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7. Product and Process Comparisons

7.1. Introduction

Goals of this
section

The primary goal of this section is to lay a foundation for understanding
statistical tests and confidence intervals that are useful for making
decisions about processes and comparisons among processes. The
materials covered are: 

Scope●   

Assumptions●   

Introduction to hypothesis testing●   

Introduction to confidence intervals●   

Relationship between hypothesis testing and confidence intervals●   

Outlier detection●   

Detection of sequential trends in data or processes●   

Hypothesis
testing and
confidence
intervals

This chapter explores the types of comparisons which can be made from
data and explains hypothesis testing, confidence intervals, and the
interpretation of each.

7.1. Introduction
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7. Product and Process Comparisons
7.1. Introduction

7.1.1.What is the scope?

Data from
one process

This section deals with introductory material related to comparisons that
can be made on data from one process for cases where the process
standard deviation may be known or unknown.

7.1.1. What is the scope?
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7. Product and Process Comparisons
7.1. Introduction

7.1.2.What assumptions are typically
made?

Validity of tests The validity of the tests described in this chapter depend on the
following assumptions:

The data come from a single process that can be represented
by a single statistical distribution.

1.  

The distribution is a normal distribution.2.  

The data are uncorrelated over time.3.  

An easy method for checking the assumption of a single normal
distribution is to construct a histogram of the data.

Clarification The tests described in this chapter depend on the assumption of
normality, and the data should be examined for departures from
normality before the tests are applied. However, the tests are robust
to small departures from normality; i.e., they work fairly well as
long as the data are bell-shaped and the tails are not heavy.
Quantitative methods for checking the normality assumption are
discussed in the next section.

Another graphical method for testing the normality assumption is
the normal probability plot.

7.1.2. What assumptions are typically made?
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A graphical method for testing for correlation among
measurements is a time-lag plot. Correlation may not be a problem
if measurements are properly structured over time. Correlation
problems often occur when measurements are made close together
in time.

7.1.2. What assumptions are typically made?
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7. Product and Process Comparisons
7.1. Introduction

7.1.3.What are statistical tests?

What is
meant by a
statistical
test?

A statistical test provides a mechanism for making quantitative
decisions about a process or processes. The intent is to determine
whether there is enough evidence to "reject" a conjecture or hypothesis
about the process. The conjecture is called the null hypothesis. Not
rejecting may be a good result if we want to continue to act as if we
"believe" the null hypothesis is true. Or it may be a disappointing result,
possibly indicating we may not yet have enough data to "prove"
something by rejecting the null hypothesis.

For more discussion about the meaning of a statistical hypothesis test,
see Chapter 1.

Concept of
null
hypothesis

A classic use of a statistical test occurs in process control studies. For
example, suppose that we are interested in ensuring that photomasks in a
production process have mean lifewidths of 500 micrometers. The null
hypothesis, in this case, is that the mean linewidth is 500 micrometers.
Implicit in this statement is the need to flag photomasks which have
mean linewidths that are either much greater or much less than 500
micrometers. This translates into the alternative hypothesis that the
mean linewidths are not equal to 500 micrometers. This is a two-sided
alternative because it guards against alternatives in opposite directions;
namely, that the linewidths are too small or too large.

The testing procedure works this way. Linewidths at random positions
on the photomask are measured using a scanning electron microscope. A
test statistic is computed from the data and tested against pre-determined
upper and lower critical values. If the test statistic is greater than the
upper critical value or less than the lower critical value, the null
hypothesis is rejected because there is evidence that the mean linewidth
is not 500 micrometers.

7.1.3. What are statistical tests?
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One-sided
tests of
hypothesis

Null and alternative hypotheses can also be one-sided. For example, to
ensure that a lot of light bulbs has a mean lifetime of at least 500 hours,
a testing program is implemented. The null hypothesis, in this case, is
that the mean lifetime is greater than or equal to 500 hours. The
complement or alternative hypothesis that is being guarded against is
that the mean lifetime is less than 500 hours. The test statistic is
compared with a lower critical value, and if it is less than this limit, the
null hypothesis is rejected.

Thus, a statistical test requires a pair of hypotheses; namely,

H0: a null hypothesis●   

Ha: an alternative hypothesis.●   

Significance
levels

The null hypothesis is a statement about a belief. We may doubt that the
null hypothesis is true, which might be why we are "testing" it. The
alternative hypothesis might, in fact, be what we believe to be true. The
test procedure is constructed so that the risk of rejecting the null
hypothesis, when it is in fact true, is small. This risk, , is often
referred to as the significance level of the test. By having a test with a
small value of , we feel that we have actually "proved" something
when we reject the null hypothesis.

Errors of
the second
kind

The risk of failing to reject the null hypothesis when it is in fact false is
not chosen by the user but is determined, as one might expect, by the
magnitude of the real discrepancy. This risk, , is usually referred to as
the error of the second kind. Large discrepancies between reality and the
null hypothesis are easier to detect and lead to small errors of the second
kind; while small discrepancies are more difficult to detect and lead to
large errors of the second kind. Also the risk  increases as the risk 
decreases. The risks of errors of the second kind are usually summarized
by an operating characteristic curve (OC) for the test. OC curves for
several types of tests are shown in (Natrella, 1962).

Guidance in
this chapter

This chapter gives methods for constructing test statistics and their
corresponding critical values for both one-sided and two-sided tests for
the specific situations outlined under the scope. It also provides
guidance on the sample sizes required for these tests.

Further guidance on statistical hypothesis testing, significance levels and
critical regions, is given in Chapter 1.

7.1.3. What are statistical tests?
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7. Product and Process Comparisons
7.1. Introduction
7.1.3. What are statistical tests?

7.1.3.1.Critical values and p values

Determination
of critical
values

Critical values for a test of hypothesis depend upon a test statistic,
which is specific to the type of test, and the significance level, ,
which defines the sensitivity of the test. A value of  = 0.05 implies
that the null hypothesis is rejected 5% of the time when it is in fact
true. The choice of  is somewhat arbitrary, although in practice
values of 0.1, 0.05, and 0.01 are common. Critical values are
essentially cut-off values that define regions where the test statistic is
unlikely to lie; for example, a region where the critical value is
exceeded with probability  if the null hypothesis is true. The null
hypothesis is rejected if the test statistic lies within this region which
is often referred to as the rejection region(s). Critical values for
specific tests of hypothesis are tabled in chapter 1.

Information in
this chapter

This chapter gives formulas for the test statistics and points to the
appropriate tables of critical values for tests of hypothesis regarding
means, standard deviations, and proportion defectives.

P values Another quantitative measure for reporting the result of a test of
hypothesis is the p-value. The p-value is the probability of the test
statistic being at least as extreme as the one observed given that the
null hypothesis is true. A small p-value is an indication that the null
hypothesis is false.

Good practice It is good practice to decide in advance of the test how small a p-value
is required to reject the test. This is exactly analagous to choosing a
significance level,  for test. For example, we decide either to reject
the null hypothesis if the test statistic exceeds the critical value (for 
= 0.05) or analagously to reject the null hypothesis if the p-value is
smaller than 0.05. It is important to understand the relationship
between the two concepts because some statistical software packages
report p-values rather than critical values.

7.1.3.1. Critical values and p values
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7. Product and Process Comparisons
7.1. Introduction

7.1.4. What are confidence intervals?

How do we
form a
confidence
interval?

The purpose of taking a random sample from a lot or population and
computing a statistic, such as the mean from the data, is to approximate
the mean of the population. How well the sample statistic estimates the
underlying population value is always an issue. A confidence interval
addresses this issue because it provides a range of values which is likely
to contain the population parameter of interest.

Confidence
levels

Confidence intervals are constructed at a confidence level, such as 95%,
selected by the user. What does this mean? It means that if the same
population is sampled on numerous occasions and interval estimates are
made on each occasion, the resulting intervals would bracket the true
population parameter in approximately 95% of the cases. A confidence
stated at a  level can be thought of as the inverse of a significance
level, .

One and
two-sided
confidence
intervals

In the same way that statistical tests can be one or two-sided, confidence
intervals can be one or two-sided. A two-sided confidence interval
brackets the population parameter from above and below. A one-sided
confidence interval brackets the population parameter either from above
or below and furnishes an upper or lower bound to its magnitude.

Example of
a two-sided
confidence
interval

For example, a 100( )% confidence interval for the mean of a
normal population is;

where  is the sample mean,  is the upper  critical value of the
standard normal distribution which is found in the table of the standard
normal distribution,  is the known population standard deviation, and
N is the sample size.

7.1.4. What are confidence intervals?
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Guidance in
this chapter

This chapter provides methods for estimating the population parameters
and confidence intervals for the situations described under the scope.

Problem
with
unknown
standard
deviation

In the normal course of events, population standard deviations are not
known, and must be estimated from the data. Confidence intervals,
given the same confidence level, are by necessity wider if the standard
deviation is estimated from limited data because of the uncertainty in
this estimate. Procedures for creating confidence intervals in this
situation are described fully in this chapter.

More information on confidence intervals can also be found in Chapter
1.

7.1.4. What are confidence intervals?
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7. Product and Process Comparisons
7.1. Introduction

7.1.5. What is the relationship between a
test and a confidence interval?

There is a
correspondence
between
hypothesis
testing and
confidence
intervals

In general, for every test of hypothesis there is an equivalent
statement about whether the hypothesized parameter value is
included in a confidence interval. For example, consider the previous
example of linewidths where photomasks are tested to ensure that
their linewidths have a mean of 500 micrometers. The null and
alternative hypotheses are:

H0: mean linewidth = 500 micrometers

Ha: mean linewidth  500 micrometers

Hypothesis test
for the mean For the test, the sample mean, , is calculated from N linewidths

chosen at random positions on each photomask. For the purpose of
the test, it is assumed that the standard deviation, , is known from a
long history of this process. A test statistic is calculated from these
sample statistics, and the null hypothesis is rejected if:

where  is a tabled value from the normal distribution.

Equivalent
confidence
interval

With some algebra, it can be seen that the null hypothesis is rejected
if and only if the value 500 micrometers is not in the confidence
interval

7.1.5. What is the relationship between a test and a confidence interval?
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Equivalent
confidence
interval

In fact, all values bracketed by this interval would be accepted as null
values for a given set of test data.

7.1.5. What is the relationship between a test and a confidence interval?
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7. Product and Process Comparisons
7.1. Introduction

7.1.6.What are outliers in the data?

Definition of
outliers

An outlier is an observation that lies an abnormal distance from other
values in a random sample from a population. In a sense, this definition
leaves it up to the analyst (or a consensus process) to decide what will
be considered abnormal. Before abnormal observations can be singled
out, it is necessary to characterize normal observations.

Ways to
describe
data

Two activities are essential for characterizing a set of data:

Examination of the overall shape of the graphed data for
important features, including symmetry and departures from
assumptions. The chapter on Exploratory Data Analysis (EDA)
discusses assumptions and summarization of data in detail.

1.  

Examination of the data for unusual observations that are far
removed from the mass of data. These points are often referred to
as outliers. Two graphical techniques for identifying outliers,
scatter plots and box plots, along with an analytic procedure for
detecting outliers when the distribution is normal (Grubbs' Test),
are also discussed in detail in the EDA chapter.

2.  

Box plot
construction

The box plot is a useful graphical display for describing the behavior of
the data in the middle as well as at the ends of the distributions. The box
plot uses the median and the lower and upper quartiles (defined as the
25th and 75th percentiles). If the lower quartile is Q1 and the upper
quartile is Q2, then the difference (Q2 - Q1) is called the interquartile
range or IQ.

7.1.6. What are outliers in the data?
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Box plots
with fences

A box plot is constructed by drawing a box between the upper and lower
quartiles with a solid line drawn across the box to locate the median.
The following quantities (called fences) are needed for identifying
extreme values in the tails of the distribution:

lower inner fence: Q1 - 1.5*IQ1.  

upper inner fence: Q2 + 1.5*IQ2.  

lower outer fence: Q1 - 3*IQ3.  

upper outer fence: Q2 + 3*IQ4.  

Outlier
detection
criteria

A point beyond an inner fence on either side is considered a mild
outlier. A point beyond an outer fence is considered an extreme
outlier.

Example of
an outlier
box plot

The data set of N = 90 ordered observations as shown below is
examined for outliers:

30, 171, 184, 201, 212, 250, 265, 270, 272, 289, 305, 306, 322, 322,
336, 346, 351, 370, 390, 404, 409, 411, 436, 437, 439, 441, 444, 448,
451, 453, 470, 480, 482, 487, 494, 495, 499, 503, 514, 521, 522, 527,
548, 550, 559, 560, 570, 572, 574, 578, 585, 592, 592, 607, 616, 618,
621, 629, 637, 638, 640, 656, 668, 707, 709, 719, 737, 739, 752, 758,
766, 792, 792, 794, 802, 818, 830, 832, 843, 858, 860, 869, 918, 925,
953, 991, 1000, 1005, 1068, 1441

The computatons are as follows:

Median = (n+1)/2 largest data point = the average of the 45th and
46th ordered points = (559 + 560)/2 = 559.5

●   

Lower quartile = .25(N+1)= .25*91= 22.75th ordered point = 411
+ .75(436-411) = 429.75

●   

Upper quartile = .75(N+1)=0.75*91= = 68.25th ordered point =
739 +.25(752-739) = 742.25

●   

Interquartile range = 742.25 - 429.75 = 312.5●   

Lower inner fence = 429.75 - 1.5 (313.5) = -40.5●   

Upper inner fence = 742.25 + 1.5 (313.5) = 1212.50●   

Lower outer fence = 429.75 - 3.0 (313.5) = -510.75●   

Upper outer fence = 742.25 + 3.0 (313.5) = 1682.75●   

From an examination of the fence points and the data, one point (1441)
exceeds the upper inner fence and stands out as a mild outlier; there are
no extreme outliers.

7.1.6. What are outliers in the data?
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JMP
software
output
showing the
outlier box
plot

Output from a JMP command is shown below. The plot shows a
histogram of the data on the left and a box plot with the outlier
identified as a point on the right. Clicking on the outlier while in JMP
identifies the data point as 1441.

Outliers
may contain
important
information

Outliers should be investigated carefully. Often they contain valuable
information about the process under investigation or the data gathering
and recording process. Before considering the possible elimination of
these points from the data, one should try to understand why they
appeared and whether it is likely similar values will continue to appear.
Of course, outliers are often bad data points.

7.1.6. What are outliers in the data?
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7. Product and Process Comparisons
7.1. Introduction

7.1.7.What are trends in sequential
process or product data?

Detecting
trends by
plotting the
data points
to see if a
line with an
obviously
non-zero
slope fits the
points

Detecting trends is equivalent to comparing the process values to what
we would expect a series of numbers to look like if there were no trends.
If we see a significant departure from a model where the next
observation is equally likely to go up or down, then we would reject the
hypothesis of "no trend".

A common way of investigating for trends is to fit a straight line to the
data and observe the line's direction (or slope). If the line looks
horizontal, then there is no evidence of a trend; otherwise there is.
Formally, this is done by testing whether the slope of the line is
significantly different from zero. The methodology for this is covered in
Chapter 4.

Other trend
tests

A non-parametric approach for detecting significant trends known as the
Reverse Arrangement Test is described in Chapter 8.

7.1.7. What are trends in sequential process or product data?
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7. Product and Process Comparisons

7.2.Comparisons based on data from one
process

Questions
answered in this
section

For a single process, the current state of the process can be compared
with a nominal or hypothesized state. This section outlines
techniques for answering the following questions from data gathered
from a single process:

Do the observations come from a particular distribution?

Chi-Square Goodness-of-Fit test for a continuous or
discrete distribution

1.  

Kolmogorov- Smirnov test for a continuous distribution2.  

Anderson-Darling and Shapiro-Wilk tests for a
continuous distribution

3.  

1.  

Are the data consistent with the assumed process mean?

Confidence interval approach1.  

Sample sizes required2.  

2.  

Are the data consistent with a nominal standard deviation?

Confidence interval approach1.  

Sample sizes required2.  

3.  

Does the proportion of defectives meet requirements?

Confidence intervals1.  

Sample sizes required2.  

4.  

Does the defect density meet requirements?5.  

What intervals contain a fixed percentage of the data?

Approximate intervals that contain most of the
population values

1.  

Percentiles2.  

Tolerance intervals3.  

Tolerance intervals using EXCEL4.  

6.  

7.2. Comparisons based on data from one process
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Tolerance intervals based on the smallest and largest
observations

5.  

General forms
of testing

These questions are addressed either by an hypothesis test or by a
confidence interval.

Parametric vs.
non-parametric
testing

All hypothesis-testing procedures can be broadly described as either
parametric or non-parametric/distribution-free. Parametric test
procedures are those that:

Involve hypothesis testing of specified parameters (such as
"the population mean=50 grams"...).

1.  

Require a stringent set of assumptions about the underlying
sampling distributions.

2.  

When to use
nonparametric
methods?

When do we require non-parametric or distribution-free methods?
Here are a few circumstances that may be candidates:

The measurements are only categorical; i.e., they are
nominally scaled, or ordinally (in ranks) scaled.

1.  

The assumptions underlying the use of parametric methods
cannot be met.

2.  

The situation at hand requires an investigation of such features
as randomness, independence, symmetry, or goodness of fit
rather than the testing of hypotheses about specific values of
particular population parameters.

3.  

Difference
between
non-parametric
and
distribution-free

Some authors distinguish between non-parametric and
distribution-free procedures.

Distribution-free test procedures are broadly defined as:

Those whose test statistic does not depend on the form of the
underlying population distribution from which the sample data
were drawn, or

1.  

Those for which the data are nominally or ordinally scaled.2.  

Nonparametric test procedures are defined as those that are not
concerned with the parameters of a distribution.

7.2. Comparisons based on data from one process
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Advantages of
nonparametric
methods.

Distribution-free or nonparametric methods have several advantages,
or benefits:

They may be used on all types of data-categorical data, which
are nominally scaled or are in rank form, called ordinally
scaled, as well as interval or ratio-scaled data.

1.  

For small sample sizes they are easy to apply.2.  

They make fewer and less stringent assumptions than their
parametric counterparts.

3.  

Depending on the particular procedure they may be almost as
powerful as the corresponding parametric procedure when the
assumptions of the latter are met, and when this is not the
case, they are generally more powerful.

4.  

Disadvantages
of
nonparametric
methods

Of course there are also disadvantages:

If the assumptions of the parametric methods can be met, it is
generally more efficient to use them.

1.  

For large sample sizes, data manipulations tend to become
more laborious, unless computer software is available.

2.  

Often special tables of critical values are needed for the test
statistic, and these values cannot always be generated by
computer software. On the other hand, the critical values for
the parametric tests are readily available and generally easy to
incorporate in computer programs.

3.  

7.2. Comparisons based on data from one process
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process

7.2.1.Do the observations come from a
particular distribution?

Data are often
assumed to
come from a
particular
distribution.

Goodness-of-fit tests indicate whether or not it is reasonable to
assume that a random sample comes from a specific distribution.
Statistical techniques often rely on observations having come from a
population that has a distribution of a specific form (e.g., normal,
lognormal, Poisson, etc.). Standard control charts for continuous
measurements, for instance, require that the data come from a normal
distribution. Accurate lifetime modeling requires specifying the
correct distributional model. There may be historical or theoretical
reasons to assume that a sample comes from a particular population,
as well. Past data may have consistently fit a known distribution, for
example, or theory may predict that the underlying population should
be of a specific form.

Hypothesis
Test model for
Goodness-of-fit

Goodness-of-fit tests are a form of hypothesis testing where the null
and alternative hypotheses are

H0: Sample data come from the stated distribution.
HA: Sample data do not come from the stated distribution.

Parameters
may be
assumed or
estimated from
the data

One needs to consider whether a simple or composite hypothesis is
being tested. For a simple hypothesis, values of the distribution's
parameters are specified prior to drawing the sample. For a composite
hypothesis, one or more of the parameters is unknown. Often, these
parameters are estimated using the sample observations.

A simple hypothesis would be:

H0: Data are from a normal distribution,  = 0 and  = 1.

A composite hypothesis would be:

H0: Data are from a normal distribution, unknown  and .

Composite hypotheses are more common because they allow us to

7.2.1. Do the observations come from a particular distribution?
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decide whether a sample comes from any distribution of a specific
type. In this situation, the form of the distribution is of interest,
regardless of the values of the parameters. Unfortunately, composite
hypotheses are more difficult to work with because the critical values
are often hard to compute.

Problems with
censored data

A second issue that affects a test is whether the data are censored.
When data are censored, sample values are in some way restricted.
Censoring occurs if the range of potential values are limited such that
values from one or both tails of the distribution are unavailable (e.g.,
right and/or left censoring - where high and/or low values are
missing). Censoring frequently occurs in reliability testing, when
either the testing time or the number of failures to be observed is
fixed in advance. A thorough treatment of goodness-of-fit testing
under censoring is beyond the scope of this document. See
D'Agostino & Stephens (1986) for more details.

Three types of
tests will be
covered

Three goodness-of-fit tests are examined in detail:

Chi-square test for continuous and discrete distributions;1.  

Kolmogorov-Smirnov test for continuous distributions based
on the empirical distribution function (EDF);

2.  

Anderson-Darling test for continuous distributions.3.  

A more extensive treatment of goodness-of-fit techniques is presented
in D'Agostino & Stephens (1986). Along with the tests mentioned
above, other general and specific tests are examined, including tests
based on regression and graphical techniques.

7.2.1. Do the observations come from a particular distribution?
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.1. Do the observations come from a particular distribution?

7.2.1.1.Chi-square goodness-of-fit test

Choice of
number of
groups for
"Goodness of
Fit" tests is
important - but
only useful rules
of thumb can be
given

The test requires that the data first be grouped. The actual number
of observations in each group is compared to the expected number
of observations and the test statistic is calculated as a function of
this difference. The number of groups and how group membership
is defined will affect the power of the test (i.e., how sensitive it is to
detecting departures from the null hypothesis). Power will not only
be affected by the number of groups and how they are defined, but
by the sample size and shape of the null and underlying (true)
distributions. Despite the lack of a clear "best method", some useful
rules of thumb can be given.

Group
Membership

When data are discrete, group membership is unambiguous.
Tabulation or cross tabulation can be used to categorize the data.
Continuous data present a more difficult challenge. One defines
groups by segmenting the range of possible values into
non-overlapping intervals. Group membership can then be defined
by the endpoints of the intervals. In general, power is maximized by
choosing endpoints such that group membership is equiprobable
(i.e., the probabilities associated with an observation falling into a
given group are divided as evenly as possible across the intervals).
Many commercial software packages follow this procedure.

Rule-of-thumb
for number of
groups

One rule-of-thumb suggests using the value 2n2/5 as a good starting
point for choosing the number of groups. Another well known
rule-of-thumb requires every group to have at least 5 data points.

Computation of
the chi-square
goodness-of-fit
test

The formulas for the computation of the chi-square goodnes-of-fit
test are given in the EDA chapter.

7.2.1.1. Chi-square goodness-of-fit test
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.1. Do the observations come from a particular distribution?

7.2.1.2.Kolmogorov- Smirnov test

The K-S test
is a good
alternative
to the
chi-square
test.

The Kolmogorov-Smirnov (K-S) test was originally proposed in the
1930's in papers by Kolmogorov (1933) and Smirnov (1936). Unlike the
Chi-Square test, which can be used for testing against both continuous
and discrete distributions, the K-S test is only appropriate for testing
data against a continuous distribution, such as the normal or Weibull
distribution. It is one of a number of tests that are based on the empirical
cumulative distribution function (ECDF).

K-S
procedure

Details on the construction and interpretation of the K-S test statistic, D,
and examples for several distributions are outlined in Chapter 1.

The
probability
associated
with the test
statistic is
difficult to
compute.

Critical values associated with the test statistic, D, are difficult to
compute for finite sample sizes, often requiring Monte Carlo simulation.
However, some general purpose statistical software programs, including
Dataplot, support the Kolmogorov-Smirnov test at least for some of the
more common distributions. Tabled values can be found in Birnbaum
(1952). A correction factor can be applied if the parameters of the
distribution are estimated with the same data that are being tested. See
D'Agostino and Stephens (1986) for details.

7.2.1.2. Kolmogorov- Smirnov test
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.1. Do the observations come from a particular distribution?

7.2.1.3.Anderson-Darling and Shapiro-Wilk
tests

Purpose: Test for
distributional
adequacy

The Anderson-Darling Test

The Anderson-Darling test (Stephens, 1974) is used to test if a
sample of data comes from a specific distribution. It is a
modification of the Kolmogorov-Smirnov (K-S) test and gives
more weight to the tails of the distribution than does the K-S test.
The K-S test is distribution free in the sense that the critical
values do not depend on the specific distribution being tested.

Requires critical
values for each
distribution

The Anderson-Darling test makes use of the specific distribution
in calculating critical values. This has the advantage of allowing
a more sensitive test and the disadvantage that critical values
must be calculated for each distribution. Tables of critical values
are not given in this handbook (see Stephens 1974, 1976, 1977,
and 1979) because this test is usually applied with a statistical
software program that produces the relevant critical values.
Currently, Dataplot computes critical values for the
Anderson-Darling test for the following distributions:

normal●   

lognormal●   

Weibull●   

extreme value type I.●   

Anderson-Darling
procedure

Details on the construction and interpretation of the
Anderson-Darling test statistic, A2, and examples for several
distributions are outlined in Chapter 1.

7.2.1.3. Anderson-Darling and Shapiro-Wilk tests
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Shapiro-Wilk test
for normality

The Shapiro-Wilk Test For Normality

The Shapiro-Wilk test, proposed in 1965, calculates a W statistic
that tests whether a random sample, x1, x2, ..., xn comes from
(specifically) a normal distribution . Small values of W are
evidence of departure from normality and percentage points for
the W statistic, obtained via Monte Carlo simulations, were
reproduced by Pearson and Hartley (1972, Table 16). This test
has done very well in comparison studies with other goodness of
fit tests.

The W statistic is calculated as follows:

where the x(i) are the ordered sample values (x(1) is the smallest)
and the ai are constants generated from the means, variances and
covariances of the order statistics of a sample of size n from a
normal distribution (see Pearson and Hartley (1972, Table 15).

Dataplot has an accurate approximation of the Shapiro-Wilk test
that uses the command "WILKS SHAPIRO TEST Y ", where Y
is a data vector containing the n sample values. Dataplot
documentation for the test can be found here on the internet.

For more information about the Shapiro-Wilk test the reader is
referred to the original Shapiro and Wilk (1965) paper and the
tables in Pearson and Hartley (1972),

7.2.1.3. Anderson-Darling and Shapiro-Wilk tests
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process

7.2.2.Are the data consistent with the
assumed process mean?

The testing
of H0 for a
single
population
mean

Given a random sample of measurements, Y1, ..., YN, there are three
types of questions regarding the true mean of the population that can be
addressed with the sample data. They are:

Does the true mean agree with a known standard or assumed
mean?

1.  

Is the true mean of the population less than a given standard?2.  

Is the true mean of the population at least as large as a given
standard?

3.  

Typical null
hypotheses

The corresponding null hypotheses that test the true mean, , against

the standard or assumed mean,  are:

1.  

2.  

3.  

Test statistic
where the
standard
deviation is
not known

The basic statistics for the test are the sample mean and the standard
deviation. The form of the test statistic depends on whether the
poulation standard deviation, , is known or is estimated from the data
at hand. The more typical case is where the standard deviation must be
estimated from the data, and the test statistic is

where the sample mean is

7.2.2. Are the data consistent with the assumed process mean?
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and the sample standard deviation is

with N - 1 degrees of freedom.

Comparison
with critical
values

For a test at significance level , where  is chosen to be small,
typically .01, .05 or .10, the hypothesis associated with each case
enumerated above is rejected if:

1.  

2.  

3.  

where  is the upper  critical value from the t distribution

with N-1 degrees of freedom and similarly for cases (2) and (3). Critical
values can be found in the t-table in Chapter 1.

Test statistic
where the
standard
deviation is
known

If the standard deviation is known, the form of the test statistic is

For case (1), the test statistic is compared with , which is the upper

 critical value from the standard normal distribution, and similarly
for cases (2) and (3).

Caution If the standard deviation is assumed known for the purpose of this test,
this assumption should be checked by a test of hypothesis for the
standard deviation.

An
illustrative
example of
the t-test

The following numbers are particle (contamination) counts for a sample
of 10 semiconductor silicon wafers:

50  48  44  56  61  52  53  55  67  51

The mean = 53.7 counts and the standard deviation = 6.567 counts.

7.2.2. Are the data consistent with the assumed process mean?
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The test is
two-sided

Over a long run the process average for wafer particle counts has been
50 counts per wafer, and on the basis of the sample, we want to test
whether a change has occurred. The null hypothesis that the process
mean is 50 counts is tested against the alternative hypothesis that the
process mean is not equal to 50 counts. The purpose of the two-sided
alternative is to rule out a possible process change in either direction.

Critical
values

For a significance level of  = .05, the chances of erroneously rejecting
the null hypothesis when it is true are 5% or less. (For a review of
hypothesis testing basics, see Chapter 1).

Even though there is a history on this process, it has not been stable
enough to justify the assumption that the standard deviation is known.
Therefore, the appropriate test statistic is the t-statistic. Substituting the
sample mean, sample standard deviation, and sample size into the
formula for the test statistic gives a value of

t = 1.782

with degrees of freedom = N - 1 = 9. This value is tested against the
upper critical value

t0.025;9 = 2.262

from the t-table where the critical value is found under the column
labeled 0.025 for the probability of exceeding the critical value and in
the row for 9 degrees of freedom. The critical value  is used instead
of  because of the two-sided alternative (two-tailed test) which
requires equal probabilities in each tail of the distribution that add to .

Conclusion Because the value of the test statistic falls in the interval (-2.262, 2.262),
we cannot reject the null hypothesis and, therefore, we may continue to
assume the process mean is 50 counts.

7.2.2. Are the data consistent with the assumed process mean?
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.2. Are the data consistent with the assumed process mean?

7.2.2.1.Confidence interval approach

Testing using
a confidence
interval

The hypothesis test results in a "yes" or "no" answer. The null
hypothesis is either rejected or not rejected. There is another way of
testing a mean and that is by constructing a confidence interval about
the true but unknown mean.

General form
of confidence
intervals
where the
standard
deviation is
unknown

Tests of hypotheses that can be made from a single sample of data
were discussed on the foregoing page. As with null hypotheses,
confidence intervals can be two-sided or one-sided, depending on the
question at hand. The general form of confidence intervals, for the
three cases discussed earlier, where the standard deviation is unknown
are:

Two-sided confidence interval for :1.  

Lower one-sided confidence interval for :2.  

Upper one-sided confidence interval for :3.  

where  is the upper  critical value from the t distribution

with N-1 degrees of freedom and similarly for cases (2) and (3).
Critical values can be found in the t-table in Chapter 1.

7.2.2.1. Confidence interval approach
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Confidence
level

The confidence intervals are constructed so that the probability of the
interval containing the mean is 1 - . Such intervals are referred to as
100(1- )% confidence intervals.

A 95%
confidence
interval for
the example

The corresponding confidence interval for the test of hypothesis
example on the foregoing page is shown below. A 95% confidence
interval for the population mean of particle counts per wafer is given
by

Interpretation The 95% confidence interval includes the null hypothesis if, and only
if, it would be accepted at the 5% level. This interval includes the null
hypothesis of 50 counts so we cannot reject the hypothesis that the
process mean for particle counts is 50. The confidence interval
includes all null hypothesis values for the population mean that would
be accepted by an hypothesis test at the 5% significance level. This
assumes, of course, a two-sided alternative.

7.2.2.1. Confidence interval approach
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.2. Are the data consistent with the assumed process mean?

7.2.2.2.Sample sizes required

The
computation
of sample
sizes depends
on many
things, some
of which have
to be
assumed in
advance

Perhaps one of the most frequent questions asked of a statistician is,

"How many measurements should be included in the sample?"

Unfortunately, there is no correct answer without additional
information (or assumptions). The sample size required for an
experiment designed to investigate the behavior of an unknown
population mean will be influenced by the following:

value selected for , the risk of rejecting a true hypothesis●   

value of , the risk of accepting a false null hypothesis when a
particular value of the alternative hypothesis is true.

●   

value of the population standard deviation.●   

Application -
estimating a
minimum
sample size,
N, for
limiting the
error in the
estimate of
the mean

For example, suppose that we wish to estimate the average daily yield,
, of a chemical process by the mean of a sample, Y1, ..., YN, such that

the error of estimation is less than  with a probability of 95%. This
means that a 95% confidence interval centered at the sample mean
should be

and if the standard deviation is known,

The upper critical value from the normal distribution for  = 0.025
is 1.96. Therefore,

7.2.2.2. Sample sizes required
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Limitation
and
interpretation

A restriction is that the standard deviation must be known. Lacking an
exact value for the standard deviation requires some accommodation,
perhaps the best estimate available from a previous experiment.

Controlling
the risk of
accepting a
false
hypothesis

To control the risk of accepting a false hypothesis, we set not only ,
the probability of rejecting the null hypothesis when it is true, but also

, the probability of accepting the null hypothesis when in fact the

population mean is  where  is the difference or shift we want to
detect.

Standard
deviation
assumed to
be known

The minimum sample size, N, is shown below for two- and one-sided
tests of hypotheses with  assumed to be known.

The quantities  and  are upper critical values from the normal

distribution.

Note that it is usual to state the shift, , in units of the standard
deviation, thereby simplifying the calculation.

Example
where the
shift is stated
in terms of
the standard
deviation

For a one-sided hypothesis test where we wish to detect an increase in
the population mean of one standard deviation, the following
information is required: , the significance level of the test, and , the
probability of failing to detect a shift of one standard deviation. For a
test with  = 0.05 and  = 0.10, the minimum sample size required
for the test is

N = (1.645 + 1.282)2 = 8.567 ~ 9.

7.2.2.2. Sample sizes required
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More often
we must
compute the
sample size
with the
population
standard
deviation
being
unknown

The procedures for computing sample sizes when the standard
deviation is not known are similar to, but more complex, than when the
standard deviation is known. The formulation depends on the
t-distribution where the minimum sample size is given by

The drawback is that critical values of the t-distribution depend on
known degrees of freedom, which in turn depend upon the sample size
which we are trying to estimate.

Iterate on the
initial
estimate
using critical
values from
the t-table

Therefore, the best procedure is to start with an intial estimate based on
a sample standard deviation and iterate. Take the example discussed
above where the the minimum sample size is computed to be N = 9.
This estimate is low. Now use the formula above with degrees of
freedom N - 1 = 8 which gives a second estimate of

N = (1.860 + 1.397)2 = 10.6 ~11.

It is possible to apply another iteration using degrees of freedom 10,
but in practice one iteration is usually sufficient. For the purpose of this
example, results have been rounded to the closest integer; however,
computer programs for finding critical values from the t-distribution
allow non-integer degrees of freedom.

Table
showing
minimum
sample sizes
for a
two-sided test

The table below gives sample sizes for a two-sided test of hypothesis
that the mean is a given value, with the shift to be detected a multiple
of the standard deviation. For a one-sided test at significance level ,
look under the value of 2  in column 1.

Sample Size Table for Two-Sided Tests

.01 .01 98 25 11

.01 .05 73 18 8

.01 .10 61 15 7

.01 .20 47 12 6

.01 .50 27 7 3

.05 .01 75 19 9

.05 .05 53 13 6

7.2.2.2. Sample sizes required

http://www.itl.nist.gov/div898/handbook/prc/section2/prc222.htm (3 of 4) [11/14/2003 6:11:39 PM]

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm


.05 .10 43 11 5

.05 .20 33 8 4

.05 .50 16 4 3

.10 .01 65 16 8

.10 .05 45 11 5

.10 .10 35 9 4

.10 .20 25 7 3

.10 .50 11 3 3

.20 .01 53 14 6

.20 .05 35 9 4

.20 .10 27 7 3

.20 .20 19 5 3

.20 .50 7 3 3

7.2.2.2. Sample sizes required
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process

7.2.3.Are the data consistent with a
nominal standard deviation?

The testing of
H0 for a single
population
mean

Given a random sample of measurements, Y1, ..., YN, there are three
types of questions regarding the true standard deviation of the
population that can be addressed with the sample data. They are:

Does the true standard deviation agree with a nominal value?1.  

Is the true standard deviation of the population less than or
equal to a nominal value?

2.  

Is the true stanard deviation of the population at least as large
as a nominal value?

3.  

Corresponding
null
hypotheses

The corresponding null hypotheses that test the true standard

deviation, , against the nominal value,  are:

H0:  = 1.  

H0:  <= 2.  

H0:  >= 3.  

Test statistic The basic test statistic is the chi-square statistic

with N - 1 degrees of freedom where s is the sample standard
deviation; i.e.,

7.2.3. Are the data consistent with a nominal standard deviation?
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.

Comparison
with critical
values

For a test at significance level , where  is chosen to be small,
typically .01, .05 or .10, the hypothesis associated with each case
enumerated above is rejected if:

1.  

2.  

3.  

where  is the upper  critical value from the chi-square

distribution with N-1 degrees of freedom and similarly for cases (2)
and (3). Critical values can be found in the chi-square table in Chapter
1.

Warning Because the chi-square distribution is a non-negative, asymmetrical
distribution, care must be taken in looking up critical values from
tables. For two-sided tests, critical values are required for both tails of
the distribution.

Example A supplier of 100 ohm.cm silicon wafers claims that his fabrication
process can produce wafers with sufficient consistency so that the
standard deviation of resistivity for the lot does not exceed 10
ohm.cm. A sample of N = 10 wafers taken from the lot has a standard
deviation of 13.97 ohm.cm. Is the suppliers claim reasonable? This
question falls under null hypothesis (2) above. For a test at
significance level,  = 0.05, the test statistic,

is compared with the critical value, .

Since the test statistic (17.56) exceeds the critical value (16.92) of the
chi-square distribution with 9 degrees of freedom, the manufacturer's
claim is rejected.

7.2.3. Are the data consistent with a nominal standard deviation?
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.3. Are the data consistent with a nominal standard deviation?

7.2.3.1.Confidence interval approach

Confidence
intervals for
the standard
deviation

Confidence intervals for the true standard deviation can be constructed
using the chi-square distribution. The 100(1- )% confidence intervals
that correspond to the tests of hypothesis on the previous page are given
by

Two-sided confidence interval for 1.  

Lower one-sided confidence interval for 2.  

Upper one-sided confidence interval for 3.  

where for case (1)  is the upper  critical value from the

chi-square distribution with N-1 degrees of freedom and similarly for
cases (2) and (3). Critical values can be found in the chi-square table in
Chapter 1.

Choice of
risk level 
can change
the
conclusion

Confidence interval (1) is equivalent to a two-sided test for the standard

deviation. That is, if the hypothesized or nominal value, , is not

contained within these limits, then the hypothesis that the standard
deviation is equal to the nominal value is rejected.

7.2.3.1. Confidence interval approach
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A dilemma
of
hypothesis
testing

A change in  can lead to a change in the conclusion. This poses a
dilemma. What should  be? Unfortunately, there is no clear-cut
answer that will work in all situations. The usual strategy is to set 
small so as to guarantee that the null hypothesis is wrongly rejected in
only a small number of cases. The risk, , of failing to reject the null
hypothesis when it is false depends on the size of the discrepancy, and
also depends on . The discussion on the next page shows how to
choose the sample size so that this risk is kept small for specific
discrepancies.

7.2.3.1. Confidence interval approach
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.3. Are the data consistent with a nominal standard deviation?

7.2.3.2.Sample sizes required

Sample sizes
to minimize
risk of false
acceptance

The following procedure for computing sample sizes for tests involving standard
deviations follows W. Diamond (1989). The idea is to find a sample size that is
large enough to guarantee that the risk, , of accepting a false hypothesis is small.

Alternatives
are specific
departures
from the null
hypothesis

This procedure is stated in terms of changes in the variance, not the standard
deviation, which makes it somewhat difficult to interpret. Tests that are generally of
interest are stated in terms of , a discrepancy from the hypothesized variance. For
example:

Is the true variance larger than its hypothesized value by ?1.  

Is the true variance smaller than its hypothesized value by ?2.  

That is, the tests of interest are:

H0: 1.  

H0: 2.  

Interpretation The experimenter wants to assure that the probability of erroneously accepting the
null hypothesis of unchanged variance is at most . The sample size, N, required
for this type of detection depends on the factor, ; the significance level, ; and
the risk, .

First choose
the level of
significance
and beta risk

The sample size is determined by first choosing appropriate values of  and  and
then following the directions below to find the degrees of freedom, , from the
chi-square distribution.

7.2.3.2. Sample sizes required
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The
calculations
should be
done by
creating a
table or
spreadsheet

First compute

Then generate a table of degrees of freedom, say between 1 and 200. For case (1) or
(2) above, calculate  and the corresponding value of  for each value of
degrees of freedom in the table where

1.  

2.  

The value of  where  is closest to  is the correct degrees of freedom and

N =  + 1

Hints on
using
software
packages to
do the
calculations

The quantity  is the critical value from the chi-square distribution with 

degrees of freedom which is exceeded with probability . It is sometimes referred
to as the percent point function (PPF) or the inverse chi-square function. The
probability that is evaluated to get  is called the cumulative density function
(CDF).

Example Consider the case where the variance for resistivity measurements on a lot of
silicon wafers is claimed to be 100 ohm.cm. A buyer is unwilling to accept a
shipment if  is greater than 55 ohm.cm for a particular lot. This problem falls
under case (1) above. The question is how many samples are needed to assure risks
of  = 0.05 and  = .01.

7.2.3.2. Sample sizes required
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Calculations
using
Dataplot

The procedure for performing these calculations using Dataplot is as follows:

   let d=55
   let var = 100
   let r = 1 + d/(var)
   let function cnu=chscdf(chsppf(.95,nu)/r,nu) - 0.01
   let a = roots cnu wrt nu  for nu = 1 200

Dataplot returns a value of 169.5. Therefore, the minimum sample size needed to
guarantee the risk level is N = 170.

Alternatively, we could generate a table using the following Dataplot commands:

   let d=55
   let var = 100
   let r = 1 + d/(var)
   let nu = 1 1 200
   let bnu = chsppf(.95,nu)
   let bnu=bnu/r
   let cnu=chscdf(bnu,nu)
   print nu bnu cnu for nu = 165 1 175

Dataplot
output

The Dataplot output, for calculations between 165 and 175 degrees of freedom, is
shown below.

 VARIABLES--
       NU                BNU              CNU
   0.1650000E+03    0.1264344E+03     0.1136620E-01
   0.1660000E+03    0.1271380E+03     0.1103569E-01
   0.1670000E+03    0.1278414E+03     0.1071452E-01
   0.1680000E+03    0.1285446E+03     0.1040244E-01
   0.1690000E+03    0.1292477E+03     0.1009921E-01
   0.1700000E+03    0.1299506E+03     0.9804589E-02
   0.1710000E+03    0.1306533E+03     0.9518339E-02
   0.1720000E+03    0.1313558E+03     0.9240230E-02
   0.1730000E+03    0.1320582E+03     0.8970034E-02
   0.1740000E+03    0.1327604E+03     0.8707534E-02
   0.1750000E+03    0.1334624E+03     0.8452513E-02

The value of  which is closest to 0.01 is 0.010099; this has degrees of freedom
 = 169. Therefore, the minimum sample size needed to guarantee the risk level is

N = 170.

Calculations
using EXCEL

The procedure for doing the calculations using an EXCEL spreadsheet is shown
below. The EXCEL calculations begin with 1 degree of freedom and iterate to the
correct solution.

7.2.3.2. Sample sizes required
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Definitions in
EXCEL

Start with:

1 in A11.  

CHIINV{(1- ), A1}/R in B12.  

CHIDIST(B1,A1) in C1

In EXCEL, CHIINV{(1- ), A1} is the critical value of the chi-square
distribution that is exceeded with probabililty . This example requires
CHIINV(.95,A1). CHIDIST(B1,A1) is the cumulative density function up to
B1 which, for this example, needs to reach 1 -  = 1 - 0.01 = 0.99. The
EXCEL screen is shown below.

3.  

7.2.3.2. Sample sizes required
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Iteration step Then:

From TOOLS, click on "GOAL SEEK"1.  

Fill in the blanks with "Set Cell C1", "To Value 1 - " and "By Changing
Cell A1".

2.  

Click "OK"3.  

Clicking on "OK" iterates the calculations until C1 reaches 0.99 with the
corresponding degrees of freedom shown in A1:

7.2.3.2. Sample sizes required
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process

7.2.4.Does the proportion of defectives
meet requirements?

Testing
proportion
defective is
based on the
binomial
distribution

The proportion of defective items in a manufacturing process can be
monitored using statistics based on the observed number of defectives
in a random sample of size N from a continuous manufacturing
process, or from a large population or lot. The proportion defective in
a sample follows the binomial distribution where p is the probability
of an individual item being found defective. Questions of interest for
quality control are:

Is the proportion of defective items within prescribed limits?1.  

Is the proportion of defective items less than a prescribed limit?2.  

Is the proportion of defective items greater than a prescribed
limit?

3.  

Hypotheses
regarding
proportion
defective

The corresponding hypotheses that can be tested are:

p = p01.  

p  p02.  

p  p03.  

where p0 is the prescribed proportion defective.

Test statistic
based on a
normal
approximation

Given a random sample of measurements Y1, ..., YN from a population,
the proportion of items that are judged defective from these N
measurements is denoted . The test statistic

depends on a normal approximation to the binomial distribution that is
valid for large N, (N > 30). This approximation simplifies the
calculations using critical values from the table of the normal
distribution as shown below.

7.2.4. Does the proportion of defectives meet requirements?
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Restriction on
sample size

Because the test is approximate, N needs to be large for the test to be
valid. One criterion is that N should be chosen so that

min{Np0, N(1 - p0)} >= 5

For example, if p0 = 0.1, then N should be at least 50 and if p0 = 0.01,
then N should be at least 500. Criteria for choosing a sample size in

order to guarantee detecting a change of size  are discussed on
another page.

One and
two-sided
tests for
proportion
defective

Tests at the 1 -  confidence level corresponding to hypotheses (1),
(2), and (3) are shown below. For hypothesis (1), the test statistic, z, is

compared with , the upper critical value from the normal

distribution that is exceeded with probability  and similarly for (2)
and (3). If

1.  

2.  

3.  

the null hypothesis is rejected.

Example of a
one-sided test
for proportion
defective

After a new method of processing wafers was introduced into a
fabrication process, two hundred wafers were tested, and twenty-six
showed some type of defect. Thus, for N= 200, the proportion

defective is estimated to be  = 26/200 = 0.13. In the past, the
fabrication process was capable of producing wafers with a proportion
defective of at most 0.10. The issue is whether the new process has
degraded the quality of the wafers. The relevant test is the one-sided
test (3) which guards against an increase in proportion defective from
its historical level.

Calculations
for a
one-sided test
of proportion
defective

For a test at significance level  = 0.05, the hypothesis of no
degradation is validated if the test statistic z is less than the critical
value, z.05 = 1.645. The test statistic is computed to be

7.2.4. Does the proportion of defectives meet requirements?
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Interpretation Because the test statistic is less than the critical value (1.645), we
cannot reject hypothesis (3) and, therefore, we cannot conclude that
the new fabrication method is degrading the quality of the wafers. The
new process may, indeed, be worse, but more evidence would be
needed to reach that conclusion at the 95% confidence level.

7.2.4. Does the proportion of defectives meet requirements?
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.4. Does the proportion of defectives meet requirements?

7.2.4.1. Confidence intervals

Confidence
intervals
using the
method of
Agresti and
Coull

The method recommended by Agresti and Coull (1998) and also by
Brown, Cai and DasGupta (2001) (the methodology was originally
developed by Wilson in 1927) is to use the form of the confidence
interval that corresponds to the hypothesis test given in Section 7.2.4.
That is, solve for the two values of p0 (say, pupper and plower) that result
from setting z =  and solving for p0 = pupper, and then setting z = -

 and solving for p0 = plower. (Here, as in Section 7.2.4,  denotes

the variate value from the standard normal distribution such that the area
to the right of the value is /2.) Although solving for the two values of
p0 might sound complicated, the appropriate expressions can be
obtained by straightforward but slightly tedious algebra. Such algebraic
manipulation isn't necessary, however, as the appropriate expressions
are given in various sources. Specifically, we have

Formulas
for the
confidence
intervals

Procedure
does not
strongly
depend on
values of p
and n

This approach can be substantiated on the grounds that it is the exact
algebraic counterpart to the (large-sample) hypothesis test given in
section 7.2.4 and is also supported by the research of Agresti and Coull.
One advantage of this procedure is that its worth does not strongly
depend upon the value of n and/or p, and indeed was recommended by
Agresti and Coull for virtually all combinations of n and p.

7.2.4.1. Confidence intervals
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Another
advantage is
that the
lower limit
cannot be
negative

Another advantage is that the lower limit cannot be negative. That is not
true for the confidence expression most frequently used:

A confidence limit approach that produces a lower limit which is an
impossible value for the parameter for which the interval is constructed
is an inferior approach. This also applies to limits for the control charts
that are discussed in Chapter 6.

One-sided
confidence
intervals

A one-sided confidence interval can also be constructed simply by
replacing each  by  in the expression for the lower or upper limit,
whichever is desired. The 95% one-sided interval for p for the example
in the preceding section is:

Example p  lower limit

p  0.09577

Conclusion
from the
example

Since the lower bound does not exceed 0.10, in which case it would
exceed the hypothesized value, the null hypothesis that the proportion
defective is at most .10, which was given in the preceding section,
would not be rejected if we used the confidence interval to test the
hypothesis. Of course a confidence interval has value in its own right
and does not have to be used for hypothesis testing.

Exact Intervals for Small Numbers of Failures and/or Small Sample
Sizes

7.2.4.1. Confidence intervals
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Constrution
of exact
two-sided
confidence
intervals
based on the
binomial
distribution

If the number of failures is very small or if the sample size N is very
small, symmetical confidence limits that are approximated using the
normal distribution may not be accurate enough for some applications.
An exact method based on the binomial distribution is shown next. To
construct a two-sided confidence interval at the 100(1 - )% confidence
level for the true proportion defective p where Nd defects are found in a
sample of size N follow the steps below.

Solve the equation

for pU to obtain the upper 100(1 - )% limit for p.

1.  

Next solve the equation

for pL to obtain the lower 100(1 - )% limit for p.

2.  

Note The interval {pL, pU} is an exact 100(1 - )% confidence interval for p.
However, it is not symmetric about the observed proportion defective,

.

Example of
calculation
of upper
limit for
binomial
confidence
intervals
using
EXCEL

The equations above that determine pL and pU can easily be solved
using functions built into EXCEL. Take as an example the situation
where twenty units are sampled from a continuous production line and
four items are found to be defective. The proportion defective is
estimated to be  = 4/20 = 0.20. The calculation of a 90% confidence

interval for the true proportion defective, p, is demonstrated using
EXCEL spreadsheets.

7.2.4.1. Confidence intervals
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Upper
confidence
limit from
EXCEL

To solve for pU:

Open an EXCEL spreadsheet and put the starting value of 0.5 in
the A1 cell.

1.  

Put =BINOMDIST(Nd, N, A1, TRUE) in B1, where Nd = 4 and N
= 20.

2.  

Open the Tools menu and click on GOAL SEEK. The GOAL
SEEK box requires 3 entries./li>

B1 in the "Set Cell" box❍   

/2 = 0.05 in the "To Value" box❍   

A1 in the "By Changing Cell" box.❍   

The picture below shows the steps in the procedure.

3.  

Final step Click OK in the GOAL SEEK box. The number in A1 will
change from 0.5 to PU. The picture below shows the final result.

4.  

7.2.4.1. Confidence intervals
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Example of
calculation
of lower
limit for
binomial
confidence
limits using
EXCEL

The calculation of the lower limit is similar. To solve for pL:

Open an EXCEL spreadsheet and put the starting value of 0.5 in
the A1 cell.

1.  

Put =BINOMDIST(Nd -1, N, A1, TRUE) in B1, where Nd -1 = 3
and N = 20.

2.  

Open the Tools menu and click on GOAL SEEK. The GOAL
SEEK box requires 3 entries.

B1 in the "Set Cell" box❍   

1 - /2 = 1 - 0.05 = 0.95 in the "To Value" box❍   

A1 in the "By Changing Cell" box.❍   

The picture below shows the steps in the procedure.

3.  

7.2.4.1. Confidence intervals
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Final step Click OK in the GOAL SEEK box. The number in A1 will
change from 0.5 to pL. The picture below shows the final result.

4.  

7.2.4.1. Confidence intervals
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Interpretation
of result

A 90% confidence interval for the proportion defective, p, is {0.071,
0.400}. Whether or not the interval is truly "exact" depends on the
software. Notice in the screens above that GOAL SEEK is not able to
find upper and lower limits that correspond to exact 0.05 and 0.95
confidence levels; the calculations are correct to two significant digits
which is probably sufficient for confidence intervals. The calculations
using a package called SEMSTAT agree with the EXCEL results to
two significant digits.

Calculations
using
SEMSTAT

The downloadable software package SEMSTAT contains a menu item
"Hypothesis Testing and Confidence Intervals." Selecting this item
brings up another menu that contains "Confidence Limits on Binomial
Parameter." This option can be used to calculate binomial confidence
limits as shown in the screen shot below.

7.2.4.1. Confidence intervals
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Calculations
using
Dataplot

This computation can also be performed using the following Dataplot
program.

. Initalize
let p = 0.5
let nd = 4
let n = 20
. Define the functions
let function fu = bincdf(4,p,20) - 0.05
let function fl = bincdf(3,p,20) - 0.95
. Calculate the roots
let pu = roots fu wrt p  for p = .01 .99
let pl = roots fl wrt p  for p = .01 .99
. print the results
let pu1 = pu(1)
let pl1 = pl(1)
print "PU = ^pu1"
print "PL = ^pl1"

Dataplot generated the following results.

   PU = 0.401029
   PL = 0.071354

7.2.4.1. Confidence intervals
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.4. Does the proportion of defectives meet requirements?

7.2.4.2.Sample sizes required

Derivation of
formula for
required
sample size
when testing
proportions

The method of determining sample sizes for testing proportions is
similar to the method for determining sample sizes for testing the
mean. Although the sampling distribution for proportions actually
follows a binomial distribution, the normal approximation is used for
this derivation.

Minimum
sample size

If we are interested in detecting a change in the proportion defective of
size  in either direction, the minimum sample size is

For a two-sided test1.  

For a one-sided test2.  

Interpretation
and sample
size for high
probability of
detecting a
change

This requirement on the sample size only guarantees that a change of
size  is detected with 50% probability. The derivation of the sample
size when we are interested in protecting against a change  with

probability 1 -  (where  is small) is

For a two-sided test1.  

For a one-sided test2.  

7.2.4.2. Sample sizes required
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where  is the upper critical value from the normal distribution that

is exceeded with probability .

Value for the
true
proportion
defective

The equations above require that p be known. Usually, this is not the
case. If we are interested in detecting a change relative to an historical
or hypothesized value, this value is taken as the value of p for this
purpose. Note that taking the value of the proportion defective to be 0.5
leads to the largest possible sample size.

Example of
calculating
sample size
for testing
proportion
defective

Suppose that a department manager needs to be able to detect any
change above 0.10 in the current proportion defective of his product
line, which is running at approximately 10% defective. He is interested
in a one-sided test and does not want to stop the line except when the
process has clearly degraded and, therefore, he chooses a significance
level for the test of 5%. Suppose, also, that he is willing to take a risk
of 10% of failing to detect a change of this magnitude. With these
criteria:

z.05 = 1.645; z.10=1.2821.  

 = 0.102.  

p = 0.103.  

and the minimum sample size for a one-sided test procedure is

7.2.4.2. Sample sizes required
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process

7.2.5.Does the defect density meet
requirements?

Testing defect
densities is
based on the
Poisson
distribution

The number of defects observed in an area of size A units is often
assumed to have a Poisson distribution with parameter A x D, where D
is the actual process defect density (D is defects per unit area). In other
words:

The questions of primary interest for quality control are:

Is the defect density within prescribed limits?1.  

Is the defect density less than a prescribed limit?2.  

Is the defect density greater than a prescribed limit?3.  

Normal
approximation
to the Poisson

We assume that AD is large enough so that the normal approximation
to the Poisson applies (in other words, AD > 10 for a reasonable
approximation and AD > 20 for a good one). That translates to

where  is the standard normal distribution function.

Test statistic
based on a
normal
approximation

If, for a sample of area A with a defect density target of D0, a defect
count of C is observed, then the test statistic

can be used exactly as shown in the discussion of the test statistic for
fraction defectives in the preceding section.

7.2.5. Does the defect density meet requirements?
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Testing the
hypothesis
that the
process defect
density is less
than or equal
to D0

For example, after choosing a sample size of area A (see below for
sample size calculation) we can reject that the process defect density is
less than or equal to the target D0 if the number of defects C in the
sample is greater than CA, where

and Z  is the upper 100x(1- ) percentile of the standard normal
distribution. The test significance level is 100x(1- ). For a 90%
significance level use Z  = 1.282 and for a 95% test use Z  = 1.645.

 is the maximum risk that an acceptable process with a defect
density at least as low as D0 "fails" the test.

Choice of
sample size
(or area) to
examine for
defects

In order to determine a suitable area A to examine for defects, you first
need to choose an unacceptable defect density level. Call this
unacceptable defect density D1 = kD0, where k > 1.

We want to have a probability of less than or equal to  is of
"passing" the test (and not rejecting the hypothesis that the true level is
D0 or better) when, in fact, the true defect level is D1 or worse.

Typically  will be .2, .1 or .05. Then we need to count defects in a
sample size of area A, where A is equal to

Example Suppose the target is D0 = 4 defects per wafer and we want to verify a
new process meets that target. We choose  = .1 to be the chance of
failing the test if the new process is as good as D0 (  = the Type I

error probability or the "producer's risk") and we choose  = .1 for the
chance of passing the test if the new process is as bad as 6 defects per
wafer (  = the Type II error probability or the "consumer's risk").
That means Z  = 1.282 and Z1-  = -1.282.

The sample size needed is A wafers, where

7.2.5. Does the defect density meet requirements?
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which we round up to 9.

The test criteria is to "accept" that the new process meets target unless
the number of defects in the sample of 9 wafers exceeds

In other words, the reject criteria for the test of the new process is 44
or more defects in the sample of 9 wafers.

Note: Technically, all we can say if we run this test and end up not
rejecting is that we do not have statistically significant evidence that
the new process exceeds target. However, the way we chose the
sample size for this test assures us we most likely would have had
statistically significant evidence for rejection if the process had been
as bad as 1.5 times the target.

7.2.5. Does the defect density meet requirements?
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process

7.2.6.What intervals contain a fixed
percentage of the population values?

Observations
tend to
cluster
around the
median or
mean

Empirical studies have demonstrated that it is typical for a large
number of the observations in any study to cluster near the median. In
right-skewed data this clustering takes place to the left of (i.e., below)
the median and in left-skewed data the observations tend to cluster to
the right (i.e., above) the median. In symmetrical data, where the
median and the mean are the same, the observations tend to distribute
equally around these measures of central tendency.

Various
methods

Several types of intervals about the mean that contain a large
percentage of the population values are discussed in this section.

Approximate intervals that contain most of the population values●   

Percentiles●   

Tolerance intervals for a normal distribution●   

Tolerance intervals using EXCEL●   

Tolerance intervals based on the smallest and largest
observations

●   

7.2.6. What intervals contain a fixed percentage of the population values?
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.6. What intervals contain a fixed percentage of the population values?

7.2.6.1.Approximate intervals that contain
most of the population values

Empirical
intervals

A rule of thumb is that where there is no evidence of significant
skewness or clustering, two out of every three observations (67%)
should be contained within a distance of one standard deviation of the
mean; 90% to 95% of the observations should be contained within a
distance of two standard deviations of the mean; 99-100% should be
contained within a distance of three standard deviations. This rule can
help identify outliers in the data.

Intervals
that apply to
any
distribution

The Bienayme-Chebyshev rule states that regardless of how the data
are distributed, the percentage of observations that are contained within
a distance of k tandard deviations of the mean is at least (1 -
1/k2)100%.

Exact
intervals for
the normal
distribution

The Bienayme-Chebyshev rule is conservative because it applies to any
distribution. For a normal distribution, a higher percentage of the
observations are contained within k standard deviations of the mean as
shown in the following table.

Percentage of observations contained between the mean and k
standard deviations

k, No. of
Standard

Deviations
Empircal Rule Bienayme-Chebychev

Normal
Distribution

1 67% N/A 68.26%
2 90-95% at least 75% 95.44%
3 99-100% at least 88.89% 99.73%
4 N/A at least 93.75% 99.99%

7.2.6.1. Approximate intervals that contain most of the population values
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.6. What intervals contain a fixed percentage of the population values?

7.2.6.2.Percentiles

Definitions of
order
statistics and
ranks

For a series of measurements Y1, ..., YN, denote the data ordered in
increasing order of magnitude by Y[1], ..., Y[N]. These ordered data are
called order statistics. If Y[j] is the order statistic that corresponds to the
measurement Yi, then the rank for Yi is j; i.e.,

Definition of
percentiles

Order statistics provide a way of estimating proportions of the data that
should fall above and below a given value, called a percentile. The pth
percentile is a value, Y(p), such that at most (100p)% of the
measurements are less than this value and at most 100(1- p)% are
greater. The 50th percentile is called the median.

Percentiles split a set of ordered data into hundredths. (Deciles split
ordered data into tenths). For example, 70% of the data should fall
below the 70th percentile.

Estimation of
percentiles

Percentiles can be estimated from N measurements as follows: for the
pth percentile, set p(N+1) equal to k + d for k an integer, and d, a
fraction greater than or equal to 0 and less than 1.

For 0 < k < N,  1.  

For k = 0,  Y(p) = Y[1]2.  

For k = N,  Y(p) = Y[N]3.  

7.2.6.2. Percentiles
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Example and
interpretation

For the purpose of illustration, twelve measurements from a gage study
are shown below. The measurements are resistivities of silicon wafers
measured in ohm.cm.

       i  Measurements  Order stats   Ranks

       1     95.1772     95.0610       9
       2     95.1567     95.0925       6
       3     95.1937     95.1065       10
       4     95.1959     95.1195       11
       5     95.1442     95.1442        5
       6     95.0610     95.1567        1
       7     95.1591     95.1591        7
       8     95.1195     95.1682        4
       9     95.1065     95.1772        3
      10     95.0925     95.1937        2
      11     95.1990     95.1959       12
      12     95.1682     95.1990        8

To find the 90% percentile, p(N+1) = 0.9(13) =11.7; k = 11, and d =
0.7. From condition (1) above, Y(0.90) is estimated to be 95.1981
ohm.cm. This percentile, although it is an estimate from a small sample
of resistivities measurements, gives an indication of the percentile for a
population of resistivity measurements.

Note that
there are
other ways of
calculating
percentiles in
common use

Some software packages (EXCEL, for example) set 1+p(N-1) equal to
k + d, then proceed as above. The two methods give fairly similar
results.

A third way of calculating percentiles (given in some elementary
textbooks) starts by calculating pN. If that is not an integer, round up to
the next highest integer k and use Y[k] as the percentile estimate. If pN
is an integer k, use .5(Y[k] +Y[k+1]).

Definition of
Tolerance
Interval

An interval covering population percentiles can be interpreted as
"covering a proportion p of the population with a level of confidence,
say, 90%." This is known as a tolerance interval.

7.2.6.2. Percentiles
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.6. What intervals contain a fixed percentage of the population values?

7.2.6.3.Tolerance intervals for a normal
distribution

Definition of
a tolerance
interval

A confidence interval covers a population parameter with a stated confidence,
that is, a certain proportion of the time. There is also a way to cover a fixed
proportion of the population with a stated confidence. Such an interval is called
a tolerance interval. The endpoints of a tolerance interval are called tolerance
limits. An application of tolerance intervals to manufacturing involves
comparing specification limits prescribed by the client with tolerance limits that
cover a specified proportion of the population.

Difference
between
confidence
and tolerance
intervals

Confidence limits are limits within which we expect a given population
parameter, such as the mean, to lie. Statistical tolerance limits are limits within
which we expect a stated proportion of the population to lie. Confidence
intervals shrink towards zero as the sample size increases. Tolerance intervals
tend towards a fixed value as the sample size increases.

Not related to
engineering
tolerances

Statistical tolerance intervals have a probabilistic interpretation. Engineering
tolerances are specified outer limits of acceptability which are usually
prescribed by a design engineer and do not necessarily reflect a characteristic of
the actual measurements.

Three types of
tolerance
intervals

Three types of questions can be addressed by tolerance intervals. Question (1)
leads to a two-sided interval; questions (2) and (3) lead to one-sided intervals.

What interval will contain p percent of the population measurements?1.  

What interval guarantees that p percent of population measurements will
not fall below a lower limit?

2.  

What interval guarantees that p percent of population measurements will
not exceed an upper limit?

3.  

7.2.6.3. Tolerance intervals for a normal distribution
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Tolerance
intervals for
measurements
from a
normal
distribution

For the questions above, the corresponding tolerance intervals are defined by
lower (L) and upper (U) tolerance limits which are computed from a series of
measurements Y1, ..., YN :

 1.  

 2.  

3.  
where the k factors are determined so that the intervals cover at least a
proportion p of the population with confidence, .

Calculation
of k factor for
a two-sided
tolerance
limit for a
normal
distribution

If the data are from a normally distributed population, an approximate value for
the factor as a function of p and  for a two-sided tolerance interval (Howe,
1969) is

where  is the critical value of the chi-square distribution with degrees of

freedom, N - 1, that is exceeded with probability  and  is the critical
value of the normal distribution which is exceeded with probability (1-p)/2.

Example of
calculation

For example, suppose that we take a sample of N = 43 silicon wafers from a lot
and measure their thicknesses in order to find tolerance limits within which a
proportion p = 0.90 of the wafers in the lot fall with probability  = 0.99.

Use of tables
in calculating
two-sided
tolerance
intervals

Values of the k factor as a function of p and  are tabulated in some textbooks,
such as Dixon and Massey (1969). To use the tables in this handbook, follow the
steps outlined below:

Calculate  = (1 - p)/2 = 0.051.  

Go to the table of upper critical values of the normal distribution and

under the column labeled 0.05 find  = 1.645.

2.  

Go to the table of lower critical values of the chi-square distribution and
under the column labeled 0.99 in the row labeled degrees of freedom =

42, find  = 23.650.

3.  

7.2.6.3. Tolerance intervals for a normal distribution
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Calculate4.  

The tolerance limits are then computed from the sample mean, , and standard
deviation, s, according to case (1).

Important
note

The notation for the critical value of the chi-square distribution can be
confusing. Values as tabulated are, in a sense, already squared; whereas the
critical value for the normal distribution must be squared in the formula above.

Dataplot
commands for
calculating
the k factor
for a
two-sided
tolerance
interval

The Dataplot commands are:

let n = 43
let nu = n - 1
let p = .90
let g = .99
let g1=1-g
let p1=(1+p)/2
let cg=chsppf(g1,nu)
let np=norppf(p1)
let k = nu*(1+1/n)*np**2
let k2 = (k/cg)**.5

and the output is:

THE COMPUTED VALUE OF THE CONSTANT K2 = 0.2217316E+01

Another note The notation for tail probabilities in Dataplot is the converse of the notation used
in this handbook. Therefore, in the example above it is necessary to specify the
critical value for the chi-square distribution, say, as chsppf(1-.99, 42) and
similarly for the critical value for the normal distribution.

7.2.6.3. Tolerance intervals for a normal distribution
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Direct
calculation of
tolerance
intervals
using
Dataplot

Dataplot also has an option for calculating tolerance intervals directly from the
data. The commands for producing tolerance intervals from twenty-five
measurements of resistivity from a quality control study at a confidence level of
99% are:

read 100ohm.dat cr wafer mo day h min op hum ...
                probe temp y sw df
tolerance y

Automatic output is given for several levels of coverage, and the tolerance
interval for 90% coverage is shown below in bold:

 2-SIDED NORMAL TOLERANCE LIMITS: XBAR +- K*S

     NUMBER OF OBSERVATIONS    =     25
     SAMPLE MEAN               = 97.069832
     SAMPLE STANDARD DEVIATION = 0.26798090E-01

CONFIDENCE =    99.%
  COVERAGE (%)       LOWER LIMIT         UPPER LIMIT
          50.0        97.04242            97.09724
          75.0        97.02308            97.11658
          90.0        97.00299            97.13667
          95.0        96.99020            97.14946
          99.0        96.96522            97.17445
          99.9        96.93625            97.20341

Calculation
for a
one-sided
tolerance
interval for a
normal
distribution

The calculation of an approximate k factor for one-sided tolerance intervals
comes directly from the following set of formulas (Natrella, 1963):

where  is the critical value from the normal distribution that is exceeded

with probability 1-p and  is the critical value from the normal distribution

that is exceeded with probability 1- .
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Dataplot
commands for
calculating
the k factor
for a
one-sided
tolerance
interval

For the example above, it may also be of interest to guarantee with 0.99
probability (or 99% confidence) that 90% of the wafers have thicknesses less
than an upper tolerance limit. This problem falls under case (3), and the Dataplot
commands for calculating the factor for the one-sided tolerance interval are:

let n = 43
let p = .90
let g = .99
let nu = n-1
let zp = norppf(p)
let zg=norppf(g)
let a = 1 - ((zg**2)/(2*nu))
let b = zp**2 - (zg**2)/n
let k1 = (zp + (zp**2 - a*b)**.5)/a

and the output is:

THE COMPUTED VALUE OF THE CONSTANT A  =  0.9355727E+00
THE COMPUTED VALUE OF THE CONSTANT B  =  0.1516516E+01
THE COMPUTED VALUE OF THE CONSTANT K1 =  0.1875189E+01

The upper (one-sided) tolerance limit is therefore 97.07 + 1.8752*2.68 =
102.096.

7.2.6.3. Tolerance intervals for a normal distribution
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.6. What intervals contain a fixed percentage of the population values?

7.2.6.4.Two-sided tolerance intervals using EXCEL

Two-sided
tolerance
intervals
using
EXCEL

One method for computing factors for two-sided tolerance intervals using EXCEL makes
use of the definition

where r is defined by:

and  is the critical value of the chi-square distribution with N - 1 degrees of

freedom that is exceeded with probability, .

Interative
method

Unfortunately, r can only be found by iteration from the integral above which defines
limits within which p percent of the normal distribution lies. An EXCEL calculation is
illustrated below for the same problem as on the previous page except where N= 220
measurements are made of thickness. We wish to find tolerance intervals that contain a
proportion p = 0.90 of the wafers with probability  = 0.99.

The EXCEL commands for this calculation are shown below. The calculations are
approximate and depend on the starting value for r, which is taken to be zero in this
example. Calculations should be correct to three signficant digits.

7.2.6.4. Two-sided tolerance intervals using EXCEL

http://www.itl.nist.gov/div898/handbook/prc/section2/prc264.htm (1 of 3) [11/14/2003 6:11:50 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm
http://www.itl.nist.gov/div898/handbook/eda/section7/eda3671.htm
http://www.itl.nist.gov/div898/handbook/prc/section2/prc253.htm#EXCEL
http://www.itl.nist.gov/div898/handbook/prc/section2/prc253.htm#example


Basic
definition
of r in
EXCEL

Enter 0 in cell A1●   

Enter 220 (the sample size) in cell B1●   

Enter in cell C1 the formula:

=NORMDIST((1/SQRT(B1)+A1),0,1,T)-NORMDIST((1/SQRT(B1)-A1),0,1,T)

●   

The screen at this point is:

Iteration
step in
EXCEL

Click on the green V (not shown here) or press the Enter key. Click on TOOLS and then
on GOALSEEK. A drop down menu appears. Then,

Enter C1 (if it is not already there) in the cell in the row labeled: "Set cell:"●   

Enter 0.9 (which is p) in the cell at the row labeled: "To value:"●   

Enter A1 in the cell at the row labeled: "By changing cell:"●   

The screen at this point is:

Click OK. The screen below will be displayed:

7.2.6.4. Two-sided tolerance intervals using EXCEL
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Calculation
in EXCEL
of k factor

Now calculate the k factor from the equation above.

The value r = 1.6484 appears in cell A1●   

The value N = 220 is in cell B1●   

Enter  which is 0.99 in cell C1●   

Enter the formula =A1*SQRT((B1-1)/CHIINV(C1,(B1-1))) in cell D1●   

Press Enter●   

The screen is:

The resulting value k2= 1.853 appears in cell D1.

Calculation
in Dataplot

You can also perform this calculation using the following Dataplot macro.

.  Initialize
let r = 0
let n = 220
let c1 = 1/sqrt(n)
.  Compute R
let function f = norcdf(c+r) - norcdf(c-r) - 0.9
let z = roots f wrt r  for r = -4  4
let r = z(1)
.  Compute K2
let c2 = (n-1)
let k2 = r*sqrt(c2/chsppf(0.01,c2))
. Print results
print "R    = ^r"
print "K2   = ^k2"

Dataplot generates the following output.

 R    = 1.644854
 K2   = 1.849208

7.2.6.4. Two-sided tolerance intervals using EXCEL

http://www.itl.nist.gov/div898/handbook/prc/section2/prc264.htm (3 of 3) [11/14/2003 6:11:50 PM]

http://www.itl.nist.gov/div898/handbook/prc/section2/prc254.htm#k2
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.6. What intervals contain a fixed percentage of the population values?

7.2.6.5.Tolerance intervals based on the
largest and smallest observations

Tolerance
intervals can be
constructed for
a distribution of
any form

The methods on the previous pages for computing tolerance limits are based
on the assumption that the measurements come from a normal distribution. If
the distribution is not normal, tolerance intervals based on this assumption
will not provide coverage for the intended proportion p of the population.
However, there are methods for achieving the intended coverage if the form
of the distribution is not known, but these methods may produce
substantially wider tolerance intervals.

Risks
associated with
making
assumptions
about the
distribution

There are situations where it would be particularly dangerous to make
unwarranted assumptions about the exact shape of the distribution, for
example, when testing the strength of glass for airplane windshields where it
is imperative that a very large proportion of the population fall within
acceptable limits.

Tolerance
intervals based
on largest and
smallest
observations

One obvious choice for a two-sided tolerance interval for an unknown
distribution is the interval between the smallest and largest observations from
a sample of Y1, ..., YN measurements. This choice does not allow us to
choose the confidence and coverage levels that are desired, but it does permit
calculation of' combinations of confidence and coverage that match this
choice.

7.2.6.5. Tolerance intervals based on the largest and smallest observations
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Dataplot
calculations for
distribution-free
tolerance
intervals

The Dataplot commands for calculating confidence and coverage levels
corresponding to a tolerance interval defined as the interval between the
smallest and largest observations are given below. The commands that are
invoked for twenty-five measurements of resistivity from a quality control
study are the same as for producing tolerance intervals for a normal
distribution; namely,

read 100ohm.dat cr wafer mo day h min ...
     op hum probe temp y sw df
tolerance y

Automatic output for combinations of confidence and coverage is shown
below:

 2-SIDED DISTRIBUTION-FREE TOLERANCE LIMITS: 

 INVOLVING XMIN = 97.01400  AND  XMAX = 97.11400
     CONFIDENCE (%)       COVERAGE (%)
           100.0       0.5000000E+02
            99.3       0.7500000E+02
            72.9       0.9000000E+02
            35.8       0.9500000E+02
            12.9       0.9750000E+02
             2.6       0.9900000E+02
             0.7       0.9950000E+02
             0.0       0.9990000E+02
             0.0       0.9995000E+02
             0.0       0.9999000E+02

Note that if 99% confidence is required, the interval that covers the entire
sample data set is guaranteed to achieve a coverage of only 75% of the
population values.

What is the
optimal sample
size?

Another question of interest is, "How large should a sample be so that one
can be assured with probability  that the tolerance interval will contain at
least a proportion p of the population?"

7.2.6.5. Tolerance intervals based on the largest and smallest observations
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Approximation
for N

A rather good approximation for the required sample size is given by

where  is the critical value of the chi-square distribution with 4

degrees of freedom that is exceeded with probability 1 - .

Example of the
effect of p on
the sample size

Suppose we want to know how many measurements to make in order to
guarantee that the interval between the smallest and largest observations
covers a proportion p of the population with probability =0.95. From the
table for the upper critical value of the chi-square distribution, look under the
column labeled 0.05 in the row for 4 degrees of freedom. The value is found

to be  and calculations are shown below for p equal to 0.90

and 0.99.

These calculations demonstrate that requiring the tolerance interval to cover
a very large proportion of the population may lead to an unacceptably large
sample size.
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7. Product and Process Comparisons

7.3.Comparisons based on data from two
processes

Outline for
this section

In many manufacturing environments it is common to have two or more
processes performing the same task or generating similar products. The
following pages describe tests covering several of the most common and
useful cases for two processes.

Do two processes have the same mean?

Tests when the standard deviations are equal1.  

Tests when the standard deviations are unequal2.  

Tests for paired data3.  

1.  

Do two processes have the same standard deviation?2.  

Do two processes produce the same proportion of defectives?3.  

If the observations are failure times, are the failure rates (or mean
times to failure) the same?

4.  

Example of
a dual track
process

For example, in an automobile manufacturing plant, there may exist
several assembly lines producing the same part. If one line goes down
for some reason, parts can still be produced and production will not be
stopped. For example, if the parts are piston rings for a particular model
car, the rings produced by either line should conform to a given set of
specifications.

How does one confirm that the two processes are in fact producing rings
that are similar? That is, how does one determine if the two processes
are similar?

7.3. Comparisons based on data from two processes
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The goal is
to determine
if the two
processes
are similar

In order to answer this question, data on piston rings are collected for
each process. For example, on a particular day, data on the diameters of
ten piston rings from each process are measured over a one-hour time
frame.

To determine if the two processes are similar, we are interested in
answering the following questions:

Do the two processes produce piston rings with the same
diameter?

1.  

Do the two processes have similar variability in the diameters of
the rings produced?

2.  

Unknown
standard
deviation

The second question assumes that one does not know the standard
deviation of either process and therefore it must be estimated from the
data. This is usually the case, and the tests in this section assume that the
population standard deviations are unknown.

Assumption
of a normal
distribution

The statistical methodology used (i.e., the specific test to be used) to
answer these two questions depends on the underlying distribution of
the measurements. The tests in this section assume that the data are
normally distributed.

7.3. Comparisons based on data from two processes
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7. Product and Process Comparisons
7.3. Comparisons based on data from two processes

7.3.1. Do two processes have the same mean?

Testing
hypotheses
related to
the means of
two
processes

Given two random samples of measurements,

Y1, ..., YN and Z1, ..., ZN

from two independent processes (the Y's are sampled from process 1 and the Z's
are sampled from process 2), there are three types of questions regarding the true
means of the processes that are often asked. They are:

Are the means from the two processes the same?1.  

Is the mean of process 1 less than or equal to the mean of process 2?2.  

Is the mean of process 1 greater than or equal to the mean of process 2?3.  

Typical null
hypotheses

The corresponding null hypotheses that test the true mean of the first process,
, against the true mean of the second process,  are:

H0:  = 1.  

H0:  < or equal to 2.  

H0:  > or equal to 3.  

Note that as previously discussed, our choice of which null hypothesis to use is
typically made based on one of the following considerations:

When we are hoping to prove something new with the sample data, we
make that the alternative hypothesis, whenever possible.

1.  

When we want to continue to assume a reasonable or traditional
hypothesis still applies, unless very strong contradictory evidence is
present, we make that the null hypothesis, whenever possible.

2.  

7.3.1. Do two processes have the same mean?
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Basic
statistics
from the two
processes

The basic statistics for the test are the sample means

 ; 

and the sample standard deviations

with degrees of freedom  and  respectively.

Form of the
test statistic
where the
two
processes
have
equivalent
standard
deviations

If the standard deviations from the two processes are equivalent, and this should
be tested before this assumption is made, the test statistic is

where the pooled standard deviation is estimated as

with degrees of freedom  .

7.3.1. Do two processes have the same mean?
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Form of the
test statistic
where the
two
processes do
NOT have
equivalent
standard
deviations

If it cannot be assumed that the standard deviations from the two processes are
equivalent, the test statistic is

The degrees of freedom are not known exactly but can be estimated using the
Welch-Satterthwaite approximation

Test
strategies

The strategy for testing the hypotheses under (1), (2) or (3) above is to calculate
the appropriate t statistic from one of the formulas above, and then perform a test
at significance level , where  is chosen to be small, typically .01, .05 or .10.
The hypothesis associated with each case enumerated above is rejected if:

1.  

2.  

3.  

Explanation
of critical
values

The critical values from the t table depend on the significance level and the

degrees of freedom in the standard deviation. For hypothesis (1)  is the

 upper critical value from the t table with  degrees of freedom and
similarly for hypotheses (2) and (3).

7.3.1. Do two processes have the same mean?
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Example of
unequal
number of
data points

A new procedure (process 2) to assemble a device is introduced and tested for
possible improvement in time of assembly. The question being addressed is
whether the mean, , of the new assembly process is smaller than the mean,

, for the old assembly process (process 1). We choose to test hypothesis (2) in

the hope that we will reject this null hypothesis and thereby feel we have a strong
degree of confidence that the new process is an improvement worth
implementing. Data (in minutes required to assemble a device) for both the new
and old processes are listed below along with their relevant statistics.

        Device    Process 1 (Old)  Process 2 (New)

           1            32            36
           2            37            31
           3            35            30
           4            28            31
           5            41            34
           6            44            36
           7            35            29
           8            31            32
           9            34            31
          10            38
          11            42

Mean                36.0909        32.2222
Standard deviation   4.9082         2.5386
No. measurements         11              9
Degrees freedom          10              8

Computation
of the test
statistic

From this table we generate the test statistic

with the degrees of freedom approximated by

7.3.1. Do two processes have the same mean?
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Decision
process

For a one-sided test at the 5% significance level, go to the t table for 5%
signficance level, and look up the critical value for degrees of freedom  = 16.
The critical value is 1.746. Thus, hypothesis (2) is rejected because the test
statistic (t = 2.269) is greater than 1.746 and, therefore, we conclude that process
2 has improved assembly time (smaller mean) over process 1.

7.3.1. Do two processes have the same mean?
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7. Product and Process Comparisons
7.3. Comparisons based on data from two processes
7.3.1. Do two processes have the same mean?

7.3.1.1.Analysis of paired observations

Definition of
paired
comparisons

Given two random samples,

Y1, ..., YN    and    Z1, ..., ZN

from two populations, the data are said to be paired if the ith
measurement on the first sample is naturally paired with the ith
measurement on the second sample. For example, if N supposedly
identical products are chosen from a production line, and each one, in
turn, is tested with first one measuring device and then with a second
measuring device, it is possible to decide whether the measuring devices
are compatible; i.e., whether there is a difference between the two
measurement systems. Similarly, if "before" and "after" measurements
are made with the same device on N objects, it is possible to decide if
there is a difference between "before" and "after"; for example, whether
a cleaning process changes an important characteristic of an object.
Each "before" measurement is paired with the corresponding "after"
measurement, and the differences

are calculated.

Basic
statistics for
the test

The mean and standard deviation for the differences are calculated as

and

with N - 1 degrees of freedom.

7.3.1.1. Analysis of paired observations
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Test statistic
based on the
t
distribution

The paired sample t-test is used to test for the difference of two means
before and after a treatment. The test statistic is:

The hypotheses described on the foregoing page are rejected if:

1.  

2.  

3.  

where for hypothesis (1)  is the upper  critical value from

the t distribution with  degrees of freedom and similarly for cases (2)
and (3). Critical values can be found in the t-table in Chapter 1.

7.3.1.1. Analysis of paired observations
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7. Product and Process Comparisons
7.3. Comparisons based on data from two processes
7.3.1. Do two processes have the same mean?

7.3.1.2.Confidence intervals for differences
between means

Definition of
confidence
interval for
difference
between
population
means

Given two random samples,

Y1, ..., YN    and    Z1, ..., ZN

from two populations, two-sided confidence intervals with 100 (1- )% coverage
for the difference between the unknown population means,  and , are shown in
the table below. Relevant statistics for paired observations and for unpaired
observations are shown elsewhere.

Two-sided confidence intervals with 100(1- )% coverage for  - :

Paired observations

 -  (where  = )

Unpaired observations

 -  (where  = )

 -  (where   )

Interpretation
of confidence
interval

One interpretation of the confidence interval for means is that if zero is contained
within the confidence interval, the two population means are equivalent.

7.3.1.2. Confidence intervals for differences between means
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7. Product and Process Comparisons
7.3. Comparisons based on data from two processes

7.3.2.Do two processes have the same
standard deviation?

Testing
hypotheses
related to
standard
deviations
from two
processes

Given two random samples of measurements,

Y1, ..., YN    and    Z1, ..., ZN

from two independent processes, there are three types of questions
regarding the true standard deviations of the processes that can be
addressed with the sample data. They are:

Are the standard deviations from the two processes the same?1.  

Is the standard deviation of one process less than the standard
deviation of the other process?

2.  

Is the standard deviation of one process greater than the standard
deviation of the other process?

3.  

Typical null
hypotheses

The corresponding null hypotheses that test the true standard deviation of
the first process, , against the true standard deviation of the second

process,  are:

H0:  = 1.  

H0:   2.  

H0:   3.  

Basic
statistics
from the two
processes

The basic statistics for the test are the sample variances

and degrees of freedom  and , respectively.

7.3.2. Do two processes have the same standard deviation?
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Form of the
test statistic

The test statistic is

Test
strategies

The strategy for testing the hypotheses under (1), (2) or (3) above is to
calculate the F statistic from the formula above, and then perform a test
at significance level , where  is chosen to be small, typically .01, .05
or .10. The hypothesis associated with each case enumerated above is
rejected if:

 or 1.  

2.  

3.  

Explanation
of critical
values

The critical values from the F table depend on the significance level and
the degrees of freedom in the standard deviations from the two
processes. For hypothesis (1):

 is the upper critical value from the F table with●   

 degrees of freedom for the numerator and●   

 degrees of freedom for the denominator●   

and

 is the upper critical value from the F table with●   

 degrees of freedom for the numerator and●   

 degrees of freedom for the denominator.●   

7.3.2. Do two processes have the same standard deviation?
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Caution on
looking up
critical
values

The F distribution has the property that

which means that only upper critical values are required for two-sided
tests. However, note that the degrees of freedom are interchanged in the
ratio. For example, for a two-sided test at significance level 0.05, go to
the F table labeled "2.5% significance level".

For , reverse the order of the degrees of freedom; i.e.,

look across the top of the table for  and down the table

for .

●   

For , look across the top of the table for 

and down the table for .

●   

Critical values for cases (2) and (3) are defined similarly, except that the
critical values for the one-sided tests are based on  rather than on .

Two-sided
confidence
interval

The two-sided confidence interval for the ratio of the two unknown
variances (squares of the standard deviations) is shown below.

Two-sided confidence interval with 100(1- )% coverage for:

One interpretation of the confidence interval is that if the quantity "one"
is contained within the interval, the standard deviations are equivalent.

7.3.2. Do two processes have the same standard deviation?
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Example of
unequal
number of
data points

A new procedure to assemble a device is introduced and tested for
possible improvement in time of assembly. The question being addressed
is whether the standard deviation, , of the new assembly process is

better (i.e., smaller) than the standard deviation, , for the old assembly
process. Therefore, we test the null hypothesis that . We form
the hypothesis in this way because we hope to reject it, and therefore
accept the alternative that  is less than . This is hypothesis (2).
Data (in minutes required to assemble a device) for both the old and new
processes are listed on an earlier page. Relevant statistics are shown
below:

                 Process 1          Process 2

Mean                36.0909               32.2222
Standard deviation   4.9082                2.5874
No. measurements         11                     9
Degrees freedom          10                     8

Computation
of the test
statistic

From this table we generate the test statistic

Decision
process

For a test at the 5% significance level, go to the F table for 5%
signficance level, and look up the critical value for numerator degrees of

freedom  = 10 and denominator degrees of freedom 
= 8. The critical value is 3.35. Thus, hypothesis (2) can be rejected
because the test statistic (F = 3.60) is greater than 3.35. Therefore, we
accept the alternative hypothesis that process 2 has better precision
(smaller standard deviation) than process 1.

7.3.2. Do two processes have the same standard deviation?
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7. Product and Process Comparisons
7.3. Comparisons based on data from two processes

7.3.3.How can we determine whether two
processes produce the same
proportion of defectives?

Case 1: Large Samples (Normal Approximation to Binomial)

The
hypothesis of
equal
proportions
can be tested
using a z
statistic

If the samples are reasonably large we can use the normal
approximation to the binomial to develop a test similar to testing
whether two normal means are equal.

Let sample 1 have x1 defects out of n1 and sample 2 have x2 defects
out of n2. Calculate the proportion of defects for each sample and the z
statistic below:

where

Compare z to the normal z  table value for a 2-sided test. For a one
sided test, assuming the alternative hypothesis is p1 > p2, compare z to
the normal z  table value. If the alternative hypothesis is p1 < p2,
compare z to -z .

Case 2: An Exact Test for Small Samples

7.3.3. How can we determine whether two processes produce the same proportion of defectives?
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The Fisher
Exact
Probability
test is an
excellent
choice for
small samples

The Fisher Exact Probability Test is an excellent nonparametric
technique for analyzing discrete data (either nominal or ordinal), when
the two independent samples are small in size. It is used when the
results from two independent random samples fall into one or the other
of two mutually exclusive classes (i.e., defect versus good, or
successes vs failures).

Example of a
2x2
contingency
table

In other words, every subject in each group has one of two possible
scores. These scores are represented by frequencies in a 2x2
contingency table. The following discussion, using a 2x2 contingency
table, illustrates how the test operates.

We are working with two independent groups, such as experiments
and controls, males and females, the Chicago Bulls and the New York
Knicks, etc.

- + Total
Group I A B A+B
Group

II
C D C+D

Total A+C B+D N

The column headings, here arbitrarily indicated as plus and minus,
may be of any two classifications, such as: above and below the
median, passed and failed, Democrat and Republican, agree and
disagree, etc.

Determine
whether two
groups differ
in the
proportion
with which
they fall into
two
classifications

Fisher's test determines whether the two groups differ in the proportion
with which they fall into the two classifications. For the table above,
the test would determine whether Group I and Group II differ
significantly in the proportion of plusses and minuses attributed to
them.

The method proceeds as follows:

The exact probability of observing a particular set of frequencies in a 2
× 2 table, when the marginal totals are regarded as fixed, is given by
the hypergeometric distribution

7.3.3. How can we determine whether two processes produce the same proportion of defectives?
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But the test does not just look at the observed case. If needed, it also
computes the probability of more extreme outcomes, with the same
marginal totals. By "more extreme", we mean relative to the null
hypothesis of equal proportions.

Example of
Fisher's test

This will become clear in the next illustrative example. Consider the
following set of 2 x 2 contingency tables:

Observed Data More extreme outcomes with same marginals
(a) (b) (c)

2 5 7
3 2 5
5 7 12

1 6 7
4 1 5
5 7 12

0 7 7
5 0 5
5 7 12

Table (a) shows the observed frequencies and tables (b) and (c) show
the two more extreme distributions of frequencies that could occur
with the same marginal totals 7, 5. Given the observed data in table (a)
, we wish to test the null hypothesis at, say,  = .05.

Applying the previous formula to tables (a), (b), and (c), we obtain

7.3.3. How can we determine whether two processes produce the same proportion of defectives?
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The probability associated with the occurrence of values as extreme as
the observed results under H0 is given by adding these three p's:

.26515 + .04419 + .00126 = .31060

So p = .31060 is the probability that we get from Fisher's test. Since
.31060 is larger than , we cannot reject the null hypothesis.

Tocher's Modification

Tocher's
modification
makes
Fisher's test
less
conservative

Tocher (1950) showed that a slight modification of the Fisher test
makes it a more useful test. Tocher starts by isolating the probability of
all cases more extreme than the observed one. In this example that is

pb + pc = .04419 + .00126 = .04545

Now, if this probability is larger than , we cannot reject Ho. But if
this probability is less than , while the probability that we got from
Fisher's test is greater than  (as is the case in our example) then
Tocher advises to compute the following ratio:

For the data in the example, that would be

Now we go to a table of random numbers and at random draw a
number between 0 and 1. If this random number is smaller than the
ratio above of .0172, we reject H0. If it is larger we cannot reject H0.
This added small probability of rejecting H0 brings the test procedure
Type I error (i.e.,  value) to exactly .05 and makes the Fisher test
less conservative.

The test is a one-tailed test. For a two-tailed test, the value of p
obtained from the formula must be doubled.

A difficulty with the Tocher procedure is that someone else analyzing
the same data would draw a different random number and possibly
make a different decision about the validity of H0.

7.3.3. How can we determine whether two processes produce the same proportion of defectives?
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7.3.3. How can we determine whether two processes produce the same proportion of defectives?
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7. Product and Process Comparisons
7.3. Comparisons based on data from two processes

7.3.4.Assuming the observations are
failure times, are the failure rates (or
Mean Times To Failure) for two
distributions the same?

Comparing
two
exponential
distributions
is to
compare the
means or
hazard rates

The comparison of two (or more) life distributions is a common
objective when performing statistical analyses of lifetime data. Here we
look at the one-parameter exponential distribution case.

In this case, comparing two exponential distributions is equivalent to
comparing their means (or the reciprocal of their means, known as their
hazard rates).

Type II Censored data

Definition of
Type II
censored
data

Definition: Type II censored data occur when a life test is terminated
exactly when a pre-specified number of failures have occurred. The
remaining units have not yet failed. If n units were on test, and the
pre-specified number of failures is r (where r is less than or equal to n),
then the test ends at tr = the time of the r-th failure.

Two
exponential
samples
oredered by
time

Suppose we have Type II censored data from two exponential
distributions with means 1 and 2. We have two samples from these
distributions, of sizes n1 on test with r1 failures and n2 on test with r2
failures, respectively. The observations are time to failure and are
therefore ordered by time.

7.3.4. Assuming the observations are failure times, are the failure rates (or Mean Times To Failure) for two distributions the same?

http://www.itl.nist.gov/div898/handbook/prc/section3/prc34.htm (1 of 3) [11/14/2003 6:11:53 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Test of
equality of

1 and 2

and
confidence
interval for

1/ 2

Letting

Then

and

with T1 and T2 independent. Thus

where

 and 

has an F distribution with (2r1, 2r2) degrees of freedom. Tests of
equality of 1 and 2 can be performed using tables of the F distribution
or computer programs. Confidence intervals for 1 / 2, which is the
ratio of the means or the hazard rates for the two distributions, are also
readily obtained.

Numerical
example

A numerical application will illustrate the concepts outlined above.

For this example,

H0: 1/ 2 = 1

Ha: 1/ 2  1

Two samples of size 10 from exponential distributions were put on life
test. The first sample was censored after 7 failures and the second
sample was censored after 5 failures. The times to failure were:

Sample 1: 125 189 210 356 468 550 610
Sample 2: 170 234 280 350 467

So r1 = 7, r2 = 5 and t1,(r1) = 610, t2,(r2)=467.

Then T1 = 4338 and T2 = 3836.

The estimator for 1 is 4338 / 7 = 619.71 and the estimator for 2 is
3836 / 5 = 767.20.

7.3.4. Assuming the observations are failure times, are the failure rates (or Mean Times To Failure) for two distributions the same?
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The ratio of the estimators = U = 619.71 / 767.20 = .808.

If the means are the same, the ratio of the estimators, U, follows an F
distribution with 2r1, 2r2 degrees of freedom. The P(F < .808) = .348.
The associated p-value is 2(.348) = .696. Based on this p-value, we find
no evidence to reject the null hypothesis (that the true but unknown ratio
= 1). Note that this is a two-sided test, and we would reject the null
hyposthesis if the p-value is either too small (i.e., less or equal to .025)
or too large (i.e., greater than or equal to .975) for a 95% significance
level test.

We can also put a 95% confidence interval around the ratio of the two
means. Since the .025 and .975 quantiles of F(14,10) are 0.3178 and
3.5504, respectively, we have

Pr(U/3.5504 < 1/ 2 < U/.3178) = .95

and (.228, 2.542) is a 95% confidence interval for the ratio of the
unknown means. The value of 1 is within this range, which is another
way of showing that we cannot reject the null hypothesis at the 95%
significance level.

7.3.4. Assuming the observations are failure times, are the failure rates (or Mean Times To Failure) for two distributions the same?
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7. Product and Process Comparisons
7.3. Comparisons based on data from two processes

7.3.5.Do two arbitrary processes have the
same mean?

The
nonparametric
equivalent of
the t-test is
due to Mann
and Whitney,
called the U
test

By "arbitrary" we mean that we make no underlying assumptions
about normality or any other distribution. The test is called the
Mann-Whitney U-Test, which is the nonparametric equivalent of the
t-test based for normal means.

The U-test (as the majority of nonparametric tests) uses the rank sums
of the two samples.

Procedure The procedure flows as follows

Rank all (n1 + n2) observations in ascending order. Ties receive
the average of their observations.

1.  

Calculate the sum of the ranks, call these Ta and Tb2.  

Calculate the U statistic,

Ua = n1(n2) + .5(n1)(n1 + 1) - Ta

or

Ub = n1(n2) + .5(n2)(n2 + 1) - Tb

where Ua + Ub = n1(n2).

3.  

Null
Hypothesis

The null hypothesis is: the populations have the same median. The
alternative hypothesis is: The medians are NOT the same.

7.3.5. Do two arbitrary processes have the same mean?
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Test statistic The test statistic, U, is the smaller of Ua and Ub. For sample sizes
larger than 20, we can use the normal z as follows:

z = [ U - E(U)] / 

where

The critical value is the normal tabled z for /2 for a two-tailed test or
z at  level, for a one-tail test.

For small samples use tables, which are readily available in most
textbooks on nonparametric statistics.

Example

An illustrative
example of the
U test

Two processing systems were used to clean wafers. The following
data represent the (coded) particle counts. The null hypothesis is that
there is no difference between the means of the particle counts; the
alternative hypothesis is that there is a difference. The solution shows
the typical kind of output software for this procedure would generate,
based on the large sample approximation.

Group A Rank Group B Rank

.55 8 .49 5

.67 15.5 .68 17

.43 1 .59 9.5

.51 6 .72 19

.48 3.5 .67 15.5

.60 11 .75 20.5

.71 18 .65 13.5

.53 7 .77 22

.44 2 .62 12

.65 13.5 .48 3.5

.75 20.5 .59 9.5

N Sum of Ranks U Std. Dev of U Median

A 11 106.000 81.000 15.229 0.540

B 11 147.000 40.000 15.229 0.635

Enter value for  (press Enter for .05): .05
Enter 1 or 2 for One- or Two-sided test: 2

7.3.5. Do two arbitrary processes have the same mean?
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E(U) = 60.500000

The Z-test statistic = 1.346133
The critical value = +/- 1.960395.

(1.346133) = 0.910870
Right Tail Area = 0.089130

Cannot reject the null hypothesis.

A two-sided confidence interval about U - E(U) is:

Prob {-9.3545 < DELTA < 50.3545 } = 0.9500

DELTA is the absolute difference between U and E(U).
The test statistic is given by: (DELTA / SIGMA).

7.3.5. Do two arbitrary processes have the same mean?
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7. Product and Process Comparisons

7.4.Comparisons based on data from more
than two processes

Introduction This section begins with a nonparametric procedure for comparing
several populations with unknown distributions. Then the following
topics are discussed:

Comparing variances●   

Comparing means (ANOVA technique)●   

Estimating variance components●   

Comparing categorical data●   

Comparing population proportion defectives●   

Making multiple comparisons●   

7.4. Comparisons based on data from more than two processes
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes

7.4.1.How can we compare several
populations with unknown
distributions (the Kruskal-Wallis
test)?

The Kruskal-Wallis (KW) Test for Comparing Populations with
Unknown Distributions

A
nonparametric
test for
comparing
population
medians by
Kruskal and
Wallis

The KW procedure tests the null hypothesis that k samples from
possibly different populations actually originate from similar
populations, at least as far as their central tendencies, or medians, are
concerned. The test assumes that the variables under consideration
have underlying continuous distributions.

In what follows assume we have k samples, and the sample size of the
i-th sample is ni, i = 1, 2, . . ., k.

Test based on
ranks of
combined data

In the computation of the KW statistic, each observation is replaced
by its rank in an ordered combination of all the k samples. By this we
mean that the data from the k samples combined are ranked in a single
series. The minimum observation is replaced by a rank of 1, the
next-to-the-smallest by a rank of 2, and the largest or maximum
observation is replaced by the rank of N, where N is the total number
of observations in all the samples (N is the sum of the ni).

Compute the
sum of the
ranks for each
sample

The next step is to compute the sum of the ranks for each of the
original samples. The KW test determines whether these sums of
ranks are so different by sample that they are not likely to have all
come from the same population.

7.4.1. How can we compare several populations with unknown distributions (the Kruskal-Wallis test)?
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Test statistic
follows a  2

distribution

It can be shown that if the k samples come from the same population,
that is, if the null hypothesis is true, then the test statistic, H, used in
the KW procedure is distributed approximately as a chi-square
statistic with df = k - 1, provided that the sample sizes of the k samples
are not too small (say, ni>4, for all i). H is defined as follows:

where

k = number of samples (groups)●   

ni = number of observations for the i-th sample or group●   

N = total number of observations (sum of all the ni)●   

Ri = sum of ranks for group i●   

Example

An illustrative
example

The following data are from a comparison of four investment firms.
The observations represent percentage of growth during a three month
period.for recommended funds.
 

A B C D

4.2 3.3 1.9 3.5
4.6 2.4 2.4 3.1
3.9 2.6 2.1 3.7
4.0 3.8 2.7 4.1

2.8 1.8 4.4

Step 1: Express the data in terms of their ranks 

A B C D

17 10 2 11
19 4.5 4.5 9
14 6 3 12
15 13 7 16

7.4.1. How can we compare several populations with unknown distributions (the Kruskal-Wallis test)?
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8 1 18

SUM 65 41.5 17.5 66

Compute the
test statistic

The corresponding H test statistic is

From the chi-square table in Chapter 1, the critical value for  = .05
with df = k-1 = 3 is 7.812. Since 13.678 > 7.812, we reject the null
hypothesis.

Note that the rejection region for the KW procedure is one-sided,
since we only reject the null hypothesis when the H statistic is too
large.

The KW test is implemented in the Dataplot command KRUSKAL
WALLIS TEST Y X .

7.4.1. How can we compare several populations with unknown distributions (the Kruskal-Wallis test)?
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes

7.4.2.Assuming the observations are
normal, do the processes have the
same variance?

Before
comparing
means, test
whether the
variances
are equal

Techniques for comparing means of normal populations generally
assume the populations have the same variance. Before using these
ANOVA techniques, it is advisable to test whether this assumption of
homogeneity of variance is reasonable. The following procedure is
widely used for this purpose.

Bartlett's Test for Homogeneity of Variances

Null
hypothesis

Bartlett's test is a commonly used test for equal variances. Let's examine
the null and alternative hypotheses.

against

Test statistic Assume we have samples of size ni from the i-th population, i = 1, 2, . . .
, k, and the usual variance estimates from each sample:

where

Now introduce the following notation: j = nj - 1 (the j are the degrees
of freedom) and

7.4.2. Assuming the observations are normal, do the processes have the same variance?
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The Bartlett's test statistic M is defined by

Distribution
of the test
statistic

When none of the degrees of freedom is small, Bartlett showed that M is
distributed approximately as . The chi-square approximation is
generally acceptable if all the ni are at least 5.

Bias
correction

This is a slightly biased test, according to Bartlett. It can be improved by
dividing M by the factor

Instead of M, it is suggested to use M/C for the test statistic.

Bartlett's
test is not
robust

This test is not robust, it is very sensitive to departures from normality.

An alternative description of Bartlett's test, which also describes how
Dataplot implements the test, appears in Chapter 1.

Gear Data Example (from Chapter 1):

An
illustrative
example of
Bartlett's
test

Gear diameter measurements were made on 10 batches of product. The
complete set of measurements appears in Chapter 1. Bartlett's test was
applied to this dataset leading to a rejection of the assumption of equal
batch variances at the .05 critical value level. applied to this dataset

The Levene Test for Homogeneity of Variances

7.4.2. Assuming the observations are normal, do the processes have the same variance?
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The Levene
test for
equality of
variances

Levene's test offers a more robust alternative to Bartlett's procedure.
That means it will be less likely to reject a true hypothesis of equality of
variances just because the distributions of the sampled populations are
not normal. When non-normality is suspected, Levene's procedure is a
better choice than Bartlett's.

Levene's test and its implementation in DATAPLOT were described in
Chapter 1. This description also includes an example where the test is
applied to the gear data. Levene's test does not reject the assumption of
equality of batch variances for these data. This differs from the
conclusion drawn from Bartlett's test and is a better answer if, indeed,
the batch population distributions are non-normal.

7.4.2. Assuming the observations are normal, do the processes have the same variance?
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes

7.4.3.Are the means equal?

Test equality
of means

The procedure known as the Analysis of Variance or ANOVA is used to
test hypotheses concerning means when we have several populations.

The Analysis of Variance (ANOVA)

The ANOVA
procedure is
one of the
most
powerful
statistical
techniques

ANOVA is a general technique that can be used to test the hypothesis
that the means among two or more groups are equal, under the
assumption that the sampled populations are normally distributed.

A couple of questions come immediately to mind: what means? and
why analyze variances in order to derive conclusions about the means?

Both questions will be answered as we delve further into the subject.

Introduction
to ANOVA

To begin, let us study the effect of temperature on a passive component
such as a resistor. We select three different temperatures and observe
their effect on the resistors. This experiment can be conducted by
measuring all the participating resistors before placing n resistors each
in three different ovens.

Each oven is heated to a selected temperature. Then we measure the
resistors again after, say, 24 hours and analyze the responses, which are
the differences between before and after being subjected to the
temperatures. The temperature is called a factor. The different
temperature settings are called levels. In this example there are three
levels or settings of the factor Temperature.

What is a
factor?

A factor is an independent treatment variable whose settings
(values) are controlled and varied by the experimenter. The
intensity setting of a factor is the level.

Levels may be quantitative numbers or, in many cases, simply
"present" or "not present" ("0" or "1").

●   

7.4.3. Are the means equal?
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The 1-way
ANOVA

In the experiment above, there is only one factor, temperature, and the
analysis of variance that we will be using to analyze the effect of
temperature is called a one-way or one-factor ANOVA.

The 2-way
or 3-way
ANOVA

We could have opted to also study the effect of positions in the oven. In
this case there would be two factors, temperature and oven position.
Here we speak of a two-way or two-factor ANOVA. Furthermore, we
may be interested in a third factor, the effect of time. Now we deal with
a three-way or three-factorANOVA. In each of these ANOVA's we test
a variety of hypotheses of equality of means (or average responses when
the factors are varied).

Hypotheses
that can be
tested in an
ANOVA

First consider the one-way ANOVA. The null hypothesis is: there is no
difference in the population means of the different levels of factor A
(the only factor).

The alternative hypothesis is: the means are not the same.

For the 2-way ANOVA, the possible null hypotheses are:

There is no difference in the means of factor A1.  

There is no difference in means of factor B2.  

There is no interaction between factors A and B3.  

The alternative hypothesis for cases 1 and 2 is: the means are not equal.

The alternative hypothesis for case 3 is: there is an interaction between
A and B.

For the 3-way ANOVA: The main effects are factors A, B and C. The
2-factor interactions are: AB, AC, and BC. There is also a three-factor
interaction: ABC.

For each of the seven cases the null hypothesis is the same: there is no
difference in means, and the alternative hypothesis is the means are not
equal.

7.4.3. Are the means equal?
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The n-way
ANOVA

In general, the number of main effects and interactions  can be found by
the following expression:

The first term is for the overall mean, and is always 1. The second term
is for the number of main effects. The third term is for the number of
2-factor interactions, and so on. The last term is for the n-factor
interaction and is always 1.

In what follows, we will discuss only the 1-way and 2-way ANOVA.

7.4.3. Are the means equal?
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.3. Are the means equal?

7.4.3.1.1-Way ANOVA overview

Overview and
principles

This section gives an overview of the one-way ANOVA. First we
explain the principles involved in the 1-way ANOVA. 

Partition
response into
components

In an analysis of variance the variation in the response
measurements is partitoned into components that correspond to
different sources of variation.

The goal in this procedure is to split the total variation in the data into
a portion due to random error and portions due to changes in the
values of the independent variable(s). 

Variance of n
measurements

The variance of n measurements is given by 

where  is the mean of the n measurements. 

Sums of
squares and
degrees of
freedom

The numerator part is called the sum of squares of deviations from the
mean, and the denominator is called the degrees of freedom.

The variance, after some algebra, can be rewritten as:

The first term in the numerator is called the "raw sum of squares" and
the second term is called the "correction term for the mean". Another
name for the numerator is the "corrected sum of squares", and this is
usually abbreviated by Total SS or SS(Total).

7.4.3.1. 1-Way ANOVA overview
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The SS in a 1-way ANOVA can be split into two components, called
the "sum of squares of treatments" and "sum of squares of error",
abbreviated as SST and SSE, respectively. 

The guiding
principle
behind
ANOVA is the
decomposition
of the sums of
squares, or
Total SS

Algebraically, this is expressed by

where k is the number of treatments and the bar over the y.. denotes
the "grand" or "overall" mean. Each ni is the number of observations
for treatment i. The total number of observations is N (the sum of the
ni). 

Note on
subscripting

Don't be alarmed by the double subscripting. The total SS can be
written single or double subscripted. The double subscript stems from
the way the data are arranged in the data table. The table is usually a
rectangular array with k columns and each column consists of ni rows
(however, the lengths of the rows, or the ni, may be unequal).

Definition of
"Treatment"

We introduced the concept of treatment. The definition is: A treatment
is a specific combination of factor levels whose effect is to be
compared with other treatments.

7.4.3.1. 1-Way ANOVA overview
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.3. Are the means equal?

7.4.3.2.The 1-way ANOVA model and
assumptions

A model that
describes
the
relationship
between the
response
and the
treatment
(between the
dependent
and
independent
variables)

The mathematical model that describes the relationship between the
response and treatment for the one-way ANOVA is given by

where Yij represents the j-th observation (j = 1, 2, ...ni) on the i-th
treatment (i = 1, 2, ..., k levels). So, Y23 represents the third observation
using level 2 of the factor.  is the common effect for the whole
experiment, i represents the i-th treatment effect and ij represents the
random error present in the j-th observation on the i-th treatment.

Fixed effects
model

The errors ij are assumed to be normally and independently (NID)

distributed, with mean zero and variance .  is always a fixed
parameter and  are considered to be fixed parameters if
the levels of the treatment are fixed, and not a random sample from a
population of possible levels. It is also assumed that  is chosen so that

holds. This is the fixed effects model.

Random
effects
model

If the k levels of treatment are chosen at random, the model equation
remains the same. However, now the i's are random variables assumed
to be NID(0, ). This is the random effects model.

Whether the levels are fixed or random depends on how these levels are
chosen in a given experiment.

7.4.3.2. The 1-way ANOVA model and assumptions
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7.4.3.2. The 1-way ANOVA model and assumptions
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.3. Are the means equal?

7.4.3.3.The ANOVA table and tests of
hypotheses about means

Sums of
Squares help
us compute
the variance
estimates
displayed in
ANOVA
Tables

The sums of squares SST and SSE previously computed for the
one-way ANOVA are used to form two mean squares, one for
treatments and the second for error. These mean squares are denoted
by MST and MSE, respectively. These are typically displayed in a
tabular form, known as an ANOVA Table. The ANOVA table also
shows the statistics used to test hypotheses about the population means.

Ratio of MST
and MSE

When the null hypothesis of equal means is true, the two mean squares
estimate the same quantity (error variance), and should be of
approximately equal magnitude. In other words, their ratio should be
close to 1. If the null hypothesis is false, MST should be larger than
MSE.

Divide sum of
squares by
degrees of
freedom to
obtain mean
squares

The mean squares are formed by dividing the sum of squares by the
associated degrees of freedom.

Let N =  ni. Then, the degrees of freedom for treatment, DFT = k - 1,
and the degrees of freedom for error, DFE = N - k.

The corresponding mean squares are:

MST = SST / DFT
MSE = SSE / DFE

The F-test The test statistic, used in testing the equality of treatment means is: F =
MST / MSE.

The critical value is the tabular value of the F distribution, based on the
chosen  level and the degrees of freedom DFT and DFE.

The calculations are displayed in an ANOVA table, as follows:

7.4.3.3. The ANOVA table and tests of hypotheses about means
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ANOVA table
Source SS DF MS F

Treatments SST k-1 SST / (k-1) MST/MSE
Error SSE N-k SSE / (N-k)

Total
(corrected)

SS N-1

The word "source" stands for source of variation. Some authors prefer
to use "between" and "within" instead of "treatments" and "error",
respectively.

ANOVA Table Example

A numerical
example

The data below resulted from measuring the difference in resistance
resulting from subjecting identical resistors to three different
temperatures for a period of 24 hours. The sample size of each group
was 5. In the language of Design of Experiments, we have an
experiment in which each of three treatments was replicated 5 times.

Level 1 Level 2 Level 3

6.9 8.3 8.0
5.4 6.8 10.5
5.8 7.8 8.1
4.6 9.2 6.9
4.0 6.5 9.3

means 5.34 7.72 8.56

The resulting ANOVA table is

Example
ANOVA table Source SS DF MS F

Treatments 27.897 2 13.949 9.59
Error 17.452 12 1.454

Total (corrected) 45.349 14
Correction Factor 779.041 1

7.4.3.3. The ANOVA table and tests of hypotheses about means
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Interpretation
of the
ANOVA table

The test statistic is the F value of 9.59. Using an  of .05, we have that
F.05; 2, 12 = 3.89 (see the F distribution table in Chapter 1). Since the
test statistic is much larger than the critical value, we reject the null
hypothesis of equal population means and conclude that there is a
(statistically) significant difference among the population means. The
p-value for 9.59 is .00325, so the test statistic is significant at that
level.

Techniques
for further
analysis

The populations here are resistor readings while operating under the
three different temperatures. What we do not know at this point is
whether the three means are all different or which of the three means is
different from the other two, and by how much.

There are several techniques we might use to further analyze the
differences. These are:

constructing confidence intervals around the difference of two
means,

●   

estimating combinations of factor levels with confidence bounds●   

multiple comparisons of combinations of factor levels tested
simultaneously.

●   

7.4.3.3. The ANOVA table and tests of hypotheses about means
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.3. Are the means equal?

7.4.3.4.1-Way ANOVA calculations

Formulas
for 1-way
ANOVA
hand
calculations

Although computer programs that do ANOVA calculations now are
common, for reference purposes this page describes how to calculate the
various entries in an ANOVA table. Remember, the goal is to produce
two variances (of treatments and error) and their ratio. The various
computational formulas will be shown and applied to the data from the
previous example.

Step 1:
compute CM

STEP 1 Compute CM, the correction for the mean.

Step 2:
compute
total SS

STEP 2 Compute the total SS.

The total SS = sum of squares of all observations - CM

7.4.3.4. 1-Way ANOVA calculations
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The 829.390 SS is called the "raw" or "uncorrected " sum of squares. 

Step 3:
compute
SST

STEP 3 Compute SST, the treatment sum of squares.

First we compute the total (sum) for each treatment.

T1 = (6.9) + (5.4) + ... + (4.0) = 26.7 
T2 = (8.3) + (6.8) + ... + (6.5) = 38.6 
T1 = (8.0) + (10.5) + ... + (9.3) = 42.8

Then

Step 4:
compute
SSE

STEP 4 Compute SSE, the error sum of squares.

Here we utilize the property that the treatment sum of squares plus the
error sum of squares equals the total sum of squares.

Hence, SSE = SS Total - SST = 45.349 - 27.897 = 17.45. 

Step 5:
Compute
MST, MSE,
and F

STEP 5 Compute MST, MSE and their ratio, F.

MST is the mean square of treatments, MSE is the mean square of error

(MSE is also frequently denoted by ).

MST = SST / (k-1) = 27.897 / 2 = 13.949 
MSE = SSE / (N-k) = 17.452/ 12 = 1.454

where N is the total number of observations and k is the number of
treatments. Finally, compute F as

F = MST / MSE = 9.59

That is it. These numbers are the quantities that are assembled in the
ANOVA table that was shown previously. 

7.4.3.4. 1-Way ANOVA calculations
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.3. Are the means equal?

7.4.3.5.Confidence intervals for the
difference of treatment means

Confidence
intervals for
the
difference
between two
means

This page shows how to construct a confidence interval around ( i- j)
for the one-way ANOVA by continuing the example shown on a
previous page.

Formula for
the
confidence
interval

The formula for a (1- ) 100% confidence interval for the difference
between two treatment means is:

where  = MSE.

Computation
of the
confidence
interval for

3 - 1

For the example, we have the following quantities for the formula:

3 = 8.56●   

1 = 5.34●   

●   

t.025;12 = 2.179●   

Substituting these values yields (8.56 - 5.34)  2.179(0.763) or 3.22 
1.616.

That is, the confidence interval is from 1.604 to 4.836.

Additional
95%
confidence
intervals

A 95% confidence interval for 3 - 2 is: from -1.787 to 3.467.

A 95% confidence interval for 2 - 1 is: from -0.247 to 5.007.

7.4.3.5. Confidence intervals for the difference of treatment means
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Contrasts
discussed
later

Later on the topic of estimating more general linear combinations of
means (primarily contrasts) will be discussed, including how to put
confidence bounds around contrasts.

7.4.3.5. Confidence intervals for the difference of treatment means
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.3. Are the means equal?

7.4.3.6.Assessing the response from any
factor combination

Contrasts This page treats how to estimate and put confidence bounds around the
response to different combinations of factors. Primary focus is on the
combinations that are known as contrasts. We begin, however, with the
simple case of a single factor-level mean.

Estimation of a Factor Level Mean With Confidence Bounds

Estimating
factor level
means

An unbiased estimator of the factor level mean i in the 1-way
ANOVA model is given by:

where

Variance of
the factor
level means

The variance of this sample mean estimator is

7.4.3.6. Assessing the response from any factor combination
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Confidence
intervals for
the factor
level means

It can be shown that:

has a t-distribution with (N- k) degrees of freedom for the ANOVA
model under consideration, where N is the total number of observations
and k is the number of factor levels or groups. The degrees of freedom
are the same as were used to calculate the MSE in the ANOVA table.
That is: dfe (degrees of freedom for error) = N - k. From this we can
calculate (1- )100% confidence limits for each i. These are given by:

Example 1

Example for
a 4-level
treatment (or
4 different
treatments)

The data in the accompanying table resulted from an experiment run in
a completely randomized design in which each of four treatments was
replicated five times.

Total Mean

Group 1 6.9 5.4 5.8 4.6 4.0 26.70 5.34
Group 2 8.3 6.8 7.8 9.2 6.5 38.60 7.72
Group 3 8.0 10.5 8.1 6.9 9.3 42.80 8.56
Group 4 5.8 3.8 6.1 5.6 6.2 27.50 5.50

All Groups 135.60 6.78

7.4.3.6. Assessing the response from any factor combination
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1-Way
ANOVA
table layout

This experiment can be illustrated by the table layout for this 1-way
ANOVA experiment shown below:

Level   Sample j     
i 1 2 ... 5 Sum Mean N

1 Y11 Y12 ... Y15 Y1. 1.
n1

2 Y21 Y22 ... Y25 Y2. 2.
n2

3 Y31 Y32 ... Y35 Y3. 3.
n3

4 Y41 Y42 ... Y45 Y4. 4.
n4

All     Y. ..
nt

ANOVA
table

The resulting ANOVA table is

Source SS DF MS F
Treatments 38.820 3 12.940 9.724
Error 21.292 16 1.331  
Total (Corrected) 60.112 19   

Mean 919.368 1   
Total (Raw) 979.480 20   

The estimate for the mean of group 1 is 5.34, and the sample size is n1
= 5.

Computing
the
confidence
interval

Since the confidence interval is two-sided, the entry /2 value for the
t-table is .5(1 - .95) = .025, and the associated degrees of freedom is N -
4, or 20 - 4 = 16.

From the t table in Chapter 1, we obtain t.025;16 = 2.120.

Next we need the standard error of the mean for group 1:

Hence, we obtain confidence limits 5.34 ± 2.120 (0.5159) and the
confidence interval is

7.4.3.6. Assessing the response from any factor combination
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Definition and Estimation of Contrasts

Definition of
contrasts
and
orthogonal
contrasts

Definitions

A contrast is a linear combination of 2 or more factor level means with
coefficients that sum to zero.

Two contrasts are orthogonal if the sum of the products of
corresponding coefficients (i.e., coefficients for the same means) adds
to zero.

Formally, the definition of a contrast is expressed below, using the
notation i for the i-th treatment mean:

C = c1 1 + c2 2 + ... + cj j + ... + ck k

where

c1 + c2 + ... + cj + ... + ck =  = 0

Simple contrasts include the case of the difference between two factor
means, such as 1 - 2. If one wishes to compare treatments 1 and 2
with treatment 3, one way of expressing this is by: 1 + 2 - 2 3. Note
that

1 - 2 has coefficients +1, -1

1 + 2 - 2 3 has coefficients +1, +1, -2.
These coefficients sum to zero.

An example
of
orthogonal
contrasts

As an example of orthogonal contrasts, note the three contrasts defined
by the table below, where the rows denote coefficients for the column
treatment means.

 1 2 3 4

c1 +1 0 0 -1

c2 0 +1 -1 0

c3 +1 -1 -1 +1

7.4.3.6. Assessing the response from any factor combination
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Some
properties of
orthogonal
contrasts

The following is true:

The sum of the coefficients for each contrast is zero.1.  

The sum of the products of coefficients of each pair of contrasts
is also 0 (orthogonality property).

2.  

The first two contrasts are simply pairwise comparisons, the third
one involves all the treatments.

3.  

Estimation of
contrasts

As might be expected, contrasts are estimated by taking the same linear
combination of treatment mean estimators. In other words:

and

Note: These formulas hold for any linear combination of treatment
means, not just for contrasts.

Confidence Interval for a Contrast

Confidence
intervals for
contrasts

An unbiased estimator for a contrast C is given by

The estimator of  is

7.4.3.6. Assessing the response from any factor combination
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The estimator  is normally distributed because it is a linear
combination of independent normal random variables. It can be shown
that:

is distributed as tN-r for the one-way ANOVA model under discussion.

Therefore, the 1-  confidence limits for C are:

Example 2 (estimating contrast)

Contrast to
estimate

We wish to estimate, in our previous example, the following contrast:

and construct a 95 percent confidence interval for C.

Computing
the point
estimate and
standard
error

The point estimate is:

Applying the formulas above we obtain

and

and the standard error is  = 0.5159.

7.4.3.6. Assessing the response from any factor combination
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Confidence
interval

For a confidence coefficient of 95% and df = 20 - 4 = 16, t.025;16 = 2.12.
Therefore, the desired 95% confidence interval is -.5 ± 2.12(.5159) or

(-1.594, 0.594).

Estimation of Linear Combinations

Estimating
linear
combinations

Sometimes we are interested in a linear combination of the factor-level
means that is not a contrast. Assume that in our sample experiment
certain costs are associated with each group. For example, there might
be costs associated with each factor as follows:

Factor Cost in $
1 3
2 5
3 2
4 1

The following linear combination might then be of interest:

Coefficients
do not have
to sum to
zero for
linear
combinations

This resembles a contrast, but the coefficients ci do not sum to zero.
A linear combination is given by the definition:

with no restrictions on the coefficients ci.

Confidence
interval
identical to
contrast

Confidence limits for a linear combination C are obtained in precisely
the same way as those for a contrast, using the same calculation for the
point estimator and estimated variance.

7.4.3.6. Assessing the response from any factor combination
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.3. Are the means equal?

7.4.3.7.The two-way ANOVA

Definition of
a factorial
experiment

The 2-way ANOVA is probably the most popular layout in the Design
of Experiments. To begin with, let us define a factorial experiment:

An experiment that utilizes every combination of factor levels as
treatments is called a factorial experiment.

Model for
the two-way
factorial
experiment

In a factorial experiment with factor A at a levels and factor B at b
levels, the model for the general layout can be written as

where  is the overall mean response, i is the effect due to the i-th

level of factor A, j is the effect due to the j-th level of factor B and ij
is the effect due to any interaction between the i-th level of A and the
j-th level of B.

Fixed
factors and
fixed effects
models

At this point, consider the levels of factor A and of factor B chosen for
the experiment to be the only levels of interest to the experimenter such
as predetermined levels for temperature settings or the length of time for
process step. The factors A and B are said to be fixed factors and the
model is a fixed-effects model. Random actors will be discussed later.

When an a x b factorial experiment is conducted with an equal number
of observations per treatment combination, the total (corrected) sum of
squares is partitioned as:

SS(total) = SS(A) + SS(B) + SS(AB) + SSE
where AB represents the interaction between A and B.

For reference, the formulas for the sums of squares are:

7.4.3.7. The two-way ANOVA
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The
breakdown
of the total
(corrected
for the
mean) sums
of squares

The resulting ANOVA table for an a x b factorial experiment is

Source SS df MS

Factor A SS(A) (a - 1) MS(A) = SS(A)/(a-1) 
Factor B SS(B) (b - 1) MS(B) = SS(B)/(b-1) 

Interaction AB SS(AB) (a-1)(b-1) MS(AB)=
SS(AB)/(a-1)(b-1) 

Error SSE (N - ab) SSE/(N - ab) 
Total (Corrected)  SS(Total) (N - 1)  

The ANOVA
table can be
used to test
hypotheses
about the
effects and
interactions

The various hypotheses that can be tested using this ANOVA table
concern whether the different levels of Factor A, or Factor B, really
make a difference in the response, and whether the AB interaction is
significant (see previous discussion of ANOVA hypotheses). 

7.4.3.7. The two-way ANOVA
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.3. Are the means equal?

7.4.3.8.Models and calculations for the
two-way ANOVA

Basic Layout

The
balanced
2-way
factorial
layout

Factor A has 1, 2, ..., a levels. Factor B has 1, 2, ..., b levels. There are ab
treatment combinations (or cells) in a complete factorial layout. Assume that each
treatment cell has r independent obsevations (known as replications). When each
cell has the same number of replications, the design is a balanced factorial. In
this case, the abrdata points {yijk} can be shown pictorially as follows:

   Factor B   
  1 2 ... b
 1 y111, y112, ..., y11r y121, y122, ..., y12r ... y1b1, y1b2, ..., y1br

 2 y211, y212, ..., y21r y221, y222, ..., y22r ... y2b1, y2b2, ..., y2br

Factor
A

.

.
... ....  ...

 a ya11, ya12, ..., ya1r ya21, ya22, ..., ya2r ... yab1, yab2, ..., yabr

How to
obtain
sums of
squares
for the
balanced
factorial
layout

Next, we will calculate the sums of squares needed for the ANOVA table.

Let Ai be the sum of all observations of level i of factor A, i = 1, ... ,a. The
Ai are the row sums.

●   

Let Bj be the sum of all observations of level j of factor B, j = 1, ...,b. The
Bj are the column sums.

●   

Let (AB)ij be the sum of all observations of level i of A and level j of B.
These are cell sums.

●   

Let r be the number of replicates in the experiment; that is: the number of
times each factorial treatment combination appears in the experiment.

●   

Then the total number of observations for each level of factor A is rb and the total
number of observations for each level of factor B is raand the total number of
observations for each interaction is r.

7.4.3.8. Models and calculations for the two-way ANOVA

http://www.itl.nist.gov/div898/handbook/prc/section4/prc438.htm (1 of 3) [11/14/2003 6:11:58 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Finally, the total number of observations n in the experiment is abr.

With the help of these expressions we arrive (omitting derivations) at

These expressions are used to calculate the ANOVA table entries for the (fixed
effects) 2-way ANOVA.

Two-Way ANOVA Example:

Data An evaluation of a new coating applied to 3 different materials was conducted at
2 different laboratories. Each laboratory tested 3 samples from each of the treated
materials. The results are given in the next table:

 Materials (B)
LABS (A) 1 2 3

 4.1 3.1 3.5
1 3.9 2.8 3.2
 4.3 3.3 3.6

 2.7 1.9 2.7
2 3.1 2.2 2.3
 2.6 2.3 2.5

7.4.3.8. Models and calculations for the two-way ANOVA
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Row and
column
sums

The preliminary part of the analysis yields a table of row and column sums.

Material (B)

Lab (A) 1 2 3 Total (Ai)

1 12.3 9.2 10.3 31.8
2 8.4 6.4 7.5 22.3

Total (Bj) 20.7 15.6 17.8 54.1

ANOVA
table

From this table we generate the ANOVA table.

Source SS df MS F p-value

A 5.0139 1 5.0139 100.28 0

B 2.1811 2 1.0906 21.81 .0001

AB 0.1344 2 0.0672 1.34 .298

Error 0.6000 12 0.0500   

Total (Corr) 7.9294 17    

7.4.3.8. Models and calculations for the two-way ANOVA
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes

7.4.4.What are variance components?

Fixed and Random Factors and Components of Variance

A fixed level
of a factor or
variable
means that
the levels in
the
experiment
are the only
ones we are
interested in

In the previous example, the levels of the factor temperature were
considered as fixed; that is, the three temperatures were the only ones
that we were interested in (this may sound somewhat unlikely, but let
us accept it without opposition). The model employed for fixed levels
is called a fixed model. When the levels of a factor are random, such as
operators, days, lots or batches, where the levels in the experiment
might have been chosen at random from a large number of possible
levels, the model is called a random model, and inferences are to be
extended to all levels of the population.

Random
levels are
chosen at
random from
a large or
infinite set of
levels

In a random model the experimenter is often interested in estimating
components of variance. Let us run an example that analyzes and
interprets a component of variance or random model.

Components of Variance Example for Random Factors

7.4.4. What are variance components?
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Data for the
example

A company supplies a customer with a larger number of batches of raw
materials. The customer makes three sample determinations from each
of 5 randomly selected batches to control the quality of the incoming
material. The model is

and the k levels (e.g., the batches) are chosen at random from a
population with variance . The data are shown below

Batch

1 2 3 4 5

74 68 75 72 79

76 71 77 74 81

75 72 77 73 79

ANOVA table
for example

A 1-way ANOVA is performed on the data with the following results:

ANOVA
Source SS df MS EMS

Treatment (batches) 147.74 4 36.935  + 3

Error 17.99 10 1.799

Total (corrected) 165.73 14   

Interpretation
of the
ANOVA table

The computations that produce the SS are the same for both the fixed
and the random effects model. For the random model, however, the
treatment sum of squares, SST, is an estimate of {  + 3 }. This is
shown in the EMS (Expected Mean Squares) column of the ANOVA
table.

The test statistic from the ANOVA table is F = 36.94 / 1.80 = 20.5.

If we had chosen an  value of .01, then the F value from the table in
Chapter 1 for a df of 4 in the numerator and 10 in the denominator is
5.99.

7.4.4. What are variance components?
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Method of
moments

Since the test statistic is larger than the critical value, we reject the
hypothesis of equal means. Since these batches were chosen via a
random selection process, it may be of interest to find out how much of
the variance in the experiment might be attributed to batch diferences
and how much to random error. In order to answer these questions, we
can use the EMS column. The estimate of  is 1.80 and the computed

treatment mean square of 36.94 is an estimate of  + 3 . Setting the
MS values equal to the EMS values (this is called the Method of
Moments), we obtain

where we use s2 since these are estimators of the corresponding 2's.

Computation
of the
components
of variance

Solving these expressions

The total variance can be estimated as

Interpretation In terms of percentages, we see that 11.71/13.51 = 86.7 percent of the
total variance is attributable to batch differences and 13.3 percent to
error variability within the batches.

7.4.4. What are variance components?
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes

7.4.5.How can we compare the results of classifying
according to several categories?

Contingency
Table
approach

When items are classified according to two or more criteria, it is often of interest to
decide whether these criteria act independently of one another.

For example, suppose we wish to classify defects found in wafers produced in a
manufacturing plant, first according to the type of defect and, second, according to the
production shift during which the wafers were produced. If the proportions of the various
types of defects are constant from shift to shift, then classification by defects is
independent of the classification by production shift. On the other hand, if the
proportions of the various defects vary from shift to shift, then the classification by
defects depends upon or is contingent upon the shift classification and the classifications
are dependent.

In the process of investigating whether one method of classification is contingent upon
another, it is customary to display the data by using a cross classification in an array
consisting of r rows and c columns called a contingency table. A contingency table
consists of r x c cells representing the r x c possible outcomes in the classification
process. Let us construct an industrial case:

Industrial
example

A total of 309 wafer defects were recorded and the defects were classified as being one
of four types, A, B, C, or D. At the same time each wafer was identified according to the
production shift in which it was manufactured, 1, 2, or 3.

Contingency
table
classifying
defects in
wafers
according to
type and
production
shift

These counts are presented in the following table.

 Type of Defects

Shift A B C D Total

1 15(22.51) 21(20.99) 45(38.94) 13(11.56) 94
2 26(22.9) 31(21.44) 34(39.77) 5(11.81) 96
3 33(28.50) 17(26.57) 49(49.29) 20(14.63) 119

Total 74 69 128 38 309

(Note: the numbers in parentheses are the expected cell frequencies).

7.4.5. How can we compare the results of classifying according to several categories?
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Column
probabilities

Let pA be the probability that a defect will be of type A. Likewise, define pB, pC, and pD
as the probabilities of observing the other three types of defects. These probabilities,
which are called the column probabilities, will satisfy the requirement

pA + pB + pC + pD = 1

Row
probabilities

By the same token, let pi (i=1, 2, or 3) be the row probability that a defect will have
occurred during shift i, where

p1 + p2 + p3 = 1

Multiplicative
Law of
Probability

Then if the two classifications are independent of each other, a cell probability will
equal the product of its respective row and column probabilities in accordance with
the Multiplicative Law of Probability.

Example of
obtaining
column and
row
probabilities

For example, the probability that a particular defect will occur in shift 1 and is of type A
is (p1) (pA). While the numerical values of the cell probabilities are unspecified, the null
hypothesis states that each cell probability will equal the product of its respective row
and column probabilities. This condition implies independence of the two classifications.
The alternative hypothesis is that this equality does not hold for at least one cell.

In other words, we state the null hypothesis as H0: the two classifications are
independent, while the alternative hypothesis is Ha: the classifications are dependent.

To obtain the observed column probability, divide the column total by the grand total, n.
Denoting the total of column j as cj, we get

Similarly, the row probabilities p1, p2, and p3 are estimated by dividing the row totals r1,
r2, and r3 by the grand total n, respectively

7.4.5. How can we compare the results of classifying according to several categories?

http://www.itl.nist.gov/div898/handbook/prc/section4/prc45.htm (2 of 4) [11/14/2003 6:12:07 PM]



Expected cell
frequencies

Denote the observed frequency of the cell in row i and column jof the contingency table
by nij. Then we have

Estimated
expected cell
frequency
when H0 is
true.

In other words, when the row and column classifications are independent, the estimated
expected value of the observed cell frequency nij in an r x c contingency table is equal to
its respective row and column totals divided by the total frequency.

The estimated cell frequencies are shown in parentheses in the contingency table above.

Test statistic From here we use the expected and observed frequencies shown in the table to calculate
the value of the test statistic

df =
(r-1)(c-1)

The next step is to find the appropriate number of degrees of freedom associated with the
test statistic. Leaving out the details of the derivation, we state the result:

The number of degrees of freedom associated with a contingency table
consisting of r rows and c columns is (r-1) (c-1).

So for our example we have (3-1) (4-1) = 6 d.f.

Testing the
null
hypothesis

In order to test the null hypothesis, we compare the test statistic with the critical value of
2 at a selected value of . Let us use  = .05. Then the critical value is 2

05;6, which
is 12.5916 (see the chi square table in Chapter 1). Since the test statistic of 19.18 exceeds
the critical value, we reject the null hypothesis and conclude that there is significant
evidence that the proportions of the different defect types vary from shift to shift. In this
case, the p-value of the test statistic is .00387.

7.4.5. How can we compare the results of classifying according to several categories?
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes

7.4.6.Do all the processes have the same
proportion of defects?

The contingency table approach

Testing for
homogeneity
of proportions
using the
chi-square
distribution
via
contingency
tables

When we have samples from n populations (i.e., lots, vendors,
production runs, etc.), we can test whether there are significant
differences in the proportion defectives for these populations using a
contingency table approach. The contingency table we construct has
two rows and n columns.

To test the null hypothesis of no difference in the proportions among
the n populations

H0:  p1 = p2 = ... = pn

against the alternative that not all n population proportions are equal

H1: Not all pi are equal (i = 1, 2, ..., n)

The chi-square
test statistic

we use the following test statistic:

where fo is the observed frequency in a given cell of a 2 x n
contingency table, and fc is the theoretical count or expected
frequency in a given cell if the null hypothesis were true.

The critical
value

The critical value is obtained from the 2 distribution table with
degrees of freedom (2-1)(n-1) = n-1, at a given level of significance.

An illustrative example

7.4.6. Do all the processes have the same proportion of defects?
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Data for the
example

Diodes used on a printed circuit board are produced in lots of size
4000. To study the homogeneity of lots with respect to a demanding
specification, we take random samples of size 300 from 5 consecutive
lots and test the diodes. The results are:

 Lot  
Results 1 2 3 4 5 Totals

Nonconforming 36 46 42 63 38 225
Conforming 264 254 258 237 262 1275

Totals 300 300 300 300 300 1500

Computation
of the overall
proportion of
nonconforming
units

Assuming the null hypothesis is true, we can estimate the single
overall proportion of nonconforming diodes by pooling the results of
all the samples as

Computation
of the overall
proportion of
conforming
units

We estimate the proportion of conforming ("good") diodes by the
complement 1 - 0.15 = 0.85. Multiplying these two proportions by the
sample sizes used for each lot results in the expected frequencies of
nonconforming and conforming diodes. These are presented below:

Table of
expected
frequencies

 Lot  
Results 1 2 3 4 5 Totals

Nonconforming 45 45 45 45 45 225
Conforming 255 255 255 255 255 1275

Totals 300 300 300 300 300 1500

Null and
alternate
hypotheses

To test the null hypothesis of homogeneity or equality of proportions

H0: p1 = p2 = ... = p5

against the alternative that not all 5 population proportions are equal

H1: Not all pi are equal (i = 1, 2, ...,5)

7.4.6. Do all the processes have the same proportion of defects?
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Table for
computing the
test statistic

we use the observed and expected values from the tables above to
compute the 2 test statistic. The calculations are presented below:

fo fc (fo - fc) (fo - fc)2 (fo - fc)2/ fc

36 45 -9 81 1.800
46 45 1 1 0.022
42 45 -3 9 0.200
63 45 18 324 7.200
38 45 -7 49 1.089
264 225 9 81 0.318
254 255 -1 1 0.004
258 255 3 9 0.035
237 255 -18 324 1.271
262 255 7 49 0.192

    12.131

Conclusions If we choose a .05 level of significance, the critical value of 2 with 4
degrees of freedom is 9.488 (see the chi square distribution table in
Chapter 1). Since the test statistic (12.131) exceeds this critical value,
we reject the null hypothesis.

7.4.6. Do all the processes have the same proportion of defects?
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes

7.4.7.How can we make multiple
comparisons?

What to do
after equality
of means is
rejected

When processes are compared and the null hypothesis of equality (or
homogeneity) is rejected, all we know at that point is that there is no
equality amongst them. But we do not know the form of the inequality.

Typical
questions

Questions concerning the reason for the rejection of the null
hypothesis arise in the form of:

"Which mean(s) or proportion (s) differ from a standard or from
each other?"

●   

"Does the mean of treatment 1 differ from that of treatment 2?"●   

"Does the average of treatments 1 and 2 differ from the average
of treatments 3 and 4?"

●   

Multiple
Comparison
test
procedures
are needed

One popular way to investigate the cause of rejection of the null
hypothesis is a Multiple Comparison Procedure. These are methods
which examine or compare more than one pair of means or proportions
at the same time.

Note: Doing pairwise comparison procedures over and over again for
all possible pairs will not, in general, work. This is because the overall
significance level is not as specified for a single pair comparison.

7.4.7. How can we make multiple comparisons?
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ANOVA F test
is a
preliminary
test

The ANOVA uses the F test to determine whether there exists a
significant difference among treatment means or interactions. In this
sense it is a preliminary test that informs us if we should continue the
investigation of the data at hand.

If the null hypothesis (no difference among treatments or interactions)
is accepted, there is an implication that no relation exists between the
factor levels and the response. There is not much we can learn, and we
are finished with the analysis.

When the F test rejects the null hypothesis, we usually want to
undertake a thorough analysis of the nature of the factor-level effects.

Procedures
for examining
factor-level
effects

Previously, we discussed several procedures for examining particular
factor-level effects. These were

Estimation of the Difference Between Two Factor Means●   

Estimation of Factor Level Effects●   

Confidence Intervals For A Contrast●   

Determine
contrasts in
advance of
observing the
experimental
results

These types of investigations should be done on combinations of
factors that were determined in advance of observing the experimental
results, or else the confidence levels are not as specified by the
procedure. Also, doing several comparisons might change the overall
confidence level (see note above). This can be avoided by carefully
selecting contrasts to investigate in advance and making sure that:

the number of such contrasts does not exceed the number of
degrees of freedom between the treatments

●   

only orthogonal contrasts are chosen.●   

However, there are also several powerful multiple comparison
procedures we can use after observing the experimental results.

Tests on Means after Experimentation

7.4.7. How can we make multiple comparisons?
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Procedures
for
performing
multiple
comparisons

If the decision on what comparisons to make is withheld until after the
data are examined, the following procedures can be used:

Tukey's Method to test all possible pairwise differences of
means to determine if at least one difference is significantly
different from 0.

●   

Scheffé's Method to test all possible contrasts at the same time,
to see if at least one is significantly different from 0.

●   

Bonferroni Method to test, or put simultaneous confidence
intervals around, a pre-selected group of contrasts

●   

Multiple Comparisons Between Proportions

Procedure for
proportion
defective data

When we are dealing with population proportion defective data, the
Marascuilo procedure can be used to simultaneously examine
comparisons between all groups after the data have been collected.

7.4.7. How can we make multiple comparisons?

http://www.itl.nist.gov/div898/handbook/prc/section4/prc47.htm (3 of 3) [11/14/2003 6:12:07 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.7. How can we make multiple comparisons?

7.4.7.1.Tukey's method

Tukey's
method
considers all
possible
pairwise
differences
of means at
the same
time

The Tukey method applies simultaneously to the set of all pairwise
comparisons

{ i - j}

The confidence coefficient for the set, when all sample sizes are equal,
is exactly 1- . For unequal sample sizes, the confidence coefficient is
greater than 1- . In other words, the Tukey method is conservative
when there are unequal sample sizes.

Studentized Range Distribution

The
studentized
range q

The Tukey method uses the studentized range distribution. Suppose we
have r independent observations y1, ..., yr from a normal distribution

with mean  and variance 2. Let w be the range for this set , i.e., the
maximum minus the minimum. Now suppose that we have an estimate
s2 of the variance 2 which is based on  degrees of freedom and is
independent of the yi. The studentized range is defined as

7.4.7.1. Tukey's method
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The
distribution
of q is
tabulated in
many
textbooks
and can be
calculated
using
Dataplot

The distribution of q has been tabulated and appears in many textbooks
on statistics. In addition, Dataplot has a CDF function (SRACDF) and a
percentile function (SRAPPF) for q.

As an example, let r = 5 and  = 10. The 95th percentile is q.05;5,10 =
4.65. This means:

So, if we have five observations from a normal distribution, the
probability is .95 that their range is not more than 4.65 times as great as
an independent sample standard deviation estimate for which the
estimator has 10 degrees of freedom.
 

Tukey's Method

Confidence
limits for
Tukey's
method

The Tukey confidence limits for all pairwise comparisons with
confidence coefficient of at least 1-  are:

Notice that the point estimator and the estimated variance are the same
as those for a single pairwise comparison that was illustrated previously.
The only difference between the confidence limits for simultaneous
comparisons and those for a single comparison is the multiple of the
estimated standard deviation.

Also note that the sample sizes must be equal when using the
studentized range approach.

Example

Data We use the data from a previous example.

Set of all
pairwise
comparisons

The set of all pairwise comparisons consists of:

2 - 1, 3 - 1, 1 - 4,

2 - 3, 2 - 4, 3 - 4

7.4.7.1. Tukey's method
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Confidence
intervals for
each pair

Assume we want a confidence coefficient of 95 percent, or .95. Since r
= 4 and nt = 20, the required percentile of the studentized range
distribution is q.05; 4,16. Using the Tukey method for each of the six
comparisons yields:

Conclusions The simultaneous pairwise comparisons indicate that the differences 1
- 4 and 2 - 3 are not significantly different from 0 (their confidence
intervals include 0), and all the other pairs are significantly different.

Unequal
sample sizes

It is possible to work with unequal sample sizes. In this case, one has to
calculate the estimated standard deviation for each pairwise comparison.
The Tukey procedure for unequal sample sizes is sometimes referred to
as the Tukey-Kramer Method.

7.4.7.1. Tukey's method
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.7. How can we make multiple comparisons?

7.4.7.2.Scheffe's method

Scheffe's
method tests
all possible
contrasts at
the same
time

Scheffé's method applies to the set of estimates of all possible contrasts
among the factor level means, not just the pairwise differences
considered by Tukey's method.

Definition of
contrast

An arbitrary contrast is defined by

where

Infinite
number of
contrasts

Technically there is an infinite number of contrasts. The simultaneous
confidence coefficient is exactly 1- , whether the factor level sample
sizes are equal or unequal.

7.4.7.2. Scheffe's method
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Estimate and
variance for
C

As was described earlier, we estimate C by:

for which the estimated variance is:

Simultaneous
confidence
interval

It can be shown that the probability is 1 -  that all confidence limits of
the type

are correct simultaneously.

Scheffe method example

Contrasts to
estimate

We wish to estimate, in our previous experiment, the following
contrasts

and construct 95 percent confidence intervals for them.

7.4.7.2. Scheffe's method
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Compute the
point
estimates of
the
individual
contrasts

The point estimates are:

Compute the
point
estimate and
variance of
C

Applying the formulas above we obtain in both cases:

and

where  = 1.331 was computed in our previous example. The standard
error = .5158 (square root of .2661).

Scheffe
confidence
interval

For a confidence coefficient of 95 percent and degrees of freedom in
the numerator of r - 1 = 4 - 1 = 3, and in the denominator of 20 - 4 = 16,
we have:

The confidence limits for C1 are -.5 ± 3.12(.5158) = -.5 ± 1.608, and for
C2 they are .34 ± 1.608.

The desired simultaneous 95 percent confidence intervals are

-2.108  C1  1.108
-1.268  C2  1.948

7.4.7.2. Scheffe's method
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Comparison
to confidence
interval for a
single
contrast

Recall that when we constructed a confidence interval for a single
contrast, we found the 95 percent confidence interval:

-1.594  C  0.594

As expected, the Scheffé confidence interval procedure that generates
simultaneous intervals for all contrasts is considerabley wider.

Comparison of Scheffé's Method with Tukey's Method

Tukey
preferred
when only
pairwise
comparisons
are of
interest

If only pairwise comparisons are to be made, the Tukey method will
result in a narrower confidence limit, which is preferable.

Consider for example the comparison between 3 and 1.

Tukey:    1.13 < 3 - 1 < 5.31
Scheffé:  0.95 < 3 - 1 < 5.49

which gives Tukey's method the edge.

The normalized contrast, using sums, for the Scheffé method is 4.413,
which is close to the maximum contrast.

Scheffe
preferred
when many
contrasts are
of interest

In the general case when many or all contrasts might be of interest, the
Scheffé method tends to give narrower confidence limits and is
therefore the preferred method.

7.4.7.2. Scheffe's method
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.7. How can we make multiple comparisons?

7.4.7.3. Bonferroni's method

Simple
method

The Bonferroni method is a simple method that allows many
comparison statements to be made (or confidence intervals to be
constructed) while still assuring an overall confidence coefficient is
maintained.

Applies for a
finite number
of contrasts

This method applies to an ANOVA situation when the analyst has
picked out a particular set of pairwise comparisons or contrasts or
linear combinations in advance. This set is not infinite, as in the
Scheffé case, but may exceed the set of pairwise comparisons specified
in the Tukey procedure.

Valid for
both equal
and unequal
sample sizes

The Bonferroni method is valid for equal and unequal sample sizes.
We restrict ourselves to only linear combinations or comparisons of
treatment level means (pairwise comparisons and contrasts are special
cases of linear combinations). We denote the number of statements or
comparisons in the finite set by g.

Bonferroni
general
inequality

Formally, the Bonferroni general inequality is presented by:

where Ai and its complement  are any events.

7.4.7.3. Bonferroni's method
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Interpretation
of Bonferroni
inequality

In particular, if each Ai is the event that a calculated confidence
interval for a particular linear combination of treatments includes the
true value of that combination, then the left-hand side of the inequality
is the probability that all the confidence intervals simultaneously cover
their respective true values. The right-hand side is one minus the sum
of the probabilities of each of the intervals missing their true values.
Therefore, if simultaneous multiple interval estimates are desired with
an overall confidence coefficient 1- , one can construct each interval
with confidence coefficient (1- /g), and the Bonferroni inequality
insures that the overall confidence coefficient is at least 1- .

Formula for
Bonferroni
confidence
interval

In summary, the Bonferroni method states that the confidence
coefficient is at least 1-  that simultaneously all the following
confidence limits for the g linear combinations Ci are "correct" (or
capture their respective true values):

where

Example using Bonferroni method

Contrasts to
estimate

We wish to estimate, as we did using the Scheffe method, the
following linear combinations (contrasts):

and construct 95 percent confidence intervals around the estimates.

7.4.7.3. Bonferroni's method
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Compute the
point
estimates of
the individual
contrasts

The point estimates are:

Compute the
point
estimate and
variance of C

As before, for both contrasts, we have

and

where  = 1.331 was computed in our previous example. The
standard error is .5158 (the square root of .2661).

Compute the
Bonferroni
simultaneous
confidence
interval

For a 95 percent overall confidence coefficient using the Bonferroni
method, the t-value is t.05/4;16 = t.0125;16 = 2.473 (see the t-distribution
critical value table in Chapter 1). Now we can calculate the confidence
intervals for the two contrasts. For C1 we have confidence limits -.5 ±
2.473 (.5158) and for C2 we have confidence limits .34 ± 2.473
(.5158).

Thus, the confidence intervals are:

-1.776  C1  0.776
-0.936  C2  1.616

Comparison
to Scheffe
interval

Notice that the Scheffé interval for C1 is:

-2.108  C1  1.108

which is wider and therefore less attractive.

7.4.7.3. Bonferroni's method
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Comparison of Bonferroni Method with Scheffé and Tukey
Methods

No one
comparison
method is
uniformly
best - each
has its uses

If all pairwise comparisons are of interest, Tukey has the edge. If
only a subset of pairwise comparisons are required, Bonferroni
may sometimes be better.

1.  

When the number of contrasts to be estimated is small, (about as
many as there are factors) Bonferroni is better than Scheffé.
Actually, unless the number of desired contrasts is at least twice
the number of factors, Scheffé will always show wider
confidence bands than Bonferroni.

2.  

Many computer packages include all three methods. So, study
the output and select the method with the smallest confidence
band.

3.  

No single method of multiple comparisons is uniformly best
among all the methods.

4.  

7.4.7.3. Bonferroni's method
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.7. How can we make multiple comparisons?

7.4.7.4.Comparing multiple proportions:
The Marascuillo procedure

Testing for
equal
proportions of
defects

Earlier, we discussed how to test whether several populations have the
same proportion of defects. The example given there led to rejection of
the null hypothesis of equality.

Marascuilo
procedure
allows
comparison of
all possible
pairs of
proportions

Rejecting the null hypothesis only allows us to conclude that not (in
this case) all lots are equal with respect to the proportion of defectives.
However, it does not tell us which lot or lots caused the rejection.

The Marascuilo procedure enables us to simultaneously test the
differences of all pairs of proportions when there are several
populations under investigation.

The Marascuillo Procedure

Step 1:
compute
differences pi
- pj

Assume we have samples of size ni (i = 1, 2, ..., k) from k populations.
The first step of this procedure is to compute the differences pi - pj,
(where i is not equal to j) among all k(k-1)/2 pairs of proportions.

The absolute values of these differences are the test-statistics.

Step 2:
compute test
statistics

Step 2 is to pick a significance level and compute the corresponding
critical values for the Marascuilo procedure from

7.4.7.4. Comparing multiple proportions: The Marascuillo procedure
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Step 3:
compare test
statistics
against
corresponding
critical values

The third and last step is to compare each of the k(k-1)/2 test statistics
against its corresponding critical rij value. Those pairs that have a test
statistic that exceeds the critical value are significant at the  level.

Example

Sample
proportions

To illustrate the Marascuillo procedure, we use the data from the
previous example. Since there were 5 lots, there are (5 x 4)/2 = 10
possible pairwise comparisons to be made and ten critical ranges to
compute. The five sample proportions are:

p1 = 36/300 = .120
p2 = 46/300 = .153
p3 = 42/300 = .140
p4 = 63/300 = .210
p5 = 38/300 = .127

Table of
critical values

For an overall level of significance of .05, the upper-tailed critical
value of the chi-square distribution having four degrees of freedom is
9.488 and the square root of 9.488 is 3.080. Calculating the 10
absolute differences and the 10 critical values leads to the following
summary table.

contrast value critical range significant

|p1 - p2| .033 0.086 no

|p1 - p3| .020 0.085 no

|p1 - p4| .090 0.093 no

|p1 - p5| .007 0.083 no

|p2 - p3| .013 0.089 no

|p2 - p4| .057 0.097 no

|p2 - p5| .026 0.087 no

|p3 - p4| .070 0.095 no

|p3 - p5| .013 0.086 no

|p4 - p5| .083 0.094 no

Note: The values in this table were computed with the following
Dataplot macro.

7.4.7.4. Comparing multiple proportions: The Marascuillo procedure
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let pii = data .12 .12 .12 .12 .153  ...
    .153 .153 .14 .14 .21
let pjj = data .153 .14 .21 .127 .14 ...
   .21 .127 .21 .127 .127
let cont = abs(pii-pjj)
let rij = sqrt(chsppf(.95,4))* ...
    sqrt(pii*(1-pii)/300 + pjj*(1-pjj)/300)
set write decimals 3
print cont cont rij

No individual
contrast is
statistically
significant

A difference is statistically significant if its value exceeds the critical
range value. In this example, even though the null hypothesis of
equality was rejected earlier, there is not enough data to conclude any
particular difference is significant. Note, however, that all the
comparisons involving population 4 come the closest to significance -
leading us to suspect that more data might actually show that
population 4 does have a significantly higher proportion of defects.

7.4.7.4. Comparing multiple proportions: The Marascuillo procedure
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