g-q) plot

Block plot

Box plot
Bi-histogram

DEX scatter plot

DEX mean plot

DEX standard deviation plot
DEX interaction plots

Normal or half-normal probability plots for effects. Note: these

links show how to generate plots to test for normal (or
half-normal) data with points lining up along a straight line,
approximately, if the plotted points were from the assumed
normal (or half-normal) distribution. For two-level full factorial
and fractional factorial experiments, the points plotted are the
estimates of all the model effects, including possible interactions.
Those effects that are really negligible should have estimates that
resemble normally distributed noise, with mean zero and a
constant variance. Significant effects can be picked out asthe
ones that do not line up aong the straight line. Normal effect
plots use the effect estimates directly, while half-normal plots use
the absolute values of the effect estimates.

Y ouden plots

Model testing and Validation

Response vs predictions

Residuals vs predictions

Residuals vs independent variables

Residuals lag plot

Residuals histogram

Normal probability plot of residuals

Model Predictions

Contour plots
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5.4.2. How to "look" at DOE data
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5.4.3. How to model DOE data
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5.4. Analysis of DOE data

5.4.3.How to model DOE data

DOE models
should be
consistent
with the
goal of the
experiment

Comparative
designs

Full
factorial
designs

Fractional
factorial
designs

In general, the trial model that will be fit to DOE data should be
consistent with the goal of the experiment and has been predetermined
by the goal of the experiment and the experimental design and data
collection methodol ogy.

Models were given earlier for comparative designs (completely
randomized designs, randomized block designs and Latin square

designs).

For full factorial designs with k factors (2K runs, not counting any center
points or replication runs), the full model contains all the main effects
and all orders of interaction terms. Usually, higher-order (three or more
factors) interaction terms are included initially to construct the normal
(or half-normal) plot of effects, but later dropped when asimpler,
adequate moddl isfit. Depending on the software available or the
analyst's preferences, various techniques such as normal or half-normal
plots, Y ouden plots, p-value comparisons and stepwise regression
routines are used to reduce the model to the minimum number of needed
terms. A IMP example of model selection is shown later in this section

and a Dataplot example is given as a case study.

For fractional factorial screening designs, it is necessary to know the
alias structure in order to write an appropriate starting model containing
only the interaction terms the experiment was designed to estimate
(assuming all terms confounded with these selected terms are
insignificant). Thisisillustrated by the IMP fractional factorial example
later in this section. The starting model is then possibly reduced by the

same techniques described above for full factorial models.
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5.4.3. How to model DOE data

Response Response surface initial models include quadratic terms and may
surface occasionally also include cubic terms. These models were described in
designs section 3.
Model Of course, asin all cases of model fitting, residual analysis and other
validation tests of model fit are used to confirm or adjust models, as needed.
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5.4.4. How to test and revise DOE models
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5.4.4. How to test and revise DOE models

Toolsfor
testing,
revising,
and
selecting
models

An outline
(with links)
covers most
of the useful
tools and
procedures
for testing
and revising
DOE models

All the tools and procedures for testing, revising and selecting final
DOE models are covered in various sections of the Handbook. The
outline below gives many of the most common and useful techniques
and has links to detailed explanations.

Outline of Model Testing and Revising: Tools and Procedures

o Graphical Indicators for testing models (using residuals)

O

O

O

O

O

O

Response vs predictions

Residuals vs predictions

Residuals vs independent variables

Residuals lag plot

Residuals histogram
Normal probability plot of residuals

o Overal numerical indicators for testing models and model terms

O

O

R Squared and R Squared adjusted
Model Lack of Fit tests

0 ANOVA tables (see Chapter 3 or Chapter 7)

0 p-values
o Model selection tools or procedures
0 ANOVA tables (see Chapter 3 or Chapter 7)
o p-vaues
0 Resdual analysis
0 Model Lack of Fit tests
o Datatransformations for normality and linearity

]

Stepwise regression procedures
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5.4.4. How to test and revise DOE models
o Normal or half-normal plots of effects (primarily for
two-level full and fractional factorial experiments)

o Youden plots
o Other methods

NIST
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5.4.5. How to interpret DOE results
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5.4.5.How to interpret DOE results

Final model Assume that you have afinal model that has passed all the relevant tests

used to (visual and quantitative) and you are ready to make conclusions and
make decisions. These should be responses to the questions or outputs
conclusons  dictated by the original experimental goals.

and

decisions

Checklist relating DOE conclusions or outputsto experimental
goalsor experimental purpose:

A checklist « Do the responses differ significantly over the factor levels?

of how to (comparative experiment goal)

compare o Which are the significant effects or termsin the fina model?

DOE results (screening experiment goal)

to the_ o What isthe model for estimating responses?

experimental _ _ o

goals o Full factorial case (main effects plus significant
Interactions)

o Fractional factorial case (main effects plus significant
Interactions that are not confounded with other possibly
real effects)

o RSM case (allowing for quadratic or possibly cubic
models, if needed)

« What responses are predicted and how can responses be
optimized? (RSM goal)
o Contour plots
o JMP prediction profiler (or other software aids)

0 Settings for confirmation runs and prediction intervals for
results

NIST
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5.4.6. How to confirm DOE results (confirmatory runs)
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5.4.6.How to confirm DOE results
(confirmatory runs)

Definition of When the analysis of the experiment is complete, one must verify that

confirmation the predictions are good. These are called confirmation runs.

runs The interpretation and conclusions from an experiment may include a
"best" setting to use to meet the goals of the experiment. Evenif this
"best" setting were included in the design, you should run it again as
part of the confirmation runs to make sure nothing has changed and
that the response values are close to their predicted values. would get.

At least 3 In anindustrial setting, it isvery desirable to have a stable process.

confirmation Therefore, one should run more than one test at the "best" settings. A

runs should minimum of 3 runs should be conducted (allowing an estimate of

be planned variability at that setting).
If the time between actually running the experiment and conducting the
confirmation runs is more than afew hours, the experimenter must be
careful to ensure that nothing else has changed since the original data
collection.

Carefully The confirmation runs should be conducted in an environment as

duplicatethe  similar as possible to the original experiment. For example, if the

original experiment were conducted in the afternoon and the equipment has a

environment warm-up effect, the confirmation runs should be conducted in the

afternoon after the equipment has warmed up. Other extraneous factors
that may change or affect the results of the confirmation runs are:
person/operator on the equipment, temperature, humidity, machine
parameters, raw materials, etc.
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5.4.6. How to confirm DOE results (confirmatory runs)

Checks for What do you do if you don't obtain the results you expected? If the
when confirmation runs don't produce the results you expected:
confirmation 1. check to see that nothing has changed since the origina data
runsgive collection

SUPPrISEs 2. verify that you have the correct settings for the confirmation

runs
3. revisit the model to verify the "best" settings from the analysis

4. verify that you had the correct predicted value for the
confirmation runs.

If you don't find the answer after checking the above 4 items, the
model may not predict very well in the region you decided was "best".
Y ou still learned from the experiment and you should use the
information gained from this experiment to design another follow-up

experiment.
Even when Every well-designed experiment is a successin that you learn
the something from it. However, every experiment will not necessarily

experimental meet the goals established before experimentation. That iswhy it
goals are not makes sense to plan to experiment sequentially in order to meet the
met, goals.

something

was learned

that can be

usedina

follow-up

experiment

NIST
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5.4. Analysis of DOE data

5.4.7.Examples of DOE's

Software Most DOE analyses of industrial experimentswill be performed by
packagesdo  statistical software packages. Good statistical software enables the

the analyst to view graphical displays and to build models and test
calculations  assumptions. Occasionally the goals of the experiment can be achieved
and plotthe by simply examining appropriate graphical displays of the experimental

graphsfor a
DOE

responses. In other cases, a satisfactory model hasto befit in order to
determine the most significant factors or the optimal contours of the

analysis: the  response surface. In any case, the software will perform the appropriate
analyst has calculations as long as the analyst knows what to request and how to
to know interpret the program outputs.
what to
request and
how to
interpret the
results
Three Perhaps one of the best waysto learn how to use DOE analysis software
detailed to analyze the results of an experiment isto go through several detailed
DOE examples, explaining each step in the analysis. This section will
analyses Illustrate the use of IMP 3.2.6 software to analyze three real
will begiven  experiments. Analysis using other software packages would generally
using JMP proceed along similar paths.
software .
The examples cover three basic types of DOE's:
1. A full factorial experiment
2. A fractional factorial experiment
3. A response surface experiment
NIST : :
0 TOOLS & AIDS SEARCH BACK MNEXT
SEMATECH "ome | | '

http://www.itl.nist.gov/div898/handbook/pri/section4/pri47.htm [11/14/2003 5:53:22 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/

5.4.7.1. Full factorial example
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5.4.7. Examples of DOE's

5.4.7.1.Full factorial example

Thisexample
uses data from
a NIST high
performance
ceramics
experiment

Response and
factor
variables used
inthe
experiment

Data Source

This data set was taken from an experiment that was performed afew years ago at NIST (by Said
Jahanmir of the Ceramics Division in the Material Science and Engineering Laboratory). The
original analysis was performed primarily by Lisa Gill of the Statistical Engineering Division.
The example shown hereis an independent analysis of a modified portion of the original data set.

The original data set was part of a high performance ceramics experiment with the goal of
characterizing the effect of grinding parameters on sintered reaction-bonded silicon nitride,
reaction bonded silicone nitride, and sintered silicon nitride.

Only modified data from the first of the 3 ceramic types (sintered reaction-bonded silicon nitride)
will be discussed in thisillustrative example of afull factorial data analysis.

The reader may want to download the data as atext file and try using other software packages to
analyze the data.

Description of Experiment: Response and Factors

Purpose: To determine the effect of machining factors on ceramic strength
Response variable = mean (over 15 repetitions) of the ceramic strength
Number of observations = 32 (a complete 25 factorial design)

Response Variable Y = Mean (over 15 reps) of Ceramic Strength

Factor 1 = Table Speed (2 levels: slow (.025 m/s) and fast (.125 m/s))
Factor 2 = Down Feed Rate (2 levels: low (.05 mm) and fast (.125 mm))
Factor 3 =Wheel Grit (2 levels: 140/170 and 80/100)

Factor 4 = Direction (2 levels: longitudinal and transverse)

Factor 5 = Batch (2 levels: 1 and 2)

Since two factors were qualitative (direction and batch) and it was reasonable to expect monotone
effects from the quantitative factors, no centerpoint runs were included.
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5.4.7.1. Full factorial example

JMP The design matrix, with measured ceramic strength responses, appears below. The actual
spreadsheet of randomized run order is given in the last column. (The interested reader may download the data
the data asatext fileor asaJMPfile)

i JMP - [fullfac]

File Edit Tahlss Bows Cols Anelyze Graph  Toolsl Window Help

Hoels H O T C1 A O B O [N 1
%2 Riowrs 1. Tabls Speed W2 FesdRale  ¥3 Wikl Grk | M4 Dieectian X5 Beleh . Slrererth At Rur Oroer
1 1 -1 -1 -1 B | GR0.A45 17
2 1 -1 -1 -1 -1 TA2AB | |
3 -1 1 -1 -1 -1 TO2.14 14
4 1 1 1 1 1 [k 8
£ -1 -1 1 -1 -1 0367 2
[+ 1 -1 1 -1 -1 64214 i}
7 -1 1 1 -l -1 GR2.898 2
B 1 1 1 -1 B | e 26
] -1 -1 -1 1 -1 401 58 n
10 1 -1 -1 1 -1 475532 iy
11 1 1 1 1 ] 47B.76 T
12 1 1 -1 1 -1 EnR.23 18
13 -1 -1 1 1 -1 44472 3
14 1 =1 1 1 B | J1037 19
15 B | 1 1 1 B | 42851 il
16 1 1 1 1 -1 40147 1&8
17 -1 -1 -1 -1 1 607 34 12
1B 1 1 1 1 ] 6208 1
(1] -1 1 -1 -1 ] G055 4
20 1 1 -1 -1 1 G304 3
21 -1 1 1 1 ] SRS.A9 2
a2 1 -1 1 -1 ] ERGAT -1
23 -1 1 1 -1 1 ailaT 11
24 1 1 1 -1 1 aioEs1 v
25 1 1 1 1 ] 4420 25
20 1 -1 -1 1 ] 434 41 21
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Analysis of the Experiment
Analysis The experimental data will be analyzed following the previously described 5 basic steps using
follows5basic  SASJIMP 3.2.6 software.
steps

Step 1. Look at the data
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5.4.7.1. Full factorial example

Plot the We start by plotting the response data several ways to see if any trends or anomalies appear that
response would not be accounted for by the standard linear response models.
variable

First we look at the distribution of all the responses irrespective of factor levels.
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The following plots were generared:

1. Thefirst plot isanormal probability plot of the response variable. The straight red lineis
the fitted nornal distribution and the curved red lines form a simultaneous 95% confidence
region for the plotted points, based on the assumption of normality.

2. The second plot isabox plot of the response variable. The "diamond" is called (in IMP) a
"means diamond" and is centered around the sample mean, with endpoints spanning a 95%
normal confidence interval for the sample mean.

3. Thethird plot is ahistogram of the response variable.

Clearly thereis"structure” that we hope to account for when we fit a response model. For
example, note the separation of the response into two roughly equal-sized clumpsin the
histogram. The first clump is centered approximately around the value 450 while the second
clump is centered approximately around the value 650.
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5.4.7.1. Full factorial example

Plot of Next we look at the responses plotted versus run order to check whether there might be atime
response sequence component affecting the response levels.
versus run
order Plot of Response Vs. Run Order
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As hoped for, this plot does not indicate that time order had much to do with the response levels.
Box plots of Next, we look at plots of the responses sorted by factor columns.
response by , . - .
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5.4.7.1. Full factorial example

Theoretical
model: assume
all 4-factor and
higher
interaction
terms are not
significant

Output from
fitting up to
third-order
interaction
terms
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Severa factors, most notably "Direction” followed by "Batch” and possibly "Wheel Grit", appear
to change the average response level.

Step 2: Create the theoretical model

With a 25 full factorial experiment we can fit amodel containing a mean term, al 5 main effect
terms, all 10 2-factor interaction terms, all 10 3-factor interaction terms, al 5 4-factor interaction
terms and the 5-factor interaction term (32 parameters). However, we start by assuming all three
factor and higher interaction terms are non-existent (it's very rare for such high-order interactions
to be significant, and they are very difficult to interpret from an engineering viewpoint). That
allows us to accumulate the sums of squares for these terms and use them to estimate an error
term. So we start out with atheoretical model with 26 unknown constants, hoping the data will
clarify which of these are the significant main effects and interactions we need for afinal model.

Step 3. Create the actual model from the data

After fitting the 26 parameter model, the following analysistable is displayed:

Qutput after Fitting Third Order Model to Response Data
Response: Y: Strength
Summary of Fit
RSquar e 0. 995127
RSquar e Adj 0.974821
Root Mean Square Error 17. 81632
Mean of Response 546. 8959
observations 32
Ef fect Test
Sum
Sour ce DF of Squares F Ratio Pr ob>F
X1: Tabl e Speed 1 894. 33 2.8175 0. 1442
X2: Feed Rate 1 3497. 20 11. 0175 0. 0160
X1: Tabl e Speed* 1 4872. 57 15. 3505 0. 0078
X2: Feed Rate
X3: Weel Git 1 12663. 96 39. 8964 0. 0007
X1: Tabl e Speed* 1 1838. 76 5.7928 0. 0528
X3: Weel Git
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5.4.7.1. Full factorial example

X2: Feed Rate* 1 307. 46 0. 9686 0. 3630
X3: Weel Git
X1: Tabl e Speed* 1 357. 05 1.1248 0. 3297

X2: Feed Rate*
X3: Wieel Git

X4: Direction 1 315132. 65 992. 7901 <. 0001

X1: Tabl e Speed* 1 1637. 21 5. 1578 0. 0636
X4: Direction

X2: Feed Rate* 1 1972. 71 6.2148 0. 0470
X4: Direction

X1: Tabl e Speed 1 5895. 62 18. 5735 0. 0050

X2: Feed Rate*
X4: Direction

X3: Wheel Git* 1 3158. 34 9. 9500 0. 0197
X4: Direction
X1: Tabl e Speed* 1 2.12 0. 0067 0. 9376

X3: Wheel Git*
X4: Direction

X2: Feed Rate* 1 44. 49 0. 1401 0.7210
X3: Wheel Git*
X4: Direction

X5: Batch 1 33653. 91 106. 0229 <. 0001

X1: Tabl e Speed* 1 465. 05 1.4651 0.2716
X5: Batch

X2: Feed Rate* 1 199. 15 0.6274 0. 4585
X5: Batch

X1: Tabl e Speed* 1 144. 71 0. 4559 0. 5247
X2: Feed Rate*
X5: Batch

X3: Wheel Git* 1 29. 36 0. 0925 0.7713
X5: Batch

X1: Tabl e Speed* 1 30. 36 0. 0957 0. 7676
X3: Wheel Git*
X5: Batch

X2: Feed Rate* 1 25. 58 0. 0806 0. 7860
X3: Wheel Git*
X5: Batch

X4: Direction * 1 1328. 83 4.1863 0. 0867
X5: Batch

X1: Tabl e Speed* 1 544, 58 1.7156 0.2382
X4: Directio*
X5: Batch

X2: Feed Rate* 1 167. 31 0.5271 0. 4952
X4: Direction*
X5: Batch

X3: Weel Git* 1 32. 46 0.1023 0. 7600
X4: Direction*
X5: Batch

Thisfit has a high R? and adjusted R2, but the large number of high (>0.10) p-values (in the
"Prob>F" column) make it clear that the model has many unnecessary terms.
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5.4.7.1. Full factorial example

JMP stepwise Starting with these 26 terms, we next use the IM P Stepwise Regression option to eliminate

regression unnecessary terms. By a combination of stepwise regression and the removal of remaining terms
with a p-value higher than 0.05, we quickly arrive at amodel with an intercept and 12 significant
effect terms.
Output from
fitting the
12-term model Qutput after Fitting the 12-Term Model to Response Data
Response: Y: Strength

Summary of Fit
RSquare 0.989114
RSquare Adj 0.982239
Root Mean Square Error 14.96346
Mean of Response 546. 8959
bservations (or Sum Wts) 32

Ef f ect Test

Sum
Sour ce DF of Squares F Ratio Pr ob>F
X1: Tabl e Speed 1 894. 33 3.9942 0. 0602
X2: Feed Rate 1 3497. 20 15. 6191 0. 0009
X1: Tabl e Speed* 1 4872. 57 21.7618 0. 0002
X2: Feed Rate
X3: Wheel Git 1 12663. 96 56. 5595 <. 0001
X1: Tabl e Speed* 1 1838. 76 8.2122 0. 0099
X3: VWeel Git
X4: Direction 1 315132. 65 1407.4390 <. 0001
X1: Tabl e Speed* 1 1637. 21 7.3121 0. 0141
X4: Direction
X2: Feed Rate* 1 1972. 71 8. 8105 0. 0079
X4: Direction
X1: Tabl e Speed* 1 5895. 62 26. 3309 <. 0001
X2: Feed Rate*
X4:Direction
X3: Wheel Git* 1 3158. 34 14. 1057 0. 0013
X4: Direction
X5: Batch 1 33653. 91 150. 3044 <. 0001
X4: Direction* 1 1328. 83 5.9348 0. 0249
X5: Batch
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5.4.7.1. Full factorial example

Normal plot of Non-significant effects should effectively follow an approximately normal distribution with the

the effects same location and scale. Significant effects will vary from this normal distribution. Therefore,
another method of determining significant effectsisto generate anormal plot of all 31 effects.
Those effects that are substantially away from the straight line fitted to the normal plot are
considered significant. Although thisis a somewhat subjective criteria, it tends to work well in
practice. It is helpful to use both the numerical output from the fit and graphical techniques such
asthe normal plot in deciding which terms to keep in the model.

The normal plot of the effects is shown below. We have |abel ed those effects that we consider to
be significant. In this case, we have arrived at the exact same 12 terms by looking at the normal
plot as we did from the stepwise regression.

Mormal Plot of Saturated Model Effects (31 Effects)
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Most of the effects cluster close to the center (zero) line and follow the fitted normal model
straight line. The effects that appear to be above or below the line by more than a small amount
are the same effects identified using the stepwise routine, with the exception of X1. Some analysts
prefer to include a main effect term when it has several significant interactions even if the main
effect term itself does not appear to be significant.
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5.4.7.1. Full factorial example

Model appears At this stage, this model appears to account for most of the variability in the response, achieving
to account for an adjusted R2 of 0.982. All the main effects are significant, as are 6 2-factor interactions and 1

most of the 3-factor interaction. The only interaction that makes little physical senseisthe™ X4:

variability Direction* X5: Batch" interaction - why would the response using one batch of material react
differently when the batch is cut in adifferent direction as compared to another batch of the same
formulation?

However, before accepting any model, residuals need to be examined.

Step 4. Test the model assumptions using residual graphs (adjust and simplify as needed)

Plot of First we look at the residuals plotted versus the predicted responses.
residuals
versus 20
predicted
responses 20
10
0
i -10
-20
.20
-0 T T T T T T T T
200 250 400 450 500 550 600 850 F00 750
" Strength  Predicted

The residuals appear to spread out more with larger values of predicted strength, which should
not happen when there is acommon variance.

Next we examine the normality of the residuals with anormal quantile plot, abox plot and a
histogram.

http://www.itl.nist.gov/div898/handbook/pri/section4/pri471.htm (9 of 15) [11/14/2003 5:53:23 PM]



5.4.7.1. Full factorial example

I
Homal Quanils

None of these plots appear to show typical normal residuals and 4 of the 32 data points appear as
outliersin the box plot.

Step 4 continued: Transform the data and fit the model again

Box-Cox We next look at whether we can model atransformation of the response variable and obtain

Transformation  residuals with the assumed properties. IMP cal cul ates an optimum Box-Cox transformation by
finding the value of } that minimizes the model SSE. Note: the Box-Cox transformation used in
JMP isdifferent from the transformation used in Dataplot, but roughly equivalent.

Box-Cox Transformation Graph
5000

w 5000
n

4000

2000

¥ Sirangth

0 T T T T T T T
20 15 A0 05 0 5 1.0 15 20
Lambda

The optimum isfound at } = 0.2. A new column Y: Strength X is calculated and added to the
JMP data spreadsheet. The properties of this column, showing the transformation equation, are
shown below.
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5.4.7.1. Full factorial example

JMP data Data Transfor mation Column Properties
transformation £ Column Into: B
menu Table Name: ceramichfac

Col Name:  [Y: Strength X I L

Validation: ™ Nong £ LatGheolior Hangr: Lok

Data Type: |nymeric =| Data Source: |Fgrmula =]

Field Width: [J  Format |Best B

Noles!

¥ Srength o1 [ Ok ]| @ Cancel | Help |
0, 00131261

Fit model to When the 12-effect model isfit to the transformed data, the "X4: Direction* X5: Batch"
transformed interaction term is no longer significant. The 11-effect model fit is shown below, with parameter
data estimates and p-values.
JMP output for
fitted model
after applying Qut put after Fitting the 11-Effect Mdel to
Box-Cox Tranf ormed Response Data

transformation
Response: Y: Strength X

Summary of Fit
RSquar e 0.99041
RSquare Adj 0.985135
Root Mean Square Error 13. 81065
Mean of Response 1917.115
bservations (or Sum Wts) 32

Par anet er
Ef f ect Esti nat e p- val ue
| nt er cept 1917. 115 <. 0001
X1: Tabl e Speed 5.777 0. 0282
X2: Feed Rate 11. 691 0. 0001
X1: Tabl e Speed* -14. 467 <. 0001
X2: Feed Rate
X3: Wheel Git -21. 649 <. 0001
X1: Tabl e Speed* 7.339 0. 007
X3: Wheel Git
X4: Direction -99. 272 <. 0001
X1: Tabl e Speed* -7.188 0. 0080
X4: Direction
X2: Feed Rate* -9.160 0. 0013

X4: Direction
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5.4.7.1. Full factorial example

X1: Tabl e Speed* 15. 325 <. 0001
X2: Feed Rate*
X4:Direction
X3: Weel Git* 12. 965 <. 0001
X4: Direction
X5: Batch -31.871 <. 0001
Model hashigh  This model has avery high R? and adjusted R2. The residual plots (shown below) are quite a bit
R2 better behaved than before, and pass the Wilk-Shapiro test for normality.
Residual plots 20
from model
with i
transformed g
response 10 -
i o
-10
.20
-20 T T T T T T T T
1650 1750 1250 1950 2060
" Strength X Predicted

The run sequence plot of the residuals does not indicate any time dependent patterns.
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5.4.7.1. Full factorial example

Important main
effects and
interaction
effects

Plots of the
main effects
and significant
2-way
interactions

Homal Quanils

The normal probability plot, box plot, and the histogram of the residuals do not indicate any

serious violations of the model assumptions.

Step 5. Answer the questionsin your experimental objectives

The magnitudes of the effect estimates show that "Direction” is by far the most important factor.
"Batch" playsthe next most critical role, followed by "Wheel Grit". Then, there are several
important interactions followed by "Feed Rate". "Table Speed” playsarole in ailmost every
significant interaction term, but is the least important main effect on its own. Note that large
interactions can obscure main effects.

Plots of the main effects and the significant 2-way interactions are shown below.

2080187 4 T | - g ]
8 047608 |
E 1637.097 -
3
1 1 1 1 1
) A7 - = R AT b
£1. Table Speed X2 Feed Rate w30 wWheel Grit £4. Direction ¥5. Batch
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5.4.7.1. Full factorial example

i 1 o
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Prediction To determine the best setting to use for maximum ceramic strength, IMP has the "Prediction
profile Profile" option shown below.
Y: Strength X
Prediction Profile
Lo WE0IET Ly r = —y :"““-—_H —— /
1687.097 Tj
-+
l -
u -
7 ~ % e == A
X1: Table Sveed XI: Feed Bate X3: Wheel Gt X4: Direction KE: Baich Desivahility

The vertical linesindicate the optimal factor settings to maximize the (transformed) strength
response. Translating from -1 and +1 back to the actual factor settings, we have: Table speed at
"1" or .125m/s; Down Feed Rate at "1" or .125 mm; Wheel Grit at "-1" or 140/170 and Direction
at "-1" or longitudinal.

Unfortunately, "Batch" is also avery significant factor, with the first batch giving higher
strengths than the second. Unlessit is possible to learn what worked well with this batch, and
how to repeat it, not much can be done about this factor.

Comments

http://www.itl.nist.gov/div898/handbook/pri/section4/pri471.htm (14 of 15) [11/14/2003 5:53:24 PM]



5.4.7.1. Full factorial example

Analyses with
value of
Direction fixed
indicates
complex model
IS needed only
for transverse
cut

Half fraction
design

Natural log
transformation
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[HOME

One might ask what an analysis of just the 24 factorial with "Direction” kept at -1 (i.e.,
longitudinal) would yield. Thisanalysis turns out to have a very simple model; only
"Wheel Grit" and "Batch" are significant main effects and no interactions are significant.

If, on the other hand, we do an analysis of the 24 factorial with "Direction” kept at +1 (i.e.,
transverse), then we obtain a 7-parameter model with al the main effects and interactions
we saw in the 2° analysis, except, of course, any termsinvolving "Direction”.

So it appears that the complex model of the full analysis came from the physical properties
of atransverse cut, and these complexities are not present for longitudinal cuts.

If we had assumed that three-factor and higher interactions were negligible before
experimenting, aEi___l half fraction design might have been chosen. In hindsight, we would

have obtained valid estimates for all main effects and two-factor interactions except for X3
and X5, which would have been aliased with X1* X2* X4 in that half fraction.

Finally, we note that many analysts might prefer to adopt a natural logarithm
transformation (i.e., use InY) as the response instead of using a Box-Cox transformation
with an exponent of 0.2. The natural logarithm transformation corresponds to an exponent
of X = 0inthe Box-Cox graph.
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5.4.7.2. Fractional factorial example
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5. Process | mprovement

5.4. Analysis of DOE data

5.4.7. Examples of DOE's

5.4.7.2.Fractional factorial example

A step-by-step
analysisof a
fractional
factorial
"catapult”
experiment

The experiment
has five factors
that might
affect the
distance the
golf ball
travels

A " Catapult" Fractional Factorial Experiment

This experiment was conducted by ateam of students on a catapult — a table-top wooden device
used to teach design of experiments and statistical process control. The catapult has several
controllable factors and a response easily measured in a classroom setting. It has been used for
over 10 years in hundreds of classes. Below isasmall picture of acatapult that can be opened to
view alarger version.

Catapult

Description of Experiment: Response and Factors

Purpose: To determine the significant factors that affect the distance the ball is thrown by the
catapult, and to determine the settings required to reach 3 different distances (30, 60 and 90
inches).

Response Variable: The distance in inches from the front of the catapult to the spot where the ball
lands. The ball isaplastic golf ball.

Number of observations: 20 (a 251 resolution V design with 4 center points).

Variables:
1. Response VariableY = distance

2. Factor 1 = band height (height of the pivot point for the rubber bands — levels were 2.25
and 4.75 inches with a centerpoint level of 3.5)

3. Factor 2 = start angle (location of the arm when the operator rel eases— starts the forward
motion of the arm — levels were 0 and 20 degrees with a centerpoint level of 10 degrees)

4. Factor 3 = rubber bands (number of rubber bands used on the catapult— levels were 1 and 2
bands)

5. Factor 4 = arm length (distance the arm is extended — levels were 0 and 4 inches with a
centerpoint level of 2 inches)

6. Factor 5 = stop angle (location of the arm where the forward motion of the arm is stopped
and the ball starts flying — levels were 45 and 80 degrees with a centerpoint level of 62
degrees)
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5.4.7.2. Fractional factorial example

Design matrix The design matrix appears below in (randomized) run order.

and responses
(in run order) M carapull rezuls AREE
Bk 0 @0 B 0E0E0 @080 30 ©oas
0 Raows | Pattern |band height ' stan angla rbands | amn length | stop angle  Cent... | Y. distance | run order | bh
T 325 01 0 a0 0 26 1
2100000 4 2 2 B2 1 88 2
G s 4.75 a0z 4 a0 0 126.5 3
4| +4+ 405 o2 4 45 0 126.5 4
5| -4+ 3.5 0 2 4 45 0 45 5
B |+ 4.75 01 0 45 0 3 3
7100000 4 1101 2 B2 1 45 7
B | 44+ 4.75 201 0 &0 0 2825 a8
B -t 475 o1 4 an 0 Bs 9
10| cAeee 3.25 001 0 45 0 B i0
1| +++ 4,75 201 4 45 0 3B.5 1
12 |- 325 01 4 45 0 13 12
13 | DODOD 4 0 2 2 B2 1 4.5 13
14 | 4t 4,75 o2 D 45 0 285 14
[ - 325 02 0 45 0 135 15
16 | -+++ 325 22 D an 0 (5 16
17 [ +4++ 475 0z 0 &0 0 B4 17
18 | -+++ 325 a1 4 =0 0 a5 148
19 | DOOOD 4 01 2 B2 1 375 19
20 | -+++ 325 o2 4 80 0 106 20
Tioseeced il J_I
You can Readers who want to analyze this experiment may download an Excel spreadsheet catapult.x|s or
download the a JMP spreadsheet capapult.jmp.
dataina
Spreadsheset
One discrete Note that 4 of the factors are continuous, and one — number of rubber bands —is discrete. Due to
factor the prescence of this discrete factor, we actually have two different centerpoints, each with two

runs. Runs 7 and 19 are with one rubber band, and the center of the other factors, while runs 2
and 13 are with two rubber bands and the center of the other factors.

5 confirmatory  After analyzing the 20 runs and determining factor settings needed to achieve predicted distances
runs of 30, 60 and 90 inches, the team was asked to conduct 5 confirmatory runs at each of the derived
settings.
Analysis of the Experiment

Analyze with The experimental datawill be analyzed using SAS JMP 3.2.6 software.
JMP software

Step 1. Look at thedata
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5.4.7.2. Fractional factorial example

Histogram, box  We start by plotting the data several ways to seeif any trends or anomalies appear that would not

plot, and be accounted for by the models.
normal - The distribution of the response is given below:
probability
plot of the
response
M a0 25 S 45 M8 @

We can see the large spread of the data and a pattern to the data that should be explained by the

analysis.
Plot of Next we look at the responses versus the run order to see if there might be a time sequence
response component. The four highlighted points are the center points in the design. Recall that runs 2 and
Versus run 13 had 2 rubber bands and runs 7 and 19 had 1 rubber band. There may be a dlight aging of the
order rubber bands in that the second center point resulted in a distance that was alittle shorter than the

first for each pair.

r[:‘f: distance By mun order :]

150
126 -
om0 | =
1 | ]
5 TS
| | -
n
24
1] T T T T T
I ] 10 14 20
nn order
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5.4.7.2. Fractional factorial example

Plots of
responses
versus factor
columns

Next look at the plots of responses sorted by factor columns.

[‘f: distance By start ange

)

150
125 —
100 — -
3 T
L . P{‘x
. v .
25 )
1} T T
1] 10 20
stat ange
(v:distance By band heigt |
150
125
00 ray
5 75
1] -}r-r._ .IIIII.
¥ ap /><
I | -
| . | ? 1
I8 '
0 - -
325 4 475
bard height
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T:‘f cdistance By stop ange :I

150

125

100 — é

g?ﬁ—
i

oA L

25
1] T T
45 G2 i0
stop ange
I:‘f: disance By am length :I
150
128 -
o0 ?’E
- e
T )< | :
25
0 T T
1] 2 4
am lengh
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5.4.7.2. Fractional factorial example

The resolution
V design can
estimate main
effectsand all
2-factor
interactions

Variable
coding

JMP output
after fitting the
trial model (all
main factors
and 2-factor
interactions)

T:‘f: dstance By rbands j

150

125 -

rbard=

Several factors appear to change the average response level and most have alarge spread at each
of the levels.

Step 2: Create the theoretical model

With aresolution V design we are able to estimate al the main effects and al two-factor
interactions cleanly — without worrying about confounding. Therefore, the initial model will have
16 terms — the intercept term, the 5 main effects, and the 10 two-factor interactions.

Step 3. Create the actual model from the data

Note we have used the orthogonally coded columns for the analysis, and have abbreviated the
factor names as follows:

Bheight = band height

Start = start angle

Bands = number of rubber bands

Stop = stop angle

Arm = arm length.

The following is the IMP output after fitting the trial model (all main factors and 2-factor
interactions).

RSquae 0970924
F Square Adj DaG1saT
Foot hdean Square Bror 13274
fean of Response A7 5374
Observ gions ©r Sum Wigs) 20
L, -
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5.4.7.2. Fractional factorial example

.
I:F Famaer Esimates

)

Tem
ntercept
brhzight

=tan
bheight™start
bard=
bheight *bard =
stant™bands
am
bheight™am
start™am
bard="am
stop
bheight™stop
s@an*stop
bard=" stop

amm*stop
L,

Etimas

575375
12,48 4375
-1.07 813
-2 TGS E2S

19,4125

4640625
S3AT1ERS
20140625
470325
-1.109375
T.AOH3TSE
12.045875
009375
2671875
2E2E1ESE
S 140685

Std Bror

T.ogg4
3.310601
J.319601
3210601
2069144
3.319601
310601
3310601
310601
3.310601
J.319601
3210601
3210601
3.319601
310601
3310601

t Raio
19 38
4 [f
-3 34
-0 83
G 54
140
-0 26
g o7
142
0033
224
3 A3
00z
0 &0
0 a5
0 a5

Frob [t
<.0001
0.0153
0.0.534
0.4516
0.008
02347
0.3
0.000:7
02285
0.7 %0
0.0
0.0
0.0va3
0.480
0.t
03977

Usep-valuesto  The model has agood R2 value, but the fact that R? adjusted is considerably smaller indicates that

help select we undoubtedly have some termsin our model that are not significant. Scanning the column of
significant p-values (labeled Prob>|t| in the IMP output) for small values shows 5 significant effects at the
effects, and 0.05 level and another one at the 0.10 level.

alsousea ) , L

normal plot The normal plot of effectsis auseful graphical tool to determine significant effects. The graph

below shows that there are 9 terms in the model that can be assumed to be noise. That would
leave 6 terms to be included in the model. Whereas the output above shows a p-value of 0.0836
for the interaction of bands and arm, the normal plot suggests we treat this interaction as

significant.

Mormmal Aot

T4

Mowrmaltze Echimate (Orthog 1]

sbands
Fm

=14

Mormal Quarils

Fed ine iz RWSE.
.

Blue Ine is Lenth's PSE.
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5.4.7.2. Fractional factorial example

Arefit using Remove the non-significant terms from the model and refit to produce the following output:
just the effects
that appear to
matter

-

Iy =
R 5quare 0.913134
R Square Adj 0.&73042
Foaot bdean Square BErmor 12,7309
Mean of Resporse 57 5374
Obzarvations (or Sum Wigs) 20

LS ~

rl:ﬂraly.r sig of “arance :I

Soume OF Sum of Squares Mean Square F Raio
hdadel fi 22148 548 2691 42 2 FThY
Emar 13 2106937 162 03 Prob:F
C Tatal 14 2G5 34 <0001
- :
Soume OF  Sum of Squares fulz an 5 quare F Raio
Lack of Fit " 1973757 179.441 2694
Pure Emar 2 133.24500 G624 Prab:F
Tatal Emar 13 2106 2567 02018
hx F5q
09945
LS -

R2isOK and The R2 and R? adjusted values are acceptable. The ANOV A table shows us that the mode! is

thereisno significant, and the Lack of Fit table shows that there is no significant lack of fit.
significant : .
mode "lack of The Parameter estimates table is below.
fit"
I, ™
[:F‘ Famaer Estimates :l
Term Etimae Std Bror t Raio Praob =]
htercept 57 5SS 2846717 a1 <000
bheight 12434376 3.183726 424 00010
st N0TEE 3182726 348 D0
bards 10 4135  2.846717 622 <0001
Fm 0140625 3133726 623 <0001
bands™am TEOONNS 318376 730 0026
stop 12046575 3183726 379 0003
[ -~

Step 4. Test the model assumptionsusing residual graphs (adjust and simplify as needed)
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5.4.7.2. Fractional factorial example

Histogram of We should test that the residuals are approximately normally distributed, are independent, and
theresidualsto  have equal variances. First we create a histogram of the residual values.
test the model

assumptions
M D40 2 M 75 155 99
The residuals do appear to have, at least approximately, a normal distributed.

Plot of Next we plot the residual s versus the predicted values.
residuals
versus
predicted —
values I:F:ESl:l Y dstance By Pred Y: dstance :]

30

20 n -

17 - d

Fecd Y dainnos
=
|
- L
-

-10 .

20+

=30 T T T T I
26 1] 24 a0 Th o0 124
Pred ¥ : dstance

There does not appear to be a pattern to the residuals. One observation about the graph, from a
single point, is that the model performs poorly in predicting a short distance. In fact, run number
10 had a measured distance of 8 inches, but the model predicts-11 inches, giving aresidual of 19.
The fact that the model predicts an impossible negative distance is an obvious shortcoming of the
model. We may not be successful at predicting the catapult settings required to hit a distance less
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5.4.7.2. Fractional factorial example

than 25 inches. Thisis not surprising since there is only one data value less than 28 inches. Recall
that the objective isfor distances of 30, 60, and 90 inches.

Plot of Next we plot the residual values versus the run order of the design. The highlighted points are the
residuals centerpoint values. Recall that run numbers 2 and 13 had two rubber bands while run numbers 7
Versus run and 19 had only one rubber band.
order
I:F':Eid : distance By nn order :I

20

20 -

10 ]

Recd Y dainnos
L)
1
| |

200
-0 T I — |
i A 10 15 0
nn order
Plots of Next we look at the residual values versus each of the factors.
residuals
versus the (Resi v: digsnce By bheigt | [Resid ¥:dimance By st ]
factor 20 a0
variables
2 - - 20 *
[ By . i = .
- E - [ 1

Fecd ¥ diatanon
=
1
RecH ¥ datanoe
(—]
1

40 = ) 40 .
=20 = 20 =
=30 T T ] ] T =30 T T T T T
-1.5 1.0 E] 1] A5 10 1.5 -3 1.0 05 ] ki 10 15
béeighit stat
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5.4.7.2. Fractional factorial example

[Hai-c[ ' dlsmpee By am ] I-_Hesld ¥:dlsmanse By =tap _:l
2D 2D
2 - " i B . -
10 . 10 - .
E L r 1
E Ifl - ! L] . E Ifl - - - i
P - i P '
E -0 s E Ap .
20 - 20
«30 T T ¥ ¥ T =20 T T ¥ T T
A3 -0 05 D 5 10 135 A5 10 05 D 5 10 15
am Stop
i~ It
(Hesid Y:distanze By bands :I
30
20 - . )
10 .
0 - -
] ' )
i- = -
E 10 . .
20
30 T T T T T
A5 -0 05 i 5 10 15
bards
The residual Most of the residual graphs versus the factors appear to have a dlight "frown™ on the graph (higher

graphsarenot  residuasin the center). This may indicate alack of fit, or sign of curvature at the centerpoint
ideal, although  values. The Lack of Fit table, however, indicates that the lack of fit is not significant.

the model

passes "lack of

fit"

guantitative

tests
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5.4.7.2. Fractional factorial example

Consider a
transformation
of the response
variable to see
if we can
obtain a better
model

Firstamain
effects and
2-factor
interaction
model isfit to
thelog
distance
responses

At this point, since there are several unsatisfactory features of the model we have fit and the
resultant residuals, we should consider whether a ssmple transformation of the response variable
(Y ="Distance") might improve the situation.

There are at |east two good reasons to suspect that using the logarithm of distance as the response
might lead to a better model.

1. A linear model fit to LN Y will always predict a positive distance when converted back to
the original scale for any possible combination of X factor values.

2. Physical considerations suggest that arealistic model for distance might require quadratic
terms since gravity plays a key role - taking logarithms often reduces the impact of
non-linear terms.

To see whether using LN Y as the response |eads to a more satisfactory model, we return to step
3.

Step 3a: Fit thefull model using LN Y asthe response

Proceeding as before, using the coded columns of the matrix for the factor levelsand Y = the
natural logarithm of distance as the response, we initially obtain:

Refpoie:  Log ¥

RS quare 0 56 365

RS quare Adj 034

Roo ot heam Siquare Boror LI Iy

hiean of Response Famoe:

0% sexvations (ix Sum W ) ol

[Paramet r Extmaes | (]

Term Extimae S0 B ror tRata Pt [
Intaep FEOIZL O 0EE64T 5619 = 0001
Thhaghit 0 23514 L] H 335 0 0XEs
shx -0 241745 L] 315 00345
hhagta *start -0 025E1E L] .M 07535
hands 0 488009 O 0GE64T 508 001
hhaght *hands -0 0034 L] H 0.1 0 2040
shn*hands 0 DE5304 L] H 011 02163
amn 0 303654 L] 514  00D6E
hhaght *ammn -0 013055 L] H -0.1% 0 646
s *arm 00N 40d L] 04t 0Axz
bl s*ammn 0 DL49847 L] 00 02547
shyp 0 el L] 142 00T
hhaghd*aop -0 04571 L] H -0.63 0 5600
shn*sip 0 05455 L] H 104 03585
bl s*stop -001151 L] E -0.15 LI
ammn *stop -0 0111% 0 0765 -0.15 02911
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5.4.7.2. Fractional factorial example

A simpler Examining the p-values of the 16 model coefficients, only the intercept and the 5 main effect
model withjust  terms appear significant. Refitting the model with just these terms yields the following results.
main effects

has a
satisfactory fit Respore:  Log ¥
Sammany ot F it
RS gaare 09 2350
RS grare Adj 090773
Roo ot Wlean Square oo 0210265
e of Respomse R0
Oh servadioms for SumWak ) i
SOAce DOF SIm o Sq e Mean =qaare F Raia
Ladk of Bt I 058 E N 0049150 3370
Fure Brox 2 00D 16054 0 014560 Pt
Tutal Frror ¥ 061805074 01514
Mar Rsg
0 9966
[PammeerEsmaes | [M]
Term Estimae = Error tRata POt
Inta oyt FETII4 0047017 B204 <0001
bheight 0ISIIELE 005REGG 400 00002
staxt OHIME DO5HEGG 60 0004
hands DIEE000 0047017 n4l <000l
am 03MI654  0052E6G M50 <000l
sy 062701 0052566 500 0000 2
Thisisasimpler model than previously obtained in Step 3 (no interaction term). All the terms are
highly significant and there is no quantitative indication of "lack of fit".
We next look at the residuals for this new model fit.
Step 4a: Test the (new) model assumptions using residual graphs (adjust and simplify as
needed)
Normal The following normal plot, box plot, and histogram of the residuals shows no problems.
probability
plot, box plot,
and histogram
of the residuals
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5.4.7.2. Fractional factorial example

Res kialLag D iEice |1

0 4 01 00 1 z 3 4

Plot of A plot of the residuals versus the predicted LN Y values |ooks reasonabl e, although there might
residuals be atendency for the model to overestimate slightly for high predicted values.
versus
predicted LN'Y 04
values 03

0]

01 ] ‘ ‘

% 00 [ "'\l ] [

01 ‘

02

-3 T T T T T

W25 30 35 40 45 5D
LogY Freliael

Plot of Residuals plotted versus run order again show a possible slight decreasing trend (rubber band
residuals fatigue?).
versusrun
order
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Plot of
residuals
versusthe
factor
variables

Reakinal Tag Binance

04

03

0z

01

-0

-01

02
‘ [ [
03 T T
5 10 15 1
nm orda
1
Next we look at the residual values versus each of the factors.
[Re iival Log Dtrtance Byb it | [Resianal Log Dt e BysErt
0d od
0: 0:
0nr 0 7
g 01 7 g 01 7
00 ] ' 40 7 i .
E 1 | E ! I
g 01 7 41 7
L ! 42 7
iz | T T T T {12 T T -|
15 10 05 1] 5 10 15 15 110 45 1n 15
Theight stant
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5.4.7.2. Fractional factorial example

Theresiduals
for themain
effects model
(fit to natural
log distance)
are reasonably
well behaved

Fef D ILog D Ei e Bybaid Fesk@iLog DirEece Byam
04 : 04
03 | - 0z |
0z . 0z
g 01 7 g 01 |
X a0 7 ; : X 00 7 ! .
g 41 7 g 01 ]
42 . : 02 ]
43 | I T T T ] | T T T T
15 10 05 & 5 10 15 A5 10 05 0 5 10 15
hands amn
[Res vl Log Distawce By tp |
04
03 7|
0z
g 01 |
¥ 007
1
g 01 7]
02 ]
02 -I I | I |
15 10 05 0 5 10 15
stop

These plots still appear to have adlight "frown" on the graph (higher residualsin the center).
However, the model is generally an improvement over the previous model and will be accepted as
possibly the best that can be done without conducting a new experiment designed to fit a
quadratic model.

Step 5: Usetheresultsto answer the questionsin your experimental objectives
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5.4.7.2. Fractional factorial example

Final step:
quantify the
influence of all
the significant
effects and
predict what
settings should
be used to
obtain desired
distances

Prediction
profile plots
for Y= 30

Prediction
profile plots
for Y= 60

The software used for this analysis (IMP 3.2.6) has an option called the "Prediction Profiler" that
can be used to derive settings that will yield a desired predicted natural log distance value. The
top graph in the figure below shows the direction and strength of each of the main effectsin the
model. Using natural log 30 = 3.401 as the target value, the Profiler allows usto set up a
"Desirability" function that gives 3.401 a maximum desirability value of 1 and values above or
below 3.401 have desirabilities that rapidly decrease to 0. Thisis shown by the desirability graph
on the right (see the figure below).

The next step isto set "bands' to either -1 or +1 (thisis a discrete factor) and move the values of
the other factorsinteractively until a desirability as close as possibleto 1 is obtained. In the figure
below, adesirability of .989218 was obtained, yielding a predicted natural log Y of 3.399351 (or a
distance of 29.94). The corresponding (coded) factor settings are: bheight = 0.17, start = -1, bands
=-1,am=-1and stop = 0.

Prediction Brof k [

4840242
}3399352 -
04T
1
0080218 J\ \ \
0
| ! I | | | I I | I
—li 01y - -? 1 - -li 1 - —ll 1 - —li 0 - = -
hheight shrt hands am shop Tesirakilig

Repeating the profiler search for a'Y value of 60 (or LN Y = 4.094) yielded the figure below for
which anatural log distance value of 4.094121 is predicted (a distance of 59.99) for coded factor
settings of bheight = 1, start = 0, bands = -1, arm = .5 and stop = .5.

Prediction ranke | [F]

4840242 - L\&
}xa.ﬂgruz.r
20442
1
gﬂ.mm ] ,
']_ — — —
1 ! ! ' 1 ' ' 1 1 I 1 I ! I 1 I
- 1 ™97 g ™= 3 "™ g5 ™A ops ™e -
hheighi shrt bands A stop Desirakiliy
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5.4.7.2. Fractional factorial example

Prediction Finally, weset LN Y = LN 90 = 4.4998 and obtain (see the figure below) a predicted log distance
profile plots of 90.20 when bheight = -0.87, start = -0.52, bands =1, arm = 1, and stop = 0.
for Y=90
Frosm D]
480242 — |__
g 008
¥ ]
044
1
neriiy 1]
0 LA
Ty M T oasz2 7 o1 "7 o1 7 o ™= =
hheght st hands AT stop Deesirahilig

"Confirmation”  In the confirmatory runs that followed the experiment, the team was successful at hitting all 3
runs were targets, but did not hit them all 5 times.

essful
SUceessu NOTE: The model discovery and fitting process, asillustrated in this analysis, is often an

iterative process.

NIST

—_— IHOME [TOOLS & AIDS [SEARCH [BACK MEXT]
SEMATECH
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5.4.7.3. Response surface model example

B ENGINEERING STATISTICS HANDBOOK

[HOME TOOLS & AIDS [SEARCH

[BACK NEXT|

5. Process | mprovement

5.4. Analysis of DOE data

5.4.7. Examples of DOE's

5.4.7.3.Response surface model example

A CCD DOE
with two
responses

Goal,
response
variables,
and factor
variables

Thedesignis
a 13-run CCI
design with 3
centerpoint
runs

Data Source

This example uses experimental data published in Czitrom and Spagon, (1997), Satistical Case
Sudiesfor Industrial Process Improvement. This material is copyrighted by the American
Statistical Association and the Society for Industrial and Applied Mathematics, and used with
their permission. Specifically, Chapter 15, titled "Elimination of TiN Peeling During Exposure to
CVD Tungsten Deposition Process Using Designed Experiments’, describes a semiconductor
wafer processing experiment (labeled Experiment 2).

The goal of this experiment was to fit response surface models to the two responses, deposition
layer Uniformity and deposition layer Stress, as a function of two particular controllable factors
of the chemical vapor deposition (CVD) reactor process. These factors were Pressure (measured
in torr) and the ratio of the gaseous reactants H, and WFg (called H,/WFg). The experiment also

included an important third (categorical) response - the presence or absence of titanium nitride
(TiN) peeling. That part of the experiment has been omitted in this example, in order to focus on
the response surface model aspects.

To summarize, the goa isto obtain a response surface model for each response where the
responses are: "Uniformity" and "Stress’. The factors are: "Pressure” and "H,/WFg".

Experiment Description

The maximum and minimum values chosen for pressure were 4 torr and 80 torr. The lower and
upper Ho/WFg ratios were chosen to be 2 and 10. Since response curvature, especially for

Uniformity, was a distinct possibility, an experimental design that allowed estimating a second
order (quadratic) model was needed. The experimenters decided to use a central composite

inscribed (CCI) design. For two factors, this design is typically recommended to have 13 runs
with 5 centerpoint runs. However, the experimenters, perhaps to conserve alimited supply of
wafer resources, chose to include only 3 centerpoint runs. The design is still rotatable, but the
uniform precision property has been sacrificed.
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5.4.7.3. Response surface model example

Table
containing
the CCI
design and

experimental

responses

Low values
of both
responses
are better
than high

Seps for
fitting a
response
surface
model using
JMP 4.02
(other
software
packages
generally
have similar
procedures)

The table below shows the CCI design and experimental responses, in the order in which they
were run (presumably randomized). The last two columns show coded values of the factors.

Py,
c

RPBoo~wourwNR

n

Coded Coded

Pressure Mo/ Wrg Uni formty Stress  Presure  HyWFg
80 6 4.6 8.04 1 0
42 6 6.2 7.78 0 0

68.87 3.17 34 7.58 0.71 -0.71

15.13 8.83 6.9 1.27 -0.71 0.71
4 6 7.3 6.49 -1 0
42 6 6.4 7.69 0 0

15.13 3.17 8.6 6.66 -0.71 -0.71
42 2 6.3 7.16 0 -1

68.87 8.83 51 8.33 0.71 0.71
42 10 54 8.19 0 1
42 6 5.0 7.90 0 0

Note: "Uniformity" is calculated from four-point probe sheet resistance measurements made at 49
different locations across awafer. The value used in the table is the standard deviation of the 49
measurements divided by their mean, expressed as a percentage. So a smaller value of
"Uniformity" indicates amore uniform layer - hence, lower values are desirable. The "Stress’
calculation is based on an optical measurement of wafer bow, and again lower values are more
desirable.

Analysisof DOE Data Using IMP 4.02

The steps for fitting a response surface (second-order or quadratic) model using the IMP 4.02
software for this example are as follows:

1

Specify the model in the "Fit Model" screen by inputting a response variable and the model
effects (factors) and using the macro labeled "Response Surface”.

Choose the " Stepwise" analysis option and select "Run Model".

The stepwise regression procedure allows you to select probabilities (p-values) for adding
or deleting model terms. Y ou can also choose to build up from the simplest models by
adding and testing higher-order terms (the "forward" direction), or starting with the full
second-order model and eliminating terms until the most parsimonious, adequate model is
obtained (the "backward" direction). In combining the two approaches, IMP tests for both
addition and deletion, stopping when no further changes to the model can be made. A
choice of p-values set at 0.10 generally works well, although sometimes the user has to
experiment here. Start the stepwise selection process by selecting "go".

"Stepwise" will generate a screen with recommended model terms checked and p-values
shown (these are called "Prob>F" in the output). Sometimes, based on p-values, you might
choose to drop, or uncheck, some of these terms. However, follow the hierarchy principle
and keep all main effects that are part of significant higher-order terms or interactions, even
if the main effect p-value is higher than you would like (note that not all analysts agree
with this principle).

Choose "make model” and "run model” to obtain the full range of IMP graphic and
analytical outputs for the selected model.

Examine the fitted model plot, normal plot of effects, interaction plots, residual plots, and
ANOVA statistics (R2, R? adjusted, lack of fit test, etc.). By saving the residuals onto your
JMP worksheet you can generate residual distribution plots (histograms, box plots, normal
plots, etc.). Use all these plots and statistics to determine whether the model fit is
satisfactory.
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5.4.7.3. Response surface model example

Model
specification
screen and
stepwise
regression
(starting
froma full
second-order
model)
output

7. Usethe IMP contour profiler to generate response surface contours and explore the effect
of changing factor levels on the response.

8. Repeat al the above steps for the second response variable.

9. Save prediction equations for each response onto your JM P worksheet (there is an option
that doesthis for you). After satisfactory models have been fit to both responses, you can
use "Graph" and "Profiler" to obtain overlaid surface contours for both responses.

10. "Profiler" also allows you to (graphically) input a desirability function and let IMP find
optimal factor settings.

The displays below are copies of IMP output screens based on following the above 10 steps for
the "Uniformity" and "Stress' responses. Brief margin comments accompany the screen shots.

Fitting a Model to the " Uniformity" Response, Simplifying the Mode and Checking

Residuals

We start with the model specification screen in which we input factors and responses and choose

the model we want to fit. We start with afull second-order model and select a " Stepwise Fit". We

set "prob” to 0.10 and direction to "Mixed" and then "Go".

| Model Specification

Preszure
H20FE
Uniformity
Stress
npressure
nHZ2AFE

—=elect Columns

—Fick Role Yariahles—

Personalty. |Stepwise

Inifar ity
—_onstruct Model Effects
Degree |2 Pressure RS
Atributes H20WFE BRS
*|

™ Mo Intercept Pressure*Fressure
H2nFE*Pressure
H2nFE*H2MNFE

| Stepwise Fit

Responze: Uniformity

| Stepwise Regression Control

Prok to Enter
Probrto Leave

0.100

0.100

Direction: ived

Fules:

Combine

Current Estimates

SEE DFE MZE RSguare RSguare Adj

2 B597509 7 0379969  0.8695 08136 2047747
Lock  Entered Parameter E=timate

I~ ¥ Intercept 5 92727273

r I¥  Pressure(4,30) 419124383

r I+  Hz2awFE210) -0.2245743

r r Preszureld S0*Pressureld 500 .

r ¥ H2aFE(2 10)*Pressurerd 800 1 69905581

r T H2awFE(2 100*H20FEC2,10)

Cp

nDF

1
2
2
1
1
1

A
-TB1B1Y

=5

n
1751965
3.092387
0023583
289
0.000052

"F Ratin"
0.000
23.034
4.069
0.054

7 .B0E
0.000

"Prakb=F"
1.0000
0.0003
0.0672
0.5245
0.02s2
0937

| Cton Hictnms
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JMP output
for analyzing
the model
selected by
the stepwise
regression
for the
Uniformity
response

I SFUSH B3y

Step Parameter
1 Pressure(4 80)

Action

Entered
2 H2MFEC2 10PPressureld 807 Entered

"Zig Praok" Seq =5 RSguare

Cp

oo 1462965 0717E 39163
00672 3092387 08695 20477

Thefollowing is the IMP analysis using the model selected by the stepwise regression in the
previous step. The model isfit using coded factors, since the factor columns were given the
property "coded".

f
2
q

The stepwise routine finds the intercept and three other terms (the main effects and the interaction
term) to be significant.

Response Uniformity

Whole Model
Actual by Predicted Plot
8.57143 1 pd
E /
Z B.85714 / P
= | - _|
I= :
k= 514286
= | .
=
3428574 7
I I | | |
3 4 & B 7 8B 9
Uniformity Predicted P=0.0018
RSg=0.87 RMSE=0.6164

Summary of Fit

R=guare 0.8659502
R=guare Ad| 0.813575
Root Mean Square Errar 0.616416
Mean of Response 5927273

Observations {or Sum WWits)

A

Analysis of Variance

Source OF  Sum of Squares  Mean Sguare F Ratio
hodel 3 17 722037 90735 15.54B9
Error 7 2 B597581 0.37997  Prob = F
. Total 10 20381815 0.0015
Lack Of Fit
Source DF  Sum of 3quares  Mean Square F Hatio
Lack Of Fit ) 1.5131142 0.302623 0.5275
Fure Error 2 1.146B6EY 0.5/3333 Prob = F
Total Errar ! 2.B597804 0.7559
Max Rog
0.9437
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Parameter Estimates

Terrm Estimate Std Error t Ratio Prob=|t]
Intercept 59272727 0185856 3189 <.00M
Pressure(4 0] -1.912438 03058208  -65.21  0.0004
H2AWFB 10} 0224875 0308122 073 0.4892
H2AWWFBZ 107" Fressure(d 807 1.69905858 0.616075 276 0.0282
Effect Tests
Source Mparm  DF  Sum of Squares F Hatio  Prob = F
Pressure(4 0] 1 1 14.629650 355022 0.0004
H2AWFE 10} 1 1 0. 2022387 0.5326 0.4892
H2MWWFB(Z 107" Pressure(4 80) 1 1 2.890000 7 6059 0.0252
Residual by Predicted Plot
1.0
= 0.5
=
o
k]
o
= 004— —
E
=
S-06-
1.0 . — —
3 4 ] & 7 g =
Unifarmity Predicted
Effect Screening
The parameter estimates are not correlated.
The parameter estimates below were transfarmed to have eqgual
variances.
Lenth FSE
t-Test Scale  4.1363166
Coded Scale  0.7638539
Parameter Estimate Population
Term Original  Orthog Coded  Orthog t-Test  Prob=|i|
Intercept 5927273 8927273 31.8917 <000
Pressure(4 507 -1.912435 -1.153242 -5.2050  0.0004
H2AWWFBZ 10} -0.2248745 -0.135642 072588 04852
H2AWWFB(2 107" Pressure(4 80) 1. 639059 0.512565 27579 00282
Mormal Plot

w7
= 50
o H2ANFBEZ 107 Pressurefd 860)
w 2.5
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Hressure(d B0
-?5 T T T T !

Maormalized Estimate

-3 -2 -1 O 1 2 3

Mormal Quantile

Blue line is Lenth's PSE, from the estimates population.
Fed line is RM=E, Hoot Mean Squared Error from the residual.

Interaction Profiles

. 867143 -
% 5.85714 - Pressure(4 80 \@
= 514286 -
= 3.42857 4 /
= 867143 - o
£ B854+ o H2rwFs2,10)
= 5. 14286 ~
~ 342857 ; g
T T T T =¥
418 836 44 885 %
Contour Profiler
Horiz “ert  Factor Current ¥ é
= T Pressure(d 30 42
. 0 H2ANFBE(2,10) a
Response Contour  Current ¥ Lo Limit Hi Lirnit
— Uniformity b 592727
= ' Uniformity
=)
o,
A
L
=
T
[
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Conclusions
fromthe
JMP output

Plot of the
residuals
Versusrun
order

Normal plot,
box plot, and
histogram of
theresiduals

From the above output, we make the following conclusions.
« TheRZisreasonable for fitting "Uniformity" (well known to be a hard response to mode!).

« Thelack of fit test does not have a problem with the model (very small "Prob > F " would
guestion the model).

« Theresidual plot does not reveal any major violations of the underlying assumptions.

« Thenormal plot of main effects and interaction effects provides a visual confirmation of
the significant model terms.

« Theinteraction plot shows why an interaction term is needed (parallel lines would suggest
no interaction).

We next perform aresiduals analysis to validate the model. We first generate a plot of the
residuals versus run order.

L_ _L.lnifuzlrmit'_n,.nr Residuals Vs. Run Order

1

o
[ ]
1

R e=sidual Uniformity
L]

=
[0 |
1

'1 | T |
0 25 ) 75 10 125
Fun Croer

Next we generate anormal plot, a box plot, and a histogram of the residuals.
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| Residual Uniformity

Mormal Gruartile Plot

—
—

Viewing the above plots of the residuals does not show any reason to question the model.

Fitting a Model tothe" Stress’ Response, Simplifying the Model and Checking Residuals

Model We start with the model specification screen in which we input factors and responses and choose
specification  the model we want to fit. Thistime the "Stress’ response will be modeled. We start with afull
screen and second-order model and select a" Stepwise Fit". We set "prob” to 0.10 and direction to "Mixed"
stepwise and then "Go".

regression

(starting

froma full

second-order

model)

output
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Model Specification

—=elect Columns——— —Pick Role Variakles— Perzonality: Stepwise
Pressure Stress
H20FE
Unifarmity —iZonstruct Model Effects
Stress Degree |2 Pressure 3RS
npreﬁssure Aftribtes H20AFE RS
nH2FE ™ Mo Intercent Prezzure*Pressure
H2ANFB*Pressure
H2AFE*H2 AR
| Stepwise Fit
Rezponze: Stress
| Stepwise Regression Control
Prakb to Enter 0400
Probto Leave | 0400
Direction: yixed
Rililes: Cormbire
Current Estimates
SSE DFE MZE RIZquare RSgquare Adj Cp AIC
0.0:244354 7o0o0FrYe 09549 09vad 63201153 -50.395
Lock  Entered Parameter Estimate nDF == 'F Eatio"  “Proke=f"
= ¥ Irtercept 7 73352911 1 0 0000 1.0000
r I+ Prezsure(d a0) 073751869 2 2553956 164210  (0.0000
r I+ H20WFEC2, 10 049777311 1 093664 127.5M 0.000a0
r I+ Prezsure(4 800 Pressured4 800 -0.4947061 1 0378225 43637 00002
r r H20NFEC2 100 Pressureld 800 1 0.00439 0594 04703
r r H2ZAWF B2 T 0FHZAFE2 100 1 0020332 3577 04075
|5tep History
Step Parameter Action "Zig Prok" Seg 55 RSguare Cp 4]
1 H2MWFECZ 101*Pressure(4 8001 Entered o013 3172284 0832 70238 4
2 H2MFECZ 100*Pressure(4 800 Removed 0.7as2 0o04s  0E7AE EB9.078 3
3 Pressureld B0PPres=sure(4,801 Entered 00002 0378225 09349 B.3201 4

The stepwise routine finds the intercept, the main effects, and Pressure squared to be signficant
terms.
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JMP output The following is the IMP analysis using the model selected by the stepwise regression, which
for analyzing  contains four significant terms, in the previous step. The model isfit using coded factors, since

the model the factor columns were given the property "coded".
selected by
the stepwise | Response Stress |
regression
for the Stress
response | Whole Model
| Actual by Predicted Plot
55
E ]
E
754
:
i 7
]
6.5 -

T I T T
6.0 6.5 7. 75 8.0 g5
Strezs Predicted P=.0001 RSg=0.93
RMZE=0.0332

Summary of Fit

RSguare 0.9345749
RSguare Adj 09753949
Root Mean Sqguare Errar 0.033184
hMean of Responze 7553636
Ohzervations (or Sum Wigts)) 11
Analysis of Variance
Source DF  Sum of Squares  Mean Sguare F Ratio
Model 3 35456191 148187 151 .9802
Etror 7 00544354 0007738 Prob=F
. Total 10 3000545 =.0001
Lack Of Fit
Source DF  Sum of Sguares  Mean Sguare F Ratio
Lack Of Fit g 003223544 0.006447 05303
Pure Error 2 0.02220000 0011100 Prob=F
Total Error 7 005443544 0.y3m
Max RSqg
099338
Parameter Estimates
Term Ezfimate Std Error t Ratio Prob=(
Intercept T35 0037045 20876 =.0001
Preszure(d 801ERS 07375187 0044092 1673 =.0001
H20FE(2 1NERS 0497773 004403 1129 =0001
Prezzureld S0 Prezsureld 500 -0.494706 Q070936 -597  0.0002
Effect Tests

L Flm = e [ = L P LTy C D-di- Fe~l-. -

http://www.itl. nist.gov/div898/handbook/pri/section4/pri473.htm (10 of 16) [11/14/2003 5:53:27 PM]



5.4.7.3. Response surface model example
=uree INprr L Sldr U oguEres r g FTUR =T
Preszure(d 801ERS 1 1 247573068 279.7830 =.0001
H20FECZ 1ERS 1 1 0936636 127.5207 =.0001
Preszureld 807 Pressureld 800 1 1 03782249 456370 0.0002

Residual by Predicted Plot
0.20

013+
010+
0.05

oo 4+— — — — — ]

Stress Residual

-0.05 S

-010 T T I
5.0 6.3 Fll] 7.3 g.0

Stress Predicted

Interaction Profiles

.5

Pressureld 507

a0

Stress

714286

B.4258357

—
L]
szalq

783714

HZiF (2,100

Stress

714286

6425357 4

418 236 44 8.8

Contour Profiler

L1 oLz H

Haoriz  %ert  Factor Current =
o & Pressureld 807 42
i« oy H2nFECZ2 100 B

Fesponse Contour  Current ¥ Lo Limit Hi Litnit

— Stress 77335291 | |

10

2.10)
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\G\T\ \ \ \\ R‘“‘HMH wiw

H2MF B

P

Prezzureld,

A W .
o \\\\\ \\ \\%reas

4 Pressureld 507 a0

Conclusions From the above output, we make the following conclusions.

fromthe « TheR2isvery good for fitting " Stress".

MP . :
JMP output « Thelack of fit test does not have a problem with the model (very small "Prob > F " would
question the model).

« Theresidual plot does not reveal any major violations of the underlying assumptions.

« Theinteraction plot showswhy an interaction term is needed (parallel lines would suggest
no interaction).

Plot of the We next perform aresiduals analysis to validate the model. We first generate a plot of the
residuals residual s versus run order.

VEr'sus run

order 02 Stress Residuals Vs. Run Order

015

0.1 5

0.03

Fesidual Stress

0.1 T T T T
0 23 3 T3 10 125

Fun Crder

Normal plot,  Next we generate anormal plot, a box plot, and a histogram of the residuals.
box plot, and
histogram of
theresiduals
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RHesidual Stress

Plormal cuartie Plot

-00s

gl @
0.1 0 05 A

A5 2

Viewing the above plots of the residuals does not show any reason to question the model.

Response Surface Contours for Both Responses

" Contour JMP has a"Contour Profiler" and "Prediction Profiler" that visually and interactively show how
Profiler” and  the responses vary as afunction of the input factors. These plots are shown here for both the
"Prediction Uniformity and the Stress response.

Profiler"
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| Contour Frofiler

Horz  Wert  Facior Current X
£ L Pressure(d G600 45204819
© & HZWFE(2100 56751269
Response Corfowr  Currert ¥ Lo Limrit Hi Limit
— Pred Formula Unifcrmity 51086377 57728086
Pred Formula Stress TAI05796 T TS17E2S

) : | R EE -~ Pred Farmuls Unifoemity
7 43055 .
= MHEHET____ 7 BE26907 B9SNT ol
7 1mEzET ' ) 4
| | L. 'y - /
—~ fR%NE \ ' '
Hﬁ-."m_h b K x\'-., ; . .|III
L ) h Y L i
N'H.“x\_ 4 h] .'"1. IIII
Hzastsie N \ e s - "
— W L e Y \ { JI,J‘ — ' ezsure(d,
g erddzz % N ! /
g " R 1'%',_'- IIII / 3 Pred Formdn Stress
e W N N ORL T
C A A N \Y E.I R y
T | H" L ".L'-_ ] T iy
Vb Ay AN ) ! N
L} Y vy ¢ % 7 7
y v T \ \ 4 F
L T Y I A / /
L Y 1 \ | ¥y /
AT U T I S A
TR WLV S Y . . N ~ Pressure(d
\ Y III' Fofmuls Un/‘vmtr# - —?"I—A -
NN N T
kY Wy oy B 4 4
EISTEROE50 M4 34658 2407 T
- X S : #d Forfhuils Styess

4 Preszuned B0) 50

Prediction Profiles Desirability Functionsfor Both Responses

Desirability Y ou can graphically construct adesirability function and let IMP find the factor settings that
function: maximize it - here it suggests that Pressure should be as high as possible and H,/WFg as low as
Pressure possible.

should be as

high as

possible and

H2/VVF6 as

low as

possible
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Final
response
surface
models

Trade-offs
are often
needed for
multiple
responses

"Uniformity"
was chosen
asmore
important

Prediction Profiler
Q53

it

2 540651 |

2537 |

g.624

7478569 |

5999 |

Pred Formula Stress Pred Faormula Lniform

0616131 |

D es=irahility

Pressure(d 507

HZAFE(2,10) Desirability

Summary

The response surface models fit to (coded) "Uniformity" and "Stress' were:

Uniformity = 5.93 - 1.91* Pressure - 0.22*H,/WFg + 1.70* Pressur e* H,/WFg

Stress = 7.73 + 0.74* Pressure + 0.50¢ H /W Fg - 0.49* Pressur €2

These models and the corresponding profiler plots show that trade-offs have to be made when
trying to achieve low values for both "Uniformity" and "Stress" since a high value of "Pressure"
is good for "Uniformity" while alow value of "Pressure" isgood for "Stress’. While low values
of Ho/WFg are good for both responses, the situation is further complicated by the fact that the

"Peeling" response (not considered in this analysis) was unacceptable for values of Ho/WFg
below approximately 5.

In this case, the experimenters chose to focus on optimizing "Uniformity" while keeping H,/WFg
at 5. That meant setting "Pressure” at 80 torr.
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Confirmation A set of 16 verification runs at the chosen conditions confirmed that all goals, except those for the
runs "Stress’ response, were met by this set of process settings.

validated the

model

projections
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5.5. Advanced topics

P ENGINEERING STATISTICS HANDBOOK

|[HOME TOOLS & AIDS |[SEARCH [BACK NEXT]|

5. Process |mprovement

5.5.Advanced topics

Contents of This section builds on the basics of DOE described in the preceding
" Advanced sections by adding brief or survey descriptions of a selection of useful
Topics' techniques. Subjects covered are:

section 1. When classical designs don't work
2. Computer-aided designs
1. D-Optimal designs
2. Repairing adesign

3. Optimizing a Process

1. Single response case
1. Path of stegpest ascent
Confidence region for search path
Choosing the step length
Optimization when there is adequate quadratic fit
Effect of sampling error on optimal solution

© ok~ w D

Optimization subject to experimental region
constraints

2. Multiple response case
1. Path of steepest ascent
2. Desirability function approach
3. Mathematical programming approach

4. Mixture designs

1. Mixture screening designs
Simpl ex-lattice designs
Simplex-Centroid designs

Constrained mixture designs
Treating mixture and process variabl es together
5. Nested variation

ok~ DN
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5.5. Advanced topics
6. Taguchi designs
7. John's 3/4 fractional factorial designs
8. Small composite designs
9. An EDA approach to experimental design
1. Ordered data plot
Dex scatter plot

Dex mean plot

| nteraction effects matrix plot

Block plot
DEX Y ouden plot

|Effects| plot

Half-normal probability plot

Cumulative residual standard deviation plot
DEX contour plot

© o N o gk~ WD

=
©

NIST
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SEMATECH
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5.5.1. What if classical designs don't work?

P ENGINEERING STATISTICS HANDBOOK

[HOME

5. Process | mprovement
5.5. Advanced topics

'TOOLS & AIDS [SEARCH [BACK ~NEXT]

5.5.1.What if classical designs don't work?

Reasons Most experimental situations call for standard designs that can be
designs constructed with many statistical software packages. Standard designs
don't work have assured degrees of precision, orthogonality, and other optimal

properties that are important for the exploratory nature of most
experiments. In some situations, however, standard designs are not
appropriate or are impractical. These may include situations where

1.

The required blocking structure or blocking size of the
experimental situation does not fit into a standard blocked design

Not all combinations of the factor settings are feasible, or for
some other reason the region of experimentation is constrained or
irregularly shaped.

A classical design needsto be 'repaired’. This can happen due to
improper planning with the original design treatment
combinations containing forbidden or unreachable combinations
that were not considered before the design was generated.

A nonlinear model is appropriate.

A guadratic or response surface design is required in the presence
of qualitative factors.

The factors in the experiment include both components of a
mixture and other process variables.

There are multiple sources of variation leading to nested or
hierarchical data structures and restrictions on what can be
randomized.

A standard fractional factorial design requires too many treatment
combinations for the given amount of time and/or resources.

Computer - When situations such as the above exist, computer-aided designs are a
aided useful option. In some situations, computer-aided designs are the only
designs option an experimenter has.
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5.5.2.What is a computer-aided design?

Computer-aided
designsare
generated by a
computer
algorithmand
constructed to be
optimal for
certain models
according to one
of many types of
optimality
criteria

Optimality
critieria

D-Optimality

A-Optimality

G-Optimality

V-Optimality

Designs generated from a computer algorithm are referred to as
computer-aided designs. Computer-aided designs are experimental
designs that are generated based on a particular optimality criterion
and are generally 'optimal’ only for a specified model. As aresult,
they are sometimes referred to as optimal designs and generally do
not satisfy the desirable properties such as independence among
the estimators that standard classical designs do. The design
treatment runs that are generated by the algorithms are chosen
from an overall candidate set of possible treatment combinations.
The candidate set consists of all the possible treatment
combinations that one wishes to consider in an experiment.

There are various forms of optimality criteriathat are used to select
the points for adesign.

One popular criterion is D-optimality, which seeks to maximize
|X"X|, the determinant of the information matrix X'X of the design.
This criterion results in minimizing the generalized variance of the
parameter estimates based on a pre-specified model.

Another criterion is A-optimality, which seeks to minimize the
trace of the inverse of the information matrix. This criterion results
In minimizing the average variance of the parameter estimates
based on a pre-specified model.

A third criterion is G-optimality, which seeks to minimize the
maximum prediction variance, i.e., minimize max. [d=x"'(X'X)-1x],
over aspecified set of design points.

A fourth criterion is V-optimality, which seeks to minimize the
average prediction variance over a specified set of design points.
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Optimality of a Since the optimality criterion of most computer-aided designsis

givendesignis based on some function of the information matrix, the 'optimality’

model dependent of agiven design is model dependent. That is, the experimenter
must specify a model for the design and the final number of design
points desired before the ‘optimal’ design' can be generated. The
design generated by the computer algorithm is ‘optimal’ only for
that model.
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5.5.2.1.D-Optimal designs

D-optimal
designsare
often used
when
classical

designs do

not apply or
work

These designs
are always

an option
regardless of
model or
resolution
desired

You start
with a
candidate set
of runsand
the algorithm
chooses a
D-optimal set
of design
runs

D-optimal designs are one form of design provided by a computer
algorithm. These types of computer-aided designs are particularly
useful when classical designs do not apply.

Unlike standard classical designs such as factorials and fractional
factorials, D-optimal design matrices are usually not orthogonal and
effect estimates are correlated.

These types of designs are always an option regardless of the type of
model the experimenter wishesto fit (for example, first order, first
order plus some interactions, full quadratic, cubic, etc.) or the objective
specified for the experiment (for example, screening, response surface,
etc.). D-optimal designs are straight optimizations based on a chosen
optimality criterion and the model that will be fit. The optimality
criterion used in generating D-optimal designsis one of maximizing
[X"X|, the determinant of the information matrix X'X.

This optimality criterion results in minimizing the generalized variance
of the parameter estimates for a pre-specified model. As aresult, the
‘optimality’ of agiven D-optimal design is model dependent. That is,
the experimenter must specify amodel for the design before a
computer can generate the specific treatment combinations. Given the
total number of treatment runs for an experiment and a specified
model, the computer algorithm chooses the optimal set of design runs
from a candidate set of possible design treatment runs. This candidate
set of treatment runs usually consists of all possible combinations of
various factor levels that one wishes to use in the experiment.

In other words, the candidate set is a collection of treatment
combinations from which the D-optimal algorithm chooses the
treatment combinations to include in the design. The computer
algorithm generally uses a stepping and exchanging process to select
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No guarantee

D-optimal
designsare
particularly
useful when
resources are
limited or
thereare
constraints
on factor
settings

Industrial
example
demostrated
with IMP
software

Example of
D-optimal
design:
problem
setup

the set of treatment runs.

Note: Thereis no guarantee that the design the computer generatesis
actually D-optimal.

The reasons for using D-optimal designs instead of standard classical
designs generally fall into two categories:

1. standard factorial or fractional factorial designs require too many
runs for the amount of resources or time allowed for the
experiment

2. the design space is constrained (the process space contains factor
settings that are not feasible or are impossible to run).

Industrial examples of these two situations are given below and the
process flow of how to generate and analyze these types of designsis
also given. The software package used to demonstrate thisis IMP
version 3.2. The flow presented below in generating the design isthe
flow that is specified in the IMP Help screens under its D-optimal
platform.

Suppose there are 3 design variables (k = 3) and engineering judgment
specifies the following model as appropriate for the process under
investigation

3
=Gy +86im+8x+ 8x+ 8hx

The levels being considered by the researcher are (coded)
X1:5levels(-1,-0.5,0,0.5, 1)
X2: 2levels(-1, 1)
X3: 2levels(-1, 1)
One design objective, due to resource limitations, isto use n = 12
design points.
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Create the Given the above experimental specifications, the first thing to do

candidateset  toward generating the design is to create the candidate set. The
candidate set is a data table with arow for each point (run) you want
considered for your design. Thisis often afull factorial. Y ou can create
acandidate set in IMP by using the Full Factorial design given by the
Design Experiment command in the Tables menu. The candidate set
for this example is shown below. Since the candidate set isafull
factorial in all factors, the candidate set contains (5)* (2)*(2) = 20
possible design runs.

Table TABLE 5.1 Candidate Set for Variables X1, X2, X3
containing X1 X2 X3
the candidate 1 1 1
Set -1 1 +1
-1 +1 -1
-1 +1 +1
-05 -1 -1
-0.5 -1 +1
-0.5 +1 -1
-0.5 +1 +1
0 -1 -1
0 -1 +1
0 +1 -1
0 +1 +1
0.5 -1 -1
0.5 -1 +1
0.5 +1 -1
0.5 +1 +1
+1 -1 -1
+1 -1 +1
+1 +1 -1
+1 +1 +1
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Once the candidate set has been created, specify the model you want in
the Fit Model dialog. Do not give aresponse term for the model! Select
D-Optimal as the fitting personality in the pop-up menu at the bottom
of the dialog. Click Run Model and use the control panel that appears.
Enter the number of runs you want in your design (N=12 in this
example). You can also edit other options available in the control
panel. This control panel and the editable options are shown in the
table below. These other options refer to the number of points chosen
at random at the start of an excursion or trip (N Random), the number
of worst points at each K-exchange step or iteration (K-value), and the
number of times to repeat the search (Trips). Click Go.

For this example, the table below shows how these options were set
and the reported efficiency values are relative to the best design found.

D-Optimal Control Panel
Optimal Design Controls

N Desired 12
N Random 3
K Value 2
Trips 3
Best Design

D-efficiency 68.2558
A-efficiency 45.4545
G-efficiency 100
AvgPredSE 0.6233
N 12.0000

Thefour line efficiency report given after each search shows the best
design over all the excursions (trips). D-efficiency is the objective,
which is avolume criterion on the generalized variance of the
estimates. The efficiency of the standard fractional factorial is 100%,
but this is not possible when pure quadratic terms such as (X1)2 are
included in the model.

The efficiency values are a function of the number of pointsin the
design, the number of independent variables in the model, and the
maximum standard error for prediction over the design points. The best
design is the one with the highest D-efficiency. The A-efficiencies and
G-efficiencies help choose an optimal design when multiple excursions
produce alternatives with similar D-efficiency.
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The search for a D-optimal design should be made using several
excursions or trips. In each trip, IMP 3.2 chooses a different set of
random seed points, which can possibly lead to different designs. The
Save button saves the best design found. The standard error of
prediction is also saved under the variable OptStdPred in the table.

The D-optimal design using 12 runs that IMP 3.2 created is listed
below in standard order. The design runs should be randomized before
the treatment combinations are executed.

TABLE 5.2 Final D-optimal Design

X1l X2 X3 OptStdPred
-1 -1 -1 0.645497
-1 -1 +1 0.645497
-1 +1 -1 0.645497
-1 +1 +1 0.645497
0 -1 -1 0.645497
0 -1 41 0.645497
O +1 -1 0.645497
0O +1 +1 0.645497
+1 -1 -1 0.645497
+1 -1 +1 0.645497
+1 +1 -1 0.645497
+1 +1 +1 0.645497

To see the correlations of the parameter estimates for the best design
found, you can click on the Correlations button in the D-optimal
Search Control Panel. In most D-optimal designs, the correlations
among the estimates are non-zero. However, in this particular example,
the correlations are zero.

Note: Other software packages (or even other releases of IMP) may
have different procedures for generating D-optimal designs - the above
example is ahighly software dependent illustration of how to generate
a D-optimal design.

'HOME [TOOLS & AIDS [SEARCH [BACK MNEXT]

http://www.itl.nist.gov/div898/handbook/pri/section5/pri521.htm (5 of 5) [11/14/2003 5:53:36 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/

5.5.2.2. Repairing a design

P ENGINEERING STATISTICS HANDBOOK

[HOME 'TOOLS & AIDS [SEARCH [BACK NEXT|

5. Process | mprovement

5.5. Advanced topics

5.5.2. What is a computer-aided design?

5.5.2.2.Repairing a design

Repair or Computer-aided designs are helpful in either repairing or augmenting a
augment current experimental design. They can be used to repair a 'broken’
classical standard classical design.

designs

Original There may be situations in which, due to improper planning or other
design Issues, the original design matrix contains forbidden or unreachable
matrix may combinations of the factor settings. A computer-aided design (for
containruns  example a D-optimal design) can be used to 'replace’ those runs from the
that were original design that were unattainable. The runs from the original design
lost or that are attainable are labeled as 'inclusion’ runs and will be included in
impossible the final computer-aided design.

to acieve

Computer- Given a pre-specified model, the computer-aided design can generate
aided design  the additional attainable runs that are necessary in order to estimate the
can model of interest. As aresult, the computer-aided design isjust
generate replacing those runs in the original design that were unattainable with a
additional new set of runsthat are attainable, and which still allows the

attainable experimenter to obtain information regarding the factors from the

runs experiment.

Properties The properties of thisfina design will probably not compare with those
of thisfinal of the original design and there may exist some correlation among the
design may estimates. However, instead of not being able to use any of the datafor
not compare  analysis, generating the replacement runs from a computer-aided design,
with those of aD-optimal design for example, allows one to analyze the data.

the original Furthermore, computer-aided designs can be used to augment a classical
design design with treatment combinations that will break alias chains among

the termsin the model or permit the estimation of curvilinear effects.
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5.5.3.How do you optimize a process?

How do you determinethe optimal regiontorun a
process?

Often the The optimal region to run a process is usually determined after a
primary sequence of experiments has been conducted and a series of empirical
DOE goal is  models obtained. In many engineering and science applications,
to find the experiments are conducted and empirical models are developed with the
operating objective of improving the responses of interest. From a mathemeatical
conditions point of view, the objective is to find the operating conditions (or factor
that levels) X4, X, ..., X, that maximize or minimize ther system response
maximize (Or  variables Yy, Yy, ..., Y;. In experimental optimization, different
tmhle:“sg/nsltze?r)n optimization techniques are applied to the fitted response equations
responses Y3 ,?g g rue ,ﬁ-. Provided that the fitted equations approximate
adequately the true (unknown) system responses, the optimal operating
conditions of the model will be "close" to the optimal operating
conditions of the true system.
The DOE The experimental optimization of response surface models differs from
approach to classical optimization techniquesin at least three ways.
optimization
Find 1. Experimental optimization is an iterative process; that is,
approximate experiments conducted in one set of experiments result in fitted
(good) models that indicate where to search for improved operating
models and conditions in the next set of experiments. Thus, the coefficientsin
iteratively the fitted equations (or the form of the fitted equations) may
search for change during the optimization process. Thisisin contrast to
(near) classical optimization in which the functions to optimize are
optimal supposed to be fixed and given.
operating
conditions
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5.5.3. How do you optimize a process?

2. The response models are fit from experimental data that usually

contain random variability due to uncontrollable or unknown
causes. Thisimplies that an experiment, if repeated, will result in
adifferent fitted response surface model that might lead to
different optimal operating conditions. Therefore, sampling

variability should be considered in experimental optimization.

In contrast, in classical optimization techniques the functions are
deterministic and given.

. Thefitted responses are local approximations, implying that the

optimization process requires the input of the experimenter (a
person familiar with the process). Thisisin contrast with
classical optimization which is always automated in the form of
some computer algorithm.
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5.5.3.1.Single response case

Optimizing The experimental optimization of asingle response is usually conducted in two phases or steps,
of asingle following the advice of Box and Wilson. The first phase consists of a sequence of line searchesin
response the direction of maximum improvement. Each search in the sequence is continued until thereis
usually _ evidence that the direction chosen does not result in further improvements. The sequence of line
S_Iarts with searchesis performed as long as there is no evidence of lack of fit for asimple first-order model
line of theform
searchesin .
thedirection ¥ =By +8X;+ bX,+ ...+ X;
of maximum
improvement
If thereis The second phase is performed when there is lack of linear fit in Phase |, and instead, a
lack of fit for ~ second-order or quadratic polynomial regression model of the general form
linear .
models, V = bo+ X, + b X+ .+ i X + bnxf -+ bnx;-l- et bkixii + by X Xy + by X X3 + ...
quadratic + by Xy XKy + by Ko Xz + oo + b Zp X + o + B 1 X1 Xt
models are . . . - . .
tried next isfit. Not all responses will require quadratic fit, and in such cases Phase | is stopped when the

response of interest cannot be improved any further. Each phaseis explained and illustrated in the

next few sections.
"Flowchart"  Thefollowingisaflow chart showing the two phases of experimental optimization.
for two
phases of lack of linear fit J
experimental detected
optimization "Phase " "Phase ||"

Line Searches or Mor-linear optimization
First-order model i Quadratic model
Quadratic effects
detected
FIGURE 5.1: The Two Phases of Experimental Optimization
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5.5.3.1.1.Single response: Path of steepest ascent

Sarting at
the current
operating
conditions, fit
alinear
model

Determine the
directions of
steepest
ascent and
continue
experimenting
until no
further
improvement
occurs - then
iterate the
process

If experimentation isinitially performed in a new, poorly understood production process,
chances are that the initial operating conditions Xq, X,, ..., X, are located far from the region

where the factors achieve a maximum or minimum for the response of interest, Y. A first-order
model will serve as agood local approximation in asmall region closeto theinitial operating
conditions and far from where the process exhibits curvature. Therefore, it makes senseto fit a
simplefirst-order (or linear polynomial) model of the form:

V=bg+ Xy + b X4 .o+ i Xy
Experimental strategies for fitting this type of model were discussed earlier. Usually, a 2k-P

fractional factorial experiment is conducted with repeated runs at the current operating
conditions (which serve as the origin of coordinates in orthogonally coded factors).

Theideabehind "Phase " is to keep experimenting along the direction of steepest ascent (or
descent, as required) until there is no further improvement in the response. At that point, a new
fractional factorial experiment with center runsis conducted to determine a new search

direction. This processis repeated until at some point significant curvature in Y is detected.
Thisimplies that the operating conditions X4, Xy, ..., X, are close to where the maximum (or
minimum, as required) of Y occurs. When significant curvature, or lack of fit, is detected, the
experimenter should proceed with "Phase I1". Figure 5.2 illustrates a sequence of line searches
when seeking a region where curvature exists in a problem with 2 factors (i.e., k=2).

—irection
= ® _
! = A
.-
._,-""—- e second step
. - .- - -8 e SITE
st ste = T
- __F_'." Second factoreal expenment -"“--___. - .
__i-l"";' with center nms (gives new ey .
= == o - i
L L] o directzon ) e S
! .l i g, feC0nd search
' e - .
f arecaon
& & Thrd factonal expenment
wath center runs (lack of Imear

Iubial Factonal expenment

with center nms bt detected, proceed wath Phase 11)

FIGURE 5.2: A Sequence of Line Searchesfor a 2-Factor Optimization Problem
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5.5.3.1.1. Single response: Path of steepest ascent

Two main
decisions:
search
direction and
length of step

Flow chart of
iterative
search
process

There are two main decisions an engineer must make in Phase |:
1. determine the search direction;
2. determine the length of the step to move from the current operating conditions.

Figure 5.3 shows a flow diagram of the different iterative tasks required in Phasel. This
diagram is intended as a guideline and should not be automated in such away that the
experimenter has no input in the optimization process.

Fedorm a fractianal
fectanal expenment
. around current

———» si2e Move one 2lep

| operating conditions
Uza cenler ums to tesl
for lack of fit

Celimat= a firat order
palynomial rmodel,

llI_.' .\"l.,\\-'.l\-\.II
ff"f- .
Main efisctzd ™ i Phase i
<\\:Inn11r.5nt? L ' . )
-P‘-'J
“&hTf..-*"
TYay

Define saarch
directiopn and =izn

alang steepest ascen
[descend] dirzction

Petforrn expenmign] at
nEws operating
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-~ T
-
-
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FIGURE 5.3: Flow Chart for the First Phase of the Experimental Optimization

Procedure
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Procedurefor Finding the Direction of Maximum I mprovement

Suppose afirst-order model (like above) has been fit and provides a useful approximation. As
long as lack of fit (due to pure quadratic curvature and interactions) is very small compared to
the main effects, steepest ascent can be attempted. To determine the direction of maximum
improvement we use

1. the estimated direction of steepest ascent, given by the gradient of Y, if the objectiveis
tomaximizeY;

2. the estimated direction of steepest descent, given by the negative of the gradient of Y. if
the objectiveistominimize Y.

The direction of the gradient, g, is given by the values of the parameter estimates, that is, g' =
(bq, by, ..., by). Since the parameter estimates by, b, ..., by, depend on the scaling convention for
the factors, the steepest ascent (descent) direction is also scale dependent. That is, two
experimenters using different scaling conventions will follow different paths for process
improvement. This does not diminish the general validity of the method since the region of the
search, as given by the signs of the parameter estimates, does not change with scale. An equal
variance scaling convention, however, is recommended. The coded factors x;, in terms of the

factorsin the original units of measurement, X;, are obtained from the relation

X; — (—X.Imu + Xhigh)fg ;=19
(Xhigh — XKtow) /2 T
This coding convention is recommended since it provides parameter estimates that are scale

independent, generally leading to a more reliable search direction. The coordinates of the factor
settings in the direction of stegpest ascent, positioned a distance £ from the origin, are given

by:

k

Xi=

maximize bg 1— by + by + ... 4+ brig

subject to: Emf < p°
=1

This problem can be solved with the aid of an optimization solver (e.g., like the solver option
of a spreadsheet). However, in this case thisis not really needed, as the solution isasimple
equation that yields the coordinates

e_ B
T —Pm
Ej:l T

An engineer can compute this equation for different increasing values of £ and obtain different

i=1,2,.., k.

factor settings, all on the steepest ascent direction.
To see the details that explain this equation, see Technical Appendix 5A.

Example: Optimization of a Chemical Process
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Experimental
results

ANOVA table

It has been concluded (perhaps after a factor screening experiment) that the yield (Y, in %) of a
chemical processis mainly affected by the temperature (X4, in®*C) and by the reaction time

(X5, in minutes). Due to safety reasons, the region of operation is limited to
5O < Xy < 260
160 < X, < B00

The process is currently run at atemperature of 200 *C and a reaction time of 200 minutes. A
process engineer decides to run a 22 full factorial experiment with factor levels at

factor low center high
X1 170 200 230
Xs 150 200 250

Five repeated runs at the center levels are conducted to assess lack of fit. The orthogonally
coded factors are

X7 — 200 Az — 200
] = T a.ﬂd i R T
The experimental results were:
X1 Xz’ X4 | Xo | Y (=yield)
-1 | -1 | 170 | 150 | 32.79
+1 | -1 | 230 | 150 | 24.07
-1 | +1 | 170 | 250 | 48.94
+1 | +1 | 230 | 250 | 52.49
0 0 | 200 | 200 | 38.89
0 0 | 200 | 200 | 48.29
0 0O | 200 | 200 | 29.68
| 0 | 0 | 200 | 200 | 46.50
| 0| O | 200 | 200 | 44.15

The corresponding ANOVA table for afirst-order polynomia model, obtained using the
DESIGN EASE dtatistical software, is

SUM OF VEAN F
SOURCE SQUARES DF SQUARE VALUE PROB>F
MODEL 503. 3035 2 251.6517 4.810 0.0684
CURVATURE 8. 1536 1 8. 1536 0. 1558 0. 7093
RESI DUAL 261. 5935 5 52. 3187
LACK OF FIT  37.6382 1 37.6382 0.6722 0.4583
PURE ERROR  223. 9553 4 55. 9888

COR TOTAL 773. 0506 8
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It can be seen from the ANOV A table that there is no significant lack of linear fit due to an
interaction term and there is no evidence of curvature. Furthermore, there is evidence that the
first-order model is significant. Using the DESIGN EXPERT statistical software, we obtain the
resulting model (in the coded variables) as

¥ = 3057 — 1.20252, + 11.14z,

The usual diagnostic checks show conformance to the regression assumptions, although the R2
valueis not very high: R2 = 0.6580.

To maximize ¥, we use the direction of steepest ascent. The engineer selects £ = 1 since a

point on the steepest ascent direction one unit (in the coded units) from the origin is desired.
Then from the equation above for the predicted Y response, the coordinates of the factor levels
for the next run are given by:

. (1)(—1.2923)

= = —0.1152
f_ v \/ —1.2925)2 4 (11.14)2
and
1)(11.14
- 1)(11.1) =0.9933
2, bg \/ —1.9993)2 4 (11.14)2

This means that to improve the process, for every (-0.1152)(30) = -3.456 *C that temperatureis
varied (decreased), the reaction time should be varied by (0.9933(50) = 49.66 minutes.

Technical Appendix 5A: finding the factor settings on the steepest ascent direction a
specified distance from theorigin

The problem of finding the factor settings on the steepest ascent/descent direction that are
located a distance £ from the origin is given by the optimization problem,

maximize by _jl;_ by + boze + ... 4 by

> ot <
=1

subject to:
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5.5.3.1.1. Single response: Path of steepest ascent
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Multiples of
the direction
of the
gradient

NIST
SEMATECH

To solveit, use a Lagrange multiplier approach. First, add a penalty A for solutions not
satisfying the constraint (since we want a direction of steepest ascent, we maximize, and
therefore the penalty is negative). For steepest descent we minimize and the penalty termis
added instead.

maximize I = bz — A(e'e — p°)
Compute the partials and equate them to zero

oL
3;_5—2}\%—[]
0L _ . 2y _
o (2’2 —p%) =0

These two equations have two unknowns (the vector x and the scalar )‘L) and thus can be solved
yielding the desired solution:

gt
8]
or, in non-vector notation:
. b;

i=1,2,..k

Ly = P/ 3 Dy meny P
Vi b

From this equation we can see that any multiple £ of the direction of the gradient (given by
b;" | |b| |) will lead to points on the steepest ascent direction. For steepest descent, use instead

-bj in the numerator of the equation above.

[HOME [TOOLS & AIDS [SEARCH [BEACK NEXT]
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5.5.3.1.2. Single response: Confidence region for search path
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The direction given by the gradient g' = (bg, b, ..., by) constitutes only a single (point) estimate
based on asample of N runs. If adifferent set of N runs were conducted, these would provide
different parameter estimates, which in turn would give a different gradient. To account for this
sampling variability, Box and Draper gave aformulafor constructing a"cone" around the

direction of steepest ascent that with certain probability contains the true (unknown) system
gradient given by (ﬂl ; ﬂg . ﬂk) The width of the confidence cone is useful to assess how

reliable an estimated search direction is.

Figure 5.4 shows such a cone for the steepest ascent direction in an experiment with two factors.
If the cone is so wide that almost every possible direction isinside the cone, an experimenter
should be very careful in moving too far from the current operating conditions along the path of
steepest ascent or descent. Usually this will happen when the linear fit is quite poor (i.e., when the
R2 valueislow). Thus, plotting the confidence coneis not so important as computing its width.

If you are interested in the details on how to compute such a cone (and its width), see Technical
Appendix 5B.
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FIGURE 5.4: A Confidence Conefor the Stegpest Ascent Direction in an Experiment with 2
Factors

Technical Appendix 5B: Computing a Confidence Cone on the Direction of Steepest Ascent

Suppose the response of interest is adequately described by afirst-order polynomia model.
Consider the inequality

Zk:b'z _ (B bimy)? < (k= 1)8f Fp gy

1 k 3
=1 2 T

y—F

2
8y = 5 vy an
n

Cjj isthej-th diagonal element of the matrix (X'X)1(forj=1,.., kthesevalues are all equal if

the experimental design is a 2kP factorial of at least Resolution I11), and X is the model matrix of
the experiment (including columns for the intercept and second-order terms, if any). Any
operating condition with coordinates X' = (X4, X, ..., X)) that satisfies thisinequality generates a
direction that lies within the 100(1- ¢x)% confidence cone of steepest ascent if

k
Zb{ﬂi = 0
=1
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or inside the 100(1- ¢x)% confidence cone of steepest descent if&
k
Z b;a; < 0.
i=1

The inequality defines a cone with the apex at the origin and center line located along the gradient
of i‘:

A measure of "goodness' of a search direction is given by the fraction of directions excluded by
the 100(1- «x)% confidence cone around the steepest ascent/descent direction (see Box and

Draper, 1987) which is given by:
Eu=1_¢’u=1_ﬂ—l(z =11 —(rtﬂ—].])

&y Fcl_,.'n—l =

with T,._1() denoting the complement of the Student's-t distribution function with k-1 degrees of
freedom (that is, Ty_1(X) = P(tx.1 2> X)) and Fex, -1, n-p denotes an ¢x percentage point of the F
distribution with k-1 and n-p degrees of freedom, with n-p denoting the error degrees of freedom.
The value of ghg represents the fraction of directions included by the confidence cone. The

smaller B is, the wider the coneis, with) < #5 < 1. Note that the inequality equation and the

"goodness measure” equation are valid when operating conditions are given in coded units.

Example: Computing fe

From the ANOVA table in the chemical experiment discussed earlier
Bf = (52.3187)(1/4) = 13.0796

since Cj; = 1/4 (j=2,3) for a 22 factorial. The fraction of directions excluded by a 95% confidence
cone in the direction of steepest ascent is:

oy [(-12025)°+ (111425 \"°
.05 = ! (13.0796)(6.99)
— 1-0.2894 = 0.7105

since Fg o516 = 5.99. Thus 71.05% of the possible directions from the current operating point are

excluded with 95% confidence. Thisis useful information that can be used to select a step length.
The smaller B is, the shorter the step should be, as the steepest ascent direction isless reliable. In

this example, with high confidence, the true steepest ascent direction is within this cone of 29%

of possible directions. For k=2, 29% of 360° = 104.49, so we are 95% confident that our estimated
steepest ascent path is within plus or minus 52.2° of the true steepest path. In this case, we should
not use alarge step along the estimated steepest ascent path.

'HOME [TOOLS & AIDS [SEARCH [BACK MNEXT]
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Once the search direction is determined, the second decision needed in Phase |
relates to how far in that direction the process should be "moved”. The most
common procedure for selecting a step length is based on choosing a step sizein
one factor and then computing step lengths in the other factors proportional to their
parameter estimates. This provides a point on the direction of maximum
improvement. The procedure is given below. A similar approach is obtained by
choosing increasing values of £ in

]

b
m H

= P—;—ELI v

However, the procedure below considers the original units of measurement which
are easier to deal with than the coded "distance” £.

i=1,2,.. k.

Procedure: selection of step length

The following is the procedure for selecting the step length.
1. Choose a step length A (in natural units of measurement) for some factor

J. Usually, factor j is chosen to be the one engineers feel more comfortable
varying, or the one with the largest [bj]. The value of 4 X; can be based on

the width of the confidence cone around the steepest ascent/descent
direction. Very wide cones indicate that the estimated steepest ascent/descent
direction is not reliable, and thus A X; should be small. This usually occurs

when the R2 valueis low. In such a case, additional experiments can be
conducted in the current experimental region to obtain a better model fit and
a better search direction.

2. Transform to coded units:
AX;
ﬂ.:]':j: = 7

53
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5.5.3.1.3. Single response: Choosing the step length

with s denoting the scale factor used for factor j (e.g., 5 = range/2).

b
3 SetAx; = f&mj for al other factorsi.
k)

4. Transform al the Ax;'s to natural units: AX; = (AXi)(S).

Example: Step Length Selection.

The following is an example of the step length selection procedure.

« For the chemical process experiment described previously, the process
engineer selected A4, X, = 50 minutes. This was based on process engineering
considerations. It was also felt that /X, = 50 does not move the process too
far away from the current region of experimentation. This was desired since

the R2 value of 0.6580 for the fitted model is quite low, providing anot very
reliable steepest ascent direction (and a wide confidence cone, see Technical

Appendix 5B).
al
* Ar,=— =10
Lo 5{' ﬂ
. Apy = =25 = _0.1160,

« AX2=(-0.1160)(30) = -3.48°C.
Thusthe step sizeis A X' = (-3.48°C, 50 minutes).

Procedure: Conducting Experiments Along the Direction of Maximum
| mprovement

The following is the procedure for conducting experiments along the direction of
maximum improvement.

1. Given current operating conditions XE = (X, Xy, ..., X)) and astep size A X'
= (AXq, AXo, ., AX), perform experiments at factor levels X + AX, Xq
+ 24X, Xg + 34X, ... aslong asimprovement in the response Y (decrease or
increase, as desired) is observed.

2. Once apoint has been reached where there is no further improvement, a new
first-order experiment (e.g., a 2k-P fractional factorial) should be performed
with repeated center runs to assess lack of fit. If there is no significant
evidence of lack of fit, the new first-order model will provide a new search
direction, and another iteration is performed as indicated in Figure 5.3.
Otherwise (there is evidence of lack of fit), the experimental designis
augmented and a second-order model should be fitted. That is, the
experimenter should proceed to "Phase I1".
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5.5.3.1.3. Single response: Choosing the step length

Example: Experimenting Along the Direction of Maximum | mprovement

Step 1.

Given X = (200°C, 200 minutes) and A X = (-3.48°C, 50 minutes), the next
experiments were performed as follows (the step size in temperature was rounded
to -3.50C for practical reasons):

X1 | X5 X1 Xo | Y (=yied)
Xo 200 | 200 0 0
Xg+ AX 196.5 | 250 | -0.1160 |1 56.2
Xo + 2AX 193.0 {300 | -0.2320 | 2 71.49
Xo + 34X 189.5 [ 350 | -0.3480 |3 75.63
Xo + 44X 186.0 | 400 | -0.4640 |4 72.31
Xo + 54X 182.5 [ 450 | -0.5800 |5 72.10

Since the goal isto maximize 'Y, the point of maximum observed response is X =
189.5°C, X, = 350 minutes. Notice that the search was stopped after 2 consecutive
drops in response, to assure that we have passed by the "peak™ of the "hill".

Step 2:

A new 22 factorial experiment is performed with X' = (189.5, 350) as the origin.
Using the same scaling factors as before, the new scaled controllable factors are:
, X, —189.5 and X2 — 350
] — = —
30 ()
Five center runs (at X, = 189.5, X, = 350) were repeated to assess lack of fit. The
experimental results were:

| X1 | X2 | Xp | Xz | Y(=yield)
| -1 | -1 ] 1595 | 300 | 64.33
|+1 | -1 | 2195 | 300 | 51.78
| -1 [+1 | 1595 | 400 | 77.30
| +1 [ +1 [ 2195 | 400 | 45.37
| 0 | 0 | 1895 | 350 | 62.08
| 0 | 0 | 1895 | 350 | 79.36
| 0 | 0| 1895 | 350 | 75.29
| 0 | 0 | 1895 | 350 | 73.81
| 0 | 0 | 1895 | 350 | 69.45

The corresponding ANOV A table for alinear model, obtained using the
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DESIGN-EASE statistical software, is

SUM OF VEAN F

SOQURCE SQUARES DE SQUARE VALUE PROB > F
MODEL 505. 300 2 252.650 4.731 0.0703
CURVATURE 336. 309 1 336. 309 6. 297 0. 0539
RESI DUAL 267. 036 5 53. 407

LACK OF FIT  93. 857 1 93.857 2.168 0. 2149

PURE ERROR  173.179 4 43. 295
COR TOTAL 1108. 646 8

From the table, the linear effects (model) is significant and there is no evidence of
lack of fit. However, there isa significant curvature effect (at the 5.4% significance
level), which implies that the optimization should proceed with Phase Il; that is, the
fit and optimization of a second-order mode!.

NIST
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After afew steepest ascent (or descent) searches, afirst-order model will eventually lead to no
further improvement or it will exhibit lack of fit. The latter case typically occurs when operating
conditions have been changed to a region where there are quadratic (second-order) effects present
in the response. A second-order polynomial can be used as alocal approximation of the response
in asmall region where, hopefully, optimal operating conditions exist. However, while a
quadratic fit is appropriate in most of the casesin industry, there will be afew times when a
quadratic fit will not be sufficiently flexible to explain a given response. In such cases, the analyst
generally does one of the following:

1. Usesatransformation of Y or the Xi's to improve the fit.

2. Limitsuse of the model to a smaller region in which the model doesfit.
3. Adds other termsto the model.

Procedure: obtaining the estimated optimal operating conditions

Once alinear model exhibits lack of fit or when significant curvature is detected, the experimental
design used in Phase | (recall that a 2%-P factorial experiment might be used) should be augmented
with axial runs on each factor to form what is called a central composite design. This
experimental design allows estimation of a second-order polynomia of the form

2 2 k Kk
¥ =t + Ebimi + E bzl + Z Z bij@iC;
i—1 i—=1

i< § 3=1

If the corresponding analysis of variance table indicates no lack of fit for this model, the engineer
can proceed to determine the estimated optimal operating conditions.

1. Using some graphics software, obtain a contour plot of the fitted response. If the number of
factors (k) is greater than 2, then plot contoursin all planes corresponding to al the
possible pairs of factors. For k greater than, say, 5, this could be too cumbersome (unless
the graphic software plots all pairs automatically). In such acase, a"canonical analysis' of
the surface is recommended (see Technical Appendix 5D).

2. Use an optimization solver to maximize or minimize (as desired) the estimated response Y.

3. Perform a confirmation experiment at the estimated optimal operating conditions given by
the solver in step 2.
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We illustrate these steps with the DESIGN-EXPERT software and our chemical experiment
discussed before. For atechnical description of aformulathat provides the coordinates of the
stationary point of the surface, see Technical Appendix 5C.

Example: Second Phase Optimization of Chemical Process

Recall that in the chemical experiment, the ANOVA table, obtained from using an experiment run
around the coordinates X, = 189.5, X, = 350, indicated significant curvature effects. Augmenting

the 22 factorial experiment with axial runsat o = £ +/2 to achieve arotatable central

composite experimental design, the following experimental results were obtained:

’ X1 ’ X ’ X1 ’ X5 ’ Y (=yield)
| -1414 | 0 | 14708 | 350 72.58
+1414 | 0 | 23192 | 350 37.42
0 | -1414 | 1895 | 2793 54.63
0 | +1414 | 1895 | 4207 54.18

The corresponding ANOV A table for the different effects, based on the sequential sum of squares
procedure of the DESIGN-EXPERT software, is

SUM OF VEAN F
SOURCE SQUARES DF SQUARE VALUE PROB > F
VEAN 51418. 2 1 51418. 2
Li near 1113.7 2 556. 8 5.56 0. 024
Quadratic 768. 1 3 256.0 7.69 0. 013
Cubi ¢ 9.9 2 5.0 0.11 0. 897
RESI DUAL 223.1 5 44. 6
TOTAL 53533.0 13

From the table, the linear and quadratic effects are significant. The lack of fit tests and auxiliary
diagnostic statistics are:

SUM OF VEAN F
MODEL SQUARES DF SQUARE VALUE PROB > F
Li near 827.9 6 138.0 3.19 0. 141
Quadratic 59.9 3 20.0 0. 46 0. 725
Cubi ¢ 49.9 1 49. 9 1.15 0. 343
PURE ERROR 173. 2 4 43. 3
ROOT ADJ PRED
SOURCE VBE R-S R-S R- SOR PRESS
Li near 10. 01 0. 5266 0. 4319 0. 2425 1602. 02
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5.5.3.1.4. Single response: Optimization when there is adequate quadratic fit

Contour plot
of the fitted
response
function

Quadratic 5. 77 0. 8898 0. 8111 0.6708 696. 25
Cubi c 6. 68 0. 8945 0. 7468 - 0. 6393 3466. 71

The quadratic model has alarger p-value for the lack of fit test, higher adjusted R2, and a lower
PRESS statistic; thusit should provide areliable model. The fitted quadratic equation, in coded
units, is

¥ =72.0 - 11.78x, +0.T4xy — 7.2522 — 7.3522 — 4.85x, 7,
Step 1:
A contour plot of this function (Figure 5.5) shows that it appears to have a single optimum point

in the region of the experiment (this optimum is calculated below to be (-.9285,.3472), in coded
X1, X5 Units, with a predicted response value of 77.59).

Lontour Flot

i G2 D00 B0000

0000
BE 000
B6.000

54.000 &4 000

FIGURE 5.5: Contour Plot of the Fitted Response in the Example
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5.5.3.1.4. Single response: Optimization when there is adequate quadratic fit

3D plot of the  Since there are only two factorsin this example, we can also obtain a 3D plot of the fitted
fitted response against the two factors (Figure 5.6).

response

function
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FIGURE 5.6: 3D Plot of the Fitted Response in the Example

Step 2:
Opti mization The optimization routine in DESIGN-EXPERT was invoked for maximizing ¥". The results are
point Xf = 161.64°C, }{5 = 367.32 minutes. The estimated yield at the optimal point isl'.!r(x*) =
77.59%.
Step 3.
Confirmation A confirmation experiment was conducted by the process engineer at settings X; = 161.64, X, =
experiment 367.32. The observed response was ¥ (X*) = 76.5%, which is satisfactorily close to the estimated
optimum.

Technical Appendix 5C: Finding the Factor Settingsfor the Stationary Point of a Quadratic
Response
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5.5.3.1.4. Single response: Optimization when there is adequate quadratic fit

Details of
how to find
the maximum
or minimum
point for a
quadratic
response

Nature of the
stationary
pointis
determined by
B

Exampl e of
computing the
stationary
point

1. Rewrite the fitted equation using matrix notation as
Y{e)=5,  be - 2'Be
with b' = (by, by, ..., by) denoting a vector of first-order parameter estimates,

511 512/2 b;k/E

B — b22

symmetric brk

isamatrix of second-order parameter estimates and X' = (X, Xo, ..., Xi) IS the vector of

controllable factors. Notice that the off-diagonal elements of B are equal to half the
two-factor interaction coefficients.

2. Equating the partial derivatives of ¥ with respect to x to zeroes and solving the resulting
system of equations, the coordinates of the stationary point of the response are given by

et = —%B_lb

The nature of the stationary point (whether it is a point of maximum response, minimum
response, or a saddle point) is determined by the matrix B. The two-factor interactions do not, in
general, let us "see" what type of point x* is. One thing that can be said is that if the diagonal
elements of B (the b;; have mixed signs, x* is a saddle point. Otherwise, it is necessary to look at

the characteristic roots or eigenvalues of B to see whether B is "positive definite" (so x* is apoint
of minimum response) or "negative definite" (the casein which x* is apoint of maximum
response). Thistask is easier if the two-factor interactions are "eliminated” from the fitted
equation asis described in Technical Appendix 5D.

Example: computing the stationary point, Chemical Process experiment

The fitted quadratic equation in the chemical experiment discussed in Section 5.5.3.1.1is, in
coded units,

Y =720 —11.78x, +0.74x, — 7.252% — 7.5522 — 485z, 7,
from which we obtain b’ = (-11.78, 0.74),

8o —7.95 —92.9495 . gl _ —(.1a45 0.0496
L 2425 —T7.55 L 00496 —0.1483

oo 1 [ —01545 0.0496 —11.78 y _ { —0.9285

T 2100496  —0.1483 0.74 ]\ 0.3472
Transforming back to the original units of measurement, the coordinates of the stationary point
are

and
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5.5.3.1.4. Single response: Optimization when there is adequate quadratic fit

Casefor a
single
controllable
response

Case for
multiple
controllable
responses not

SO easy

Seps for
performing
the canonical
analysis

¥ 161.64°
| 367.36 mimites

Notice thisis the same solution as was obtained by using the optimization routine of
DESIGN-EXPERT (see section 5.5.3.1.1). The predicted response at the stationary point is ¥ (X")
=77.59%.

Technical Appendix 5D: " Canonical Analysis' of Quadratic Responses

Whether the stationary point X* represents a point of maximum or minimum response, or isjust a
saddle point, is determined by the matrix of second-order coefficients, B. In the smpler case of
just asingle controllable factor (k=1), B is ascalar proportional to the second derivative of ¥7(x)
with respect to x. If d2y//dx?2 is positive, recall from calculus that the function ¥7(x) is convex
("bow! shaped") and x* isapoint of minimum response.

Unfortunately, the multiple factor case (k>1) is not so easy since the two-factor interactions (the
off-diagonal elements of B) obscure the picture of what is going on. A recommended procedure
for analyzing whether B is "positive definite”" (we have a minimum) or "negative definite" (we
have a maximum) is to rotate the axes X1, X», ..., X SO that the two-factor interactions disappear. It
isalso customary (Box and Draper, 1987; Khuri and Cornell, 1987; Myers and Montgomery,
1995) to trangdlate the origin of coordinates to the stationary point so that the intercept termis
eliminated from the equation of ¥7(x). This procedure is called the canonical analysis of ¥(x).

Procedure: Canonical Analysis

1. Defineanew axisz=x - X" (trandation step). The fitted equation becomes
Y{z)=Y(2*)+ Bz

2. Defineanew axisw = E'z, with E'BE = D and D adiagonal matrix to be defined (rotation
step). The fitted equation becomes

Y(w) = ¥(2*) + w'Dw.

Thisisthe so-called canonical form of the model. The elements on the diagonal of D, }; (i
=1, 2, ..., k) arethe eigenvalues of B. The columns of E', g, are the orthonormal
eigenvectors of B, which means that the g satisfy (B - 3;)e =0, E;Ej =0fori ;&j, and

fe.=10.

3. If al the }; are negative, X" is a point of maximum response. If al the }; are positive, x* is
apoint of minimum response. Finally, if the }; are of mixed signs, the responseis asaddle
function and x* is the saddle point.
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5.5.3.1.4. Single response: Optimization when there is adequate quadratic fit

Eigenvalues
that are
approximately
zero

Canonical
analysis
typically
performed by
software

B matrix for
this example

Compute the
eigenvalues
and find the
orthonormal
eigenvectors

SAS code for
performing
the canonical
analysis

If some }; =2 O, the fitted ellipsoid

k
Y(w) =Y (") + 3 A
i=l
is elongated (i.e., it isflat) along the direction of the w; axis. Points along the w; axiswill have an

estimated response close to optimal; thus the process engineer has flexibility in choosing "good"
operating conditions. If two eigenvalues (say jA; and ;) are close to zero, a plane in the (w;, w)

coordinates will have close to optimal operating conditions, etc.

Itis niceto know that the IMP or SAS software (PROC RSREG) computes the eigenvalues j;
and the orthonormal eigenvectors g;; thus there is no need to do a canonical analysis by hand.

Example: Canonical Analysisof Yield Responsein Chemical Experiment using SAS

Let us return to the chemical experiment example. Thisillustrate the method, but keep in mind

that when the number of factorsis small (e.g., k=2 asin this example) canonical analysisis not
recommended in practice since simple contour plotting will provide sufficient information. The
fitted equation of the model yields

p_( 72 —2.2425
T\ —2425 —7.33

To compute the eigenvalues ));, we have to find all roots of the expression that results from
equating the determinant of B - };l to zero. Since B is symmetric and has real coefficients, there
will bek rea roots ), i =1, 2, ..., k. To find the orthonormal eigenvectors, solve the simultaneous

equations (B - A1) = 0and E;Ei =1.

Thisisthe hard way, of course. These computations are easily performed using the SAS software
PROC RSREG. The SAS program applied to our exampleis:

dat a;
i nput x1 x2 vy;
cards;
-1

64. 33
51.78
77.30
45. 37
62. 08
79. 36
75.29
73.81
69. 45
72.58
37.42
-1.414 54.63

1.414 54.18

1
OORrRrROOOOORRR
O0OO0O0COCOORRRE

NN
Hl—\
NN

http://www.itl.nist.gov/div898/handbook/pri/section5/pri5314.htm (7 of 8) [11/14/2003 5:53:40 PM]



5.5.3.1.4. Single response: Optimization when there is adequate quadratic fit
proc rsreg,
nodel y=x1 x2 /nocode/l ackfit;
run;

The "nocode" option was used since the factors had been input in coded form.

SAS output The corresponding output from the SAS canonical analysisis asfollows:
fromthe
canonical Canoni cal Analysis of Response Surface
analysis
Critical
Fact or Val ue
X1 -0.922
X2 0. 346800
Predi cted val ue at stationary point 77.589146
Ei genvectors
Ei genval ues X1 X2
-4.973187 0. 728460 - 0. 685089
-9.827317 0. 685089 0. 728460

Stationary point is a maxi num

Interpretation  Notice that the eigenvalues are the two roots of
of IhetSAS det(B - A1) = (-7.25}) (-7.55 - }) - (-2.425(-2.245)) = 0.
outpd As mentioned previously, the stationary point is (x*)' = (-0.9278, 0.3468), which corresponds to

X*' = (161.64, 367.36). Since both eigenvalues are negative, X* is a point of maximum response.
To obtain the directions of the axis of the fitted ellipsoid, compute

wy = 0.7285(x4 + 0.9278) - 0.6851(x, - 0.3468) = 0.9143 + 0.7285x, - 0.6851x,

and
W, = 0.6851(x4 + 0.9278) - 0.7285(x,, - 0.3468) = 0.8830 + 0.6851x; + 0.7285x,

Since [A1] < |32l there is somewhat more elongation in the w; direction. However, since both

eigenvalues are quite far from zero, there is not much flexibility in choosing operating conditions.
It can be seen from Figure 5.5 that the fitted ellipses do not have a great elongation in the w;

direction, the direction of the magjor axis. It isimportant to emphasize that confirmation
experiments at X* should be performed to check the validity of the estimated optimal solution.

NIST

—_— [HOME [TOOLS & AIDS [SEARCH [BACK MNEXT|
SEMATECH

http://www.itl.nist.gov/div898/handbook/pri/section5/pri5314.htm (8 of 8) [11/14/2003 5:53:40 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/

5.5.3.1.5. Single response: Effect of sampling error on optimal solution
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5. Process |mprovement

5.5. Advanced topics

5.5.3. How do you optimize a process?

5.5.3.1. Single response case

5.5.3.1.5.Single response: Effect of

Experimental
error means
all derived
optimal
operating
conditions are
just estimates -
confidence
regions that
arelikely to
contain the
optimal points
can be derived

Confirmation
runs are very
important

NIST

SEMATECH

I HOME

sampling error on optimal
solution

Process engineers should be aware that the estimated optimal
operating conditions x* represent a single estimate of the true
(unknown) system optimal point. That is, due to sampling
(experimental) error, if the experiment is repeated, a different
quadratic function will be fitted which will yield adifferent stationary
point x*. Some authors (Box and Hunter, 1954; Myers and
Montgomery, 1995) provide a procedure that alows one to compute a
region in the factor space that, with a specified probability, contains
the system stationary point. Thisregion is useful information for a
process engineer in that it provides a measure of how "good" the point
estimate x” is. In general, the larger thisregion is, the less reliable the
point estimate X is. When the number of factors, k, is greater than 3,
these confidence regions are difficult to visualize.

Awareness of experimental error should make a process engineer
realize the importance of performing confirmation runs at x*, the
estimated optimal operating conditions.
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5.5.3.1.6. Single response: Optimization subject to experimental region constraints

P ENGINEERING STATISTICS HANDBOOK

[HOME

'TOOLS & AIDS [SEARCH [BACK ~NEXT]

5. Process |mprovement

5.5. Advanced topics

5.5.3. How do you optimize a process?

5.5.3.1. Single response case

5.5.3.1.6.Single response: Optimization

subject to experimental region
constraints

Optimal Sometimes the optimal operating conditions x* simply fall outside
operating the region where the experiment was conducted. In these cases,
conditionsmay  constrained optimization techniques can be used to find the solution
fall outside “th . }“'; thout leaving th oninthe
region where X" that optimizes (EE:]WI'[ out leaving the region in the factor

' t .
géﬁzrd g:gg space where the experiment took place.
Ridge analysis "Ridge Analysis’, as developed by Hoerl (1959), Hoerl (1964) and
isamethod for  Draper (1963), is an optimization technique that finds factor settings

finding optimal
factor settings

X" such that they
optimize  ¥7(x) = bg+ b'x + x'Bx

that satisfy

certain . ,

constraints ubjectto:  x'x =
The solution x* to this problem provides operating conditions that
yield an estimated absol ute maximum or minimum response on a
sphere of radius g£. Different solutions can be obtained by trying
different values of £.

Solve with The original formulation of Ridge Analysis was based on the

non-linear eigenvalues of a stationarity system. With the wide availability of

programming non-linear programming codes, Ridge Analysis problems can be

software solved without recourse to eigenvalue analysis.
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5.5.3.2. Multiple response case
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5. Process |mprovement
5.5. Advanced topics
5.5.3. How do you optimize a process?

5.5.3.2.Multiple response case

When there In the multiple response case, finding process operating conditions
are multiple that simultaneously maximize (or minimize, as desired) all the
responses, itis  responsesis quite difficult, and often impossible. Almost inevitably,
often the process engineer must make some trade-offsin order to find

impossibleto process operating conditions that are satisfactory for most (and
simultaneously  hopefully all) the responses. In this subsection, we examine some
optimize each effective ways to make these trade-offs.

one - « Path of steepest ascent
trade-offs . )
must be made o Thedesirability function approach
o The mathematical programming approach
0 Dual response systems
o Morethan 2 responses
MNIST . .
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5.5.3.2.1. Multiple responses: Path of steepest ascent
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5. Process Improvement

5.5. Advanced topics

5.5.3. How do you optimize a process?

5.5.3.2. Multiple response case

5.5.3.2.1. Multiple responses: Path of steepest

ascent

Objective: When the responses exhibit adequate linear fit (i.e., the response models are all
consider and  linear), the objectiveisto find adirection or path that ssmultaneously considers the
balance the individual paths of maximum improvement and balances them in some way. This
individual case is addressed next.
paths of . . . : -
Maxd mMum When there isamix of linear and higher-order responses, or when all empirical
improvement ~ €sPonse models are of higher-order, see sections 5.5.3.2.2 and 5.5.3.2.3. The

desirability method (section 5.5.3.2.2) can also be used when all response models

arelinear.

Procedure: Path of Stegpest Ascent, Multiple Responses.
A weighted The following is aweighted priority strategy using the path of steepest ascent for
priority each response.
strategy IS 1. Compute the gradientsg; (i =1, 2, . . ., K) of all responses as explained in
degcrlbed section 5.5.3.1.1. If one of the responsesis clearly of primary interest
using the . .

compared to the others, use only the gradient of this response and follow the
path of ; : : .
steepest procedure of section 5.5.3.1.1. Otherwise, continue with step 2.
ascent for 2. Determine relative prioritiesr; for each of the k responses. Then, the
each weighted gradient for the search direction is given by
response
Mg T2 o T TRk
T k
2 2i=1 T
and the weighted direction is
d=-
gl

http://www.itl.nist.gov/div898/handbook/pri/section5/pri5321.htm (1 of 3) [11/14/2003 5:53:41 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm

Weighting
factors
based on R2

Sngle
response
steepest
ascent
procedure

An example
using the
weighted
priority
method

Compute the
gradients

5.5.3.2.1. Multiple responses: Path of steepest ascent

The confidence cone for the direction of maximum improvement explained in
section 5.5.3.1.2 can be used to weight down "poor" response models that provide

very wide cones and unreliable directions. Since the width of the coneis
proportional to (1 - R2), we can use

H;
vk R

Given aweighted direction of maximum improvement, we can follow the single
response steepest ascent procedure as in section 5.5.3.1.1 by selecting points with

coordinates x* = Pd;, i =1, 2, ..., k. These and related issues are explained more
fully in Del Castillo (1996).

T i=1,2,..,k

Example: Path of Steepest Ascent, Multiple Response Case

Suppose the response model:
§i = 711.0 + 50.92, + 154.8x,

with Rf = 0.8968 represents the average yield of a production process obtained

from areplicated factorial experiment in the two controllable factors (in coded
units). From the same experiment, a second response model for the process standard
deviation of theyield is obtained and given by

o = 19.26 + 631, + 6.28x,

with Rg = 0.5977. We wish to maximize the mean yield while minimizing the
standard deviation of the yield.

Step 1: computethe gradients:

We compute the gradients as follows.

- ( 50.9 154.8

TN\ /5092 1 15482 V0.2 1 1948
- ( —6.31 —6.28

%27\ /6312 1 6.28%" V6.312 1 6.28°

(recall wewish to minimizeys,).

) = (0.3124, 0.9500)

) = (—0.7088, —0.7034)

Step 2: find relative priorities:
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5.5.3.2.1. Multiple responses: Path of steepest ascent

Findrelative  Sincethere are no clear priorities, we use the quality of fit as the priority:

priorities o (.8088 06
LT 0.8968 + 05977
0.5977 0.4

"2~ 0.8968 + 0.5977
Then, the weighted gradient is

g =(0.6(0.3124) + 0.4(-0.7088), 0.6(0.95) + 0.4(-0.7054)) = (-0.096, 0.2878)
which, after scaling it (by dividing each coordinate by
N/(_ﬂ‘ﬂgﬁ)z + ().98782). gives the weighted direction d' = (-.03164, 0.9486).

Therefore, if we want to move 2 = 1 coded units aong the path of maximum
improvement, we will set x; = (1)(-0.3164) = -0.3164, x, = (1)(0.9486) = 0.9486 in

the next run or experiment.
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5.5.3.2.2. Multiple responses: The desirability approach
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5.5. Advanced topics
5.5.3. How do you optimize a process?

5.5.3.2. Multiple response case

5.5.3.2.2. Multiple responses: The desirability approach

The
desirability
approachisa
popular
method that
assignsa
"score' to a
set of
responses and
chooses factor
settings that
maximize that
score

Desirability
functions of
Derringer and
Suich

Desirability
function for
"targetis
best"

The desirability function approach is one of the most widely used methods in industry for the
optimization of multiple response processes. It isbased on the idea that the "quality” of a product
or process that has multiple quality characteristics, with one of them outside of some "desired"
limits, is completely unacceptable. The method finds operating conditions x that provide the
"most desirable" response values.

For each response Y;(x), adesirability function d;(Y;) assigns numbers between 0 and 1 to the
possible values of Y;, with d;(Y;) = O representing a completely undesirable value of Y; and d;(Y;)
= 1 representing a completely desirable or ideal response value. The individual desirabilities are
then combined using the geometric mean, which gives the overall desirability D:

E
D = (dy(%) X da(¥a) X ... X da (Y))V
with k denoting the number of responses. Notice that if any response Y; is completely undesirable

(di(Y;) = 0), then the overall desirability is zero. In practice, fitted response values f’i areusedin
place of the;.

Depending on whether a particular response Y; is to be maximized, minimized, or assigned a
target value, different desirability functions d;(Y;) can be used. A useful class of desirability
functions was proposed by Derringer and Suich (1980). Let L, U; and T; be the lower, upper, and
target values, respectively, that are desired for response Y;, with L <X T; <C U;.

If aresponseis of the "target is best" kind, then itsindividual desirability functionis

(0 if Vi(e) < IL;
L5 (M) f L<fe)<m
LX) = ¢ ~ t
(P52} f B<Be)< U,
0 if ﬂ(m] > I

with the exponents s and t determining how important it isto hit the target value. For s=t =1, the
desirability function increases linearly towards T;; for s< 1, t < 1, the function is convex, and for

s> 1, t> 1, thefunction is concave (see the example below for an illustration).
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5.5.3.2.2. Multiple responses: The desirability approach

Desirability
function for
maximizing a
response

Desirability
function for
minimizing a
response

Desirability
approach
steps

An example
using the
desirability
approach

Factor and
response
variables

If aresponse isto be maximized instead, the individual desirability is defined as

(0 if $(e)<L;
G@y={ (M) o L<f@)<n
| 1.0 if ¥i(e)>T;

with T; in this case interpreted as a large enough value for the response.

Finally, if we want to minimize aresponse, we could use

(1.0 if ﬂ(m] < T;
W@y =4 (M) i n<Re) <
0 it Bie) > U

with T; denoting a small enough value for the response.

The desirability approach consists of the following steps:
1. Conduct experiments and fit response models for al k responses;
2. Defineindividual desirability functions for each response;
3. Maximize the overall desirability D with respect to the controllable factors.

Example:

Derringer and Suich (1980) present the following multiple response experiment arising in the
development of atire tread compound. The controllable factors are: x4, hydrated silicalevel, x,,
silane coupling agent level, and X3, sulfur level. The four responses to be optimized and their
desired ranges are:

Source Desired range
PICO Abrasionindex, Y, 120<Yq
200% modulus, Y, 1000< Y,
Elongation at break, Y3 400 < Y53 <600
Hardness, Y, 60<Y,<75

The first two responses are to be maximized, and the value s=1 was chosen for their desirability
functions. The last two responses are "target is best" with T3 = 500 and T, = 67.5. The values

s=t=1 were chosen in both cases.
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5.5.3.2.2. Multiple responses: The desirability approach

Experimental The following experiments were conducted using a central composite design.
runsfroma

Run

central Number X1 X2 Xz Y1 Yo Y3 Y4

composite

design 1 -1.00 -1.00 -100 102 900 470 675
2 +1.00 -100 -1.00 120 860 410 65.0
3 -1.00 +1.00 -1.00 117 800 570 775
4 +1.00 +1.00 -1.00 198 2294 240 745
5 -1.00 -1.00 +1.00 103 490 640 625
6 +1.00 -100 +100 132 1289 270 67.0
7 -1.00 +1.00 +1.00 132 1270 410 780
8 +1.00 +1.00 +1.00 139 1090 380 70.0
9 -1.63 0.00 000 102 770 590 76.0
10 +1.63 0.00 000 154 1690 260 70.0
11 000 -163 000 9 700 520 63.0
12 0.00 +1.63 0.00 163 1540 380 75.0
13 0.00 000 -163 116 2184 520 65.0
14 0.00 000 +1.63 153 1784 290 71.0
15 0.00 0.00 0.00 133 1300 380 70.0
16 0.00 0.00 0.00 133 1300 380 685
17 0.00 0.00 0.00 140 1145 430 68.0
18 0.00 0.00 0.00 142 1090 430 68.0
19 0.00 0.00 0.00 145 1260 390 69.0
20 0.00 0.00 0.00 142 1344 390 70.0

Fitted Using ordinary least squares and standard diagnostics, the fitted responses are:

response Y, = 139.12 +16.49x%, + 17.882, + 2.21x;

—4.0122 — 3.4522 — 1.5722
+a.12x170 — 7882123 — T.13%223
(R2 = 0.8369 and adjusted R2 = 0.6903);
Yo = 1261.13 + 268.15x, + 246.515 — 102.6375
—83.502 — 124.89x2 + 19922
+69. 31110 — 104.38x 15 — 94132025
(R2 = 0.7137 and adjusted R2 = 0.4562);
Y, = 417.5 — 99.67Tx; — 31425 — 27.4224
(R2 = 0.682 and adjusted R2 = 0.6224);

Y, = 6891 — 141z, +4.3%%, + 0212,
+1.562% + 0.03823 — 0.32x3
—1.62%,70 + 0.207173 — 0.1 270m5

(R2 = 0.8667 and adjusted R2 = 0.7466).

Note that no interactions were significant for response 3 and that the fit for response 2 is quite
poor.
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5.5.3.2.2. Multiple responses: The desirability approach

Optimization Optimization of D with respect to x was carried out using the Design-Expert software. Figure 5.7
performed by ghows the individual desirability functions di(¥") for each of the four responses. The functions

Design-Expert : . . .
softvx?are P arelinear since the values of sand t were set equal to one. A dot indicates the best solution found
by the Design-Expert solver.
Diagram of
desirability . -
functions and
Optln:lal =1.00 1.00 =1.00 1,00
solutions
1 =010 x2 =015
170
120
-1.00 1.00 96 198
*3=-1.00 ¥1 = 136335
1300 s00
J - 1.
l T
1000 400w ~._ GO0
—'—I/ : 1 ~
440 2204 240 G40
v = 1571 .05 ¥ = 450 458
B .5
-
-
& - H‘xﬁ___m 75
625 T8
wil = B 2654

FIGURE 5.7 Desirability Functions and Optimal Solution for Example Problem

Best Solution  The best solutionis (x*)' = (-0.10, 0.15, -1.0) and resultsin:
(¥ ) =034 (¥ (x)=136.4)

(¥ ) =10 (¥(x")=157.1)
da(¥5) =049 (¥ 4(x") = 450.56)
A ¥ ) =076 (¥ 4(x") = 69.26)

The overall desirability for this solution is 0.596. All responses are predicted to be within the
desired limits.
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5.5.3.2.2. Multiple responses: The desirability approach

3D plot of the  Figure 5.8 shows a 3D plot of the overall desirability function D(x) for the (x5, X3) plane when x;

ovgrall . isfixed at -0.10. The function D(x) is quite "flat" in the vicinity of the optimal solution, indicating
desirability that small variations around x* are predicted to not change the overall desirability drastically.
function However, the importance of performing confirmatory runs at the estimated optimal operating

conditions should be emphasized. Thisis particularly true in this example given the poor fit of the
response models (e.g., Y',).

0.536
De=irability

w12 x
o & 0.447

0238
0143

0.000

FIGURE 5.8 Overall Desirability Function for Example Problem
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5.5.3.2.3. Multiple responses: The mathematical programming approach
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5.5.3. How do you optimize a process?

5.5.3.2. Multiple response case

5.5.3.2.3. Multiple responses: The mathematical

The
mathematical
programming
approach
maximizes or
minimizes a
primary
response,
subject to
appropriate
constraints
on all other
responses

Optimization
of dual
response
systems

programming approach

The analysis of multiple response systems usually involves some type of
optimization problem. When one response can be chosen as the "primary", or
most important response, and bounds or targets can be defined on all other
responses, a mathematical programming approach can be taken. If thisis not
possible, the desirability approach should be used instead.

In the mathematical programming approach, the primary response is maximized
or minimized, as desired, subject to appropriate constraints on all other
responses. The case of two responses ("dual” responses) has been studied in
detail by some authors and is presented first. Then, the case of more than 2
responsesisillustrated.

o Dual response systems

o Morethan 2 responses

Dual response systems

The optimization of dual response systems (DRS) consists of finding operating
conditions x that

optimize  Y,(z)
subject to: ¥, (x) =T
r'x < p?

with T denoting the target value for the secondary response, p the number of
primary responses (i.e., responses to be optimized), s the number of secondary
responses (i.e., responses to be constrained), and g is the radius of a spherical

constraint that limits the region in the controllable factor space where the search
should be undertaken. The value of £ should be chosen with the purpose of

avoiding solutions that extrapolate too far outside the region where the
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5.5.3.2.3. Multiple responses: The mathematical programming approach

Nonlinear
programming
software
required for
DRS

More general
case

Example:
problem
setup

experimental datawere obtained. For example, if the experimental designisa
central composite design, choosing g = @ (axia distance) isalogical choice.
Bounds of the form L < x; <X U can be used instead if a cubical experimental

region were used (e.g., when using a factorial experiment). Note that a Ridge
Analysis problem isrelated to a DRS problem when the secondary constraint is
absent. Thus, any algorithm or solver for DRS's will also work for the Ridge
Analysis of single response systems.

In aDRS, the response modeIsYP and Y, can be linear, quadratic or even cubic

polynomials. A nonlinear programming algorithm has to be used for the
optimization of a DRS. For the particular case of quadratic responses, an
equality constraint for the secondary response, and a spherical region of
experimentation, specialized optimization algorithms exist that guarantee global
optimal solutions. In such a case, the algorithm DRSALG can be used
(download from
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.stat.cmu.edu/jqt/29-3),
but a Fortran compiler is necessary.

In the more general case of inequality constraints or a cubical region of
experimentation, a general purpose nonlinear solver must be used and several
starting points should be tried to avoid local optima. Thisisillustrated in the
next section.

Examplefor morethan 2 responses

The values of three components (X4, X», X3) of a propellant need to be selected
to maximize a primary response, burning rate (Y,), subject to satisfactory levels
of two secondary reponses, namely, the variance of the burning rate (Y,) and the
cost (Y3). The three components must add to 100% of the mixture. The fitted
models are;
Yl = 35.43:1 + 42-?7.’1‘:2 + Tﬂﬁﬁ:}:ﬂ + 16-‘:’23:1 Ta
+36.337, 73 + 136.8x0m3 + 85492 7074

Yo = 3.88r, + 9.03xs + 13.63x; — 019041, x5
—1'5-'513:13:3 — ET-ETD:EIH

¥, = 93.13x, + 19.73x, + 14.732;
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5.5.3.2.3. Multiple responses: The mathematical programming approach

The

optimization

problem

Solve using
Excel solver
function

Excel
Spreadsheet

NIST
SEMATECH

The optimization problem is therefore:
maximize 1“”1(x)
subject to: 1“’2(x) < -45

¥4 < 20
X1+ Xo+X%x3=10
0<<xy <1
0<xp=l1
0<xg=<l1

We can use Microsoft Excel's "solver" to solve this problem. The table below
shows an Excel spreadsheet that has been set up with the problem above. Cells
B2:B4 contain the decision variables (cells to be changed), cell E2 isto be
maximized, and all the constraints need to be entered appropriately. The figure
shows the spreadsheet after the solver completes the optimization. The solution

is (x*)' = (0.212, 0.343, 0.443) which provides ¥, = 106.62, ¥, = 4.17, and ¥,

= 18.23. Therefore, both secondary responses are below the specified upper
bounds. The solver should be run from avariety of starting points (i.e., try
different initial valuesin cells B1:B3 prior to starting the solver) to avoid local
optima. Once again, confirmatory experiments should be conducted at the
estimated optimal operating conditions.

] A B[C | E

1] Factors| | [ Responses|

2] x1[ 021233 | Y1(x)| 106.6217
3] x2| 0.343725 | Y2(x)| 4.176743
4] x3| 0.443946[ | Y3(x)[ 18.23221

[5]  Additional| constraint| | |
6] x1+x2+x3[ 1.000001 | |
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5.5.4. What is a mixture design?
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5.5.4.What is a mixture design?

When the
factorsare
proportions
of a blend,
you need to
usea
mixture
design

Sandard
mixture
designsand
constrained
mixture
designs

Measured
response
assumed to
depend only
on relative
proportions

Proportions
of each
variable
must sum to
1

In amixture experiment, the independent factors are proportions of
different components of ablend. For example, if you want to optimize
the tensile strength of stainless steel, the factors of interest might be the
proportions of iron, copper, nickel, and chromium in the alloy. The fact
that the proportions of the different factors must sum to 100%
complicates the design as well as the analysis of mixture experiments.

When the mixture components are subject to the constraint that they
must sum to one, there are standard mixture designs for fitting standard
models, such as Smplex-Lattice designs and Smplex-Centroid designs.
When mixture components are subject to additional constraints, such as
a maximum and/or minimum value for each component, designs other
than the standard mixture designs, referred to as constrained mixture
designs or Extreme-Vertices designs, are appropriate.

In mixture experiments, the measured response is assumed to depend
only on the relative proportions of the ingredients or componentsin the
mixture and not on the amount of the mixture. The amount of the
mixture could also be studied as an additional factor in the experiment;
however, this would be an example of mixture and process variables
being treated together.

The main distinction between mixture experiments and independent
variable experiments is that with the former, the input variables or
components are non-negative proportionate amounts of the mixture, and
If expressed as fractions of the mixture, they must sum to one. If for
some reason, the sum of the component proportionsis less than one, the
variable proportions can be rewritten as scaled fractions so that the
scaled fractions sum to one.
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5.5.4. What is a mixture design?
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mixture
design

Assumptions
for mixture
experiments
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planning a
mixture
experiment
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In mixture problems, the purpose of the experiment isto model the
blending surface with some form of mathematical equation so that:

1.

2.

Predictions of the response for any mixture or combination of the
ingredients can be made empirically, or

Some measure of the influence on the response of each
component singly and in combination with other components can
be obtai ned.

The usual assumptions made for factorial experiments are also made for
mixture experiments. In particular, it is assumed that the errors are
independent and identically distributed with zero mean and common
variance. Another assumption that is made, as with factorial designs, is
that the true underlying response surface is continuous over the region
being studied.

Planning a mixture experiment typically involves the following steps
(Cornell and Piepel, 1994):

1.
2.

Define the objectives of the experiment.

Select the mixture components and any other factors to be
studied. Other factors may include process variables or the total
amount of the mixture.

|dentify any constraints on the mixture components or other
factors in order to specify the experimental region.

| dentify the response variable(s) to be measured.

Propose an appropriate model for modeling the response data as
functions of the mixture components and other factors selected
for the experiment.

Select an experimental design that is sufficient not only to fit the
proposed model, but which allows atest of model adequacy as
well.
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5.5.4.1. Mixture screening designs
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5.5.4. What is a mixture design?

5.5.4.1.Mixture screening designs

Screening In some areas of mixture experiments, for example, certain chemical
experiments  industries, there is often alarge number, g, of potentially important
can be used components that can be considered candidates in an experiment. The
to identify objective of these types of experimentsis to screen the components to
the identify the ones that are most important. In this type of situation, the
Important experimenter should consider a screening experiment to reduce the
mixture number of possible components.
factors
Afirstorder  The construction of screening designs and their corresponding models
mixture often begins with the first-order or first-degree mixture model
model
E{f)=gn+Gx+- 0,5,
for which the beta coefficients are non-negative and sum to one.
Choices of If the experimental region isasimplex, it isgenerally agood ideato
types Qf make the ranges of the components as similar as possible. Then the
screening relative effects of the components can be assessed by ranking the ratios
designs of the parameter estimates (i.e., the estimates of the 7)), relative to their
depend on standard errors. Simplex screening designs are recommended when it is
constraints possible to experiment over the total simplex region. Constrained
mixture designs are suggested when the proportions of some or al of the
components are restricted by upper and lower bounds. If these designs
are not feasible in this situation, then D-optimal designs for alinear
model are always an option.
NIST . .
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5.5.4.2. Simplex-lattice designs
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5.5.4. What is a mixture design?

5.5.4.2. Simplex-lattice designs

Definition of
simplex-
lattice points

Except for the
center, all
design points
areonthe
simplex
boundaries

Example of a
three-
component
simplex
lattice design

A {q, m} ssmplex-lattice design for g components consists of points
defined by the following coordinate settings. the proportions assumed by
each component take the m+1 equally spaced valuesfrom 0 to 1,

x=0,1Um,2/m, .., 1fori=1,2,..,q

and all possible combinations (mixtures) of the proportions from this
equation are used.

Note that the standard Simplex-L attice and the Simplex-Centroid designs
(described later) are boundary-point designs; that is, with the exception of
the overall centroid, all the design points are on the boundaries of the
simplex. When oneisinterested in prediction in the interior, it is highly
desirable to augment the simplex-type designs with interior design points.

Consider athree-component mixture for which the number of equally
spaced levels for each component is four (i.e., X; = 0, 0.333, 0.667, 1). In

thisexample g = 3 and m= 3. If one uses all possible blends of the three
components with these proportions, the {3, 3} simplex-lattice then
contains the 10 blending coordinates listed in the table below. The
experimental region and the distribution of design runs over the simplex
region are shown in the figure below. There are 10 design runs for the { 3,
3} simplex-lattice design.
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5.5.4.2. Simplex-lattice designs

Design table TABLE 5.3 Simplex Lattice
Design
X1 X2 X3
0 0 1
0 0.667 0.333
0 1 0
0.333 0 0.667
0.333 0.333 0.333
0.333 0.6667 0
0.667 0 0.333
0.667 0.333 0
1 0 0
Diagram
showing 10 2
configuration
of design
runs
05 03
< 2
: b ‘/\‘-. b
10 Osar o34 u]
wa
FIGURE 5.9 Configuration of Design Runsfor a{3,3}

Simplex-L attice Design

The number of design pointsin the simplex-latticeis (gq+m-1)!/(m!(g-1)!).
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5.5.4.2. Simplex-lattice designs

Now consider the form of the polynomial model that one might fit to the
data from a mixture experiment. Due to the restriction Xq + Xp + ... + Xy =

1, the form of the regression function that isfit to the data from a mixture
experiment is somewhat different from the traditional polynomial fit and is
often referred to as the canonical polynomial. Its form is derived using the
genera form of the regression function that can be fit to data collected at
the points of a{qg, m} simplex-lattice design and substituting into this
function the dependence relationship among the x; terms. The number of
termsinthe{qg, m} polynomial is (g+m21)!/(m!(g-1)!), as stated
previously. Thisis equal to the number of points that make up the
associated { g, m} simplex-lattice design.

For example, the equation that can be fit to the points from a{qg, m=1}
simplex-lattice design is

E{Y:} =+ +..+ ﬁqﬂiq
Multiplying f3o by (X, + X + ... + X4 = 1), the resulting equation is
B(Y) = fms + o + B,

with 37 = flg+ Fiforali=1, .., q.

Thisis called the canonical form of the first-order mixture model. In
general, the canonical forms of the mixture models (with the asterisks
removed from the parameters) are as follows:

q
Liner  E(Y)=Y%" fixs
i=l
Quadratic Z ﬂ-a-'ra + Z Z ﬂ?-.?j-“rﬂ
i=1 i<
Cubic E(Y) = Ei._l ﬁgﬂ't + E —1 Ei{j ﬁ-;jﬂ'qﬂ-j+
Z;—l Zi{j qgegd (3'1 'Tj)_l_
Sio fo-{k Zg-r:j P XaTi Ty
Sedd  E(Y) = TL fm+ SLi Sl Bumat

EL 1 Eg{ 2 EE{:,- ﬂijk TiXiXg
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Linear
blending
portion

Three-
component
mixture
example

Diagram
showing the
designsruns
for this
example

The termsin the canonical mixture polynomials have smple
interpretations. Geometrically, the parameter ﬂi in the above equations
represents the expected response to the pure mixture x=1, =0, i 5& J, and
is the height of the mixture surface at the vertex x;=1. The portion of each
of the above polynomials given by

is called the linear blending portion. When blending is strictly additive,
then the linear model form above is an appropriate model.

The following exampleis from Cornell (1990) and consists of a

three-component mixture problem. The three components are
Polyethylene (X1), polystyrene (X2), and polypropylene (X3), which are
blended together to form fiber that will be spun into yarn. The product
developers are only interested in the pure and binary blends of these three
materials. The response variable of interest isyarn elongation in kilograms
of force applied. A {3,2} simplex-lattice design is used to study the
blending process. The ssmplex region and the six design runs are shown in
the figure below. The figure was generated in IMP version 3.2. The design
and the observed responses are listed in the table below. There were two
replicate observations run at each of the pure blends. There were three
replicate observations run at the binary blends. There are 015 observations
with six unique design runs.
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Table
showing the
simplex-
lattice design
and observed
responses

Fita
guadratic
mixture

model using
JMP software

0s
os

1
3

e

b b
1 os o

o)

FIGURE 5.10 Design Runsfor the{3,2} Simplex-Lattice Yarn
Elongation Problem

TABLE 5.4 Simplex-Lattice Design for Yarn
Elongation Problem

Observed
X1 X2 X3 Elongation Values

00 00 10 16.8,16.0

00 05 05 100,9.7,11.8
00 10 0.0 88,100

05 00 05 17.7,16.4,16.6
05 05 00 150,148,16.1
1.0 00 0.0 110,124

The design runslisted in the above table are in standard order. The actual
order of the 15 treatment runs was completely randomized. IMP 3.2 will
be used to analyze the results. Since there are three levels of each of the
three mixture components, a quadratic mixture model can befit to the
data. The output from the model fit is shown below. Note that there was
no intercept in the model. To analyze the datain JIMP, create anew table
with one column corresponding to the observed elongation values. Select
Fit Model and create the quadratic mixture model (thiswill look like the
'‘traditional’ interactions regression model obtained from standard classical
designs). Check the No Intercept box on the Fit Model screen. Click on
Run Model. The output is shown below.
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JMP Output for {3,2} Simplex-Lattice Design

Screening Fit

Summary of Fit

RSquar e 0. 951356
RSquar e Adj 0. 924331
Root Mean Square Error 0. 85375
Mean of Response 13.54
Cbservations (or Sum Wjts) 15

Anal ysi s of Variance

Sour ce DF Sum of Squares Mean Square

Mbdel 5 128. 29600 25. 6592
Err or 9 6. 56000 0. 7289
C Tot al 14 134. 85600

Prob > F < .0001
Test ed agai nst reduced nodel : Y=nean

Par anet er Esti mat es

F Ratio
35. 2032

Term Estimate Std Error t Ratio Prob>|t]

X1 11.7 0. 603692 19. 38 <.
X2 9.4 0. 603692 15. 57 <.
X3 16. 4 0. 603692 27. 17 <.
X2* X1 19 2.608249 7.28 <.
X3* X1 11. 4 2.608249 4. 37 0.
X3* X2 -9.6 2.608249 -3.68 0.

0001
0001
0001
0001
0018
0051

Under the parameter estimates section of the output are the individual
t-tests for each of the parametersin the model. The three cross product
terms are significant (X1* X2, X3* X1, X3* X2), indicating a significant

guadratic fit.

The fitted quadratic mixture model is

F=117x+3%4x, +164x, +158 002, +114xx — 561, x;
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Since b; > by > b,, one can conclude that component 3 (polypropylene)
produces yarn with the highest elongation. Additionally, since by, and b3

are positive, blending components 1 and 2 or components 1 and 3
produces higher elongation values than would be expected just by
averaging the elongations of the pure blends. Thisis an example of
'synergistic' blending effects. Components 2 and 3 have antagonistic
blending effects because b,3 is negative.

The figure below is the contour plot of the elongation values. From the
plot it can be seen that if maximum elongation is desired, a blend of
components 1 and 3 should be chosen consisting of about 75% - 80%
component 3 and 20% - 25% component 1.

sog [ -~ e e l2 o ety L
[ ST YT YT T
| T

FIGURE 5.11 Contour Plot of Predicted Elongation Values from
{3,2} Simplex-L attice Design
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5. Process | mprovement

5.5. Advanced topics

5.5.4. What is a mixture design?

5.5.4.3. Simplex-centroid designs

Definition A second type of mixture design is the simplex-centroid design. In the
of smplex-  g-component simplex-centroid design, the number of distinct pointsis 24 - 1.
centroid These points correspond to g permutations of (1, 0, O, ..., 0) or g single
designs g
component blends, the( 5 )permutations of (.5,.50, ..., 0)oral binary
mixtures, the( g ) permutations of (1/3, 1/3, 1/3, 0, ..., 0), ..., and so on, with
finaly the overall centroid point (1/q, 1/q, ..., 1/q) or g-nary mixture.
The design points in the Simplex-Centroid design will support the polynomial
— o
Model E(Y) = ZL B+ i, Z:g-::j fimazi+
Supported S S Y BT+ e+ Bra Ty
by simplex- k=1 Zujek Lacy PygkTadite 7T T 120 g T Ty
gg.tr?];d which is the gth-order mixture polynomial. For q = 2, thisis the quadratic
9 model. For q = 3, thisis the special cubic model.
Exampleof  For example, the fifteen runs for afour component (q = 4) simplex-centroid
runs for design are:
three and (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,2), (.5,.5,0,0), (.5,0,.5,0) ..,
four (0,0,.5,.5), (1/3,1/3,1/3)0), ...,(0,1/3,1/3,1/3), (1/4,1/4,1/4,1/4).
components

The runs for a three component simplex-centroid design of degree 2 are
(1,0,0), (0,1,0), (0,0,2), (.5,.5,0), (.5,0,.5), (0,.5,.5), (1/3, 1/3, 1/3).

However, in order to fit afirst-order model with g =4, only the five runswith a
"1" and all "1/4's" would be needed. To fit a second-order model, add the six
runswith a".5" (this also fits a saturated third-order model, with no degrees of
freedom left for error).
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5. Process |mprovement
5.5. Advanced topics
5.5.4. What is a mixture design?

5.5.4.4.Constrained mixture designs

Upper and/or In mixture designs when there are constraints on the component
lower bound proportions, these are often upper and/or lower bound constraints of
constraintsmay  theformlL; < x < U, i=1,2,..., q, whereL,; is the lower bound for
be present the i-th component and U; the upper bound for the i-th component.

The general form of the constrained mixture problem is

Typical X1+ X+t Xg =1
additional _
constraints Li<ix<U;, fori=1,2..,q

withL; 2> Oand U; <X 1.

Example using Consider the following case in which only the lower boundsin the
only lower above equation are imposed, so that the constrained mixture
bounds problem becomes

Xp+tXt+.. +X=1

L << %<1, fori=1,2,..,q

Assume we have a three-component mixture problem with
constraints

03<Ix; 04<Ix, 01<Ixs

Feasible mixture  The feasible mixture space is shown in the figure below. Note that

region the existence of lower bounds does not affect the shape of the
mixture region, it is still asimplex region. In general, thiswill
aways be the case if only lower bounds are imposed on any of the
component proportions.
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5.5.4.4. Constrained mixture designs

=z

FIGURE 5.12 The Feasible Mixture Space (Shaded Region) for
Three Componentswith Lower Bounds

Since the new region of the experiment is still asimplex, itis
possible to define a new set of components that take on the values
from O to 1 over the feasible region. Thiswill make the design
construction and the model fitting easier over the constrained region

of interest. These new components (:r:;) are called pseudo
components and are defined using the following formula

. T —L—;

U 1—-L
with
g
L:ZLiﬂil
i=1

denoting the sum of all the lower bounds.

In the three component example above, the pseudo components are
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5.5.4.4. Constrained mixture designs

Constructing a design in the pseudo components is accomplished by
gpecifying the design points in terms of the :r: and then converting
them to the original component settings using

X =L+ (- Lz

In terms of the pseudo components, the experimenter has the choice
of selecting a Simplex-Lattice or a Simplex-Centroid design,
depending on the objectives of the experiment.

Suppose, we decided to use a Simplex-centroid design for the
three-component experiment. The table below shows the design
points in the pseudo components, along with the corresponding
setting for the original components.

TABLE 5.5 Pseudo Component Settings and
Original Component Settings, Three-Component
Simplex-Centroid Design

Pseudo Components Original Components

Xl X2 X3 I: :]l:; I.:_I.
1 0 0 0.5 04 0.1
0 1 0 0.3 0.6 0.1
0 0 1 0.3 04 0.3

0.5 0.5 0 04 0.5 01

0.5 0 0.5 0.4 04 0.2
0 0.5 0.5 0.3 0.5 0.2

0.3333 0.3333 0.3333 0.3667 0.4667 0.1666

It is recommended that the pseudo components be used to fit the
mixture model. Thisis dueto the fact that the constrained design
space will usually have relatively high levels of multicollinearity
among the predictors. Once the final predictive model for the
pseudo components has been determined, the equation in terms of
the original components can be determined by substituting the
relationship between x; and .
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D-optimal Computer-aided designs (D-optimal, for example) can be used to
designscanalso  select points for amixture design in a constrained region. See Myers
be used and Montgomery (1995) for more details on using D-optimal

designs in mixture experiments.

Extreme vertice Note: There are other mixture designs that cover only a sub-portion

designsanre or smaller space within the ssimplex. These types of mixture designs

another option (not covered here) are referred to as extreme vertices designs. (See
chapter 11 of Myers and Montgomery (1995) or Cornell (1990).

NIST
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5.5.4. What is a mixture design?

5.5.4.5. Treating mixture and process

Options for
setting up
experiments
for
processes
that have
both
standard
process
variables
and mixture
variables

Exampl e of
three
mixture
components
and three
process
variables

variables together

Consider a mixture experiment consisting of g mixture components and
k process variables. First consider the case in which each of the process
variables to be studied has only two levels. Orthogonally scaled factor

settings for the process variables will be used (i.e., -1 isthelow level, 1
Isthe high level, and O is the center point). Also assume that each of the
components x; can range from 0 to 1. The region of interest then for the

process variables is a k-dimensional hypercube.

The region of interest for the mixture componentsisthe
(g-1)-dimensional simplex. The combined region of interest for both the
process variables and the mixture componentsis of dimensionality g - 1
+ k.

For example, consider three mixture components (X, Xp, X3) with three
process variables (21, ,, z3). The dimensionality of theregionis5. The

combined region of interest for the three mixture components and three
process variables is shown in the two figures below. The complete space
of the design can be viewed in either of two ways. The first diagram
shows the idea of afull factorial at each vertex of the three-component
simplex region. The second diagram shows the idea of a
three-component simplex region at each point in the full factorial. In
either case, the same overall process space is being investigated.
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FIGURE 5.13 Simplex Region of a Three Component Mixture with
a 23 Full Factorial at Each Pure Mixture Run

Diagram
showing
process
space of a 23
full factorial
with the
3-component
simplex
region at
each point
of the full
factorial

FIGURE 5.14 Process Space of a 23 Full Factorial with the Three
Component Simplex Region at Each Point of the Full Factorial
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As can be seen from the above diagrams, setting up the design
configurations in the process variables and mixture components
involves setting up either a mixture design at each point of a
configuration in the process variables, or similarly, creating afactorial
arrangement in the process variables at each point of composition in the
mixture components. For the example depicted in the above two
diagrams, thisis not the only design available for this number of
mixture components with the specified number of process variables.
Another option might be to run afractional factorial design at each
vertex or point of the mixture design, with the same fraction run at each
mixture design point. Still another option might be to run a fractional
factorial design at each vertex or point of the mixture design, with a
different fraction run at each mixture design point.
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5.5.5.How can | account for nested
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Nested data
structures are
common and
lead to many
sour ces of
variability

Example of
nested data

Many processes have more than one source of variation in them. In
order to reduce variation in processes, these multiple sources must be
understood, and that often leads to the concept of nested or hierarchical
data structures. For example, in the semiconductor industry, a batch
process may operate on several wafers at atime (wafers are said to be
nested within batch). Understanding the input variables that control
variation among those wafers, as well as understanding the variation
across each wafer in arun, is an important part of the strategy for
minimizing the total variation in the system.

Figure 5.15 below represents a batch process that uses 7 monitor
wafersin each run. The plan further calls for measuring response on
each wafer at each of 9 sites. The organization of the sampling plan
has a hierarchical or nested structure: the batch run is the topmost
level, the second level is an individual wafer, and the third level isthe
site on the wefer.

The total amount of data generated per batch run will be 7*9 = 63 data
points. One approach to analyzing these data would be to compute the
mean of all these points as well astheir standard deviation and use
those results as responses for each run.
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Treatment. {Run)

Monitor
Wafer |1 12 B 4 |5 |6 |7
Sites

1 3 5 7 9

FIGURE 5.15 Hierarchical Data Structure Example

Analyzing the data as suggested above is not absolutely incorrect, but
doing so loses information that one might otherwise obtain. For
example, site 1 on wafer 1 is physically different from site 1 on wafer
2 or on any other wafer. The sameistrue for any of the sites on any of
the wafers. Similarly, wafer 1 inrun 1 isphysically different from
wafer 1 inrun 2, and so on. To describe this situation one says that
sites are nested within wafers while wafers are nested within runs.

As a consequence of this nesting, there are restrictions on the
randomization that can occur in the experiment. This kind of restricted
randomi zation always produces nested sources of variation. Examples
of nested variation or restricted randomization discussed on this page
are split-plot and strip-plot designs.

The objective of an experiment with the type of sampling plan
described in Figure 5.15 is generally to reduce the variability due to
sites on the wafers and wafers within runs (or batches) in the process.
The sites on the wafers and the wafers within a batch become sources
of unwanted variation and an investigator seeks to make the system
robust to those sources -- in other words, one could treat wafers and
sites as noise factors in such an experiment.
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5.5.5. How can | account for nested variation (restricted randomization)?

Because the wafers and the sites represent unwanted sources of
variation and because one of the objectivesisto reduce the process
sensitivity to these sources of variation, treating wafers and sites as
random effectsin the analysis of the data is a reasonable approach. In
other words, nested variation is often another way of saying nested
random effects or nested sources of noise. If the factors "wafers" and
"sites’, are treated as random effects, then it is possible to estimate a
variance component due to each source of variation through analysis of
variance techniques. Once estimates of the variance components have
been obtained, an investigator is then able to determine the largest
source of variation in the process under experimentation, and also
determine the magnitudes of the other sources of variation in relation
to the largest source.

If an experiment or process has nested variation, the experiment or
process has multiple sources of random error that affect its output.
Having nested random effects in amodel is the same thing as having
nested variation in a model.

Split-Plot Designs

Split-plot designs result when a particular type of restricted
randomization has occurred during the experiment. A ssmple factorial
experiment can result in a split-plot type of design because of the way
the experiment was actually executed.

In many industrial experiments, three situations often occur:

1. some of the factors of interest may be 'hard to vary' while the
remaining factors are easy to vary. Asaresult, the order in
which the treatment combinations for the experiment arerun is
determined by the ordering of these 'hard-to-vary' factors

2. experimental units are processed together as a batch for one or
more of the factorsin a particular treatment combination

3. experimental units are processed individually, one right after the
other, for the same treatment combination without resetting the
factor settings for that treatment combination.
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An experiment run under one of the above three situations usually
results in a split-plot type of design. Consider an experiment to
examine electroplating of aluminum (non-agueous) on copper strips.
The three factors of interest are: current (A); solution temperature (T);
and the solution concentration of the plating agent (S). Plating rateis
the measured response. There are atotal of 16 copper strips available
for the experiment. The treatment combinations to be run
(orthogonally scaled) are listed below in standard order (i.e., they have
not been randomized):

TABLE 5.6 Orthogonally Scaled Treatment
Combinations from a 23 Full Factorial

Current Temperature Concentration
-1 -1 -1
-1 -1 +1
-1 +1 -1
-1 +1 +1
+1 -1 -1
+1 -1 +1
+1 +1 -1
+1 +1 +1

Consider running the experiment under the first condition listed above,
with the factor solution concentration of the plating agent (S) being
hard to vary. Since thisfactor is hard to vary, the experimenter would
like to randomize the treatment combinations so that the solution
concentration factor has a minimal number of changes. In other words,
the randomization of the treatment runsis restricted somewhat by the
level of the solution concentration factor.

As aresult, the treatment combinations might be randomized such that
those treatment runs corresponding to one level of the concentration
(-1) arerun first. Each copper strip isindividually plated, meaning
only one strip at atimeis placed in the solution for a given treatment
combination. Once the four runs at the low level of solution
concentration have been completed, the solution is changed to the high
level of concentration (1), and the remaining four runs of the
experiment are performed (where again, each strip isindividually
plated).
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Once one complete replicate of the experiment has been completed, a
second replicate is performed with a set of four copper strips processed
for agiven level of solution concentration before changing the
concentration and processing the remaining four strips. Note that the
levels for the remaining two factors can still be randomized. In
addition, the level of concentration that isrun first in the replication
runs can aso be randomized.

Running the experiment in thisway resultsin a split-plot design.
Solution concentration is known as the whole plot factor and the
subplot factors are the current and the solution temperature.

A split-plot design has more than one size experimental unit. In this

experiment, one size experimental unit is an individual copper strip.
The treatments or factors that were applied to the individual strips are
solution temperature and current (these factors were changed each time
anew strip was placed in the solution). The other or larger size
experimental unit isaset of four copper strips. The treatment or factor
that was applied to a set of four stripsis solution concentration (this
factor was changed after four strips were processed). The smaller size
experimental unit isreferred to as the subplot experimental unit, while
the larger experimental unit isreferred to as the whole plot unit.

There are 16 subplot experimental units for this experiment. Solution
temperature and current are the subplot factors in this experiment.
There are four whole-plot experimental unitsin this experiment.
Solution concentration is the whole-plot factor in this experiment.
Since there are two sizes of experimental units, there are two error
termsin the model, one that corresponds to the whole-plot error or
whole-plot experimental unit and one that corresponds to the subpl ot
error or subplot experimental unit.
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to a different
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Thisalso a

split-plot
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The ANOVA table for this experiment would look, in part, as follows:

Sour ce DF

Repl i cation

Concentration

Error (Wole plot) = Rep*Conc
Tenperature

Rep* Tenp

Curr ent

Rep* Current

Tenp* Conc

Rep* Tenp* Conc

Tenp* Curr ent

Rep* Tenp* Cur r ent

Current *Conc

Rep* Curr ent *Conc

Tenp* Current *Conc

Error (Subplot) =Rep*Tenp*Current*Conc

The first three sources are from the whole-plot level, while the next 12
are from the subplot portion. A normal probability plot of the 12

subplot term estimates could be used to look for significant terms.

RPRRPRRPRRPRRRPRRRPRERRRRR

=

Consider running the experiment under the second condition listed
above (i.e., abatch process) for which four copper strips are placed in
the solution at one time. A specified level of current can be applied to
an individual strip within the solution. The same 16 treatment
combinations (areplicated 23 factorial) are run as were run under the
first scenario. However, the way in which the experiment is performed
would be different. There are four treatment combinations of solution
temperature and solution concentration: (-1, -1), (-1, 1), (1, -1), (1, 1).
The experimenter randomly chooses one of these four treatments to set
up first. Four copper strips are placed in the solution. Two of the four
strips are randomly assigned to the low current level. The remaining
two strips are assigned to the high current level. The plating is
performed and the response is measured. A second treatment
combination of temperature and concentration is chosen and the same
procedure isfollowed. Thisis done for all four temperature /
concentration combinations.

Running the experiment in thisway also resultsin a split-plot designin
which the whole-plot factors are now solution concentration and
solution temperature, and the subpl ot factor is current.
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In this experiment, one size experimental unit isagain an individual
copper strip. The treatment or factor that was applied to the individual
stripsis current (this factor was changed each time for a different strip
within the solution). The other or larger size experimental unit isagain
a set of four copper strips. The treatments or factors that were applied
to aset of four strips are solution concentration and solution
temperature (these factors were changed after four strips were
processed).

The smaller size experimental unit is again referred to as the subplot
experimental unit. There are 16 subplot experimental units for this
experiment. Current is the subplot factor in this experiment.

The larger-size experimental unit is the whole-plot experimental unit.
There are four whole plot experimental unitsin this experiment and
solution concentration and solution temperature are the whole plot
factors in this experiment.

There are two sizes of experimental units and there are two error terms
in the model: one that corresponds to the whole-plot error or
whole-plot experimental unit, and one that corresponds to the subpl ot
error or subplot experimental unit.

The ANOVA for this experiment looks, in part, as follows:

Sour ce DE
Concentration 1
Tenper ature 1
Error (Whole plot) = Conc*Tenp 1
Current 1
Conc* Curr ent 1
Tenp* Curr ent 1
Conc* Tenp* Cur r ent 1
Error (Subpl ot) 8

The first three sources come from the whole-plot level and the next 5
come from the subplot level. Since there are 8 degrees of freedom for
the subplot error term, this M SE can be used to test each effect that
involves current.
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Consider running the experiment under the third scenario listed above.
Thereisonly one copper strip in the solution at one time. However,
two strips, one at the low current and one at the high current, are
processed one right after the other under the same temperature and
concentration setting. Once two strips have been processed, the
concentration is changed and the temperature is reset to another
combination. Two strips are again processed, one after the other, under
this temperature and concentration setting. This process is continued
until all 16 copper strips have been processed.

Running the experiment in thisway also resultsin a split-plot designin
which the whole-plot factors are again solution concentration and
solution temperature and the subpl ot factor is current. In this
experiment, one size experimental unit is an individual copper strip.
The treatment or factor that was applied to the individual stripsis
current (this factor was changed each time for adifferent strip within
the solution). The other or larger-size experimental unit is a set of two
copper strips. The treatments or factors that were applied to a pair of
two strips are solution concentration and solution temperature (these
factors were changed after two strips were processed). The smaller size
experimental unit isreferred to as the subplot experimental unit.

There are 16 subplot experimental units for this experiment. Current is
the subpl ot factor in the experiment. There are eight whole-plot
experimental unitsin this experiment. Solution concentration and
solution temperature are the whole plot factors. There are two error
termsin the model, one that corresponds to the whole-plot error or
whole-plot experimental unit, and one that corresponds to the subplot
error or subplot experimental unit.

The ANOVA for this (third) approach is, in part, as follows:

Sour ce DF

Concentration
Tenper ature

Conc* Tenp

Error (Wole plot)

AR R PR

Current

Conc* Current
Tenp* Cur rent
Conc* Tenp* Curr ent

N

http://www.itl.nist.gov/div898/handbook/pri/section5/pri55.htm (8 of 12) [11/14/2003 5:53:45 PM]



Primary
distinction of
split-plot
designsisthat
they have
mor e than one
experimental
unit size (and
therefore
mor e than one
error term)

Using wrong
model can
lead to invalid
conclusions

Srip-plot
desgins often
result from
experiments
that are
conducted
over two or
MOr e process

steps

5.5.5. How can | account for nested variation (restricted randomization)?

Error (Subpl ot) 4

The first four terms come from the whole-plot analysis and the next 5
terms come from the subplot analysis. Note that we have separate error
terms for both the whole plot and the subpl ot effects, each based on 4
degrees of freedom.

As can be seen from these three scenarios, one of the major differences
in split-plot designs versus simple factorial designs is the number of
different sizes of experimental unitsin the experiment. Split-plot
designs have more than one size experimental unit, i.e., more than one
error term. Since these designs involve different sizes of experimental
units and different variances, the standard errors of the various mean
comparisons involve one or more of the variances. Specifying the
appropriate model for a split-plot design involves being able to identify
each size of experimental unit. The way an experimental unit is
defined relative to the design structure (for example, a completely
randomized design versus a randomized compl ete block design) and
the treatment structure (for example, afull 23 factorial, aresolution V
half fraction, atwo-way treatment structure with a control group, €tc.).
Asaresult of having greater than one size experimental unit, the
appropriate model used to analyze split-plot designsis a mixed model.

If the data from an experiment are analyzed with only one error term
used in the model, misleading and invalid conclusions can be drawn
from the results. For a more detailed discussion of these designs and
the appropriate analysis procedures, see Milliken, Analysis of Messy

Data, Vol. 1.

Strip-Plot Designs

Similar to a split-plot design, a strip-plot design can result when some
type of restricted randomization has occurred during the experiment. A
simple factorial design can result in a strip-plot design depending on
how the experiment was conducted. Strip-plot designs often result
from experiments that are conducted over two or more process stepsin
which each process step is a batch process, i.e., completing each
treatment combination of the experiment requires more than one
processing step with experimental units processed together at each
process step. Asin the split-plot design, strip-plot designs result when
the randomization in the experiment has been restricted in some way.
Asaresult of the restricted randomization that occurs in strip-plot
designs, there are multiple sizes of experimental units. Therefore, there
are different error terms or different error variances that are used to test
the factors of interest in the design. A traditional strip-plot design has
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three sizes of experimental units.

Consider the following example from the semiconductor industry. An
experiment requires an implant step and an anneal step. At both the
anneal and the implant steps there are three factorsto test. The implant
process accommodates 12 wafers in a batch, and implanting asingle
wafer under a specified set of conditionsis not practical nor does doing
SO represent economical use of the implanter. The anneal furnace can
handle up to 100 wafers.

The figure below shows the design structure for how the experiment
was run. The rectangles at the top of the diagram represent the settings
for atwo-level factoria design for the three factors in the implant step
(A, B, C). Similarly, the rectangles at the lower left of the diagram
represent atwo-level factorial design for the three factors in the anneal

step (D, E, F).

The arrows connecting each set of rectanglesto the grid in the center
of the diagram represent a randomization of trials in the experiment.
The horizontal elementsin the grid represent the experimental units for
the anneal factors. The vertical elementsin the grid represent the
experimental units for the implant factors. The intersection of the
vertical and horizontal elements represents the experimental units for
the interaction effects between the implant factors and the anneal
factors. Therefore, this experiment contains three sizes of experimental
units, each of which has a unique error term for estimating the
significance of effects.
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FIGURE 5.16 Diagram of a strip-plot design involving two
process steps with three factorsin each step

To put actual physical meaning to each of the experimental unitsin the
above example, consider each cell in the grid as an individual wafer. A
batch of eight wafers goes through the implant step first. According to
the figure, treatment combination #3 in factors A, B, and Cisthefirst
implant treatment run. Thisimplant treatment is applied to al eight
wafers at once. Once the first implant treatment is finished, another set
of eight wafers isimplanted with treatment combination #5 of factors
A, B, and C. This continues until the last batch of eight wafersis
implanted with treatment combination #6 of factors A, B, and C. Once
all of the eight treatment combinations of the implant factors have
been run, the anneal step starts. The first anneal treatment combination
to be run is treatment combination #5 of factors D, E, and F. This
anneal treatment combination is applied to a set of eight wafers, with
each of these eight wafers coming from one of the eight implant
treatment combinations. After thisfirst batch of wafers has been
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annealed, the second anneal treatment is applied to a second batch of
eight wafers, with these eight wafers coming from one each of the
eight implant treatment combinations. Thisis continued until the last
batch of eight wafers has been implanted with a particular combination
of factors D, E, and F.

Running the experiment in thisway resultsin a strip-plot design with
three sizes of experimental units. A set of eight wafersthat are
implanted together is the experimental unit for the implant factors A,
B, and C and for all of their interactions. There are eight experimental
units for the implant factors. A different set of eight wafers are
annealed together. This different set of eight wafers is the second size
experimental unit and is the experimental unit for the anneal factors D,
E, and F and for all of their interactions. The third size experimental
unit isasingle wafer. Thisis the experimental unit for al of the
Interaction effects between the implant factors and the anneal factors.

Actually, the above figure of the strip-plot design represents one block
or one replicate of this experiment. If the experiment contains no
replication and the model for the implant contains only the main
effects and two-factor interactions, the three-factor interaction term
A*B*C (1 degree of freedom) provides the error term for the
estimation of effects within the implant experimental unit. Invoking a
similar model for the anneal experimental unit produces the
three-factor interaction term D*E*F for the error term (1 degree of
freedom) for effects within the anneal experimental unit.

For more details about strip-plot designs, see Milliken and Johnson
(1987) or Miller (1997).
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5.5.6.What are Taguchi designs?

Taguchi
designsare
related to
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factorial
designs -
many of which
arelarge
screening
designs

Taguchi
advocated
using inner
and outer
array designs
to take into
account noise
factors (outer)
and design
factors (inner)

Genichi Taguchi, a Japanese engineer, proposed several approaches to experimental
designs that are sometimes called "Taguchi Methods." These methods utilize two-,
three-, and mixed-level fractional factorial designs. Large screening designs seem to
be particularly favored by Taguchi adherents.

Taguchi refersto experimental design as "off-line quality control" becauseitisa
method of ensuring good performance in the design stage of products or processes.
Some experimental designs, however, such as when used in evolutionary operation,
can be used on-line while the processis running. He has also published a booklet of
design nomograms (" Orthogonal Arrays and Linear Graphs,” 1987, American

Supplier Institute) which may be used as a design guide, similar to the table of
fractional factorial designs given previously in Section 5.3. Some of the well-known
Taguchi orthogonal arrays (L9, L18, L27 and L36) were given earlier when
three-level, mixed-level and fractional factorial designs were discussed.

If these were the only aspects of "Taguchi Designs,” there would be little additional
reason to consider them over and above our previous discussion on factorials.
"Taguchi" designs are similar to our familiar fractional factorial designs. However,
Taguchi hasintroduced several noteworthy new ways of conceptualizing an
experiment that are very valuable, especially in product development and industrial
engineering, and we will look at two of his main ideas, namely Parameter Design
and Tolerance Design.

Parameter Design

The aim here is to make a product or process less variable (more robust) in the face
of variation over which we have little or no control. A simple fictitious example
might be that of the starter motor of an automobile that has to perform reliably in
the face of variation in ambient temperature and varying states of battery weakness.
The engineer has control over, say, number of armature turns, gauge of armature
wire, and ferric content of magnet alloy.

Conventionally, one can view this as an experiment in five factors. Taguchi has
pointed out the usefulness of viewing it as a set-up of three inner array factors
(turns, gauge, ferric %) over which we have design control, plus an outer array of
factors over which we have control only in the laboratory (temperature, battery
voltage).
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Pictorially, we can view this design as being a conventional design in theinner
array factors (compare Figure 3.1) with the addition of a"small" outer array

factorial design at each corner of the "inner array" box.

Let 11 ="turns," 12 ="gauge," 13 ="ferric %," E1 = "temperature," and E2 =
"voltage." Then we construct a 23 design "box" for the I's, and at each of the eight
corners so constructed, we place a 22 design "box" for the E's, asis shown in Figure
5.17.

FIGURE 5.17 Inner 23 and outer 22 arraysfor robust design
with °I' theinner array, E' the outer array.

We now have atotal of 8x4 = 32 experimental settings, or runs. These are set out in
Table 5.7, in which the 23 design in the I'sis given in standard order on the left of
the table and the 22 design in the E's is written out sideways along the top. Note that
the experiment would not be run in the standard order but should, as always, have
its runs randomized. The output measured is the percent of (theoretical) maximum
torque.
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Table showing TABLE 5.7 Design table, in standard order(s) for the parameter
the Taguchi design of Figure 5.9

design and the

responses Run

fromthe Number 1 2 3 4

experiment

El -1 +1 -1 +1 Output Output
11 12 I3 E2 -1 -1 +1 +1 MEAN STD. DEV

1 -1 -1 -1 75 8 67 98 815 13.5
2 +1 -1 -1 87 718 56 91 780 15.6
3 -1 +1 -1 77 89 78 8 63.0 37.1
4 +1 +1 -1 95 65 77 95 83.0 14.7
5 -1 -1 +1 78 78 59 94 773 14.3
6 +1 -1 +1 56 79 67 94 740 16.3
7 -1 +1 +1 79 80 66 8 775 8.1
8 +1 +1 +1 71 80 73 95 798 10.9

Interpretation  Note that there are four outputs measured on each row. These correspond to the four
of the table “outer array' design points at each corner of the "outer array' box. Asthere are eight
corners of the outer array box, there are eight rowsin all.

Each row yields a mean and standard deviation % of maximum torque. Ideally there
would be one row that had both the highest average torque and the lowest standard
deviation (variability). Row 4 has the highest torque and row 7 has the lowest
variability, so we are forced to compromise. We can't smply “pick the winner.’

Use contour One might also observe that all the outcomes occur at the corners of the design

plotsto see “box', which means that we cannot see “inside’ the box. An optimum point might

insidethebox  occur within the box, and we can search for such a point using contour plots.
Contour plots were illustrated in the example of response surface design analysis
givenin Section 4.

Fractional Note that we could have used fractional factorials for either the inner or outer array
factorials designs, or for both.

Tolerance Design
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This section deals with the problem of how, and when, to specify tightened
tolerances for a product or a process so that quality and performance/productivity
are enhanced. Every product or process has a number—perhaps a large number—of
components. We explain here how to identify the critical components to target
when tolerances have to be tightened.

It isanatural impulse to believe that the quality and performance of any item can
easly be improved by merely tightening up on some or all of its tolerance
requirements. By this we mean that if the old version of the item specified, say,
machining to + 1 micron, we naturally believe that we can obtain better
performance by specifying machining to + %2 micron.

This can become expensive, however, and is often not a guarantee of much better
performance. One has merely to witness the high initial and maintenance costs of
such tight-tolerance-level items as space vehicles, expensive automobiles, etc. to
realize that tolerance design—the selection of critical tolerances and the
re-specification of those critical tolerances—is not atask to be undertaken without
careful thought. In fact, it is recommended that only after extensive parameter
design studies have been completed should tolerance design be performed as a last
resort to improve quality and productivity.

Example

Customers for an electronic component complained to their supplier that the
measurement reported by the supplier on the as-delivered items appeared to be
imprecise. The supplier undertook to investigate the matter.

The supplier's engineers reported that the measurement in question was made up of
two components, which we label x and y, and the final measurement M was reported
according to the standard formula

M =K x/ly

with "K' aknown physical constant. Components x and y were measured separately
in the laboratory using two different techniques, and the results combined by
software to produce M. Buying new measurement devices for both components
would be prohibitively expensive, and it was not even known by how much the x or
y component tolerances should be improved to produce the desired improvement in
the precision of M.
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Assume that in ameasurement of a standard item the "true’ value of x isx, and for y
itisy,. Let f(x, y) = M; then the Taylor Series expansion for f(X, y) is

flz,y) = flzoy) +(= —:1:,,:]% + [y —
+|[y — yﬂ)zg% + (‘T
(higher-order terms)

with all the partial derivatives, "df/dx, etc., evaluated at (X, Yo)-

Applying thisformulato M(x, y) = Kx/y, we obtain

M(z,y) = — (Y —Ya) 3 — 2y — )35

Kie+ (2 — x0) 5 v w3
+ (higher-order terms)

(3' — Za){y — ’Hn) 2

It is assumed known from experience that the measurements of x show a
distribution with an average value x,, and with a standard deviation ¢, =

X-units.

0.003

In addition, we assume that the distribution of x isnormal. Since 99.74% of a
normal distribution's range is covered by 6, we take 3¢, = 0.009 x-units to be the

existing tolerance T, for measurements on x. That is, T, = = 0.009 x-unitsis the
“play’ around X, that we expect from the existing measurement system.

It is also assumed known that the y measurements show a normal distribution
around Y, with standard deviation g, = 0.004 y-units. Thus Ty = + 3¢, = £0.012.

Now =T, and £T, may be thought of as "worst case' values for (x-X,) and (y-Yo).
Substituting Ty for (x-X,) and Ty, for (y-y,) in the expanded formulafor M(x, y), we
have

MT — Kﬁ:"‘Tmf_Ty%ﬂ_ﬂ-g%_Tmﬁ%

+(higher-order terrnns]

TheTf and T, T, terms, and all terms of higher order, are going to be at least an

order of magnitude smaller than termsin T, and in Ty, and for this reason we drop

them, so that
; K _ Kz
Mr=K= 4 T,— — T~
Ha Ha ¥
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Thus, a "worst case' Euclidean distance A& of M(x, y) from itsideal value Kxy/y, is
(approximately)

A = Ty + (L5
= /(0.009:5)? + (0.01275=)?

This shows the relative contributions of the components to the variation in the
measurement.

AsYy, is aknown quantity and reduction in T, and in T, each carriesits own price

tag, it becomes an economic decision whether one should spend resources to reduce
Ty or Ty, or both.

In this example, we have used a Taylor series approximation to obtain asimple
expression that highlights the benefit of T, and T,. Alternatively, one might

simulate values of M = K*X/y, given a specified (T, Ty) and (X,yo), and then
summarize the results with amodel for the variability of M as afunction of (T,,Ty).

In other applications, no functional form is available and one must use
experimentation to empirically determine the optimal tolerance design. See
Bisgaard and Steinberg (1997).
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5.5.7.What are John's 3/4 fractional
factorial designs?

John's Three-quarter (34) designs are two-level factorial designsthat require

designs only three-quarters of the number of runs of the "original' design. For

requireonly  example, instead of making all of the sixteen runs required for a 24

3/4 of the fractional factorial design, we need only run 12 of them. Such designs

number of were invented by Professor Peter John of the University of Texas, and

runs a full are sometimes called' John's % designs.'

2" factorial . : :

would Three-quarter fractional factorial designs can be used to save on

require resources in two different contexts. In one scenario, we may wish to
perform additional runs after having completed a fractional factorial, so
asto de-alias certain specific interaction patterns. Second , we may wish
to use a ¥4 design to begin with and thus save on 25% of the run
requirement of aregular design.
Semifolding Example

Four We have four experimental factorsto investigate, namely X1, X2, X3,

experimental  and X4, and we have designed and run a 24-1 fractional factorial design.

factors Such adesign has eight runs, or rows, if we don't count center point
runs (or replications).

Resolution The 241 design is of resolution 1V, which means that main effects are

IV design confounded with, at worst, three-factor interactions, and two-factor

interactions are confounded with other two factor interactions.
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The design matrix, in standard order, is shown in Table 5.8 along with
all the two-factor interaction columns. Note that the column for X4 is
constructed by multiplying columns for X1, X2, and X3 together (i.e.,
4=123).

Table5.8 The 241 design plus 2-factor interaction columns shown
in standard order. Note that 4=123.
Run Two-Factor Interaction Columns
Number X1 X2 X3 X4 X1*X2X1*X3X1*X4 X2*X3 X2* X4 X3* X4

-1-1-1-1 +1 +1 +1 +1 +1 +1
+1-1-1+1 -1 -1 +1 +1 -1 -1
-1 +1 -1 +1 -1 +1 -1 -1 +1 -1
+1+1 -1 -1 +1 -1 -1 -1 -1 +1
-1 -1 +1+1 +1 -1 -1 -1 -1 +1
+1 -1 +1 -1 -1 +1 -1 -1 +1 -1
-1 +1+1 -1 -1 -1 +1 +1 -1 -1
+1+1+1+1  +1 +1 +1 +1 +1 +1

LoO~NO O D WN B

Note also that 12=34, 13=24, and 14=23. These follow from the
generating relationship 4=123 and tells us that we cannot estimate any
two-factor interaction that is free of some other two-factor alias.

Suppose that we became interested in estimating some or all of the
two-factor interactions that involved factor X 1; that is, we want to
estimate one or more of the interactions 12, 13, and 14 free of
two-factor confounding.

One way of doing thisisto run the “other half' of the design—an
additional eight rows formed from the relationship 4 = -123. Putting
these two “halves together—the original one and the new one, we'd
obtain a 24 design in sixteen runs. Eight of these runs would already
have been run, so all we'd need to do is run the remaining half.

Thereisaway, however, to obtain what we want while adding only four
more runs. These runs are selected in the following manner: take the
four rows of Table 5.8 that have "-1'in the "X1' column and switch the
"-'sign under X1 to "+ to obtain the four-row table of Table 5.9. Thisis
called afoldover on X1, choosing the subset of runswith X1 = -1. Note
that this choice of 4 runsis not unique, and that if theinitial design
suggested that X1 = -1 were adesirable level, we would have chosen to
experiment at the other four treatment combinations that were omitted
from theinitial design.
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Table of the TABLE 5.9 Foldover on "X1' of the 24-1

additional design of Table5.5

design Run

points | Number | X1 | X2 | X3 | X4
| 9 | +1 | -1 | -1 | -1
| 10 | +1 | +1 | -1 | +1
| 11 |+l | -1 | +1 | 41
| 12 | +1 | +1 | +1 | -1

Table with Add this new block of rows to the bottom of Table 5.8 to obtain a
new design design in twelve rows. We show thisin Table 5.10 and also add in the
pointsadded  two-factor interactions as well for illustration (not needed when we do

to the the runs).
original _ _
design TABLE 5.10 A twelve-run design based on the 24-1 also showing all
points two-factor interaction columns

Run Two-Factor Interaction Columns

Number X1 X2 X3 X4 X1*X2X1*X3X1* X4 X2* X3 X2* X4 X3* X4

1 -1-1-1-1 +1 +1 +1 +1 +1 +1
2 +1 -1 -1 +1 -1 -1 +1 +1 -1 -1
3 -1+1 -1 +1 -1 +1 -1 -1 +1 -1
4 +1+1 -1 -1 +1 -1 -1 -1 -1 +1
5 -1 -1+1+41 +1 -1 -1 -1 -1 +1
6 +1 -1 +1 -1 -1 +1 -1 -1 +1 -1
7 -1 +1+1 -1 -1 -1 +1 +1 -1 -1
8 +1+1+1+1 +1 +1 +1 +1 +1 +1
1 +1 -1 -1 -1 -1 -1 -1 +1 +1 +1
10 +1+1-1+1 +1 -1 +1 -1 +1 -1
11 +1 -1 +1 +1 -1 +1 +1 -1 -1 +1
12 +1+1+1 -1 +1 +1 -1 +1 -1 -1
Designis Examine the two-factor interaction columns and convince yourself that

resolutionV  no two are alike. This means that no two-factor interaction involving X1
is aliased with any other two-factor interaction. Thus, the designiis
resolution V, which is not always the case when constructing these
types of ¥ foldover designs.
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5.5.7. What are John's 3/4 fractional factorial designs?

What we now haveis adesign with 12 runs, with which we can estimate
all the two-factor interactions involving X1 free of aliasing with any
other two-factor interaction. It is called a % design because it has % the
number of rows of the next regular factorial design (a24).

If one fits a model with an intercept, a block effect, the four main effects
and the six two-factor interactions, then each coefficient has a standard
error of a¥/8Y2 - instead of «¥/12V/2 - because the design is not

orthogonal and each estimate is correlated with two other estimates.
Note that no degrees of freedom exists for estimating ¢¥. Instead, one
should plot the 10 effect estimates using a normal (or half-normal)
effects plot to judge which effects to declare significant.

For more details on ¥ fractions obtained by adding a follow-up design
that is half the size of the original design, see Mee and Peralta (2000).

Next we consider an example in which a % fraction arises when the (34)

2k-p design is planned from the start because it is an efficient design that
allows estimation of a sufficient number of effects.

A 48-Run 3/4 Design Example

Suppose we wish to run an experiment for k=8 factors, with which we
want to estimate all main effects and two-factor interactions. We could

use the 2%,‘2 design described in the summary table of fractional
factorial designs, but this would require a 64-run experiment to estimate

the 1 + 8 + 28 = 37 desired coefficients. In this context, and especially
for larger resolution V designs, % of the design points will generally
suffice.

The 48 run-design is constructed as follows: start by creating the full
E%; —2 design using the generators 7 = 1234 and 8 = 1256. The defining

relationis| = 12347 = 12568 = 345678 (see the summary table details
for this design).

Next, arrange these 64 treatment combinations into four blocks of size
16, blocking on the interactions 135 and 246 (i.e., block 1 has 135 = 246
=-1runs, block 2 has 135 = -1, 246 = +1, block 3 has 135 = +1, 246 =
-1 and block 4 has 135 = 246 = +1). If we exclude the first block in
which 135 = 246 = -1, we have the desired % design reproduced below
(the reader can verify that these are the runs described in the summary
table, excluding the runs numbered 1, 6, 11, 16, 18, 21, 28, 31, 35, 40,
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41,46, 52, 55, 58 and 61).

Table

X1 [ X2 [ X3 [ X4 [ X5 [ X6 [ X7 [ X8
|

containing
the design

matrix

+1
-1
+1

+1
+1

+1
+1

|+1|+1 -1
|+l

-1
+1

+1
+1

-1 +1 -1 -1 +1
-1
+1

+1
+1

+1
+1

+1

+1

+1

-1

-1

+1

-1
+1

+1
-1

+1
-1
-1
-1
-1
-1
-1
+1
+1
1

+1

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
1

+1

+1
+1
-1
+1
| 1

-1
+1
+1
-1
+1

+1
+1
+1

+1
+1

+1
+1
|+l

-1
-1
-1
+1
+1
1

+1
+1

+1
+1
+1

+1

-1

+1
|+l
|+l

+1

1
| 1

+1
+1

+1

+1

+1

+1

+1

+1
+1
+1
|+
|+

-1
-1
-1
-1
-1
-1
-1
-1

-1
-1
-1
+1
+1
+1
+1
+1

+1
+1
+1
-1
-1
-1
+1
+1

+1
+1
+1
+1

+1
+1
+1
+1

-1
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http://www.itl.nist.gov/div898/handbook/pri/section5/pri57.htm (5 of 6) [11/14/2003 5:53:47 PM]



5.5.7. What are John's 3/4 fractional factorial designs?

Good
precision for
coefficient
estimates

Further
information

NIST
SEMATECH

| 1 | +41 | 41 ] 41 ] -1 ] 41 ] 4 ] -1
|1 | 1| 1| 1|+ | x| x| +#
o+ | -1 | -1 | -1 | +1 | +1 | -1 | -1
-1 | 41 | 1 | 1 | 41 | 41| -1 | -1
| -1 | 1 | +1 | 1 | +1 | +1 | 1 | #
|+l | -1 | 41 | -1 | +1 | +1 | +1 | -1
| +1 | #4141 ] -1 ]+ ]+ ] 1 ]+
-1 | -1 | -1 | +1 | 41 | 1 | -1 |+
-1 | +1 | -1 | +1 | +1 | +1 | +1 | -1
ENEEEE YY"
| +1 | -1 | 41 | 41 | 41 | 41 | -1 | -1
-1 | 41 | 41 | +1 | +1 | +1 | -1 | -1
| 1 | +41 ] 41 ] 41 ] 41 ] 41 | 41 ] 41

This design provides 11 degrees of freedom for error and also provides
good precision for coefficient estimates (some of the coefficients have a

standard error of ¢ _,:’ 4/ 32 and some have a standard error of

a /+/42.55)

More about John's % designs can be found in John (1971) or Diamond
(1989).
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5.5.8. What are small composite designs?
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5.5. Advanced topics

5.5.8.What are small composite designs?

Small Response surface designs (RSD) were described earlier. A typical RSD
composite requires about 13 runsfor 2 factors, 20 runsfor 3 factors, 31 runsfor 4
designssave  factors, and 32 runsfor 5 factors. It is obvious that, once you have four
runs, or more factors you wish to include in a RSD, you will need more than
comparedto  onelot (i.e., batch) of experimental units for your basic design. Thisis
Resolution V' what most statistical software today will give you, including RS/1,
response JMP, and SAS. However, there is away to cut down on the number of
surface runs, as suggested by H.O. Hartley in his paper ‘Smallest Composite
designs, by Designs for Quadratic Response Surfaces, published in Biometrics,
adding star December 1959.
pointsto a _ _ : :
Resolution This method addresses the theory that using a Resolution V design as
111 design the smallest fractional design to create a RSD is unnecessary. The
method adds star points to designs of Resolution 111 and uses the star
points to clear the main effects of aliasing with the two-factor
interactions. The resulting design allows estimation of the higher-order
interactions. It also provides poor interaction coefficient estimates and
should not be used unless the error variability is negligible compared to
the systematic effects of the factors.
Useful for 4 This could be particularly useful when you have a design containing

or 5 factors

four or five factors and you wish to only use the experimental units
from onelot (i.e., batch).

Table Thefollowing isadesign for four factors. Y ou would want to
containing randomi ze these runs before implementing them; -1 and +1 represent
design the low and high settings, respectively, of each factor.

matrix for

four factors
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5.5.8. What are small composite designs?

TABLE 5.11 Four factors: Factorial design section is
based on a generator of | = X1*X2* X3, Resolution I 11; -&x
and +¢x arethe star points, calculated beyond the factorial

range; O representsthe midpoint of the factor range.

Row X1 X2 X3 X4
1 +1 -1 -1 -1
2 -1 +1 -1 -1
3 -1 -1 +1 -1
4 +1 +1 +1 -1
5 +1 -1 -1 +1
6 -1 +1 -1 +1
7 -1 -1 +1 +1
8 +1 +1 +1 +1
9 - 0 0 0
10 ¥ 0 0 0
11 0 -x 0 0
12 0 L 0 0
13 0 0 -x 0
14 0 0 {x 0
15 0 0 0 Y
16 0 0 0 ¥
17 0 0 0 0
18 0 0 0 0
19 0 0 0 0
20 0 0 0 0

Determining «x in Small Composite Designs

¥ based on To maintain rotatability for usual CCD's, the value of ¢x is determined

number of by the number of treatment combinations in the factorial portion of the
treatment central composite design:

combinations 174

in the &= [.P‘II,{.P?IE?'EI‘ af factorial rwzs]

factorial

portion

Small However, small composite designs are not rotatable, regardless of the
composite choice of «x. For small composite designs, ¢x should not be smaller than
designs not [number of factorial runs]Y4 nor larger than kY2,

rotatable
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5.5.9. An EDA approach to experimental design
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5.5.9.An EDA approach to experimental
design

I ntroduction

Problem
category

Desired
output

Problem
essentials

This section presents an exploratory data analysis (EDA) approach to
analyzing the data from a designed experiment. This material is meant to
complement, not replace, the more model-based approach for analyzing
experiment designs given in section 4 of this chapter.

Choosing an appropriate design is discussed in detail in section 3 of this
chapter.

Starting point

The problem category we will addressis the screening problem. Two
characteristics of screening problems are:

1. There are many factorsto consider.
2. Each of these factors may be either continuous or discrete.

The desired output from the analysis of a screening problem is;
o A ranked list (by order of importance) of factors.
« The best settings for each of the factors.
« A good model.
o Insight.

The essentials of the screening problem are:
» There are k factors with n observations.
« Thegeneric modd is:

Y= f(Xl, X2, ceny Xk)
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5.5.9. An EDA approach to experimental design

Designtype  In particular, the EDA approach is applied to 2K full factorial and 2k-P
fractional factorial designs.

An EDA approach is particularly applicable to screening designs because we
arein the preliminary stages of understanding our process.

EDA EDA isnot asingle technique. It is an approach to analyzing data.

philosophy

EDA isdata-driven. That is, we do not assume an initial model. Rather,
we attempt to let the data speak for themselves.

EDA is question-based. That is, we select a technique to answer one or
more questions.

EDA utilizes multiple technigques rather than depending on asingle
technique. Different plots have a different basis, focus, and
sensitivities, and therefore may bring out different aspects of the data.
When multiple techniques give us aredundancy of conclusions, this
Increases our confidence that our conclusions are valid. When they
give conflicting conclusions, this may be giving us a clue asto the
nature of our data.

EDA tools are often graphical. The primary objective isto provide
insight into the data, which graphical techniques often provide more
readily than quantitative techniques.

10-Step Thefollowing is a 10-step EDA process for analyzing the data from 2K full
Process factorial and 2k-P fractional factorial designs.

1.

10.

© ©o N o gk~ WD

Ordered data plot
Dex scatter plot

Dex mean plot

I nteraction effects matrix plot

Block plot
DEX Y ouden plot

|Effects]| plot
Half-normal probability plot

Cumulative residual standard deviation plot

DEX contour plot

Each of these plots will be presented with the following format:

Purpose of the plot
Output of the plot
Definition of the plot
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5.5.9. An EDA approach to experimental design
« Motivation for the plot
« An example of the plot using the defective springs data
« A discussion of how to interpret the plot
« Conclusions we can draw from the plot for the defective springs data

Data set

Defective The plots presented in this section are demonstrated with a data set from Box
springsdata  and Bisgaard (1987).

These data are from a 23 full factorial data set that contains the following
variables:

1. Response variable Y = percentage of springs without cracks
2. Factor 1 = oven temperature (2 levels: 1450 and 1600 F)

3. Factor 2 = carbon concentration (2 levels: .5% and .7%)

4. Factor 3 = quench temperature (2 levels: 70 and 120 F)

Y X1 X2 X3
Per cent Oven Car bon Quench
Acceptabl e Tenperature Concentration Tenper at ure
67 -1 -1 -1
79 +1 -1 -1
61 -1 +1 -1
75 +1 +1 -1
59 -1 -1 +1
90 +1 -1 +1
52 -1 +1 +1
87 +1 +1 +1
Y ou can read this file into Dataplot with the following commands:
SKIP 25

READ BOXSPRIN.DAT Y X1 X2 X3
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5.5.9.1. Ordered data plot
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5.5.9.1.Ordered data plot

Purpose

Output

The ordered data plot answers the following two questions:
1. What isthe best setting (based on the data) for each of the k factors?
2. What is the most important factor?
In the above two questions, the terms "best” and "important” need more precise definitions.

Settings may be declared as "best” in three different ways:
1. "best" with respect to the data;
2. "best" on average;
3. "best" with respect to predicted values from an adequate model.

In the worst case, each of the above three criteriamay yield different "best settings'. If that
occurs, then the three answers must be consolidated at the end of the 10-step process.

The ordered data plot will yield best settings based on the first criteria (data). That is, this
technique yields those settings that correspond to the best response value, with the best value
dependent upon the project goals:

1. maximization of the response;
2. minimization of the response;
3. hitting atarget for the response.
This, inturn, trivialy yields the best response value:
1. maximization: the observed maximum data point;
2. minimization: the observed minimum data point;
3. target: the observed data value closest to the specified target.

With respect to the most "important” factor, this by default refers to the single factor which
causes the greatest change in the value of the response variable as we proceed from the "-" setting
to the "+" setting of the factor. In practice, if afactor has one setting for the best and near-best
response values and the opposite setting for the worst and near-worst response values, then that
factor is usually the most important factor.

The output from the ordered dataplot is:
1. Primary: Best setting for each of the k factors.
2. Secondary: The name of the most important factor.
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5.5.9.1. Ordered data plot

Definition An ordered data plot is formed by:

« Vertical Axis: The ordered (smallest to largest) raw response value for each of the n runsin
the experiment.

« Horizontal Axis. The corresponding dummy run index (1 to n) with (at each run) a
designation of the corresponding settings (- or +) for each of the k factors.

In essence, the ordered data plot may be viewed as a scatter plot of the ordered data versus a
single n-treatment consolidation factor.

Motivation To determine the best setting, an obvious place to start is the best response value. What
constitutes "best"? Are we trying to maximize the response, minimize the response, or hit a
specific target value? This non-statistical question must be addressed and answered by the
analyst. For example, if the project goal is ultimately to achieve alarge response, then the desired
experimental goal is maximization. In such a case, the analyst would note from the plot the
largest response value and the corresponding combination of the k-factor settings that yielded that

best response.
Plot for Applying the ordered response plot for the defective springs data set yields the following plot.
defective
springs
data METAL SPRINGS: % ACCEPTABLE (BB)
Ordered Data Plad
K=3
H=8
=1 E
B K
i
w Ta
2 .
g
o x *
- K
X1 - + + + +
Mz: + - + + + -
M3 + + + +

SETTINGS
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From the ordered data plot, we look for the following:
1. best settings;
2. most important factor.

Best Settings (Based on the Data):

At the best (highest or lowest or target) response value, what are the corresponding settings for
each of the k factors? This defines the best setting based on the raw data.

Most | mportant Factor:

For the best response point and for the nearby neighborhood of near-best response points, which
(if any) of the k factors has consistent settings? That is, for the subset of response valuesthat is
best or near-best, do al of these values emanate from an identical level of some factor?

Alternatively, for the best half of the data, does this half happen to result from some factor with a
common setting? If yes, then the factor that displays such consistency is an excellent candidate
for being declared the "most important factor". For a balanced experimental design, when al of
the best/near-best response values come from one setting, it follows that all of the
worst/near-worst response values will come from the other setting of that factor. Hence that factor
becomes "most important”.

At the bottom of the plot, step though each of the k factors and determine which factor, if any,
exhibits such behavior. This defines the "most important™ factor.

The application of the ordered data plot to the defective springs data set results in the following
conclusions:

1. Best Settings (Based on the Data):
(X1,X2,X3) = (+,-,+) = (+1,-1,+1) isthe best setting since
1. the project goal is maximization of the percent acceptable springs;
2. Y =090 isthe largest observed response value; and
3. (X1,X2,X3) = (+,-,+) a Y =90.
2. Most important factor:
X1 isthe most important factor since the four largest response values (90, 87, 79, and 75)

have factor X1 at +1, and the four smallest response values (52, 59, 61, and 67) have factor
X1 at -1.
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5.5.9.2. Dex scatter plot
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5.5.9.2. Dex scatter plot

Purpose

Output

Definition

The dex (design of experiments) scatter plot answers the following three questions:
1. What are the most important factors?
2. What isthe best setting for each of these important factors?
3. What data points are outliers?
In the above questions, the terms "important”, "best", and "outliers" need clarification and
specificity:
Important

A factor can be "important” if it leads to a significant shift in either the location or the variation of
the response variable as we go from the "-" setting to the "+" setting of the factor. Both
definitions are relevant and acceptable. The default definition of "important” in
engineering/scientific applicationsis a shift in location. Unless specified otherwise, when a factor
is claimed to be important, the implication is that the factor caused a large location shift in the
response.

Best

A factor setting is"best” if it resultsin atypical response that is closest, in location, to the desired
project goal (maximization, minimization, target). This desired project goal is an engineering, not
astatistical, question, and so the desired optimization goal must be specified by the engineer.

Outlier

A datapoint isan "outlier" if it comes from a different probability distribution or from a different
deterministic model than the remainder of the data. A single outlier in a data set can affect all
effect estimates and so in turn can potentially invalidate the factor rankings in terms of
importance.

Given the above definitions, the dex scatter plot is a useful early-step tool for determining the
important factors, best settings, and outliers. An aternate name for the dex scatter plot is"main
effects plot".

The output for the dex scatter plot is:
1. Primary: Identification of the important factors.
2. Secondary: Best setting for these factors and identification of outliers.

The dex scatter plot isformed by

« Vertical Axis: Theresponse (= the raw data) for agiven setting (- or +) of afactor for each
of the k factors.

« Horizontal Axis: The k factors, and the two settings (- and +) within each factor.
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5.5.9.2. Dex scatter plot

Motivation

Plot for
defective
springs
data

The scatter plot is the primary data analysis tool for determining if and how aresponse relates to
another factor. Determining if such arelationship existsis a necessary first step in converting
statistical association to possible engineering cause-and-effect. Looking at how the raw data
change as afunction of the different levels of afactor is afundamental step which, it may be
argued, should never be skipped in any data analysis.

From such afoundational plot, the analyst invariably extracts information dealing with location
shifts, variation shifts, and outliers. Such information may easily be washed out by other "more
advanced" quantitative or graphical procedures (even computing and plotting means!). Hence
there is motivation for the dex scatter plot.

If we were interested in assessing the importance of a single factor, and since "important” by
default means shift in location, then the simple scatter plot isan ideal tool. A large shift (with
little data overlap) in the body of the data from the "-" setting to the "+" setting of a given factor
would imply that the factor isimportant. A small shift (with much overlap) would imply the
factor is not important.

The dex scatter plot is actually a sequence of k such scatter plots with one scatter plot for each
factor.

The dex scatter plot for the defective springs data set is as follows.
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5.5.9.2. Dex scatter plot

How to
interpret

As discussed previously, the dex scatter plot is used to look for the following:
1. Most Important Factors,
2. Best Settings of the Most Important Factors;
3. Quitliers.

Each of these will be discussed in turn.

Most Important Factors.

For each of the k factors, as we go from the "-" setting to the "+" setting within the factor, isthere
alocation shift in the body of the data? If yes, then

1. Which factor has the biggest such data location shift (that is, has |east data overlap)? This
defines the "most important factor".
2. Which factor has the next biggest shift (that is, has next least data overlap)? This defines
the "second most important factor”.
3. Continue for the remaining factors.
In practice, the dex scatter plot will typically only be able to discriminate the most important
factor (largest shift) and perhaps the second most important factor (next largest shift). The degree

of overlap in remaining factorsis frequently too large to ascertain with certainty the ranking for
other factors.

Best Settingsfor the Most Important Factors:
For each of the most important factors, which setting ("-" or "+") yields the "best" response?

In order to answer this question, the engineer must first define "best". This is done with respect to
the overall project goal in conjunction with the specific response variable under study. For some
experiments (e.g., maximizing the speed of a chip), "best" means we are trying to maximize the
response (speed). For other experiments (e.g., semiconductor chip scrap), "best” meanswe are
trying to minimize the response (scrap). For yet other experiments (e.g., designing a resistor)
"best" means we are trying to hit a specific target (the specified resistance). Thus the definition of
"best" is an engineering precursor to the determination of best settings.

Suppose the analyst is attempting to maximize the response. In such a case, the analyst would
proceed as follows:

1. For factor 1, for what setting (- or +) isthe body of the data higher?
2. For factor 2, for what setting (- or +) isthe body of the data higher?
3. Continue for the remaining factors.
The resulting k-vector of best settings:
(x1best, x2best, ..., xkbest)

isthus theoretically obtained by looking at each factor individually in the dex scatter plot and
choosing the setting (- or +) that has the body of data closest to the desired optimal (maximal,
minimal, target) response.

Asindicated earlier, the dex scatter plot will typically be able to estimate best settings for only the
first few important factors. Again, the degree of data overlap precludes ascertaining best settings
for the remaining factors. Other tools, such as the dex mean plot, will do a better job of
determining such settings.

Outliers:

Do any data points stand apart from the bulk of the data? If so, then such values are candidates for
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further investigation as outliers. For multiple outliers, it is of interest to note if all such anomalous
data cluster at the same setting for any of the various factors. If so, then such settings become
candidates for avoidance or inclusion, depending on the nature (bad or good), of the outliers.

Conclusions  The application of the dex scatter plot to the defective springs data set results in the following
for the conclusions:

defective 1. Most Important Factors:
Zg:!]gs 1. X1 (most important);
2. X2 (of lesser importance);
3. X3 (of least importance).

that is,
n factor 1 definitely looks important;
n factor 2 isadistant second;

o factor 3 hastoo much overlap to be important with respect to location, but is flagged
for further investigation due to potential differencesin variation.

2. Best Settings:
(X1,X2,X3) = (+,-,- =(+1,-1,-1)
3. Outliers: None detected.
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5.5.9.3. Dex mean plot
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5.5. Advanced topics
5.5.9. An EDA approach to experimenta design

5.5.9.3.Dex mean plot

Purpose

Output

Definition

The dex (design of experiments) mean plot answers the following two questions:
1. What isthe ranked list of factors (not including the interactions)? The ranking is from the
most important factor to least important factor.
2. What isthe best setting for each of the k factors?
In the above two questions, the terms "important” and "best" need clarification and specificity.

A factor can be important if it leads to a significant shift in the location of the response variable
aswe go from the "-" setting of the factor to the "+" setting of the factor. Alternatively, afactor
can be important if it leads to a significant change in variation (spread) as we go from the "-" to
the "+" settings. Both definitions are relevant and acceptable. The default definition of
"Important” in engineering/scientific applicationsis the former (shift in location). Unless
specified to the contrary, when afactor is claimed to be important, the implication is that the
factor caused a large location shift in the response.

In this context, afactor setting is best if it resultsin atypical response that is closest (in location)
to the desired project goal (that is, a maximization, minimization, or hitting atarget). This desired
project goal is an engineering, not a statistical, question, and so the desired optimization goal
must be overtly specified by the engineer.

Given the above two definitions of important and best, the dex mean plot is a useful tool for
determining the important factors and for determining the best settings.

An aternate name for the dex mean plot is the "main effects plot".

The output from the dex mean plot is:

1. Primary: A ranked list of the factors (not including interactions) from most important to
least important.

2. Secondary: The best setting for each of the k factors.

The dex mean plot isformed by:

« Vertical Axis: The mean response for agiven setting ("-" or "+") of afactor, for each of the
k factors.

« Horizontal Axis: The k factors and the two settings ("-" and "+") within each factor.
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5.5.9.3. Dex mean plot

Motivation If we were interested in assessing the importance of a single factor, and since important, by
default, means shift in location, and the average is the ssmplest |ocation estimator, a reasonable
graphics tool to assess a single factor's importance would be a simple mean plot. The vertical axis
of such aplot would be the mean response for each setting of the factor and the horizontal axisis
the two settings of the factor: "-" and "+" (-1 and +1). A large difference in the two means would
imply the factor isimportant while a small difference would imply the factor is not important.

The dex mean plot is actually a sequence of k such plots, with one mean plot for each factor. To
assist in comparability and relative importance, all of the mean plots are on the same scale.

Plot for Applying the dex mean plot to the defective springs data yields the following plot.
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5.5.9.3. Dex mean plot

How to
interpret

From the dex mean plot, we look for the following:
1. A ranked list of factors from most important to least important.
2. The best settings for each factor (on average).

Ranked List of Factors-Most Important to Least | mportant:

For each of the k factors, as we go from the "-" setting to the "+" setting for the factor, isthere a
shift in location of the average response?

If yes, we would like to identify the factor with the biggest shift (the "most important factor"), the
next biggest shift (the "second most important factor"), and so on until al factors are accounted
for.

Since we are only plotting the means and each factor hasidentical (-,+) = (-1,+1) coded factor
settings, the above simplifiesto

1. What factor has the steepest line? Thisis the most important factor.
2. The next stegpest line? Thisis the second most important factor.
3. Continue for the remaining factors.

This ranking of factors based on local means is the most important step in building the definitive
ranked list of factors as required in screening experiments.

Best Settings (on Average):
For each of the k factors, which setting (- or +) yields the "best" response?

In order to answer this, the engineer must first define "best”". Thisis done with respect to the
overall project goa in conjunction with the specific response variable under study. For some
experiments, "best" means we are trying to maximize the response (e.g., maximizing the speed of
achip). For other experiments, "best" means we are trying to minimize the response (e.g.,
semiconductor chip scrap). For yet other experiments, "best" means we are trying to hit a specific
target (e.g., designing aresistor to match a specified resistance). Thus the definition of "best" isa
precursor to the determination of best settings.

For example, suppose the analyst is attempting to maximize the response. In that case, the analyst
would proceed as follows:

1. For factor 1, what setting (- or +) has the largest average response?
2. For factor 2, what setting (- or +) has the largest average response?
3. Continue for the remaining factors.
The resulting k-vector of best settings:
(x1best, x2best, ..., xkbest)

isin general obtained by looking at each factor individually in the dex mean plot and choosing
that setting (- or +) that has an average response closest to the desired optimal (maximal, minimal,
target) response.

This candidate for best settings is based on the averages. This k-vector of best settings should be
similar to that obtained from the dex scatter plot, though the dex mean plot is easier to interpret.
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5.5.9.3. Dex mean plot

Conclusions  The application of the dex mean plot to the defective springs data set results in the following
for the conclusions:

defective 1. Ranked list of factors (excluding interactions):

32::;93 1. X1 (most important). Qualitatively, this factor looks definitely important.
2. X2 (of lesser importantance). Qualitatively, thisfactor is adistant second to X1.
3. X3 (unimportant). Qualitatively, this factor appears to be unimportant.
2. Best settings (on average):
(X1,X2,X3) = (+,-,+) = (+1,-1,+1)
SE:L%I (HOME [TOOLS & AIDS [SEARCH [BACK NEXT]
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5.5.9.4. Interaction effects matrix plot
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5.5.9.4.Interaction effects matrix plot

Purpose

Output

The interaction effects matrix plot is an extension of the dex mean plot to include both main
effects and 2-factor interactions (the dex mean plot focuses on main effects only). The interaction
effects matrix plot answers the following two questions:

1. What isthe ranked list of factors (including 2-factor interactions), ranked from most
important to least important; and

2. What is the best setting for each of the k factors?

For ak-factor experiment, the effect on the response could be due to main effects and various
interactions al the way up to k-term interactions. As the number of factors, k, increases, the total
number of interactions increases exponentially. The total number of possible interactions of all
orders= 2K - 1 - k. Thus for k = 3, the total number of possible interactions = 4, but for k = 7 the
total number of possible interactions = 120.

In practice, the most important interactions are likely to be 2-factor interactions. The total number
of possible 2-factor interactionsis

EY K kk—1)
2] k- 2

Thus for k = 3, the number of 2-factor interactions = 3, while for k = 7, the number of 2-factor
interactions = 21.

It isimportant to distinguish between the number of interactions that are activein agiven
experiment versus the number of interactions that the analyst is capable of making definitive
conclusions about. The former depends only on the physics and engineering of the problem. The
latter depends on the number of factors, k, the choice of the k factors, the constraints on the
number of runs, n, and ultimately on the experimental design that the analyst choosesto use. In
short, the number of possible interactionsis not necessarily identical to the number of
interactions that we can detect.

Note that

1. with full factorial designs, we can uniquely estimate interactions of all orders;

2. with fractional factorial designs, we can uniquely estimate only some (or at times no)
interactions; the more fractionated the design, the fewer interactions that we can estimate.

The output for the interaction effects matrix plot is

1. Primary: Ranked list of the factors (including 2-factor interactions) with the factors are
ranked from important to unimportant.

2. Secondary: Best setting for each of the k factors.
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5.5.9.4. Interaction effects matrix plot

Definition The interaction effects matrix plot is an upper right-triangular matrix of mean plots consisting of

k main effects plots on the diagonal and k* (k-1)/2 2-factor interaction effects plots on the
off-diagonal .

In general, interactions are not the same as the usual (multiplicative) cross-products. However,
for the special case of 2-level designs coded as (-,+) = (-1 +1), the interactions ar e identical to
cross-products. By way of contrast, if the 2-level designs are coded otherwise (e.g., the (1,2)
notation espoused by Taguchi and others), then this equivalance is not true. Mathematically,
{-1,+1} x{-1,+1} =>{-1,+1}
but
{1,2} x{1,2} =>{1,2,4}
Thus, coding does make a difference. We recommend the use of the (-,+) coding.

It is remarkable that with the - and + coding, the 2-factor interactions are dealt with, interpreted,
and compared in the same way that the k main effects are handled. It is thus natural to include
both 2-factor interactions and main effects within the same matrix plot for ease of comparison.

For the off-diagonal terms, the first construction step isto form the horizontal axis values, which
will be the derived values (also - and +) of the cross-product. For example, the settings for the
X1* X2 interaction are derived by simple multiplication from the data as shown below.

X1 X2 X1* X2
- -+
+ - -
- 4+ -
+ + 4+

Thus X1, X2, and X1* X2 all form aclosed (-, +) system. The advantage of the closed system is
that graphically interactions can be interpreted in the exact same fashion as the k main effects.

After the entire X1* X2 vector of settings has been formed in thisway, the vertical axis of the
X1* X2 interaction plot is formed:

1. the plot point above X1* X2 ="-" issimply the mean of all response values for which
X1*¥X2 ="-"

2. the plot point above X1* X2 = "+" is simply the mean of all response values for which
X1*¥X2 ="+".

We form the plots for the remaining 2-factor interactionsin asimilar fashion.

All the mean plots, for both main effects and 2-factor interactions, have a common scale to
facilitate comparisons. Each mean plot has

1. Vertical Axis: The mean response for a given setting (- or +) of a given factor or agiven
2-factor interaction.

2. Horizontal Axis: The 2 settings (- and +) within each factor, or within each 2-factor
interaction.

3. Legend:
1 Atag (1,2, ..., k 12,13, etc.), with1 = X1, 2 =X2, ..., k=X, 12 = X1* X2, 13 =
X1* X3, 35 = X3* X5, 123 = X1* X2* X3, etc.) which identifies the particular mean
plot; and

2. The least squares estimate of the factor (or 2-factor interaction) effect. These effect
estimates are large in magnitude for important factors and near-zero in magnitude for
unimportant factors.
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5.5.9.4. Interaction effects matrix plot

Motivation

Plot for
defective
springs
data

In alater section, we discuss in detail the models associated with full and fraction factorial 2-level
designs. One such model representation is

Y = p+4 (1/2)(51 X 4+ X0 + fa X1 Xo +..)
Written in this form (with the leading 0.5), it turns out that the /3 are identically the effect due to

factor X. Further, the least squares estimate turns out to be, due to orthogonality, the ssmple
difference of means at the + setting and the - setting. Thisistrue for the k main factors. It isalso
true for all 2-factor and multi-factor interactions.

Thus, visually, the difference in the mean values on the plot isidentically the least squares
estimate for the effect. Large differences (steep lines) imply important factors while small
differences (flat lines) imply unimportant factors.

In earlier sections, a somewhat different form of the model is used (without the leading 0.5). In
this case, the plotted effects are not necessarily equivalent to the least squares estimates. When
using a given software program, you need to be aware what convention for the model the
software uses. In either case, the effects matrix plot is still useful. However, the estimates of the
coefficientsin the model are equal to the effect estimates only if the above convention for the
model is used.

Asdiscussed in detail above, the next logical step beyond main effectsis displaying 2-factor
interactions, and this plot matrix provides a convenient graphical tool for examining the relative
importance of main effects and 2-factor interactions in concert. To do so, we make use of the
striking aspect that in the context of 2-level designs, the 2-factor interactions are identical to
cross-products and the 2-factor interaction effects can be interpreted and compared the same way
as main effects.

Constructing the interaction effects matrix plot for the defective springs data set yields the
following plot.

http://www.itl.nist.gov/div898/handbook/pri/section5/pri594.htm (3 of 9) [11/14/2003 5:53:54 PM]



5.5.9.4. Interaction effects matrix plot
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How to From the interaction effects matrix, we can draw three important conclusions:
interpret 1. Important Factors (including 2-factor interactions);
2. Best Settings,

3. Confounding Structure (for fractional factorial designs).
We discuss each of thesein turn.
1. Important factors (including 2-factor interactions):

Jointly compare the k main factors and the k* (k-1)/2 2-factor interactions. For each of these
subplots, aswe go from the "-" setting to the "+" setting within a subplot, isthere a shift in
location of the average data (yes/no)? Since all subplots have a common (-1, +1) horizontal
axis, questions involving shiftsin location translate into questions involving steepness of
the mean lines (large shiftsimply steep mean lines while no shifts imply flat mean lines).

1. Identify the factor or 2-factor interaction that has the largest shift (based on
averages). This defines the "most important factor”. The largest shift is determined
by the stegpest line.

2. ldentify the factor or 2-factor interaction that has the next largest shift (based on
averages). This defines the "second most important factor”. This shift is determined
by the next steepest line.

3. Continue for the remaining factors.

This ranking of factors and 2-factor interactions based on local meansisamajor step in
building the definitive list of ranked factors as required for screening experiments.

2. Best settings:
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5.5.9.4. Interaction effects matrix plot

For each factor (of the k main factors along the diagonal), which setting (- or +) yieldsthe

llball

(highest/lowest) average response?

Note that the experimenter has the ability to change settings for only the k main factors, not
for any 2-factor interactions. Although a setting of some 2-factor interaction may yield a

better
experi

average response than the alternative setting for that same 2-factor interaction, the
menter is unable to set a 2-factor interaction setting in practice. That isto say, there

isno "knob" on the machine that controls 2-factor interactions; the "knobs* only control the
settings of the k main factors.

How then does this matrix of subplots serve as an improvement over the k best settings that
one would obtain from the dex mean plot? There are two common possibilities:

1

Steep Line:

For those main factors along the diagonal that have steep lines (that is, are
important), choose the best setting directly from the subplot. Thiswill be the same as
the best setting derived from the dex mean plot.

Flat line:

For those main factors along the diagonal that have flat lines (that is, are
unimportant), the naive conclusion to use either setting, perhaps giving preference to
the cheaper setting or the easier-to-implement setting, may be unwittingly incorrect.
In such a case, the use of the off-diagonal 2-factor interaction information from the
interaction effects matrix is critical for deducing the better setting for this nominally
"unimportant” factor.

To illustrate this, consider the following example:

= Suppose the factor X1 subplot is steep (important) with the best setting for X1
at"+".

= Suppose the factor X2 subplot isflat (unimportant) with both settings yielding
about the same mean response.

Then what setting should be used for X2? To answer this, consider the following two
Ccases:

1. Case 1. If the X1* X2 interaction plot happens aso to be flat (unimportant),
then choose either setting for X2 based on cost or ease.

2. Case 2. On the other hand, if the X1* X2 interaction plot is steep (important),
then this dictates a prefered setting for X2 not based on cost or ease.

To be specific for case 2, if X1* X2 isimportant, with X1* X2 = "+" being the better
setting, and if X1 isimportant, with X1 ="+" being the better setting, then this
implies that the best setting for X2 must be "+" (to assure that X1* X2 (= +*+) will
also be"+"). Thereason for thisisthat since we are already locked into X1 ="+",
and since X1* X2 = "+" is better, then the only way we can obtain X1*X2 ="+" with
X1="+"isfor X2to be"+" (if X2 were"-", then X1* X2 with X1 ="+" would yield
X1*¥ X2 ="-").

In general, if X1 isimportant, X1* X2 isimportant, and X2 is not important, then
there are 4 distinct cases for deciding what the best setting isfor X2:

X1 X1* X2 => X2
+ o+ +
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5.5.9.4. Interaction effects matrix plot
- - +

By similar reasoning, examining each factor and pair of factors, wethusarrive at a
resulting vector of the k best settings:

(x1best, x2best, ..., xkbest)

This average-based k-vector should be compared with best settings k-vectors
obtained from previous steps (in particular, from step 1 in which the best settings
were drawn from the best data value).

When the average-based best settings and the data-based best settings agree, we
benefit from the increased confidence given our conclusions.

When the average-based best settings and the data-based best settings disagree, then
what settings should the analyst finally choose? Note that in general the
average-based settings and the data-based settings will invariably be identical for all
"Important” factors. Factors that do differ are virtually always "unimportant”. Given
such disagreement, the analyst has three options:

1. Usethe average-based settings for minor factors. This has the advantage of a
broader (average) base of support.

2. Usethe data-based settings for minor factors. This has the advantage of
demonstrated local optimality.

3. Usethe cheaper or more convenient settings for the local factor. This has the
advantage of practicality.

Thus the interaction effects matrix yields important information not only about the ranked
list of factors, but also about the best settings for each of the k main factors. This matrix of
subplots is one of the most important tools for the experimenter in the analysis of 2-level
screening designs.

3. Confounding Structure (for Fractional Factorial Designs)

When the interaction effects matrix is used to analyze 2-level fractional (as opposed to full)
factorial designs, important additional information can be extracted from the matrix
regarding confounding structure.

It iswell-known that all fractional factorial designs have confounding, a property whereby
every estimated main effect is confounded/contaminated/biased by some high-order
interactions. The practical effect of thisisthat the analyst is unsure of how much of the
estimated main effect is due to the main factor itself and how much is due to some
confounding interaction. Such contamination is the price that is paid by examining k
factors with a sample size n that is less than afull factorial n = 2K runs.

It isa"fundamental theorem” of the discipline of experimental design that for agiven
number of factors k and a given number of runs n, some fractional factorial designs are
better than others. "Better" in this case means that the intrinsic confounding that must exist
in al fractional factorial designs has been minimized by the choice of design. This
minimization is done by constructing the design so that the main effect confounding is
pushed to as high an order interaction as possible.

The rationale behind thisis that in physical science and engineering systemsit has been
found that the "likelihood" of high-order interactions being significant is small (compared
to the likelihood of main effects and 2-factor interactions being significant). Given this, we
would prefer that such inescapable main effect confounding be with the highest order
interaction possible, and hence the bias to the estimated main effect be as small as possible.
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The worst designs are those in which the main effect confounding is with 2-factor
interactions. This may be dangerous because in physical/engineering systems, it is quite
common for Nature to have some real (and large) 2-factor interactions. In such a case, the
2-factor interaction effect will be inseparably entangled with some estimated main effect,
and so the experiment will be flawed in that

1. ambiguous estimated main effects and
2. an ambiguous list of ranked factors

will result.

If the number of factors, k, islarge and the number of runs, n, is constrained to be small,
then confounding of main effects with 2-factor interactions is unavoidable. For example, if
we have k = 7 factors and can afford only n = 8 runs, then the corresponding 2-level
fractional factorial design is a 27-4 which necessarily will have main effects confounded
with (3) 2-factor interactions. This cannot be avoided.

On the other hand, situations arise in which 2-factor interaction confounding with main
effects results not from constraints on k or n, but on poor design construction. For example,
if we have k = 7 factors and can afford n = 16 runs, a poorly constructed design might have
main effects counfounded with 2-factor interactions, but a well-constructed design with the
same k = 7, n = 16 would have main effects confounded with 3-factor interactions but no
2-factor interactions. Clearly, this latter design is preferable in terms of minimizing main
effect confounding/contamination/bias.

For those cases in which we do have main effects confounded with 2-factor interactions, an
important question arises.
For a particular main effect of interest, how do we know which 2-factor
interaction(s) confound/contaminate that main effect?

The usual answer to this question is by means of generator theory, confounding tables, or
alias charts. An aternate complementary approach is given by the interaction effects
matrix. In particular, if we are examining a 2-level fractional factorial design and

1. if we are not sure that the design has main effects confounded with 2-factor
interactions, or

2. if we are sure that we have such 2-factor interaction confounding but are not sure
what effects are confounded,

then how can the interaction effects matrix be of assistance? The answer to this question is
that the confounding structure can be read dir ectly from the interaction effects matrix.

For example, for a 7-factor experiment, if, say, the factor X3 is confounded with the
2-factor interaction X2* X5, then

1. the appearance of the factor X3 subplot and the appearance of the 2-factor interaction
X2* X5 subplot will necessarily be identical, and

2. the value of the estimated main effect for X3 (as given in the legend of the main
effect subplot) and the value of the estimated 2-factor interaction effect for X2* X5
(asgiven in the legend of the 2-factor interaction subplot) will aso necessarily be
identical.

The above conditions are necessary, but not sufficient for the effects to be confounded.

Hence, in the abscence of tabular descriptions (from your statistical software program) of
the confounding structure, the interaction effect matrix offers the following graphical
aternative for deducing confounding structure in fractional factorial designs:

http://www.itl.nist.gov/div898/handbook/pri/section5/pri594.htm (7 of 9) [11/14/2003 5:53:54 PM]



5.5.9.4. Interaction effects matrix plot

Conclusions

for the

defective

springs
data

1. scan the main factors along the diagonal subplots and choose the subset of factors
that are "important".

2. For each of the "important” factors, scan all of the 2-factor interactions and compare
the main factor subplot and estimated effect with each 2-factor interaction subpl ot
and estimated effect.

3. If thereis no match, thisimpliesthat the main effect is not confounded with any
2-factor interaction.

4. If thereisamatch, thisimplies that the main effect may be confounded with that
2-factor interaction.

5. If none of the main effects are confounded with any 2-factor interactions, we can
have high confidence in the integrity (non-contamination) of our estimated main
effects.

6. In practice, for highly-fractionated designs, each main effect may be confounded
with severa 2-factor interactions. For example, for a 27-4 fractional factorial design,
each main effect will be confounded with three 2-factor interactions. These 1+ 3=4
identical subplotswill be blatantly obviousin the interaction effects matrix.

Finally, what happens in the case in which the design the main effects are not confounded
with 2-factor interactions (no diagonal subplot matches any off-diagonal subplot). In such a
case, does the interaction effects matrix offer any useful further insight and information?

The answer to this question is yes because even though such designs have main effects
unconfounded with 2-factor interactions, it isfairly common for such designs to have
2-factor interactions confounded with one another, and on occasion it may be of interest to
the analyst to understand that confounding. A specific example of such adesignisa 241
design formed with X4 settings = X1* X2* X3. In this case, the 2-factor-interaction
confounding structure may be deduced by comparing all of the 2-factor interaction subplots
(and effect estimates) with one another. Identical subplots and effect estimates hint strongly
that the two 2-factor interactions are confounded. As before, such comparisons provide
necessary (but not sufficient) conditions for confounding. Most statistical software for
analyzing fractional factorial experiments will explicitly list the confounding structure.

The application of the interaction effects matrix plot to the defective springs data set results in the
following conclusions:

1. Ranked list of factors (including 2-factor interactions):

X1 (estimated effect = 23.0)
X1* X3 (estimated effect = 10.0)
X2 (estimated effect = -5.0)

X3 (estimated effect = 1.5)
X1*X2 (estimated effect = 1.5)
6. X2*X3 (estimated effect = 0.0)

ok~ wbdPE

Factor 1 definitely looks important. The X1* X3 interaction looks important. Factor 2 is of
lesser importance. All other factors and 2-factor interactions appear to be unimportant.

2. Best Settings (on the average):

(X1,X2,X3) = (+,-,+) = (+1,-1,+1)
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5.5.9.5.Block plot

Purpose The block plot answers the following two genera questions:
1. What are the important factors (including interactions)?
2. What are the best settings for these important factors?

The basic (single) block plot isamultifactor EDA technique to determine if a factor isimportant
and to ascertain if that importance is unconditional (robust) over all settings of all other factorsin
the system. In an experimental design context, the block plot is actually a sequence of block plots
with one plot for each of the k factors.

Due to the ability of the block plot to determine whether afactor isimportant over all settings of
all other factors, the block plot is also referred to as a dex robustness plot.

Output The block plot provides specific information on

v

1. Important factors (of the k factors and the( 9

) 2-factor interactions); and
2. Best settings of the important factors.

Definition The block plot isaseries of k basic block plots with each basic block plot for a main effect. Each
basic block plot asks the question as to whether that particular factor isimportant:
1. Thefirst block plot asks the question: "Is factor X1 important?
2. The second block plot asks the question: "Is factor X2 important?
3. Continue for the remaining factors.
The i-th basic block plot, which targets factor i and asks whether factor X; isimportant, isformed
by:
« Vertical Axis: Response
« Horizontal Axis: All 2k-1 possible combinations of the (k-1) non-target factors (that is,
"robustness' factors). For example, for the block plot focusing on factor X1 from a 23 full
factorial experiment, the horizontal axiswill consist of all 23-1 = 4 distinct combinations of
factors X2 and X3. We create this robustness factors axis because we are interested in
determining if X1 isimportant robustly. That is, we are interested in whether X1 is
important not only in ageneral/summary kind of way, but also whether the importance of X
isuniversally and consistently valid over each of the 23-1 = 4 combinations of factors X2
and X3. These 4 combinations are (X2,X3) = (+,%), (+,-), (-,%), and (-,-). The robustness
factors on the horizontal axis change from one block plot to the next. For example, for the k
= 3 factor case:
1. the block plot targeting X1 will have robustness factors X2 and X3;

2. the block plot targeting X2 will have robustness factors X1 and X3;
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3. the block plot targeting X3 will have robustness factors X1 and X2.
« Plot Character: The setting (- or +) for the target factor X;. Each point in ablock plot has an
associated setting for the target factor X;. If X; ="-", the corresponding plot point will be
"' if X ="+", the corresponding plot point will be "+".
For a particular combination of robustness factor settings (horizontally), there will be two points
plotted aboveit (verticaly):
1. oneplot point for X; ="-"; and

2. the other plot point for X; = "+".

In ablock plot, these two plot points are surrounded by a box (a block) to focus the eye on the
internal within-block differences as opposed to the distraction of the external block-to-block
differences. Internal block differences reflect on the importance of the target factor (as desired).
External block-to-block differences reflect on the importance of various robustness factors, which
isnot of primary interest.

Large within-block differences (that is, tall blocks) indicate alarge local effect on the response
which, since all robustness factors are fixed for a given block, can only be attributed to the target
factor. Thisidentifies an "important” target factor. Small within-block differences (small blocks)
indicate that the target factor X; is unimportant.

For agiven block plot, the specific question of interest is thus
Is the target factor X; important? That is, as we move within ablock from the target factor

setting of "-" to the target factor setting of "+", does the response variable value change by
alarge amount?

The height of the block reflects the "local” (that is, for that particular combination of robustness
factor settings) effect on the response due to a change in the target factor settings. The "localized"
estimate for the target factor effect for X; isin fact identical to the difference in the response

between the target factor X at the "+" setting and at the "-" setting. Each block height of a
robustness plot is thus alocalized estimate of the target factor effect.

In summary, important factors will have both
1. consistently large block heights; and
2. consistent +/- sign arrangements

where the "consistency” is over all settings of robustness factors. L ess important factors will have
only one of these two properties. Unimportant factors will have neither property.

Applying the ordered response plot to the defective springs data set yields the following plot.
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How to

_ From the block plot, we are looking for the following:
interpret

1. Important factors (including 2-factor interactions);
2. Best settings for these factors.
We will discuss each of thesein turn.

Important factors (including 2-factor interactions):

Look at each of the k block plots. Within agiven block plot,

Are the corresponding block heights consistently large as we scan across the within-plot
robustness factor settings--yes/no; and are the within-block sign patterns (+ above -, or -
above +) consistent across all robustness factors settings--yes/no?

To facilitate intercomparisons, all block plots have the same vertical axis scale. Across such block
plots,

1. Which plot has the consistently largest block heights, along with consistent arrangement of
within-block +'s and -'s? This defines the "most important factor".

2. Which plot has the consistently next-largest block heights, along with consistent
arrangement of within-block +'s and -'s? This defines the " second most important factor".

3. Continue for the remaining factors.

This scanning and comparing of the k block plots easily |eads to the identification of the most
important factors. This identification has the additional virtue over previous stepsin that it is
robust. For a given important factor, the consistency of block heights and sign arrangement across
robustness factors gives additional credence to the robust importance of that factor. The factor is
important (the change in the response will be large) irrespective of what settings the robustness
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factors have. Having such information is both important and comforting.
Important Special Case; Large but Inconsistent:

What happensiif the block heights are large but not consistent? Suppose, for example, a 23
factorial experiment is being analyzed and the block plot focusing on factor X1 is being examined
and interpreted so as to address the usual question of whether factor X1 isimportant.

Let us consider in some detail how such ablock plot might appear. This X1 block plot will have
23-1 = 4 combinations of the robustness factors X2 and X3 along the horizontal axisin the
following order:

(X2,X3) = (+,1); (X2,X3) = (+,-); (X2,X3) = (-,+); (X2,X3) = (-,-).
If the block heights are consistently large (with "+" above "-" in each block) over the 4
combinations of settings for X2 and X3, asin

(X2,X3) |block height (= local X1 effect)
| (+,4) | 30
| (+,-) | 29
| (-+) | 29
LG 31

then from binomial considerations there is one chancein 24-1 = 1/8 &3 12.5% of thethe 4 local X1
effects having the same sign (i.e., al positive or all negative). The usual statistical cutoff of 5%
has not been achieved here, but the 12.5% is suggestive. Further, the consistency of the 4 X1
effects (all near 30) is evidence of arobustness of the X effect over the settings of the other two
factors. In summary, the above suggests:

1. Factor 1 is probably important (the issue of how large the effect hasto be in order to be
considered important will be discussed in more detail in alater section); and

2. The estimated factor 1 effect is about 30 units.
On the other hand, suppose the 4 block heights for factor 1 vary in the following cyclic way:

(X2,X3) |block height (= local X1 effect)
| (+,4) | 30
| (+,-) | 20
| (-+) | 30
| (-,-) | 20

then how isthisto be interpreted?

The key here to such interpretation is that the block plot istelling us that the estimated X1 effect
isin fact at least 20 units, but not consistent. The effect is changing, but it is changing in a
structured way. The "trick” isto scan the X2 and X3 settings and deduce what that substructure is.
Doing so from the above table, we see that the estimated X1 effect is 30

« for point 1 (X2,X3) = (+,+) and
« for point 3 (X2,X3) = (-,+)
and then the estimated X1 effect drops 10 unitsto 20
« for point 2 (X2,X3) = (+,-) and
« for point 4 (X2,X3) = (-,-)
We thus deduce that the estimated X1 effect is
1. 30 whenever X3 ="+"
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2. 20 whenever X3 ="-"

When the factor X1 effect is not consistent, but in fact changes depending on the setting of factor
X3, then definitionally that is said to be an " X1* X3 interaction”. That is precisely the case here,
and so our conclusions would be:

factor X1 is probably important;
the estimated factor X1 effect is 25 (= average of 30,20,30,and 20);
the X1* X3 interaction is probably important;

the estimated X1* X3 interaction is about 10 (= the change in the factor X1 effect as X3
changes =30 - 20 = 10);

5. hence the X1* X3 interaction is |less important than the X1 effect.

Note that we are using the term important in a qualitative sense here. More precise determinations
of importance in terms of statistical or engineering significance are discussed in later sections.

A wDN P

The block plot gives us the structure and the detail to allow such conclusions to be drawn and to
be understood. It is a valuable adjunct to the previous analysis steps.

Best settings:

After identifying important factors, it is also of use to determine the best settings for these factors.
As usual, best settings are determined for main effects only (since main effects are al that the
engineer can control). Best settings for interactions are not done because the engineer has no
direct way of controlling them.

In the block plot context, this determination of best factor settings is done simply by noting which
factor setting (+ or -) within each block is closest to that which the engineer is ultimately trying to
achieve. In the defective springs case, since the response variable is % acceptable springs, we are
clearly trying to maximize (as opposed to minimize, or hit atarget) the response and the ideal
optimum point is 100%. Given this, we would look at the block plot of a given important factor
and note within each block which factor setting (+ or -) yields a data value closest to 100% and
then select that setting as the best for that factor.

From the defective springs block plots, we would thus conclude that
1. the best setting for factor 1is+;

2. the best setting for factor 2 is-;
3. the best setting for factor 3 cannot be easily determined.

In summary, applying the block plot to the defective springs data set results in the following
conclusions:

1. Unranked list of important factors (including interactions):
0 X1isimportant;
0 X2 isimportant;
0 X1*X3isimportant.
2. Best Settings:
(X1,X2,X3) = (+,-,7) = (+1,-1,?)
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5.5.9.6.Dex Youden plot

Purpose

Output

Definition

The dex (design of experiments) Y ouden plot answers the following question:
What are the important factors (including interactions)?

Initsorigina interlab rendition, the Y ouden plot was a graphical technique developed in the
1960's by Jack Y ouden of NIST for ng between-lab biases and within-lab variation
problems in the context of interlab experimentation. In particular, it was appropriate for the
analysis of round-robin data when exactly two materials, batches, etc. were used in the design.

In adesign of experiments context, we borrow this duality emphasis and apply it to 2-level
designs. The 2-component emphasis of the Y ouden plot makesit a natural to be applied to such
designs.

The dex Y ouden plot provides specific information on
1. Ranked list of factors (including interactions); and
2. Separation of factors into two categories: important and unimportant.

The primary output from adex Y ouden plot is the ranked list of factors (out of the k factors and
interactions). For full factorial designs, interactions include the full complement of interactions at
all orders; for fractional factorial designs, interactions include only some, and occasionally none,
of the actual interactions. Further, the dex Y ouden plot yields information identifying which
factorg/interactions are important and which are unimportant.

The dex Y ouden plot consists of the following:

« Vertical Axis: Mean response at the "+" setting for each factor and each interaction. For a
given factor or interaction, n/2 response values will go into computing the "+" mean.

« Horizontal Axis: Mean response at the "-" setting for each factor and each interaction. For a
given factor or interaction, n/2 response values will go into computing the "-" mean.

o Plot Character: Factor/interaction identification for which

1 indicates factor X1;
2 indicates factor X2;

12 indicates the 2-factor X1* X2 interaction
123 indicates the 3-factor X1* X2* X3 interaction
etc.

In essence, the dex Y ouden plot is a scatter plot of the "+" average responses versus the "-"
average responses. The plot will consist of n - 1 points with one point for each factor and one
point for each (available) interaction. Each point on the plot is annotated to identify which factor
or interaction is being represented.
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Definitionally, if afactor isunimportant, the" +" average will be approximately the same as
the"-" average, and if afactor isimportant, the" +" average will be considerably different
from the"-" average. Hence a plot that comparesthe" +" averageswith the"-" averages
directly seems potentially infor mative.

From the definition above, the dex Youden plot isa scatter plot with the" +" averageson
thevertical axisand the" -" averages on the horizontal axis. Thus, unimportant factorswill
tend to cluster in the middle of the plot and important factorswill tend to be far removed
from the middle.

Because of an arithmetic identity which requiresthat the average of any corresponding " +"
and "-" means must equal the grand mean, all pointson a dex Y ouden plot will lie on a-45
degree diagonal line. Or to put it another way, for each factor

average (+) + average (-) = constant (with constant = grand mean)
So

average (+) = constant - average (-)
Therefore, the dope of thelineis-1 and all pointslie on the line. Important factorswill plot
well-removed from the center because average (+) = average (-) at the center.

Applying the dex Y ouden plot for the defective springs data set yields the following plot.
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In the dex Y ouden plot, we look for the following:

1. A ranked list of factors (including interactions). The intersecting dotted lines at the center
of the plot are the value of the grand mean on both the vertical and horizontal axes. Scan
the points along the negative-slope diagonal line and note as to whether such points are
clustered around the grand mean or are displaced up or down the diagonal line.

1. Which point is farthest away from the center? This defines the "most important™
factor.

2. Which point is next farthest away from the center? This defines the "second most
important” factor.

3. Continuein asimilar manner for the remaining points. The points closest to the
center define the "least important™ factors.

2. Separation of factorsinto important/unimportant categories. Interpretationally, if afactor is
unimportant, the "+" average will be about the same asthe "-" average, so the plot of "+"
vertically and "-" horizontally will be near the grand mean of all n - 1 data points.

Conversdly, if afactor isimportant, the "+" average will differ greatly from the "-" average,
and so the plot of "+" vertically and "-" horizontally will be considerably displaced up into
the top left quadrant or down into the bottom right quadrant.

The separation of factors into important/unimportant categories is thus done by answering
the question:

Which points visually form a cluster around the center? (these define the
"unimportant factors'--all remaining factors are "important").

This ranked list of important factors derived from the dex Y ouden plot isto be compared with the
ranked lists obtained from previous steps. Invariably, there will be alarge degree of consistency
exhibited across all/most of the techniques.

The application of the dex Y ouden plot to the defective springs data set results in the following
conclusions:

1. Ranked list of factors (including interactions):
1. X1 (most important)
2. X1* X3 (next most important)
3. X2
4. other factors are of lesser importance
2. Separation of factors into important/unimportant categories:
0 "Important”; X1, X1* X3, and X2
0 "Unimportant”: the remainder
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Purpose The |effectg| plot answers the question:
What are the important factors (including interactions)?
Quantitatively, the question asto what is the estimated effect of a given factor or interaction and
what isitsrank relative to other factors and interactions is answered via the |east squares
estimation criterion (that is, forming effect estimates that minimize the sum of the squared
differences between the raw data and the fitted values from such estimates). Based on such an

estimation criterion, one could then construct atabular list of the factors and interactions ordered
by the effect magnitude.

The |effectg plot provides a graphical representation of these ordered estimates, Pareto-style from
largest to smallest.

The |effectg plot, as presented here, yields both of the above: the plot itself, and the ranked list
table. Further, the plot also presents auxiliary confounding information, which is necessary in
forming valid conclusions for fractional factorial designs.

Output The output of the |effects| plot is:

1. Primary: A ranked list of important effects (and interactions). For full factorial designs,
interactions include the full complement of interactions at al orders; for fractional factorial
designs, interactions include only some, and occasionally none, of the actual interactions.

2. Secondary: Grouping of factors (and interactions) into two categories: important and
unimportant.

Definition The |effects] plot isformed by:

« Vertical Axis: Ordered (largest to smallest) absolute value of the estimated effects for the
main factors and for (available) interactions. For n data points (no replication), typically
(n-1) effectswill be estimated and the (n-1) |effects| will be plotted.

o Horizontal Axis: Factor/interaction identification:

1 indicates factor X1;
2 indicates factor X2;

12 indicates the 2-factor X1* X2 interaction
123 indicates the 3-factor X1* X2* X3 interaction,
etc.

« Far right margin : Factor/interaction identification (built-in redundancy):

1 indicates factor X1;
2 indicates factor X2;

12 indicates the 2-factor X1* X2 interaction
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5.5.9.7. |Effects| plot

Motivation

123 indicates the 3-factor X1* X2* X3 interaction,
etc.

If the design is afractional factorial,the confounding structure is provided for main factors
and 2-factor interactions.

« Upper right table: Ranked (largest to smallest by magnitude) list of the least squares
estimates for the main effects and for (available) interactions.

Asbefore, if the design is afractional factorial, the confounding structure is provided for
main factors and 2-factor interactions.

The estimated effects that form the basis for the vertical axis are optimal in the least squares
sense. No other estimators exist that will yield a smaller sum of squared deviations between the
raw data and the fitted values based on these estimates.

For both the 2k full factorial designs and 2k-P fractional factorial designs, the form for the least
squares estimate of the factor i effect, the 2-factor interaction effect, and the multi-factor
interaction effect has the following smple form:

factor i effect =¥ (+)-¥()
2-factor interaction effect = ¥'(+) - ¥'(-)
multi-factor interaction effect = ¥'(+) - ¥(-)

with 17’(+) denoting the average of all response values for which factor i (or the 2-factor or

multi-factor interaction) takeson a"+" value, and 1_"(-) denoting the average of all response
values for which factor i (or the 2-factor or multi-factor interaction) takeson a"-" value.

The essence of the above simplification is that the 2-level full and fractional factorial designs are
al orthogonal in nature, and so all off-diagonal termsin the least squares X'X matrix vanish.

Because of the difference-of-means definition of the least squares estimates, and because of the
fact that all factors (and interactions) are standardized by taking on values of -1 and +1
(smplified to - and +), the resulting estimates are al on the same scale. Therefore, comparing and
ranking the estimates based on magnitude makes eminently good sense.

Moreover, since the sign of each estimate is completely arbitrary and will reverse depending on
how theinitial assignments were made (e.g., we could assign "-" to treatment A and "+" to
treatment B or just as easily assign "+" to treatment A and "-" to treatment B), forming a ranking
based on magnitudes (as opposed to signed effects) is preferred.

Given that, the ultimate and definitive ranking of factor and interaction effects will be made based
on the ranked (magnitude) list of such least squares estimates. Such rankings are given
graphically, Pareto-style, within the plot; the rankings are given quantitatively by the tableau in
the upper right region of the plot. For the case when we have fractional (versusfull) factorial
designs, the upper right tableau also gives the confounding structure for whatever design was
used.

If afactor isimportant, the "+" average will be considerably different from the "-" average, and so
the absolute value of the difference will be large. Conversely, unimportant factors have small
differences in the averages, and so the absolute value will be small.

We choose to form a Pareto chart of such |effects|. In the Pareto chart, the largest effects (= most
important factors) will be presented first (to the left) and then progress down to the smallest
effects (= least important) factors) to the right.
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Plot for Applying the |effects| plot to the defective springs data yields the following plot.
defective
springs
data Metal Springs: % Acceptable (BB)
AVERAGE=7125 [Effects| Plntmc:mn EFFECT FACTO R:
I | UNCONFOUNDED
30 13 3
2 -
3 E‘IE
25 12 {08
- 23 20 -
E 20
(&)
o 15
TR
h 10 - 13: 13
5 - 2: 2
- - b ol =
0 - - 3P40
1 13 2 3 12 123 21
FACTOR
How to From the |effects| plot, we look for the following:
Interpret 1. Theranked list of factors (including interactions) is given by the left-to-right order of the

spikes. These spikes should be of decreasing height as we move from left to right. Note the
factor identifier associated with each of these bars.

2. |dentify the important factors. Forming the ranked list of factorsisimportant, but is only
half of the analysis. The second part of the analysisis to take the ranking and "draw the
(horizontal) line" in the list and on the graph so that factors above the line are deemed
"Important while factors below the line are deemed unimportant.

Since factor effects are frequently a continuum ranging from the very large through the
moderate and down to the very small, the separation of all such factorsinto two groups
(important and unimportant) may seem arbitrary and severe. However, in practice, from
both a research funding and a modeling point of view, such abifurcation is both common
and necessary.

From an engineering research-funding point of view, one must frequently focus on a subset
of factors for future research, attention, and money, and thereby necessarily set aside other
factors from any further consideration. From a model-building point of view, afinal model
either hasatermin it or it does not--there is no middle ground. Parsimonious models
reguire in-or-out decisions. It goes without saying that as soon as we have identified the
important factors, these are the factors that will comprise our (parsimonious) good model,
and those that are declared as unimportant will not be in the model.
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Given that, where does such a bifurcation line go?

There are four ways, each discussed in turn, to draw such aline:
1. Statistical significance;

2. Engineering significance;

3. Numerical significance; and

4. Pattern significance.

The ranked list and segregation of factors derived from the |effects| plot are to be compared with
the ranked list of factors obtained in previous steps. Invariably, there will be a considerable
degree of consistency exhibited across all of the techniques.

Conclusions  The application of the |effects| plot to the defective springs data set results in the following
for the conclusions:

defective 1. Ranked list of factors (including interactions):

Zg:!]gs 1. X1 (most important)
2. X1* X3 (next most important)
3. X2
4. other factors are of lesser importance
2. Separation of factors into important/unimportant categories:
0 Important: X1, X1* X3, and X2
0 Unimportant: the remainder
SE:L%I (HOME [TOOLS & AIDS [SEARCH [BACK NEXT]
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5.5.9.7.1. Statistical significance

Formal
statistical
methods

ANOVA

t confidence
intervals

Formal statistical methods to answer the question of statistical
significance commonly involve the use of

« ANOVA (analysisof variance); and
« t-based confidence intervalsfor the effects.

The virtue of ANOVA isthat it isapowerful, flexible tool with many
applications. The drawback of ANOVA isthat

« itisheavily quantitative and non-intuitive;
e it must have an assumed underlying model; and

« itsvalidity depends on assumptions of a constant error variance
and normality of the errors.

T confidence intervals for the effects, using the t-distribution, are also
heavily used for determining factor significance. As part of thet
approach, one first needs to determine sd(effect), the standard
deviation of an effect. For 2-level full and fractional factorial designs,
such a standard deviation is related to ¥, the standard deviation of an
observation under fixed conditions, via the formula:

sdlef fect) = el

i
which in turn leads to forming 95% confidence intervals for an effect
via

c * sd(effect)
for an appropriate multiple c (from the t distribution). Thusin the

context of the |effects| plot, "drawing the line" at ¢ * sd(effect) would
serve to separate, as desired, the list of effectsinto 2 domains:

« significant (that is, important); and
« not significant (that is, unimportant).
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5.5.9.7.1. Statistical significance

Estimating The key in the above approach isto determine an estimate for
sd(effect) sd(effect). Three statistical approaches are common:

1. Prior knowledge about «T:

If &7 is known, we can compute sd(effect) from the above
expression and make use of a conservative (normal-based) 95%
confidence interval by drawing the line at

dsd(e f fect) = 2(%)

Thismethod israrely used in practice because ¢¥ israrely
known.

2. Replication in the experimental design:

Replication will allow ¢ to be estimated from the data without
depending on the correctness of adeterministic model. Thisisa
real benefit. On the other hand, the downside of such replication
isthat it increases the number of runs, time, and expense of the
experiment. If replication can be afforded, this method should
be used. In such a case, the analyst separates important from
unimportant terms by drawing the line at

tx sdleffect) =t % (22

20 )
/1
with t denoting the 97.5 percent point from the appropriate
Student's-t distribution.
3. Assume 3-factor interactions and higher are zero:

This approach "assumes away" all 3-factor interactions and
higher and uses the data pertaining to these interactions to
estimate . Specificaly,

. [95€¢
TV h

with h denoting the number of 3-factor interactions and higher,
and SSQ is the sum of squares for these higher-order effects.
The analyst separates important from unimportant effects by
drawing the line at

t*sdleffect) =1t*(

26
7

with t denoting the 97.5 percent point from the appropriate
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5.5.9.7.1. Statistical significance

(with h degrees of freedom) Student's-t distribution.

This method warrants caution:
o it involves an untestable assumption (that such
interactions = 0);
o it can result in an estimate for sd(effect) based on few
terms (even a single term); and

o itisvirtualy unusable for highly-fractionated designs
(since high-order interactions are not directly estimable).

Non-statistical ~ The above statistical methods can and should be used. Additionally,

considerations  the non-statistical considerations discussed in the next few sections are
frequently insightful in practice and have their place in the EDA
approach as advocated here.
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5.5.9.7.2.

Engineering
cutoff

Soecifying a
cutoff value
requires
non-statistical
thinking, but is
frequently
useful

Arough
engineering
cutoff

Engineering significance

Draw the horizontal line on the chart at that value which you as an
engineer have declared beforehand as the engineering cutoff. Any
effect larger than this cutoff will be considered as significant from an
engineering point of view.

This approach requires preliminary, data-free thinking on the part of
the analyst as to how big (= what number?) an effect (any effect) must
be before the analyst would "care" as an engineer/scientist? In other
words, in the units of the response variable, how much would the
response variable have to change consistently before the analyst
would say "that's a big enough change for me from an engineering
point of view"? An engineering number, a cutoff value, is needed
here. Thisvalue is non-statistical; thie value must emanate from the
engineer's head.

If upon reflection the analyst does not have such avalue in mind, this
"engineering significance" approach would be set aside. From
experience, it has been found that the engineering soul-searching that
goes into evoking such a cutoff value is frequently useful and should
be part of the decision process, independent of statistical
considerations, of separating the effects into important/unimportant
categories.

In the absence of a known engineering cutoff, arough cutoff valueis
commonly 5% or 10% of the average (or current) production
response for the system. Thus, if achemical reaction production
process isyielding areaction rate of about 70, then 5% of 70 = 3. The
engineer may declare any future effect that causes an average change
of 3 or more unitsin the response (that is, any estimated effect whose
magnitude exceeds 3) to be "engineering significant”. In the context
of the |effectg| plot, the engineer would draw the line at a height of 3
on the plot, and all effects that are above the line are delared as
significant and al below the line are declared not significant.
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5.5.9.7.3.Numerical significance

10% of the Note the height of the largest bar (= the magnitude of the largest effect).

largest Declare as "significant” any effect that exceeds 10% of the lar gest

effect effect. The 10% is arbitrary and has no statistical (or engineering) basis,
but it does have a"numeric" basisin that it results in keeping the largest
effect and any effects that are within 90% of the largest effect.

Apply with Aswith any rule-of-thumb, some caution should be used in applying
caution this critierion. Specifically, if the largest effect isin fact not very large,
this rule-of-thumb may not be useful.
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5.5.9.7.4. Pattern significance

Look for The |effects| plot has a characteristic horizontally-elongated L-shaped
L-shaped pattern. The vertical arm of the L consists of important factors. The
pattern horizontal arm is comprised of unimportant factors. If afactor is

important, the bar height will be large and succeeding bar heights may
drop off considerably (perhaps by 50%)--such factors make up the left
arm of the L. On the other hand, if afactor is not important, its bar
height will tend to be small and near-zero--such factors make up the
bottom arm of the L. It is of interest to note where the kink isin the L.
Factorsto the left of that kink are arguably declared important while
factors at the kink point and to the right of it are declared unimportant.

Factor As a consequence of this"kinking", note the labels on the far right

labels margin of the plot. Factors to the left and above the kink point tend to
have far-right labels distinct and isolated. Factors at, to the right, and
below the kink point tend to have far right labels that are overstruck and
hard to read. A (rough) rule-of-thumb would then be to declare as
important those factors/interactions whose far-right labels are easy to
distinguish, and to declare as unimportant those factors/interactions
whose far-right labels are overwritten and hard to distinguish.
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Purpose The half-normal probability plot answers the question:
What are the important factors (including interactions)?
Quantitatively, the estimated effect of a given main effect or interaction and its rank relative to
other main effects and interactionsis given vialeast squares estimation (that is, forming effect

estimates that minimize the sum of the squared differences between raw data and the fitted values
from such estimates). Having such estimates in hand, one could then construct alist of the main
effects and interactions ordered by the effect magnitude.

The half-normal probability plot isagraphical tool that uses these ordered estimated effects to
help assess which factors are important and which are unimportant.

A half-normal distribution is the distribution of the |X] with X having a normal distribution.

Output The outputs from the half-normal probablity plot are

1. Primary: Grouping of factors and interactions into two categories: important and
unimportant. For full factorial designs, interactions include the full complement of
interactions of all orders; for fractional factorial designs, interactions include only some,
and occasionally none, of the actual interactions (when they aren't estimable).

2. Secondary: Ranked list of factors and interactions from most important down to least
important.

Definition A half-normal probability plot is formed by

« Vertical Axis: Ordered (largest to smallest) absolute value of the estimated effects for the
main factors and available interactions. If n data points (no replication) have been
collected, then typically (n-1) effects will be estimated and the (n-1) |effects| will be
plotted.

« Horizontal Axis. (n-1) theoretical order statistic medians from a half-normal distribution.
These (n-1) values are not data-dependent. They depend only on the half-normal
distribution and the number of items plotted (= n-1). The theoretical medians represent an
"ideal" typical ordered data set that would have been obtained from arandom drawing of
(n-1) samples from a half-normal distribution.

« Far right margin : Factor/interaction identification:

1 indicates factor X1;
2 indicates factor X2;

12 indicates the 2-factor X1* X2 interaction

123 indicates the 3-factor X1* X2* X3 interaction,
etc.
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5.5.9.8. Half-normal probability plot

If the design is afractional factorial, the confounding structure is provided for main effects
and 2-factor interactions.

Motivation To provide arationale for the half-normal probability plot, we first dicuss the motivation for the
normal probability plot (which aso finds frequent use in these 2-level designs).

The basis for the normal probability plot isthe mathematical form for each (and all) of the
estimated effects. As discussed for the |effectg| plot, the estimated effects are the optimal |east
squares estimates. Because of the orthogonality of the 2k full factorial and the 2k-P fractional

factorial designs, al least squares estimators for main effects and interactions simplify to the
form:

estimated effect = ¥ (+) - ¥ (-)
with 17’(+) the average of all response values for which the factor or interaction takesona"+"

value, and where 1_’(-) isthe average of al response values for which the factor or interaction
takeson a"-" value.

Under rather general conditions, the Central Limit Thereom allows that the difference-of-sums
form for the estimated effects tends to follow a normal distribution (for alarge enough sample
size n) anormal distribution.

The question arises as to what normal distribution; that is, anormal distribution with what mean
and what standard deviation? Since al estimators have an identical form (a difference of
averages), the standard deviations, though unknown, will in fact be the same under the
assumption of constant ¢x. Thisisgood in that it simplifies the normality analysis.

Asfor the means, however, there will be differences from one effect to the next, and these
differences depend on whether a factor is unimportant or important. Unimportant factors are
those that have near-zero effects and important factors are those whose effects are considerably
removed from zero. Thus, unimportant effects tend to have a normal distribution center ed
near zero whileimportant effectstend to have a normal distribution centered at their
respective true lar ge (but unknown) effect values.

In the simplest experimental case, if the experiment wer e such that no factorswere
important (that is, all effectswere near zero), the (n-1) estimated effects would behave like
random drawings from a normal distribution centered at zero. We can test for such

nor mality (and hencetest for a null-effect experiment) by using the normal probability plot.

Normal probability plots are easy to interpret. In ssmplest terms:
if linear, then normal

If the normal probability plot of the (n-1) estimated effectsislinear, thisimpliesthat all of
the true (unknown) effectsare zero or near-zero. That is, no factor isimportant.

On the other hand, if the truth behind the experiment isthat thereis exactly one factor that
was important (that is, significantly non-zero), and all remaining factors are unimportant
(that is, near-zer0), then the normal probability plot of all (n-1) effectsisnear-linear for the
(n-2) unimportant factors and the remaining single important factor would stand well off
theline.

Similarly, if the experiment wer e such that some subset of factorswereimportant and all
remaining factor s were unimportant, then the normal probability plot of all (n-1) effects
would be near-linear for all unimportant factorswith the remaining important factorsall
well off theline.

Inreal life, with the number of important factors unknown, this suggeststhat one could
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5.5.9.8. Half-normal probability plot

form a normal probability plot of the (n-1) estimated effects and draw a line through those
(unimportant) effectsin the vicinity of zero. Thisidentifies and extractsall remaining effects
off the line and declaresthem asimportant.

The above rationale and methodology workswell in practice, with the net effect that the
nor mal probability plot of the effectsis an important, commonly used and successfully
employed tool for identifying important factorsin 2-level full and factorial experiments.
Following the lead of Cuthbert Danidl (1976), we augment the methodology and arrive at a
further improvement. Specifically, the sign of each estimate is completely arbitrary and will
rever se depending on how theinitial assignments were made (e.g., we could assign " -" to
treatment A and " +" totreatment B or just aseasily assign " +" totreatment A and "-" to
treatment B).

Thisarbitrarinessis addressed by dealing with the effect magnitudesrather than the signed
effects. If the signed effects follow a normal distribution, the absolute values of the effects
follow a half-normal distribution.

In this new context, onetestsfor important ver sus unimportant factors by generating a
half-normal probability plot of the absolute value of the effects. Asbefore, linearity implies
half-normality, which in turn implies all factors are unimportant. Moretypically, however,
the half-normal probability plot will be only partially linear. Unimportant (that is,
near-zer 0) effects manifest themselves as being near zero and on aline while important
(that is, large) effects manifest themselves by being off the line and well-displaced from zero.

Plot for The half-normal probability plot of the effects for the defectice springs data set is as follows.
defective
springs
data Metal Springs: % Acceptable (BEB)
— Halt-normal Probability Plot of Effects EACTOR: CONF.
30
i 25
IG X 1: 1
E 20
T
L
0 15
w
E 10 13: 13
W :
c
D 5 x 2: 2
X X 32 R
0 x X L

0 0.5 1 1.5 2
HALF-NORMAL DISTRIBUTION ORDER STATISTIC MEDIANS
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5.5.9.8. Half-normal probability plot

How to
interpret

From the half-normal probability plot, we look for the following:
1. ldentifying Important Factors:

Determining the subset of important factors is the most important task of the half-normal
probability plot of |effects|. As discussed above, the estimated |effect| of an unimportant
factor will typically be on or close to a near-zero line, while the estimated |effect| of an
important factor will typically be displaced well off the line.

The separation of factors into important/unimportant categories is thus done by answering
the question:

Which points on the half-normal probability plot of |effects| are large and well-of f
the linear collection of points drawn in the vicinity of the origin?

Thisline of unimportant factors typically encompasses the mgjority of the points on the
plot. The procedure consists, therefore, of the following:

1. identifying this line of near-zero (unimportant) factors; then
2. declaring the remaining off-line factors as important.

Note that the half-normal probability plot of |effects| and the |effects| plot have the same
vertical axis; namely, the ordered |effects], so the following discussion about right-margin
factor identifiersis relevant to both plots. As a consequence of the natural on-line/off-line
segregation of the |effects| in half-normal probability plots, factors off-line tend to have
far-right labels that are distinct and isolated while factors near the line tend to have
far-right labels that are overstruck and hard to read. The rough rule-of-thumb would then
be to declare as important those factors/interactions whose far-right labels are easy to
distinguish and to declare as unimportant those factors/interactions whose far-right labels
are overwritten and hard to distinguish.

. Ranked List of Factors (including interactions):

Thisisaminor objective of the half-normal probability plot (it is better done viathe
leffectg| plot). To determine the ranked list of factors from a half-normal probability plot,

simply scan the vertical axis |effects|
1. Which |effect| islargest? Note the factor identifier associated with this largest |effect|
(thisisthe "most important factor").
2. Which [effect| is next in size? Note the factor identifier associated with this next
largest |effect| (thisisthe "second most important factor").

3. Continue for the remaining factors. In practice, the bottom end of the ranked list (the
unimportant factors) will be hard to extract because of overstriking, but the top end
of the ranked list (the important factors) will be easy to determine.

In summary, it should be noted that since the signs of the estimated effects are arbitrary, we
recommend the use of the half-normal probability plot of |effects| technique over the normal
probability plot of the |effects|. These probability plots are among the most commonly-employed
EDA procedure for identification of important factorsin 2-level full and factorial designs. The
half-normal probability plot enjoys widespread usage across both "classical” and Taguchi camps.
It deservedly plays an important role in our recommended 10-step graphical procedure for the
analysis of 2-level designed experiments.
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Conclusions  The application of the half-normal probability plot to the defective springs data set resultsin the
for the following conclusions:

defective 1. Ranked list of factors (including interactions):

32::;93 1. X1 (most important)

2. X1* X3 (next most important)

3. X2

4. other factors are of lesser importance

2. Separation of factorsinto important/unimportant categories:
Important: X1, X1* X3, and X2
Unimportant: the remainder
SEI:.L%I HOME [TOoOLS & AIDS [SEARCH [BACK NEXT]
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5.5.9.9. Cumulative residual standard deviation plot
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5. Process |mprovement

5.5. Advanced topics
5.5.9. An EDA approach to experimenta design

5.5.9.9.Cumulative residual standard deviation plot

Purpose

The cumulative residual sd (standard deviation) plot answers the question:
What is agood model for the data?
The prior 8 stepsin this analysis sequence addressed the two important goals:
1. Factors: determining the most important factors that affect the response, and
2. Settings: determining the best settings for these factors.
In addition to the above, athird goal is of interest:

3. Model: determining amodel (that is, a prediction equation) that functionally relates the
observed response Y with the various main effects and interactions.

Such a function makes particular sense when all of the individua factors are continuous and

ordinal (such as temperature, pressure, humidity, concentration, etc.) as opposed to any of the

factors being discrete and non-ordinal (such as plant, operator, catalyst, supplier).

In the continuous-factor case, the analyst could use such afunction for the following purposes.
1. Reproduction/Smoothing: predict the response at the observed design points.

2. Interpolation: predict what the response would be at (unobserved) regions between the
design points.

3. Extrapolation: predict what the response would be at (unobserved) regions beyond the
design points.
For the discrete-factor case, the methods developed below to arrive at such a function still apply,

and so the resulting model may be used for reproduction. However, the interpolation and
extrapolation aspects do not apply.

In modeling, we seek afunction f in the k factors X4, X, ..., X such that the predicted values
Y = f{XhXE, ...,_X;:)

are "close" to the observed raw data values Y. To this end, two tasks exist:
1. Determine agood functional form f;
2. Determine good estimates for the coefficientsin that function f.

For example, if we had two factors X; and X5, our goal would be to
1. determine some function Y = f(X4,X5); and

2. estimate the parametersin f

such that the resulting model would yield predicted values Y that are asclose as possible to the
observed response values Y. If the form f has been wisely chosen, a good model will result and

that model will have the characteristic that the differences ("residuals’ = Y - 1?') will be uniformly
near zero. On the other hand, a poor model (from a poor choice of the form f) will have the
characteristic that some or al of the residuals will be "large”.
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5.5.9.9. Cumulative residual standard deviation plot

Output

Definition

For agiven model, a statistic that summarizes the quality of the fit viathe typical size of then
residualsisthe residual standard deviation:

Syea —

with p denoting the number of termsin the model (including the constant term) and r denoting the
ith residual. We are also assuming that the mean of the residualsis zero, which will be the case
for models with a constant term that are fit using least squares.

If we have a good-fitting model, s, Will be small. If we have a poor-fitting model, s, will be
large.

For agiven data set, each proposed model hasits own quality of fit, and hence its own residual
standard deviation. Clearly, the residual standard deviation is more of a model-descriptor than a
data-descriptor. Whereas "nature”" creates the data, the analyst creates the models. Theoretically,

for the same data set, it is possible for the analyst to propose an indefinitely large number of
models.

In practice, however, an analyst usualy forwards only a small, finite number of plausible models
for consideration. Each model will have its own residual standard deviation. The cumulative
residual standard deviation plot is simply agraphical representation of this collection of residual
standard deviations for various models. The plot is beneficial in that

1. good models are distinguished from bad models;
2. simple good models are distinguished from complicated good models.

In summary, then, the cumulative residual standard deviation plot isagraphical tool to help
assess

1. which models are poor (least desirable); and
2. which models are good but complex (more desirable); and
3. which models are good and simple (most desirable).

The outputs from the cumulative residual standard deviation plot are

1. Primary: A good-fitting prediction equation consisting of an additive constant plus the
most important main effects and interactions.

2. Secondary: Theresidual standard deviation for this good-fitting model.

A cumulative residual sd plot isformed by

1. Vertica Axis: Ordered (largest to smallest) residual standard deviations of a sequence of
progressively more complicated fitted models.

2. Horizontal Axis: Factor/interaction identification of the last term included into the linear
modd!:

1 indicates factor X1;
2 indicates factor X2;

12 indicates the 2-factor X1* X2 interaction
123 indicates the 3-factor X1* X2* X3 interaction
etc.

3. Far right margin: Factor/interaction identification (built-in redundancy):
1 indicates factor X1;
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5.5.9.9. Cumulative residual standard deviation plot

Motivation

Plot for
defective
springs
data

2 indicates factor X2;

12 indicates the 2-factor X1* X2 interaction
123 indicates the 3-factor X1* X2* X3 interaction
etc.

If the design is afractional factorial, the confounding structure is provided for main effects
and 2-factor interactions.

The cumulative residual standard deviations plot is thus a Pareto-style, largest to smallest,

graphical summary of residual standard deviations for a selected series of progressively more
complicated linear models.

The plot shows, from left to right, amodel with only a constant and the model then augmented by
including, one at atime, remaining factors and interactions. Each factor and interaction is
incorporated into the model in an additive (rather than in a multiplicative or logarithmic or power,
etc. fashion). At any stage, the ordering of the next term to be added to the model is such that it
will result in the maximal decrease in the resulting residual standard deviation.

This section addresses the following questions:
1. What isamodel?

How do we select a goodness-of-fit metric for a model ?

How do we construct a good model ?

How do we know when to stop adding terms?
What is the final form for the model ?

Why isthe 1/2 in the model?

What are the advantages of the linear model ?

How do we use the model to generate predicted values?

© ©® N o O~ WD

How do we use the model beyond the data domain?

'_\
©

What is the best confirmation point for interpolation?

=
[N

. How do we use the model for interpolation?

'_\
N

How do we use the model for extrapolation?

Applying the cumulative residual standard deviation plot to the defective springs data set yields
the following plot.
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5.5.9.9. Cumulative residual standard deviation plot

How to
interpret

Metal Springs: % Acceptable (BB)
Cumulative Residual SD Plot
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CUMULATIVE MODEL

Asdiscussed in detail under question 4 in the Motivation section, the cumulative residua
standard deviation "curve" will characteristically decrease | eft to right as we add more terms to
the model. The incremental improvement (decrease) tends to be large at the beginning when
important factors are being added, but then the decrease tends to be marginal at the end as
unimportant factors are being added.

Including all termswould yield a perfect fit (residual standard deviation = 0) but would also result
in an unwieldy model. Including only the first term (the average) would yield a simple model
(only one term!) but typically will fit poorly. Although aformal quantitative stopping rule can be
developed based on statistical theory, aless-rigorous (but good) alternative stopping rule that is
graphical, easy to use, and highly effectivein practice is asfollows:

Keep adding terms to the model until the curve's "elbow"” is encountered. The "elbow
point" isthat value in which there is a consistent, noticeably shallower slope (decrease) in
the curve. Include all terms up to (and including) the elbow point (after all, each of these
included terms decreased the residual standard deviation by alarge amount). Exclude any
terms after the elbow point since al such successive terms decreased the residual standard
deviation so slowly that the terms were "not worth the complication of keeping".

From the residual standard deviation plot for the defective springs data, we note the following:

1. Theresidual standard deviation (rsd) for the "baseline” model
V=Y =719
IS S = 13.7.
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5.5.9.9. Cumulative residual standard deviation plot
2. Aswe add the next term, X1, the rsd drops nearly 7 units (from 13.7 to 6.6).
3. If we add the term X1* X3, the rsd drops another 3 units (from 6.6 to 3.4).
4. If we add the term X2, the rsd drops another 2 units (from 3.4 to 1.5).
5. When the term X3 is added, the reduction in the rsd (from about 1.5 to 1.3) is negligible.
6. Thereafter to the end, the total reduction in the rsd isfrom only 1.3 to O.

In step 5, note that when we have effects of equal magnitude (the X3 effect is equal to the X1* X2
interaction effect), we prefer including a main effect before an interaction effect and a
lower-order interaction effect before a higher-order interaction effect.

In this case, the "kink" in the residual standard deviation curveis at the X2 term. Prior to that, all
added terms (including X2) reduced the rsd by alarge amount (7, then 3, then 2). After the
addition of X2, the reduction in the rsd was small (all lessthan 1): .2, then .8, then .5, then 0.
The final recommended model in this case thus involves p = 4 terms:

1. the average (= 71.25)

2. factor X1

3. the X1*X3

4. factor X2
The fitted model thus takes on the form

g = average + 0.0 * [:Bl *+ X1+ B3+ X1+ X3— 0, *XE)
The motivation for using the 0.5 term was given in an earlier section.

The least squares estimates for the coefficients in this model are

average=71.25

B;=23

Bl3 =10

Bz =-5
The B, = 23, B13 = 10, and B, = -5 |east squares values are, of course, identical to the estimated
effectsE; =23, E13=10,and E, =-5 (= 1?'(+1) - 1?"(-1)) values as previously derived in step 7 of
this recommended 10-step DEX analysis procedure.
Thefinal fitted model isthus

Y =712 +0353% {23+ X1+ 10* (X1 X3)—5*X2)

Applying this prediction equation to the 8 design points yields: predicted values 1“’ that are close
to the data Y, and residuals (Res=Y - ¥) that are close to zero:

X1 X2 X3 Y v Res
- - - 67 6725 -0.25
+ - - 79 8025 -1.25
- + - 61l 6225 -1.25
+ + - 75 75.25 -0.25
- - + 59 5725 +1.75
+ - + 90 9025 -0.25
- + + 52 52.25 -0.25
+ + + 87 8525 +1.75

Computing the residual standard deviation:
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Conclusions
for the
defective
springs
data
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Srpga —

with n = number of data points = 8, and p = 4 = number of estimated coefficients (including the
average) yields

Ses = 1.54 (= 1.5if rounded to 1 decimal place)

Thisdetailed res = 1.54 calculation brings us full circle for 1.54 is the value given above the X3
term on the cumulative residual standard deviation plot.

The application of the Cumulative Residual Standard Deviation Plot to the defective springs data
set resultsin the following conclusions:

1. Good-fitting Parsimonious (constant + 3 terms) Model:

Y =712 +05+ (23 X1+ 10 (X1 X3 -5+ X2)

2. Residual Standard Deviation for this Model (as a measure of the goodness-of-fit for the
model):

Ses= 1.54
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5.5.9.9.1. Motivation: What is a Model?
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5.5.9.9.1. Motivation: What is a Model?

Mathematical
models:
functional
formand
coefficients

Predicted
values and
residuals
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SEMATECH

A model isamathematical function that relates the response Y to the
factors X; to X,. A model has a

1. functiona form:; and
2. coefficients.

An excellent and easy-to-use functional form that we find particularly
useful is alinear combination of the main effects and the interactions
(the selected model is a subset of the full model and amost always a
proper subset). The coefficientsin this linear model are easy to obtain
via application of the |east squares estimation criterion (regression). A
given functional form with estimated coefficientsis referred to asa
"“fitted model" or a"prediction equation”.

For given settings of the factors X; to X, afitted model will yield
predicted values. For each (and every) setting of the X;'s, a

"perfect-fit" model is onein which the predicted values are identical
to the observed responses Y at these Xi's. In other words, a perfect-fit
model would yield a vector of predicted valuesidentical to the
observed vector of response values. For these same X;'s, a

"good-fitting" model is one that yields predicted values "acceptably
near", but not necessarily identical to, the observed responses Y.

The residuals (= deviations = error) of amodel are the vector of

differences (Y - ¥") between the responses and the predicted values
from the model. For a perfect-fit model, the vector of residuals would
be all zeros. For a good-fitting model, the vector of residuals will be
acceptably (from an engineering point of view) close to zero.
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5.5.9.9.2. Motivation: How do we Construct a Goodness-of-fit Metric for a Model?
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5.5.9.9.2. Motivation: How do we Construct

Motivation

Sum of
absolute
residuals

Average
absolute
residual

a Goodness-of-fit Metric for a
Model?

This question deals with the issue of how to construct ametric, a
statistic, that may be used to ascertain the quality of the fitted model.
The statistic should be such that for one range of values, the implication
Isthat the model is good, whereas for another range of values, the
implication is that the model gives a poor fit.

Since amodel's adequacy isinversely related to the size of itsresiduals,
one obvious statistic is the sum of the absolute residuals.

T
AR =} |ri
i=l
Clearly, for afixed n,the smaller this sumis, the smaller are the
residuals, which implies the closer the predicted values are to the raw
data Y, and hence the better the fitted model. The primary disadvantage
of this statistic isthat it may grow larger smply as the sample sizen
grows larger.

A better metric that does not change (much) with increasing sample size
Is the average absolute residual :

AA_R — Z:?:l |T‘i|
Tl

with n denoting the number of response values. Again, small values for
this statistic imply better-fitting models.
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5.5.9.9.2. Motivation: How do we Construct a Goodness-of-fit Metric for a Model?

Square root
of the
average
squared
residual

Residual
standard
deviation
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An alternative, but similar, metric that has better statistical propertiesis
the square root of the average squared residual .

"
2 2ie1 T
n

Aswith the previous statistic, the smaller this statistic, the better the
model.

Our final metric, which isused directly in inferential statistics, isthe
residual standard deviation

Frea —

with p denoting the number of fitted coefficientsin the model. This
statistic is the standard deviation of the residuals from a given model.
The smaller isthisresidual standard deviation, the better fitting is the
model. We shall use the residual standard deviation as our metric of
choice for evaluating and comparing various proposed models.
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5.5.9.9.3. Motivation: How do we Construct

Models for
2K and 2k-p
designs

Initial
simple
model

a Good Model?

Given that we have a statistic to measure the quality of a model, any
model, we move to the question of how to construct reasonable models

for fitting data from 2K and 2k-P designs.

The simplest such proposed model is

Y =c+¢
that is, the response Y = a constant + random error. Thistrivial model
saysthat all of the factors (and interactions) are in fact worthless for

prediction and so the best-fit model is one that consists of asimple
horizontal straight line through the body of the data. The least squares

estimate for this constant ¢ in the above model is the sample mean ¥
The prediction equation for this model is thus

Y =¥
The predicted values ¥ for this fitted trivial model are thus given by a

vector consisting of the same value (namely 17) throughout. The
residual vector for this model will thus simplify to simple deviations
from the mean:

Y -Y
Since the number of fitted coefficients in thismodel is 1 (namely the
constant c), the residual standard deviation is the following:

L \/E:Ll (%:—Y)?

n—1
which is of course the familiar, commonly employed sample standard
deviation. If the residual standard deviation for thistrivial model were
"small enough", then we could terminate the model-building process
right there with no further inclusion of terms. In practice, however, this
trivial model does not yield aresidual standard deviation that is small
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5.5.9.9.3. Motivation: How do we Construct a Good Model?

Next-step
model

Using the
most
Important
effects

Sep through
the ranked
list of
factors

enough (because the common value ¥ will not be close enough to some
of the raw responses Y) and so the model must be augmented--but how?

The logical next-step proposed model will consist of the above additive
constant plus some term that will improve the predicted values the most.
Thiswill equivalently reduce the residual s the most and thus reduce the
residual standard deviation the most.

Asit turnsout, it is a mathematical fact that the factor or interaction that
has the largest estimated effect

E=Y(+)-Y(-)
will necessarily, after being included in the model, yield the "biggest
bang for the buck" in terms of improving the predicted values toward

the response values Y. Hence at this point the model-building process
and the effect estimation process merge.

In the previous steps in our analysis, we developed a ranked list of
factors and interactions. We thus have a ready-made ordering of the
terms that could be added, one at atime, to the model. This ranked list
of effectsis precisely what we need to cumulatively build more
complicated, but better fitting, models.

Our procedure will thus be to step through, one by one, the ranked list of
effects, cumulatively augmenting our current model by the next termin
the list, and then compute (for all n design points) the predicted values,
residuals, and residual standard deviation. We continue this
one-term-at-a-time augmentation until the predicted values are
acceptably close to the observed responses Y (and hence the residuals
and residual standard deviation become acceptably close to zero).

Starting with the ssmple average, each cumulative model in thisiteration
process will have its own associated residual standard deviation. In
practice, the iteration continues until the residual standard deviations
become sufficiently small.

http://www.itl.nist.gov/div898/handbook/pri/section5/pri5993.htm (2 of 3) [11/14/2003 5:53:58 PM]



5.5.9.9.3. Motivation: How do we Construct a Good Model?

Cumulative
residual
standard
deviation
plot
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The cumulative residual standard deviation plot isagraphical summary
of the above model-building process. On the horizontal axisis a series
of terms (starting with the average, and continuing on with various main
effects and interactions). After the average, the ordering of terms on the
horizontal axisisidentical to the ordering of terms based on the

half-normal probability plot ranking based on effect magnitude.

On the vertical axisisthe corresponding residual standard deviation that
results when the cumulative model hasits coefficients fitted via least
squares, and then has its predicted values, residuals, and residual
standard deviations computed. The first residual standard deviation (on
the far left of the cumulative residual standard deviation plot) is that
which results from the model consisting of

1. the average.

The second residual standard deviation plotted is from the model
consisting of

1. the average, plus
2. the term with the largest |effect|.

The third residual standard deviation plotted is from the model
consisting of

1. the average, plus

2. the term with the largest |effect|, plus

3. the term with the second largest |effect|.
and so forth.
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5.5.9.9.4. Motivation: How do we Know
When to Stop Adding Terms?

Cumulative Proceeding left to right, as we add more terms to the model, the
residual cumulative residual standard deviation "curve" will typically decrease.
standard At the beginning (on the left), as we add large-effect terms, the
deviation decrease from one residual standard deviation to the next residual

plot typically  standard deviation will be large. The incremental improvement
hasahockey  (decrease) then tendsto drop off dlightly. At some point the incremental

stick improvement will typically slacken off considerably. Appearance-wise,
appearance itisthus very typical for such acurve to have a"hockey stick"
appearance:

1. starting with a series of large decrements between successive
residual standard deviations; then

2. hitting an elbow; then
3. having a series of gradual decrements thereafter.

Sopping rule  The cumulative residual standard deviation plot provides a visual
answer to the question:

What is a good model?
by answering the related question:
When do we stop adding terms to the cumulative model ?

Graphically, the most common stopping rule for adding termsisto
cease immediately upon encountering the "elbow". We include all
terms up to and including the elbow point since each of these terms
decreased the residual standard deviation by alarge amount. However,
we exclude any terms afterward since these terms do not decrease the
residual standard deviation fast enough to warrant inclusion in the
model.
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5.5.9.9.5. Motivation: What is the Form of the

Model?

Models for
various
values of k

From the above discussion, we thus note and recommend a form of the model that
consists of an additive constant plus a linear combination of main effects and
interactions. What then is the specific form for the linear combination?

Thefollowing are the full models for various values of k. The selected final model will
be a subset of the full model.

e For thetrivia k =1 factor case:

Y = f(X)) =c+(1/2) % (B X)) + ¢

o For thek = 2 factor case:

Y

f[-xla-xﬂ)
o+ (1;"2) % (Bl * X + Bo% Xo+ Bo # (Xl *Xg))-l—f

o For thek = 3 factor case:

Y = f[xl,.:fz,.xﬂ)
= E-|—{1;2)*[BI*X1+BQ*X2+BH*X3+
Byg * (X * Xo) + Big * (X * X3) + Bog * (X * X3)+
Bioa* (X1 * Xo *x X3)) +¢

« and for the genera k case:

Y= f(Xl, X2, . Xk) =
c + (/2)* (linear combination of all main effects and al interactions of all orders)
+ £

Note that the above equations include a (1/2) term. Our reason for using thisterm is
discussed in some detail in the next section. Other sources typically do not use this

convention.
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5.5.9.9.5. Motivation: What is the Form of the Model?

Ordered The listing above has the terms ordered with the main effects, then the 2-factor

linear interactions, then the 3-factor interactions, etc. In practice, it isrecommended that the

combination  terms be ordered by importance (whether they be main effects or interactions). Aside
from providing afunctional representation of the response, models should help reinforce
what is driving the response, which such are-ordering does. Thusfor k = 2, if factor 2 is
most important, the 2-factor interaction is next in importance, and factor 1 isleast
important, then it is recommended that the above ordering of

Y = f[Xth)
= E-'-{lfg)*(ﬂl*xl+BE*XE+BIE*(XI*X2))+E
be rewritten as
Y = f[-xh-xﬂ)
= C—I—(1’{’2)*(BQ*_XE—l—Blg*(_Xl*_Xg}—l—Bl*xl)—l—E
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5.5.9.9.6. Motivation: Why is the 1/2 in the

Model?

Presence of
1/2 term does
not affect
predictive
quality of
model

Included so
least squares
coefficient
estimate
equal to
estimated
effect

Theleading 1/2 is a multiplicative constant that we have chosen to
include in our expression of the linear model. Some authors and
software prefer to "simplify" the model by omitting this leading 1/2. It
is our preference to include the /2. Thisfollows a hint given on page
334 of Box, Hunter, and Hunter (1978) where they note that the

coefficients that appear in the equations are half the estimated effects.

The presence or absence of the arbitrary 1/2 term does not affect the
predictive quality of the model after least squaresfitting. Clearly, if we
choose to exclude the 1/2, then the least squares fitting process will
simply yield estimated values of the coefficients that are twice the size
of the coefficients that would result if we included the 1/2.

We recommend the inclusion of the 1/2 because of an additional
property that we would like to impose on the model; namely, we desire
that:

the value of the least squares estimated coefficient B for agiven
factor (or interaction) be visually identical to the estimated effect
E for that factor (or interaction).

For a given factor, say X2, the estimated |east squares coefficient B2
and the estimated effect E2 are not in general identical in either value
or concept.

http://www.itl.nist.gov/div898/handbook/pri/section5/pri5996.htm (1 of 4) [11/14/2003 5:53:59 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/main.htm
http://www.itl.nist.gov/div898/handbook/

5.5.9.9.6. Motivation: Why is the 1/2 in the Model?

Effect

Orthogonality

For factor X2, the effect E2 is defined as the change in the mean
response as we proceed from the "-" setting of the factor to the "+"
setting of the factor. Symbolically:

E=Y(+)-Y(-)
Note that the estimated effect E2 value does not involve amodel per
se, and is definitionally invariant to any other factors and interactions

that may affect the response. We examined and derived the factor
effects E in the previous steps of the general DEX analysis procedure.

On the other hand, the estimated coefficient B2 in amodel is defined
as the value that results when we place the model into the least squares
fitting process (regression). The value that returns for B2 depends, in
general, on the form of the model, on what other terms are included in
the model, and on the experimental design that was run. The least
squares estimate for B2 is mildly complicated sinceit involves a
behind-the-scenes design matrix multiplication and inversion. The
coefficient values B that result are generally obscured by the
mathematics to make the coefficients have the collective property that
the fitted model as awhole yield a minimum sum of squared deviations
("least squares’).

Rather remarkably, these two concepts and values:
1. factor and interaction effect estimates E, and
2. least squares coefficient estimates B

merge for the class of experimenta designs for which this 10-step
procedure was developed, namely, 2-level full and fractional designs
that are orthogonal. Orthogonality has been promoted and chosen
because of its desirable design properties. That is, every factor is
balanced (every level of afactor occurs an equal number of times) and
every 2-factor cross-product is balanced. But to boot, orthogonality has
2 extraordinary properties on the data analysis side:

1. For the above linear models, the usual matrix solution for the
least squares estimates for the coefficients B reduceto a
computationally trivial and familiar form, namely,

B=F=Y{+)-Y(-)

2. The usual general modeling property that the least squares
estimate for afactor coefficient changes depending on what
other factors have been included in or excluded from the model
Is now moot. With orthogonal designs, the coefficient estimates
areinvariant in the sense that the estimate (e.g., B2) for agiven

factor (e.g., X2) will not change as other factors and interactions
are included in or excluded from the model. That is, the estimate
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Why is 1/2
the
appropriate
multiplicative
termin these
orthogonal
models?

of the factor 2 effect (B2) remains the same regardless of what
other factors are included in the mode!.

The net effect of the above two propertiesis that afactor effect can be
computed once, and that value will hold for any linear model involving
that term regardless of how simple or complicated the modd is,
provided that the design is orthogonal. This process greatly simplifies
the model-building process because the need to recalculate all of the
model coefficients for each new model is eliminated.

Given the computational simplicity of orthogonal designs, why then is
1/2 the appropriate multiplicative constant? Why not 1/3, 1/4, etc.? To
answer this, we revisit our specified desire that

when we view the final fitted model and look at the coefficient
associated with X2, say, we want the value of the coefficient B2
to reflect identically the expected total change A, Y in the
response Y as we proceed from the "-" setting of X2 to the "+"
setting of X2 (that is, we would like the estimated coefficient B2
to be identical to the estimated effect E2 for factor X2).

Thusin glancing at the final model with this form, the coefficients B of
the model will immediately reflect not only the relative importance of
the coefficients, but will also reflect (absolutely) the effect of the
associated term (main effect or interaction) on the response.

In general, the least squares estimate of a coefficient in alinear model
will yield a coefficient that is essentially a lope:

AY f A X = (changein response)/(change in factor levels)

associated with a given factor X. Thusin order to achieve the desired
interpretation of the coefficients B as being the raw changeinthe Y (
&Y), we must account for and remove the change in X (4, X).

What is the /4, X? In our design descriptions, we have chosen the
notation of Box, Hunter and Hunter (1978) and set each (coded) factor
tolevelsof "-" and "+". This"-" and "+" is a shorthand notation for -1
and +1. The advantage of this notation is that 2-factor interactions (and
any higher-order interactions) also uniformly take on the closed values
of -1 and +1, since

S1*-1 = +1
-1*+1 = -1
+1*-1 = -1
+1%+1 = +1

and hence the set of values that the 2-factor interactions (and all
interactions) take on are in the closed set {-1,+1}. This-1 and +1
notation is superior in its consistency to the (1,2) notation of Taguchi
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Example for k
= lcase
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in which the interaction, say X1* X2, would take on the values

1*1 =1
1*2 = 2
2*1 = 2
2*2 = 4

which yields the set {1,2,4}. To circumvent this, we would need to
replace multiplication with modular multiplication (see page 440 of
Ryan (2000)). Hence, with the -1,+1 values for the main factors, we

also have -1,+1 values for all interactions which in turn yields (for all
terms) a consistent /4 X of

AX = (+1) - (-1) = +2
In summary then,

B = (AY/AX)

(AY) 1 2
(1/2) * (AY)
and so to achieve our goal of having the final coefficientsreflect A Y

only, we simply gather up al of the 2'sin the denominator and create a
leading multiplicative constant of 1 with denominator 2, that is, 1/2.

For example, for the trivial k = 1 case, the obvious model
Y = intercept + slope* X1
Y=c+AY/AX) X1

becomes
Y=c+ (UAX) * (AY)*X1

or simply
Y=c+ (U2)* (AY)*X1
Y =c+ (1/2)* (factor 1 effect)* X1
Y=c+ (1/2)*(B")*X1, withB"=2B =E

Thisk =1 factor result is easily seen to extend to the general k-factor

case.
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5.5.9.9.7. Motivation: What are the

Advantages:

perfect fit and

comparable
coefficients

Example

Advantages of the

LinearCombinatoric Model?

The linear model consisting of main effects and all interactions has
two advantages:

1. Perfect Fit: If we choose to include in the model al of the
main effects and all interactions (of all orders), then the
resulting least squares fitted model will have the property that
the predicted values will be identical to the raw response
values Y. We will illustrate this in the next section.

2. Comparable Coefficients. Since the model fit has been carried
out in the coded factor (-1,+1) units rather than the units of the
original factor (temperature, time, pressure, catalyst
concentration, etc.), the factor coefficients immediately
become comparable to one another, which serves as an
immediate mechanism for the scale-free ranking of the
relative importance of the factors.

To illustrate in detail the above latter point, suppose the (-1,+1)
factor X1 isreally acoding of temperature T with the original
temperature ranging from 300 to 350 degrees and the (-1,+1) factor
X2 isreally acoding of timet with the original time ranging from 20
to 30 minutes. Given that, alinear model in the original temperature
T and time t would yield coefficients whose magnitude depends on
the magnitude of T (300 to 350) and t (20 to 30), and whose value
would change if we decided to change the unitsof T (e.g., from
Fahrenheit degrees to Celsius degrees) and t (e.g., from minutes to
seconds). All of thisis avoided by carrying out thefit not in the
original unitsfor T (300,350) and t (20,30), but in the coded units of
X1 (-1,+1) and X2 (-1,+1). Theresulting coefficients are
unit-invariant, and thus the coefficient magnitudes reflect the true
contribution of the factors and interactions without regard to the unit
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of measurement.

Coding doesnot  Such coding leads to no loss of generality since the coded factor may

lead to loss of be expressed as asimple linear relation of the original factor (X1 to

generality T, X2 to t). The unit-invariant coded coefficients may be easily
transformed to unit-sensitive original coefficientsif so desired.

NIST
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5.5.9.9.8. Motivation: How do we use the Model to
Generate Predicted Values?

Design matrix  To illustrate the details as to how a model may be used for prediction, let us consider

withresponse  asimple case and generalize from it. Consider the simple Y ates-order 22 full factorial
for 2 factors designin X1 and X2, augmented with a response vector Y:

X1 X2 Y
- - 2
+ - 4
- + 6
+ + 8
Geometric This can be represented geometrically
representation
'8 ;
[
o
1 1E 4
A1
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Determining For this case, we might consider the model
gigtriﬂc“"” Y =c+(1/2)* (By* X, + By * Xo + Bia* (X, * X)) + ¢
From the above diagram, we may deduce that the estimated factor effects are:

C =theaverageresponse=Y"
~(2+4+6+8)/4=5

B, =averagechangein Y as X>1 goesfrom-1to +1
=(4-2)+(86)/2=2+2)/2=2

Note: the (4-2) isthe changein Y (due to X1) on the lower axis; the
(8-6) isthe changein Y (due to X1) on the upper axis.
B, =average changeinY as X2 goesfrom-1to +1
=((6-2)+(84)/2=(4+4)/2=4
B, = interaction = (the less obvious) average changein Y as X1* X2 goes from
-1to+1
=((2-4)+(86)/2=(-2+2)/2=0

and so the fitted model (that is, the prediction equation) is

Y =5+ (1/2)# (2% X, +4% X, +0 (X, % X))
or with the terms rearranged in descending order of importance

Y =534+(1/2) %4+ Xo4+2%X,) +¢

Tableof fitted  Substituting the values for the four design pointsinto this equation yields the
values following fitted values

X1 X2 Y ¥
- - 2 2
+ - 4 4
- + 6 6
+ + 8 8
Perfect fit Thisis a perfect-fit model. Such perfect-fit models will result anytime (in this

orthogonal 2-level design family) we include all main effects and all interactions.
Remarkably, thisistrue not only for k = 2 factors, but for general k.

Residuals For agiven model (any model), the difference between the response value Y and the
predicted value ¥ isreferred to asthe "residual":
residual =Y - ¥

The perfect-fit full-blown (all main factors and all interactions of all orders) models
will have all residuals identically zero.

The perfect fit is amathematical property that comes if we choose to use the linear
model with all possible terms.
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Price for
perfect fit

Imperfect fit
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What priceis paid for this perfect fit? One priceis that the variance of ¥ isincreased
unnecessarily. In addition, we have a non-parsimonious model. We must compute
and carry the average and the coefficients of all main effects and all interactions.
Including the average, there will in general be 2K coefficients to fully describe the
fitting of the n = 2K points. Thisis very much akin to the Y = f(X) polynomial fitting
of ndistinct points. It iswell known that this may be done "perfectly” by fitting a
polynomial of degree n-1. It is comforting to know that such perfectionis
mathematically attainable, but in practice do we want to do this al the time or even
anytime? The answer is generaly "no" for two reasons:

1. Noise: It isvery common that the response data Y has noise (= error) init. Do
we want to go out of our way to fit such noise? Or do we want our model to
filter out the noise and just fit the "signal"? For the latter, fewer coefficients
may be in order, in the same spirit that we may forego a perfect-fitting (but
jagged) 11-th degree polynomial to 12 data points, and opt out instead for an
imperfect (but smoother) 3rd degree polynomial fit to the 12 points.

2. Parsimony: For full factorial designs, to fit the n = 2K points we would need to
compute 2k coefficients. We gain information by noting the magnitude and
sign of such coefficients, but numerically we have n data values'Y as input and
n coefficients B as output, and so no numerical reduction has been achieved.
We have simply used one set of n numbers (the data) to obtain another set of n
numbers (the coefficients). Not all of these coefficients will be equally
important. At times that importance becomes clouded by the sheer volume of
the n = 2K coefficients. Parsimony suggests that our result should be simpler
and more focused than our n starting points. Hence fewer retained coefficients
arecaled for.

The net result is that in practice we amost always give up the perfect, but unwieldy,
model for an imperfect, but parsimonious, model.

The above calculationsillustrated the computation of predicted values for the full
model. On the other hand, as discussed above, it will generally be convenient for
signal or parsimony purposes to deliberately omit some unimportant factors. When
the analyst chooses such a model, we note that the methodol ogy for computing

predicted values ¥ is precisely the same. In such a case, however, the resulting
predicted values will in general not be identical to the original response values Y; that
IS, we no longer obtain a perfect fit. Thus, linear models that omit some terms will
have virtually all non-zero residuals.

[HOME [TOOLS & AIDS [SEARCH [BACK MNEXT]|

http://www.itl.nist.gov/div898/handbook/pri/section5/pri5998.htm (3 of 3) [11/14/2003 5:53:59 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/

5.5.9.9.9. Motivation: How do we Use the Model Beyond the Data Domain?

P ENGINEERING STATISTICS HANDBOOK

[HOME

'TOOLS & AIDS [SEARCH [BACK ~NEXT]

5. Process | mprovement

5.5. Advanced topics

5.5.9. An EDA approach to experimental design

5.5.9.9. Cumulative residual standard deviation plot

5.5.9.9.9. Motivation: How do we Use the

Interpolation
and
extrapolation

Predict with
caution

Model Beyond the Data Domain?

The previous section illustrated how to compute predicted values at the
pointsincluded in the design. One of the virtues of modeling is that the
resulting prediction equation is not restricted to the design data points,
From the prediction equation, predicted values can be computed
elsewhere and anywhere:

1. within the domain of the data (interpolation);
2. outside of the domain of the data (extrapolation).

In the hands of an expert scientist/engineer/analyst, the ability to
predict elsewhereis extremely valuable. Based on the fitted model, we
have the ability to compute predicted values for the response at alarge
number of internal and external points. Thus the analyst can go beyond
the handful of factor combinations at hand and can get afeel (typically
via subsequent contour plotting) as to what the nature of the entire

response surfaceis.

This added insight into the nature of the responseis"free" and isan
incredibly important benefit of the entire model-building exercise.

Can we be fooled and misled by such a mathematical and
computational exercise? After all, isnot the only thing that is"real" the
data, and everything else artificial? The answer is"yes', and so such
interpolation/extrapolation is a double-edged sword that must be
wielded with care. The best attitude, and especially for extrapolation, is
that the derived conclusions must be viewed with extra caution.

By construction, the recommended fitted models should be good at the
design points. If the full-blown model were used, the fit will be perfect.
If the full-blown model is reduced just a bit, then the fit will till
typically be quite good. By continuity, one would expect
perfection/goodness at the design points would lead to goodness in the
immediate vicinity of the design points. However, such local goodness
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5.5.9.9.9. Motivation: How do we Use the Model Beyond the Data Domain?

Do
confirmation
runs

Applies only
for
continuous
factors
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does not guarantee that the derived model will be good at some
distance from the design points.

Modeling and prediction allow usto go beyond the datato gain
additional insights, but they must be done with great caution.
Interpolation is generally safer than extrapolation, but mis-prediction,
error, and misinterpretation are liable to occur in either case.

The analyst should definitely perform the model-building process and
enjoy the ability to predict elsewhere, but the analyst must always be
prepared to validate the interpolated and extrapolated predictions by
collection of additional real, confirmatory data. The general empirical
model that we recommend knows "nothing" about the engineering,
physics, or chemistry surrounding your particular measurement
problem, and although the model is the best generic model available, it
must nonethel ess be confirmed by additional data. Such additional data
can be obtained pre-experimentally or post-experimentally. If done
pre-experimentally, arecommended procedure for checking the validity
of the fitted model isto augment the usual 2K or 2P designs with
additional points at the center of the design. Thisis discussed in the

next section.

Of course, all such discussion of interpolation and extrapolation makes
sense only in the context of continuous ordinal factors such as
temperature, time, pressure, size, etc. Interpolation and extrapolation
make no sense for discrete non-ordinal factors such as supplier,
operators, design types, €tc.
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5.5.9.9.10. Motivation: What is the Best Confirmation Point for Interpolation?
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5.5.9.9.10. Motivation: What i1s the Best

Augment via
center point

Example

Predicted
value for the
center point

Confirmation Point for
Interpolation?

For the usual continuous factor case, the best (most efficient and highest
leverage) additional model-validation point that may be added to a 2K or
2k-P design is at the center point. This center point augmentation " costs'
the experimentalist only one additional run.

For example, for the k = 2 factor (Temperature (300 to 350), and time
(20 to 30)) experiment discussed in the previous sections, the usual
4-run 22 full factorial design may be replaced by the following 5-run 22

full factorial design with a center point.
X1 X2 Y

2
+ 4
6
8

+

o+ +

Since"-" stands for -1 and "+" standsfor +1, it is natural to code the
center point as (0,0). Using the recommended model

Y =53+ (1/2) % (4% X +2% X)) +e

we can substitute O for X1 and X2 to generate the predicted value of 5
for the confirmatory run.
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The importance of the confirmatory run cannot be overstated. If the
confirmatory run at the center point yields a datavalue of, say, Y = 5.1,
since the predicted value at the center is 5 and we know the model is
perfect at the corner points, that would give the analyst a greater
confidence that the quality of the fitted model may extend over the
entire interior (interpolation) domain. On the other hand, if the
confirmatory run yielded a center point data value quite different (e.g., Y
= 7.5) from the center point predicted value of 5, then that would
prompt the analyst to not trust the fitted model even for interpolation
purposes. Hence when our factors are continuous, a single confirmatory
run at the center point helps immensely in assessing the range of trust
for our model.

In practice, this center point value frequently has two, or even three or
more, replications. This not only provides a reference point for
assessing the interpolative power of the model at the center, but it also
allows us to compute model-free estimates of the natural error in the
data. Thisin turn allows us a more rigorous method for computing the
uncertainty for individual coefficientsin the model and for rigorously
carrying out alack-of-fit test for assessing general model adequacy.
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5.5.9.9.11. Motivation: How do we Use the Model for Interpolation?
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5.5.9.9.11. Motivation: How do we Use the
Model for Interpolation?

Design table As for the mechanics of interpolation itself, consider a continuation of

inoriginal the prior k = 2 factor experiment. Suppose temperature T ranges from

data units 300 to 350 and time t ranges from 20 to 30, and the analyst can afford
n=4runs. A 22 full factorial design is run. Forming the coded
temperature as X1 and the coded time as X2, we have the usual:

Temperature Time X1 X2 Y

300 20 - - 2
350 20 + - 4
300 30 -+ 6
350 30 + + 8
Graphical Graphically the design and data are as follows:
representation
+1_ ﬂ -El.
a{
E
=
o
o-C_
ol i 4
20 1 +1
300 Y 50
Temperature
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5.5.9.9.11. Motivation: How do we Use the Model for Interpolation?

Typical
interpolation
guestion

Predicting the
response for
the

inter polated
point

Asbefore, from the data, the "perfect-fit" prediction equation is
Y =5+05%{4*% X+ 2% X))
We now pose the following typical interpolation question:

From the model, what is the predicted response at, say,
temperature = 310 and time = 267

In short:

Y(T=310,t=26)=?
To solve this problem, we first view the k = 2 design and data
graphically, and note (viaan "X") asto where the desired (T = 310, t =
26) interpolation point is:

+146 H
30

E X

=

=
=1 4
20 -1 +1

300 Al 0
Temperature

The important next step isto convert the raw (in units of the original
factors T and t) interpolation point into a coded (in units of X1 and X2)
interpolation point. From the graph or otherwise, we note that a linear
trangdlation between T and X1, and between t and X2 yields

T=300=>X1=-1
T=350=>X1=+1

thus
X1=0isaT=325

-1 ? 0 +1
300 310 325 350

which in turn implies that
T=310=>X1=-0.6
Similarly,
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t=20=>X2=-1
t=30=>X2=+1
therefore,

X2=0isatt=25

thus
t=26=>X2=+0.2
Substituting X1 = -0.6 and X2 = +0.2 into the prediction equation

Y =5+05%{4*% X+ 2% X))

yields a predicted value of 4.8.
Thus
+ 146 H
all
E 4.5
=
.
i 4
20 -1 +1
300 Al 50
Temperature
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5.5.9.9.12. Motivation: How do we Use the
Model for Extrapolation?

Graphical Extrapolation is performed similarly to interpolation. For example, the
representation  predicted value at temperature T = 375 and time t = 28 isindicated by
of the"X":

extrapolation

+11 6 8
30 ;
E

E

5

-11 2 4
S +1

EE'% a2

1. Temperature

and is computed by substituting the values X1 = +2.0 (T=375) and X2
= +0.8 (t=28) into the prediction equation

Y =5+05%(4%X+ 2% X))
yielding a predicted value of 8.6. Thus we have
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Summary
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+14 8 8

2 7.6
E

=

5

—1{ 2 4
5 +1

SIEI9(1: Temne%c?tﬂure

The predicted value from the modeling effort may be viewed as
pseudo-data, data obtained without the experimental effort. Such
"free" data can add tremendously to the insight via the application of
graphical techniques (in particular, the contour plots and can add
significant insight and understanding as to the nature of the response
surfacerelating Y to the X's.

But, again, afinal word of caution: the "pseudo data" that results from
the modeling processis exactly that, pseudo-data. It isnot real data,
and so the model and the model's predicted values must be validated
by additional confirmatory (real) data points. A more balanced
approach is that:

Models may betrusted as "real” [that is, to generate predicted
values and contour curves|, but must always be verified [that is,
by the addition of confirmatory data points|.

The rule of thumb is thus to take advantage of the available and
recommended model-building mechanics for these 2-level designs, but
do treat the resulting derived model with an equal dose of both
optimism and caution.

In summary, the motivation for model building isthat it gives us
insight into the nature of the response surface along with the ability to
do interpolation and extrapolation; further, the motivation for the use
of the cumulative residual standard deviation plot isthat it serves as an
easy-to-interpret tool for determining a good and parsimonious model.
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5.5.9.10. DEX contour plot
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5.5.9.10.DEX contour plot

Purpose The dex contour plot answers the question:
Where else could we have run the experiment to optimize the response?

Prior stepsin this analysis have suggested the best setting for each of the k factors. These best
settings may have been derived from

1. Data: which of the n design points yielded the best response, and what were the settings of
that design point, or from

2. Averages. what setting of each factor yielded the best response "on the average”.

This 10th (and last) step in the analysis sequence goes beyond the limitations of the n data points
already chosen in the design and replaces the data-limited question

"From among the n data points, what was the best setting?’
to aregion-related question:
"In general, what should the settings have been to optimize the response?"

Output The outputs from the dex contour plot are
1. Primary: Best setting (X109, Xop, ---» Xio) for each of the k factors. This derived setting
should yield an optimal response.

2. Secondary: Insight into the nature of the response surface and the importance/unimportance
of interactions.

Definition A dex contour plot is formed by
« Vertical Axis: The second most important factor in the experiment.
o Horizontal Axis: The most important factor in the experiment.

More specifically, the dex contour plot is constructed and utilized viathe following 7 steps:

1. Axes

Contour Curves

Optimal Response Vaue

Best Corner

Steepest Ascent/Descent

Optimal Curve

Optimal Setting

N bk wDdN

with
1. Axes. Choose the two most important factors in the experiment as the two axes on the plot.

2. Contour Curves: Based on the fitted model and the best data settings for all of the
remaining factors, draw contour curves involving the two dominant factors. Thisyields a
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5.5.9.10. DEX contour plot

graphical representation of the response surface. The details for constructing linear contour
curves are given in alater section.

Optimal Value: Identify the theoretical value of the response that constitutes "best.” In
particular, what value would we like to have seen for the response?

Best "Corner": The contour plot will have four "corners" for the two most important factors
X and X;: (X,X) = (--), (%), (+,-), and (+,+). From the data, identify which of these four

corners yields the highest average response Y.

Steepest Ascent/Descent: From this optimum corner point, and based on the nature of the
contour lines near that corner, step out in the direction of steepest ascent (if maximizing) or
steepest descent (if minimizing).

Optimal Curve: Identify the curve on the contour plot that corresponds to the ideal optimal
value.

Optimal Setting: Determine where the steepest ascent/descent line intersects the optimum
contour curve. This point represents our "best guess' as to where we could have run our
experiment so as to obtain the desired optimal response.

Motivation In addition to increasing insight, most experiments have a goal of optimizing the response. That
is, of determining a setting (Xyq, Xog, --., X¢o) for which the response is optimized.

Thetool of choice to address this goa is the dex contour plot. For a pair of factors X; and X;, the
dex contour plot isa2-dimensional representation of the 3-dimensional Y = f(X;,X;) response

surface. The position and spacing of the isocurves on the dex contour plot are an easily
interpreted reflection of the nature of the surface.

In terms of the construction of the dex contour plot, there are three aspects of note:
1. Pairsof Factors: A dex contour plot necessarily has two axes (only); hence only two out of

the k factors can be represented on this plot. All other factors must be set at afixed value
(their optimum settings as determined by the ordered data plot, the dex mean plot, and the

interaction effects matrix plot).

Most Important Factor Pair: Many dex contour plots are possible. For an experiment with k

k K Ek—1)
factors, there are = = possible contour plots. For
2 2A(k — 2)1 2

example, for k = 4 factors there are 6 possible contour plots: X; and X5, X; and X3, X; and
Xa, Xo @and Xz, X5 and Xy, and Xz and X,. In practice, we usually generate only one contour
plot involving the two most important factors.

Main Effects Only: The contour plot axes involve main effects only, not interactions. The
rationale for thisisthat the "deliverable" for this step isk settings, abest setting for each of
the k factors. These k factors are real and can be controlled, and so optimal settings can be
used in production. Interactions are of a different nature as thereis no "knob on the
machine" by which an interaction may be set to -, or to +. Hence the candidates for the axes
on contour plots are main effects only--no interactions.

In summary, the motivation for the dex contour plot isthat it is an easy-to-use graphic that
provides insight as to the nature of the response surface, and provides a specific answer to the
guestion "Where (else) should we have collected the data so to have optimized the response?".
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Plot for Applying the dex contour plot for the defective springs data set yields the following plot.
defective

springs

data Metal Springs: % Acceptable (BB)

Contour Plot of the 2 Dominant Factors: X1 and X3

kY A1

2

X1
o
|

-2 ' | ' | ' | '
-2 -1 D 1 2
X3
How to From the dex contour plot for the defective springs data, we note the following regarding the 7
interpret framework issues:
» AXes

« Contour curves

o Optimal response value

« Optimal response curve

« Best corner
o Steepest Ascent/Descent
e Optimal setting
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5.5.9.10. DEX contour plot

Conclusions  The application of the dex contour plot to the defective springs data set resultsin the following
for the conclusions:

defective 1. Optimal settings for the "next" run:
springs
data Coded : (X1,X2,X3) = (+1.5,+1.0,+1.3)

Uncoded: (OT,CC,QT) =(1637.5,0.7,127.5)
2. Nature of the response surface:

The X1* X3 interaction is important, hence the effect of factor X1 will change depending on
the setting of factor X3.
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5.5.9.10.1. How to Interpret: Axes
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5.5.9.10.1.How to Interpret: Axes

What factors
goonthe?2
axes?

Possible
choices

For thisfirst item, we choose the two most important factorsin the
experiment as the plot axes.

These are determined from the ranked list of important factors as
discussed in the previous steps. In particular, the |effects| plot includes

aranked factor table. For the defective springs data, that ranked list
consists of

Factor/I nter action Effect Estimate

X1 23
X1*X3 10
X2 -5
X3 15
X1* X2 15
X1*X2* X3 0.5
X2* X3 0

In general, the two axes of the contour plot could consist of
« X1and X2,
o X1and X3, or
e X2and X3.

In this case, since X1 isthe top item in the ranked list, with an
estimated effect of 23, X1 isthe most important factor and so will
occupy the horizontal axis of the contour plot. The admissible list thus
reduces to

e X1 and X2, or
o« X1 and X3.

To decide between these two pairs, we look to the second item in the
ranked list. Thisisthe interaction term X1* X3, with an estimated effect
of 10. Since interactions are not allowed as contour plot axes, X1* X3
must be set aside. On the other hand, the components of this interaction
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5.5.9.10.1. How to Interpret: Axes

(X1 and X3) are not to be set aside. Since X1 has aready been
identified as one axis in the contour plot, this suggests that the other
component (X3) be used as the second axis. We do so. Note that X3
itself does not need to be important (in fact, it is noted that X3 is
ranked fourth in the listed table with avalue of 1.5).

In summary then, for this example the contour plot axes are:

Horizontal Axis: X1
Vertical Axis: X3

Four cases Other cases can be more complicated. In general, the recommended
for rule for selecting the two plot axesis that they be drawn from the first
recommended  two itemsin the ranked list of factors. The following four cases cover
choice of most situationsin practice:

axes . Cael:

1. Item 1lisamain effect (e.g., X3)
2. Item 2 isanother main effect (e.g., X5)

Recommended choice:
1. Horizontal axis: item 1 (e.g., X3);
2. Vertical axis: item 2 (e.g., X5).
o Case2:
1. Item 1lisamain effect (e.g., X3)
2. Item 2 is a(common-element) interaction (e.g., X3*X4)

Recommended choice:
1. Horizontal axis: item 1 (e.g., X3);
2. Vertical axis: the remaining component in item 2 (e.g.,
X4).
o Cased:
1. Item 1lisamain effect (e.g., X3)
2. Item 2 is a (hon-common-element) interaction (e.g.,
X2* X4)
Recommended choice:
1. Horizontal axis. item 1 (e.g., X3);

2. Vertical axis: either component initem 2 (e.g., X2, or X4),
but preferably the one with the largest individual effect
(thus scan the rest of the ranked factors and if the X2
leffect| > X4 |effect|, choose X2; otherwise choose X4).

o« Cased4:
1. Item 1isa(2-factor) interaction (e.g., X2* X4)
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2. Item 2 isanything

Recommended choice:
1. Horizontal axis. component 1 from the item 1 interaction

e.g., X2);
2. Horizontal axis: component 2 from the item 1 interaction
(e.g., X4).
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5.5.9.10.2. How to Interpret: Contour Curves
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5.5.9.10.2. How to Interpret: Contour Curves

Non-linear
appearance
of contour
curves
implies
strong
interaction

Constructing
the contour
curves

Based on the fitted model (cumulative residual standard deviation plot) and the
best data settings for all of the remaining factors, we draw contour curves
involving the two dominant factors. Thisyields a graphical representation of the
response surface.

Before delving into the details as to how the contour lines were generated, let us
first note as to what insight can be gained regarding the general nature of the
response surface. For the defective springs data, the dominant characteristic of the
contour plot isthe non-linear (fan-shaped, in this case) appearance. Such
non-linearity implies a strong X1* X3 interaction effect. If the X1* X3 interaction
were small, the contour plot would consist of a series of near-parallel lines. Such is
decidedly not the case here.

Asfor the details of the construction of the contour plot, we draw on the
model -fitting results that were achieved in the cumulative residual standard

deviation plot. In that step, we derived the following good-fitting prediction
equation:

Y =71.25+ 05+ (23% X1+ 10 % (X1 % X3) — 5+ X2)

The contour plot has axes of X1 and X3. X2 is not included and so afixed value of
X2 must be assigned. The response variable is the percentage of acceptable
springs, so we are attempting to maximize the response. From the ordered data
plot, the main effects plot, and the interaction effects matrix plot of the general
analysis sequence, we saw that the best setting for factor X2 was"-". The best
observed response data value (Y = 90) was achieved with the run (X1,X2,X3) =
(+,-,%), which has X2 ="-". Also, the average response for X2 ="-" was 73 while
the average response for X2 ="+" was 68. We thus set X2 = -1 in the prediction
equation to obtain

Y = 71254+ 05+ (23 X1 + 104 (X1 % X3) — 5% (—1))
Y =7625+05% (23 X1+ 10% (X1 % X3))

This equation involves only X1 and X3 and isimmediately usable for the X1 and
X3 contour plot. The raw response values in the data ranged from 52 to 90. The
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5.5.9.10.2. How to Interpret: Contour Curves

Values for
X1

Valuesfor Y

Summary

NIST
SEMATECH

response implies that the theoretical worst is'Y = 0 and the theoretical best isY =
100.

To generate the contour curve for, say, Y = 70, we solve

T0=T625+05%(23% X1+ 10 (X1 % X3))

by rearranging the equation in X3 (the vertical axis) as afunction of X1 (the
horizontal axis). By substituting various values of X1 into the rearranged equation,
the above equation generates the desired response curve for Y = 70. We do so
similarly for contour curves for any desired response value Y.

For these X3 = g(X1) equations, what values should be used for X1? Since X1 is
coded in the range -1 to +1, we recommend expanding the horizontal axisto -2 to
+2 to allow extrapolation. In practice, for the dex contour plot generated
previously, we chose to generate X1 values from -2, at increments of .05, up to +2.
For most data sets, this gives a smooth enough curve for proper interpretation.

What values should be used for Y ? Since the total theoretical range for the
response Y (= percent acceptable springs) is 0% to 100%, we chose to generate
contour curves starting with 0O, at increments of 5, and ending with 100. We thus
generated 21 contour curves. Many of these curves did not appear since they were
beyond the -2 to +2 plot range for the X1 and X 3 factors.

In summary, the contour plot curves are generated by making use of the
(rearranged) previously derived prediction equation. For the defective springs data,
the appearance of the contour plot implied a strong X1* X3 interaction.
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5.5.9.10.3. How to Interpret: Optimal Response Value
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5.5.9. An EDA approach to experimental design

5.5.9.10. DEX contour plot

5.5.9.10.3.How to Interpret: Optimal

Need to
define
mn ball

Optimal
value for
this example
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Response Value

We need to identify the theoretical value of the response that would
constitute "best". What value would we like to have seen for the
response?

For example, if the response variable in achemical experiment is
percent reacted, then the ideal theoretical optimum would be 100%. If
the response variable in a manufacturing experiment is amount of waste,
then the ideal theoretical optimum would be zero. If the response
variable in aflow experiment is the fuel flow rate in an engine, then the
ideal theoretical optimum (as dictated by engine specifications) may be
aspecific value (e.g., 175 cc/sec). In any event, for the experiment at
hand, select a number that represents the ideal response value.

For the defective springs data, the response (percentage of acceptable
springs) ranged from Y = 52 to 90. The theoretically worst value would
be O (= no springs are acceptable), and the theoretically best value
would be 100 (= 100% of the springs are acceptable). Since we are
trying to maximize the response, the selected optimal value is 100.
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5.5.9.10.4.How to Interpret: Best Corner

Four
corners
representing
2 levelsfor

2 factors

Usetheraw
data

The contour plot will have four "corners' (two factors times two settings
per factor) for the two most important factors X; and Xj: (X;,Xj) = (-,-),

(=), (+,-), or (+,+). Which of these four cornersyields the highest
average response ¥ ? That is, what is the "best corner"?

Thisisdone by using the raw data, extracting out the two "axes factors’,
computing the average response at each of the four corners, then
choosing the corner with the best average.

For the defective springs data, the raw datawere

X1

+ 1

+ 1

+

X2

+ +

+
+

X3

+ + + +

Y

67
79
61
75
59
90
52
87

The two plot axes are X1 and X3 and so the relevant raw data collapses

to

X1

1 4+ 4+ 4+ 1

=+

+ + + +

Y

67
79
61
75
59
90
52
87
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Averages which yields averages
X1 X3 Y
- - (67 +61)/2=64
+ - (79+75)[2=T77
- + (59 + 52)/2 =55.5
+ o+ (90 + 87)/2=88.5

These four average values for the corners are annotated on the plot. The

best (highest) of these valuesis 88.5. This comes from the (+,+) upper

right corner. We conclude that for the defective springs data the best
corner is (+,+).
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5.5.9.10.5.How to Interpret: Steepest

Sart at
optimum
corner point

Defective

springs
example

Conclusions on
steepest ascent
for defective
springs
example
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Ascent/Descent

From the optimum corner point, based on the nature of the contour

surface at that corner, step out in the direction of steepest ascent (if
maximizing) or steepest descent (if minimizing).

Since our goal for the defective springs problem is to maximize the
response, we seek the path of stegpest ascent. Our starting point is the
best corner (the upper right corner (+,+)), which has an average
response value of 88.5. The contour lines for this plot have
increments of 5 units. As we move from left to right across the
contour plot, the contour lines go from low to high response values.
In the plot, we have drawn the maximum contour level, 105, asa
thick line. For easier identification, we have aso drawn the contour
level of 90 asthick line. This contour level of 90 isimmediately to
the right of the best corner

The nature of the contour curvesin the vicinity of (+,+) suggests a
path of steepest ascent

1. inthe"northeast”" direction
2. about 30 degrees above the horizontal.
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5.5.9.10.6. How to Interpret: Optimal Curve
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5.5.9.10.6.How to Interpret: Optimal Curve

Corresponds The optimal curve is the curve on the contour plot that corresponds to
to ideal theideal optimum value.
optimum value

Defective For the defective springs data, we search for the Y = 100 contour
springs curve. As determined in the steepest ascent/descent section, theY =
example 90 curve isimmediately outside the (+,+) point. The next curveto the

rightistheY = 95 curve, and the next curve beyond that istheY =
100 curve. Thisisthe optimal response curve.

NIST
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5.5.9.10.7. How to Interpret: Optimal Setting
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5.5.9.10.7.How to Interpret: Optimal Setting

Optimal The "near-point" optimality setting is the intersection of the steepest-ascent line
setting with the optimal setting curve.

Theoretically, any (X1,X3) setting along the optimal curve would generate the
desired response of Y = 100. In practice, however, thisistrue only if our
estimated contour surface isidentical to "nature's’ response surface. In redlity, the
plotted contour curves are truth estimates based on the available (and "noisy") n =
8 data values. We are confident of the contour curves in the vicinity of the data
points (the four corner points on the chart), but as we move away from the corner
points, our confidence in the contour curves decreases. Thusthe point ontheY =
100 optimal response curve that is "most likely" to be valid isthe one that is
closest to a corner point. Our objective then isto locate that "near-point".

Defective In terms of the defective springs contour plot, we draw aline from the best corner,

springs (+,%), outward and perpendicular to the Y =90, Y = 95, and Y = 100 contour

example curves. The Y = 100 intersection yields the "nearest point" on the optimal
response curve.

Having done so, it is of interest to note the coordinates of that optimal setting. In
this case, from the graph, that setting is (in coded units) approximately at

(X1=15,X3=1.3)
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5.5.9.10.7. How to Interpret: Optimal Setting

Table of
coded and
uncoded
factors

Uncoded
and coded
factor
settings

Diagram

With the determination of this setting, we have thus, in theory, formally
completed our original task. In practice, however, more needs to be done. We
need to know "What is this optimal setting, not just in the coded units, but also in
the original (uncoded) units'? That is, what does (X1=1.5, X3=1.3) correspond to
in the units of the original data?

To deduce his, we need to refer back to the original (uncoded) factorsin this
problem. They were:

Coded Uncoded Factor

Factor

X1 OT: Oven Temperature
X2 CC: Carbon Concentration
X3 QT: Quench Temperature

These factors had settings-- what were the settings of the coded and uncoded
factors? From the original description of the problem, the uncoded factor settings
were:

1. Oven Temperature (1450 and 1600 degrees)
2. Carbon Concentration (.5% and .7%)
3. Quench Temperature (70 and 120 degrees)
with the usual settings for the corresponding coded factors:
1. X1(-1,+1)
2. X2 (-1,+1)
3. X3(-1,+1)

To determine the corresponding setting for (X1=1.5, X3=1.3), we thus refer to the
following diagram, which mimics a scatter plot of response averages--oven
temperature (OT) on the horizontal axis and quench temperature (QT) on the
vertical axis:
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Optimal
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Owen Temperature

The " X" on the chart represents the "near point" setting on the optimal curve.

To determine what "X" isin uncoded units, we note (from the graph) that alinear

transformation between OT and X1 as defined by
OT=1450=>X1=-1
OT =1600=> X1=+1

yields
X1=0beingat OT = (1450 + 1600) / 2 = 1525

thus

|- |- |
X1: -1 0] +1
or: 1450 1525 1600

and so X1 = +2, say, would be at oven temperature OT = 1675:

X1: -1 0 +1
qr: 1450 1525 1600

and hence the optimal X1 setting of 1.5 must be at
OT = 1600 + 0.5*(1675-1600) = 1637.5
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Optimal
setting for
X3 (quench
temperature)

Summary of
optimal
settings

Similarly, from the graph we note that alinear transformation between quench
temperature QT and coded factor X3 as specified by

QT =70=>X3=-1

QT =120=>X3=+1

yields
X3=0beingat QT =(70+ 120) / 2=95
asin
|- RRERREEEEEEEE |
X3: -1 0 +1
Qr: 70 95 120

X3: -1 0 +1 +2
qQr: 70 95 120 145

Hence, the optimal X3 setting of 1.3 must be at

QT = 120 + .3*(145-120)
QT =1275

In summary, the optimal setting is

coded : (X1=+15, X3=+1.3)

uncoded: (OT = 1637.5 degrees, QT = 127.5 degrees)
and finally, including the best setting of the fixed X2 factor (carbon concentration
CC) of X2 =-1(CC = .5%), we thus have the final, complete recommended
optimal settingsfor al three factors:

coded : (X1 =+1.5,X2=-1.0, X3=+1.3)

uncoded: (OT = 1637.5, CC =.7%, QT = 127.5)
If we were to run another experiment, thisis the point (based on the data) that we

would set oven temperature, carbon concentration, and quench temperature with
the hope/goal of achieving 100% acceptable springs.
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Options for In practice, we could either

next step 1. collect asingle data point (if money and time are an issue) at this
recommended setting and see how close to 100% we achieve, or

2. collect two, or preferably three, (if money and time are less of an issue)
replicates at the center point (recommended setting).

3. if money and time are not an issue, run a 22 full factorial design with center
point. The design is centered on the optimal setting (X1 = +1,5, X3 = +1.3)
with one overlapping new corner point at (X1 = +1, X3 = +1) and with new
corner points at (X1,X3) = (+1,+1), (+2,+1), (+1,+1.6), (+2,+1.6). Of these
four new corner points, the point (+1,+1) has the advantage that it overlaps
with a corner point of the original design.

NIST
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5.6. Case Studies
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5. Process |mprovement

5.6.Case Studies

Contents The purpose of this section isto illustrate the analysis of designed
experiments with data collected from experiments run at the National
Institute of Standards and Technology and SEMATECH. A secondary
goal isto give the reader an opportunity to run the analysesin real-time
using the Datapl ot software package.

1. Eddy current probe senditivity study

2. Sonoluminescent light intensity study

NIST
SEMATECH
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5.6.1. Eddy Current Probe Sensitivity Case Study

P ENGINEERING STATISTICS HANDBOOK

|[HOME TOOLS & AIDS |[SEARCH [BACK NEXT]|

5. Process |mprovement
5.6. Case Studies

5.6.1.Eddy Current Probe Sensitivity Case
Study

Analysis of This case study demonstrates the analysis of a 23 full factorial design.
a 23 Full

Factorial The analysisfor this case study is based on the EDA approach discussed
Design in an earlier section.
Contents The case study is divided into the following sections:

1. Background and data

Initial plots/main effects

| nteraction effects

Main and interaction effects: block plots

Estimate main and interaction effects

M odeling and prediction equations

| ntermediate conclusions

| mportant factors and parsimonious prediction
Validate the fitted model
Using the model

© o N o o kWD

=
©

[ —
[

. Conclusions and next step

=
N

Work this example yourself
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5.6.1.1. Background and Data
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5.6. Case Studies

5.6.1. Eddy Current Probe Sensitivity Case Study

5.6.1.1.Background and Data

Background The datafor this case study is a subset of a study performed by

Satistical
Goals

Capobianco, Splett, and lyer. Capobianco was a member of the NIST

Electromagnetics Division and Splett and lyer were members of the
NIST Statistical Engineering Division at the time of this study.

The goal of this project isto develop a nondestructive portable device for
detecting cracks and fracturesin metals. A primary application would be
the detection of defects in airplane wings. The internal mechanism of the
detector would be for sensing crack-induced changes in the detector's
electromagnetic field, which would in turn result in changesin the
impedance level of the detector. This change of impedance is termed
"sensitivity” and it isa sub-goal of this experiment to maximize such
sensitivity as the detector is moved from an unflawed region to a flawed
region on the metal.

The case study illustrates the analysis of a 23 full factorial experimental
design. The specific statistical goals of the experiment are:

1. Determine the important factors that affect sensitivity.
2. Determine the settings that maximize sensitivity.

3. Determine a predicition equation that functionally relates
sensitivity to various factors.
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There were three detector wiring component factors under consideration:

1. X1 = Number of wire turns

2. X2 = Wirewinding distance

3. X3 =Wireguage
Since the maximum number of runs that could be afforded timewise and
costwise in this experiment was n = 10, a 23 full factoral experiment
(involving n = 8 runs) was chosen. With an eye to the usual monotonicity
assumption for 2-level factorial designs, the selected settings for the
three factors were as follows:

1. X1 = Number of wireturns: -1 =90, +1 =180

2. X2 =Wirewinding distance: -1=0.38, +1=1.14

3. X3=Wireguage:-1=40,+1 =48
The experiment was run with the 8 settings executed in random order.
The following data resulted.

Y X1 X2 X3

Pr obe Nunber W ndi ng Wre Run

| npedance of Turns D stance Guage Seguence
1.70 -1 -1 -1 2
4.57 +1 -1 -1 8
0. 55 -1 +1 -1 3
3.39 +1 +1 -1 6
1.51 -1 -1 +1 7
4. 59 +1 -1 +1 1
0. 67 -1 +1 +1 4
4. 29 +1 +1 +1 5

Note that the independent variables are coded as +1 and -1. These
represent the low and high settings for the levels of each variable.
Factorial designs often have 2 levels for each factor (independent
variable) with the levels being coded as-1 and +1. Thisis a scaling of
the data that can simplify the analysis. If desired, these scaled values can
be converted back to the original units of the data for presentation.
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5.6.1.2. Initial Plots/Main Effects
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5.6.1.2. Initial Plots/Main Effects

Plot the Thefirst step in the analysisis to generate an ordered data plot.
Data:
Ordered
Data Plot
Ordered Data Plot for Eddy Current Data
K=13
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Settings

Conclusions  We can make the following conclusions based on the ordered data plot.

fromthe 1. Important Factors: The 4 highest response values have X1 = + while the 4 lowest response
Ordered values have X1 = -, Thisimplies factor 1 is the most important factor. When X1 = -, the -
Data Plot values of X2 are higher than the + values of X2. Similarly, when X1 = +, the - values of X2

are higher than the + values of X2. Thisimplies X2 isimportant, but less so than X1. There
isno clear pattern for X3.

2. Best Settings: In this experiment, we are using the device as a detector, and so high
sengitivities are desirable. Given this, our first pass at best settingsyields (X1 = +1, X2 =
-1, X3 = either).
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5.6.1.2. Initial Plots/Main Effects

Plot the The next step in the analysis is to generate a dex scatter plot.
Data: Dex
Scatter Plot
DEX Scatter Plot for Eddy Current Data
5
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X X
4 =
l X X X
£ 37
2
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E
g -
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X X X
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NUMBER OF WINDING WIRE
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Conclusions  We can make the following conclusions based on the dex scatter plot.

fromthe 1. Important Factors: Factor 1 (Number of Turns) is clearly important. When X1 = -1, all 4
DEX sengtivities are low, and when X1 = +1, all 4 sensitivities are high. Factor 2 (Winding
Scatter Plot Distance) is less important. The 4 sensitivities for X2 = -1 are dightly higher, as agroup,

than the 4 sensitivities for X2 = +1. Factor 3 (Wire Gage) does not appear to be important
at all. The sengitivity is about the same (on the average) regardless of the settings for X3.

2. Best Settings: In this experiment, we are using the device as a detector, so high sensitivities
are desirable. Given this, our first pass at best settingsyields (X1 =+1, X2 =-1, X3 =
either).

3. There does not appear to be any significant outliers.
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5.6.1.2. Initial Plots/Main Effects
One of the primary questionsis: what are the most important factors? The ordered data plot and
the dex scatter plot provide useful summary plots of the data. Both of these plots indicated that
factor X1 is clearly important, X2 is somewhat important, and X3 is probably not important.

Check for

Main
Effects: Dex
The dex mean plot shows the main effects. This provides probably the easiest to interpert

Mean Plot
indication of the important factors.
DEX Mean Plot for Eddy Current Data
5
4
Z
2 f .
E 3 II| x_‘\
& S :
|III x\\
2 !
1 . T I
NUMBER OF WINDING WIRE
DISTANCE GAGE

TURNS

The dex mean plot (or main effects plot) reaffirms the ordering of the dex scatter plot, but
additional information is gleaned because the eyeball distance between the mean values gives an

Conclusions
fromthe
DEX Mean approximation to the least squares estimate of the factor effects.
Plot . .
We can make the following conclusions from the dex mean plot.

1. Important Factors:
X1 (effect = large: about 3 ohms)
X2 (effect = moderate: about -1 ohm)
X3 (effect = small: about 1/4 ohm)
2. Best Settings: As before, choose the factor settings that (on the average) maximize the

sensitivity:
(X1,X2,X3) = (+,-,%)
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5.6.1.2. Initial Plots/Main Effects

Comparison  All of these plots are used primarily to detect the most important factors. Because it plots a
of Plots summary statistic rather than the raw data, the dex mean plot shows the main effects most clearly.
However, it is still recommended to generate either the ordered data plot or the dex scatter plot

(or both). Since these plot the raw data, they can sometimes reveal features of the data that might
be masked by the dex mean plot.
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5.6.1.3. Interaction Effects
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5.6.1.3.Interaction Effects

Check for In addition to the main effects, it is also important to check for interaction effects, especialy
Interaction 2-factor interaction effects. The dex interaction effects plot is an effective tool for this.
Effects: Dex

Interaction
PI Ot DEX INTERACTESN EFFECTS PLOT FOR EDODY CURRENT DATA
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5.6.1.3. Interaction Effects

Conclusions  We can make the following conclusions from the dex interaction effects plot.

fromthe 1. Important Factors: Looking for the plots that have the steepest lines (that is, largest
DEX effects), we note that:

Interaction o X1 (number of turns) is the most important effect: estimated effect = -3.1025;
Effects Plot

0 X2 (winding distance) is next most important: estimated effect = -.8675;
0 X3 (wire gage) is relatively unimportant;
0 All three 2-factor interactions are relatively unimporant.

2. Best Settings: Aswith the main effects plot, the best settings to maximize the sensitivity
are

(X1,X2,X3) = (+1,-1,+1)
but with the X3 setting of +1 mattering little.
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5.6.1.4. Main and Interaction Effects: Block Plots
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5.6.1.4.Main and Interaction Effects: Block Plots

Block Plots

Block plots are a useful adjunct to the dex mean plot and the dex interaction effects plot to
confirm the importance of factors, to establish the robustness of main effect conclusions, and to
determine the existence of interactions. Specificaly,
1. Thefirst plot below answers the question: Isfactor 1 important? If factor 1 isimportant, is
this importance robust over all 4 settings of X2 and X3?

2. The second plot below answers the question: Is factor 2 important? If factor 2 isimportant,
isthisimportance robust over al 4 settings of X1 and X3?

3. Thethird plot below answers the question: Is factor 3 important? If factor 3 isimportant, is
thisimportance robust over all 4 settings of X1 and X2?

For block plots, it isthe height of the bars that isimportant, not the relative positioning of each
bar. Hence we focus on the size and internals of the blocks, not "where" the blocks are one
relative to another.

Primary Factor- Turns Primary Factor - Winding Distance
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4 4
2 2
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5.6.1.4. Main and Interaction Effects: Block Plots

Conclusions Itisrecalled that the block plot will access factor importance by the degree of consistency
fromthe (robustness) of the factor effect over avariety of conditions. In this light, we can make the
Block Plots  following conclusions from the block plots.

1. Relative Importance of Factors: All of the bar heightsin plot 1 (turns) are greater than the
bar heightsin plots 2 and 3. Hence, factor 1 is more important than factors 2 and 3.

2. Statistical Significance: In plot 1, looking at the levels within each bar, we note that the
response for level 2 is higher than level 1 in each of the 4 bars. By chance, this happens
with probability 1/(24) = 1/16 = 6.25%. Hence, factor 1 is near-statistically significant at
the 5% level. Similarly, for plot 2, level 1 isgreater than level 2 for all 4 bars. Hence,
factor 2 is near-statistically significant. For factor 3, there is not consistent ordering within
all 4 bars and hence factor 3 is not statistically significant. Rigorously speaking then,
factors 1 and 2 are not statistically significant (since 6.25% is not < 5%); on the other hand
such near-significance is suggestive to the analyst that such factors may in fact be
important, and hence warrant further attention.

Note that the usual method for determining statistical significance isto perform an analysis
of variance (ANOVA). ANOVA is based on normality assumptions. If these normality
assumptions are in fact valid, then ANOV A methods are the most powerful method for
determining statistical signficance. The advantage of the block plot method isthat it is
based on less rigorous assumptions than ANOVA. At an exploratory stage, it is useful to
know that our conclusions regarding important factors are valid under a wide range of
assumptions.

3. Interactions: For factor 1, the 4 bars do not change height in any systematic way and hence
thereis no evidence of X1 interacting with either X2 or X3. Similarly, thereis no evidence
of interactions for factor 2.
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5.6.1.5. Estimate Main and Interaction Effects
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5.6.1.5. Estimate Main and Interaction Effects

Effects
Estimation

Datapl ot
Output

Although the effect estimates were given on the dex interaction plot on a previous
page, they can also be estimated quantitatively.

The full model for the 23 factorial design is

Y = p+05+(AiX) + X+ S Xs + f12X1 X0+
13 X) Xy + Py X X5 + ﬁlEH-XI-XE-XH) T €

Datafrom factorial designs with two levels can be analyzed using the Y ates technique,
which is described in Box, Hunter, and Hunter. The Y ates technique utilizes the
specia structure of these designs to simplify the computation and presentation of the
fit.

Dataplot generated the following output for the Y ates analysis.

( NOTE- - DATA MUST BE | N STANDARD O?DER)
NUVBER OF OBSERVATI ONS =
NUVBER OF FACTORS
NO REPLI CATI ON CASE

w o

PSEUDO- REPLI CATI ON STAND. DEV.
PSEUDO- DEGREES OF FREEDOM
(THE PSEUDO- REP. STAND. DEV. ASSUMES ALL

3, 4, 5, ...-TERM I NTERACTI ONS ARE NOT REAL,
BUT MANI FESTATI ONS OF RANDOM ERROR)

0. 20152531564E+00
1

STANDARD DEVI ATI ON OF A CCEF.
(BASED ON PSEUDO- REP. ST. DEV.)

0. 14249992371E+00

GRAND MEAN
GRAND STANDARD DEVI ATI ON

0. 26587500572E+01
0.17410624027E+01

99% CONFI DENCE LIM TS (+-)
95% CONFI DENCE LIM TS (+-)

0.90710897446E+01
0.18106349707E+01
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5.6.1.5. Estimate Main and Interaction Effects

Description
of Yates
Output

Conclusions

0. 63656803131E+02
0.12706216812E+02

99. 5% PO NT OF T DI STRI BUTI ON
97.5% PO NT OF T DI STRI BUTI ON

| DENTI FI ER EFFECT T VALUE RESSD: RESSD:
VEAN + VEAN +

TERM CUM TERMS

VEAN 2. 65875 1. 74106 1. 74106
1 3. 10250 21. 8* 0.57272 0.57272

2 -0. 86750 -6.1 1.81264 0. 30429

23 0. 29750 2.1 1.87270 0. 26737
13 0. 24750 1.7 1. 87513 0. 23341

3 0. 21250 1.5 1. 87656 0.19121
123 0. 14250 1.0 1.87876 0. 18031
12 0.12750 0.9 1.87912 0. 00000

In fitting 2-level factorial designs, Dataplot takes advantage of the special structure of
these designs in computing the fit and printing the results. Specifically, the main
effects and interaction effects are printed in sorted order from most significant to least
significant. It also prints the t-value for the term and the residual standard deviation
obtained by fitting the model with that term and the mean (the column labeled RESSD
MEAN + TERM), and for the model with that term, the mean, and all other terms that
are more statistically significant (the column labeled RESSD MEAN + CUM
TERMS).

Of the five columns of output, the most important are the first (which is the identifier),
the second (the least squares estimated effect = the difference of means), and the last
(the residuals standard deviation for the cumulative model, which will be discussed in
more detail in the next section).

In summary, the Y ates analysis provides us with the following ranked list of important
factors.

1. X1 (Number of Turns): effect estimate = 3.1025 ohms

2. X2 (Winding Distance): effect estimate = -0.8675 ohms

3. X2* X3 (Winding Distance with effect estimate = 0.2975 ohms
Wire Guage):

4. X1* X3 (Number of Turnswith Wire effect estimate = 0.2475 ohms
Guage):

5. X3 (Wire Guage): effect estimate = 0.2125 ohms

6. X1*X2* X3 (Number of Turnswith effect estimate = 0.1425 ohms
Winding Distance with Wire
Guage):

7. X1*X2 (Number of Turnswith effect estimate = 0.1275 ohms
Winding Distance):
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5.6.1.6. Modeling and Prediction Equations
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5.6.1.6.Modeling and Prediction Equations

Parameter
Estimates
Don't
Change as
Additional
Terms
Added

Default
Model:
Grand
Mean

Conclusions

In most cases of least squares fitting, the model coefficient estimates for previously
added terms change depending on what was successively added. For example, the
estimate for the X1 coefficient might change depending on whether or not an X2 term
was included in the model. Thisis not the case when the design is orthogonal, asisthis
23 full factorial design. In such a case, the estimates for the previously included terms
do not change as additional terms are added. This means the ranked list of effect
estimates in the Y ates table simultaneously serves as the least squares coefficient
estimates for progressively more complicated models.

The last column of the Y ates table gave the residual standard deviation for 8 possible
models, each one progressively more complicated.

At the top of the Y ates table, if none of the factors are important, the prediction
equation defaults to the mean of all the response values (the overall or grand mean).
That is,

Y = 2.63875

From the last column of the Y ates table, it can be seen that this simplest of all models
has aresidual standard deviation (a measure of goodness of fit) of 1.74106 ohms.
Finding a good-fitting model was not one of the stated goals of this experiment, but the
determination of a good-fitting model is"free" along with the rest of the analysis, and
so it isincluded.

From the last column of the Y ates table, we can summarize the following prediction
equations:

. ¥ = 265875
has aresidual standard deviation of 1.74106 ohmes.
. Y =2.63875+ 0.5(3.1025X1)
has aresidual standard deviation of 0.57272 ohmes.
. ¥ =2.63875 +0.5(3.1025X1 — 0.8675X2)
has aresidual standard deviation of 0.30429 ohmes.
.Y = 263875+ 0.5(3.1025X1 — 0.8675X2 4 0.2975X 2+ X3)
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5.6.1.6. Modeling and Prediction Equations

has aresidua standard deviation of 0.29750 ohms.

« Theremaining models can be listed in asimilar fashion. Note that the full model
provides a perfect fit to the data.
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5.6.1.7. Intermediate Conclusions
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5.6.1.7.Intermediate Conclusions

I mportant
Factors

Best Settings

Can We
Extract
More From
the Data?

Taking stock from all of the graphical and quantitative analyses of the
previous sections, we conclude that X1 (= number of turns) is the most
Important engineering factor affecting sensitivity, followed by X2 (=
wire distance) as next in importance, followed then by some less
important interactions and X3 (= wire guage).

Also, from the various analyses, we conclude that the best design
settings (on the average) for a high-sensitivity detector are

(X1,X2,X3) = (+,-,%)
that is

number of turns = 180,
winding distance = 0.38, and
wire guage = 48.

Thus, inavery rea sense, the analysisis complete. We have achieved
the two most important stated goals of the experiment:

1. gaining insight into the most important factors, and
2. ascertaining the optimal production settings.

On the other hand, more information can be squeezed from the data, and
that is what this section and the remaining sections address.

1. First of al, we focus on the problem of taking the ranked list of
factors and objectively ascertaining which factors are "important™
versus "unimportant”.

2. Inaparallel fashion, we use the subset of important factors
derived above to form a"final" prediction equation that is good
(that is, having a sufficiently small residual standard deviation)
while being parsimonious (having a small number of terms),
compared to the full model, which is perfect (having aresidua
standard deviation = 0, that is, the predicted values = the raw
data), but is unduly complicated (consisting of a constant + 7
terms).

http://www.itl.nist.gov/div898/handbook/pri/section6/pri617.htm (1 of 2) [11/14/2003 5:54:11 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
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5.6.1.8. Important Factors and Parsimonious Prediction
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5.6.1.8.Important Factors and Parsimonious Prediction

| dentify
I mportant
Factors

Criteria for
Including
Termsin
the Model

Effects:
Engineering
Sgnificance

The two problems discussed in the previous section (important factors and a parsimonious model)
will be handled in parallel since determination of one yields the other. In regard to the "important
factors’, our immediate goal is to take the full subset of 7 main effects and interactions and
extract a subset that we will declare as"important”, with the complementary subset being
"unimportant”. Seven criteriaare discussed in detail under the Y ates analysisin the EDA Chapter

(Chapter 1). The relevant criteriawill be applied here. These criteriaare not al equally important,
nor will they yield identical subsets, in which case a consensus subset or a weighted consensus
subset must be extracted.

The criteria that we can use in determining whether to keep afactor in the model can be
summarized as follows.

Effects. Engineering Significance
Effects: 90% Numerical Significance
Effects. Statistical Significance
Effects: Half-normal Probability Plots
5. Averages. Y ouden Plot

A w NP

The first four criteriafocus on effect estimates with three numerical criteria and one graphical
criterion. The fifth criterion focuses on averages. We discuss each of these criteriain detail in the
following sections.

The last section summarizes the conclusions based on all of the criteria.

The minimum engineering significant difference is defined as

Bi| > A

where | ﬁi | is the absolute value of the parameter estimate (i.e., the effect) and A, isthe minimum

engineering significant difference. That is, declare afactor as "important” if the effect is greater
than some a priori declared engineering difference. We use a rough rule-of-thumb of keeping
only those factors whose effect is greater than 10% of the current production average. In this case,
let's say that the average detector has a sensitivity of 2.5 ohms. This suggests that we would
declare al factors whose effect is greater than 10% of 2.5 ohms = 0.25 ohm to be significant from
an engineering point of view.

Based on this minimum engineering-significant-difference criterion, we conclude to keep two
terms. X1 (3.10250) and X2 (-.86750).
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5.6.1.8. Important Factors and Parsimonious Prediction

Effects:
90%
Numerical
Sgnificance

Effects:
Satistical
Sgnificance

Effects:
Probability
Plots

The 90% numerical significance criterion is defined as

|l > (maz|f)/10

That is, declare afactor asimportant if it exceeds 10% of the largest effect. For the current case
study, the largest effect is from factor 1 (3.10250 ohms), and so 10% of that is 0.31 ohms. This
suggests keeping all factors whose effects exceed 0.31 ohms.

Based on the 90% numerical criterion, we thus conclude to keep two terms: X1 (3.10250) and X2
(-.86750). The X2* X3 term, (0.29750), isjust under the cutoff.

Statistical significanceis defined as

™ ] %
| > 28d(f3;) = 2(—
That is, declare afactor as"important” if its effect is more than 2 standard deviations away from O
(O, by definition, meaning "no effect"). The difficulty with thisisthat in order to invoke thiswe
need the 7 = the standard deviation of an observation.

For the current case study, ignoring 3-factor interactions and higher-order interactions leads to an
estimate of ¢r based on omitting only a single term: the X1* X2* X3 interaction.

Thus for this current case study, if one assumes that the 3-factor interaction is nil and hence
represents a single drawing from a population centered at zero, an estimate of the standard
deviation of an effect is simply the estimate of the interaction effect (0.1425). Two such effect
standard deviations is 0.2850. This rule becomes to keep all | ﬁ1| > 0.2850. Thisresultsin keeping

three terms: X1 (3.10250), X2 (-.86750), and X1* X2 (.29750).

The half-normal probability plot can be used to identify important factors.

The following plot shows the half-normal probability plot of the absolute value of the effects.
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5.6.1.8. Important Factors and Parsimonious Prediction

Eddy Cumrent Data
Hal-normal Probability Plot of Eitects
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The half-normal probablity plot clearly shows two factors displaced off the line, and we see that

those two factors are factor 1 and factor 2. In conclusion, keep two factors: X1 (3.10250) and X2
(-.86750).

Effects:
Youden Plot

A dex Youden plot can be used in the following way. Keep afactor as "important” if it is
displaced away from the central-tendency bunch in a'Y ouden plot of high and low averages.
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Eddy Cumrent Data
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For the case study at hand, the Y ouden plot clearly shows a cluster of points near the grand
average (2.65875) with two displaced points above (factor 1) and below (factor 2). Based on the
Y ouden plot, we thus conclude to keep two factors: X1 (3.10250) and X2 (-.86750).

Conclusions  In summary, the criterion for specifying "important” factors yielded the following:

1. Effects, Engineering Significant: X1 X2

2. Effects, Numerically Significant: X1 X2 (X2* X3 is borderline)
3. Effects, Statistically Significant: X1 X2 X2* X3

4. Effects, Half-Normal Probability Plot: X1 X2

5. Averages, Y ouden Plot: X1 X2

All the criteriaselect X1 and X2. One a'so includes the X2* X3 interaction term (and it is
borderline for another criteria).

We thus declare the following consensus:
1. Important Factors: X1 and X2
2. Parsimonious Prediction Equation:

¥ =2.63875 +0.5(3.1025X1 — 0.8675X2)

(with aresidual standard deviation of .30429 ohms)
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5.6. Case Studies

5.6.1. Eddy Current Probe Sensitivity Case Study

5.6.1.9.Validate the Fitted Model

Model
Validation

Table of
Residuals

Residual
Sandard
Deviation

In the Important Factors and Parsimonious Prediction section, we came to the following model

Y = 2.65875 +0.5[3.10250X, — 0.86750X,] + ¢
The residua standard deviation for this model is 0.30429.

The next step isto validate the model. The primary method of model validation is graphical
residual analysis; that is, through an assortment of plots of the differences between the observed

dataY and the predicted value ¥’ from the model. For example, the design point (-1,-1,-1) has an
observed data point (from the Background and data section) of Y = 1.70, while the predicted

value from the above fitted model for this design point is
Y = 2.63875 + 0.5(3.1023{—1) — 0.8673{—1)) = 1.534125
which leads to the residual 0.15875.

If the model fits well, ¥ should be near Y for all 8 design points. Hence the 8 residuals should all
be near zero. The 8 predicted values and residuals for the model with these data are:

X1 X2 X3 bserved Predicted Residual

-1 -1 -1 1.70 1.54125 0. 15875
+1 -1 -1 4. 57 4.64375 -0.07375
-1 +1 -1 0. 55 0.67375 -0. 12375
+1 +1 -1 3.39 3. 77625 - 0. 38625
-1 -1 +1 1.51 1.54125 - 0. 03125
+1 -1 +1 4.59 4. 64375 - 0. 05375
-1 +1 +1 0. 67 0.67375 -0. 00375
+1 +1 +1 4. 29 3.77625 0. 51375

What is the magnitude of the typical residual? There are several ways to compute this, but the
statistically optimal measure is the residual standard deviation:

e — I!'Ef:lrf
Py e N_P

with r; denoting the ith residual, N = 8 is the number of observations, and P = 3 is the number of
fitted parameters. From the Y ates table, the residual standard deviation is 0.30429.
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How Should
Residuals
Behave?

Residual
Plots
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If the prediction equation is adequate, the residuals from that equation should behave like random
drawings (typically from an approximately normal distribution), and should, since presumably

random, have no structural relationship with any factor. Thisincludes any and all potential terms
(X1, X2, X3, X1* X2, X1* X3, X2* X3, X1* X2* X3).

Further, if the model is adequate and compl ete, the residuals should have no structural
relationship with any other variables that may have been recorded. In particular, thisincludes the
run sequence (time), which isreally serving as a surrogate for any physical or environmental
variable correlated with time. Ideally, all such residual scatter plots should appear structureless.
Any scatter plot that exhibits structure suggests that the factor should have been formally
included as part of the prediction equation.

Validating the prediction equation thus means that we do afinal check as to whether any other
variables may have been inadvertently left out of the prediction equation, including variables
drifting with time.

The graphical residual analysis thus consists of scatter plots of the residuals versus all 3 factors
and 4 interactions (all such plots should be structureless), a scatter plot of the residuals versus run
sequence (which also should be structureless), and a normal probability plot of the residuals
(which should be near linear). We present such plots below.

normal prob plot en x1
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Thefirst plot isanormal probability plot of the residuals. The second plot is arun sequence plot

of the residuals. The remaining plots are plots of the residuals against each of the factors and each
of the interaction terms.
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Conclusions  We make the following conclusions based on the above plots.

1. Main Effects and Interactions: The X1 and X2 scatter plots are "flat" (as they must be since
X1 and X2 were explicitly included in the model). The X3 plot shows some structure as
does the X1* X3, the X2* X3, and the X1* X2* X3 plots. The X1* X2 plot shows little
structure. The net effect is that the relative ordering of these scatter plotsisvery muchin
agreement (again, as it must be) with the relative ordering of the "unimportant” factors
given on lines 3-7 of the Y ates table. From the Y ates table and the X2* X3 plat, it is seen
that the next most influential term to be added to the model would be X2*X3. In effect,
these plots offer a higher-resolution confirmation of the ordering that was in the Y ates
table. On the other hand, none of these other factors "passed" the criteria given in the
previous section, and so these factors, suggestively influential as they might be, are still not
influential enough to be added to the model.

2. Time Drift: The run sequence scatter plot israndom. Hence there does not appear to be a
drift either from time, or from any factor (e.g., temperature, humidity, pressure, etc.)
possibly correlated with time.

3. Normality: The normal probability plot of the 8 residuals has some curvature, which
suggests that additional terms might be added. On the other hand, the correlation
coefficient of the 8 ordered residuals and the 8 theoretical normal N(0,1) order statistic
medians (which define the two axes of the plot) has the value 0.934, which iswell within
acceptable (5%) limits of the normal probability plot correlation coefficient test for

normality. Thus, the plot is not so non-linear as to reject normality.
In summary, therefore, we accept the model

Y = 2.65875 + 0.5[3.10250X, — 0.86730X,] +

as a parsimonious, but good, representation of the sensitivity phenomenon under study.
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5.6.1.10.Using the Fitted Model

Mode€l
Provides
Additional
Insight

Global
Prediction

Although deriving the fitted model was not the primary purpose of the study, it does have two
benefits in terms of additional insight:

1. Global prediction
2. Global determination of best settings

How does one predict the response at points other than those used in the experiment? The
prediction equation yields good results at the 8 combinations of coded -1 and +1 values for the
three factors:

1. X1 = Number of turns =90 and 180
2. X2 =Winding distance = .38 and 1.14
3. X3 =Wiregauge =40 and 48
What, however, would one expect the detector to yield at target settings of, say,
1. Number of turns = 150
2. Winding distance = .50
3. Wire guage = 46

Based on the fitted equation, we first trand ate the target values into coded target values as
follows:

coded target = -1 + 2* (target-low)/(high-low)
Hence the coded target values are
1. X1 =-1+ 2*(150-90)/(180-90) = 0.333333
2. X2=-1+2*(.50-.38)/(1.14-.38) =-0.684211
3. X3 =-1+ 2*(46-40)/(48-40) = 0.5000
Thus the raw data
(Number of turns,Winding distance,Wire guage) = (150,0.50,46)
tranglates into the coded
(X1,X2,X3) = (0.333333,-0.684211,0.50000)
onthe-1to +1 scae.

Inserting these coded values into the fitted equation yields, as desired, a predicted value of
v = 2.65875 + 0.5(3.10250* (.333333) - 0.86750* (-.684211)) = 3.47261

The above procedure can be carried out for any values of turns, distance, and gauge. Thisis
subject to the usual cautions that equations that are good near the data point vertices may not
necessarily be good everywhere in the factor space. Interpolation is a bit safer than extrapolation,
but it is not guaranteed to provide good results, of course. One would feel more comfortable
about interpolation (as in our example) if additional data had been collected at the center point
and the center point data turned out to be in good agreement with predicted values at the center

http://www.itl.nist.gov/div898/handbook/pri/section6/pri61a.htm (1 of 2) [11/14/2003 5:54:13 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm

5.6.1.10. Using the Fitted Model
cautiously but insightfully generate predicted values that go well beyond our limited original data

Global
Determination

of Best
Settings

DEX Contour
Plot

point based on the fitted model. In our case, we had no such data and so the sobering truth is that

the user of the equation is assuming something in which the data set as given is not capable of
suggesting one way or the other. Given that assumption, we have demonstrated how one may

In order to determine the best settings for the factors, we can use a dex contour plot. The dex

set of 8 points.
contour plot is generated for the two most significant factors and shows the value of the response

variable at the vertices (i.e, the -1 and +1 settings for the factor variables) and indicates the

direction that maximizes (or minimizes) the response variable. If you have more than two
significant factors, you can generate a series of dex contour plots with each one using two of the

important factors.
The following is the dex contour plot of the number of turns and the winding distance.

DEX Contour Plot
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The maximum value of the response variable (eddy current) corresponds to X1 (number of turns)
equal to -1 and X2 (winding distance) equal to +1. The thickened line in the contour plot

corresponds to the direction that maximizes the response variable. This information can be used
in planning the next phase of the experiment.
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Conclusions

Next Step

The goals of this case study were:
1. Determine the most important factors.
2. Determine the best settings for the factors.
3. Determine agood prediction equation for the data.

The various plots and Y ates analysis showed that the number of turns
(X1) and the winding distance (X2) were the most important factors and
agood prediction equation for the dataiis:

Y = 2.653875 + 0.5[3.10250X, — 0.86750X5)

The dex contour plot gave us the best settings for the factors (X1 =-1
and X2 =1).

Full and fractional designs are typically used to identify the most
important factors. In some applications, thisis sufficient and no further
experimentation is performed. In other applications, it isdesired to
maximize (or minimize) the response variable. Thistypically involves
the use of response surface designs. The dex contour plot can provide
guidance on the settings to use for the factor variables in this next phase
of the experiment.

Thisis acommon sequence for designed experiments in engineering and
scientific applications. Note the iterative nature of this approach. That is,
you typically do not design one large experiment to answer all your
guestions. Rather, you run a series of smaller experiments. Theinitial
experiment or experiments are used to identify the important factors.
Once these factors are identified, follow-up experiments can be run to
fine tune the optimal settings (in terms of maximizing/minimizing the
response variable) for these most important factors.

For this particular case study, aresponse surface design was not used.
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5.6.1.12.Work This Example Yourself

View This page allows you to repeat the analysis outlined in the case study
Dataplot description on the previous page using Dataplot. It is required that you
Macro for have already downloaded and installed Dataplot and configured your
this Case browser to run Dataplot. Output from each analysis step below will be
Sudy displayed in one or more of the Dataplot windows. The four main

windows are the Output window, the Graphics window, the Command
History window, and the Data Sheet window. Across the top of the main
windows are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps

Results and Conclusions

Click on the links below to start Dataplot and run this case study
yourself. Each step may use results from previous steps, so please be

patient. Wait until the software verifies that the current step is

complete before clicking on the next step.

The links in this column will connect you with more detailed
information about each analysis step from the case study
description.

1. Get set up and started.

1. Read in the data.

1. You have read 4 colums of nunbers
into Dataplot: variables Y, X1, X2,
and X3.

2. Plot the main effects.

1. Ordered data plot.

2. Dex scatter plot.

3. Dex nean plot.

1. O dered data plot shows factor 1
clearly inportant, factor 2
sonewhat i nportant.

2. Dex scatter plot shows significant
differences for factors 1 and 2.

3. Dex nean plot shows significant
differences in neans for factors
1 and 2.
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3. Plots for interaction effects

1. Cenerate a dex interaction
effects matrix plot.

The dex interaction effects matri x

pl ot does not show any nmjor

interaction effects.

4. Block plots for main and interaction effects

1. Cenerate bl ock plots.

The bl ock plots show that the

factor 1 and factor 2 effects

are consi stent over al

conbi nati ons of the other

factors.

5. Estimate main and interaction effects

1. Performa Yates fit to estinate the
main effects and interaction effects.

The Yates analysis shows that the

factor 1 and factor 2 main effects

are significant, and the interaction

for factors 2 and 3 is at the

boundary of statistical significance.

6. Mbdel selection

1. Generate half-norma
probability plots of the effects.

2. Generate a Youden plot of the
ef fects.

The probability plot indicates

that the nodel should include

main effects for factors 1 and 2.

The Youden pl ot indicates

that the nodel should include

main effects for factors 1 and 2.

7. Mbdel validation

1. Conpute residuals and predicted val ues

fromthe partial nodel suggested by
the Yates anal ysis.

2. Cenerate residual plots to validate
t he nodel .

Check the link for the

val ues of the residual and

pr edi ct ed val ues.

The residual plots do not

i ndicate any nmjor problens

with the nodel using nmain

effects for factors 1 and 2.
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5.6.1.12. Work This Example Yourself

8. Dex contour plot

1. CGenerate a dex contour plot using 1. The dex contour plot shows
factors 1 and 2. X1l =-1 and X2 = +1 to be the

best settings.
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5.6.2. Sonoluminescent Light Intensity Case Study

P ENGINEERING STATISTICS HANDBOOK

TOOLS & AIDS |[SEARCH [BACK NEXT]|

|[HOME

5. Process |mprovement
5.6. Case Studies

5.6.2.Sonoluminescent Light Intensity
Case Study

Analysisof a  This case study demonstrates the analysis of a 27-3 fractional factorial
27-3 design.

Fractional
Factorial
Design

This case study is a Dataplot analysis of the optimization of
sonoluminescent light intensity.

The case study is based on the EDA approach to experimental design
discussed in an earlier section.

Contents The case study is divided into the following sections:

1.

e
S

NIST
SEMATECH

© ©o N o ok~ WD

Background and data

Initial plots/main effects

Interaction effects

Main and interaction effects: block plots

Important Factors: Y ouden plot

Important Factors: |effects| plot

Important Factors: half-normal probability plot
Cumulative Residual SD plot
Next step: dex contour plot

Summary of conclusions

. Work this example yoursel f
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5.6.2.1. Background and Data
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5. Process Improvement

5.6. Case Studies

5.6.2. Sonoluminescent Light Intensity Case Study

5.6.2.1.Background and Data

Background
and
Motivation

Sonoluminescence is the process of turning sound energy into light. An
ultrasonic horn is used to resonate a bubble of air in amedium, usually
water. The bubble is ultrasonically compressed and then collapses to
light-emitting plasma.

In the general physics community, sonoluminescence studies are being
carried out to characterize it, to understand it, and to uncover its
practical uses. An unanswered question in the community is whether
sonoluminescence may be used for cold fusion.

NIST's motive for sonoluminescent investigations is to assess its
suitability for the dissolution of physical samples, whichisneeded in
the production of homogeneous Standard Reference Materials (SRMs).
It is believed that maximal dissolution coincides with maximal energy
and maximal light intensity. The ultimate motivation for striving for
maximal dissolution isthat this allows improved determination of
alpha-and beta-emitting radionuclides in such samples.

The objectives of the NIST experiment were to determine the important
factors that affect sonoluminescent light intensity and to ascertain
optimal settings of such factorsthat will predictably achieve high
intensities. An original list of 49 factors was reduced, based on physics
reasons, to the following seven factors: molarity (amount of solute),
solute type, pH, gas type in the water, water depth, horn depth, and flask
clamping.

Time restrictions caused the experiment to be about one month, which
in turn translated into an upper limit of roughly 20 runs. A 7-factor,
2-level fractional factorial design (Resolution V) was constructed and
run. The factor level settings are given below.

Eva Wilcox and Ken Inn of the NIST Physics Laboratory conducted this
experiment during 1999. Jim Filliben of the NIST Statistical
Engineering Division performed the analysis of the experimental data.

http://www.itl.nist.gov/div898/handbook/pri/section6/pri621.htm (1 of 3) [11/14/2003 5:54:13 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm

5.6.2.1. Background and Data

Response This experiment utilizes the following response and factor variables.
Variable, 1. Response Variable (Y) = The sonoluminescent light intensity.
Fagtor 2. Factor 1 (X1) = Molarity (amount of Solute). The coding is-1 for
Variables,

0.10 mol and +1 for 0.33 mol.
and Factor- o
Level 3. Factor 2 (X2) = Solute type. The coding is-1 for sugar and +1 for
Settings glycerol.

4. Factor 3 (X3) = pH. The coding is-1for 3and +1 for 11.

5. Factor 4 (X4) = Gas type in water. The coding is-1 for helium
and +1 for air.

6. Factor 5 (X5) = Water depth. The coding is-1 for half and +1 for
full.

7. Factor 6 (X6) = Horn depth. The codingis-1 for 5 mm and +1 for
10 mm.

8. Factor 7 (X7) = Flask clamping. The coding is -1 for unclamped
and +1 for clamped.

This data set has 16 observations. It isa 27-3 design with no center
points.

Goal of the  This case study demonstrates the analysis of a 27-3 fractional factorial
Experiment experimental design. The goals of this case study are:

1. Determine the important factors that affect the sonoluminescent
light intensity. Specifically, we are trying to maximize this
intensity.

2. Determine the best settings of the seven factors so as to maximize
the sonoluminescent light intensity.

8:;3 _ The following are the data used for this analysis. This data set isgiven in Y ates order.

in

Teal . Y X1 X2 X3 X4 X5 X6 X7

NalySIS | ght Sol ut e Gas Wat er Hor n FI ask
Intensity Mol arity type pH Type Dept h Depth d anpi ng
80. 6 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
66. 1 1.0 -1.0 -1.0 -1.0 -1.0 1.0 1.0
59.1 -1.0 1.0 -1.0 -1.0 1.0 -1.0 1.0
68.9 1.0 1.0 -1.0 -1.0 1.0 1.0 -1.0
75.1 -1.0 -1.0 1.0 -1.0 1.0 1.0 1.0
373.8 1.0 -1.0 1.0 -1.0 1.0 -1.0 -1.0
66. 8 -1.0 1.0 1.0 -1.0 -1.0 1.0 -1.0
79.6 1.0 1.0 1.0 -1.0 -1.0 -1.0 1.0
114. 3 -1.0 -1.0 -1.0 1.0 1.0 1.0 -1.0
84.1 1.0 -1.0 -1.0 1.0 1.0 -1.0 1.0
68. 4 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0
88.1 1.0 1.0 -1.0 1.0 -1.0 -1.0 -1.0
78.1 -1.0 -1.0 1.0 1.0 -1.0 -1.0 1.0
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327. 2 1.0 -1.0 1.0 1.0 -1.0
77.6 1.0 1.0 1.0 1.0 1.0
61.9 1.0 1.0 1.0 1.0 1.0

Reading
Data into
Dataplot

These data can be read into Datapl ot with the following commands

SKIP 25
READ INN.DAT Y X1TO X7

NIST

SEMATECH  HOME

[TOOLS & AIDS

[SEARCH

[BACK

http://www.itl.nist.gov/div898/handbook/pri/section6/pri621.htm (3 of 3) [11/14/2003 5:54:13 PM]

NEXT|


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/

5.6.2.2. Initial Plots/Main Effects
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5. Process Improvement
5.6. Case Studies
5.6.2. Sonoluminescent Light Intensity Case Study

5.6.2.2.Initial Plots/Main Effects

Plot the Thefirst step in the analysisis to generate an ordered data plot.
Data:
Ordered _ ] ]
Data Plot Sonoluminescent Light Intensity
Ordered Data Plot
N s
400 |
X
X
300
=)
@ 200 —
E _ X
100
-t 1111111111111
u_
: - + + - - 4+ - - + + 4+ - o+ o+
- n2. + 4 + + o+ - 4+ + - 4 - - -
M3 - 4 T S S A - - 4+ 4+
¥ - 4 I S A A + 04+ + o+ -
LER + 4+ - 4+ o+ 4 - + + -+
HE: L S S S S R SR - + 4+ -
T + o+ 4+ O T St + - - -
Settings

Conclusions  We can make the following conclusions based on the ordered data plot.

fromthe 1. Two points clearly stand out. The first 13 points lie in the 50 to 100 range, the next point is
gr?eﬁj , greater than 100, and the last two points are greater than 300.
ata Plo

2. Important Factors. For these two highest points, factors X1, X2, X3, and X7 have the same
value (namely, +, -, +, -, respectively) while X4, X5, and X6 have differing values. We
conclude that X1, X2, X3, and X7 are potentially important factors, while X4, X5, and X6
are not.

3. Best Settings: Our first pass makes use of the settings at the observed maximum (Y =
373.8). The settings for this maximum are (+, -, +, -, +, -, -).
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5.6.2.2. Initial Plots/Main Effects

Plot the The next step in the analysis is to generate a dex scatter plot.
Data: Dex
Scatter Plot
Sonoluminescent Light Intensity
Scatter Plot
400 K=7
N=18] y X X X X X X
_E- X X X X X X X
E 300
= J
2
-
E 200 -
E
IE N
E ks X X X . X X X
g ' iy ¥
t N !
BRI EEEEEEEEE

0 1 L T, T, T, L T,
SOLUTE PH GAS WATER HORBRN FLASK
MOLARITY TYPE TYPE DEPTH DEFTH CLAMP

+

Conclusions  We can make the following conclusions based on the dex scatter plot.

fromthe 1. Important Factors: Again, two points dominate the plot. For X1, X2, X3, and X7, these two
DEX points emanate from the same setting, (+, -, +, -), while for X4, X5, and X6 they emanate
Scatter Plot from different settings. We conclude that X1, X2, X3, and X7 are potentially important,

while X4, X5, and X6 are probably not important.

2. Best Settings: Our first pass at best settingsyields (X1 =+, X2 = -, X3 = +, X4 = either, X5
= either, X6 = either, X7 =-).

Check for The dex mean plot is generated to more clearly show the main effects:
Main

Effects: Dex

Mean Plot
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5.6.2.2. Initial Plots/Main Effects

Sonoluminescent Light Intensity
Main EHfects Plot

70
[ | |

S + - + S + - + - + - + - +
SOLUTE PH GAS WATER HORN FLASK
MOLARITY TYPE TYPE DEPTH DEPTH CLAMP

Average Response of Sonoluminescent Light Intensity
=
I
-
k!
L1
-

We can make the following conclusions from the dex mean plot.

Conclusions
fromthe 1. Important Factors:

DEX Mean X2 (effect = large: about -80)
Plot X7 (effect = large: about -80)

X1 (effect = large: about 70)

X3 (effect = large: about 65)

X6 (effect = small: about -10)

X5 (effect = small: between 5 and 10)

X4 (effect = small: less than 5)
2. Best Settings: Here we step through each factor, one by one, and choose the setting that

yields the highest average for the sonoluminescent light intensity:
(X1,X2,X3,X4,X5,X6,X7) = (+,-,+,+,+,-,-)
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5.6.2.2. Initial Plots/Main Effects

Comparison  All of the above three plots are used primarily to determine the most important factors. Because it

of Plots plots a summary statistic rather than the raw data, the dex mean plot shows the ordering of the
main effects most clearly. However, it is still recommended to generate either the ordered data
plot or the dex scatter plot (or both). Since these plot the raw data, they can sometimes revedl
features of the data that might be masked by the dex mean plot.

In this case, the ordered data plot and the dex scatter plot clearly show two dominant points. This
feature would not be obvious if we had generated only the dex mean plot.

I nterpretation-wise, the most important factor X2 (solute) will, on the average, change the light
intensity by about 80 units regardless of the settings of the other factors. The other factors are
interpreted similarly.

In terms of the best settings, note that the ordered data plot, based on the maximum response
value, yielded

+1 ] +l ) +) T T
Note that a consensus best value, with "." indicating a setting for which the three plots disagree,
would be

+1 -l +l " +l -1-

Note that the factor for which the settings disagree, X4, invariably definesitself as an
"unimportant” factor.

NIST
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5.6.2.3. Interaction Effects
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5. Process Improvement
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5.6.2. Sonoluminescent Light Intensity Case Study

5.6.2.3.Interaction Effects

Check for In addition to the main effects, it is also important to check for interaction effects, especialy
Interaction 2-factor interaction effects. The dex interaction effects plot is an effective tool for this.
Effects. Dex

I nteraction

Plot

SONOLUMINESCENT LIGHT INTENSITY
INTERACTIOHN EFFECTS MATRIX

’;1@ 1:663% [12%53s [13: m® [1a: q05 [15: 08 [8: 163 [17% 635
B *, P e — e
5o e
o 70 i
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5.6.2.3. Interaction Effects

Conclusions

fromthe
DEX
Interaction
Effects Plot

NIST
SEMATECH

We make the following conclusions from the dex interaction effects plot.

1. Important Factors: Looking for the plots that have the steepest lines (that is, the largest
effects), and noting that the legends on each subplot give the estimated effect, we have that

o Thediagona plots are the main effects. The important factors are: X2, X7, X1, and

X3. These four factors have |effect| > 60. The remaining three factors have |effect| <
10.

The off-diagonal plots are the 2-factor interaction effects. Of the 21 2-factor
interactions, 9 are nominally important, but they fall into three groups of three:

 X1*X3, X4* X6, X2+ X7 (effect = 70)
 X2%X3, X4* X5, X1* X7 (effect approximately 63.5)
s X1*¥X2, X5% X6, X3* X7 (effect = -59.6)

All remaining 2-factor interactions are small having an |effect| < 20. A virtue of the
interaction effects matrix plot is that the confounding structure of this Resolution 1V
design can be read off the plot. In this case, the fact that X1* X3, X4* X6, and X2* X7
all have effect estimatesidentical to 70 is not a mathematical coincidence. Itisa
reflection of the fact that for this design, the three 2-factor interactions are
confounded. Thisis also true for the other two sets of three (X2* X3, X4* X5, X1* X7,
and X1* X2, X5* X6, X3* X7).

2. Best Settings: Reading down the diagonal plots, we select, as before, the best settings “on
the average”:

(X1,X2,X3,X4,X5,X6,X7) = (+,-,+,+,+,-,-)

For the more important factors (X1, X2, X3, X7), we note that the best settings (+, -, +, -)
are consistent with the best settings for the 2-factor interactions (cross-products):

[HOME

X1: +, X2: - with X1* X2: -
X1: +, X3: + with X1*X3: +
X1: +, X7: - with X1* X7: -
X2: -, X3: + with X2* X3: -
X2: -, X7: - with X2* X7: +
X3: +, X7: - with X3* X7: -

[TOOLS & AIDS [SEARCH [BACK MNEXT]
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5.6.2.4. Main and Interaction Effects: Block Plots
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5.6.2. Sonoluminescent Light Intensity Case Study

5.6.2.4.Main and Interaction Effects: Block Plots

Block Plots

Block plots are a useful adjunct to the dex mean plot and the dex interaction effects plot to

confirm the importance of factors, to establish the robustness of main effect conclusions, and to
determine the existence of interactions.

For block plots, it isthe height of the bars that isimportant, not the relative positioning of each
bar. Hence we focus on the size and internal signs of the blocks, not "where" the blocks are
relative to each other.

We note in passing that for afractional factorial design, we cannot display al combinations of the
six remaining factors. We have arbitrarily chosen two robustness factors, which yields four
blocks for comparison.

SONOLUMINESCENT LIGHT INTENSITY

BLOCK PLOTS
& i &
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5.6.2.4. Main and Interaction Effects: Block Plots

Conclusions  We can make the following conclusions from the block plots.

fromthe 1. Relative Importance of Factors: Because of the expanded vertical axis, due to the two
Block Plots "outliers', the block plot is not particularly revealing. Block plots based on alternatively
scaled data (e.g., LOG(Y)) would be more informative.
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5.6.2.5. Important Factors: Youden Plot
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5.6.2.5.Important Factors: Youden Plot

Purpose The dex Y ouden plot is used to distinguish between important and unimportant factors.
Sample
Youden Plot Sonoluminescent Light Intensity
Youden Plot
Tko7 FACTIR: CONFOUND
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N i
£ ]
& 130
. i
5 120
2 110 — Py, Tk S
E_ s §a §a; §a.368.57
E | 34 34 17423445
L 100 |
% 90 —
E -
< 80 125 3% 2P
70 - 2 2: 12
i ! | ! | I | I | I | ! | I | I | I | !
70 80 90 100 110 120 130 140 150

Average Response for - Setling

http://www.itl.nist.gov/div898/handbook/pri/section6/pri625.htm (1 of 2) [11/14/2003 5:54:15 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/section6/inn/gifs/youden_f.gif

5.6.2.5. Important Factors: Youden Plot

Conclusions  We can make the following conclusions from the Y ouden plot.

frorr(wjthe I 1. Inthe upper left corner are the interaction term X1* X3 and the main effects X1 and X3.
Youden plot 2. Inthelower right corner are the main effects X2 and X7 and the interaction terms X2* X3
and X1* X2.

3. Theremaining terms are clustered in the center, which indicates that such effects have
averages that are similar (and hence the effects are near zero), and so such effects are
relatively unimportant.

4. Onthefar right of the plot, the confounding structure is given (e.g., 13: 13+27+46), which
suggests that the information on X1* X3 (on the plot) must be tempered with the fact that
X1* X3 is confounded with X2* X7 and X4* X6.
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5.6.2.6. Important Factors: |Effects| Plot
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5.6.2.6.Important Factors: |Effects| Plot

Purpose The |effects| plot displays the results of a Y ates analysisin both atabular and a graphical format.
It is used to distinguish between important and unimportant effects.
Sample
| Effects] Sonoluminescent Light Inlensity
Plot | Effects| Plot
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5.6.2.6. Important Factors: |Effects| Plot

Conclusions  We can make the following conclusions from the |effects| plot.

fromthe 1. A ranked list of main effects and interaction termsis:
|effects| plot X2

X7

X1* X3 (confounded with X2* X7 and X4* X6)
X1

X3

X2* X3 (confounded with X4* X5 and X1* X7)
X1* X2 (confounded with X3* X7 and X5* X6)
X3* X4 (confounded with X1* X6 and X2* X5)
X1* X4 (confounded with X3* X6 and X5* X7)
X6

X5

X1* X2* X4 (confounded with other 3-factor interactions)
X4

X2* X4 (confounded with X3* X5 and X6* X7)
X1* X5 (confounded with X2* X6 and X4* X7)

2. From the graph, there is a clear dividing line between the first seven effects (all |effect| >
50) and the last eight effects (all |effect| < 20). This suggests we retain the first seven terms
as "important” and discard the remaining as "unimportant”.

3. Again, the confounding structure on the right reminds us that, for example, the nominal
effect size of 70.0125 for X1* X3 (molarity* pH) can come from an X1* X3 interaction, an
X2* X7 (solute* clamping) interaction, an X4* X6 (gas* horn depth) interaction, or any
mixture of the three interactions.
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5.6.2.7. Important Factors: Half-Normal Probability Plot
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5.6.2.7.Important Factors: Half-Normal Probability Plot

Purpose The half-normal probability plot is used to distinguish between important and unimportant
effects.
Sample
Half-N(.)r'maI Sonoluminescent Light Inlensity
Probability Hal-normal Probability Plot of Effects
p|0t v FACTOR: COMNF.
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5.6.2.7. Important Factors: Half-Normal Probability Plot

Conclusions  We can make the following conclusions from the half-normal probability plot.

fromthe 1. The pointsin the plot divideinto two clear clusters:
Half-Normal o An upper cluster (|effect] > 60)

Probability '

Plot o A lower cluster (|effect| < 20).

2. The upper cluster contains the effects:
X2, X7, X1* X3 (and confounding), X1, X3, X2* X3 (and confounding), X1* X2 (and
confounding)
These effects should definitely be considered important.

3. Theremaining effectslie on aline and form alower cluster. These effects are declared
relatively unimportant.

4. The effect id's and the confounding structure are given on the far right (e.g., 13:13+27+46).
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5.6.2.8. Cumulative Residual Standard Deviation Plot
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5.6.2.8.Cumulative Residual Standard Deviation Plot

Purpose The cumulative residual standard deviation plot is used to identify the best (parsimonious) model.
Sample
Cumulative SONOLUMINESCENT LIGHT INTENSITY
Residual CUMULATIVE RESIDUAL SD PLOT
Sandard e FACTOR: CONFOUND
Deviation 100 = =18
Plot 1 AVERAGE
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5.6.2.8. Cumulative Residual Standard Deviation Plot

Conclusions  We can make the following conclusions from the cumulative residual standard deviation plot.

fégmljlh :tive 1. The baseline model consisting only of the average (1"") = 110.6063) has a high residual

Residual standard deviation (95).

D Plot 2. The cumulative residual standard deviation shows a significant and steady decrease as the
following terms are added to the average: X2, X7, X1* X3, X1, X3, X2* X3, and X1* X2.
Including these terms reduces the cumul ative residual standard deviation from
approximately 95 to approximately 17.

3. Exclude from the model any term after X1* X2 as the decrease in the residual standard
deviation becomes relatively small.

4. From the |effectg] plot, we see that the average is 110.6063, the estimated X2 effect is
-78.6126, and so on. We use this to from the following prediction equation:
Y = 110.6063 +0.5(—78.6126X, — T8.1126X,+
70.0125(X, * X3) +66.21249X, + 63.8125X;,
—63.4626( X, * X5) — 39.562{X, * X2))

Note that X1* X3 is confounded with X2* X7 and X4* X6, X1* X5 is confounded with X2* X6
and X4* X7, and X1* X2 is confounded with X3* X7 and X5* X6.

From the above graph, we see that the residual standard deviation for this model is
approximately 17.
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5.6.2.9. Next Step: Dex Contour Plot
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5.6.2.9. Next Step: Dex Contour Plot

Purpose The dex contour plot is used to determine the best factor settings for the two most important
factorsin the next iteration of the experiment.

From the previous plots, we identified X2 (solute) and X7 (horn depth) as the two most important

factors.
Sample Dex
Contour Sonoluminescent Light Intensity
Plot Contour Plot of the 2 Dominant Faclors: X2 and X7
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5.6.2.9. Next Step: Dex Contour Plot

Conclusions
fromthe
Dex
Contour
Plot

NIST
SEMATECH

We can make the following conclusions from the dex contour plot.
1. Thebest (high light intensity) setting for X2 is"-" and the best setting for X7 is"-". This

combination yields an average response of approximately 224. The next highest average
response from any other combination of these factorsis only 76.

. The non-linear nature of the contour lines implies that the X2* X7 interaction is important.
. Ontheleft side of the plot from top to bottom, the contour lines start at 0, increment by 50

and stop at 400. On the bottom of the plot from right to left, the contour lines start at O,
increment by 50 and stop at 400.

To achieve alight intensity of, say 400, this suggests an extrapolated best setting of (X2,
X7) = (-2,-2).

. Such extrapolation only makes sense if X2 and X7 are continuous factors. Such is not the

case here. In thisexample, X2 is solute (-1 = sugar and +1 = glycerol) and X7 is flask
clamping (-1 isunclamped and +1 is clamped). Both factors are discrete, and so
extrapolated settings are not possible.
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5.6.2.10. Summary of Conclusions
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5.6.2.10.Summary of Conclusions

Most The primary goal of this experiment was to identify the most important
I mportant factors in maximizing the sonoluminescent light intensity.
Factors

Based on the preceding graphical analysis, we make the following
conclusions.

« Four factors and three groups of 2-factor interactions are
important. A rank-order listing of factorsis:

1. X2: Solute (effect = -78.6)

2. X7: Clamping (effect = -78.1)

3. X1*X3 (Molarity*pH) or
X2* X7 (Solute* Clamping)
(effect = 70.0)

4. X1: Molarity (effect = 66.2)

5. X3: pH (effect = 63.5)

6. X2* X3 (Solute* pH) or
X4* X5 (Gas* Water Depth)
X1* X7 (Molarity* Clamping)
(effect = -63.5)

7. X1*X2 (Molarity* Solute) or
X3* X7 (Ph* Clamping)
(effect = -59.6)

o Thus, of the seven factors and 21 2-factor interactions, it was
found that four factors and at most seven 2-factor interactions
seem important, with the remaining three factors and 14
Interactions apparently being unimportant.
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5.6.2.10. Summary of Conclusions

Best Settings  The best settings to maximize sonoluminescent light intensity are

X1 (Molarity) + (0.33 mol)
X2 (Solute) - (sugar)

X3 (pH) + (11)

X4 (Gas) . (either)

X5 (Water Depth) + (full)

X6 (Horn Depth) - (5 mm)
X7 (Clamping) - (unclamped)

with the X1, X2, X3, and X7 settings especially important.
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5.6.2.11. Work This Example Yourself
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5.6.2.11.Work This Example Yourself

View This page allows you to repeat the analysis outlined in the case study
Datapl ot description on the previous page using Dataplot . It isrequired that you
Macro for have already downloaded and installed Dataplot and configured your
this Case browser to run Dataplot. Output from each analysis step below will be
Study displayed in one or more of the Dataplot windows. The four main

windows are the Output window, the Graphics window, the Command
History window, and the Data Sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case study
yourself. Each step may use results from previous steps, so please be
patient. Wait until the software verifies that the current step is

compl ete before clicking on the next step.

The links in this column will connect you with more
detailed information about each analysis step from the
case study description.

1. CGet set up and started.

1. Read in the data. 1. You have read 8 colums of nunbers

into Dataplot: variables Y, X1, X2,

X3, X4, X5, X6, and X7.

2. Plot the main effects.

1. Ordered data plot. 1. Ordered data plot shows 2 points
that stand out. Potenti al
i nportant factors are X1, X2, X3,
and X7.

2. Dex scatter plot. 2. Dex scatter plot identifies X1, X2,

X3, and X7 as inportant factors.

3. Dex nean plot.

3. Dex nean plot identifies X1, X2,
X3, and X7 as inportant factors.
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5.6.2.11. Work This Example Yourself

3. Plots for interaction effects

1. Cenerate a dex interaction
effects plot.

The dex interaction effects

pl ot shows several inportant

i nteraction effects.

4. Block plots for nmain and interaction effects

1. Cenerate bl ock plots.

The bl ock plots are not

particularly hel pful in

this case.

5. Youden plot to identify inportant factors

1. Cenerate a Youden plot.

The Youden plot identifies

X1, X2, X3, and X7 as inportant

factors. It also identifies a

nunber of inportant interactions

(X1* X3, X1*X2, X2*X3).

6. |Effects| plot to identify inmportant factors

1. Generate |effects| plot.

The |effects| plot identifies

X2, X7, X1*X3, X1, X3, X2*X3,

and X1*X2 as inportant factors

and interactions.

7. Half-normal probability plot to
identify inportant factors

1. Generate half-nornal probability
pl ot .

The hal f-normal probability plot

identifies X2, X7, X1*X3, X1, X3,

X2* X3, and X1*X2 as inportant

factors and interactions.
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5.6.2.11. Work This Example Yourself

8. Cumul ative residual standard
devi ati on pl ot

1. Generate a cunul ative residua

st andard devi ati on plot.

1. The cunul ati ve residual standard

deviation plot results in a node

with 4 main effects and 3 2-factor

i nt eractions.

9. Dex contour plot

1. Generate a dex contour plot using

factors 2 and 7.

The dex contour pl ot shows

X2 = -1 and X7 = -1 to be the

best settings.
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5.7. A Glossary of DOE Terminology
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5.7.A Glossary of DOE Terminology

gff:(nltlggE This page gives definitions and information for many of the basic terms
termsey used in DOE.

o Alias: When the estimate of an effect also includes the

influence of one or more other effects (usually high order
Interactions) the effects are said to be aliased (see

confounding). For example, if the estimate of effect D in a

four factor experiment actually estimates (D + ABC), then
the main effect D is aliased with the 3-way interaction
ABC. Note: This causes no difficulty when the higher order
interaction is either non-existent or insignificant.

« Analysisof Variance (ANOVA): A mathematical
process for separating the variability of a group of
observations into assignable causes and setting up various
significance tests.

« Balanced Design: An experimental design where all
cells (i.e. treatment combinations) have the same number of
observations.

« Blocking: A schedule for conducting treatment
combinationsin an experimental study such that any effects
on the experimental results due to a known change in raw
materials, operators, machines, etc., become concentrated

in the levels of the blocking variable. Note: the reason for
blocking is to isolate a systematic effect and prevent it from
obscuring the main effects. Blocking is achieved by
restricting randomization.

« Center Points: Points at the center value of all factor
ranges.

Coding Factor Levels: Transforming the scale of
measurement for afactor so that the high value becomes +1
and the low value becomes -1 (see scaling). After coding
all factorsin a2-level full factorial experiment, the design
matrix has all orthogonal columns.
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5.7. A Glossary of DOE Terminology

Coding isasimple linear transformation of the origina
measurement scale. If the "high" value is X}, and the "low"
valueis X (intheoriginal scale), then the scaling
transformation takes any original X value and convertsit to
(X - a)/b, where

a=Xp+X))/2and b = ( X, -X )2

To go back to the original measurement scale, just take the
coded value and multiply it by "b" and add "a" or, X =
b(coded value) + a.

As an example, if the factor is temperature and the high
setting is 65°C and the low setting is 55°C, then a= (65 +
55)/2 =60 and b = (65 - 55)/2 = 5. The center point (where
the coded value is 0) has atemperature of 5(0) + 60 =
60°C.

« Comparative Designs: A design aimed at making
conclusions about one a priori important factor, possibly in
the presence of one or more other "nuisance" factors.

« Confounding: A confounding design is one where some
treatment effects (main or interactions) are estimated by the

same linear combination of the experimental observations
as some blocking effects. In this case, the treatment effect

and the blocking effect are said to be confounded.
Confounding is also used as a general term to indicate that
the value of a main effect estimate comes from both the

main effect itself and also contamination or bias from
higher order interactions. Note: Confounding designs

naturally arise when full factorial designs haveto berunin

blocks and the block size is smaller than the number of
different treatment combinations. They also occur
whenever afractional factorial design is chosen instead of a

full factorial design.
o Crossed Factors: Seefactors below.

o Design: A set of experimental runs which allows you to
fit aparticular model and estimate your desired effects.

o Design Matrix: A matrix description of an experiment
that is useful for constructing and analyzing experiments.
« Effect: How changing the settings of afactor changes

the response. The effect of asingle factor isalso called
amain effect. Note: For afactor A with two levels, scaled
so that low = -1 and high = +1, the effect of A is estimated
by subtracting the average response when A is -1 from the
average response when A = +1 and dividing the result by 2
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5.7. A Glossary of DOE Terminology

(division by 2 is needed because the -1 level is 2 scaled
units away from the +1 level).

o Error: Unexplained variation in a collection of
observations. Note: DOE's typically require understanding
of both random error and lack of fit error.

« Experimental Unit: The entity to which a specific
treatment combination is applied. Note: an experimental
unit can be a

« PC board

« silicon wafer

« tray of components simultaneoudly treated
o individual agricultural plants

« plotof land

 automotive transmissions

o €lC.

« Factors. Processinputs an investigator manipulates to
cause a change in the output. Some factors cannot be
controlled by the experimenter but may effect the
responses. If their effect is significant, these uncontrolled
factors should be measured and used in the data analysis.
Note: Theinputs can be discrete or continuous.

o Crossed Factors: Two factors are crossed if every
level of one occurs with every level of the other in
the experiment.

o Nested Factors: A factor "A" is nested within
another factor "B" if the levels or values of "A" are
different for every level or value of "B". Note:
Nested factors or effects have a hierarchical
relationship.

» Fixed Effect: An effect associated with an input variable
that has alimited number of levels or in which only a
limited number of levels are of interest to the experimenter.

« Interactions; Occurs when the effect of one factor on a
response depends on the level of another factor(s).

o Lack of Fit Error: Error that occurs when the analysis
omits one or more important terms or factors from the
process model. Note: Including replication in a DOE
allows separation of experimental error into its
components: lack of fit and random (pure) error.

« Model: Mathematical relationship which relates changes
In a given response to changes in one or more factors.
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5.7. A Glossary of DOE Terminology
« Nested Factors: See factors above.

« Orthogonality: Two vectors of the same length are
orthogonal if the sum of the products of their corresponding
elementsis 0. Note: An experimental design is orthogonal

If the effects of any factor balance out (sum to zero) across
the effects of the other factors.

« Random Effect: An effect associated with input
variables chosen at random from a population having a
large or infinite number of possible values.

« Random error: Error that occurs due to natural variation
in the process. Note: Random error istypically assumed to
be normally distributed with zero mean and a constant
variance. Note: Random error is also called experimental
error.

« Randomization: A schedule for alocating treatment
material and for conducting treatment combinationsin a
DOE such that the conditions in one run neither depend on
the conditions of the previous run nor predict the conditions
in the subsequent runs. Note: The importance of
randomization cannot be over stressed. Randomization is
necessary for conclusions drawn from the experiment to be
correct, unambiguous and defensible.

« Replication: Performing the same treatment combination
more than once. Note: Including replication allows an
estimate of the random error independent of any lack of fit
error.

« Resolution: A term which describes the degree to which
estimated main effects are aliased (or confounded) with

estimated 2-level interactions, 3-level interactions, etc. In

general, the resolution of adesign is one more than the
smallest order interaction that some main effect is
confounded (aliased) with. If some main effects are
confounded with some 2-level interactions, the resolution is
3. Note: Full factorial designs have no confounding and are
said to have resolution "infinity". For most practical
purposes, aresolution 5 design is excellent and a resolution
4 design may be adequate. Resolution 3 designs are useful
as economical screening designs.

« Responses: The output(s) of a process. Sometimes called
dependent variable(s).

» Response Surface Designs: A DOE that fully explores
the process window and models the responses. Note: These
designs are most effective when there are lessthan 5
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5.7. A Glossary of DOE Terminology

factors. Quadratic models are used for response surface
designs and at least three levels of every factor are needed
in the design.

« Rotatability: A design isrotatable if the variance of the
predicted response at any point x depends only on the
distance of x from the design center point. A design with
this property can be rotated around its center point without
changing the prediction variance at X. Note: Rotatability is
adesirable property for response surface designs (i.e.
quadratic model designs).

« Scaling Factor Levels: Transforming factor levels so

that the high value becomes +1 and the low value becomes
-1

« Screening Designs. A DOE that identifies which of
many factors have a significant effect on the response.
Note: Typically screening designs have more than 5
factors.

« Treatment: A treatment is a specific combination of
factor levels whose effect is to be compared with other
treatments.

o Treatment Combination: The combination of the
settings of several factorsin agiven experimental trial.
Also known as arun.

« Variance Components:. Partitioning of the overall
variation into assignable components.
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