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7.1.Introduction

Goals of this
section

Hypothesis
testing and
confidence
intervals
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The primary goal of this section isto lay afoundation for understanding
statistical tests and confidence intervals that are useful for making
decisions about processes and comparisons among processes. The
materials covered are:

Scope
Assumptions

| ntroduction to hypothesis testing

I ntroduction to confidence intervals

Rel ationship between hypothesi s testing and confidence intervals

Outlier detection

Detection of sequential trends in data or processes

This chapter explores the types of comparisons which can be made from
data and explains hypothesis testing, confidence intervals, and the
interpretation of each.
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7.1. Introduction

7.1.1.What is the scope?

Data from This section deals with introductory material related to comparisons that
oneprocess  can be made on datafrom one process for cases where the process
standard deviation may be known or unknown.
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7.1. Introduction

7.1.2.What assumptions are typically
made?

Validity of tests The validity of the tests described in this chapter depend on the
following assumptions:

1. The data come from a single process that can be represented
by asingle statistical distribution.

2. Thedistribution isanormal distribution.
3. The data are uncorrelated over time.

J—— An easy method for checking the assumption of a single normal
] m ‘ distribution is to construct a histogram of the data.
Clarification The tests described in this chapter depend on the assumption of

normality, and the data should be examined for departures from
normality before the tests are applied. However, the tests are robust
to small departures from normality; i.e., they work fairly well as
long as the data are bell-shaped and the tails are not heavy.
Quantitative methods for checking the normality assumption are

discussed in the next section.

— Another graphical method for testing the normality assumptionis
/- the normal probability plot.

T
P P F.T P
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7.1.2. What assumptions are typically made?

J— A graphical method for testing for correlation among
E [:""“‘"_—.L_'. ' measurements is atime-lag plot. Correlation may not be a problem
= } If measurements are properly structured over time. Correlation
o I o A problems often occur when measurements are made close together
— intime.
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7.1. Introduction

7.1.3.What are statistical tests?

What is A statistical test provides a mechanism for making quantitative

meant by a decisions about a process or processes. The intent isto determine
statistical whether there is enough evidence to "regject" a conjecture or hypothesis
test? about the process. The conjectureis called the null hypothesis. Not

rejecting may be agood result if we want to continue to act asif we
"believe" the null hypothesisistrue. Or it may be a disappointing result,
possibly indicating we may not yet have enough datato "prove"
something by rejecting the null hypothesis.

For more discussion about the meaning of a statistical hypothesis test,

see Chapter 1.
Concept of A classic use of a statistical test occursin process control studies. For
null example, suppose that we are interested in ensuring that photomasksin a
hypothesis production process have mean lifewidths of 500 micrometers. The null

hypothesis, in this case, is that the mean linewidth is 500 micrometers.
Implicit in this statement is the need to flag photomasks which have
mean linewidths that are either much greater or much less than 500
micrometers. This trandates into the alternative hypothesis that the
mean linewidths are not equal to 500 micrometers. Thisis atwo-sided
alternative because it guards against alternatives in opposite directions;
namely, that the linewidths are too small or too large.

The testing procedure works this way. Linewidths at random positions
on the photomask are measured using a scanning electron microscope. A
test statistic is computed from the data and tested against pre-determined
upper and lower critical values. If the test statistic is greater than the
upper critical value or less than the lower critical value, the null
hypothesisis rejected because there is evidence that the mean linewidth
Is not 500 micrometers.
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7.1.3. What are statistical tests?

One-sided
tests of
hypothesis

Sgnificance
levels

Errors of
the second
kind

Guidancein
this chapter

Null and alternative hypotheses can aso be one-sided. For example, to
ensure that alot of light bulbs has a mean lifetime of at least 500 hours,
atesting program isimplemented. The null hypothesis, in this case, is
that the mean lifetime is greater than or equal to 500 hours. The
complement or aternative hypothesis that is being guarded against is
that the mean lifetime isless than 500 hours. The test statisticis
compared with alower critical value, and if it isless than this limit, the
null hypothesisis rejected.

Thus, a statistical test requires a pair of hypotheses, namely,
o Hp: anull hypothesis

« Hj an alternative hypothesis.

The null hypothesisis a statement about a belief. We may doubt that the
null hypothesisis true, which might be why we are "testing” it. The
aternative hypothesis might, in fact, be what we believe to be true. The
test procedure is constructed so that the risk of regjecting the null
hypothesis, when it isin fact true, issmall. Thisrisk, ¢, isoften
referred to as the significance level of the test. By having atest with a
small value of e, we fedl that we have actually "proved" something
when we regject the null hypothesis.

Therisk of failing to rgject the null hypothesiswhen itisin fact falseis
not chosen by the user but is determined, as one might expect, by the
magnitude of the real discrepancy. Thisrisk, ff, isusually referred to as
the error of the second kind. Large discrepancies between reality and the
null hypothesis are easier to detect and lead to small errors of the second
kind; while small discrepancies are more difficult to detect and lead to
large errors of the second kind. Also therisk fF increases astherisk
decreases. Therisks of errors of the second kind are usually summarized
by an operating characteristic curve (OC) for the test. OC curves for
several types of tests are shown in (Natrella, 1962).

This chapter gives methods for constructing test statistics and their
corresponding critical values for both one-sided and two-sided tests for
the specific situations outlined under the scope. It also provides

guidance on the sample sizes required for these tests.

Further guidance on statistical hypothesis testing, significance levels and
critical regions, isgiven in Chapter 1.
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7.1. Introduction

7.1.3. What are statistical tests?

7.1.3.1.Critical values and p values

Determination
of critical
values

Information in
this chapter

P values

Good practice

Critical valuesfor atest of hypothesis depend upon atest statistic,
which is specific to the type of test, and the significance level, e,
which defines the sensitivity of thetest. A value of & = 0.05 implies
that the null hypothesisis rejected 5% of the time when it isin fact
true. The choice of e issomewhat arbitrary, although in practice
values of 0.1, 0.05, and 0.01 are common. Critical values are
essentially cut-off values that define regions where the test statistic is
unlikely to lie; for example, aregion where the critical valueis
exceeded with probability e if the null hypothesisistrue. The null
hypothesisisreected if the test statistic lies within this region which
is often referred to as the rejection region(s). Critical values for

specific tests of hypothesis are tabled in chapter 1.

This chapter gives formulas for the test statistics and points to the
appropriate tables of critical values for tests of hypothesis regarding
means, standard deviations, and proportion defectives.

Another quantitative measure for reporting the result of atest of
hypothesisis the p-value. The p-value is the probability of the test
statistic being at least as extreme as the one observed given that the
null hypothesisistrue. A small p-valueis an indication that the null
hypothesisisfalse.

It is good practice to decide in advance of the test how small a p-value
Isrequired to reject the test. Thisis exactly analagous to choosing a
significance level, ez for test. For example, we decide either to regject
the null hypothesisif the test statistic exceeds the critical value (for e
= 0.05) or analagoudly to reject the null hypothesisif the p-valueis
smaller than 0.05. It isimportant to understand the relationship
between the two concepts because some statistical software packages
report p-values rather than critical values.
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7.1.4. What are confidence intervals?

How do we The purpose of taking a random sample from alot or population and

forma computing a statistic, such as the mean from the data, is to approximate

confidence the mean of the population. How well the sample statistic estimates the

interval ? underlying population value is always an issue. A confidence interval
addresses thisissue because it provides arange of values which islikely
to contain the population parameter of interest.

Confidence Confidence intervals are constructed at a confidence level, such as 95%,

levels selected by the user. What does this mean? It means that if the same
population is sampled on numerous occasions and interval estimates are
made on each occasion, the resulting intervals would bracket the true
population parameter in approximately 95% of the cases. A confidence
stated at a1 — & level can be thought of as the inverse of a significance
level, o1 .

Oneand In the same way that statistical tests can be one or two-sided, confidence

two-sided intervals can be one or two-sided. A two-sided confidence interval

confidence brackets the popul ation parameter from above and below. A one-sided

intervals confidence interval brackets the population parameter either from above
or below and furnishes an upper or lower bound to its magnitude.

Exampl e of For example, a 100(1 — )% confidence interval for the mean of a

a two-sided normal population is;

confidence

interval

v, a2 @

N

where ¥ is the sample mean, Z a2 isthe upper ¢!z critical value of the
standard normal distribution which is found in the table of the standard

normal distribution, & isthe known population standard deviation, and
N isthe sample size.
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7.1.4. What are confidence intervals?

Guidancein  Thischapter provides methods for estimating the popul ation parameters
this chapter and confidence intervals for the situations described under the scope.

Problem In the normal course of events, population standard deviations are not
with known, and must be estimated from the data. Confidence intervals,
unknown given the same confidence level, are by necessity wider if the standard
standard deviation is estimated from limited data because of the uncertainty in
deviation this estimate. Procedures for creating confidence intervalsin this

situation are described fully in this chapter.

More information on confidence intervals can also be found in Chapter
1.
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7.1. Introduction

7.1.5. What is the relationship between a
test and a confidence interval?

Thereisa
correspondence
between
hypothesis
testing and
confidence
intervals

Hypothesis test
for the mean

Equivalent
confidence
interval

In general, for every test of hypothesis there is an equivalent
statement about whether the hypothesized parameter valueis
included in a confidence interval. For example, consider the previous
example of linewidths where photomasks are tested to ensure that
their linewidths have a mean of 500 micrometers. The null and
aternative hypotheses are:

Ho: mean linewidth = 500 micrometers

H,: mean linewidth = 500 micrometers

For the test, the sample mean, ¥, is calculated from N linewidths
chosen at random positions on each photomask. For the purpose of
the test, it is assumed that the standard deviation, &, isknown from a
long history of this process. A test statistic is calculated from these
sample statistics, and the null hypothesisis rejected if:

y-500  ¥-500
- — 5 — — ==
oIN - T gl N T

where z o2 is atabled value from the normal distribution.

With some algebra, it can be seen that the null hypothesisis rejected
if and only if the value 500 micrometersis not in the confidence
interval

v L O

Y=+
AN
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Equivalent In fact, all values bracketed by thisinterval would be accepted as null
confidence valuesfor agiven set of test data.
interval
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7.1. Introduction

7.1.6.What are outliers in the data?

Definitionof ~ Anoutlier is an observation that lies an abnormal distance from other

outliers valuesin arandom sample from a population. In a sense, this definition
leaves it up to the analyst (or a consensus process) to decide what will
be considered abnormal. Before abnormal observations can be singled
out, it is necessary to characterize normal observations.

Ways to Two activities are essential for characterizing a set of data:
describe 1. Examination of the overall shape of the graphed data for
data important features, including symmetry and departures from

assumptions. The chapter on Exploratory Data Analysis (EDA)
discusses assumptions and summarization of datain detail.

2. Examination of the data for unusual observations that are far
removed from the mass of data. These points are often referred to
as outliers. Two graphical techniques for identifying outliers,
scatter plots and box plots, along with an analytic procedure for

detecting outliers when the distribution is normal (Grubbs' Test),
are also discussed in detail in the EDA chapter.

Box plot The box plot isauseful graphical display for describing the behavior of

construction  the datain the middle aswell as at the ends of the distributions. The box
plot uses the median and the lower and upper quartiles (defined as the
25th and 75th percentiles). If the lower quartileis Q1 and the upper

quartileis Q2, then the difference (Q2 - Q1) is called the interquartile
rangeor 1Q.
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7.1.6. What are outliers in the data?

Box plots
with fences

Outlier
detection
criteria

Exampl e of
anoutlier
box plot

A box plot is constructed by drawing a box between the upper and lower
guartiles with a solid line drawn across the box to locate the median.
The following quantities (called fences) are needed for identifying
extreme valuesin thetails of the distribution:

1. lower inner fence: Q1 - 1.5%1Q
2. upper inner fence: Q2 + 1.5*1Q
3. lower outer fence: Q1 - 3*1Q
4. upper outer fence: Q2 + 3*1Q

A point beyond an inner fence on either side is considered amild
outlier. A point beyond an outer fence is considered an extreme
outlier.

The data set of N = 90 ordered observations as shown below is
examined for outliers:

30, 171, 184, 201, 212, 250, 265, 270, 272, 289, 305, 306, 322, 322,
336, 346, 351, 370, 390, 404, 409, 411, 436, 437, 439, 441, 444, 448,
451, 453, 470, 480, 482, 487, 494, 495, 499, 503, 514, 521, 522, 527,
548, 550, 559, 560, 570, 572, 574, 578, 585, 592, 592, 607, 616, 618,
621, 629, 637, 638, 640, 656, 668, 707, 709, 719, 737, 739, 752, 758,
766, 792, 792, 794, 802, 818, 830, 832, 843, 858, 860, 869, 918, 925,
953, 991, 1000, 1005, 1068, 1441

The computatons are as follows:

o Median = (n+1)/2 largest data point = the average of the 45th and
46th ordered points = (559 + 560)/2 = 559.5

o Lower quartile = .25(N+1)= .25*91= 22.75th ordered point = 411
+.75(436-411) = 429.75

o Upper guartile = .75(N+1)=0.75* 91= = 68.25th ordered point =
739 +.25(752-739) = 742.25

« Interquartilerange = 742.25 - 429.75 = 312.5

o Lower inner fence =429.75 - 1.5 (313.5) =-40.5

o Upper inner fence = 742.25 + 1.5 (313.5) = 1212.50

« Lower outer fence = 429.75 - 3.0 (313.5) =-510.75

o Upper outer fence = 742.25 + 3.0 (313.5) = 1682.75

From an examination of the fence points and the data, one point (1441)
exceeds the upper inner fence and stands out as amild outlier; there are
no extreme outliers.
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JMP Output from a IMP command is shown below. The plot shows a
software histogram of the data on the left and a box plot with the outlier
output identified as a point on the right. Clicking on the outlier whilein IMP
showingthe  jdentifies the data point as 1441.
outlier box ) .
plot

16

10 -

120

om -|

BB B 8
L& ]

|

O

'y "
et
M m am 10 0% b0
==l e b0
arsE 1007
SO s
q artlk TSI 723
medEs s 2585
q artk 4 28
1003 i3
2153 TG
0.5 3o
mluimam o 3o
Mean SISTTTS
=il Dl IFE 3133
SO Eorlea A1l
Upper 355 1k 2 G256 B
Lowper 2% Mledn 5253035
] T00m
S ke ighE T00m
Outliers Outliers should be investigated carefully. Often they contain valuable
may contain  information about the process under investigation or the data gathering
important and recording process. Before considering the possible elimination of

information these points from the data, one should try to understand why they
appeared and whether it is likely similar values will continue to appear.
Of course, outliers are often bad data points.
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7.1.7. What are trends in sequential process or product data?
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7. Product and Process Comparisons

7.1. Introduction

7.1.7.What are trends in sequential
process or product data?

Detecting
trends by
plotting the
data points
toseeifa
line with an
obviously
non-zero
slope fitsthe
points

Other trend
tests
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Detecting trends is equivalent to comparing the process values to what
we would expect a series of numbersto look like if there were no trends.
If we see asignificant departure from a model where the next
observation is equally likely to go up or down, then we would reject the
hypothesis of "no trend".

A common way of investigating for trendsisto fit a straight line to the
data and observe the line's direction (or slope). If the line looks
horizontal, then there is no evidence of atrend; otherwise thereis.
Formally, thisis done by testing whether the slope of thelineis
significantly different from zero. The methodology for thisis covered in

Chapter 4.

A non-parametric approach for detecting significant trends known as the
Reverse Arrangement Test is described in Chapter 8.
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7.2. Comparisons based on data from one process
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7. Product and Process Comparisons

7.2.Comparisons based on data from one

process
Questions For a single process, the current state of the process can be compared
answered inthis  with anominal or hypothesized state. This section outlines
section techniques for answering the following questions from data gathered

from asingle process:
1. Do the observations come from a particular distribution?

1. Chi-Square Goodness-of-Fit test for a continuous or
discrete distribution

2. Kolmogorov- Smirnov test for a continuous distribution

3. Anderson-Darling and Shapiro-Wilk tests for a
continuous distribution

2. Arethe data consistent with the assumed process mean?

1. Confidence interval approach

2. Sample sizes required

3. Arethe data consistent with a nominal standard deviation?

1. Confidence interval approach

2. Sample sizes required

4. Does the proportion of defectives meet requirements?

1. Confidenceintervals

2. Sample sizes required

5. Does the defect density meet requirements?

6. What intervals contain afixed percentage of the data?

1. Approximate intervals that contain most of the
population values

2. Percentiles
3. Toleranceintervals

4. Tolerance intervals using EXCEL
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General forms
of testing

Parametric vs.
non-parametric
testing

When to use
nonparametric
methods?

Difference
between
non-parametric
and
distribution-free

7.2. Comparisons based on data from one process

5. Tolerance intervals based on the smallest and largest
observations

These questions are addressed either by an hypothesistest or by a
confidence interval.

All hypothesis-testing procedures can be broadly described as either
parametric or non-parametric/distribution-free. Parametric test
procedures are those that:

1. Involve hypothesis testing of specified parameters (such as
"the population mean=50 grams"...).

2. Require astringent set of assumptions about the underlying
sampling distributions.

When do we require non-parametric or distribution-free methods?
Here are afew circumstances that may be candidates:

1. The measurements are only categorical; i.e., they are
nominally scaled, or ordinally (in ranks) scaled.

2. The assumptions underlying the use of parametric methods
cannot be met.

3. The situation at hand requires an investigation of such features
as randomness, independence, symmetry, or goodness of fit
rather than the testing of hypotheses about specific values of
particular population parameters.

Some authors distinguish between non-parametric and
distribution-free procedures.

Distribution-freetest procedures are broadly defined as:

1. Those whose test statistic does not depend on the form of the
underlying population distribution from which the sample data
were drawn, or

2. Those for which the data are nominally or ordinally scaled.

Nonparametric test procedur es are defined as those that are not
concerned with the parameters of a distribution.
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Advantages of Distribution-free or nonparametric methods have several advantages,
nonparametric or benefits:
methods. 1. They may be used on all types of data-categorical data, which

are nominally scaled or arein rank form, called ordinally
scaled, aswell asinterval or ratio-scaled data.

2. For small sample sizes they are easy to apply.

3. They make fewer and less stringent assumptions than their
parametric counterparts.

4. Depending on the particular procedure they may be almost as
powerful as the corresponding parametric procedure when the
assumptions of the latter are met, and when thisis not the
case, they are generally more powerful.

Disadvantages Of course there are also disadvantages:

of _ 1. If the assumptions of the parametric methods can be met, itis
nonparametric generally more efficient to use them.
methods

2. For large sample sizes, data manipulations tend to become
more laborious, unless computer software is available.

3. Often special tables of critical values are needed for the test
statistic, and these values cannot always be generated by
computer software. On the other hand, the critical values for
the parametric tests are readily available and generally easy to
Incorporate in computer programs.
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7.2.1. Do the observations come from a particular distribution?
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7. Product and Process Comparisons

7.2. Comparisons based on data from one process

7.2.1.Do the observations come from a
particular distribution?

Data are often
assumed to
come froma
particular
distribution.

Hypothesis
Test model for
Goodness-of-fit

Parameters
may be
assumed or
estimated from
the data

Goodness-of-fit tests indicate whether or not it is reasonable to
assume that a random sample comes from a specific distribution.
Statistical techniques often rely on observations having come from a
population that has a distribution of a specific form (e.g., normal,
lognormal, Poisson, etc.). Standard control charts for continuous
measurements, for instance, require that the data come from a normal
distribution. Accurate lifetime modeling requires specifying the
correct distributional model. There may be historical or theoretical
reasons to assume that a sample comes from a particular population,
as well. Past data may have consistently fit a known distribution, for
example, or theory may predict that the underlying population should
be of a specific form.

Goodness-of-fit tests are aform of hypothesis testing where the null
and alternative hypotheses are

Hq: Sample data come from the stated distribution.
H A: Sample data do not come from the stated distribution.

One needs to consider whether a simple or composite hypothesisis
being tested. For a simple hypothesis, values of the distribution's
parameters are specified prior to drawing the sample. For a composite
hypothesis, one or more of the parameters is unknown. Often, these
parameters are estimated using the sample observations.

A simple hypothesis would be:
Hq: Dataare from anormal distribution, #£ =0and o = 1.
A composite hypothesis would be:

Hq: Dataare from anormal distribution, unknown & and .

Composite hypotheses are more common because they alow usto
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7.2.1. Do the observations come from a particular distribution?

decide whether a sample comes from any distribution of a specific
type. In this situation, the form of the distribution is of interest,
regardless of the values of the parameters. Unfortunately, composite
hypotheses are more difficult to work with because the critical values
are often hard to compute.

Problemswith A second issue that affects atest is whether the data are censored.

censored data When data are censored, sample values are in some way restricted.
Censoring occursif the range of potential values are limited such that
values from one or both tails of the distribution are unavailable (e.g.,
right and/or left censoring - where high and/or low values are
missing). Censoring frequently occurs in reliability testing, when
either the testing time or the number of failuresto be observed is
fixed in advance. A thorough treatment of goodness-of-fit testing
under censoring is beyond the scope of this document. See
D'Agostino & Stephens (1986) for more details.

Three types of Three goodness-of -fit tests are examined in detail:

tests will be 1. Chi-square test for continuous and discrete distributions;
covered

2. Kolmogorov-Smirnov test for continuous distributions based
on the empirical distribution function (EDF);

3. Anderson-Darling test for continuous distributions.

A more extensive treatment of goodness-of-fit techniquesis presented
in D'Agostino & Stephens (1986). Along with the tests mentioned
above, other general and specific tests are examined, including tests
based on regression and graphical techniques.
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7.2.1.1. Chi-square goodness-of-fit test
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7. Product and Process Comparisons

7.2. Comparisons based on data from one process

7.2.1. Do the observations come from a particular distribution?

7.2.1.1.Chi-square goodness-of-fit test

Choice of
number of
groups for
"Goodness of
Fit" testsis
important - but
only useful rules
of thumb can be
given

Group
Member ship

Rul e-of-thumb
for number of
groups

Computation of
the chi-square
goodness-of-fit
test

The test requires that the data first be grouped. The actual number
of observations in each group is compared to the expected number
of observations and the test statistic is calculated as a function of
this difference. The number of groups and how group membership
isdefined will affect the power of the test (i.e., how sensitiveitisto
detecting departures from the null hypothesis). Power will not only
be affected by the number of groups and how they are defined, but
by the sample size and shape of the null and underlying (true)
distributions. Despite the lack of a clear "best method", some useful
rules of thumb can be given.

When data are discrete, group membership is unambiguous.
Tabulation or cross tabulation can be used to categorize the data.
Continuous data present a more difficult challenge. One defines
groups by segmenting the range of possible valuesinto
non-overlapping intervals. Group membership can then be defined
by the endpoints of the intervals. In general, power is maximized by
choosing endpoints such that group membership is equiprobable
(i.e., the probabilities associated with an observation falling into a
given group are divided as evenly as possible across the intervals).
Many commercial software packages follow this procedure.

One rule-of-thumb suggests using the value 2n%5 as a good starting
point for choosing the number of groups. Another well known
rule-of-thumb requires every group to have at least 5 data points.

The formulas for the computation of the chi-square goodnes-of-fit
test are given in the EDA chapter.
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7.2.1.2. Kolmogorov- Smirnov test
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7.2.1. Do the observations come from a particular distribution?

7.2.1.2.Kolmogorov- Smirnov test

The K-Stest
isa good
alternative
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chi-square
test.
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procedure
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probability
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with the test
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compute.
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The Kolmogorov-Smirnov (K-S) test was originally proposed in the
1930's in papers by Kolmogorov (1933) and Smirnov (1936). Unlike the
Chi-Square test, which can be used for testing against both continuous
and discrete distributions, the K-Stest is only appropriate for testing
data against a continuous distribution, such as the normal or Weibull
distribution. It is one of a number of tests that are based on the empirical

cumul ative distribution function (ECDF).

Details on the construction and interpretation of the K-S test statistic, D,
and examples for several distributions are outlined in Chapter 1.

Critical values associated with the test statistic, D, are difficult to
compute for finite sample sizes, often requiring Monte Carlo simulation.
However, some general purpose statistical software programs, including
Dataplot, support the Kolmogorov-Smirnov test at least for some of the
more common distributions. Tabled values can be found in Birnbaum
(1952). A correction factor can be applied if the parameters of the
distribution are estimated with the same data that are being tested. See
D'Agostino and Stephens (1986) for details.
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7.2. Comparisons based on data from one process

7.2.1. Do the observations come from a particular distribution?

7.2.1.3. Anderson-Darling and Shapiro-Wilk
tests

Purpose: Test for
distributional
adequacy

Requires critical
values for each
distribution

Anderson-Darling
procedure

The Anderson-Darling Test

The Anderson-Darling test (Stephens, 1974) isused to test if a
sample of data comes from a specific distribution. It isa
modification of the Kolmogorov-Smirnov (K-S) test and gives
more weight to the tails of the distribution than does the K-S test.
The K-Stest is distribution free in the sense that the critical
values do not depend on the specific distribution being tested.

The Anderson-Darling test makes use of the specific distribution
in calculating critical values. This has the advantage of alowing
amore sensitive test and the disadvantage that critical values
must be calculated for each distribution. Tables of critical values
are not given in this handbook (see Stephens 1974, 1976, 1977,

and 1979) because thistest is usually applied with a stetistical

software program that produces the relevant critical values.
Currently, Dataplot computes critical values for the

Anderson-Darling test for the following distributions:
e normal
« lognormal
« Waeibull
o extremevaluetypel.

Details on the construction and interpretation of the
Anderson-Darling test statistic, A2, and examples for several
distributions are outlined in Chapter 1.
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7.2.1.3. Anderson-Darling and Shapiro-Wilk tests

Shapiro-Wilk test The Shapiro-Wilk Test For Normality
for normality

The Shapiro-Wilk test, proposed in 1965, calculates aW statistic
that tests whether arandom sample, x4, X, ..., X, cOmes from
(specifically) anormal distribution . Small values of W are
evidence of departure from normality and percentage points for
the W statistic, obtained via Monte Carlo ssmulations, were
reproduced by Pearson and Hartley (1972, Table 16). Thistest

has done very well in comparison studies with other goodness of
fit tests.

The W statistic is calculated as follows:

" 3
Zﬂi:":z‘:]
I
3
Z:_l[xi —x:l

W

where the Xy are the ordered sample values (Xq) is the smallest)
and the g, are constants generated from the means, variances and

covariances of the order statistics of a sample of sizen from a
normal distribution (see Pearson and Hartley (1972, Table 15).

Dataplot has an accurate approximation of the Shapiro-Wilk test
that uses the command "WILKS SHAPIRO TEST Y ", where Y
Is a data vector containing the n sample values. Datapl ot
documentation for the test can be found here on the internet.

For more information about the Shapiro-Wilk test the reader is
referred to the original Shapiro and Wilk (1965) paper and the
tables in Pearson and Hartley (1972),
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7. Product and Process Comparisons

7.2. Comparisons based on data from one process

7.2.2.Are the data consistent with the
assumed process mean?

Thetesting
of Hp for a
single
population
mean

Typical null
hypotheses

Test statistic
where the
standard
deviationis
not known

Given arandom sample of measurements, Yj, ..., Yy, there are three

types of questions regarding the true mean of the population that can be
addressed with the sample data. They are:

1. Doesthe true mean agree with aknown standard or assumed
mean?

2. Isthe true mean of the population less than a given standard?

3. Isthetrue mean of the population at least aslarge asagiven
standard?

The corresponding null hypotheses that test the true mean, i, against
the standard or assumed mean, i, are:

1. H):p=po

2. H):pp = )

3. H):p 2 )

The basic statistics for the test are the sample mean and the standard
deviation. The form of the test statistic depends on whether the
poulation standard deviation, &, isknown or is estimated from the data
at hand. The more typical case is where the standard deviation must be
estimated from the data, and the test statistic is

1= Y-y
siN
where the sample mean is
_ 1 N
¥ = —
N
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7.2.2. Are the data consistent with the assumed process mean?

Comparison
with critical
values

Test statistic
where the
standard
deviationis
known

Caution

An
illustrative
example of
the t-test

and the sample standard deviation is

1 N( Y
s—— 3|77
N-1;5

with N - 1 degrees of freedom.

For atest at significance level ¢, where & is chosen to be small,
typicaly .01, .05 or .10, the hypothesis associated with each case
enumerated above isreected if:

L |I|EI£I|'2;N-1
2 =1, iy
Sts L o s

where £ .. s isthe upper «/2 critical value from the t distribution

with N-1 degrees of freedom and similarly for cases (2) and (3). Critical
values can be found in the t-table in Chapter 1.

If the standard deviation is known, the form of the test statistic is

LYot
o/+/N

For case (1), the test statistic is compared with = oy which is the upper
/2 critical value from the standard normal distribution, and similarly
for cases (2) and (3).

If the standard deviation is assumed known for the purpose of thistest,
this assumption should be checked by atest of hypothesisfor the

standard deviation.

The following numbers are particle (contamination) counts for a sample
of 10 semiconductor silicon wafers:

50 48 44 56 61 52 53 55 67 51

The mean = 53.7 counts and the standard deviation = 6.567 counts.
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7.2.2. Are the data consistent with the assumed process mean?

Thetestis
two-sided

Critical
values

Conclusion
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Over along run the process average for wafer particle counts has been
50 counts per wafer, and on the basis of the sample, we want to test
whether a change has occurred. The null hypothesis that the process
mean is 50 counts is tested against the alternative hypothesis that the
process mean is not equal to 50 counts. The purpose of the two-sided
alternative isto rule out a possible process change in either direction.

For asignificance level of & = .05, the chances of erroneously rejecting
the null hypothesiswhen it istrue are 5% or less. (For areview of
hypothesis testing basics, see Chapter 1).

Even though there is a history on this process, it has not been stable
enough to justify the assumption that the standard deviation is known.
Therefore, the appropriate test statistic is the t-statistic. Substituting the
sample mean, sample standard deviation, and sample size into the
formulafor the test statistic gives a value of

t=1.782

with degrees of freedom = N - 1 =9. Thisvalueis tested against the
upper critical value

t0.025;9 = 2.262

from the t-table where the critical value isfound under the column
labeled 0.025 for the probability of exceeding the critical value and in
the row for 9 degrees of freedom. The critical value g is used instead
of « because of the two-sided aternative (two-tailed test) which
requires equal probabilitiesin each tail of the distribution that add to «z.

Because the value of thetest statistic fallsin theinterval (-2.262, 2.262),
we cannot reject the null hypothesis and, therefore, we may continue to
assume the process mean is 50 counts.
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.2. Are the data consistent with the assumed process mean?

7.2.2.1.Confidence interval approach

Testingusing  The hypothesistest resultsin a"yes' or "no" answer. The null

a confidence hypothesisis either rejected or not rejected. There is another way of

interval testing amean and that is by constructing a confidence interval about
the true but unknown mean.

General form  Tests of hypotheses that can be made from a single sample of data
of confidence  were discussed on the foregoing page. As with null hypotheses,

intervals confidence intervals can be two-sided or one-sided, depending on the
where the guestion at hand. The general form of confidence intervals, for the
standard three cases discussed earlier, where the standard deviation is unknown
deviationis are:

unknown

1. Two-sided confidence interval for y:

= 5
Y‘ﬁ’tmz;ﬁﬂ 5:“5}!"' “n.-"’_ Lz, a1

2. Lower one-sided confidence interval for y:

#EY r L, i1

3. Upper one-sided confidence interval for u:
— A
el +—1, 4y
JNOE

where £ ... . istheupper g2 critical value from thet distribution

with N-1 degrees of freedom and similarly for cases (2) and (3).
Critical values can be found in the t-table in Chapter 1.
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7.2.2.1. Confidence interval approach

Confidence
level

A 95%
confidence
interval for
the example

Inter pretation
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The confidence intervals are constructed so that the probability of the
interval containing the mean is1 - . Such intervals are referred to as
100(1- £¢)% confidence intervals.

The corresponding confidence interval for the test of hypothesis
example on the foregoing page is shown below. A 95% confidence

interval for the population mean of particle counts per wafer is given
by

{tﬂﬂﬁﬂ <p< Y+ ﬁtmﬁg
33. T— e

2252 << 337+ ;?Efzzﬁz

490 <p< H84

The 95% confidence interval includes the null hypothesisif, and only
iIf, it would be accepted at the 5% level. Thisinterval includes the null
hypothesis of 50 counts so we cannot reject the hypothesis that the
process mean for particle countsis 50. The confidence interval
includes all null hypothesis values for the population mean that would
be accepted by an hypothesis test at the 5% significance level. This
assumes, of course, atwo-sided alternative.
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.2. Are the data consistent with the assumed process mean?

7.2.2.2.Sample sizes required

The Perhaps one of the most frequent questions asked of astatistician is,
computation "How many measurements should be included in the sample?”
of sample

Unfortunately, there is no correct answer without additional

sizes depends information (or assumptions). The sample size required for an
on many : : : : :

. experiment designed to investigate the behavior of an unknown
things, some . . . .7
of which have population mean will be influenced by the following:
to be « Vvalue selected for ¢, therisk of rejecting atrue hypothesis
assumed in . valueof fi, therisk of accepting afalse null hypothesis when a
advance particular value of the alternative hypothesisistrue.

« vaue of the population standard deviation.

Application-  For example, suppose that we wish to estimate the average daily yield,
estimating a i, of achemical process by the mean of asample, Yy, ..., Yy, such that

minimum the error of estimation islessthan & with a probability of 95%. This
sample size, means that a 95% confidence interval centered at the sample mean
N, for should be
limiting the
error inthe = =
estimate of Y-0=su=¥+0
the mean and if the standard deviation is known,
()
o= Nis Z e
The upper critical value from the normal distribution for g/ = 0.025
is1.96. Therefore,
2
1.96
Na (_ 02
d
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and
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accepting a
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Sandard
deviation
assumed to
be known

Example
where the
shift is stated
In terms of
the standard
deviation

7.2.2.2. Sample sizes required

A restriction is that the standard deviation must be known. Lacking an
exact value for the standard deviation requires some accommaodation,
perhaps the best estimate available from a previous experiment.

To control the risk of accepting afalse hypothesis, we set not only «,
the probability of rejecting the null hypothesis when it istrue, but also
it the probability of accepting the null hypothesis when in fact the

population mean is #+3 where 4§ is the difference or shift we want to
detect.

The minimum sample size, N, is shown below for two- and one-sided
tests of hypotheses with & assumed to be known.

o

2
N= (zmz +21g )2 [Ej = two — sided test

o

2
N= (:{ﬂ, + zﬁ)g [E) = one — sided test

The quantities 7 ct and zﬁ are upper critical values from the normal
distribution.

Note that it is usual to state the shift, 4, in units of the standard
deviation, thereby simplifying the calculation.

For a one-sided hypothesis test where we wish to detect an increasein
the population mean of one standard deviation, the following

information is required: e, the significance level of the test, and &, the
probability of failing to detect a shift of one standard deviation. For a
test with « = 0.05 and f# = 0.10, the minimum sample size required
for thetestis

N = (1.645 + 1.282)2 = 8.567 ~ 0.
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7.2.2.2. Sample sizes required

The procedures for computing sample sizes when the standard
deviation is not known are similar to, but more complex, than when the
standard deviation is known. The formulation depends on the
t-distribution where the minimum sample size is given by

2
N = (top +ta) (%) = two-sided test

2
3 .
N = (ty + t3)° (3) = one-sided test
The drawback is that critical values of the t-distribution depend on

known degrees of freedom, which in turn depend upon the sample size
which we are trying to estimate.

Therefore, the best procedureisto start with an intial estimate based on
a sample standard deviation and iterate. Take the example discussed
above where the the minimum sample size is computed to be N = 9.
This estimate is low. Now use the formula above with degrees of
freedom N - 1 = 8 which gives a second estimate of

N = (1.860 + 1.397)2 = 10.6 ~11.

It is possible to apply another iteration using degrees of freedom 10,
but in practice one iteration is usually sufficient. For the purpose of this
example, results have been rounded to the closest integer; however,
computer programs for finding critical values from the t-distribution
allow non-integer degrees of freedom.

The table below gives sample sizes for atwo-sided test of hypothesis
that the mean is a given value, with the shift to be detected a multiple
of the standard deviation. For aone-sided test at significance level ¢,
look under the value of 2 & in column 1.

Sample Size Tablefor Two-Sided Tests
o B 8-50 6-100d6-150

01 01 98 25 11
01 .05 73 18 8
01 10 61 15 7
01 20 47 12 6
01 .90 27 7 3
.05 01 75 19 9
.05 .05 53 13 6
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process

7.2.3.Are the data consistent with a
nominal standard deviation?

The testing of Given arandom sample of measurements, Yj, ..., Yy, there are three

Hofor asingle  types of questions regarding the true standard deviation of the
population population that can be addressed with the sample data. They are:

mean 1. Doesthe true standard deviation agree with anominal value?

2. Isthe true standard deviation of the population less than or
equal to anominal value?

3. Isthetrue stanard deviation of the population at least aslarge
asanominal value?

Corresponding  The corresponding null hypotheses that test the true standard

null deviation, «r, against the nominal value, o, are:
hypotheses

1. Ho: o= Hl:l

2. HO: o <= JD

3. Ho: o >= JD
Test statistic The basic test statistic is the chi-square statistic

) (N-1)s°
X = 2
a0

with N - 1 degrees of freedom where Sis the sample standard
deviation; i.e,,

1 N Y
S———S|¥ -7
N-17
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Warning
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For atest a significance level «, where € is chosen to be small,
typically .01, .05 or .10, the hypothesis associated with each case
enumerated aboveisrejected if:

2 2 2 2
1 A ezt VX S X-enzm

2 2
2 A = Xﬂ:;..ﬂ-’—l

2 2
3. A = Xﬂ:; |
where szz Isthe upper g2 critical value from the chi-square

distribution with N-1 degrees of freedom and similarly for cases (2)
and (3). Critical values can be found in the chi-square table in Chapter
1.

Because the chi-sgquare distribution is a non-negative, asymmetrical
distribution, care must be taken in looking up critical values from
tables. For two-sided tests, critical values are required for both tails of
the distribution.

A supplier of 100 ohm-cm silicon wafers claims that his fabrication
process can produce wafers with sufficient consistency so that the
standard deviation of resistivity for the lot does not exceed 10
ohm-cm. A sample of N = 10 wafers taken from the lot has a standard
deviation of 13.97 ohm.cm. Is the suppliers claim reasonable? This
guestion falls under null hypothesis (2) above. For atest at

significance level, ez = 0.05, the test statistic,

- (371157 9(397Y e
o 100 '

Is compared with the critical value, X%E-g = 1692,

Since the test statistic (17.56) exceeds the critical value (16.92) of the
chi-square distribution with 9 degrees of freedom, the manufacturer's
claim isrgjected.
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7. Product and Process Comparisons

7.2. Comparisons based on data from one process

7.2.3. Are the data consistent with a nominal standard deviation?

7.2.3.1.Confidence interval approach

Confidence
intervals for
the standard
deviation

Choice of
risk level e
can change
the
conclusion

Confidence intervals for the true standard deviation can be constructed
using the chi-square distribution. The 100(1- £x)% confidence intervals
that correspond to the tests of hypothesis on the previous page are given

by
1. Two-sided confidence interval for «x

v N —1s <o < N —1s
v X.-z:r:fE;N—l }/ X? 2N

2. Lower one-sided confidence interval for ¢x
v IN —1s
"
Y X?I;I'ul'—l

3. Upper one-sided confidence interval for 7
v N —1s
\/ x?—n:;N—l

where for case (1) Xza.lz Isthe upper g2 critical value from the

chi-square distribution with N-1 degrees of freedom and similarly for
cases (2) and (3). Critical values can be found in the chi-square table in

Chapter 1.

0<ag<

Confidence interval (1) is equivalent to atwo-sided test for the standard
deviation. That is, if the hypothesized or nominal value, s IS not

contained within these limits, then the hypothesis that the standard
deviation is equal to the nominal value is rejected.
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7.2.3.1. Confidence interval approach

A dilemma
of
hypothesis
testing

NIST
SEMATECH

A changein ¢ can lead to a change in the conclusion. This poses a
dilemma. What should ¢ be? Unfortunately, there is no clear-cut
answer that will work in al situations. The usual strategy isto set et
small so asto guarantee that the null hypothesisiswrongly rejected in
only asmall number of cases. Therisk, f, of failing to reject the null
hypothesis when it is fal se depends on the size of the discrepancy, and
also depends on ¢t. The discussion on the next page shows how to
choose the sample size so that thisrisk is kept small for specific

discrepancies.
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7. Product and Process Comparisons

7.2. Comparisons based on data from one process

7.2.3. Are the data consistent with a nominal standard deviation?

7.2.3.2.Sample sizes required

Sample sizes
to minimize
risk of false
acceptance

Alternatives
are specific
departures
from the null
hypothesis

I nter pretation

First choose
the level of
significance
and beta risk

The following procedure for computing sample sizes for tests involving standard
deviations follows W. Diamond (1989). Theideaisto find asample size that is

large enough to guarantee that the risk, f7, of accepting afalse hypothesisis small.

This procedure is stated in terms of changes in the variance, not the standard
deviation, which makes it somewhat difficult to interpret. Tests that are generally of

interest are stated in terms of 4, a discrepancy from the hypothesized variance. For
example:

1. Isthetrue variance larger than its hypothesized value by 4?
2. Isthe true variance smaller than its hypothesized value by 4?
That is, the tests of interest are:

L Hoo? > o2 +8; 830
2 Hoa? < a2 —48; §20

The experimenter wants to assure that the probability of erroneously accepting the
null hypothesis of unchanged varianceis at most ff. The sample size, N, required
for this type of detection depends on the factor, §; the significance level, &; and
therisk, fi.

The sample size is determined by first choosing appropriate values of « and ff and

then following the directions below to find the degrees of freedom, %*, from the
chi-square distribution.
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7.2.3.2. Sample sizes required

First compute

R=1+£2
o

Then generate a table of degrees of freedom, say between 1 and 200. For case (1) or
(2) above, calculate ﬂu and the corresponding value of {,, for each value of
degrees of freedom in the table where

LA, = xi#’jﬂ

C,=EB.(x2< f8,)
2 ﬁf-" — l—myf’R

& :Pr(?(fx:’ﬂu)

The value of v where{},, isclosest to 4 is the correct degrees of freedom and

N=v+1

The quantity xi y isthe critical value from the chi-square distribution with 4

degrees of freedom which is exceeded with probability . It is sometimes referred
to as the percent point function (PPF) or the inverse chi-square function. The

probability that is evaluated to get Cv is called the cumulative density function
(CDR).

Consider the case where the variance for resistivity measurements on alot of
silicon wafersis claimed to be 100 ohm-cm. A buyer is unwilling to accept a
shipment if & isgreater than 55 ohm-cm for a particular lot. This problem falls
under case (1) above. The question is how many samples are needed to assure risks

of & =0.05and j = .01.
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7.2.3.2. Sample sizes required

Calculations  The procedure for performing these calculations using Dataplot is as follows:
using
Datapl ot l et d=55
|l et var = 100
let r = 1 + d/(var)
| et function cnu=chscdf (chsppf(.95,nu)/r,nu) - 0.01
let a = roots cnu wt nu for nu =1 200

Dataplot returns avalue of 169.5. Therefore, the minimum sample size needed to
guarantee therisk level isN = 170.

Alternatively, we could generate a table using the following Dataplot commands:

| et d=55
l et var =
let r =1
let nu =11 200

| et bnu = chsppf (.95, nu)

| et bnu=bnu/r

| et cnu=chscdf (bnu, nu)

print nu bnu cnu for nu = 165 1 175

Datapl ot The Dataplot output, for calculations between 165 and 175 degrees of freedom, is
output shown below.
VARI ABLES- -
NU BNU CNU
0. 1650000E+03 0.1264344E+03 0. 1136620E-01
0. 1660000E+03 0. 1271380E+03 0. 1103569E-01
0. 1670000E+03 0.1278414E+03 0. 1071452E-01
0. 1680000E+03 0. 1285446E+03 0. 1040244E-01
0. 1690000E+03 0.1292477E+03 0. 1009921E-01
0. 1700000E+03 0. 1299506E+03 0. 9804589E- 02
0. 1710000E+03 0. 1306533E+03 0. 9518339E- 02
0. 1720000E+03 0. 1313558E+03 0. 9240230E- 02
0. 1730000E+03 0. 1320582E+03 0. 8970034E- 02
0. 1740000E+03 0. 1327604E+03 0. 8707534E- 02
0. 1750000E+03 0. 1334624E+03 0. 8452513E- 02

The value of Cv which is closest to 0.01 is 0.010099; this has degrees of freedom
4+ = 169. Therefore, the minimum sample size needed to guarantee therisk level is
N = 170.

Calculations ~ The procedure for doing the calculations using an EXCEL spreadsheet is shown
using EXCEL  below. The EXCEL calculations begin with 1 degree of freedom and iterate to the
correct solution.
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7.2.3.2. Sample sizes required

Definitionsin  Start with:
EXCEL 1. 1inAl

2. CHIINV{(1- &), A1}/RinB1
3. CHIDIST(BLA1) inC1

In EXCEL, CHIINV{(1- ), A1} isthe critical value of the chi-square
distribution that is exceeded with probabililty ¢t. This example requires
CHIINV(.95,A1). CHIDIST(B1,A1) isthe cumulative density function up to
B1 which, for this example, needstoreach 1- j/# =1 - 0.01 = 0.99. The
EXCEL screen is shown below.

“ Microsoft Excel - Bookl

@ File Edit View [nsert Format Tools Data Window Help
I HERV iRy oo (&% =
Arial levBIE|§§E|$%
8z j =
A B C O E F
1 1 2.478358 0.115423
2 |
El T
4 | "=CHINYOS AT 55" "=CHIDISTBET AT"
g
Rl Goal Seek HE|
% Set cell: i1 jn_]
T To walue: el
E By changing cell: Al j‘J
11
E Ik I Cancel |
13
14
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Iteration step

NIST
SEMATECH

Then:
1. From TOOLS, click on "GOAL SEEK"
2. Fill in the blanks with "Set Cell C1", "To Value1 - fi" and "By Changing
Cell A1".
3. Click "OK™

Clicking on "OK" iterates the calculations until C1 reaches 0.99 with the
corresponding degrees of freedom shown in A1:

“ Microsoft Excel - Bookl

ﬁ File Edit View [nsert Format Tools Data Window Help

SedHERV iRy o-a(@a®|= 5 2z

B o -le r m|=E=E=E% %, @5
Ke j =
Fis B C O E F =

1] 159.54;2 129.2477 0.939901

2

3

4 |Sample Size Meeded

5

b :

El (>oal Seek Status

E ianal Seeking with Cell 1

9] Faund a solution,

1 Zancel

W Targek value: 0.99

12| Current value:  0,93990073 Step

% FPause

[HOME [TOOLS & AIDS [SEARCH [BACK NEXT]|
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7.2.4. Does the proportion of defectives meet requirements?
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7. Product and Process Comparisons

7.2. Comparisons based on data from one process

7.2.4.Does the proportion of defectives
meet requirements?

Testing
proportion
defectiveis
based on the
binomial
distribution

Hypotheses
regarding
proportion
defective

Test statistic
based on a
normal
approximation

The proportion of defective items in a manufacturing process can be
monitored using statistics based on the observed number of defectives
in arandom sample of size N from a continuous manufacturing
process, or from alarge population or lot. The proportion defective in
a sample follows the binomial distribution where p is the probability
of an individual item being found defective. Questions of interest for
quality control are:

1. Isthe proportion of defective items within prescribed limits?
2. Isthe proportion of defective items less than a prescribed limit?

3. Isthe proportion of defective items greater than a prescribed
limit?

The corresponding hypotheses that can be tested are:
1 p=po
2. pEpo
3. PZno

where pg is the prescribed proportion defective.

Given arandom sample of measurements Yy, ..., Yy from a population,
the proportion of items that are judged defective from these N
measurements is denoted 7. The test statistic

F— Po
poll—pn)

N

2 =

depends on a normal approximation to the binomial distribution that is
valid for large N, (N > 30). This approximation ssimplifies the
calculations using critical values from the table of the normal
distribution as shown below.
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Restriction on
sample size

Oneand
two-sided
tests for
proportion
defective

Example of a
one-sided test
for proportion
defective

Calculations
for a
one-sided test
of proportion
defective

7.2.4. Does the proportion of defectives meet requirements?

Because the test is approximate, N needs to be large for the test to be
valid. One criterion is that N should be chosen so that

min{Npg, N(L - p)} >= 5

For example, if pg = 0.1, then N should be at least 50 and if py = 0.01,
then N should be at least 500. Criteriafor choosing a sample sizein

order to guarantee detecting a change of size 4 are discussed on
another page.

Tests at the 1 - ¢ confidence level corresponding to hypotheses (1),
(2), and (3) are shown below. For hypothesis (1), the test statistic, Z, is

compared with Latz | the upper critical value from the normal
distribution that is exceeded with probability €2 and similarly for (2)
and (3). If

12| > zap

2. » < —z,

3. » > 2,
the null hypothesisis rejected.

After anew method of processing wafers was introduced into a
fabrication process, two hundred wafers were tested, and twenty-six
showed some type of defect. Thus, for N= 200, the proportion

defective is estimated to be £ = 26/200 = 0.13. In the past, the
fabrication process was capable of producing wafers with a proportion
defective of at most 0.10. The issue is whether the new process has
degraded the quality of the wafers. The relevant test is the one-sided
test (3) which guards against an increase in proportion defective from
its historical level.

For atest at significance level « = 0.05, the hypothesis of no

degradation is validated if the test statistic Z is less than the critical
value, zj5 = 1.645. Thetest statistic is computed to be

5 — 13 —0.1
= P—m 013010
E!I—E! 0. 1000, %0
) 200
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7.2.4. Does the proportion of defectives meet requirements?

Interpretation  Because the test statistic isless than the critical value (1.645), we
cannot reject hypothesis (3) and, therefore, we cannot conclude that
the new fabrication method is degrading the quality of the wafers. The
new process may, indeed, be worse, but more evidence would be
needed to reach that conclusion at the 95% confidence level.
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7.2.4.1. Confidence intervals
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7. Product and Process Comparisons

7.2. Comparisons based on data from one process

7.2.4. Does the proportion of defectives meet reguirements?

7.2.4.1. Confidence intervals

Confidence
intervals
using the
method of
Agresti and
Coull

Formulas
for the
confidence
intervals

Procedure
does not
strongly
depend on
values of p
andn

The method recommended by Agresti and Coull (1998) and also by
Brown, Ca and DasGupta (2001) (the methodology was originally

developed by Wilson in 1927) is to use the form of the confidence
interval that corresponds to the hypothesis test given in Section 7.2.4.

That is, solve for the two values of pg (say, Pypper @d Power) that result
from setting z= 2z, 2 and solving for pg = pygper, and then setting z = -
2 j2 and solving for pg = Piower- (Here, asin Section 7.2.4, z,, 12 denotes
the variate value from the standard normal distribution such that the area
to theright of the value is¢x/2.) Although solving for the two values of
Po Might sound complicated, the appropriate expressions can be
obtained by straightforward but slightly tedious algebra. Such algebraic
manipulation isn't necessary, however, as the appropriate expressions
are given in various sources. Specifically, we have

P 22/ ¥ 20 \/ﬁu 5 | % %

L. =
1 —|—zr1f2fn
2
ﬁ+32:: —Eaz\/ﬁ _ﬁ}-l- n‘m
LI =
1 +zr1f2;"’”

This approach can be substantiated on the grounds that it is the exact
algebraic counterpart to the (large-sample) hypothesis test givenin
section 7.2.4 and is also supported by the research of Agresti and Coull.
One advantage of this procedure is that its worth does not strongly
depend upon the value of n and/or p, and indeed was recommended by
Agresti and Coull for virtually all combinations of n and p.
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7.2.4.1. Confidence intervals

Another
advantageis
that the
lower limit
cannot be
negative

One-sided
confidence
intervals

Example

Conclusion
fromthe
example

Another advantage is that the lower limit cannot be negative. That is not
true for the confidence expression most frequently used:

Pl —p)
T

A confidence limit approach that produces alower limit whichisan
impossible value for the parameter for which the interval is constructed
Isan inferior approach. This also appliesto limits for the control charts
that are discussed in Chapter 6.

Pﬂ :I: zﬂj,fg

A one-sided confidence interval can aso be constructed simply by
replacing each Zaf2 by Z,, in the expression for the lower or upper limit,
whichever is desired. The 95% one-sided interval for p for the example
in the preceding section is:

pl‘_}lowerlimit

P -|_ T, zﬂ:x/ﬁ _ﬁ} —|_ 4‘12

p= 22 /n

(1.645)2 0. H[u E’i’] (1.645)2
P= 1+ [1 6452 /200
p = 0.09577

Since the lower bound does not exceed 0.10, in which case it would
exceed the hypothesized value, the null hypothesis that the proportion
defectiveis at most .10, which was given in the preceding section,
would not be rejected if we used the confidence interval to test the
hypothesis. Of course a confidence interval has valuein its own right
and does not have to be used for hypothesis testing.

Exact Intervalsfor Small Numbersof Failuresand/or Small Sample
Sizes
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Constrution
of exact
two-sided
confidence
Intervals
based on the
binomial
distribution

Note

Exampl e of
calculation
of upper
l[imit for
binomial
confidence
intervals
using
EXCEL

If the number of failuresisvery small or if the sample size N isvery
small, symmetical confidence limits that are approximated using the
normal distribution may not be accurate enough for some applications.
An exact method based on the binomial distribution is shown next. To
construct atwo-sided confidence interval at the 100(1 - £¥)% confidence
level for the true proportion defective p where Ny defects are found in a

sample of size N follow the steps below.
1. Solve the equation

oy
Nk N-k
A

for py to obtain the upper 100(1 - ¢¥)%o limit for p.
2. Next solve the equation

Ayl N_k
%(E)pi’(l—pﬁ) —1l-a/2

for p_ to obtain the lower 100(1 - ¢x)% limit for p.

Theinterval {p,, py} isan exact 100(1 - £x)% confidence interval for p.
However, it is not symmetric about the observed proportion defective,
p=N F

The equations above that determine p; and p can easily be solved

using functions built into EXCEL. Take as an example the situation
where twenty units are sampled from a continuous production line and
four items are found to be defective. The proportion defectiveis
estimated to be b= 4/20 = 0.20. The calculation of a 90% confidence

interval for the true proportion defective, p, is demonstrated using
EXCEL spreadsheets.
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Upper To solvefor py:

confidence
l[imit from
EXCEL

= 20.

1. Open an EXCEL spreadsheet and put the starting value of 0.5in
the Al cdll.

2. Put =BINOMDIST(Nd, N, A1, TRUE) in B1, where Nd = 4 and N

3. Open the Tools menu and click on GOAL SEEK. The GOAL
SEEK box requires 3 entries./li>

o Blinthe"Set Cell" box

0 /2=0.05inthe"To Vaue" box

0 Alinthe "By Changing Cell" box.
The picture below shows the steps in the procedure.

ﬁ File Edit Wiew Insert Formmat Tools Data Window Help

e HERY iR o-o-|A®|= 5 2l EZ]]
el -0 ~|B rU|EE=E|8 %, WA EE
Bl j = | =BINOMDIST{4,20 A1 TRUE)
A | B C D E F G H
; 0.5 0.0059091
3
% Goal Seek 71x]|
E Set cell: =31 :u_]
L To walue: 5
% By changing cell: al j;_j
10
ETH Ok I Cancel
%lET[TIﬁh Sheetl i SheetZ & Sheetd f [ 4]
“D;aw* HHDG‘|&*£*£*E:E.
Enter N | | UM
Final step 4. Click OK inthe GOAL SEEK box. The number in A1 will

change from 0.5 to Py,. The picture below shows the final result.
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™ Microsoft Excel - Boolk1

ﬁ File Edit View Insert Format Tools Data Window Help
s H EGAY | iBRY | v-o- | @A®| = 5 8l E] I
rial JIEE P AN === A R
B1 _j =| =BINOMDIST(4,20 A1 TRUE)
A | B c | 0 [ E | F [ &6 | H

1 0, 400221 D.DEDFEE_

2

3

4 C-oal heek htatus

g The upper bound 95% Goal Seeking with Cell B1

; confidence bound for o nd & solution,

2 g . i

= Target value: 0,05

1EE| Current value:  0,050756013 Step

11 FPause

12
44| ¥ Sheetl { Sheet £ Sheetd f 14l

”Draw* HHDC}.4|& ---iilr ﬂ-v=_*—
Readly [ L MM
Exampl e of The calculation of the lower limit issimilar. To solve for p :
calculation 1. Open an EXCEL spreadsheet and put the starting value of 0.5in
of lower
limit for the Al cell.
binomial 2. Put =BINOMDIST(Nd -1, N, AL, TRUE) in B1, where Nd -1 = 3
confidence and N = 20.
limits using 3. Open the Tools menu and click on GOAL SEEK. The GOAL
EXCEL SEEK box requires 3 entries.

0 Blinthe"Set Cell" box
0 1-ex/2=1-0.05=0.95inthe"To Vaue" box
0 Alinthe"By Changing Cell" box.

The picture below shows the steps in the procedure.
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Arsl -0 -
Bl =BINOMDIST(3 20 A1 TRLUE)
0.5f 0.001283
1
E1
95
Al
Sheetl
[ Nm
Final step 4. Click OK inthe GOAL SEEK box. The number in A1 will

change from 0.5 to p; . The picture below shows the final result.
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. Microsoft Excel - Bookl
ﬁ File Edit View Insert Format Tools Data Window Help

[ H | ES&HY SBERS | o-o-

S| = e e

Arial -0 - |B 7 UE=E=E% %, W% EE]|
B1 j = =BINOMDIST3 20 A1, TRUE)
A, B L O E F 5 H
1 | 0.071145 D.BED:ME.
2
3
4 oal Seek Status
S iaoal Seeking with Cell B1
? The lower 059 Found a solukion,
= confidence bound for . Zancel
pis 0.071 Targek walue: 0.95 _—
J Current value:  0,950442444 Skep
10
11 Pause
12
4w [mh, Sheerl  Sheetz £ Sheetd f 14
“D;aw*[::gc-j ﬁgtnﬂhapes*ﬂ“lm'::'4|&v£v£vEEE.
Ready == T oM

I nterpretation
of result

Calculations
using
SEMSTAT

A 90% confidence interval for the proportion defective, p, is{0.071,
0.400} . Whether or not the interval istruly "exact" depends on the
software. Notice in the screens above that GOAL SEEK isnot able to
find upper and lower limits that correspond to exact 0.05 and 0.95
confidence levels; the calculations are correct to two significant digits
which is probably sufficient for confidence intervals. The calculations
using a package called SEMSTAT agree with the EXCEL resultsto
two significant digits.

The downloadable software package SEMSTAT contains a menu item
"Hypothesis Testing and Confidence Intervals." Selecting thisitem
brings up another menu that contains " Confidence Limits on Binomial
Parameter." This option can be used to calculate binomial confidence
limits as shown in the screen shot below.

http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm (7 of 9) [11/14/2003 6:11:42 PM]


http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org/public/resources/stats/Handbook/semstat.htm

7.2.4.1. Confidence intervals

300~ ~eE 3o -0k -0~ ~eE-3oE 30k 30 30 ~3oE 3030 3ok -3 -3nE 3030 3o -JmE-3mE-3ef 30 3o -3 ~eE o -0 -J0E -3 ~3eE-JoE-J0f-J0 30 ~3eE-3oE-30f-J0f 33 -eE 3o -Jof-JmE-JmE-eE-oE- -

#* Tyo zided confidence limits for the probability *
=

# jn the binomial distribution
L L LR L L L L L L L L b L I T I I T Ea T T a T a T a Ta T a T a T a X ol

Enter the sample size: 28
Enter the numbher of successes: 4
Enter the confidence coefficient: .98

Upper 95 ¥ Limit: ©_4089%
Lower 95 » Limit: @A.8713

More? uw/noin_

Calculations  This computation can also be performed using the following Datapl ot
using program.

Dataplot
Initalize
let p =0.5
let nd = 4
let n = 20

Define the functions
l et function fu = bincdf(4,p,20) - 0.05
| et function fl = bincdf(3,p,20) - 0.95
Cal cul ate the roots
let pu =roots fuwt p for p
l et pl roots fl wt p for p
. print the results
l et pul = pu(l)
let pll = pl (1)
print "PU = ~pul”
print "PL = ~pl 1"
Dataplot generated the following results.

.01 .99
.01 .99

PU
PL

0. 401029
0.071354
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7. Product and Process Comparisons
7.2. Comparisons based on data from one process
7.2.4. Does the proportion of defectives meet requirements?

7.2.4.2.Sample sizes required

Derivationof  The method of determining sample sizes for testing proportionsis

formula for similar to the method for determining sample sizesfor testing the
requi red' mean. Although the sampling distribution for proportions actually
sample size follows a binomial distribution, the normal approximation is used for

whentesting  thjs derivation.
proportions

Minimum If we are interested in detecting a change in the proportion defective of
sample size size & in either direction, the minimum sample sizeis

1. For atwo-sided test
P(l _P) 2
N> -
2. For aone-sided test

1 _
NEI%Z?I

Interpretation  This requirement on the sample size only guarantees that a change of
andsample  size 4 is detected with 50% probability. The derivation of the sample
sizefor high g6 when we are interested in protecting againgt a change & with

SL?SC?PA{;Z o provability 1-8 (where & issmall) is
change 1. For atwo-sided test
1 —
N 2 (zap2 + 3&%%
2. For aone-sided test
1 —
N> (z,l—l—zﬁ)zp( > P)
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7.2.4.2. Sample sizes required

Value for the
true
proportion
defective

Example of
calculating
sample size
for testing
proportion
defective

NIST
SEMATECH

where zﬂ IS the upper critical value from the normal distribution that
is exceeded with probability &

The equations above require that p be known. Usually, thisis not the
case. If we are interested in detecting a change relative to an historical
or hypothesized value, this value is taken as the value of p for this
purpose. Note that taking the value of the proportion defective to be 0.5
leads to the largest possible sample size.

Suppose that a department manager needs to be able to detect any
change above 0.10 in the current proportion defective of his product
line, which is running at approximately 10% defective. He is interested
in aone-sided test and does not want to stop the line except when the
process has clearly degraded and, therefore, he chooses a significance
level for the test of 5%. Suppose, also, that heiswilling to take arisk
of 10% of failing to detect a change of this magnitude. With these
criteria

1. Zog = 1645, Z_10=1.282

2. §=0.10
3. p=0.10
and the minimum sample size for a one-sided test procedureis

o (0.10)(0.90)(2.927)°
= 0.15)2

1—
N> I%(&nﬁ 1 210

=11
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7. Product and Process Comparisons

7.2. Comparisons based on data from one process

7.2.5.Does the defect density meet
requirements?

Testing defect
densitiesis
based on the
Poisson
distribution

Normal
approximation
to the Poisson

Test statistic
based on a
normal
approximation

The number of defects observed in an area of size A unitsis often
assumed to have a Poisson distribution with parameter A x D, where D

Isthe actual process defect density (D is defects per unit ared). In other
words:

(40)

&

Fi#Defects =#n) =
2l
The questions of primary interest for quality control are:
1. Isthe defect density within prescribed limits?
2. Isthe defect density less than a prescribed [imit?
3. Isthe defect density greater than a prescribed limit?

We assume that AD is large enough so that the normal approximation
to the Poisson applies (in other words, AD > 10 for a reasonable
approximation and AD > 20 for agood one). That translates to

P{#Defects < x) =qb[” _"m]

NAD

where § is the standard normal distribution function.

If, for asample of area A with a defect density target of D, a defect
count of C isobserved, then the test statistic

_C-AD,
AD,

Z

can be used exactly as shown in the discussion of the test statistic for
fraction defectives in the preceding section.
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Testing the
hypothesis
that the
process defect
density isless
than or equal
to DO

Choice of
sample size
(or area) to
examine for
defects

Example

7.2.5. Does the defect density meet requirements?

For example, after choosing a sample size of area A (see below for
sample size calculation) we can regject that the process defect density is
less than or equal to the target Dy, if the number of defects C in the

sample is greater than C,, where
Oy =JALZ + AL,

and Z¢x is the upper 100x(1-¢x) percentile of the standard normal
distribution. The test significance level is 100x(1-¢x). For a 90%
significance level use Zex = 1.282 and for a 95% test use Zex = 1.645.
o 1S the maximum risk that an acceptable process with a defect
density at least aslow as D "fails' the test.

In order to determine a suitable area A to examine for defects, you first
need to choose an unacceptable defect density level. Call this
unacceptable defect density D, = kD, wherek > 1.

We want to have a probability of lessthan or equal to ﬁ Is of

"passing” the test (and not rejecting the hypothesis that the true level is

Dy or better) when, in fact, the true defect level is D, or worse.

Typically /3 will be.2, .1 or .05. Then we need to count defectsin a

sample size of area A, where Aisequal to

r 3
k f}' “

A= k

D, k-1

L !

Suppose the target is D = 4 defects per wafer and we want to verify a
new process meets that target. We choose ¢x = .1 to be the chance of
failing the test if the new processis as good as Dy (¢x = the Type |
error probability or the "producer's risk") and we choose ﬂ =.1for the
chance of passing the test if the new processis as bad as 6 defects per
wafer (ﬂ =the Type Il error probability or the "consumer's risk™).
That means Z¢x = 1.282 and Z ¢x = -1.282.

The sample size needed is A wafers, where

PERED - Sl ) W
4 1.3—1 S

2
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which we round up to 9.

The test criteriaisto "accept” that the new process meets target unless
the number of defectsin the sample of 9 wafers exceeds

C,=+JAD,Z + AD, =36 %1.282 + 36 = 43.7.

In other words, the regject criteriafor the test of the new processis 44
or more defects in the sample of 9 wafers.

Note: Technically, al we can say if we run thistest and end up not
rejecting is that we do not have statistically significant evidence that
the new process exceeds target. However, the way we chose the
sample size for thistest assures us we most likely would have had
statistically significant evidence for rejection if the process had been
as bad as 1.5 times the target.
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7.2.6. What intervals contain a fixed percentage of the population values?
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7. Product and Process Comparisons

7.2. Comparisons based on data from one process

7.2.6.What intervals contain a fixed
percentage of the population values?

Observations
tend to
cluster
around the
median or
mean

Various
methods

NIST
SEMATECH

Empirical studies have demonstrated that it istypical for alarge
number of the observationsin any study to cluster near the median. In
right-skewed data this clustering takes place to the left of (i.e., below)
the median and in left-skewed data the observations tend to cluster to
theright (i.e., above) the median. In symmetrical data, where the
median and the mean are the same, the observations tend to distribute
equally around these measures of central tendency.

Severa types of intervals about the mean that contain alarge
percentage of the population values are discussed in this section.

Approximate intervals that contain most of the population values

Percentiles
Tolerance intervals for anormal distribution

Tolerance intervals using EXCEL

Tolerance intervals based on the smallest and largest
observations
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7. Product and Process Comparisons

7.2. Comparisons based on data from one process

7.2.6. What intervals contain a fixed percentage of the population values?

7.2.6.1. Approximate intervals that contain

Empirical
intervals

Intervals
that apply to
any
distribution

Exact
intervals for
the normal
distribution

most of the population values

A rule of thumb isthat where there is no evidence of significant
skewness or clustering, two out of every three observations (67%)
should be contained within a distance of one standard deviation of the
mean; 90% to 95% of the observations should be contained within a
distance of two standard deviations of the mean; 99-100% should be
contained within a distance of three standard deviations. Thisrule can
help identify outliersin the data.

The Bienayme-Chebyshev rule states that regardless of how the data
are distributed, the percentage of observations that are contained within

adistance of K tandard deviations of the mean is at least (1 -
1/k2)100%.

The Bienayme-Chebyshev rule is conservative because it applies to any
distribution. For anormal distribution, a higher percentage of the
observations are contained within K standard deviations of the mean as
shown in the following table.

Per centage of observations contained between the mean and k
standard deviations

, No. of Normal
Standard  Empircal Rule Bienayme-Chebychev S
.y Distribution
Deviations
1 67% N/A 68.26%
2 90-95% at least 75% 95.44%
3 99-100% at least 88.89% 99.73%
4 N/A at least 93.75% 99.99%
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7. Product and Process Comparisons

7.2. Comparisons based on data from one process

7.2.6. What intervals contain a fixed percentage of the population values?

7.2.6.2.Percentiles

Definitions of
order
statistics and
ranks

Definition of
percentiles

Estimation of
percentiles

For a series of measurements Yy, ..., Yy, denote the data ordered in
increasing order of magnitude by Yy, ..., Y. These ordered data are
called order statistics. If Y};; isthe order statistic that corresponds to the
measurement Y;, then therank for Y; isj; i.e,

Yijg~¥y =n=J

Order statistics provide away of estimating proportions of the data that
should fall above and below a given value, called a percentile. The pth
percentileisavalue, Yy, such that at most (100p)% of the

measurements are less than this value and at most 100(1- p)% are
greater. The 50th percentile is called the median.

Percentiles split a set of ordered data into hundredths. (Deciles split
ordered data into tenths). For example, 70% of the data should fall
below the 70th percentile.

Percentiles can be estimated from N measurements as follows: for the
pth percentile, set p(N+1) equal to k + d for k an integer, and d, a
fraction greater than or equal to 0 and less than 1.

Yip =5 d| 37 _
1. ForO< k< N, (#) [’E]Jr ( [ %41 ] [’t])
2. Fork=0, Y(p) =Yg

3. Fork=N, Y(p) = Yy
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7.2.6.2. Percentiles

Example and

interpretation

Note that
thereare
other ways of
calculating
percentilesin
common use

Definition of
Tolerance
Interval
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For the purpose of illustration, twelve measurements from a gage study
are shown below. The measurements are resistivities of silicon wafers
measured in ohm-cm.

Measurenents O der stats Ranks

1 95.1772 95. 0610 9

2 95. 1567 95. 0925 6

3 95. 1937 95. 1065 10
4 95. 1959 95. 1195 11
5 95. 1442 95. 1442 5
6 95. 0610 95. 1567 1
7 95. 1591 95. 1591 7
8 95. 1195 95. 1682 4
9 95. 1065 95.1772 3
10 95. 0925 95. 1937 2
11 95. 1990 95. 1959 12
12 95. 1682 95. 1990 8

To find the 90% percentile, p(N+1) = 0.9(13) =11.7; k=11, and d =
0.7. From condition (1) above, Y(0.90) is estimated to be 95.1981

ohm-cm. This percentile, although it is an estimate from a small sample
of resistivities measurements, gives an indication of the percentile for a
population of resistivity measurements.

Some software packages (EXCEL, for example) set 1+p(N-1) equal to
k + d, then proceed as above. The two methods give fairly similar
results.

A third way of calculating percentiles (given in some elementary
textbooks) starts by calculating pN. If that is not an integer, round up to
the next highest integer k and use Y as the percentile estimate. If pN

Isan integer k, use S(Y[k] +Y[k+1])'

Aninterval covering population percentiles can be interpreted as
"covering a proportion p of the population with alevel of confidence,
say, 90%." Thisis known as atolerance interval.
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7. Product and Process Comparisons

7.2. Comparisons based on data from one process

7.2.6. What intervals contain afixed percentage of the population values?

7.2.6.3. Tolerance intervals for a normal

Definition of
atolerance
interval

Difference
between
confidence
and tolerance
intervals

Not related to
engineering
tolerances

Three types of
tolerance
intervals

distribution

A confidence interval covers a population parameter with a stated confidence,
that is, acertain proportion of the time. Thereis also away to cover afixed
proportion of the population with a stated confidence. Such an interval is called
atolerance interval. The endpoints of atolerance interval are called tolerance
limits. An application of tolerance intervals to manufacturing involves
comparing specification limits prescribed by the client with tolerance limits that
cover a specified proportion of the population.

Confidence limits are limits within which we expect a given population
parameter, such as the mean, to lie. Statistical tolerance limits are limits within
which we expect a stated proportion of the population to lie. Confidence
intervals shrink towards zero as the sample size increases. Tolerance intervals
tend towards a fixed value as the sample size increases.

Statistical tolerance intervals have a probabilistic interpretation. Engineering
tolerances are specified outer limits of acceptability which are usually
prescribed by adesign engineer and do not necessarily reflect a characteristic of
the actual measurements.

Three types of questions can be addressed by tolerance intervals. Question (1)
leads to atwo-sided interval; questions (2) and (3) lead to one-sided intervals.

1. What interval will contain p percent of the population measurements?

2. What interval guarantees that p percent of population measurements will
not fall below alower limit?

3. What interval guarantees that p percent of population measurements will
not exceed an upper limit?
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Tolerance
intervals for
measur ements
froma

normal
distribution

Calculation
of k factor for
a two-sided
tolerance
limit for a
normal
distribution

Example of
calculation

Use of tables
in calculating
two-sided
tolerance
intervals

7.2.6.3. Tolerance intervals for a normal distribution

For the questions above, the corresponding tolerance intervals are defined by
lower (L) and upper (U) tolerance limits which are computed from a series of
measurements Yy, ..., Yy :

1. YL:?—R'QS; Yr_r:?-l—kgﬁ
2. YL:?_'I‘:IS
3. Yy =Y +ks

where the k factors are determined so that the intervals cover at least a
proportion p of the population with confidence, ¥.

If the data are from a normally distributed population, an approximate value for
the factor as afunction of p and¥ for atwo-sided tolerance interval (Howe,

1969) is

(-1 )(1+%) 4%— iz

2
Ay 71

ky =

2
Wherex]’?f’" I isthe critical value of the chi-square distribution with degrees of

freedom, N - 1, that is exceeded with probability ¥ and 1= 42 is the critical
value of the normal distribution which is exceeded with probability (1-p)/2.

For example, suppose that we take a sample of N = 43 silicon wafers from alot
and measure their thicknesses in order to find tolerance limits within which a

proportion p = 0.90 of the wafersin the lot fall with probability ¥ = 0.99.

Values of the k factor as afunction of p and ¥ are tabulated in some textbooks,
such as Dixon and Massey (1969). To use the tables in this handbook, follow the

steps outlined below:
1. Calculate ¢ = (1- p)/2=0.05
2. Go to the table of upper critical values of the normal distribution and

under the column labeled 0.05 find =A% = 1.645.

3. Gotothetable of lower critical values of the chi-square distribution and
under the column labeled 0.99 in the row |abeled degrees of freedom =

2
42, find © ¥4 = 23,650,
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7.2.6.3. Tolerance intervals for a normal distribution

4. Calculate
,:N_l;.(HLJ 2 o 42(ﬁ)(1.545)2
L. = N _ -2.217
2 X% N 23 650 '

The tolerance limits are then computed from the sample mean,l_’, and standard
deviation, S, according to case (1).

| mportant The notation for the critical value of the chi-square distribution can be
note confusing. Vaues astabulated are, in a sense, already squared; whereas the
critical value for the normal distribution must be squared in the formula above.

Dataplot The Dataplot commands are:
commands for

calculating let n = 43

the k factor let nu=n - 1

fora let p = .90

two-sided let g = .99

tolerance let gl=1-g

interval let pl=(1+p)/?2

| et cg=chsppf (gl, nu)

| et np=nor ppf (pl)

let k = nu*(1+1/n)*np**2
let k2 = (k/cg)**.5

and the output is:

THE COMPUTED VALUE OF THE CONSTANT K2 = 0.2217316E+01

Another note The notation for tail probabilities in Dataplot is the converse of the notation used
in this handbook. Therefore, in the example above it is necessary to specify the
critical value for the chi-square distribution, say, as chsppf(1-.99, 42) and
similarly for the critical value for the normal distribution.
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7.2.6.3. Tolerance intervals for a normal distribution

Direct
calculation of
tolerance
intervals
using
Dataplot

Calculation
for a
one-sided
tolerance
interval for a
normal
distribution

Dataplot also has an option for calculating tolerance intervals directly from the
data. The commands for producing tolerance intervals from twenty-five
measurements of resistivity from a quality control study at a confidence level of

99% are:

read 100ohm dat cr wafer no day h min op hum...
probe tenp y sw df
tol erance y

Automatic output is given for several levels of coverage, and the tolerance
interval for 90% coverage is shown below in bold:

2- SI DED NORMAL TOLERANCE LIM TS: XBAR +- K*S

NUMBER OF OBSERVATI ONS
SAVPLE MEAN
SAVPLE STANDARD DEVI ATI ON

25
97. 069832
0. 26798090E- 01

CONFI DENCE = 99. %
COVERACE (% LONER LIMT UPPER LIM T
50.0 97.04242 97.09724
75.0 97.02308 97.11658
90.0 97.00299 97. 13667
95.0 96. 99020 97. 14946
99.0 96. 96522 97.17445
99.9 96. 93625 97.20341

The calculation of an approximate k factor for one-sided tolerance intervals
comes directly from the following set of formulas (Natrella, 1963):

2
; L_p + Iy —ab
1 —

L4
2 2
“-y A
I A S
Aoy TR TN

where Z(l‘a‘? isthe critical value from the normal distribution that is exceeded

with probability 1-p and Z'{l‘-"]‘ isthe critical value from the normal distribution
that is exceeded with probability 1-¥.
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For the example above, it may also be of interest to guarantee with 0.99
probability (or 99% confidence) that 90% of the wafers have thicknesses less
than an upper tolerance limit. This problem falls under case (3), and the Datapl ot

commands for calculating the factor for the one-sided tolerance interval are:

let n = 43
let p = .90
let g = .99

let nu =n-1

| et zp = nor ppf (p)

| et zg=nor ppf (g)

let a =1 - ((zg**2)/(2*nu))

let b = zp**2 - (zg**2)/n

let k1 = (zp + (zp**2 - a*b)**.5)/a

and the output is:

THE COMPUTED VALUE OF THE CONSTANT A 0. 9355727E+00
THE COMPUTED VALUE OF THE CONSTANT B 0. 1516516E+01

THE COMPUTED VALUE OF THE CONSTANT K1 0. 1875189E+01

The upper (one-sided) tolerance limit is therefore 97.07 + 1.8752* 2.68 =
102.096.
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7.2.6.4. Two-sided tolerance intervals using EXCEL
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7. Product and Process Comparisons

7.2. Comparisons based on data from one process

7.2.6. What intervals contain afixed percentage of the population values?

7.2.6.4. Two-sided tolerance intervals using EXCEL

Two-sided
tolerance
intervals
using
EXCEL

Interative
method

One method for computing factors for two-sided tolerance intervals using EXCEL makes
use of the definition

wherer isdefined by:

ez =

and xi, sy ISthecritical value of the chi-square distribution with N - 1 degrees of
freedom that is exceeded with probability, ¥.

Unfortunately, r can only be found by iteration from the integral above which defines
[imits within which p percent of the normal distribution lies. An EXCEL calculation is

illustrated below for the same problem as on the previous page except where N= 220
measurements are made of thickness. We wish to find tolerance intervals that contain a
proportion p = 0.90 of the wafers with probability ¥ = 0.99.

The EXCEL commands for this calculation are shown below. The calculations are
approximate and depend on the starting value for r, which istaken to be zero in this
example. Calculations should be correct to three signficant digits.
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7.2.6.4. Two-sided tolerance intervals using EXCEL

Basic o Enter Oincell Al
definition « Enter 220 (the sample size) in cell B1
of I'in « Enter in cell C1 the formula:
EXCEL ~NORMDIST((1/SORT(B1)+A1),0,1,T)-NORMDIST((1/SORT(B1)-A1),0,1,T)
The screen at this point is:
C1 = =| =NORMDIST{{1/SQRTEN+AN 01T

A | B C

i 0 220
Iteration Click on the green V (not shown here) or press the Enter key. Click on TOOL S and then
stepin on GOALSEEK. A drop down menu appears. Then,
EXCEL « Enter C1 (if it is not already there) in the cell in the row labeled: "Set cell:"

o Enter 0.9 (whichisp) inthe cell at the row labeled: "To vaue:"
o Enter Alinthecdll at the row labeled: "By changing cell:"
The screen at thispoint is:

Goal Seek ﬂﬁ

Sek cell: !Cl j‘.;

To walue: ;.9

By changing cell: !.ﬁ.1| j‘.,}
Ik Zancel |

Click OK. The screen below will be displayed:

Goal Seek Status 7[x]

Goal Seeking with Cell C1
Found a saolukion.

Cancel
Target walue: 0,9
Current value:  0,899962759 Skep
Pause
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Calculation  Now calculate the k factor from the equation above.

in EXCEL
of k factor

o Thevauer =1.6484 appearsincell Al

o« ThevaueN=220isincel Bl
o Enter ¥ whichis0.99in cell C1
o Enter the formula=A1* SQRT((B1-1)/CHIINV(C1,(B1-1))) incell D1
o PressEnter
The screenis:

I

P

aw - ar | oyl R

et i | [ e U L

“" '*|@ 7| & Q FaVDrltesv|G|:|v || Bookt

D1 ~| = | =AT*SQRT(EI-TWCHINVICT (B1-13))
A B C D
1| 1E4EM 220 099 1.553207636]
2

The resulting value k,= 1.853 appearsin cell D1.

Calculation  You can also perform this calculation using the following Dataplot macro.

tion f = norcdf (c+r) - norcdf(c-r)

for r = -4 4

[SEARCH

in Dataplot

Initialize

let r =0

let n = 220

let ¢l = 1/sqrt(n)
Conpute R

| et func

let z = roots f wt r

let r = z(1)

. Conpute K2

let c2 = (n-1)

let k2 = r*sqgrt(c2/chsppf(0.01,c2))
Print results

print "R = Ar"

print "K2 = ~k2"

Dataplot generates the following output.

R = 1.644854

K2 = 1.849208
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7.2.6.5. Tolerance intervals based on the largest and smallest observations
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7. Product and Process Comparisons

7.2. Comparisons based on data from one process

7.2.6. What intervals contain a fixed percentage of the population values?

7.2.6.5.Tolerance intervals based on the
largest and smallest observations

Tolerance
intervals can be
constructed for
a distribution of
any form

Risks
associated with
making
assumptions
about the
distribution

Tolerance
intervals based
on largest and
smallest
observations

The methods on the previous pages for computing tolerance limits are based
on the assumption that the measurements come from a normal distribution. If
the distribution is not normal, tolerance intervals based on this assumption
will not provide coverage for the intended proportion p of the population.
However, there are methods for achieving the intended coverage if the form
of the distribution is not known, but these methods may produce
substantially wider tolerance intervals.

There are situations where it would be particularly dangerous to make
unwarranted assumptions about the exact shape of the distribution, for
example, when testing the strength of glass for airplane windshields where it
Isimperative that a very large proportion of the population fall within
acceptable limits.

One obvious choice for atwo-sided tolerance interval for an unknown
distribution isthe interval between the smallest and largest observations from
asample of Yy, ..., Yy measurements. This choice does not allow us to

choose the confidence and coverage levels that are desired, but it does permit
calculation of' combinations of confidence and coverage that match this
choice.
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7.2.6.5. Tolerance intervals based on the largest and smallest observations

Dataplot
calculations for
distribution-free
tolerance
Intervals

What isthe
optimal sample
size?

The Dataplot commands for cal culating confidence and coverage levels
corresponding to atolerance interval defined as the interval between the
smallest and largest observations are given below. The commands that are
invoked for twenty-five measurements of resistivity from a quality control
study are the same as for producing tolerance intervals for a normal
distribution; namely,

read 100ohm dat cr wafer no day h mn ...
op hum probe tenp y sw df
tol erance y

Automatic output for combinations of confidence and coverage is shown
below:

2- S| DED DI STRI BUTI ON- FREE TOLERANCE LI M TS:

I NVOLVING XM N = 97.01400 AND XMAX = 97.11400

CONFI DENCE (%) COVERAGE (%)
100. 0 0. 5000000E+02
99. 3 0. 7500000E+02
72.9 0. 9000000E+02
35. 8 0. 9500000E+02
12.9 0. 9750000E+02
2.6 0. 9900000E+02
0.7 0. 9950000E+02
0.0 0. 9990000E+02
0.0 0. 9995000E+02
0.0 0. 9999000E+02

Note that if 99% confidence is required, the interval that coversthe entire
sample data set is guaranteed to achieve a coverage of only 75% of the
population values.

Another question of interest is, "How large should a sample be so that one

can be assured with probability ¥ that the tolerance interval will contain at
least a proportion p of the population?"
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7.2.6.5. Tolerance intervals based on the largest and smallest observations

Approximation A rather good approximation for the required sample sizeis given by

for N
1 (1+p) ) 1

= — = 7

4[1_p)X1—H4 T3

where 2_ ., 1sthe critical value of the chi-square distribution with 4
A1-y4

degrees of freedom that is exceeded with probability 1 - ¥,

Example of the Suppose we want to know how many measurements to make in order to
effect of p on guarantee that the interval between the smallest and largest observations

thesamplesize  coversa proportion p of the population with probability ¥=0.95. From the
table for the upper critical value of the chi-square distribution, look under the

column labeled 0.05 in the row for 4 degrees of freedom. The value is found

to be ;,;%5_ 4 =2.488 and calculations are shown below for p equal to 0.90

and 0.99.

P =90y=95
1(1+90) 2 1

= N=_Z 4 F==23[19)2488 )1+ 5 =4537 =45
A4 I:l—.gD)X'DS'q o ( :I( :I+

p=99y=095
1(1+99) 2 1

Ne_ 2 77 g F == 2519994881+ 5 =4T72.5 =475

4 [1_.99)}:.05,4 o I: )I: )+

These calculations demonstrate that requiring the tolerance interval to cover
avery large proportion of the population may lead to an unacceptably large
sample size.
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7.3. Comparisons based on data from two processes
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7. Product and Process Comparisons

7.3.Comparisons based on data from two

processes
Outline for In many manufacturing environments it is common to have two or more
this section processes performing the same task or generating similar products. The
following pages describe tests covering several of the most common and
useful cases for two processes.
1. Do two processes have the same mean?
1. Tests when the standard deviations are equal
2. Tests when the standard deviations are unequal
3. Testsfor paired data
2. Do two processes have the same standard deviation?
3. Do two processes produce the same proportion of defectives?
4. If the observations are failure times, are the failure rates (or mean
times to failure) the same?
Example of For example, in an automobile manufacturing plant, there may exist
adual track  several assembly lines producing the same part. If one line goes down
process for some reason, parts can still be produced and production will not be

stopped. For example, if the parts are piston rings for a particular model
car, the rings produced by either line should conform to a given set of
specifications.

How does one confirm that the two processes are in fact producing rings
that are similar? That is, how does one determine if the two processes
aresimilar?
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7.3. Comparisons based on data from two processes

Thegoal is
to determine
if the two
processes
aresimilar

Unknown
standard
deviation

Assumption
of a normal
distribution

NIST
SEMATECH

In order to answer this question, data on piston rings are collected for
each process. For example, on a particular day, data on the diameters of
ten piston rings from each process are measured over a one-hour time
frame.

To determine if the two processes are similar, we are interested in
answering the following questions:

1. Do the two processes produce piston rings with the same
diameter?

2. Do the two processes have similar variability in the diameters of
the rings produced?

The second question assumes that one does not know the standard
deviation of either process and therefore it must be estimated from the
data. Thisisusually the case, and the tests in this section assume that the
population standard deviations are unknown.

The statistical methodology used (i.e., the specific test to be used) to
answer these two questions depends on the underlying distribution of
the measurements. The tests in this section assume that the data are
normally distributed.
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7.3.1. Do two processes have the same mean?
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7. Product and Process Comparisons
7.3. Comparisons based on data from two processes

7.3.1. Do two processes have the same mean?

Testing Given two random samples of measurements,

hypotheses

rdated tO Yl, ...,YN ar]d Zl, ...,ZN

:\llwv%neans of from two independent processes (the Y's are sampled from process 1 and the Z's

are sampled from process 2), there are three types of questions regarding the true
means of the processes that are often asked. They are:

1. Arethe means from the two processes the same?
2. Isthe mean of process 1 less than or equal to the mean of process 2?
3. Isthe mean of process 1 greater than or equal to the mean of process 2?

processes

Typical null The corresponding null hypotheses that test the true mean of the first process,
hypotheses it against the true mean of the second process, it, €.

1. Hoirul :rﬂz
2. Ho! g <orequa to i,

3. Ho: g >orequal to s,

Note that as previously discussed, our choice of which null hypothesisto useis
typically made based on one of the following considerations:

1. When we are hoping to prove something new with the sample data, we
make that the alternative hypothesis, whenever possible.

2. When we want to continue to assume a reasonable or traditional
hypothesis still applies, unless very strong contradictory evidenceis
present, we make that the null hypothesis, whenever possible.
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7.3.1. Do two processes have the same mean?

Basic The basic statistics for the test are the sample means
statistics
from the two _ 1 My _ 1 N,
processes Y-—3Y¥:Z-—737Z
M ia Ny
and the sample standard deviations
T
(;-7Y)
3 =A1E
V w-
Nﬂ
=
> (Z:-Z)
3y =\ 1=
M -1

with degrees of freedom v; =¥, -1 and v, =V -1 respectively.

Form of the If the standard deviations from the two processes are equivalent, and this should
test statistic be tested before this assumption is made, the test statistic is
where the

two F= Y-z
pI'OCESSGS 1 1
have SN T
equivalent M
i:vfi‘gﬁg‘:ls where the pooled standard deviation is estimated as

(W, -L)st + (M, 1)s5
(B -Ly(27, 1)

with degrees of freedom 1 = NI + Nz -2 .
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7.3.1. Do two processes have the same mean?

Form of the
test statistic
where the
two
processes do
NOT have
equivalent
standard
deviations

Test
strategies

Explanation
of critical
values

If it cannot be assumed that the standard deviations from the two processes are
equivalent, the test statisticis

z

2 2
5 5
5%
NN,

The degrees of freedom are not known exactly but can be estimated using the
Welch-Satterthwaite approximation
:
2 .2
S 5§
ud B
Ny N

]_.-" =
a 3
51 Sz

NY (1) N7 (N, -1)

} =

The strategy for testing the hypotheses under (1), (2) or (3) above isto calculate

the appropriate t statistic from one of the formulas above, and then perform atest
at significance level &, where ¢t is chosen to be small, typically .01, .05 or .10.
The hypothesis associated with each case enumerated above is rejected if:

L |t| > tn:fﬂ;u
2. t :3 t.r}:;!.-f
3 f E _tn:;u

The critical values from thet table depend on the significance level and the
degrees of freedom in the standard deviation. For hypothesis (1) £,,--,. isthe

/> upper critical value from the t table with - degrees of freedom and
similarly for hypotheses (2) and (3).

http://www.itl.nist.gov/div898/handbook/prc/section3/prc31.htm (3 of 5) [11/14/2003 6:11:51 PM]


http://www.itl.nist.gov/div898/handbook/eda/section3//eda3672.htm#lower

7.3.1. Do two processes have the same mean?

Example of A new procedure (process 2) to assemble adeviceisintroduced and tested for
unequal possible improvement in time of assembly. The question being addressed is

number of whether the mean, gt , of the new assembly processis smaller than the mean,
data points 41,» for the old assembly process (process 1). We choose to test hypothesis (2) in

the hope that we will reject this null hypothesis and thereby feel we have a strong
degree of confidence that the new process is an improvement worth
implementing. Data (in minutes required to assemble a device) for both the new
and old processes are listed below along with their relevant statistics.

Devi ce Process 1 (A d) Process 2 (New)

1 32 36
2 37 31
3 35 30
4 28 31
5 41 34
6 44 36
7 35 29
8 31 32
9 34 31
10 38
11 42
Mean 36. 0909 32. 2222
St andard devi ation 4.9082 2.5386
No. neasurenents 11 9
Degrees freedom 10 8
Computation  From this table we generate the test statistic
of the test L
statistic =z 36.0909-32.2222

—— = =2.2694

JZIN, 452 /N, J4.90827/11+2.53867/9

with the degrees of freedom approximated by

4
T8 4.9082% , 2.53862)]
AL T 35
- - =155
g e 30827 253363

+
O 1210 4%
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7.3.1. Do two processes have the same mean?

Decision For a one-sided test at the 5% significance level, go to thet table for 5%
process signficance level, and look up the critical value for degrees of freedom v = 16.

The critical valueis 1.746. Thus, hypothesis (2) is rejected because the test
statistic (t = 2.269) is greater than 1.746 and, therefore, we conclude that process
2 has improved assembly time (smaller mean) over process 1.
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7.3.1.1. Analysis of paired observations
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7. Product and Process Comparisons

7.3. Comparisons based on data from two processes

7.3.1. Do two processes have the same mean?

7.3.1.1. Analysis of paired observations

Definition of
paired
comparisons

Basic
statistics for
the test

Given two random samples,
Y1, ., YN @d Zy, ..., Zy

from two populations, the data are said to be paired if the ith
measurement on the first sampleis naturally paired with the ith
measurement on the second sample. For example, if N supposedly
identical products are chosen from a production line, and each one, in
turn, is tested with first one measuring device and then with a second
measuring device, it is possible to decide whether the measuring devices
are compatible; i.e., whether there is a difference between the two
measurement systems. Similarly, if "before" and "after" measurements
are made with the same device on N objects, it is possible to decide if
there is a difference between "before" and "after"; for example, whether
a cleaning process changes an important characteristic of an object.
Each "before" measurement is paired with the corresponding "after"
measurement, and the differences

d: =Y. - X; (i=1- N
are calculated.

The mean and standard deviation for the differences are calculated as

7-134
N
and
1 ¥ 2
_ = ~(q _d
S N—lgl(l )

with N - 1 degrees of freedom.
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7.3.1.1. Analysis of paired observations

Test statistic
based on the
t
distribution
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The paired sample t-test is used to test for the difference of two means
before and after atreatment. The test statisticis:

d
¥ q / «.@
The hypotheses described on the foregoing page are rejected if:
L |t| > t'n:‘.I’E;u
2. t :3 tfl;l.-l'
3. t E‘ _t'n:;u

A

where for hypothesis (1) £, isthe upper /2 critical value from

the t distribution with 1+ degrees of freedom and similarly for cases (2)
and (3). Critical values can be found in the t-table in Chapter 1.
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7.3.1.2. Confidence intervals for differences between means
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7. Product and Process Comparisons
7.3. Comparisons based on data from two processes
7.3.1. Do two processes have the same mean?

7.3.1.2.Confidence intervals for differences
between means

Definition of Given two random samples,

confidence

interval for Yy, Yy and  Zg, .., Zy

difference from two |t sided corfid _ s with 100 (1- eYo%

between D popu ations, two-sided confi encelnt(?rv swit (1- £x)% coverage |
population for the difference between the unknown population means, & and 1t , are shown in
means the table below. Relevant statistics for paired observations and for unpaired

observations are shown elsawhere.

Two-sided confidence intervals with 100(1- e)% coveragefor gy - fi,

Paired observations

— Sd'
i - iy (Where g = ) d=+ tmfz;N_lv—ﬁ

Unpaired observations

_ _ 1 1
- i, (Where o, = o) Y —Z+t,m. i — + —
My o~ o /2 N1+ ND-2 ?‘/ N + ~
- 3. (where ) o 7 s 53
Hy A o, F oy Y —Z=x Lo feotive /84 — + —
N N

Interpretation  One interpretation of the confidence interval for meansisthat if zero is contained
of confidence  within the confidence interval, the two population means are equivalent.
interval
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7.3.2. Do two processes have the same standard deviation?
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7. Product and Process Comparisons

7.3. Comparisons based on data from two processes

7.3.2.Do two processes have the same
standard deviation?

Testing Given two random samples of measurements,
hypotheses
rela.taj to Yl’ ""YN and Zl’ ...,ZN
Ztar_md?rd from two independent processes, there are three types of questions
¢ vl atlons regarding the true standard deviations of the processes that can be
prrc())r(r; WO addressed with the sample data. They are:

1. Arethe standard deviations from the two processes the same?

2. Isthe standard deviation of one process less than the standard

deviation of the other process?
3. Isthe standard deviation of one process greater than the standard
deviation of the other process?
Typical null The corresponding null hypotheses that test the true standard deviation of
hypotheses the first process, r, against the true standard deviation of the second
process, «r, are:

1. HOZ a1} = ¥

2. HOZ a1} E Lo

3. HOZ a1} :_:" Lo
Basic The basic statistics for the test are the sample variances
statistics M
fromthe two o 1 g

57 = Y;—Y)
processes 1 — Z ( i
Ny —1 i=1
2 1 o2 =42
80 = ——— Zi— &
2 N,—1 ; (2= 2)

and degrees of freedom vy =1 -1 and v =}V -1, respectively.

http://www.itl.nist.gov/div898/handbook/prc/section3/prc32.htm (1 of 4) [11/14/2003 6:11:52 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm

7.3.2. Do two processes have the same standard deviation?

Form of the
test statistic

Test
strategies

Explanation
of critical
values

Thetest statisticis

F-

L Ly
MM|'_‘[‘-J-

The strategy for testing the hypotheses under (1), (2) or (3) aboveisto

calculate the F statistic from the formula above, and then perform a test
at significance level &, where ¢t is chosen to be small, typically .01, .05
or .10. The hypothesis associated with each case enumerated aboveis
rejected if:

1
LF< 7o O F 2 P
i f 20 P0]
2 F > Fayreg
i pe 1
F oo

The critical values from the F table depend on the significance level and

the degrees of freedom in the standard deviations from the two
processes. For hypothesis (1):

is the upper critical value from the F table with

ez ve v
* v, =N,-1 degreesof freedom for the numerator and

* 1y =1,-1 degrees of freedom for the denominator

. sz: viiv, is the upper critical value from the F table with

* ; =1,-1 degrees of freedom for the numerator and

* v, =N,-1 degreesof freedom for the denominator.
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7.3.2. Do two processes have the same standard deviation?

Caution on
looking up
critical
values

Two-sided
confidence
interval

The F distribution has the property that
1

I-enz, v Ve
€z, Vo Wy

which means that only upper critical values are required for two-sided
tests. However, note that the degrees of freedom are interchanged in the
ratio. For example, for atwo-sided test at significance level 0.05, go to
the F table labeled "2.5% significance level".

. For ez, vy vy » EVerse the order of the degrees of freedom; i.e,,

look across the top of the table for 1= =2, -1 and down the table
for vy =M -1.

. For I eniz; vy v, » |00k &cross the top of the table for vi =N -1
and down the table for v, =M. -1.

Critical valuesfor cases (2) and (3) are defined similarly, except that the
critical values for the one-sided tests are based on « rather than on g2 .

The two-sided confidence interval for the ratio of the two unknown
variances (sgquares of the standard deviations) is shown below.

Two-sided confidence interval with 100(1- ¢x)% coveragefor:

o 1 2\ o 2
‘7% Fﬂfﬂle—l;NE—l ';% /22N 3%

Oneinterpretation of the confidence interval isthat if the quantity "one"
Is contained within the interval, the standard deviations are equivalent.
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7.3.2. Do two processes have the same standard deviation?

Example of
unequal
number of
data points

Computation
of the test
statistic

Decision

process

NIST
SEMATECH

A new procedure to assemble adeviceisintroduced and tested for
possible improvement in time of assembly. The question being addressed

is whether the standard deviation, o, of the new assembly processis
better (i.e., smaller) than the standard deviation, «, for the old assembly
process. Therefore, we test the null hypothesisthat ar; << 5. Weform
the hypothesis in this way because we hope to rgject it, and therefore
accept the alternative that o, islessthan . Thisis hypothesis (2).
Data (in minutes required to assemble a device) for both the old and new

processes are listed on an earlier page. Relevant statistics are shown
below:

Process 1 Process 2
Mean 36. 0909 32.2222
St andard devi ati on 4.9082 2.5874
No. neasurenents 11 9
Degrees freedom 10 8

From this table we generate the test statistic

i=[4.9082]2 e e
55 \2.5874

For atest at the 5% significance level, go to the F table for 5%
signficance level, and look up the critical value for numerator degrees of

freedom vy =M -1 = 10 and denominator degrees of freedom 1 =M. -1
= 8. Thecritical valueis 3.35. Thus, hypothesis (2) can be regjected
because the test statistic (F = 3.60) is greater than 3.35. Therefore, we
accept the alternative hypothesis that process 2 has better precision
(smaller standard deviation) than process 1.
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7.3.3. How can we determine whether two processes produce the same proportion of defectives?

P ENGINEERING STATISTICS HANDBOOK

[HOME

'TOOLS & AIDS [SEARCH [BACK ~NEXT]

7. Product and Process Comparisons

7.3. Comparisons based on data from two processes

7/.3.3.How can we determine whether two
processes produce the same
proportion of defectives?

The
hypothesis of
equal
proportions
can be tested
using az
statistic

Case 1. Large Samples (Normal Approximation to Binomial)

If the samples are reasonably large we can use the normal
approximation to the binomial to develop atest similar to testing
whether two normal means are equal.

Let sample 1 have x; defects out of n; and sample 2 have x, defects
out of n,. Calculate the proportion of defects for each sample and the z
statistic below:

Y h—p
Jo0 Y1 + 1)
where
5= mp + ngpa | I+ Xe

Ri+nNe My t+n

Compare z to the normal zex2 table value for a 2-sided test. For aone
sided test, assuming the aternative hypothesisis p; > p,, compare z to

the normal zee table value. If the alternative hypothesisis p; < po,
compare zto -z .

Case 2: An Exact Test for Small Samples
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The Fisher
Exact
Probability
test isan
excellent
choice for
small samples

Example of a
2x2
contingency
table

Determine
whether two
groups differ
in the
proportion
with which
they fall into
two
classifications

7.3.3. How can we determine whether two processes produce the same proportion of defectives?

The Fisher Exact Probability Test is an excellent nonparametric
technique for analyzing discrete data (either nominal or ordinal), when
the two independent samples are small in size. It is used when the
results from two independent random samples fall into one or the other
of two mutually exclusive classes (i.e., defect versus good, or
successes vs failures).

In other words, every subject in each group has one of two possible
scores. These scores are represented by frequenciesin a 2x2
contingency table. The following discussion, using a 2x2 contingency
table, illustrates how the test operates.

We are working with two independent groups, such as experiments
and controls, males and females, the Chicago Bulls and the New Y ork
Knicks, etc.

- + Tota

Groupl| A B A+B

Grlcl’”p C D | C+D
Tota A+C B+D N

The column headings, here arbitrarily indicated as plus and minus,
may be of any two classifications, such as: above and below the
median, passed and failed, Democrat and Republican, agree and
disagree, €tc.

Fisher's test determines whether the two groups differ in the proportion
with which they fall into the two classifications. For the table above,
the test would determine whether Group | and Group I differ
significantly in the proportion of plusses and minuses attributed to
them.

The method proceeds as follows:

The exact probability of observing a particular set of frequenciesina?2
x 2 table, when the marginal totals are regarded as fixed, is given by
the hypergeometric distribution
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7.3.3. How can we determine whether two processes produce the same proportion of defectives?

Example of
Fisher's test

) {A;g}(g;ﬂ}
)

(A+C) B+ D)
Al B D
i

A+ B)N(C+ Oyl
(A+ BINC+ DN A+ C)N B+ Dyl
N1 AIBICI DI

p:

But the test does not just ook at the observed case. If needed, it also
computes the probability of more extreme outcomes, with the same
marginal totals. By "more extreme", we mean relative to the null
hypothesis of equal proportions.

Thiswill become clear in the next illustrative example. Consider the
following set of 2 x 2 contingency tables:

Observed Data More extreme outcomes with same marginals

(a (b) ©
2 [s [ 7 |[v 6 [7 |[o[7[7
| 3 ]2 ]5 1[4 ] 1 ]51[5]07JS5
5 [ 7 [12|[5 [ 7 [12|[5 [7 [12

Table (a) shows the observed frequencies and tables (b) and (c) show
the two more extreme distributions of frequencies that could occur
with the same marginal totals 7, 5. Given the observed data in table (a)
, we wish to test the null hypothesis at, say, ¢ = .05.

Applying the previous formulato tables (a), (b), and (c), we obtain

7151517 .
Pa = Tomotaigmr  200L0

Bl

TR 04410

Pt = Ton1614I1!
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7.3.3. How can we determine whether two processes produce the same proportion of defectives?
7IHIIT!
Pe = Tom0t7isIon

The probability associated with the occurrence of values as extreme as
the observed results under Hg is given by adding these three p's:

= 00126

.26515 + .04419 + .00126 = .31060

So p =.31060 is the probability that we get from Fisher's test. Since
.31060 islarger than e, we cannot reject the null hypothesis.

Tocher's M odification

Tocher's Tocher (1950) showed that a slight modification of the Fisher test
modification makes it amore useful test. Tocher starts by isolating the probability of
makes all cases more extreme than the observed one. In this example that is
Fisher'stest

less Pp + Pc = 04419 + .00126 = .04545

conservative

Now, if this probability islarger than £, we cannot reject H,,. But if

this probability islessthan «x, while the probability that we got from
Fisher'stest is greater than ¢ (asisthe case in our example) then
Tocher advises to compute the following ratio:

F — Iyrowe a2 brevhie noaes

Pobaerved alome
For the data in the example, that would be

Py N 2615

Now we go to atable of random numbers and at random draw a
number between 0 and 1. If this random number is smaller than the
ratio above of .0172, we rgject Hy. If it islarger we cannot reject Hy,.
This added small probability of rejecting Hq brings the test procedure

Typel error (i.e., e value) to exactly .05 and makes the Fisher test
less conservative.

=.0172

Thetest isaone-tailed test. For atwo-tailed test, the value of p
obtained from the formula must be doubled.

A difficulty with the Tocher procedure is that someone else analyzing
the same data would draw a different random number and possibly
make a different decision about the validity of H,
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7.3.4. Assuming the observations are failure times, are the failure rates (or Mean Times To Failure) for two distributions the same?
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7. Product and Process Comparisons

7.3. Comparisons based on data from two processes

7.3.4.Assuming the observations are
failure times, are the failure rates (or
Mean Times To Failure) for two
distributions the same?

Comparing
two
exponential
distributions
isto
compare the
means or
hazard rates

Definition of
Typell
censored
data

Two
exponential
samples
oredered by
time

The comparison of two (or more) life distributions is a common
objective when performing statistical analyses of lifetime data. Here we
look at the one-parameter exponential distribution case.

In this case, comparing two exponential distributionsis equivaent to
comparing their means (or the reciprocal of their means, known as their
hazard rates).

Typell Censored data

Definition: Type Il censored data occur when alife test is terminated
exactly when a pre-specified number of failures have occurred. The
remaining units have not yet failed. If n units were on test, and the
pre-specified number of failuresisr (wherer islessthan or equal to n),
then the test ends at t, = the time of the r-th failure.

Suppose we have Type |l censored data from two exponential
distributions with means £, and g,. We have two samples from these

distributions, of sizesn; on test with r4 failuresand n, on test with r,

failures, respectively. The observations are time to failure and are
therefore ordered by time.

gy sl (=)

Dy Sy (7 )
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7.3.4. Assuming the observations are failure times, are the failure rates (or Mean Times To Failure) for two distributions the same?

Test of L etting
equality of

and s :
o Ti =3ty + (e —ridtaeny  i=1,2

and :
confidence 5=1
interval for Then

/
61’ 02 271/61 ™ X3y

and

EJTEKHE ~ xgrﬂ
with T, and T, independent. Thus

B 2T/ (2r18)) B 8,8,

U= =2,
2T/ (2ra8s) 628,
where
8 = Eand,ﬁ]“2 _ E
T To

has an F distribution with (2rq, 2r,) degrees of freedom. Tests of
equality of &, and g, can be performed using tables of the F distribution
or computer programs. Confidence intervals for g, / g,, which is the
ratio of the means or the hazard rates for the two distributions, are also

readily obtained.
Numerical A numerical application will illustrate the concepts outlined above.
example .
For this example,
Ho @1/ 82=1
Ha g1/ g2 # 1

Two samples of size 10 from exponential distributions were put on life
test. The first sample was censored after 7 failures and the second
sample was censored after 5 failures. The timesto failure were:

Sample 1: 125 189 210 356 468 550 610
Sample 2: 170 234 280 350 467

So r= 7, o= 5and tl,(rl) = 610, tz’(r2)=467.

Then T, = 4338 and T, = 3836.

The estimator for §, is4338/ 7 = 619.71 and the estimator for g, is
3836/ 5 = 767.20.
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7.3.4. Assuming the observations are failure times, are the failure rates (or Mean Times To Failure) for two distributions the same?
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Theratio of the estimators=U = 619.71/ 767.20 = .808.

If the means are the same, the ratio of the estimators, U, followsan F
distribution with 2r4, 2r, degrees of freedom. The P(F < .808) = .348.
The associated p-value is 2(.348) = .696. Based on this p-value, we find
no evidence to reject the null hypothesis (that the true but unknown ratio
=1). Note that thisis atwo-sided test, and we would reject the null
hyposthesis if the p-value is either too small (i.e., less or equal to .025)
or too large (i.e., greater than or equal to .975) for a 95% significance
level test.

We can also put a 95% confidence interval around the ratio of the two
means. Since the .025 and .975 quantiles of F (14 1) are 0.3178 and

3.5504, respectively, we have
Pr(U/3.5504 < §,/ g, < U/.3178) = .95

and (.228, 2.542) is a 95% confidence interval for the ratio of the
unknown means. The value of 1 iswithin thisrange, which is another
way of showing that we cannot reject the null hypothesis at the 95%
significance level.
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7.3.5. Do two arbitrary processes have the same mean?
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7. Product and Process Comparisons
7.3. Comparisons based on data from two processes

7.3.5.Do two arbitrary processes have the
same mean?
The By "arbitrary” we mean that we make no underlying assumptions

nonparametric  about normality or any other distribution. The test is called the
equivalent of Mann-Whitney U-Test, which is the nonparametric equivalent of the

thet-test is t-test based for normal means.

due to Mann o _

and Whitney The U-test (as the majority of nonparametric tests) uses the rank sums
calledthey Of thetwo samples.

test

Procedure The procedure flows as follows

1. Rank al (nq + n,) observationsin ascending order. Tiesreceive
the average of their observations.
2. Calculate the sum of the ranks, call these T, and Ty,

3. Cdculate the U statistic,
Ug=nq(ny) +.5(ng)(ny +1) - Ty

or
Up = ny(ng) + .5(np)(nz + 1) - Tyy

where U, + Up = nq(ny).

Null The null hypothesisis: the populations have the same median. The
Hypothesis aternative hypothesisis: The medians are NOT the same.
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7.3.5. Do two arbitrary processes have the same mean?

Test statistic

Anillustrative
example of the
U test

The test statistic, U, isthe smaller of U, and U,,. For sample sizes

larger than 20, we can use the normal z asfollows:
z=[U-EU)]/a

where

E(T7) =5 )(n;) and & = [, )y +2, +1)]112

The critical valueisthe normal tabled zfor «x/2 for atwo-tailed test or
zat ¢r level, for aone-tail test.

For small samples use tables, which are readily available in most
textbooks on nonparametric statistics.

Example

Two processing systems were used to clean wafers. The following
data represent the (coded) particle counts. The null hypothesisis that
there is no difference between the means of the particle counts; the
aternative hypothesisisthat there is a difference. The solution shows
the typical kind of output software for this procedure would generate,
based on the large sample approximation.

Group A Rank Group B Rank
.55 8 49 5
.67 15.5 .68 17
43 1 .59 9.5
51 6 12 19
48 35 .67 155
.60 11 75 20.5
71 18 .65 135
.53 7 A7 22
44 2 .62 12
.65 13.5 48 3.5
75 20.5 .59 9.5

N Sumof Ranks U Std. Dev of U Median
A 11 106.000 81.000 15.229 0.540
B 11 147.000 40.000 15.229 0.635

Enter value for « (press Enter for .05): .05
Enter 1 or 2 for One- or Two-sided test: 2
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E(U) = 60.500000

The Z-test statistic = 1.346133
The critical value = +/- 1.960395.

@(1.346133) = 0.910870
Right Tail Area = 0.089130

Cannot reject the null hypothesis.
A two-sided confidence interval about U - E(U) is:
Prob {-9.3545 < DELTA < 50.3545} =0.9500

DELTA isthe absolute difference between U and E(U).
The test statisticisgiven by: (DELTA / SIGMA).
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7. Product and Process Comparisons

7.4.Comparisons based on data from more
than two processes

Introduction  This section begins with a nonparametric procedure for comparing
severa populations with unknown distributions. Then the following

topics are discussed:

NIST
SEMATECH

Comparing variances

Comparing means (ANOV A technique)

Estimating variance components

Comparing categorical data

Comparing popul ation proportion defectives

M aking multiple comparisons
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7. Product and Process Comparisons

7.4. Comparisons based on data from more than two processes

7.4.1.How can we compare several
populations with unknown
distributions (the Kruskal-Wallis
test)?

A
nonparametric
test for
comparing
population
medians by
Kruskal and
Wallis

Test based on
ranks of
combined data

Compute the
sum of the
ranks for each
sample

The Kruskal-Wallis (KW) Test for Comparing Populationswith
Unknown Distributions

The KW procedure tests the null hypothesis that k samples from
possibly different populations actually originate from similar
populations, at least as far as their central tendencies, or medians, are
concerned. The test assumes that the variables under consideration
have underlying continuous distributions.

In what follows assume we have k samples, and the sample size of the
i-th sampleisn;,i=1,2,...,k

In the computation of the KW statistic, each observation is replaced
by its rank in an ordered combination of all the k samples. By thiswe
mean that the data from the k samples combined are ranked in asingle
series. The minimum observation is replaced by arank of 1, the
next-to-the-smallest by arank of 2, and the largest or maximum
observation is replaced by the rank of N, where N is the total number
of observationsin all the samples (N is the sum of the ;).

The next step isto compute the sum of the ranks for each of the
original samples. The KW test determines whether these sums of
ranks are so different by sample that they are not likely to have dll
come from the same population.
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7.4.1. How can we compare several populations with unknown distributions (the Kruskal-Wallis test)?

Test statistic It can be shown that if the k samples come from the same population,
follows a X 2 that is, if the null hypothesisis true, then the test statistic, H, used in
distribution the KW procedure is distributed approximately as a chi-square

statistic with df = k - 1, provided that the sample sizes of the k samples
are not too small (say, nj>4, for al i). H is defined as follows:

e

where
o k=number of samples (groups)
« Nj = number of observations for the i-th sample or group

« N =total number of observations (sum of all the n;)
o R =sum of ranksfor group i

Example
Anillustrative  Thefollowing data are from a comparison of four investment firms.

example The observations represent percentage of growth during a three month
period.for recommended funds.

A B C D

4.2 3.3 19 35
4.6 24 2.4 31
3.9 2.6 2.1 3.7
4.0 3.8 2.7 4.1

2.8 1.8 4.4

Step 1. Expressthe datain terms of their ranks
A B C D

17 10 2 11
19 45 45 9

14 6 3 12
15 13 7 16
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Compute the
test statistic
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8 1 18

SUM 65 415 175 66

The corresponding H test statistic is

2 2 2 3
__ 12 [6F 418 175 661 o0 zerg
awmeon| 4 5 5 5

From the chi-sgquare table in Chapter 1, the critical value for « = .05

with df = k-1=31s7.812. Since 13.678 > 7.812, we reject the null
hypothesis.

Note that the rejection region for the KW procedure is one-sided,
since we only reject the null hypothesis when the H statistic istoo
large.

The KW test isimplemented in the Dataplot command KRUSKAL
WALLISTESTY X.
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7. Product and Process Comparisons

7.4. Comparisons based on data from more than two processes

7.4.2.Assuming the observations are
normal, do the processes have the
same variance?

Before
comparing
means, test
whether the
variances
are equal

Null
hypothesis

Test statistic

Techniques for comparing means of normal populations generally
assume the populations have the same variance. Before using these
ANQOVA techniques, it is advisable to test whether this assumption of

homogeneity of variance is reasonable. The following procedureis
widely used for this purpose.

Bartlett's Test for Homogeneity of Variances

Bartlett's test is acommonly used test for equal variances. Let's examine
the null and alternative hypotheses.

HHZO?:JEZ“_:O-E
against
H, = the o7 are not all equal

Assume we have samples of size n; from the i-th population, i =1, 2, . ..
, k, and the usual variance estimates from each sample:

2 2
315335“‘:51:

where
i

55 =2 (zy — ) [y — 1)

i=1

Now introduce the following notation: ¢ = n; - 1 (thes are the degrees
of freedom) and

E
= ZM;
i=1
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correction

Bartlett's
test is not
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An
illustrative
example of
Bartlett's
test

7.4.2. Assuming the observations are normal, do the processes have the same variance?

r,rz Eq,_l 1"1.32
v
The Bartlett's test statistic M is defined by
k
M =vlogs® — > log 52
i=1

When none of the degrees of freedom is small, Bartlett showed that M is
distributed approximately as X%_ I The chi-square approximation is
generally acceptableif all the n; are at least 5.

Thisisadlightly biased test, according to Bartlett. It can be improved by
dividing M by the factor

k

k-1 wolow

i=1

Instead of M, it is suggested to use M/C for the test statistic.

Thistest isnot robugt, it is very sensitive to departures from normality.

An dternative description of Bartlett's test, which also describes how
Dataplot implements the test, appears in Chapter 1.

Gear Data Example (from Chapter 1):

Gear diameter measurements were made on 10 batches of product. The
complete set of measurements appearsin Chapter 1. Bartlett's test was

applied to this dataset leading to a rejection of the assumption of equal
batch variances at the .05 critical value level. applied to this dataset

The Levene Test for Homogeneity of Variances
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7.4.2. Assuming the observations are normal, do the processes have the same variance?

The Levene
test for
equality of
variances

NIST
SEMATECH

Levene's test offers amore robust alternative to Bartlett's procedure.
That means it will be lesslikely to reject atrue hypothesis of equality of
variances just because the distributions of the sampled populations are
not normal. When non-normality is suspected, Levene's procedureis a
better choice than Bartlett's.

Levene'stest and itsimplementation in DATAPLOT were described in
Chapter 1. This description aso includes an example where the test is
applied to the gear data. Levene'stest does not reject the assumption of
equality of batch variances for these data. This differs from the
conclusion drawn from Bartlett's test and is a better answer if, indeed,
the batch population distributions are non-normal.
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7.4. Comparisons based on data from more than two processes

7.4.3.Are the means equal?

Test equality
of means

The ANOVA
procedureis
one of the
most
power ful
statistical
techniques

I ntroduction
to ANOVA

What isa
factor?

The procedure known as the Analysis of Variance or ANOVA is used to
test hypotheses concerning means when we have several populations.

The Analysis of Variance (ANOVA)

ANOVA isagenera technique that can be used to test the hypothesis
that the means among two or more groups are equal, under the
assumption that the sampled populations are normally distributed.

A couple of questions come immediately to mind: what means? and
why analyze variances in order to derive conclusions about the means?

Both questions will be answered as we delve further into the subject.

To begin, let us study the effect of temperature on a passive component
such as aresistor. We select three different temperatures and observe
their effect on the resistors. This experiment can be conducted by
measuring all the participating resistors before placing n resistors each
in three different ovens.

Each oven is heated to a selected temperature. Then we measure the
resistors again after, say, 24 hours and analyze the responses, which are
the differences between before and after being subjected to the
temperatures. The temperature is called afactor. The different
temperature settings are called levels. In this example there are three
levels or settings of the factor Temperature.

A factor isan independent treatment variable whose settings
(values) are controlled and varied by the experimenter. The
intensity setting of a factor isthelevel.

« Levelsmay be quantitative numbersor, in many cases, smply
"present” or "not present” ("0" or "1").
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7.4.3. Are the means equal?

The 1-way
ANOVA

The 2-way
or 3-way
ANOVA

Hypotheses
that can be
tested in an
ANOVA

In the experiment above, there is only one factor, temperature, and the
analysis of variance that we will be using to analyze the effect of
temperature is called a one-way or one-factor ANOVA.

We could have opted to also study the effect of positionsin the oven. In
this case there would be two factors, temperature and oven position.
Here we speak of atwo-way or two-factor ANOVA. Furthermore, we
may be interested in athird factor, the effect of time. Now we deal with
athree-way or three-factorANOVA. In each of these ANOVA's we test
avariety of hypotheses of equality of means (or average responses when
the factors are varied).

First consider the one-way ANOVA. The null hypothesisis: thereisno
difference in the population means of the different levels of factor A
(the only factor).

The aternative hypothesisis: the means are not the same.

For the 2-way ANOVA, the possible null hypotheses are:
1. Thereisno difference in the means of factor A
2. Thereisno difference in means of factor B
3. Thereisno interaction between factors A and B
The alternative hypothesis for cases 1 and 2 is. the means are not equal.

The aternative hypothesis for case 3 is: there is an interaction between
A and B.

For the 3-way ANOVA: The main effects are factors A, B and C. The
2-factor interactions are: AB, AC, and BC. Thereis also athree-factor
interaction: ABC.

For each of the seven cases the null hypothesisis the same: thereis no
difference in means, and the alternative hypothesis is the means are not

equal.
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7.4.3. Are the means equal?

The n-way In general, the number of main effects and interactions can be found by
ANOVA the following expression:

Nz{”‘;}m{z}...{j

Thefirst termisfor the overall mean, and is always 1. The second term
isfor the number of main effects. The third term is for the number of
2-factor interactions, and so on. The last term is for the n-factor
interaction and is always 1.

In what follows, we will discuss only the 1-way and 2-way ANOVA.

NIST
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7.4.3.1.1-Way ANOVA overview

Overview and
principles

Partition
response into
components

Variance of n
measur ements

Sums of
squares and
degrees of
freedom

This section gives an overview of the one-way ANOVA. First we
explain the principlesinvolved in the 1-way ANOVA.

In an analysis of variance the variation in theresponse
measur ementsis partitoned into components that correspond to
different sources of variation.

The goal in this procedureisto split the total variation in the datainto
a portion due to random error and portions due to changesin the
values of the independent variable(s).

The variance of n measurementsis given by

2 _ 2ima (5 —5)°
n—1

8

where ﬁ IS the mean of the n measurements.

The numerator part is called the sum of squares of deviations from the
mean, and the denominator is called the degrees of freedom.

The variance, after some algebra, can be rewritten as:

h] H 2
Z.Ff B Z.}’i] fn
G2 o il ]

n—1

Thefirst term in the numerator is called the "raw sum of squares' and
the second term is called the "correction term for the mean". Another
name for the numerator is the "corrected sum of squares’, and thisis

usually abbreviated by Total SSor SYTotal).
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The guiding
principle
behind
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decomposition
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sguares, or
Total SS

Note on
subscripting

Definition of
"Treatment"
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7.4.3.1. 1-Way ANOVA overview

The SSinal-way ANOVA can be split into two components, called
the "sum of squares of treatments’ and "sum of squares of error”,
abbreviated as SST and SSE, respectively.

Algebraically, thisis expressed by

Total 55 = sel + sk
& % 2 k. _ .2 L) Y
PRSIV ARSI DI PR
iml il iml im]l gl

where k is the number of treatments and the bar over they.. denotes
the "grand" or "overall" mean. Each n; is the number of observations

for treatment i. The total number of observationsis N (the sum of the
ni).

Don't be alarmed by the double subscripting. The total SS can be
written single or double subscripted. The double subscript stems from
the way the data are arranged in the data table. Thetableisusually a
rectangular array with k columns and each column consists of n; rows

(however, the lengths of the rows, or the n;, may be unequal).

We introduced the concept of treatment. The definitionis: A treatment
is a specific combination of factor levels whose effect isto be
compared with other treatments.
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7.4.3.2.The 1-way ANOVA model and

assumptions

Amodel that  The mathematical model that describes the relationship between the
describes response and treatment for the one-way ANOVA isgiven by
the
relationship };:i' = pt i+ gy
between the
response where Y;; represents the j-th observation (j = 1, 2, ...n;) on thei-th
and the treatment (i = 1, 2, ..., k levels). So, Y, represents the third observation
treatment using level 2 of the factor. f4 is the common effect for the whole
((jbetw%en the  experiment, 7, represents the i-th treatment effect and ¢; j represents the
aﬁzen ent random error present in the j-th observation on the i-th treatment.
Independent
variables)
Fixed effects ~ The errors £;; are assumed to be normally and independently (NID)
model distributed, with mean zero and variance of Jisawaysafixed
parameter and Ty 5 T2, ---, Tg are considered to be fixed parameters if
the levels of the treatment are fixed, and not a random sample from a
population of possible levels. It is also assumed that f4 is chosen so that
Yr=0 i=1,..k
holds. Thisis the fixed effects model.
Random If the k levels of treatment are chosen at random, the model equation
effects remains the same. However, now the ;'s are random variables assumed
model

to be NID(0O, ¢F). Thisisthe random effects model.

Whether the levels are fixed or random depends on how these levels are
chosen in a given experiment.
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7.4.3.3. The ANOVA table and tests of

ums of
Squares help
us compute
the variance
estimates
displayed in
ANOVA
Tables

Ratio of MST
and MSE

Divide sum of
squares by
degrees of
freedomto
obtain mean
squares

The F-test

hypotheses about means

The sums of squares SST and SSE previously computed for the

one-way ANOVA are used to form two mean squares, one for
treatments and the second for error. These mean squares are denoted
by MST and MSE, respectively. These are typically displayed in a
tabular form, known as an ANOVA Table. The ANOVA table also
shows the statistics used to test hypotheses about the population means.

When the null hypothesis of equal meansis true, the two mean squares
estimate the same quantity (error variance), and should be of
approximately equal magnitude. In other words, their ratio should be
closeto 1. If the null hypothesisisfalse, MST should be larger than
MSE.

The mean sgquares are formed by dividing the sum of sgquares by the
associated degrees of freedom.

Let N =%; n;. Then, the degrees of freedom for treatment, DFT =k - 1,
and the degrees of freedom for error, DFE = N - k.

The corresponding mean squares are:

MST = SST / DFT
MSE = SSE / DFE

The test statistic, used in testing the equality of treatment meansis. F =
MST / MSE.

The critical value is the tabular value of the F distribution, based on the
chosen «x level and the degrees of freedom DFT and DFE.

The calculations are displayed in an ANOVA table, asfollows:
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7.4.3.3. The ANOVA table and tests of hypotheses about means

ANOVA table
Source SS DF MS F
Treatments  SST k-1 SST / (k-1) MST/MSE
Error SSE N-k SSE / (N-k)
Tota
(corrected) SS N-1

The word "source" stands for source of variation. Some authors prefer
to use "between" and "within" instead of "treatments' and "error",
respectively.

ANOVA Table Example

A numerical The data below resulted from measuring the difference in resistance

example resulting from subjecting identical resistors to three different
temperatures for a period of 24 hours. The sample size of each group
was 5. In the language of Design of Experiments, we have an
experiment in which each of three treatments was replicated 5 times.

Leve 1 Level 2 Level 3

6.9 8.3 8.0
5.4 6.8 10.5
5.8 7.8 8.1
4.6 9.2 6.9
4.0 6.5 9.3
means 5.34 1.72 8.56

The resulting ANOVA tableis

Example
ANOVA table Source SS DF MS F
Treatments 27.897 2 13.949 9.59
Error 17.452 12 1.454

Total (corrected)  45.349 14
Correction Factor 779.041 1
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7.4.3.3. The ANOVA table and tests of hypotheses about means

Interpretation  Thetest statistic isthe F value of 9.59. Using an e of .05, we have that

of the Fos: 2 12 = 3.89 (see the E distribution table in Chapter 1). Since the

ANOVATtable  test statistic is much larger than the critical value, we reject the null
hypothesis of equal population means and conclude that thereisa
(statistically) significant difference among the population means. The
p-value for 9.59 is.00325, so the test statistic is significant at that

level.
Techniques The populations here are resistor readings while operating under the
for further three different temperatures. What we do not know at thispoint is
analysis whether the three means are all different or which of the three meansis

different from the other two, and by how much.
There are several techniques we might use to further analyze the
differences. These are:

« constructing confidence intervals around the difference of two
means

« estimating combinations of factor levels with confidence bounds

o multiple comparisons of combinations of factor levels tested
simultaneously.
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7.4.3.4.1-Way ANOVA calculations

Formulas Although computer programs that do ANOV A calculations now are

for 1-way common, for reference purposes this page describes how to calculate the
ANOVA various entriesin an ANOV A table. Remember, the goal is to produce
hand two variances (of treatments and error) and their ratio. The various

calculations  computationa formulas will be shown and applied to the data from the
previous example.

Sep 1: STEP 1 Compute CM, the correction for the mean.
compute CM

i 5 .
;32.1"%] _ (Total of all c:-1::use1’va1:i-::1115)2

AL =
el NR:'EL!’-
(108.1}
= =777904]
15
Sep 2 STEP 2 Compute the total SS.
fgtr;}pg;e The total SS = sum of squares of all observations - CM

i A
Sy = ZZP; - CM

i1 g-l
= (657 +(54) + +(6.9) +9.3 —CM
= 829,390 - 779.041 = 45 349
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7.4.3.4. 1-Way ANOVA calculations

Sep 3
compute
SST

Sep 4:
compute
SSE

Sep 5:
Compute
MST, MSE,
and F
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The 829.390 SSis called the "raw" or "uncorrected " sum of squares.

STEP 3 Compute SST, the treatment sum of squares.

First we compute the total (sum) for each treatment.
T1=(69) +(54) +... +(4.0)=26.7
T>,=(8.3)+(6.8) +... + (6.5) = 38.6
T;=(8.0) +(10.5) +... + (9.3) = 42.8

Then
3 Tﬂ
SST=3"2 -CM
iml 7
2 2 2
:[Eiﬂ +|£385'6:I +|[42.8:| = T19041= 27897

STEP 4 Compute SSE, the error sum of squares.

Here we utilize the property that the treatment sum of squares plus the
error sum of squares equals the total sum of squares.

Hence, SSE = SS Total - SST = 45.349 - 27.897 = 17.45.

STEP 5 Compute MST, MSE and their ratio, F.

MST isthe mean square of treatments, M SE is the mean square of error
(MSE is also frequently denoted byag ).

MST = SST/ (k-1) =27.897 / 2= 13.949

MSE = SSE/ (N-K) = 17.452/ 12 = 1.454
where N is the total number of observations and k is the number of
treatments. Finally, compute F as

F = MST/MSE =959
That isit. These numbers are the quantities that are assembled in the
ANOVA table that was shown previously.
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7.4.3.5.Confidence intervals for the
difference of treatment means

Confidence This page shows how to construct a confidence interval around (#4- 1)
intervalsfor  for the one-way ANOVA by continuing the example shown on a

the previous page.

difference

between two

means

Formulafor  Theformulafor a (1- «x) 100% confidence interval for the difference
the between two treatment meansis:

confidence - . -

interval (A — ;) = it&fﬂﬂ—kx/ﬂﬂlf’”i +1/n)

Computation
of the

whereﬁf = MSE.

For the example, we have the following quantities for the formula:

e 372 =856
confidence ¥
interval for « g1=534
13- H1 . . .
! © /1.434(1/5+1/5) = 0.763
° t_025;12 =2.179
Substituting these values yields (8.56 - 5.34) = 2.179(0.763) or 3.22 +
1.616.
That is, the confidence interval isfrom 1.604 to 4.836.
Additional A 95% confidence interval for fi5 - f4, is: from -1.787 to 3.467.
95%
confidence A 95% confidence interval for f4, - ji; is: from -0.247 to 5.007.
intervals
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7.4.3.5. Confidence intervals for the difference of treatment means

Contrasts Later on the topic of estimating more general linear combinations of
discussed means (primarily contrasts) will be discussed, including how to put
|ater confidence bounds around contrasts.
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Contrasts

Estimating
factor level
means

Variance of
the factor
level means
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factor combination

This page treats how to estimate and put confidence bounds around the
response to different combinations of factors. Primary focusis on the
combinations that are known as contrasts. We begin, however, with the

simple case of asingle factor-level mean.

Estimation of a Factor Level Mean With Confidence Bounds

An unbiased estimator of the factor level mean J4; in the 1-way

ANOVA model isgiven by:

L= E
where
o _EiYs _Y%
i = i
n; Ry
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7.4.3.6. Assessing the response from any factor combination

Confidence
intervals for
the factor

level means

Example for
a4-leve
treatment (or
4 different
treatments)

It can be shown that:

}_;. — Ay
°T,

f=

has a t-distribution with (N- k) degrees of freedom for the ANOVA
model under consideration, where N is the total number of observations
and k is the number of factor levels or groups. The degrees of freedom
are the same as were used to calculate the MSE in the ANOVA table,
That is: dfe (degrees of freedom for error) = N - k. From this we can
calculate (1- £)100% confidence limits for each J&. These are given by:

-

Se

|
I+
;)

= VAN

Example 1

The data in the accompanying table resulted from an experiment run in
a completely randomized design in which each of four treatments was
replicated five times.

Total Mean

Group 1 6.9 54 58 4.6 40 2670 534
Group 2 8.3 6.8 7.8 9.2 6.5 3860 7.72
Group 3 8.0 105 81 6.9 93 4280 856
Group 4 5.8 3.8 6.1 5.6 6.2 2750 550

All Groups 135,60 6.78
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7.4.3.6. Assessing the response from any factor combination

1-Way This experiment can be illustrated by the table layout for this 1-way
ANOVA ANOVA experiment shown below:
table IayOUt L evel Samplej
[ 1 2 5 Sum Mean N
1 Y Yo Yis Yo Y, M
2. Yo Yo Y5 Y2 ¥, M
3 Yz Yy Y5 Y3 ¥,
4 Yy Yy Yes Yo ¥, M
All Y Y "
ANOVA Theresulting ANOVA tableis
table Source SS DF MS F
Treatments 38.820 3 12.9409.724
Error 21.292 16 1.331

Total (Corrected) 60.112 19

Mean 919.368 1
Total (Raw)  979.480 20

The estimate for the mean of group 1 is5.34, and the sample sizeisn,

=5.
Computing Since the confidence interval istwo-sided, the entry «/2 value for the
the t-tableis.5(1 - .95) = .025, and the associated degrees of freedomisN -
confidence 4,0r20-4=16.

interval : :
From the t table in Chapter 1, we obtain t gos5.16 = 2.120.

Next we need the standard error of the mean for group 1.

g _MSE_1331 .00
: Hy )

sy, =+/0.2662 = 0.5159

Hence, we obtain confidence limits 5.34 + 2.120 (0.5159) and the
confidence interval is
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7.4.3.6. Assessing the response from any factor combination

Definition of
contrasts
and
orthogonal
contrasts

An example
of
orthogonal
contrasts

4246 < g1, = 6434

Definition and Estimation of Contrasts

Definitions

A contrast is a linear combination of 2 or more factor level means with
coefficients that sumto zero.

Two contrasts are orthogonal if the sum of the products of
corresponding coefficients (i.e., coefficients for the same means) adds
to zero.

Formally, the definition of a contrast is expressed below, using the
notation f& for the i-th treatment mean:

C=Cyfiy + Coftp + ... + G + ... + iy

where
&
C1+CZ+...+CJ-+...+Ck:Zﬂj:0
F=1

Simple contrasts include the case of the difference between two factor
means, such as f4; - f4,. If one wishes to compare treatments 1 and 2

with treatment 3, one way of expressing thisisby: ji; + ji, - 2fi3. Note
that

ji1 - $o has coefficients +1, -1

ji1 t+ o - 2fig has coefficients +1, +1, -2.

These coefficients sumto zero.

As an example of orthogonal contrasts, note the three contrasts defined
by the table below, where the rows denote coefficients for the column
treatment means.

BB, B, B,

¢, +1 0 0 -1
Co 0 +1 -1 0
g +1 -1 1 41
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7.4.3.6. Assessing the response from any factor combination

Some
properties of
orthogonal
contrasts

Estimation of
contrasts

Confidence
intervals for
contrasts

Thefollowing istrue:
1. The sum of the coefficients for each contrast is zero.

2. The sum of the products of coefficients of each pair of contrasts
isalso O (orthogonality property).

3. Thefirst two contrasts are smply pairwise comparisons, the third
oneinvolves al the treatments.

As might be expected, contrasts are estimated by taking the same linear
combination of treatment mean estimators. In other words:

-

=3 ok
=]
and
¥ r ¥ 7
Far(C’) Zr: Far(}_f’!) Z,:f i :DQZC:_
1=1 1=l & i=] &

Note: These formulas hold for any linear combination of treatment
means, not just for contrasts.

ConfidenceInterval for a Contrast

An unbiased estimator for a contrast C is given by

-~

G =%"c

i
iml

5

The estimator of F@7(C) s

Ry

Sﬁﬁ' = &-F_'.
i=l
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7.4.3.6. Assessing the response from any factor combination

The estimator ' is normally distributed because it is alinear
combination of independent normal random variables. It can be shown
that:

C-C
B¢
is distributed asty_, for the one-way ANOVA mode! under discussion.

Therefore, the 1- ex confidence limitsfor C are:
6‘ + t.—xfﬂ;N—r 3
Example 2 (estimating contrast)

Contrast to We wish to estimate, in our previous example, the following contrast:
estimate

I e W o Bl
2 2

and construct a 95 percent confidence interval for C.

Computing The point estimateis:

the point — — — _
estimate and c,_Yl +Y¥ Yst+Y, -
standard — 9 o 5 = .8
error
Applying the formulas above we obtain
Sa_wpr_,
=1 T d
and
i3
55 = MSEY = =1.331(0.2) = 0.2662
’ =1 1H

and the standard error is+/{). 2661 = 0.5159.
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Confidence
interval

Estimating
linear
combinations

Coefficients
do not have
to sumto
zero for
linear
combinations

Confidence
interval
identical to
contrast

NIST

SEMATECH

7.4.3.6. Assessing the response from any factor combination

For a confidence coefficient of 95% and df = 20 - 4 = 16, t 5p5.16 = 2.12.
Therefore, the desired 95% confidence interval is-.5 £ 2.12(.5159) or

(-1.594, 0.594).
Estimation of Linear Combinations

Sometimes we are interested in alinear combination of the factor-level
means that is not a contrast. Assume that in our sample experiment
certain costs are associated with each group. For example, there might
be costs associated with each factor as follows:

Factor Costin$
1 3
2 5
3 2
4 1

The following linear combination might then be of interest:

=3 +0p + 20 +g,

Thisresembles a contrast, but the coefficients ¢; do not sum to zero.
A linear combination is given by the definition:

C'= Z":ﬁ#ﬁ
iml

with no restrictions on the coefficients c;.

Confidence limits for alinear combination C are obtained in precisely
the same way as those for a contrast, using the same calculation for the
point estimator and estimated variance.
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7.4.3.7. The two-way ANOVA
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7. Product and Process Comparisons

7.4. Comparisons based on data from more than two processes

7.4.3. Are the means equal ?

7.4.3.7.The two-way ANOVA

Definition of

afactorial
experiment

Model for
the two-way
factorial
experiment

Fixed
factors and
fixed effects
models

The 2-way ANOVA is probably the most popular layout in the Design
of Experiments. To begin with, let us define afactorial experiment:

An experiment that utilizes every combination of factor levels as
treatmentsis called a factorial experiment.

In afactorial experiment with factor A at alevelsand factor B at b
levels, the model for the general layout can be written as

}rli';‘:- = .-‘:'I":I+ ;.'!' +-"{T.:i: + .% + {i".'i:-
i=L2, e =L Lk k=2

where # is the overall mean response, 7; isthe effect due to the i-th

level of factor A, ﬁj isthe effect due to the j-th level of factor B and 'Tij

Isthe effect due to any interaction between thei-th level of A and the
j-th level of B.

At this point, consider the levels of factor A and of factor B chosen for
the experiment to be the only levels of interest to the experimenter such
as predetermined levels for temperature settings or the length of time for
process step. The factors A and B are said to be fixed factors and the
model is a fixed-effects model. Random actors will be discussed later.

When an a x b factorial experiment is conducted with an equal number
of observations per treatment combination, the total (corrected) sum of
squaresis partitioned as:

SS(total) = SS(A) + SS(B) + SS(AB) + SSE

where AB represents the interaction between A and B.

For reference, the formulas for the sums of squares are:
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7.4.3.7. The two-way ANOVA
SS(A) =rb > (5, -5
=l

SS(B) = mim. -5 )

7=l

SS(AB) =Y S 5y T 5+ 5

o4 oa
SSE =222 5’

fiml jul iml
¥y doa
SS(Total) = > > (yy 5 )

[ T |
The The resulting ANOVA table for an a x b factorial experiment is
breakdown
of the total Source SS df MS
(corrected
for the Factor A SYA)  (a-1) MYA)=S5A)(a1)
mean) sums Factor B SS(B) (b-1) MSB)=S9B)/(b-1)
of squares Interaction AB SSAB) (a-1)(b-1) MSAB)=

SS(AB)/(a-1)(b-1)
Error SSE (N - ab) SSE/(N - ab)

Total (Corrected) SS(Total) (N- 1)

The ANOVA  The various hypotheses that can be tested using this ANOVA table
tablecanbe  concern whether the different levels of Factor A, or Factor B, really
used to test make a difference in the response, and whether the AB interaction is
hypotheses significant (see previous discussion of ANOVA hypotheses).

about the

effects and

interactions

NIST
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7.4.3.8. Models and calculations for the two-way ANOVA
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.3. Are the means equal ?

7.4.3.8. Models and calculations for the
two-way ANOVA

Basic L ayout
The Factor A has1, 2, ..., alevels. Factor B has 1, 2, ..., blevels. Thereareab
balanced treatment combinations (or cells) in acomplete factorial layout. Assume that each
2-way treatment cell has r independent obsevations (known as replications). When each
factorial  cell has the same number of replications, the design is abalanced factorial. In
layout this case, the abrdata points {yjx} can be shown pictorialy asfollows:
Factor B
1 2 b

1 Y111, Y1125 -+ Y1ar Y1215 Y1225 -0 Y12r - Yib1s Yib2s -+ Yibr

2 Y2115 Y2125 -+ Y21r Y2215 Y2221 «+s Y22r «++ Y2b1s Y202y -+ Y2br

Factor .
A

a Ya11r Ya12s -+ Yarr Ya21r: Ya22r -+ Yaor -+ Yab1r Yab2r -+ Yabor

How to Next, we will calculate the sums of squares needed for the ANOVA table.
obtain « Let A; bethe sum of all observations of level i of factor A,i=1, ... ,a. The

sums of A; are the row sums.

sguares

for the « Let B;j bethe sum of all observations of level j of factor B, j =1, ...,b. The
balanced B; are the column sums.

{:;fljt'a' « Let (AB); be the sum of all observations of level i of A and level j of B.

These are cell sums.

« Letr bethe number of replicates in the experiment; that is: the number of
times each factorial treatment combination appears in the experiment.

Then the total number of observations for each level of factor A isrb and the total
number of observations for each level of factor B is raand the total number of
observations for each interactionisr.
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7.4.3.8. Models and calculations for the two-way ANOVA

Finally, the total number of observations n in the experiment is abr.
With the help of these expressions we arrive (omitting derivations) at
(Sum of all observations)?

rab
SStott = Y (each observation}? — C'M

UM =

i 2
ss(4) = =15 _ oy

rh
$S(B) = % _oM
SS(AB) = i 2o (AB), CM — SS(A) — SS(B)

T
SSE = SSuut —9S(A) — S(B) — $S(AB)
These expressions are used to calculate the ANOV A table entries for the (fixed
effects) 2-way ANOVA.
Two-Way ANOVA Example:

Data An evaluation of a new coating applied to 3 different materials was conducted at
2 different laboratories. Each laboratory tested 3 samples from each of the treated
materials. The results are given in the next table:

Materials (B)
LABS(A) 1 2 3
41 31 35
1 39 28 32
43 33 36
27 19 27
2 31 22 23
26 23 25
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Row and
column
sums

ANOVA
table

NIST

SEMATECH

The preliminary part of the analysis yields a table of row and column sums.

Material (B)
Lab (A) 1 2 3  Tota(A)
1 123 92 103 31.8
2 84 64 75 22.3
Total (B) 207 156 17.8 54.1

From this table we generate the ANOVA table.

Source S df MS F p-value

50139 1 5.0139 100.28 0
B 21811 2 10906 2181 .0001
AB 01344 2 0.0672 134 .298
Error 0.6000 12 0.0500

Tota (Corr) 7.9294 17
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7.4.4. What are variance components?

P ENGINEERING STATISTICS HANDBOOK

[HOME 'TOOLS & AIDS [SEARCH [BACK NEXT|

7. Product and Process Comparisons

7.4. Comparisons based on data from more than two processes

7.4.4.\What are variance components?

Fixed and Random Factorsand Componentsof Variance

A fixed level In the previous example, the levels of the factor temperature were

of a factor or considered as fixed; that is, the three temperatures were the only ones
variable that we were interested in (this may sound somewhat unlikely, but let
means that us accept it without opposition). The model employed for fixed levels
the levelsin is called a fixed model. When the levels of afactor are random, such as
the operators, days, lots or batches, where the levels in the experiment
experiment might have been chosen at random from a large number of possible
arethe only levels, the model is called arandom model, and inferences are to be
onesweareé  extended to all levels of the population.

interested in

Random In arandom model the experimenter is often interested in estimating
levelsare components of variance. Let us run an example that analyzes and
chosen at interprets a component of variance or random model.

random from

alargeor

infinite set of

levels

Components of Variance Example for Random Factors
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7.4.4. What are variance components?

Data for the A company supplies a customer with alarger number of batches of raw

example materials. The customer makes three sample determinations from each
of 5 randomly selected batches to control the quality of the incoming
material. The model is

and the k levels (e.g., the batches) are chosen at random from a
population with variance ¥+. The data are shown below

Batch
1 2 3 4 5

74 68 75 72 79
76 71 77 74 81
75 72 77 73 79

ANOVAtable A 1-way ANOVA is performed on the data with the following results:
for example

ANOVA
Source SS df MS EMS

Treatment (batches) 147.74 4 36.935 42 + 3452
E T
Error 17.99 10 1.799 52

E

Total (corrected) 165.73 14

Interpretation  The computations that produce the SS are the same for both the fixed
of the and the random effects model. For the random model, however, the

ANOVAtable  treatment sum of squares, SST, is an estimate of {2 + 3g2}. Thisis

shown in the EM S (Expected Mean Squares) column of the ANOV A
table.

The test statistic from the ANOVA tableisF =36.94/1.80 = 20.5.

If we had chosen an ¢ value of .01, then the F value from the table in

Chapter 1 for adf of 4 in the numerator and 10 in the denominator is
5.99.
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7.4.4. What are variance components?

Method of Since the test statistic is larger than the critical value, we reject the

moments hypothesis of equal means. Since these batches were chosen viaa
random selection process, it may be of interest to find out how much of
the variance in the experiment might be attributed to batch diferences
and how much to random error. In order to answer these questions, we

can use the EM S column. The estimate of of is 1.80 and the computed

treatment mean square of 36.94 is an estimate of g + 3. Setting the

MS values equal to the EM S values (thisis called the Method of
Moments), we obtain

2 =180 and s2+3s%=3694

where we use s? since these are estimators of the corresponding 2's.

Computation  Solving these expressions

of the _
components 33 = 3694 — 1.5 =11.¥1
of variance 3

The total variance can be estimated as

Sl — Hf_ + Sf = 11.71 + 1.80 =13.51

Interpretation  Interms of percentages, we seethat 11.71/13.51 = 86.7 percent of the
total variance is attributable to batch differences and 13.3 percent to
error variability within the batches.

NIST
SEMATECH
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7. Product and Process Comparisons

7.4. Comparisons based on data from more than two processes

7.4.5.How can we compare the results of classifying
according to several categories?

Contingency
Table
approach

Industrial
example

Contingency
table
classifying
defectsin
wafers
according to
type and
production
shift

When items are classified according to two or more criteria, it is often of interest to
decide whether these criteria act independently of one another.

For example, suppose we wish to classify defects found in wafers produced in a
manufacturing plant, first according to the type of defect and, second, according to the
production shift during which the wafers were produced. If the proportions of the various
types of defects are constant from shift to shift, then classification by defectsis
Independent of the classification by production shift. On the other hand, if the
proportions of the various defects vary from shift to shift, then the classification by
defects depends upon or is contingent upon the shift classification and the classifications
are dependent.

In the process of investigating whether one method of classification is contingent upon
another, it is customary to display the data by using a cross classification in an array
consisting of r rows and ¢ columns called a contingency table. A contingency table
consists of r x ¢ cells representing the r x ¢ possible outcomes in the classification
process. Let us construct an industrial case:

A total of 309 wafer defects were recorded and the defects were classified as being one
of four types, A, B, C, or D. At the same time each wafer was identified according to the
production shift in which it was manufactured, 1, 2, or 3.

These counts are presented in the following table.

Type of Defects

Shift A B C D Tota

1 15(22.51) 21(20.99) 45(38.94) 13(11.56) 94
2 26(22.9) 31(21.44) 34(39.77) 5(11.81) 96
3 33(28.50) 17(26.57) 49(49.29) 20(14.63) 119

Total 74 69 128 38 309

(Note: the numbers in parentheses are the expected cell frequencies).
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7.4.5. How can we compare the results of classifying according to several categories?

Column
probabilities

Row
probabilities

Multiplicative
Law of
Probability

Example of
obtaining
column and
row
probabilities

Let pa be the probability that a defect will be of type A. Likewise, define pg, pc, and pp

as the probabilities of observing the other three types of defects. These probabilities,
which are called the column probabilities, will satisfy the requirement

PatPe+Pctpp=1

By the same token, let p; (i=1, 2, or 3) be the row probability that a defect will have
occurred during shift i, where

pr+pat+p3=1

Then if the two classifications are independent of each other, a cell probability will
equal the product of itsrespective row and column probabilitiesin accor dance with
the Multiplicative Law of Probability.

For example, the probability that a particular defect will occur in shift 1 and is of type A
IS (py) (Pa)- While the numerical values of the cell probabilities are unspecified, the null

hypothesis states that each cell probability will equal the product of its respective row
and column probabilities. This condition implies independence of the two classifications.
The alternative hypothesisis that this equality does not hold for at least one cell.

In other words, we state the null hypothesis as Hg: the two classifications are
independent, while the alternative hypothesisis H,;: the classifications are dependent.

To obtain the observed column probability, divide the column total by the grand total, n.
Denoting the total of column j as ¢, we get

. o . oy 12R
Pﬂ_;_ﬁ Pc—;—ﬁ
.oy bE . Ty 3n
pﬁ_;_ﬁ Pﬂ_;_ﬁ

Similarly, the row probabilities p;, p,, and p3 are estimated by dividing the row totalsr,
r,, and r3 by the grand total n, respectively
Ty 1 19

| 94 - Te 96 ~ i

A=y m PnTwe P a T
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Expected cell
frequencies

Estimated
expected cell
frequency
when Hg is
true.

Test statistic

df =
(r-1)(c-1)

Testing the
null
hypothesis

7.4.5. How can we compare the results of classifying according to several categories?

Denote the observed frequency of the cell in row i and column jof the contingency table

by nj;. Then we have
- . n T ol
sep=rtpi) 1) 7]

In other words, when the row and column classifications are independent, the estimated
expected value of the observed cell frequency njj inanr x ¢ contingency table is equal to

its respective row and column totals divided by the total frequency.

. K
Bl =

The estimated cell frequencies are shown in parentheses in the contingency table above.

From here we use the expected and observed frequencies shown in the table to calculate
the value of the test statistic

2 {1.5—22.:

22.51

E(ny)?
f*f?( n)
2 (26— 22.99)

22.99

(20 — 14.632
Tt gy 1918

The next step isto find the appropriate number of degrees of freedom associated with the
test statistic. Leaving out the details of the derivation, we state the result:

The number of degrees of freedom associated with a contingency table
consisting of r rows and ¢ columnsis (r-1) (c-1).

So for our example we have (3-1) (4-1) = 6 d.f.

In order to test the null hypothesis, we compare the test statistic with the critical value of
2 a aselected value of . Let ususe e = .05. Then the critical value is XZgs.6, Which
Is 12.5916 (see the chi sguare table in Chapter 1). Since the test statistic of 19.18 exceeds
the critical value, we rgject the null hypothesis and conclude that there is significant

evidence that the proportions of the different defect types vary from shift to shift. In this
case, the p-value of the test statistic is .00387.
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7. Product and Process Comparisons

7.4. Comparisons based on data from more than two processes

7.4.6.Do all the processes have the same
proportion of defects?

Testing for
homogeneity
of proportions
using the
chi-square
distribution
via
contingency
tables

The chi-sguare
test statistic

The critical
value

The contingency table approach

When we have samples from n populations (i.e., lots, vendors,
production runs, etc.), we can test whether there are significant
differences in the proportion defectives for these populations using a
contingency table approach. The contingency table we construct has
two rows and n columns.

To test the null hypothesis of no difference in the proportions among
the n populations

Ho: P1=P2=...= Py
against the alternative that not all n population proportions are equal
Hq: Not all pjareequal (i=1, 2, ..., n)

we use the following test stetistic:

(f, - 1)

=D e

all cells j:::

wheref, isthe observed frequency in agiven cell of a2 x n
contingency table, and f. is the theoretical count or expected
frequency in agiven cell if the null hypothesis were true.

The critical value is obtained from the X2 distribution table with
degrees of freedom (2-1)(n-1) = n-1, at agiven level of significance.

An illustrative example
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Data for the
example

Computation
of the overall
proportion of

nonconforming

units

Computation
of the overall
proportion of
conforming
units

Table of
expected
frequencies

Null and
alternate
hypotheses

7.4.6. Do all the processes have the same proportion of defects?

Diodes used on a printed circuit board are produced in lots of size
4000. To study the homogeneity of lots with respect to a demanding
specification, we take random samples of size 300 from 5 consecutive
lots and test the diodes. The results are:

Lot

Results 1 2 3 4 5 Totds

Nonconforming 36 46 42 63 38 225
Conforming 264 254 258 237 262 1275

Totals 300 300 300 300 300 1500

Assuming the null hypothesisis true, we can estimate the single
overall proportion of nonconforming diodes by pooling the results of
al the samples as

(36+46+42+63+38)
(5 x 300)

o= =225/1500=15

We estimate the proportion of conforming ("good") diodes by the
complement 1 - 0.15 = 0.85. Multiplying these two proportions by the
sample sizes used for each lot results in the expected frequencies of
nonconforming and conforming diodes. These are presented bel ow:

Lot

Results 1 2 3 4 5 Totas

Nonconforming 45 45 45 45 45 225
Conforming 255 255 255 255 255 1275

Totals 300 300 300 300 300 1500

To test the null hypothesis of homogeneity or equality of proportions
Ho:P1=P2=..=P5

against the aternative that not al 5 population proportions are equal
H,: Not all p; areequal (i =1, 2, ...,5)

http://www.itl.nist.gov/div898/handbook/prc/section4/prc46.htm (2 of 3) [11/14/2003 6:12:07 PM]



7.4.6. Do all the processes have the same proportion of defects?

Table for we use the observed and expected values from the tables above to
computingthe  compute the X2 test statistic. The cal culations are presented below:
test statistic f f (F- ) Y Y
(0] Cc (0] (fO fC) (fO fC) / 1:C

36 45 -9 81 1.800

46 45 1 1 0.022

42 45 -3 9 0.200

63 45 18 324 7.200

38 45 -7 49 1.089

264 225 9 81 0.318

254 255 -1 1 0.004

258 255 3 9 0.035

237 255 -18 324 1.271

262 255 7 49 0.192

12.131

Conclusions If we choose a.05 level of significance, the critical value of X2 with 4

degrees of freedom is 9.488 (see the chi square distribution table in

Chapter 1). Since the test statistic (12.131) exceeds this critical value,
we reject the null hypothesis.
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7. Product and Process Comparisons

7.4. Comparisons based on data from more than two processes

7.4.7.How can we make multiple
comparisons?

What to do
after equality
of meansis
rejected

Typical
guestions

Multiple
Comparison
test
procedures
are needed

When processes are compared and the null hypothesis of equality (or
homogeneity) is rejected, all we know at that point isthat thereis no
equality amongst them. But we do not know the form of the inequality.

Questions concerning the reason for the rejection of the null
hypothesis arise in the form of:

« "Which mean(s) or proportion (s) differ from a standard or from
each other?"

o "Doesthe mean of treatment 1 differ from that of treatment 27"

» "Doesthe average of treatments 1 and 2 differ from the average
of treatments 3 and 47"

One popular way to investigate the cause of rejection of the null
hypothesisis a Multiple Comparison Procedure. These are methods
which examine or compare more than one pair of means or proportions
at the sametime.

Note: Doing pairwise comparison procedures over and over again for
al possible pairswill not, in general, work. Thisis because the overall
significance level isnot as specified for asingle pair comparison.
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ANOVA F test
isa
preliminary
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effects
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advance of
observing the
experimental
results

7.4.7. How can we make multiple comparisons?

The ANOVA usesthe F test to determine whether there exists a
significant difference among treatment means or interactions. In this
senseit isapreliminary test that informs usif we should continue the
investigation of the data at hand.

If the null hypothesis (no difference among treatments or interactions)
IS accepted, there is an implication that no relation exists between the
factor levels and the response. There is not much we can learn, and we
are finished with the analysis.

When the F test rejects the null hypothesis, we usually want to
undertake a thorough analysis of the nature of the factor-level effects.

Previously, we discussed several procedures for examining particular
factor-level effects. These were

o Estimation of the Difference Between Two Factor Means
o Estimation of Factor L evel Effects
o Confidence Intervals For A Contrast

These types of investigations should be done on combinations of
factors that were determined in advance of observing the experimental
results, or else the confidence levels are not as specified by the
procedure. Also, doing several comparisons might change the overall
confidence level (see note above). This can be avoided by carefully

selecting contrasts to investigate in advance and making sure that:

« the number of such contrasts does not exceed the number of
degrees of freedom between the treatments

« only orthogonal contrasts are chosen.

However, there are also several powerful multiple comparison
procedures we can use after observing the experimental results.

Testson Means after Experimentation
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If the decision on what comparisons to make is withheld until after the
data are examined, the following procedures can be used:

o Tukey's Method to test all possible pairwise differences of
means to determine if at least one difference is significantly
different fromO.

« Scheffés Method to test all possible contrasts at the same time,
to seeif at least oneis significantly different from O.

« Bonferroni Method to test, or put simultaneous confidence
intervals around, a pre-selected group of contrasts

Multiple Comparisons Between Proportions

When we are dealing with popul ation proportion defective data, the
Marascuilo procedure can be used to simultaneously examine
comparisons between all groups after the data have been collected.
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.7. How can we make multiple comparisons?

7.4.7.1. Tukey's method

Tukey's The Tukey method applies simultaneously to the set of all pairwise
method comparisons

considers all

possible U4 - i}

pairwise The confidence coefficient for the set, when all sample sizes are equal,
differences

iIsexactly 1- ex. For unequal sample sizes, the confidence coefficient is

fr]: means at greater than 1- ex. In other words, the Tukey method is conservative
i ne]esame when there are unequal sample sizes.

Studentized Range Distribution
The The Tukey method uses the studentized range distribution. Suppose we
studentized have r independent observationsyy, ..., ¥, from anormal distribution
rangeq with mean f4 and variance a2. Let w be the range for this set , i.e., the

maximum minus the minimum. Now suppose that we have an estimate
s? of the variance e¥2 which is based on 2# degrees of freedom and is
independent of they;. The studentized range is defined as

Goy =10]8
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7.4.7.1. Tukey's method

The
distribution
of qis
tabulated in
many
textbooks
and can be
calculated
using
Dataplot

Confidence
limits for
Tukey's
method

Data

Set of all
pairwise
comparisons

The distribution of g has been tabulated and appears in many textbooks
on statistics. In addition, Dataplot has a CDF function (SRACDF) and a
percentile function (SRAPPF) for g.

Asan example, let r = 5 and 2+ = 10. The 95th percentile is g 5.5 10 =
4.65. This means:

P{E <4 55} _ 95
Y

So, if we have five observations from a normal distribution, the
probability is .95 that their range is not more than 4.65 times as great as
an independent sample standard deviation estimate for which the
estimator has 10 degrees of freedom.

Tukey's Method

The Tukey confidence limits for al pairwise comparisons with
confidence coefficient of at least 1- ex are:

_ 1 . 12 .. L,
B — P £ Eqa;m—rﬂe\/; Li=1,..,mi#]

Notice that the point estimator and the estimated variance are the same
as those for a single pairwise comparison that was illustrated previoudly.
The only difference between the confidence limits for simultaneous
comparisons and those for a single comparison is the multiple of the
estimated standard deviation.

Also note that the sample sizes must be equal when using the
studentized range approach.

Example

We use the data from a previous exampl e.

The set of al pairwise comparisons consists of:
Jio - Fh, fig - fiq, Jla - g,
Jip - Hg, flo - Jig, fi- iy
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Confidence
intervals for
each pair

Conclusions

Unequal
sample sizes
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Assume we want a confidence coefficient of 95 percent, or .95. Sincer
=4 and n; = 20, the required percentile of the studentized range

distribution is q g5, 4,16. Using the Tukey method for each of the six
comparisonsyields:

0.29 < g — 1) < 447
113 < jig — 1y < 531
—2.25 < iy — iy <193
—2.93 < g — 13 < 1.25
013 < pig — 1y < 431
097 < jig — 14 < 3.15
The simultaneous pai rwise comparisons indicate that the differences f4;

- 4, and fi, - fig are not significantly different from O (their confidence
intervalsinclude 0), and all the other pairs are significantly different.

It is possible to work with unequal sample sizes. In this case, one has to

calculate the estimated standard deviation for each pairwise comparison.
The Tukey procedure for unequal sample sizesis sometimes referred to

as the Tukey-Kramer Method.
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.7. How can we make multiple comparisons?

7.4.7.2.Scheffe's method

Scheffe's Scheffé's method applies to the set of estimates of all possible contrasts
method tests  among the factor level means, not just the pairwise differences

all possible considered by Tukey's method.

contrasts at

the same

time

Definitionof ~ An arbitrary contrast is defined by

contrast .
C = ey
i=l
where
.

e =0

i=l
Infinite Technically thereis an infinite number of contrasts. The simultaneous
number of confidence coefficient is exactly 1- &, whether the factor level sample
contrasts sizes are equal or unequal.
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7.4.7.2. Scheffe's method

Estimate and
variance for
C

S multaneous
confidence
interval

Contraststo
estimate

Aswas described earlier, we estimate C by:

o2

~ [
32@ = af =
H;

i=1

It can be shown that the probability is 1 - ¢ that all confidence limits of
the type

Cx Jir=DF s 3 52
are correct simultaneously.
Scheffe method example

We wish to estimate, in our previous experiment, the following
contrasts

c = e T s Bl

2 2
o= ittty
2 2

and construct 95 percent confidence intervals for them.
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Compute the
point
estimates of
the
individual
contrasts

Compute the
point
estimate and
variance of
C

Scheffe
confidence
interval

The point estimates are:

and
L2
% =623 5 = 1.331(.2) = .2661
i=1

where of = 1.331 was computed in our previous example. The standard
error = .5158 (sgquare root of .2661).

For a confidence coefficient of 95 percent and degrees of freedom in
the numerator of r - 1 =4 - 1 = 3, and in the denominator of 20 - 4 = 16,
we have:

"/{T a l)F‘IS“—lﬂ—f = /3 F 5,306 = 5.12

The confidence limitsfor C; are-.5 + 3.12(.5158) = -.5 + 1.608, and for
C, they are .34 + 1.608.

The desired simultaneous 95 percent confidence intervals are

-2.108 < C, < 1.108
-1.268 < C, < 1.948
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pairwise
comparisons
are of
interest

Scheffe
preferred
when many
contrastsare
of interest
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Recall that when we constructed a confidence interval for asingle
contrast, we found the 95 percent confidence interval:

-1.594 <% C << 0.594

As expected, the Scheffé confidence interval procedure that generates
simultaneous intervals for all contrastsis considerabley wider.

Comparison of ScheffésMethod with Tukey'sMethod

If only pairwise comparisons are to be made, the Tukey method will
result in a narrower confidence limit, which is preferable.

Consider for example the comparison between fi5 and f4,.

Tukey: 1.13<fi;- 141 <531
Scheffé: 0.95 < fi5 - j11 <549

which gives Tukey's method the edge.

The normalized contrast, using sums, for the Scheffé method is 4.413,
which is close to the maximum contrast.

In the general case when many or all contrasts might be of interest, the
Scheffé method tends to give narrower confidence limitsand is
therefore the preferred method.
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7. Product and Process Comparisons
7.4. Comparisons based on data from more than two processes
7.4.7. How can we make multiple comparisons?

7.4.7.3. Bonferroni's method

Smple The Bonferroni method is a simple method that allows many

method comparison statements to be made (or confidence intervalsto be
constructed) while still assuring an overall confidence coefficient is
maintained.

Appliesfora  This method appliesto an ANOVA situation when the analyst has
finitenumber  picked out a particular set of pairwise comparisons or contrasts or

of contrasts linear combinations in advance. This set is not infinite, asin the
Scheffé case, but may exceed the set of pairwise comparisons specified
in the Tukey procedure.

Valid for The Bonferroni method is valid for equal and unequal sample sizes.

both equal We restrict ourselves to only linear combinations or comparisons of

and unequal treatment level means (pairwise comparisons and contrasts are special

sample sizes cases of linear combinations). We denote the number of statements or
comparisons in the finite set by g.

Bonferroni Formally, the Bonferroni general inequality is presented by:
general

inequality P ((i A;) > 11— iP[ﬂi]

i=1

where A; and its complement 7 are any events.
1
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7.4.7.3. Bonferroni's method

I nterpretation
of Bonferroni
inequality

Formula for
Bonferroni
confidence
interval

Contraststo
estimate

In particular, if each A; isthe event that a calculated confidence

interval for a particular linear combination of treatments includes the
true value of that combination, then the left-hand side of the inequality
IS the probability that all the confidence intervals simultaneously cover
their respective true values. The right-hand side is one minus the sum
of the probabilities of each of the intervals missing their true values.
Therefore, if simultaneous multiple interval estimates are desired with
an overall confidence coefficient 1- £z, one can construct each interval
with confidence coefficient (1- ex/g), and the Bonferroni inequality
insures that the overall confidence coefficient is at least 1- ex.

In summary, the Bonferroni method states that the confidence
coefficient is at least 1- «x that simultaneously all the following
confidence limits for the g linear combinations C; are "correct” (or

capture their respective true values):

Gt b o3,

where

Example using Bonferroni method

We wish to estimate, as we did using the Scheffe method, the
following linear combinations (contrasts):

c = BTyttt

2 2
o= e I B .
=
2 2

and construct 95 percent confidence intervals around the estimates.
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point
estimates of
the individual
contrasts

Compute the
point
estimate and
variance of C

Compute the
Bonferroni
simultaneous
confidence
interval

Comparison
to Scheffe
interval

7.4.7.3. Bonferroni's method

The point estimates are:

2

and
3
=623 5 = 1.331(.2) = .2661
i=1

where of = 1.331 was computed in our previous example. The
standard error is .5158 (the square root of .2661).

For a 95 percent overall confidence coefficient using the Bonferroni
methOd, thet-valueis t_05/4; 16 = t.0125;16 = 2473 (See the t-distribution
critical value table in Chapter 1). Now we can calcul ate the confidence
intervals for the two contrasts. For C; we have confidence limits-.5 +
2.473 (.5158) and for C, we have confidence limits .34 + 2.473
(.5158).

Thus, the confidence intervals are:

-1.776 < C, < 0.776
-0.936 < C, < 1.616

Notice that the Scheffé interval for C is:

-2.108 <1 C; < 1.108

which is wider and therefore less attractive.
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7.4.7.3. Bonferroni's method

Comparison of Bonferroni Method with Scheffé and Tukey

Methods
No one 1. If dl pairwise comparisons are of interest, Tukey has the edge. If
comparison only a subset of pairwise comparisons are required, Bonferroni
method is may sometimes be better.
uniformly 2. When the number of contrasts to be estimated is small, (about as
best - each many as there are factors) Bonferroni is better than Scheffé.
has its uses Actually, unless the number of desired contrastsis at least twice

the number of factors, Scheffé will always show wider
confidence bands than Bonferroni.

3. Many computer packages include all three methods. So, study
the output and select the method with the smallest confidence
band.

4. No single method of multiple comparisonsis uniformly best
among all the methods.
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7. Product and Process Comparisons

7.4. Comparisons based on data from more than two processes

7.4.7. How can we make multiple comparisons?

7.4.7.4.Comparing multiple proportions:

Testing for
equal
proportions of
defects

Marascuilo
procedure
allows
comparison of
all possible
pairs of
proportions

Sep 1.
compute
differences p;

- pj

Sep 2:
compute test
statistics

The Marascuillo procedure

Earlier, we discussed how to test whether several populations have the

same proportion of defects. The example given there led to rejection of
the null hypothesis of equality.

Regjecting the null hypothesis only allows us to conclude that not (in
this case) all lots are equal with respect to the proportion of defectives.
However, it does not tell uswhich lot or lots caused the rejection.

The Marascuilo procedure enables us to simultaneoudly test the
differences of all pairs of proportions when there are several
populations under investigation.

The Marascuillo Procedure

Assume we have samples of sizen; (i = 1, 2, ..., k) from k populations.
Thefirst step of this procedure is to compute the differences p; - p;,
(wherei isnot equal to j) among all k(k-1)/2 pairs of proportions.

The absolute values of these differences are the test-statistics.

Step 2 isto pick asignificance level and compute the corresponding
critical values for the Marascuilo procedure from

= mulpi ), LB [1-p4)
' "y

?"!J.'
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7.4.7.4. Comparing multiple proportions: The Marascuillo procedure

Sep 3
compare test
statistics
against
corresponding
critical values

Sample
proportions

Table of
critical values

The third and last step isto compare each of the k(k-1)/2 test statistics
against its corresponding critical rj; value. Those pairs that have a test

statistic that exceeds the critical value are significant at the «x level.

Example

To illustrate the Marascuillo procedure, we use the data from the
previous example. Since there were 5 lots, thereare (5x 4)/2=10

possible pairwise comparisons to be made and ten critical ranges to
compute. The five sample proportions are:

Py = 36/300 = .120
P, = 46/300 = .153
P = 42/300 = .140
P, = 63/300 = .210
Ps = 38/300 = .127

For an overall level of significance of .05, the upper-tailed critical
value of the chi-sgquare distribution having four degrees of freedomis
9.488 and the sgquare root of 9.488 is 3.080. Calculating the 10
absolute differences and the 10 critical values leads to the following
summary table.

contrast value  critical range significant

lp1-po| .033 0.086 no
Ipp - psl  .020 0.085 no
lo1-psl  .090 0.093 no
Ipy - ps|  .007 0.083 no
Ipo-psl  .013 0.089 no
Ip2-psl 057 0.097 no
Ip2-ps|  .026 0.087 no
Ips-p4  .070 0.095 no
lps-ps| .013 0.086 no
lp4-ps| 083 0.094 no

Note: The valuesin this table were computed with the following
Dataplot macro.
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let pii = data .12 .12 .12 .12 .153
.153 .153 .14 .14 .21

let pjj = data .153 .14 .21 .127 .14 ...
.21 127 .21 .127 .127

et cont = abs(pii-pjj)

let rij = sqgrt(chsppf(.95,4))* ...
sqrt(pii*(1-pii)/300 + pjj*(1-pjj)/300)

set wite decimals 3

print cont cont rij

A differenceis statistically significant if its value exceeds the critical
range value. In this example, even though the null hypothesis of
equality was rejected earlier, there is not enough data to conclude any
particular difference is significant. Note, however, that all the
comparisons involving population 4 come the closest to significance -
leading us to suspect that more data might actually show that
population 4 does have a significantly higher proportion of defects.
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