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Bases for L2(R)

Classical systems of orthonormal bases for L
2([0, 1)) include the expo-

nentials {e2πimx : m ∈ Z} and various appropriate collections of trigono-
metric functions. (See Theorem 4.1 below.) The analogs of these bases for
L

2([α, β)), −∞ < α < β < ∞, are obtained by appropriate translations
and dilations of the ones above. To find an orthonormal basis for L2(R) we
can cover R with a disjoint union of intervals

[αj , αj+1), j ∈ Z, −∞ < · · · < αj < αj+1 < · · · < ∞,

and consider one of these bases for each space L
2([αj , αj+1)), multiply the

basis elements by the characteristic function of [αj , αj+1), and take the
totality of the functions so obtained. This orthonormal basis, however,
produces “undesirable edge effects” at the endpoints αj when we try to
represent a function in terms of it.

In order to remedy this situation one is led to consider smooth functions
that replace the characteristic function of [αj , αj+1) for j ∈ Z. In the case
of complex exponentials and the simple partition

R =
⋃
n∈Z

[n, n + 1)

we examine systems of the form

{
gm,n(x) = e2πimxg(x− n) : m,n ∈ Z

}
.

For a system of this type (often called a Gabor basis) to be an orthonormal
basis for L2(R) g cannot be “too smooth” or “very localized.” This is made
precise by the Balian-Low theorem presented in section 1.2. If appropriate
bases of sine (or cosine) functions, however, are used, a much more general

c© 1996 by CRC Press LLC



family of functions g, arbitrarily smooth and “very localized,” can be used
to obtain orthonormal bases of L2(R).

This is done in section 1.3 where we present a theory of smooth pro-
jections, introduced by Coifman and Meyer, that allows us to “join” ap-
propriate bases associated with the intervals [αj , αj+1). Several examples
of this construction are given, but the most relevant for our purpose are
the ones that produce orthonormal wavelets: ψ ∈ L

2(R) such that

ψj,k(x) = 2
j
2ψ(2jx− k), j, k ∈ Z,

is an orthonormal basis for L2(R). It is in this way that, in section 1.4, we
construct the wavelets of Lemarié and Meyer.

In section 1.5 we describe the smooth projections presented in section 1.3
in terms of certain unitary “folding operators.” Some theoretical results
can be obtained in an elegant manner by using these operators; however,
it is, perhaps, more important that they provide some simple ways for
programming the uses of these local bases. Furthermore, this approach
does lend itself to extending the theory to higher dimensions.

1.1 Preliminaries

We assume that the reader is familiar with the basic notions of Lebesgue
measure and integration theory, Hilbert space theory and Functional Anal-
ysis. We begin by introducing some notation and a few results that we shall
assume. R refers to the real line; T will denote the unit circle in the complex
plane which can be identified with the interval [−π, π), though sometimes
we use the interval [− 1

2 ,
1
2 ) or [0, 1); and Z will denote the collection of

integers. The inner product of functions f and g defined on either of these
two spaces is

<f, g>=
∫

f g ,

where the integral is taken over R or over T, as the case may be. We have
Schwarz’s inequality ∣∣<f, g>

∣∣ ≤ ∥∥f∥∥
2

∥∥g∥∥
2
,
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where ∥∥f∥∥
2

=
(∫

|f |2
)1

2

is the L
2-norm of f . Schwarz’s inequality allows us to prove Minkowski’s

inequality ∥∥f + g
∥∥

2
≤

∥∥f∥∥
2

+
∥∥g∥∥

2
.

We say that two functions f and g are orthogonal, and write f ⊥ g,
when < f, g >= 0. A sequence of functions {fn}n∈Z is an orthonormal
sequence if <fm, fn>= δm,n, where

δm,n =

{
1, if n = m,

0, if n �= m.

A well known example of an orthonormal sequence on T = [−π, π) is{
1√
2π

en
}
n∈Z

, where en(x) = einx.

Given an orthonormal system {fn : n ∈ Z} and a function f , we define
the Fourier coefficients of f with respect to {fn : n ∈ Z} to be

ck =<f, fk>, k ∈ Z.

A basic question that we shall study is to determine when, and in what
sense, it is true that

f =
∑
k∈Z

ckfk. (1.1)

When fk(x) = eikx, k ∈ Z, and f ∈ L
2(T), the representation (1.1) is

valid in the L
2-norm sense. In general, when this is the case we say that

{fk : k ∈ Z} is an orthonormal basis for L
2(T). Equality (1.1) is a

reconstruction formula and it is the basis for many applications of the theory
of wavelets. Given a function f (a signal or a sound), we can encode it by
means of the coefficients {ck}k∈Z. Equality (1.1) allows us to reconstruct the
signal from the numbers ck and the basis used in the encoding. Some bases,
in particular wavelet bases, perform this job more efficiently than others.
For any orthonormal system {fn : n ∈ Z} we have Bessel’s inequality∑

k∈Z

|ck|2 ≤
∥∥f∥∥2

2
.
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Moreover, if the system is a basis, we have equality. Conversely, if an
orthonormal system {fn : n ∈ Z} satisfies∑

k∈Z

|ck|2 =
∥∥f∥∥2

2
(1.2)

for all f ∈ L
2(R), the system is a basis for L2(R).

In R we have an “analogous” theory. The Fourier transform of a function
f ∈ L

1(R) ∩ L
2(R) is defined by

f̂(ξ) =
∫ ∞

−∞
f(x)e−iξxdx.

We will often say that x is the “time” variable and ξ will be referred as the
“frequency” variable.

The inverse Fourier transform is

ǧ(x) =
1
2π

∫ ∞

−∞
g(ξ)eiξxdξ,

and if we apply it to g = f̂ we obtain f ; that is (f̂ )
∨

= f . With this
definition the Plancherel theorem asserts that

<f, g>=
1
2π

<f̂, ĝ> . (1.3)

The Fourier transform extends to all f ∈ L
2(R) and the operator f → 1√

2π
f̂

is unitary. When f ′ exists in the L
2 sense, then

f̂ ′(ξ) = iξf̂(ξ). (1.4)

It can be proved that the integration by parts formula∫ ∞

−∞
f ′(x)g(x) dx = −

∫ ∞

−∞
f(x)g′(x) dx (1.5)

is valid when f, g ∈ L
2(R) and f ′g, fg′ ∈ L

1(R). In the case f, g, f ′, g′ ∈
L

2(R) this can be proved using (1.3) and (1.4).

A notion, which will be used in several proofs, is that of a Lebesgue point.
Suppose f is a measurable function which is locally integrable, then a point
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xo is called a Lebesgue point for f whenever

lim
δ→0+

1
2δ

∫ xo+δ

xo−δ
|f(x) − f(xo)| dx = 0.

It follows from the Lebesgue Differentiation Theorem that almost every
xo is a Lebesgue point. The reader may consult [Rud] for this particular
theorem as well as for other results in measure theory.

Three simple operators on functions defined on R play an important role
in our theory: translation by h, τh, defined by (τhf)(x) = f(x − h),
dilation by r, ρr, defined by (ρrf)(x) = f(rx) and multiplication by
eimx. (Sometimes referred to as a modulation operator.) One of our main
goals is to construct orthonormal bases of L2(R) by applying some of these
operators to a single function in L

2(R).

Of particular interest to us are the wavelet bases for which the first
two operators are applied to an appropriate function. More precisely, an
orthonormal wavelet on R is a function ψ ∈ L

2(R) such that {ψj,k :
j, k ∈ Z} is an orthonormal basis of L2(R), where

ψj,k(x) = 2
j
2ψ(2jx− k), j, k ∈ Z.

Observe that the ψj,k are normalized so that ‖ψj,k‖2 = ‖ψ‖2 = 1 for all
j, k ∈ Z.

EXAMPLE A : If

ψ(x) =


1, if 0 ≤ x < 1

2 ,

−1, if 1
2 ≤ x < 1,

0, elsewhere,

then ψ is an orthonormal wavelet for L
2(R). This is called the Haar

wavelet. It is easy to prove that {ψj,k : j, k ∈ Z} is an orthonormal
system in L

2(R). It is also a basis for L
2(R), a fact that will become

obvious when we develop the theory of “multiresolution analysis” in
Chapter 2.

EXAMPLE B : Let ψ be such that ψ̂(ξ) = χ
I
(ξ), where

I = [−2π,−π] ∪ [π, 2π].
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We shall show that ψ is an orthonormal wavelet for L
2(R). A simple

calculation shows

(ψj,k)∧(ξ) = 2−
j
2 ψ̂(2−jξ)e−i2

−jkξ.

For j �= � this equality shows that the intersection of the supports of
(ψj,k)∧ and (ψ�,m)∧ has measure zero; hence,

<ψj,k, ψ�,m>=
1
2π

<(ψj,k)∧, (ψ�,m)∧>= 0 for j �= �.

When j = � we can write

<ψj,k, ψj,m> =
1
2π

2−j
∫

R

|ψ̂(2−jξ)|2ei2−j(m−k)ξ dξ

=
1
2π

{∫ −π

−2π

ei(m−k)η dη +
∫ 2π

π

ei(m−k)η dη
}

= δk,m.

To prove that the system is a basis we use (1.2). The Plancherel
theorem and a change of variables allow us to write

∑ ∑
j,k∈Z

| <f, ψj,k> |2 =
∑ ∑
j,k∈Z

2−j

4π2

∣∣∣∫
R

f̂(ξ) ψ̂(2−jξ) ei2
−jkξ dξ

∣∣∣2
=

∑
j∈Z

2j

2π

∑
k∈Z

∣∣∣∫
I

f̂(2jµ)
eikµ√

2π
dµ

∣∣∣2.
We now use the fact that the system { 1√

2π
eikµ : k ∈ Z} is an orthonor-

mal basis of L2(I) (a fact that is equivalent to the orthonormality of
the same system on [0, 2π]) to write

∑ ∑
j,k∈Z

| <f, ψj,k> |2 =
∑
j∈Z

2j

2π

∫
I

∣∣f̂(2jµ)
∣∣2 dµ

=
1
2π

∑
j∈Z

∫
R

χ
I
(2−jξ)

∣∣f̂(ξ)
∣∣2 dξ =

1
2π

∥∥f̂∥∥2

2
= ‖f‖2

2,

since ∑
j∈Z

χ
I
(2−jξ) = 1 for a.e. ξ ∈ R.
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This shows that ψ is an orthonormal wavelet for L2(R). This is related
to the Shannon wavelet which will be described in Example C of
Chapter 2.

1.2 Orthonormal bases generated by a single function;
the Balian-Low theorem

Another way of producing an orthonormal basis from a single function
involves translations and modulations. For example, a basis for L

2(R) is
the following: let g = χ

[0,1]
and

gm,n(x) = e2πimxg(x− n) for m,n ∈ Z.

It is not difficult to see that {gm,n : m,n ∈ Z} is an orthonormal basis
for L

2(R). D. Gabor ([Gab]) considered this type of system in 1946 and
proposed its use for communication purposes. For a general g ∈ L

2(R)
the following theorem gives conditions that g must satisfy if the system
{gm,n : m,n ∈ Z} is an orthonormal basis.

THEOREM 2.1 (Balian-Low) Suppose g ∈ L
2(R) and

gm,n(x) = e2πimxg(x− n), m, n ∈ Z.

If {gm,n : m,n ∈ Z} is an orthonormal basis for L
2(R), then either∫ ∞

−∞
x2|g(x)|2 dx = ∞ or

∫ ∞

−∞
ξ2|ĝ(ξ)|2 dξ = ∞.

PROOF : We introduce the operators Q and P , defined on, say, the space
S ′ of tempered distributions, given by

(Qf)(x) = xf(x) and (Pf)(x) = −if ′(x).

The relevance of these operators to the theorem is that∫ ∞

−∞

∣∣Qg(x)
∣∣2dx =

∫ ∞

−∞
x2

∣∣g(x)
∣∣2dx
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and ∫ ∞

−∞

∣∣Pg(x)
∣∣2dx =

1
2π

∫ ∞

−∞
ξ2

∣∣g(ξ)∣∣2dξ,
where the last formula is a consequence of (1.3) and (1.4). Hence, we need
to show that both (Qg) and (Pg) cannot belong to L

2(R).

Suppose that both Qg and Pg belong to L
2(R). We will show that this

leads to a contradiction, and this proves the theorem. We claim that

<Qg, Pg>=
∑

m,n∈Z

<Qg, gm,n><gm,n, Pg>, (2.2)

<Qg, gm,n>=<g−m,−n, Qg> for all m,n ∈ Z, (2.3)

and

<Pg, gm,n>=<g−m,−n, Pg> for all m,n ∈ Z. (2.4)

Equalities (2.2), (2.3) and (2.4) imply

<Qg, Pg>=<Pg,Qg> . (2.5)

But (2.5) cannot hold if Pg and Qg belong to L
2(R). If this were the case

we could apply the integration by parts formula (1.5) to obtain

<Qg, Pg> =
∫ ∞

−∞
xg(x)

{
−ig′(x)

}
dx

= −i

∫ ∞

−∞

{
g(x) + xg′(x)

}
g(x) dx

= −i <g, g> + <Pg,Qg> .

Since <g, g>=
∥∥g∥∥2

2
=

∥∥g0,0

∥∥2

2
= 1 we obtain

<Qg, Pg>= −i+ <Pg,Qg>,

which contradicts (2.5).

Hence, the theorem is proved if we establish (2.2), (2.3) and (2.4). Since
Qg, Pg ∈ L

2(R) and {gm,n : m,n ∈ Z} is an orthonormal basis we have

<Qg, Pg> = <
∑ ∑
m,n∈Z

<Qg, gm,n> gm,n, Pg >

=
∑ ∑
m,n∈Z

<Qg, gm,n><gm,n, Pg>,
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which proves (2.2). To prove (2.3) observe that n < g, gm,n >= 0 for all
m,n ∈ Z; this obviously holds for n = 0 and if n �= 0, g = g0,0 is orthogonal
to gm,n. Thus,

<Qg, gm,n>=<Qg, gm,n> −n<g, gm,n>

=
∫ ∞

−∞
g(x)(x− n) g(x− n) e−2πimx dx

=
∫ ∞

−∞
g(y + n) y g(y) e−2πim(y+n) dy =<g−m,−n, Qg>,

which gives us (2.3). To prove (2.4) we use the integration by parts formula
(1.5) to obtain

<Pg, gm,n> = −i
∫ ∞

−∞
g′(x) g(x− n) e−2πimx dx

= i

∫ ∞

−∞
g(x)

{
−2πimg(x− n) + g′(x− n)

}
e−2πimx dx

= 2πmδm,0δ0,n +
∫ ∞

−∞
g(y + n)

{
−ig′(y)

}
e−2πimy dy

= <g−m,−n, Pg> .

EXAMPLE C : For g = χ
[0,1)

, {gm,n : m,n ∈ Z}, as we have seen, is

an orthonormal basis of L
2(R); in this case the first integral in the

announcement of the Balian-Low theorem is finite, but the second is
infinite since

ξ2
∣∣(χ

[0,1)
)∧(ξ)

∣∣2 =
[
2 sin( ξ2 )

]2
.

EXAMPLE D : For g(x) = sin(πx)
πx ≡ sinc(x), {gm,n : m,n ∈ Z} is an

orthonormal basis of L2(R); observe that

(χ
[0,1)

)∧(ξ) = e−i
ξ
2
sin(ξ/2)
(ξ/2)

= e−i
ξ
2 sinc( ξ

2π ).

In this case the first integral in the announcement of the Balian-Low
theorem is infinite.
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If g ∈ L
2(R) and

gm,n(x) = eimwoxg(x− nto) (2.6)

with woto = 2π, Theorem 2.1 is still true; to see this observe that the
operator U defined by Ug(x) = (2πw−1

o )
1
2 g(2πw−1

o x) is unitary in L
2(R)

and

Ugm,n(x) = e2πimxUg(x− n)

since 2πw−1
o = to. This theorem tells us that if woto = 2π, the basis given

by (2.6) does not have good time and frequency localization simultaneously.

In particular, if b(x) is sufficiently smooth and compactly supported the
Balian-Low theorem tells us that the system

{
bm(x)

}
m∈Z

=
{
e2πimxb(x)

}
m∈Z

will not produce an orthonormal basis by translating the elements of the
system by the integers. This is easy to see due to the decay at infinity of
the Fourier transform of b, that is a consequence of the smoothness of b.

If we consider a more local situation, however, we can find a smooth and
compactly supported “bell” function b(x) for which

{
bm(x)

}
m∈Z

=
{
e2πimxb(x)

}
m∈Z

is an orthonormal system. For example, suppose that b is a function defined
on R with supp (b) ⊆ [−ε, 1 + ε′], where ε + ε′ ≤ 1, ε, ε′ > 0 and b(x) ≥ 0.
It is easy to find conditions on b so that {bm : m ∈ Z} is an orthonormal
system. The idea is to use a “folding argument” to write the orthonormal
relations <e2πim(·)b, e2πin(·)b>= δm,n on the interval [0, 1]:

δm,n = <e2πim(·)b, e2πin(·)b>=
∫ 1+ε′

−ε
b2(x) e2πi(m−n)x dx

=
(∫ 0

−ε
+

∫ ε′

0

+
∫ 1−ε

ε′
+

∫ 1

1−ε
+

∫ 1+ε′

1

){
b2(x) e2πi(m−n)x dx

}
.

In the first integral we perform the change of variables y = 1 + x; in the
last integral we use the change of variables y = x− 1. We therefore obtain

δm,n =
∫ ε′

0

[
b2(x) + b2(1 + x)

]
e2πi(m−n)x dx
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+
∫ 1−ε

ε′
b2(x) e2πi(m−n)x dx

+
∫ 1

1−ε

[
b2(x) + b2(x− 1)

]
e2πi(m−n)x dx.

That is, the function f having values b2(x) + b2(1 + x) on [0, ε′], b2(x) on
[ε′, 1− ε] and b2(x)+ b2(x−1) on [1− ε, 1] has Fourier coefficients f̂(k) = 0
if k �= 0 and f̂(0) = 1. It follows easily that, if these orthonormal relations
are to hold, b must satisfy

b2(x) + b2(1 + x) = 1 if x ∈ [0, ε′],

b2(x) = 1 if x ∈ [ε′, 1 − ε],

b2(x) + b2(x− 1) = 1 if x ∈ [1 − ε, 1].

 (2.7)

It follows that (2.7) is a necessary and sufficient condition for{
e2πimxb(x)

}
m∈Z

to be an orthonormal system in L
2(R). The Balian-Low theorem tells us

that if we choose such a smooth bell function, translations by integers will
not produce an orthonormal basis for L

2(R). In the next two sections we
shall show that if the exponentials e2πimx are replaced by appropriate sines
and cosines we can obtain such bases.

1.3 Smooth projections on L2(R)

We will show that we can construct a smooth “bell” function associated
with the interval [0, 1], in such a way that the system

√
2b(x− k) sin( 2j+1

2 π(x− k)), j, k ∈ Z,

is an orthonormal basis for L
2(R). In fact, we will see that for each fixed

k ∈ Z, the family {√
2b(x− k) sin( 2j+1

2 π(x− k)) : j ∈ Z
}

is an orthonormal basis for a closed subspace Hk of L2(R), and that L2(R)
is the direct sum of these Hk. More generally, we shall construct smooth
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“bell” functions associated with a general finite interval I = [α, β) that can
be multiplied by appropriate sines and cosines to obtain an orthonormal
basis of a subspace HI of L2(R) in such a way that if we have

−∞ < · · · < αk−1 < αk < αk+1 < · · · < ∞,

the HIk ’s (Ik = [αk, βk)) form a complete system of mutually orthogonal
subspaces of L2(R). This does not have the form of a wavelet system, but
it can be used for analyzing general functions in L

2 and, moreover, we will
see how it can be used for constructing wavelets.

We start with the special case I = [0,∞) and our goal is to construct a
smooth “bell” function that “approximates” χ

[0,∞)
. Since any projection

is idempotent, multiplication by a function gives a projection only if the
function takes the values 0 or 1 almost everywhere on R; this shows that
the projection we are looking for cannot be given simply by multiplication
by a smooth function.

Let us pose the problem of finding a non-negative bounded function ρ ∈
C∞ such that supp (ρ) ⊆ [−ε,∞) for an ε > 0 and, like χ

[0,∞)
, satisfies

ρ(x) + ρ(−x) = 1, x �= 0, and a real-valued function t so that

(Pf)(x) = ρ(x)f(x) + t(x)f(−x)

is a projection. A simple calculation, based on the fact that P has to be
idempotent and self-adjoint, leads us to the equality t(x) = ±

√
ρ(x)ρ(−x).

Writing s =
√
ρ, we are led to the formula

(Pf)(x) = s(x)[s(x)f(x) ± s(−x)f(−x)].

In fact, more generally, no longer assuming s to be real valued, if we intro-
duce the operator P = P0,ε defined by

(Pf)(x) ≡ (P0,εf)(x) = s(x)
[
s(x)f(x) ± s(−x)f(−x)

]
(3.1)

with
|s(x)|2 + |s(−x)|2 = 1, (3.2)

it is easy to show that it is an orthogonal projection. To see this it is enough
to show that P is idempotent (P 2 = P ) and self-adjoint (P ∗ = P ). In fact,

(P 2f)(x) = s(x)
[
s(x)(Pf)(x) ± s(−x)(Pf)(−x)

]
c© 1996 by CRC Press LLC



= s(x)
[
|s(x)|2s(x)f(x) ± |s(x)|2s(−x)f(−x)

±|s(−x)|2s(−x)f(−x) + |s(−x)|2s(x)f(x)
]

= s(x)
[
s(x)f(x) ± s(−x)f(−x)

]
= (Pf)(x),

and

<P ∗f, g> = <f, Pg>=
∫ ∞

−∞
f(x)s(x) [s(x)g(x) ± s(−x)g(−x)] dx

=
∫ ∞

−∞

(
f(x)s(x) s(x)g(x) ± f(−x)s(−x) s(x)g(x)

)
dx

=
∫ ∞

−∞
s(x)

[
s(x)f(x) ± s(−x)f(−x)

]
g(x) dx =<Pf, g>.

For the moment we shall suppose that s is a real-valued function. Let us
construct a smooth function s(x) that satisfies (3.2). Choose ψ to be an even
C∞ function on R supported on [−ε, ε], ε > 0, such that

∫ ε
−ε ψ(x) dx = π/2.

Let θ(x) =
∫ x
−∞ ψ(t) dt and observe that

θ(x) + θ(−x) =
∫ x

−∞
ψ(t) dt +

∫ −x

−∞
ψ(t) dt

=
∫ x

−∞
ψ(t) dt +

∫ ∞

x

ψ(−t) dt

=
∫ x

−∞
ψ(t) dt +

∫ ∞

x

ψ(t) dt =
π

2
.

Putting s(x) ≡ sε(x) = sin(θ(x)) and c(x) ≡ cε(x) = cos(θ(x)) we have
s(−x) = sin(θ(−x)) = sin(π2 − θ(x)) = cos(θ(x)) = c(x). Hence,

s2(x) + s2(−x) = sin2(θ(x)) + cos2(θ(x)) = 1,

and (3.2) is satisfied.

−ε ε

c sε ε

0

√−−12

Figure 1.1: The functions sε and cε.
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We have thus obtained two projections, P+
0,ε and P−

0,ε, associated with
the interval [0,∞) corresponding to the choice + or − in (3.1). We also
have the analogous projections

(P 0,ε′

+,−f)(x) = cε′(x)
[
cε′(x)f(x) ± cε′(−x)f(−x)

]
associated with the interval (−∞, 0], where ε′ > 0.

Now we wish to construct smooth projections on a general interval

I = [α, β], −∞ < α < β < ∞.

We do this by using the translation operator τhf(x) = f(x−h), introduced
at the beginning of section 1.2, and defining

Pα = ταP0τ−α and P β = τβP
0τ−β ,

where we have suppressed, for the moment, the subindices and superscripts
ε, ε′,+,−. Each one of these operators is idempotent and self-adjoint since
P0 and P 0 are orthogonal projections. Thus Pα and P β are also orthogonal
projections. Using (3.1), we obtain the formulae

(Pαf)(x) = (ταP0τ−αf)(x) = (P0τ−αf)(x− α)

= sε(x− α)
[
sε(x− α)f(x) ± sε(α− x)f(2α− x)

]
(3.3)

and, similarly,

(P βf)(x) = (τβP 0τ−βf)(x) = (P 0τ−βf)(x− β)

= cε′(x− β)
[
cε′(x− β)f(x) ± cε′(β − x)f(2β − x)

]
. (3.4)

Observe that 2α − x and x are symmetric with respect to α. (That is,
they lie on opposite sides and are equidistant to α.) This motivates the
following definition. We say that a function g is even with respect to
γ ∈ R if g(x) = g(2γ − x) for all x ∈ R.

If g is an even function with respect to α, it is easily seen that Pα(gf) =
g(Pαf) when g ∈ L

∞
(R) and f ∈ L

2(R); that is, multiplication by g com-
mutes with Pα. Similarly, if g is even with respect to β, from (3.4) we see
that P β(gf) = g(P βf).
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For a general interval I = [α, β] we choose ε, ε′ > 0 such that α+ε ≤ β−ε′

and observe that

PαP
βf = χ

[α−ε,α+ε]
Pαf + χ

[α+ε,β−ε′]f + χ
[β−ε′,β+ε′]

P βf

= P βPαf. (3.5)

To obtain this, observe that

Pαf = Pαχ[α−ε,α+ε]
f + Pαχ[α+ε,∞)

f

= χ
[α−ε,α+ε]

Pαf + χ
[α+ε,∞)

f, (3.6)

where we have used the fact that χ
[α−ε,α+ε]

is even with respect to α, and,
hence, commutes with Pα. Similarly, we have

P βf = P βχ
(−∞,β−ε′]f + P βχ

[β−ε′,β+ε′]
f

= χ
(−∞,β−ε′]f + χ

[β−ε′,β+ε′]
P βf. (3.7)

Now apply P β to the first equality and Pα to the second to obtain the
desired result.

Since Pα and P β commute, the operator

PIf ≡ P[α,β]f = PαP
βf = P βPαf (3.8)

is a bounded, orthogonal projection on L
2(R).

Observe that PI ≡ P[α,β] depends on α, β, ε, ε′ and the signs we choose
at α and β. Thus, if α, β, ε and ε′ are fixed, the choice of signs gives us
four projections.

An expression for PI ≡ P[α,β] that is different from the one given in (3.8)
is obtained by introducing the function

b(x) = sε(x− α) cε′(x− β).

We refer to b = bI as a “bell” function associated with the interval [α, β].
Observe that b depends on α, β, ε and ε′. By translating the graphs of sε
and cε given in Figure 1.1 we obtain the graph of a bell function associated
with [α, β]:
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α−ε α α+ε β−ε β β+ε' '

11
b } {

Figure 1.2: Graph of the bell function b associated with [α, β].

It is easy to prove the following basic properties of b(x):

i) supp (b) ⊆ [α− ε, β + ε′];

on [α− ε, α + ε]
ii) b(x) = sε(x− α),
iii) b(2α− x) = sε(α− x) = cε(x− α),
iv) b2(x) + b2(2α− x) = 1;

v) supp (b(·)b(2α− ·)) ⊆ [α− ε, α + ε];

vi) on [α + ε, β − ε′], b(x) = 1;

on [β − ε′, β + ε′]
vii) b(x) = cε′(x− β),
viii) b(2β − x) = cε′(β − x) = sε′(x− β),
ix) b2(x) + b2(2β − x) = 1;

x) supp (b(·)b(2β − ·)) ⊆ [β − ε′, β + ε′];

xi) b2(x) + b2(2α− x) + b2(2β − x) = 1 on supp (b).



(3.9)

Not all these properties are independent. For example, iv) follows from
ii) and iii). The reader will find it instructive to compare these conditions
with (2.7).

Using (3.5), the definition of Pα and P β given in (3.3) and (3.4) and
these properties, we can easily derive the following new formula for PI in
terms of the bell function b:

(PIf)(x) = b(x)
{
b(x)f(x)±b(2α−x)f(2α−x)±b(2β−x)f(2β−x)

}
. (3.10)

Observe that we have four choices for such a projection. The choice of
± associated with α is referred to as the polarity of P[α,β] at α, and the
choice of ± associated with β is referred to as the polarity of P[α,β] at
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β. Thus, if we choose “+” before the second summand in the bracket in
(3.10), we say that the projection has positive polarity at α.

DEFINITION 3.11 Suppose I = [α, β] and J = [β, γ] are adjacent; we say
that they have compatible bell functions bI and bJ if

α− ε < α < α + ε ≤ β − ε′ < β < β + ε′ ≤ γ − ε′′ < γ < γ + ε′′

and

bI = sε(x− α) cε′(x− β), bJ = sε′(x− β) cε′′(x− γ).

If I = [α, β] and J = [β, γ] are intervals with compatible bell functions,
we have

bI(x) = bJ(2β − x), if x ∈ [β − ε′, β + ε′]; (3.12)

b2I(x) + b2J(x) = 1, if x ∈ [β − ε′, β + ε′]; (3.13)

b2I(x) + b2J(x) = b2I∪J(x) for all x ∈ R. (3.14)

α−ε α α+ε

ε

β−ε β β+ε

ε ε

γ−ε γ γ+ε

εα
β β

γs (x-  )
c  (x-  ) s  (x-  )

c  (x-  )

' ' " "

' '

"

Figure 1.3: Compatible bell functions on [α, β] and [β, γ].

These properties follow easily from (3.9). The next result establishes the
main property of these projections that will allow us to decompose L

2(R)
as a direct sum of orthogonal subspaces.

THEOREM 3.15 Let I = [α, β] and J = [β, γ] be adjacent intervals with
compatible bell functions and suppose PI and PJ have opposite polarities at
β. Then

PI + PJ = PI∪J , (3.16)

PIPJ = 0 = PJPI . (3.17)
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PROOF : According to (3.5), letting I also denote the identity operator,

PI + PJ = χ
[α−ε,α+ε]

Pα + χ
[α+ε,β−ε′]I + χ

[β−ε′,β+ε′]
P β

+χ
[β−ε′,β+ε′]

Pβ + χ
[β+ε′,γ−ε′′]I + χ

[γ−ε′′,γ+ε′′]
P γ

with P β and Pβ chosen with opposite polarity at β. This last property
allows us to prove that the two middle terms in the above formula add
up to χ[β−ε′,β+ε′]I, and, hence, the result equals PI∪J according to (3.5).
Thus, PI + PJ = PI∪J .

Formula (3.17) is a consequence of a general result about projections. In
fact, if P and Q are orthogonal projections on a Hilbert space such that
P + Q is an orthogonal projection, then PQ = QP = 0. To see this,
observe that (P + Q)2 = P + Q implies PQ = −QP ; from this we deduce
PQ = P 2Q = P (PQ) = −P (QP ) = QP 2 = QP ; these two results give us
PQ = QP = 0.

If H is a Hilbert space and {Hk : k ∈ Z} is a sequence of mutually
orthogonal closed subspaces we let

V =
∞⊕

k=−∞
Hk

denote the closed subspace consisting of all f =
∑

k∈Z
fk with fk ∈ Hk and∑

k∈Z
‖fk‖2

< ∞. We call V the orthogonal direct sum of the spaces
Hk. If the family consist of two spaces H1 and H2 we write H1

⊕
H2.

The above theorem allows us to decompose L2(R) as an orthogonal direct
sum

L
2(R) =

∞⊕
k=−∞

Hk, (3.18)

where Hk = Pk(L
2(R)), Pk = P[αk,αk+1] with

−∞ < · · · < αk−1 < αk < αk+1 < · · · < ∞;

moreover, adjacent intervals, [αk, αk+1] and [αk+1, αk+2], have compatible
bell functions, and Pk and Pk+1 have opposite polarity at αk+1. The or-
thogonality of the Hk’s follows from (3.17); formula (3.16) gives us the
decomposition of L2(R).
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Another orthogonal decomposition of L2(R), that we shall show is per-
tinent to wavelets, can be achieved as follows. Let I = [π, 2π] and J =
−I = [−2π,−π]. Choose ε > 0 such that 0 < ε ≤ 1

3π and ε′ = 2ε; put
Ik = 2kI, Jk = 2kJ for k ∈ Z. Then, associating εk = 2kε, εk+1 = 2εk
with Ik, the adjacent intervals Ik and Ik+1 have compatible bell functions
(similarly for Jk and Jk+1) and we have

L
2(R) =

{ ∞⊕
k=−∞

HJk

} ⊕ { ∞⊕
k=−∞

HIk

}
, (3.19)

if we choose the appropriate polarities for PIk , PJk
and denote the images

PIk(L2(R)) and PJk
(L2(R)) by HIk and HJk

.

Let us now characterize the subspace HI = PI(L
2(R)). We say that f is

even with respect to α on [α−ε, α+ε] if f(2α−x) = f(x) on this interval.
Similarly, a function g is said to be odd with respect to α on [α− ε, α+ ε]
if g(2α− x) = −g(x) on this interval.

By (3.10) we can write

(PIf)(x) = bI(x)S(x),

where S(x) = bI(x)f(x)±bI(2α−x)f(2α−x)±bI(2β−x)f(2β−x). Observe
that there are four choices for S(x) depending on the signs considered,
which give us the four functions S+

+(x), S+
−(x), S−

+ (x), and S−
−(x). S+

+ is
even with respect to α on [α − ε, α + ε] and even with respect to β on
[β − ε′, β + ε′]; S+

− is odd with respect to α on [α− ε, α+ ε] and even with
respect to β on [β− ε′, β+ ε′]. The obvious similar statements apply to S−

+

and S−
− .

THEOREM 3.20 Let I = [α, β]; then f ∈ HI = PI(L
2(R)) if and only if

f = bIS, where S ∈ L
2(R), bI is the bell function associated with I, and S

is even or odd on [α− ε, α+ ε] according to the choice of polarity at α, and
even or odd on [β − ε′, β + ε′] according to the choice of polarity at β.

PROOF : If f ∈ HI , there exists g ∈ L
2(R) such that f = PIg; then

f = PIg = bIS by (3.10) where, clearly, S has the same polarity at α and
β as PI . Observe that S ∈ L

2(R).

Suppose now that f = bS with S ∈ L
2(R), locally even at α and locally

odd at β. (The other cases are handled similarly.) It is enough to show
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that if PI has the same polarity as S, then PI(bS) = bS, since then PI(f) =
PI(bS) = bS = f . To show PI(bS) = bS we use (3.10), and the properties
of bI given in iv), vi) and ix) of (3.9). We leave the details to the reader.

1.4 Local sine and cosine bases and the construction
of some wavelets

In this section we shall introduce orthonormal bases for the subspaces
HI = PI(L

2(R)), where PI are the projection operators defined in the
previous section. As we shall see, these bases are closely allied to certain
trigonometric systems and consistent with the polarity of PI . That is,
if PI is chosen with negative polarity at the left endpoint of the interval
I and with positive polarity at the right endpoint of I, the elements of
the basis will be locally odd at the left endpoint and locally even at the
right endpoint. In addition, the bases for these subspaces will be expressed
in terms of trigonometric functions and the associated bell function. (As
explained at the beginning of the last section.)

Let us first consider I to be the interval [0, 1], and suppose that PI has
polarities − and + at 0 and 1, respectively. (We tacitly assume that PI is
associated with positive ε and ε′ such that ε+ ε′ ≤ 1. As we did on several
occasions in the previous section, we do not indicate the dependence of PI
on ε and ε′.) Let f ∈ L

2([0, 1]) and extend f to a function F on [−2, 2] so
that F is even with respect to 1 and odd with respect to 0; this is consistent
with the choice of the polarities for PI . (See Figure 1.4 below.)

−2 −1
210

f

Figure 1.4: Extension F of f to [−2, 2].

On [−2, 2] we have the usual cosine and sine basis

{1
2
,

1√
2

sin
πkx

2
,

1√
2

cos
π�x

2

}
, k, � = 1, 2, · · ·
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Since F is odd on [−2, 2], the cosines are not involved in the Fourier ex-
pansion of F . Moreover, the functions sin(2k+1

2 πx), k = 0, 1, 2, · · ·, are
even with respect to 1 and the functions sin(kπx), k = 1, 2, 3, · · ·, are odd
with respect to 1. Therefore, we only need sin(2k+1

2 πx), k = 0, 1, 2, · · ·, to
represent F . That is,

F (x) =
∞∑
k=0

ck sin
(

2k+1
2 πx

)
,

where

ck =
1
2

∫ 2

−2

F (x) sin
(

2k+1
2 πx

)
dx,

and the above series converges in the norm of L2([−2, 2]). Observe that
the convergence is also true in the pointwise almost everywhere sense by a
deep theorem of L. Carleson concerning almost everywhere convergence of
Fourier series. (See [Car1].)

If we restrict ourselves to [0, 1], and use the appropriate normalization,
we find that

{√
2 sin( 2k+1

2 πx), k = 0, 1, 2, · · ·
}

is an orthonormal basis for
L

2([0, 1]) with polarities of its elements at 0 and 1 that match the ones of
PI . This provides us with the proof of the first part of the following result.

THEOREM 4.1 Each one of the systems

i)
{√

2 sin( 2k+1
2 πx)

}
, k = 0, 1, 2, · · ·

ii)
{√

2 sin(kπx)
}
, k = 1, 2, 3, · · ·

iii)
{√

2 cos( 2k+1
2 πx)

}
, k = 0, 1, 2, · · ·

iv)
{
1,

√
2 cos(kπx)

}
, k = 1, 2, 3, · · ·

is an orthonormal basis of L
2([0, 1]) and the polarities are (−,+) for i),

(−,−) for ii), (+,−) for iii) and (+,+) for iv).

We have already seen how to obtain i); the other three statements are
obtained in a similar way.

We use this result to obtain the desired orthonormal bases for HI =
PI(L

2(R)) when I = [0, 1]. Let ε, ε′ > 0 with ε + ε′ ≤ 1 and consider the
associated bell function b(x) = sε(x)cε′(x−1). Suppose, as before, that the
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polarities of PI are − at 0 and + at 1. Thus, (3.10) in this case becomes

PIf(x) = b(x)
{
b(x)f(x) − b(−x)f(−x) + b(2 − x)f(2 − x)

}
= b(x)S(x).

The function S(x) is odd with respect to 0 and even with respect to 1
because of the properties of b (see (3.9)); hence, S has the right polarity
to be represented by the orthonormal basis i) in Theorem (4.1). Therefore,
we can write

S(x) =
√

2
∞∑
k=0

ck sin( 2k+1
2 πx),

where

ck =
√

2
∫ 1

0

S(x) sin( 2k+1
2 πx) dx,

where the convergence is in L
2([0, 1]) and, by Carleson’s theorem, almost

everywhere. Since S and the sine functions we are using have the same
polarities at 0 and 1, the expansion is valid on [−ε, 1 + ε′] in the L

2-sense
and almost everywhere. Multiplying by b(x) we obtain

(PIf)(x) = b(x)S(x) =
∞∑
k=0

ck
√

2 b(x) sin( 2k+1
2 πx)

and the convergence is valid in L
2([−ε, 1+ε′]) and almost everywhere, since

b is bounded. This shows that the system

{√
2 b(x) sin( 2k+1

2 πx)
}
, k = 0, 1, 2, · · · (4.2)

is complete in HI = PI(L
2(R)) when PI has the polarities (−,+). To show

that this system is an orthonormal basis, we need to prove the orthonor-
mality relations; if ek = sin( 2k+1

2 πx), k = 0, 1, 2, · · ·, we have to show

2
∫ 1+ε′

−ε
b2(x)ek(x)e�(x) dx = δk� , k, � = 0, 1, 2, · · · .

Since ek is locally odd with respect to 0, a change of variables together with
property iv) of (3.9) gives us∫ ε

−ε
b2(x)ek(x)e�(x) dx =

∫ ε

0

ek(x)e�(x) dx.
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Similarly, using that ek is locally even at 1 and property ix) of (3.9), a
change of variables gives us∫ 1+ε′

1−ε′
b2(x)ek(x)e�(x) dx =

∫ 1

1−ε′
ek(x)e�(x) dx.

Finally, since b ≡ 1 on [ε, 1− ε′], the orthonormality of (4.2) on [−ε, 1 + ε′]
is equivalent to the orthonormality of the system i) on the interval [0, 1]
given in Theorem (4.1). Since we know that this is true, we have proved
the desired result.

Performing the appropriate translations and dilations and taking into
account the different types of polarity, we obtain the following result for
the spaces HI = PI(L

2(R)) when I = [α, β] is an arbitrary finite interval:

THEOREM 4.3 If PI = P[α,β] has negative polarity at α and positive po-
larity at β, then

i)
{√

2
|I| bI(x) sin

(
2k+1

2
π
|I| (x− α)

)}
, k = 0, 1, 2, · · ·,

is an orthonormal basis for HI = PI(L
2(R)). If the polarities are (−,−),

(+,−) and (+,+) at (α, β) the same is true, respectively, for

ii)
{√

2
|I| bI(x) sin

(
k π
|I| (x− α)

)}
, k = 1, 2, 3, · · ·,

iii)
{√

2
|I| bI(x) cos

(
2k+1

2
π
|I| (x− α)

)}
, k = 0, 1, 2, · · ·,

iv)
{√

1
|I| bI(x),

√
2
|I| bI(x) cos

(
k π
|I| (x− α)

)}
, k = 1, 2, 3, · · ·.

This theorem, together with the orthogonal decomposition (3.18), can
be used to obtain bases for L2(R). Choose a strictly increasing sequence of
real numbers {αj}j∈Z such that limj→∞ αj = ∞ and limj→−∞ αj = −∞;
let {εj}j∈Z be a sequence of positive real numbers such that

εj + εj+1 ≤ αj+1 − αj ≡ �j for all j ∈ Z.

If we choose the polarities (−,+) for each Pj = P[αj ,αj+1] we obtain that
the system

θk,j =
√

2
�j
b[αj ,αj+1](x) sin

(
2k+1

2
π
�j

(x−αj)
)
, k = 0, 1, 2, ..., j ∈ Z, (4.4)
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is an orthonormal basis for L2(R). The convergence of the series expansion
of a function f ∈ L

2(R) with respect to the basis given in (4.4) is valid in
L

2(R). A much deeper result is the almost everywhere convergence, which
is a consequence of the celebrated theorem of Carleson. More precisely, we
have

lim
N→∞

∑
|j|≤N

∞∑
k=0

<f, θk,j> θk,j(x) = f(x)

for almost every x ∈ R, where the second sum indicates the a.e. convergence
of the partial sums

M∑
k=0

<f, θk,j> θk,j(x)

as M → ∞, for each j ∈ Z.

Combining appropriately the polarities for different intervals [αj , αj+1]
we can obtain, in a similar manner, other bases for L

2(R). Observe that
we obtain, by using appropriate sine and cosine functions, a result which
is not true in general if we use modulations, that is multiplications by
exponentials. (See the Balian-Low theorem, Theorem 2.1.)

The orthogonal decomposition of L2(R) given in (3.19) can be used to
obtain a new orthonormal basis of this space. The elements of this basis
are the Fourier transforms of the wavelet basis introduced by Lemarié and
Meyer in [LM].

THEOREM 4.5 The system

γj,k(ξ) =
2

j
2

√
2π

b(2jξ) ei
2k+1

2 2jξ, j, k ∈ Z,

is an orthonormal basis for L
2(R), where b restricted to [0,∞) is a bell

function for [π, 2π] associated with 0 < ε ≤ π
3 , ε

′ = 2ε, and b is even on R.

PROOF : Let

Cj,k(ξ) =
2

j
2

√
2π

b(2jξ) cos
(

2k+1
2 2jξ

)
,

Sj,k(ξ) =
2

j
2

√
2π

b(2jξ) sin
(

2k+1
2 2jξ

)
,

 k ≥ 0, j ∈ Z,
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so that γj,k(ξ) = Cj,k(ξ) + iSj,k(ξ), k ≥ 0, j ∈ Z. Observe that Cj,k is an
even function on R and Sj,k is an odd function on R.

2−3
4−3

8−3
2−3

4−3
8−3

−−−−− 0

1

π π π 2π ππππ2ππ

Figure 1.5: The graph of b with ε = π
3
.

We shall use the trigonometric formulas

i) sin
(

2k+1
2 (ξ − π)

)
= (−1)k+1 cos

(
2k+1

2 ξ
)
,

ii) cos
(

2k+1
2 (ξ + 2π)

)
= − cos

(
2k+1

2 ξ
)
,

iii) cos
(

2k+1
2 (ξ − π)

)
= (−1)k sin

(
2k+1

2 ξ
)
,

iv) sin
(

2k+1
2 (ξ + 2π)

)
= − sin

(
2k+1

2 ξ
)
.


(4.6)

Let b−(ξ) = χ(−∞,0](ξ)b(ξ) and b+(ξ) = χ[0,∞)(ξ)b(ξ) and define C+
j,k,

C−
j,k, S

+
j,k and S−

j,k as at the beginning of the proof, replacing b with b+ and
b−. Observe that Cj,k = C+

j,k + C−
j,k and Sj,k = S+

j,k + S−
j,k.

Using formula i) in (4.6) and the basis i) in Theorem 4.3, we deduce
that {2C+

j,k : k ≥ 0} is an orthonormal basis for the projection spaces
P−,+
Ij

(L2(R)), where Ij = 2−j [π, 2π]. In fact, using i) of (4.6), we obtain

2C+
j,k(ξ) =

√
2

|Ij | b
+(2jξ) cos

(
2k+1

2 2jξ
)

= (−1)k+1
√

2
|Ij | b

+(2jξ) sin
(

2k+1
2 (2jξ − π)

)
= (−1)k+1

√
2

|Ij | b
+(2jξ) sin

(
2k+1

2
π

|Ij | (ξ − 2−jπ)
)
,

which is the basis i) of Theorem 4.3, except for the factor (−1)k+1, which
does not affect the orthonormality.

Using formula iii) of (4.6) and the basis iii) of Theorem 4.3, an analo-
gous argument shows that {2S+

j,k : k ≥ 0} is an orthonormal basis for the
projection spaces P+,−

Ij
(L2(R)).

Similarly, it can be proved that {2C−
j,k : k ≥ 0} and {2S−

j,k : k ≥ 0} are
orthonormal bases for P+,−

−Ij (L2(R)) and P−,+
−Ij (L2(R)), respectively, where

−Ij = 2−j [−2π,−π].
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Hence, each one of the systems

{2C+
j,k : k ≥ 0, j ∈ Z} and {2S+

j,k : k ≥ 0, j ∈ Z}

is an orthonormal basis for L2((0,∞)), and each one of the systems

{2C−
j,k : k ≥ 0, j ∈ Z} and {2S−

j,k : k ≥ 0, j ∈ Z}

is an orthonormal basis for L2((−∞, 0)).

For k ≥ 0 and j ∈ Z, define

αj,k(ξ) = Cj,k(ξ) + iSj,k(ξ) =
2

j
2

√
2π

b(2jξ) ei
2k+1

2 2jξ

and

βj,k(ξ) = Cj,k(ξ) − iSj,k(ξ) =
2

j
2

√
2π

b(2jξ) e−i
2k+1

2 2jξ.

If m ≤ −1, βj,−(m+1)(ξ) = γj,m(ξ) and if k ≥ 0, αj,k(ξ) = γj,k(ξ). Hence,
the theorem is proved if we show that the system

{αj,k : j ∈ Z, k ≥ 0} ∪ {βj,k : j ∈ Z, k ≥ 0}

is an orthonormal basis of L2(R).

We start by showing the orthonormality of the system.

4 <αj,n, αk,�> = 4 <Cj,n, Ck,�> + 4 <Sj,n, Sk,�>

= <2C+
j,n, 2C

+
k,�> + <2C−

j,n, 2C
−
k,�>

+ <2S+
j,n, 2S

+
k,�> + <2S−

j,n, 2S
−
k,�>

= 4δj,kδn,�.

Similarly, <βj,n, βk,�>= δj,kδn,�. Finally, using the evenness of Cj,n and
the oddness of Sk,� we obtain

4 <αj,n, βk,�> = 4 <Cj,n, Ck,�> + 4i <Cj,n, Sk,�>

+ 4i <Sj,n, Ck,�> − 4 <Sj,n, Sk,�>
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= <2C+
j,n, 2C

+
k,�> + <2C−

j,n, 2C
−
k,�>

− <2S+
j,n, 2S

+
k,�> − <2S−

j,n, 2S
−
k,�>

= 2δj,kδn,� − 2δj,kδn,� = 0.

Now we must show completeness. Given f ∈ L
2(R), let f (e) be the even

function [f(x) + f(−x)]/2 and f (o) be the odd function [f(x) − f(−x)]/2,
so that f = f (e) + f (o). Using the evenness of Cj,k and the oddness of Sj,k
we obtain

∑
j∈Z

∑
k≥0

<f, αj,k> αj,k+ <f, βj,k> βj,k

= 2
∑
j∈Z

∑
k≥0

<f (e), Cj,k> Cj,k+ <f (o), Sj,k> Sj,k

= 4
∑
j∈Z

∑
k≥0

{
<f (e), C+

j,k> C+
j,k+ <f (e), C−

j,k> C−
j,k

+ <f (o), S+
j,k> S+

j,k+ <f (o), S−
j,k> S−

j,k

}
= f (e)χ

(0,∞)
+ f (e)χ

(−∞,0)
+ f (o)χ

(0,∞)
+ f (o)χ

(−∞,0)
= f,

where we have used the already observed fact that the systems {2C+,−
j,k }

and {2S+,−
j,k }, k ≥ 0, j ∈ Z, form an orthonormal basis of L2((0,∞)) an

L
2((−∞, 0)) for the appropriate choice of + and −.

COROLLARY 4.7 Let γ(ξ) =
1√
2π

ei
ξ
2 b(ξ) be the function γ0,0 of Theo-

rem 4.5 and define ψ by

ψ̂(ξ) =
√

2π γ(ξ) = ei
ξ
2 b(ξ).

Then, ψ is an orthonormal wavelet.

PROOF : By the Plancherel theorem
∥∥ψ∥∥2

2
= 1

2π

∥∥ψ̂∥∥2

2
=

∥∥γ∥∥2

2
= 1. More-

over,

(ψj,k)∧(ξ) = 2−
j
2 e−i2

−jkξψ̂(2−jξ) = 2−
j
2 e−i2

−jkξb(2−jξ)ei2
−j ξ

2

= 2−
j
2 b(2−jξ)ei2

−j 1−2k
2 ξ =

√
2π γ−j,−k(ξ).
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By Theorem 4.5, {ψj,k : j, k ∈ Z} is an orthonormal basis for L2(R).

The orthonormal wavelets obtained in Corollary 4.7 are the ones de-
scribed by P.G. Lemarié and Y. Meyer in [LM] (see also [Me5]), and will
be called the Lemarié-Meyer wavelets.

In Figure 1.6 we give the graph of a wavelet ψ whose Fourier tranform is
of the form ψ̂(ξ) = b(ξ)ei

ξ
2 with

b(ξ) =


sin

(
3
4 (|ξ| − 2

3π)
)
, if 2

3π < |ξ| ≤ 4
3π,

sin
(

3
8 ( 8

3π − |ξ|)
)
, if 4

3π < |ξ| ≤ 8
3π,

0 otherwise.

-3 -2 -1 1 2 3

-1

1

Figure 1.6: The graph of a Lemarié-Meyer wavelet.

Theorem 4.3 together with the orthogonal decomposition (3.18) can be
used to obtain other bases for L2(R). Let

αj = j
2 , Ij = [αj , αj+1] and �j = |Ij | = αj+1 − αj = 1

2 for j ∈ Z,

and choose 0 < ε ≤ 1
4 . Let b be the “bell” function associated with [0, 1

2 ]
and ε at each endpoint. Observe that

bj ≡ bIj = b(x− j
2 )

if we use the same ε at each endpoint of the interval Ij .

For the interval Ij = [ j2 ,
j+1
2 ] we choose the polarities indicated in the

figure below:

−1−2
1−2

3−2
5−20 1 2(+,+) (-,-) (+,+) (-,-)
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We now construct an orthonormal basis for L
2(R). If j is even we use

the local cosine basis given in iv) of Theorem 4.3 to obtain

√
2 b(x− j

2 ),

2b(x− j
2 ) cos

(
2πk(x− j

2 )
)
, k = 1, 2, · · · .

}
(4.8)

If j is odd we use the local sine basis given in ii) of Theorem 4.3 to obtain

2b(x− j
2 ) sin

(
2πk(x− j

2 )
)
, k = 1, 2, · · · . (4.9)

For j even we have

cos
(
2πk(x− j

2 )
)

= cos(2πkx) cos
(
2πk j2

)
+ sin(2πkx) sin

(
2πk j2

)
= cos(2πkx);

and for j odd,

sin
(
2πk(x− j

2 )
)

= sin(2πkx) cos
(
2πk j2

)
− cos(2πkx) sin

(
2πk j2

)
= (−1)k sin(2πkx).

Thus,

√
2 b(x− j

2 ) if j ∈ 2Z,

2b(x− j
2 ) cos(2πkx) if j ∈ 2Z, k = 1, 2, · · · ,

(−1)k2b(x− j
2 ) sin(2πkx) if j ∈ 2Z +1, k = 1, 2, · · · ,

 (4.10)

is an orthonormal basis for L
2(R). Observe that we have “defeated” the

Balian-Low phenomenon by using cosines and sines instead of exponentials,
but the product of the “translation step” and the “frequency step” is still
2π (see (2.6)). Observe that if gm,n(x) = e2πimxg(x− n

2 ), the family

√
2 g0,j if j ∈ 2Z,[
gk,j + (−1)jg−k,j

]
if j ∈ Z, k = 1, 2, 3, · · · ,

}
(4.11)

coincides with (4.10) when g = b, except that the factor (−1)k in the third
family of (4.10) is replaced by 2i.

A basis similar to the one described in (4.10) arises in the work of K. Wil-
son in quantum mechanics ([Wil]). He observed that for the study of his
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operators one does not need basis functions that distinguish between posi-
tive and negative frequencies of the same order. Instead of having a “peak”
function localized around x = n

2 , he uses functions that arise from the com-
bination of two functions having peaks symmetrically distributed about the
origin; this produces a system similar to the one in (4.11). We shall call
the basis he uses a Wilson basis; more explicitly, using the notation of
(4.11), we have

√
2 g0,j if j ∈ 2Z,[
gk,j + (−1)k+jg−k,j

]
if j ∈ Z, k = 1, 2, 3, · · · ,

}
(4.12)

(observe the difference between the powers of −1 in (4.11) and (4.12)). This
family can be written in the following way:

√
2 g(x− j) if k = 0, j ∈ Z,

2g(x− j
2 ) cos(2πkx) if k > 0, j + k even,

2g(x− j
2 ) sin(2πkx) if k > 0, j + k odd.

 (4.13)

The proof that (4.13) is an orthonormal basis for some function g was
simplified in [DJJ]. Here we can give a very simple proof as a consequence of
our results on smooth projections and local sine and cosine basis. This was
observed independently by P. Auscher ([Au1]) and E. Laeng ([Lae]). What
is needed is a simple modification of the scheme developed to obtain (4.10).

Take αj = 2j−1
4 for j ∈ Z and 0 < ε < 1

4 , ε
′ = ε, and use the polarities

described below:

3−4
1−4

1−4− − 3−4
5−4

7−4
9−4(+,+) (-,-) (+,+) (-,-)

By using simple trigonometric identities, it is not hard to show that the
family

√
2 b(x− j

2 ) if j is even and k = 0,

2b(x− j
2 ) cos

(
2πk(x + 1

4 )
)

if j is even and k > 0,

2b(x− j
2 ) sin

(
2πk(x− 1

4 )
)

if j is odd and k > 0,

 (4.14)

coincides with (4.13) when b = g, except for some factors of −1 which do
not change the orthonormality of the system.
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1.5 The unitary folding operators and the smooth
projections

In this section we present another way of defining the projections PI of
section 1.3 and a new proof of Theorem 3.15, which allowed us to obtain
orthonormal bases for L

2(R). This section is not necessary to understand
the chapters that follow, so that the reader who is interested in the concept
of multiresolution analysis can proceed directly to Chapter 2.

We begin with the projections associated with the interval [0,∞). Recall
the definition of P ≡ P+,−

0,ε given in (3.1). Motivated by this definition, we
introduce the operator U defined by

Uf(x) =

{
s(x)f(x) + s(−x)f(−x), x > 0,

s(−x)f(x) − s(x)f(−x), x < 0,
(5.1)

where supp (s) ⊆ [−ε,∞) and satisfies

|s(x)|2 + |s(−x)|2 = 1 for all x. (5.2)

The condition supp (s) ⊆ [−ε,∞) is not necessary for the first result we
shall prove. In Figure 1.7 we show the graph of Uf for f(x) = 1

x2+1 and
ε = 1

2 .

01−2− 1−2

f

Uf

Figure 1.7: The graph of Uf for f(x) = 1
x2+1

and ε = 1
2
.

We consider the space L
2(R+,C2) of all functions

F (t) =

[
f1(t)
f2(t)

]
,
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where f1 and f2 are complex-valued functions defined on R
+ belonging to

L
2((0,∞)). On this space the inner product is defined by

[F,G] =
∫ ∞

0

[
f1(t)g1(t) + f2(t)g2(t)

]
dt.

The folding operator F : L2(R,C) −→ L
2(R+,C2) is defined by

(Ff)(t) =

[
f(t)
f(−t)

]
, t > 0.

It is easy to see that F has an inverse, F−1, given by

(
F−1

[
f1(t)
f2(t)

])
(t) =

{
f1(t), if t > 0,

f2(−t), if t < 0.

A simple computation shows that [Ff,Fg] =< f, g >, so that F is a
unitary operator.

We can “transfer” U to L
2(R+,C2) by using the following matrix:

A(t) =

(
s(t) s(−t)

−s(−t) s(t)

)
, t > 0.

This matrix is unitary due to (5.2); thus, A(t)A(t)∗ = I = A(t)∗A(t). We
now define the operators A,A∗ : L2(R+,C2) −→ L

2(R+,C2) by letting

(AF )(t) = A(t)F (t) and (A∗F )(t) = A(t)∗F (t).

THEOREM 5.3 U = F−1AF and U∗ = F−1A∗F , so that U is unitary.
Moreover,

(U∗f)(x) =

{
s(x)f(x) − s(−x)f(−x), x > 0,

s(−x)f(x) + s(x)f(−x), x < 0,

and U∗χ
[0,∞)

U = P+
0,ε, where P+

0,ε is defined by (3.1).

PROOF : The equality U = F−1AF is easy to check by using the above
definitions. That U∗ = F−1A∗F follows immediately from the fact that F
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is also a unitary operator. The expression for (U∗f) in terms of f follows
readily from this last equality.

Finally, let us prove that U∗χ
[0,∞)

U = P+
0,ε: if x > 0,

(U∗χ
[0,∞)

Uf)(x) = s(x)(χ
[0,∞)

Uf)(x) − s(−x)(χ
[0,∞)

Uf)(−x)

= s(x)(Uf)(x) = s(x) [s(x)f(x) + s(−x)f(−x)];

if x < 0,

(U∗χ
[0,∞)

Uf)(x) = s(x)(χ
[0,∞)

Uf)(−x)

= s(x) [s(−x)f(−x) + s(x)f(x)].

These two formulae coincide with the definition of P+
0,ε given in (3.1).

The graph of U∗ is shown in Figure 1.8 for f(x) = 1
x2+1 and ε = 1

2 .

01−2− 1−2

f

U  f*

Figure 1.8: The graph of U∗f for f(x) = 1
x2+1

and ε = 1
2
.

Observe that f is unchanged under the actions of U∗ and U outside the
interval (−ε, ε). (See Figures 1.7 and 1.8.)

We can translate the point 0 to α as we did in section 1.3. As before, let
ταf(x) = f(x− α) be the translation by α operator; we then define

Uα = ταUτ
∗
α and U∗

α = ταU
∗τ∗α.

Observe that U = U0 and U∗ = U∗
0 . With these definitions we have the

general formulas:

(Uαf)(x) =

{
s(x− α)f(x) + s(α− x)f(2α− x), x > α,

−s(x− α)f(2α− x) + s(α− x)f(x), x < α,
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and

(U∗
αf)(x) =

{
s(x− α)f(x) − s(α− x)f(2α− x), x > α,

s(x− α)f(2α− x) + s(α− x)f(x), x < α.

PROPOSITION 5.4 Let E = Eα = [α− ε, α + ε],

L
2(E) =

{
f ∈ L

2(R) : supp (f) ⊆ E
}
,

and suppose that s satisfies (5.2) and, also, s(x) = 1 if x > ε. Then Uα
and U∗

α satisfy:

(i) Uα, U
∗
α : L2(E) −→ L

2(E), and, hence, are unitary on L
2(E),

(ii) Uα
∣∣
L2(E)⊥

= I = U∗
α

∣∣
L2(E)⊥

, where L
2(E)⊥ = L

2(Ec), and

(iii) Uα and U∗
α commute with multiplication by χ

E
.

PROOF : Since 2α − x is the point symmetric to x with respect to α,
supp (f(2α − ·)) ⊆ [α − ε, α + ε]; this proves that Uα and U∗

α take L
2(E)

into L
2(E). (i) is now immediate.

To prove (ii), look at the general formulas for Uα, U∗
α and use the equal-

ities s(x − α) = 1, s(α − x) = 0 if x > α + ε. Again, examine the general
formulas for Uα and U∗

α and observe that χ
E

is symmetric with respect to
α; this proves (iii).

THEOREM 5.5 Let s satisfy (5.2) with support on [ε,∞), and suppose that
s ∈ Cd, where Cd is the space of all functions with continuous derivatives
up to order d. Then

Uα : Cd ∩ L
2(R) −→ Sα and U∗

α : Sα −→ Cd ∩ L
2(R),

and both operators are one-to-one and onto, where

Sα =
{
f ∈ Cd(R − {α}) ∩ L

2(R) : f (n)(α±) exist for 0 ≤ n ≤ d,

lim
x→α+

f (n)(x) = 0 if n is odd,

and lim
x→α−

f (n)(x) = 0 if n is even
}
.
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PROOF : Since Uα and U∗
α are unitary (see part (i) of Proposition 5.4), it

suffices to show Uα(Cd∩L2(R)) ⊆ Sα and U∗
α(Sα) ⊆ Cd∩L2(R). Moreover,

these inclusions are proved if we can show that U0(Cd ∩ L
2(R)) ⊆ S0 and

U∗
0 (S0) ⊆ Cd ∩ L

2(R), where U0 = U .

To show the first inclusion, let h(x) = s(x)f(x) so that

(Uf)(x) = h(x) + h(−x) when x > 0.

If f ∈ Cd ∩ L
2(R) we have

(Uf)(n)(x) = h(n)(x) + (−1)nh(n)(−x) for x > 0,

which shows that (Uf)(n)(0+) exists and is zero if n is odd and 0 ≤ n ≤ d.
Let g(x) = s(−x)f(x) so that (Uf)(x) = g(x) − g(−x) for x < 0. If
f ∈ Cd ∩ L

2(R),

(Uf)(n)(x) = g(n)(x) − (−1)ng(n)(−x) for x < 0,

which shows that (Uf)(n)(0−) exists and is zero if n is even and 0 ≤ n ≤ d.

We now show the second inclusion, which is a little more complicated. If
f ∈ S0 it is clear from the formula satisfied by U∗f that (Uf)(n)(0±) exists
when 0 ≤ n ≤ d. It is enough to show

lim
x→0+

{
(U∗f)(n)(x) − (U∗f)(n)(−x)

}
= 0. (5.6)

Let H(x) = (U∗f)(x) − (−1)n(U∗f)(−x) so that we have to show

lim
x→0+

H(n)(x) = 0.

A simple computation using the formula for U∗f shows

H(x) =
[
s(x) − (−1)n s(−x)

]
f(x) −

[
s(−x) + (−1)ns(x)

]
f(−x), x > 0.

Taking derivatives we obtain

H(n)(x) =
n∑

k=0

(n
k

)
f (n−k)(x)

[
s(k)(x) − (−1)n+k s(k)(−x)

]

−
n∑

k=0

(n
k

)
(−1)n−kf (n−k)(−x)

[
(−1)ks(k)(−x) + (−1)ns(k)(x)

]

c© 1996 by CRC Press LLC



≡
n∑

k=0

(
n
k

){
Gk(f, s)(x)

}
.

If n− k is odd, lim
x→0+

f (n−k)(x) = 0 so that

lim
x→0+

Gk(f, s)(x) = −(−1)n−kf (n−k)(0−)
[
(−1)ks(k)(0) + (−1)ns(k)(0)

]
= 0,

since (−1)k = −(−1)n. If n− k is even, lim
x→0+

f (n−k)(−x) = 0 so that

lim
x→0+

Gk(f, s)(x) = f (n−k)(0+)
[
s(k)(0) − (−1)n+k s(k)(0) ] = 0.

This finishes the proof of (5.6) and, hence, the theorem.

We shall examine the smooth projection operators defined in section 1.3
in terms of the unitary operators we have defined in this section.

In Theorem 5.3 we have shown that U∗χ
(0,∞)

U = P+
0,ε ≡ P+

0 where

(P+
0 f)(x) = s(x)

[
s(x)f(x) ± s(−x)f(−x)

]
was given in (3.1); we already

knew that P+
0 is an orthogonal projection, but this follows immediately

from this equality since U is a unitary operator and the multiplication by
χ

(0,∞)
operator is self-adjoint: in fact,

(P+
0 )∗ = U∗χ∗

(0,∞)
U = U∗χ

(0,∞)
U = P+

0

and

(P+
0 )2 = U∗χ

(0,∞)
UU∗χ

(0,∞)
U = U∗χ

(0,∞)
U = P+

0 .

To find the projection P+
α corresponding to the interval (α,∞), we recall

the definition P+
α = ταP

+
0 τ∗α and observe that ταχ(0,∞)

τ∗α = χ
(α,∞)

to
obtain

P+
α = U∗

αχ(α,∞)
Uα. (5.7)

The following, in fact, establishes (5.7):

P+
α = ταP

+
0 τ∗α = ταU

∗χ
(0,∞)

Uτ∗α = ταU
∗(τ∗αταχ(0,∞)

τ∗ατα)Uτ∗α
= U∗

α(ταχ(0,∞)
τ∗α)Uα = U∗

αχ(α,∞)
Uα.
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Observe that equality (5.7) shows immediately that P+
α is an orthogonal

projection, since Uα is unitary.

We can also define, as we did in section 1.3, the projections associated
with the interval (−∞, 0). Just define P 0

− = U∗χ
(−∞,0)

U and it is imme-
diate that P 0

− is an orthogonal projection, since U is unitary. Moreover,

(P 0
−f)(x) = s(−x)

[
s(−x)f(x) − s(x)f(−x)

]
.

(Observe that this projection has negative polarity at 0.) We can translate
this projection to the interval (−∞, β) to obtain

P β
− = U∗

βχ(−∞,β)
Uβ

as we did when we obtained (5.7).

Let us now show how these unitary operators can be used to obtain the
smooth projections PI associated with the interval I = [α, β]. Choose the
real numbers α, β, ε and ε′ with ε, ε′ > 0 and

−∞ < α− ε < α < α + ε < β − ε′ < β < β + ε′ < ∞.

Observe that Uαf and U∗
αf have the same values as f outside the interval

(α− ε, α + ε), and both Uβf and U∗
βf coincide with f outside the interval

(β−ε′, β+ε′). As a consequence, we have several commutativity relations;
some of them are:

i) UαU
∗
β = U∗

βUα and UαUβ = UβUα,

ii) χ
(α,∞)

U∗
β = U∗

βχ(α,∞)
,

iii) Uαχ(−∞,β)
= χ

(−∞,β)
Uα.

 (5.8)

These commutativity relations allow us to show P+
α P β

− = P β
−P

+
α . In fact,

using (5.8), we have

P+
α P β

− = U∗
αχ(α,∞)

UαU
∗
βχ(−∞,β)

Uβ = U∗
αU

∗
βχ(α,β)

UαUβ ,

and, similarly,

P β
−P

+
α = U∗

αU
∗
βχ(α,β)

UαUβ .
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Since P+
α P β

− = P β
−P

+
α , the operator P+,−

(α,β) = U∗
αU

∗
βχ(α,β)

UαUβ is an or-
thogonal projection. Observe that this projection has polarity + at α and
polarity − at β. Again, observe that this equality giving us P+,−

(α,β) also
immediately implies that it is a projection.

It is now easy to obtain the version of Theorem 3.15 for P+,−
(α,β) by using

the definition of this projection we have just given in terms of the folding
operators. In fact, suppose

−∞ < α− ε < α < α+ ε < β − ε′< β < β + ε′< γ − ε′′< γ < γ + ε′′< ∞

so that the intervals I = [α, β] and J = [β, γ], with these choices of ε, ε′, ε′′,
are compatible. Then, if we write

PI = P+,−
(α,β), PJ = P+,−

(β,γ) and PI∪J = P+,−
(α,γ),

we have
i) PI + PJ = PI∪J

and
ii) PIPJ = PJPI .

Equality i) follows easily from (5.8) once we express PI , PJ and PI∪J in
terms of the associated folding operators and the characteristic functions
χ
I
, χ

J
and χ

I∪J .

Equality ii) can be proved as we did for Theorem 3.15. But it can also
be easily obtained directly by using the fact that χ

I
χ
J

= 0 = χ
J
χ
I

and
the commutativity relations (5.8) that the folding operators satisfy.

There are some remarks that should be made about this approach. We
have only obtained the special case of Theorem 3.15 for projections with
polarities (+,−). To obtain the full statement of this theorem we need to
define folding operators related to projections having the other polarities.
In addition to the operators U and U∗, we also define V and V ∗ by

(V f)(x) =

{
s(x)f(x) − s(−x)f(−x), x > 0,

s(−x)f(x) + s(x)f(−x), x < 0,

and

(V ∗f)(x) =

{
s(x)f(x) + s(−x)f(−x), x > 0,

s(−x)f(x) − s(x)f(−x), x < 0.
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Thus,
U∗χ

(0,∞)
U = P+

0 , U∗χ
(−∞,0)

U = P 0
−,

V ∗χ
(0,∞)

V = P−
0 , V ∗χ

(−∞,0)
V = P 0

+,

where

(P+,−
0 f)(x) = s(x)

[
s(x)f(x) ± s(−x)f(−x)

]
,

(P 0
+,−f)(x) = s(−x)

[
s(−x)f(x) ± s(x)f(−x)

]
.

We can now construct the four projections associated with an interval
I = (α, β) having chosen appropriate ε, ε′ > 0. They are

P+,−
I = U∗

αU
∗
βχIUαUβ ,

P+,+
I = U∗

αV
∗
β χIUαVβ ,

P−,+
I = V ∗

αV
∗
β χIVαVβ ,

P−,−
I = V ∗

αU
∗
βχIVαUβ .


(5.9)

The full statement of Theorem 3.15 can then be obtained by using these
equalities, as long as we choose compatible projections for adjacent inter-
vals, and provided they have opposite polarities at the common end point.

It is illustrative to present the graphs of P+
0 f , P−

0 f , P 0
+f and P 0

−f (see
Figure 1.9 below) for f(x) = 1

(x+1)2+1 and ε = 1
2 .

01−2− 1−2

+
oP  f

01−2− 1−2

-
oP  f

01−2− 1−2

o
+P  f

01−2− 1−2

-
oP  f

Figure 1.9: Graphs of P+
0 f, P−

0 f, P 0
+f and P 0

−f .

This method for obtaining the projections associated with the interval
I by the factorizations presented in (5.9) is particularly useful in appli-
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cations. The factors used are very simple operators that can be easily
represented in a computer program. More generally, the bases we have
constructed in terms of a specific function to which we apply certain trans-
lation operators, dilation operators and/or modulations are also well suited
for applications. The fact that an elementary function is used and the fact
that these operators applied to it are particularly simple lead to relatively
elegant expressions for the partial sums of the series representing general
functions.

1.6 Notes and references

1. Appropriate general assumptions that guarantee the validity of most
of the formulas in section 1.1 can be found in [SW]. The Haar function
presented in Example A was discovered by A. Haar (see [Haa]) in 1910.
More information about Gabor bases can be obtained from [Gab]. Those
readers who are not familiar with the space S ′ of tempered distributions
involved in the proof of Theorem 2.1 can find the definition and relevant
properties of S ′ in [SW]. Theorem 2.1, referred to as the Balian-Low the-
orem in this book, was originally proved independently by R. Balian [Bal]
and F. Low [Low] in the early 1980s. (See also item 1 in section 8.5.) The
proof we presented is due to G. Battle [Bat2]. A good source for the basic
properties of orthogonal projections used in section 1.3 is the book written
by P. Halmos [Hal]. The almost everywhere convergence of the trigonomet-
ric series considered in section 1.4 follows from the Carleson-Hunt theorem
(see [Car1] and [Hun]). The detailed construction of the Lemarié-Meyer
wavelets introduced in section 1.4 can be found in [LM]. While the local
sine and cosine series in Theorem 4.5 were first described by R. Coifman
and Y. Meyer in [CM2], they were also introduced by H. Malvar ([Malv]) in
connection with the theory of signal processes. A complete account of these
facts is also discussed in [AWW]. The Wilson basis mentioned in the same
section was introduced by K. Wilson in an unpublished manuscript [Wil].
The proof that the family (4.13) is an orthonormal basis for some func-
tion g was presented in [DJJ]. The unitary folding operators of section 1.5
and their application to obtaining smooth localized orthonormal bases were
developed in [Wi1] and are also described in [Wi2].

2. Dilation factors other than 2 can be considered to decompose L
2(R) as
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an orthogonal direct sum in a way similar to (3.19). Consider the intervals
I = [π, λπ] and J = [−λπ,−π] for some λ > 1, and let Ik = λ−kI and
Jk = λ−kJ for all k ∈ Z. Since

(0,∞) =
⋃
k∈Z

λkI and (−∞, 0) =
⋃
k∈Z

λkJ,

it follows from the theory of smooth projections developed in section 1.3
that

L
2(R) =

{⊕
k∈Z

PJk
(L2(R))

}⊕{⊕
k∈Z

PIk(L2(R))
}

when we choose compatible bell functions for adjacent intervals and appro-
priate polarities. It then follows, as in the proof that led to Theorem 4.5,
that the collection of functions

αλj,k(ξ) = cλj,k(ξ) + isλj,k(ξ) and βλj,k(ξ) = cλj,k(ξ) − isλj,k(ξ),

where

cλj,k(ξ) ≡
λ

j
2√

2(λ− 1)π
b(λjξ) cos

(2k + 1
2

1
λ− 1

(λjξ − π)
)

and

sλj,k(ξ) ≡
λ

j
2√

2(λ− 1)π
b(λjξ) sin

(2k + 1
2

1
λ− 1

(λjξ − π)
)
,

is an orthonormal basis for L2(R). It is shown in [AWW] that in order for
the functions αλj,k and βλj,k to be generated by a single function, αλ0,0, via

dilations by λ and multiplications by ein
ξ

λ−1 , n ∈ Z, as was the case for the
basis of Theorem 4.5, we must have

λ = 1 +
1
m

for some m ∈ Z
+. With this value of λ one can obtain a wavelet basis of

the form
{
λ

j
2ψ(λjx− k 1

λ−1 ) : j, k ∈ Z
}
, where

ψ̂(ξ) =
1√

2π(λ− 1)
ei

ξ
2(λ−1) b(ξ).

The function b we need to use in the above considerations is an even function
on R that, when restricted to (0,∞), is a bell function associated with the
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interval [π, λπ], ε = λ−1
λ+1π and ε′ = λ(λ−1)

λ+1 π = λε. This result is due to
G. David (see [Dav]).

3. For information on the theory of wavelet-like bases with more general
dilation factors see [Au3] and note 2 in section 2.5.
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