
Chapter 23

Parallelizing Two-dimensional

FFTs

23.1 The Computation of Multiple 1D FFTs

The need to compute a set of 1D FFTs arises naturally in many applications. If the
FFTs have the same length and properties (e.g., all real or complex), an appropriate
sequential FFT algorithm may be applied to them one after the other, or it may be
applied to them all at once stage by stage. Since the same set of twiddle factors
are applied, it is inefficient in this context to compute them on the fly. Instead, the
twiddle factors should be pre-computed (once), stored, and reused for each FFT in the
set. Using the latter approach, the storage for the twiddle factors is the same as that
required for a single FFT. It is thus straightforward to adapt FFT software to compute
multiple 1D FFTs on a uniprocessor machine,

The simplest parallel algorithm to compute multiple 1D FFTs is “embarrassingly
parallel”; the set of M 1D FFTs (of length N each) can simply be evenly divided among
the p processors, and each processor simply applies an appropriate sequential algorithm
to compute its share of �M/p� 1D FFTs. In this case, there is no communication, but
the twiddle factors need to be pre-computed and stored in each processor. This was
referred to as the “independent processors” approach in [46].

If the computation associated with each single FFT is divided among several pro-
cessors in some way, additional inter-processor communication is required. This “co-
operative processors” approach was also explored in [46], and two algorithms using
this approach were compared with the “independent processors” idea on an nCUBE 2
hypercube consisting of 128 processors. As expected, the timing results reported in [46]
confirmed efficiency values of 99 to 99.9% for the “independent processors” approach,
which was in contrast to efficiency values of 29 to 49% for the two implementations of
the cooperating processors.

Although the computation of a two-dimensional FFT may be viewed as computing
multiple 1D FFTs in each direction (as shown in the next section), the parallelization
of a two-dimensional FFT presents another challenge because the highly efficient “in-
dependent processors” approach cannot be used on both directions without incurring
inter-processor data communications, and it is no longer the clear winner. The 2D
FFTs are the focus of the remainder of this chapter.

© 2000 by CRC Press LLC



23.2 The Sequential 2D FFT Algorithm

In this section a fast serial algorithm for computing the DFT on a two-dimensional
image consisting of N1 ×N2 signals is reviewed. The signals are stored in an N1 ×N2

matrix x. An entry in the signal matrix is denoted by x�1,�2 . The 2D-DFT of x is
defined by the following equation [70, 72]:

Xr1,r2 =
N1−1∑
�1=0

N2−1∑
�2=0

x�1,�2ωN1
r1�1ωN2

r2�2 ,

for r1 = 0, 1, · · · , N1 − 1, and r2 = 0, 1, · · · , N2 − 1.

(23.1)

If the equation above is used in a straightforward (naive) way, Θ (N1N2) arithmetic
operations are required to compute each Xr1,r2 , yielding a total cost of Θ

(
N2

1N
2
2

)
,

or Θ
(
N4

)
if N1 = N2 = N . Fortunately, this may be reduced very significantly by

separating the 2D-DFT into a series of 1D-DFTs, which can each be implemented using
a fast 1D-FFT algorithm. This process is shown below.

Xr1,r2 =
N1−1∑
�1=0

N2−1∑
�2=0

x�1,�2ωN1
r1�1ωN2

r2�2

=
N1−1∑
�1=0

ωN1
r1�1

(
N2−1∑
�2=0

x�1,�2ωN2
r2�2

)

=
N1−1∑
�1=0

ωN1
r1�1

(
X̃�1,r2

)

=
N1−1∑
�1=0

(
X̃�1,r2

)
ωN1

r1�1 , r1 = 0, 1, · · · , N1 − 1, r2 = 0, 1, · · · , N2 − 1.

(23.2)

Thus, by effecting a series of (ordered) 1D-FFTs on the N1 rows (of length N2

each) of x, the data in row �1 are transformed to X̃�1,r2 for 0 ≤ r2 ≤ N2 − 1. The total
cost of this row-transform phase is Θ (N1N2 log2 N2). This is followed by a series of
(ordered) 1D-FFTs on the N2 columns (of length N1 each) of X̃, and column r2 of X̃
is transformed to Xr1,r2 for 0 ≤ r1 ≤ N1 − 1. The cost of the column-transform phase
is Θ (N2N1 log2 N1). The efficiency of the discrete Fourier transform of a digital image
consisting of N1×N2 signals is thus improved from Θ

(
N2

1N
2
2

)
to Θ (N1N2 log2 (N1N2)).

When N1 = N2 = N , the computing cost is reduced from Θ
(
N4

)
to Θ

(
N2 log2 N

)
.

Therefore, the computational efficiency of the 2D-FFTs is even greater than that of
the 1D-FFTs.

Note that if an in-place unordered FFT is used in both row-transform phase and
column-transform phase, then the entry x�1,�2 would be finally overwritten by Xm1,m2 ,
where the binary representation of m1 bit-reverses that of �1, and m2 is related to �2
in the same way.

For obvious reasons, the approach based on equation (23.2) is called the “row-
column” method [41, 70] or the “separable” method [46] in the literature.

© 2000 by CRC Press LLC



23.2.1 Programming considerations

As noted by Duhamel and Vetterli [41], the matrix which contains the data of a 2D
transform grows quickly. For example, if N1 = N2 = 1024, there are more than one
million complex numbers in the 1024 × 1024 matrix. Depending on the programming
language used, this large matrix is stored either column-by-column or row-by-row in
computer memory. In order to minimize the number of memory accesses, an efficient
method must be used to access blocks of consecutive rows or blocks of consecutive
columns in a manner compatible with the storage scheme. To achieve this, the row-
column FFT is often performed by including a matrix transposition between the FFTs
on the columns and the FFTs on the rows in order to allow access to the data by
blocks [41]. A fast method for matrix transposing was proposed by Eklundh in [45]. The
two possible implementations of the row-column method are depicted in Figure 23.1.

Figure 23.1 Sequential row-column 2D FFT algorithm—two implementations.

23.2.2 Computing a single 1D FFT stored in a 2D matrix

If the data of a single 1D FFT of length N = 2n is stored in a 2D matrix of dimension
N1 × N2, where N = N1 × N2, N1 = 2n1 , and N2 = 2n2 , it can also be computed
by independent 1D FFTs on the rows and columns of the matrix. However, note that
in this context the twiddle factors used are derivatives of ω�N rather than derivatives
of ω�N1

and ω�N2
. For example, a 2D matrix was used in [51] to store a 1D FFT for

distribution to processors that are connected by a hypercube or a 2D mesh network.

Consequently, except for using different twiddle factors, one can use the 2D FFT
algorithm to compute a single 1D FFT if the latter is stored in a 2D matrix. It follows
that parallel 2D FFT algorithms can be used to compute a single 1D FFT as well.

© 2000 by CRC Press LLC



23.2.3 Sequential algorithms for matrix transposition

The standard method depicted in Figure 23.2 applies to any block partitioned matrix.
Since each Aij block could be of dimensions 1 × 1, k × k, or m× �, the matrix A may
be square or rectangular of any size.

Figure 23.2 Transpose a matrix A by the standard method.

The divide-and-conquer method depicted in Figure 23.3 is recursive by nature. A
square or rectangular matrix may be divided into four submatrices at each level.

Figure 23.3 Transpose a matrix A by the recursive method.

The method depicted in Figure 23.4 was originally proposed by Eklundh [45] to
facilitate the out-of-core (when core memory was still in use and the memory size is
very limited) matrix transposition. The idea is that two rows are read in each time,
the appropriate elements are permuted, the modified two rows are then written out to
the disk. The example in Figure 23.4 shows that the first permutation step involves

© 2000 by CRC Press LLC



row 1 and row 2, the second step involves row 3 and row 4, the third step involves row
1 and row 3, and the fourth step involves row 2 and row 4. (Each row can be a single
row as originally proposed, or it can be a block row if each Aij is a submatrix instead
of a single element.)

Note that unlike the other two algorithms, some blocks will be moved multiple times
in Eklundh’s method. For example, block A14 was moved twice in Figure 23.4.

Note that this more complicated permutation scheme can be easily described using
the binary representation of the row and column indices of block Aij , which is denoted
as A[i, j] below. Suppose i = b2b1b0, and j = u2u1u0; then three pairwise exchanges
may switch A[b2b1b0, u2u1u0] with A[b2b1u0, u2u1b0], followed by A[b2u1u0, u2b1b0], and
finally with A[u2u1u0, b2b1b0].

Although this method requires that the number of (block) rows and (block) columns
be the same, since i and j must have the same number of bits to effect pair-wise
exchange throughout, there is no restriction on the dimension of each block itself.
That is, A[i, j] could again be a single element, a square, or a rectangular matrix.

Figure 23.4 Transpose a matrix A by Eklundh’s method [45].

© 2000 by CRC Press LLC



23.3 Three Parallel 2D FFT Algorithms for Hyper-

cubes

Readers are assumed to be familiar with the hypercube multiprocessors introduced in
Chapter 18 and the large number of parallel 1D FFTs described in previous chapters.
As one would expect, different parallel algorithms are available to handle the column-
oriented mapping scheme, row-oriented mapping scheme, and the 2D-block mapping
scheme. Three sample algorithms are used to introduce some basic ideas in the following
sections.

23.3.1 The transpose split (TS) method

The transpose split (TS) method used in [22, 24] parallelizes the row-column 2D FFT
algorithm. In the example shown in Figure 23.5, the four processors P0, P1, P2, and
P3, are each allocated a block of consecutive columns or rows. Clearly, only the ma-
trix transposition phase(s) will incur inter-processor communication, and an efficient
parallel algorithm for matrix transposition is all that is needed.

Figure 23.5 The TS (transpose split) method with column or row data allocation.

© 2000 by CRC Press LLC



23.3.2 The local distributed (LD) method

The local distributed (LD) method in [22, 24, 46] does not have a matrix transposition
phase. For the example above, each processor first independently computes multiple
1D FFTs on allocated columns (or rows). In the next phase, since each individual row
(or column) of the updated signal matrix is shared by all four processors as depicted
in Figure 23.6, an appropriate “parallel” 1D FFT algorithm from previous chapters is
used to transform the multiple rows (or columns) all at once. (Note that only one set
of twiddle factors is needed.) An implementation proposed in [46] used the sequential
“split-radix” algorithm to the rows, and the parallel “radix-4” to the columns.

Figure 23.6 The LD (local distributed) method with column or row wise data alloca-
tion.

Since a processor may apply each stage of the FFT transformation to all 1D FFTs
at once, the same communication algorithm for a single parallel 1D FFT may be
easily modified to include the data needed for all 1D FFTs in each message, i.e., the
message size is increased, but the number of messages remains identical to that incurred
by parallelizing a single 1D FFT. Therefore, on machines with large communication
bandwidth, the communication cost is expected to impact the performance of 2D FFT
less significantly.

© 2000 by CRC Press LLC



23.3.3 The 2D block distributed method

The basic idea of the 2D block distributed method [22] is depicted by a simple example
on a 2-by-2 processor grid in Figure 23.7 below.

Figure 23.7 The 2D block distributed method on a 2× 2 processor grid.

Even if one wishes to do so, it is not always possible to configure the available p

processors as a
√
p × √

p grid. For example, if p = 2d and d is an odd number, the
p processors cannot be arranged as a square grid. In what follows, assume p = 2d =
2d1+d2 = 2d1 ×2d2 . A desirable objective is that the 2D block distributed method work
for all possible values of d1 and d2. To achieve this, it is apparent that the dimensions
of the rectangular processor grid should be input parameters to the program.

When the p processors form a hypercube, the processors on each row and each
column of the grid form a subcube, hence the name subcube-grid [26, 27, 29]. One
may then choose any convenient dimensions, because the performance of the 2D block
distributed method is not affected by the dimensions of the subcube-grid. The reasons
for this are that the following observations hold, regardless of how the subcube-grid is
configured.

• each processor has (N1 ×N2) /p data elements,

• each message is either of length (N1 ×N1) /p or one half of it (depending on the
chosen parallel 1D FFT algorithm),

• all subcube-doubling message exchanges involve only neighboring processors,

• the total number of messages is d1 + d2 = d always,

• the subcube-doubling communication algorithm does not cause traffic congestion.

Note that the generalized 2D block method includes the LD method as a special
case corresponding to a 1 × p or p× 1 subcube-grid.

23.3.4 Transforming a rectangular signal matrix on hypercubes

Although a square signal matrix was shown in all examples in the previous sections, in
reality the signal matrix may not be square. A little reflection leads to the conclusion
that all three algorithms work without significant modification when the matrix is not
square. The only proviso is that the TS (transpose split) method requires that its
parallel matrix transposition algorithm handle rectangular matrices of any dimension.

© 2000 by CRC Press LLC



23.4 The Generalized 2D Block Distributed (GBLK)

Method for Subcube-grids and Meshes

Recall that the signal data for a 2D FFT are stored naturally in an N1 ×N2 matrix,
and that by viewing the hypercube as various 2D subcube-grids, the generalized 2D
block distributed (GBLK) method may be regarded as partitioning the matrix on a
corresponding subcube-grid. Furthermore, the performance of the GBLK method is
not affected by the aspect ratio of the subcube-grid for reasons discussed in the last
section. In other words, given a hypercube consisting of p = 2d = 2d1+d2 processors,
the N1 ×N2 data matrix may be mapped to any subcube-grid of dimensions γ1 × γ2,
where γ1 = 2d1 , and γ2 = 2d2 . Given below are the four possible subcube-grids for
p = 8, together with the corresponding data mappings.

Figure 23.8 The four GBLK data mappings on 8-node subcube-grids.

© 2000 by CRC Press LLC



23.4.1 Running hypercube (subcube-grid) programs on meshes

The 512 computing nodes on the Intel Touchstone DELTA computer [44] are connected
as a 16-by-32 two-dimensional mesh, and disjoint sub-meshes of dimensions (row, col),
with row ≤ 16 and col ≤ 32, can be allocated to individual users [44]. For example,
Figure 23.9 shows three 8-processor physical sub-meshes allocated from a 4-by-8 mesh.

Figure 23.9 Three 8-node physical sub-meshes allocated from a 4-by-8 mesh.

From E. Chu [25], The International Journal of High Performance Computing Applications,

13(2):124–145, 1999. With permission.

A mesh has fewer communication channels than a hypercube, and it is not pos-
sible to have the allocated processors in Figure 23.9 form a subcube-grid. However,
since a mesh is a connected network, there is a path between any two processors, a
hypercube program implementing the subcube-doubling communication algorithm will
run correctly on a mesh as shown by the 8-node examples in Figure 23.10. Regard-
less of whether a subcube-grid or a mesh is used, the matrix elements can always be
distributed to processors using the same mapping scheme, and the communication al-
gorithm can still be understood as passing the same sequences of messages between the
same designated pairs of processors, and the length of each message remains unchanged.

Thus a different physical network topology will not affect the “correctness” of the
algorithm or the software. However, a different physical network topology can

(i) increase the “physical distance” (measured by the number of hardware channels or
hops) between communicating processors, and

(ii) cause “contention of communication channels” when logically-disjoint message
paths overlap badly on the physical network

and hence compromise the effectiveness of the logical topology in achieving its objective.

If the hop (distance) penalty is low, the first problem will not affect the performance
much. However, the contention of communication channels may be a serious problem

© 2000 by CRC Press LLC



because it can cause severe traffic congestion. In the next section, the extent of traffic
congestion is directly related to the physical distance a message travels when using
the subcube-doubling technique on a mesh, and the question of how to reduce traffic
congestion by using an optimal aspect ratio to configure the physical mesh (at runtime)
is addressed.

Figure 23.10 The four GBLK data mappings on four 8-node meshes.

23.5 Configuring an Optimal Physical Mesh for Run-

ning Hypercube (Subcube-grid) Programs

The objective in configuring an optimal physical mesh is to minimize communication
overhead due to the multi-hop (distance) penalty and traffic congestion. Since circuit-
switching is used by the DELTA mesh and other currently available message-passing
multiprocessors to manage the network, the contention of communication channels is
resolved in a particular manner. It is, therefore, useful to show directly in Section 23.5.3
that the effect of channel contention on a circuit-switching physical mesh is also mini-
mized by the optimal aspect ratio derived in Theorem 23.1 in Section 23.5.1.

23.5.1 Minimizing multi-hop penalty

To support the subcube-doubling communication algorithm on an arbitrary γ1-by-γ2

subcube-grid using a µ1-by-µ2 physical mesh, consider first how to minimize the total
physical distance the messages travel. In the following analysis it is assumed that
γ1 = 2d1 , γ2 = 2d2 , µ1 = 2δ1 , µ2 = 2δ2 , and p = γ1 × γ2 = µ1 × µ2 = 2d, where d1, d2,

© 2000 by CRC Press LLC



δ1 and δ2 are non-negative integers. It is also assumed without loss of generality that
the p processors are numbered consecutively row by row in both the subcube-grid and
the mesh: e.g., processors P0, · · · , Pγ2−1 form the first row of the subcube-grid, and
processors P0, · · · , Pµ2−1 form the first row of the mesh.

When the subcube-doubling algorithm is used for concurrent message exchanges
among all pairs of processors, the communication requirement is the same for every
processor (see Figures 23.8 and 23.10). It is thus sufficient to examine the requirement
of processor P0 in what follows.

Figures 23.8 and 23.10 demonstrate that regardless of the aspect ratio of the
subcube-grid or the mesh, P0 communicates with Pi, i = 2�, 0 ≤ � ≤ d− 1. However,
the physical distance between P0 and each such Pi varies with the physical meshes used
to run the program. For example, according to Figure 23.10, using a 2-by-4 mesh, P0

is one hop away from either P1 or P4, and two hops away from P2; using a linear array,
P0 is one hop away from P1, two hops away from P2, and four hops away from P4.

Theorem 23.1 is next stated and proved, which shows that the total physical distance
between P0 and all designated Pi’s is a function of d and δ1.

Theorem 23.1 Assume that the p processors denoted by P0, · · · , Pp−1 are arranged
row by row on a µ1 × µ2 physical mesh, where µ1 = 2δ1 , and µ2 = 2δ2 . If processor
P0 communicates with the d = δ1 + δ2 processors required by the subcube-doubling
technique, then the total physical distance is given in hops by Hmesh(d, δ1) = 2δ1 +
2d−δ1 − 2, and is minimized when δ1 = d/2, i.e., µ1 = µ2 =

√
p, assuming that d is an

even number.

Proof: Since each row of the physical mesh is a linear array, the physical distance
between P0 and Pj , j = 2�2 , 0 ≤ �2 ≤ δ2 − 1, is exactly 2�2 hops. Since each column
of the physical mesh is also a linear array, the physical distance between P0 and Pi,
i = 2δ2+�1 , 0 ≤ �1 ≤ δ1 − 1, is exactly 2�1 hops. Therefore, the total distance between
the d pairs of communicating processors can be computed by

Hmesh(d, δ1) =
δ2−1∑
�2=0

2�2 +
δ1−1∑
�1=0

2�1

= 2d−δ1 + 2δ1 − 2 .

(23.3)

Minimizing Hmesh (d, δ1) with respect to δ1 yields δ1 = d/2. Hence µ1 = µ2 = 2d/2 =√
p. �

23.5.2 Minimizing traffic congestion

To quantify the traffic congestion caused by the subcube-doubling communication on
the physical mesh, a traffic weight w(k)

i,j is associated with each communication channel

Ci,j which physically connects processors Pi and Pj on the mesh, and w
(k)
i,j is defined

to be the number of overlapped communication paths on that channel during the
kth communication step. Since the subcube-doubling communication is performed
independently within each row and within each column of the mesh, it is sufficient to
examine the extent of traffic congestion within one row and one column, which are
linear arrays of sizes µ2 and µ1 on a µ1-by-µ2 mesh. Figure 23.11 shows the overlapped

© 2000 by CRC Press LLC



communication paths caused by each subcube-doubling communication step on a linear
array consisting of processors P0, P1, · · · , P7. The values of w

(k)
i,i+1 defined for each

channel connecting the neighboring processors Pi and Pi+1 on the linear array are given
in Table 23.1, where 0 ≤ i ≤ 6 and 1 ≤ k ≤ 3. The extent of traffic congestion can be
quantified by the total weight

∑3
k=1

∑6
i=0 w

(k)
i,i+1 = 28 for this example.

Figure 23.11 The overlapped communication paths incurred by the subcube-doubling
algorithm (p = 8).

From E. Chu [25], The International Journal of High Performance Computing Applications,

13(2):124–145, 1999. With permission.

Table 23.1 Traffic weights for communication channels Ci,i+1 in Figure 1.

Step (k) w
(k)
0,1 w

(k)
1,2 w

(k)
2,3 w

(k)
3,4 w

(k)
4,5 w

(k)
5,6 w

(k)
6,7

∑6
i=0 w

(k)
i,i+1

k = 1 1 0 1 0 1 0 1 4

k = 2 1 2 1 0 1 2 1 8

k = 3 1 2 3 4 3 2 1 16∑3
k=1

∑6
i=0 w

(k)
i,i+1 28

From E. Chu [25], The International Journal of High Performance Computing Applications,

13(2):124–145, 1999. With permission.

Now consider the total traffic weight caused by the subcube-doubling algorithm on
a linear array consisting of µ = 2δ processors in Lemma 23.2 below.

Lemma 23.2 The total traffic weight imposed by the subcube-doubling communica-
tion on a linear array of size u = 2δ is given by W (δ)=

∑δ
k=1

∑µ−2
i=0 w

(k)
i,i+1=22δ−1−2δ−1.

Proof: Observe that during the kth subcube-doubling communication step, each pair
of communicating processors is m = 2k−1 hops apart. Since the traffic weights on the
m channels connecting processors P0, P1, · · · , Pm is summed up by

∑m
�=1 �, and the

traffic weights on the m − 1 channels connecting processors Pm, Pm+1, · · · , P2m−1 is
summed up by

∑m−1
�=1 �, the total weight on channels connecting each disjoint group of

© 2000 by CRC Press LLC



2m = 2k processors, can be computed by

m∑
�=1

� +
m−1∑
�=1

� = m2 = 22k−2 .(23.4)

Since there are 2δ−k groups of 2k processors performing the kth subcube-doubling
communication step independently, the total weight from all k communication steps
on the entire linear array can be computed by

W (δ) =
δ∑
k=1

µ−2∑
i=0

w
(k)
i,i+1 =

δ∑
k=1

2δ−k

2k−1∑
�=1

� +
2k−1−1∑
�=1

�

 = 22δ−1 − 2δ−1 .(23.5)

�

Theorem 23.3 The total traffic weight imposed by the subcube-doubling communi-
cation on a µ1-by-µ2 mesh, where µ1 = 2δ1 , µ2 = 2δ2 , and p = 2δ1+δ2 = 2d, is given by
Wmesh (d, δ1) = 2d−1

(
2δ1 + 2d−δ1 − 2

)
, and is minimized when δ1 = d/2, i.e., µ1 =

µ2 =
√
p, assuming that d is an even number.

Proof: As noted earlier, the subcube-doubling communication is performed indepen-
dently within each row and each column of the µ1-by-µ2 mesh. Lemma 23.2 implies

Wrow (δ2) = 22δ2−1 − 2δ2−1(23.6)

and

Wcolumn (δ1) = 22δ1−1 − 2δ1−1 .(23.7)

Since there are µ1 = 2δ1 rows and µ2 = 2δ2 columns, the total traffic weight on the
µ1-by-µ2 mesh is given by

Wmesh (d, δ1) = 2δ2 ×Wcolumn (δ1) + 2δ1 ×Wrow (δ2)

= 2d−1
(
2δ1 + 2d−δ1 − 2

)
= 2d−1 ×Hmesh (d, δ1) .

(23.8)

Therefore, the value δ1 = d/2 that minimizes Hmesh (d, δ1) in Theorem 23.1 also mini-
mizes Wmesh (d, δ1). �

Corollary 23.4 follows immediately from Theorems 23.1 and 23.3.

Corollary 23.4 If the given physical mesh consists of p = 2d processors, where d

is an odd number, then Hmesh (d, �d/2�) = Hmesh (d, �d/2�), and Wmesh (d, �d/2�) =
Wmesh (d, �d/2�).

The results above are depicted in Figure 23.12 for the 8-processor example, i.e.,
either a 2-by-4 mesh or a 4-by-2 mesh should be used to run the hypercube program
regardless of how the matrix is partitioned among the processors.

© 2000 by CRC Press LLC



Figure 23.12 Optimal 8-node meshes for running hypercube programs.

© 2000 by CRC Press LLC



23.5.3 Minimizing channel contention on a circuit-switched net-

work

When a message is to be sent from one processor to another on a circuit-switched
network, a header packet is sent to reserve all of the channels required to build its path.
After this “circuit” is established, the message is transmitted, and an end-of-message
indicator releases the channels [44]. Therefore, when the paths of several concurrent
messages overlap, the establishment of each corresponding circuit must wait for the
shared channel(s) to be released from one previously built route. Such wait time can
be eliminated if there is no overlapped concurrent communication paths. From the
analysis of subcube-doubling communication on a mesh in the previous section, it is
clear that there are exactly “m” m-hop paths overlapping each other when a processor
sends a message to a destination m hops away within each row or each column of
the physical mesh; i.e., the number of overlapped paths is the same as the physical
distance a message travels (see Figure 23.11 for an example). Consequently, the physical
mesh chosen to minimize the total physical distance a processor’s messages travel in
Theorem 23.1 also minimizes the total number of overlapped communication paths,
and hence the effect of channel contention on a circuit-switched network.

Thus, Theorems 23.1, 23.3, and Corollary 23.4 imply that when a hypercube pro-
gram is run (or emulated) on a mesh,

for best performance, a closest-to-square physical mesh should be used.

The user still has the flexibility of choosing a particular data mapping to facilitate
memory access, and/or to simplify data structures, and/or for programming conve-
nience.

23.6 Pipelining Subcube-doubling Communications

on All Hypercube Channels

The idea of pipelining subcube-doubling communications on all hypercube channels
was used by Calvin in [22] to overlap communication and computation in implementing
parallel 2D FFT algorithms. To help explain this idea, recall from Chapter 18 the d

communication steps in the basic subcube doubling algorithm—they are depicted again
in Figure 23.13 (d = 3 in the example). Note that while there are d

(
2d−1

)
channels in

a hypercube of dimension d, only 2d−1 channels are used per communication step.
To make use of all available channels simultaneously, each processor is required

to pipeline its outgoing messages to all its neighbors. For example, P0 is shown to
pipeline its messages to P1, P2, and P4 using a non-blocking send in each step as shown
in Figure 23.14, so does P1 as well as every other processor.

Since the pipelining technique typically involves sending multiple shorter messages
instead of a single long message, the startup time caused by multiple sends must be
“overlapped” (or “masked”) by arithmetic work to a large extent if the pipelining
method is to be effective. Instead of simply displaying a data mapping which can
accomplish this objective, the computation of N1 1D FFTs of length N2 on p = 2d = 8
processors is used as an example to “construct” and “demonstrate” such a mapping
step by step.

© 2000 by CRC Press LLC



Figure 23.13 The d synchronous exchanges in the subcube-doubling algorithm
(d = 3).

Figure 23.14 Pipelining subcube-doubling “send” on all channels (d = 3).

© 2000 by CRC Press LLC



Referring to Figure 23.15, observe that P0 has been assigned the first block of N2
p

columns (p = 8 in the example). Instead of applying FFT steps to the entire block all
at once and exchanging a single message with one neighbor, the data in P0 are now
partitioned into d = log2 p portions (d = 3 in the example), and P0 interleaves its
local computation on each portion of data with message passing to each neighbor as
described in Algorithm 23.6.

Algorithm 23.1 The actions by P0 in step 1.

begin
d := log2 p d is the hypercube dimension
for k = 1 to d iterate on d portions of data

P0 performs local computation on the kth portion;
P0 sends the updated data from this portion to its kth neighbor;

end for
end

After P0 completes the initial step, ideally the message P0 expects from P4 has
already arrived, and P0 can now use the incoming data to update the first portion of
its data. (If the data is always ready when the processor needs it, the communication
time is said to be fully masked.) Referring to Figure 23.15 again, observe that after P0

updates the first portion of data, P0 immediately sends the newly updated data from
this portion to P1. Since the data in each block row are divided evenly among the p

processors, P0 must rotate its d neighbors each step. By this time, ideally the data P0

needs to update the second portion of data has arrived from P2. After updating the
second portion, P0 immediately sends the necessary data from this portion to P4, and
so on. The actions by P0 in the second step are described in Algorithm 582. With
the understanding that the list of appropriate neighbors is rotated by one position (see
Figure 23.15), the generic description of step 2 may be used to describe step 3. (For
d > 3, the same description may be used for step 2, step 3, . . . , and step d.)

Algorithm 23.2 A generic description of actions by P0 in steps 2, 3,· · · , d.
begin

d := log2 p d is the hypercube dimension
for k = 1 to d iterate on d portions of data

P0 receives data from an appropriate communication cost is masked if
neighbor; data have arrived when needed

P0 updates an appropriate portion of data;
P0 sends the updated data from this portion

to an appropriate neighbor;
end for

end

For a hypercube of dimension d, step d + 1 is the last step.

© 2000 by CRC Press LLC



Algorithm 23.3 A generic description of actions by P0 in step d+1 – the last step.

begin
d := log2 p d is the hypercube dimension
for k = 1 to d iterate on d blocks of data

P0 receives data from an appropriate communication cost is masked if
neighbor; data have arrived when needed

P0 updates an appropriate portion of data;
end for

end

Figure 23.15 Pipelining subcube-doubling “send” from P0 on all channels (p = 8).

© 2000 by CRC Press LLC



Observe from Figure 23.15 that the data mapping has been partially constructed
in the process of developing the algorithm for P0. For p = 8, one only needs to follow
the actions of P7, which mirrors that of P0, and the data mapping is completed in
Figure 23.16.

Figure 23.16 Pipelining subcube-doubling “send” from P7 on all channels (p = 8).

© 2000 by CRC Press LLC



With the entire map constructed in Figure 23.16, one can now visualize the actions
of any processor from the map. Keep in mind that all processors perform the same
actions (pairing up with appropriate neighbors) “concurrently.” As one more example,
the actions by P1 are shown in Figure 23.17.

Figure 23.17 Pipelining subcube-doubling “send” from P1 on all channels (p = 8).

It should be understood that the generic description of the d + 1 steps of the al-
gorithm given in this section is not tailored to P0’s actions at all, but instead reflects
the concurrent actions of all p processors. Note that in order to mask the communi-
cation cost, the matrix must be sufficiently large so that each processor can be kept
busy computing before the message it waits for arrives. An analytical model was used
in [22] to derive the minimum size of such a matrix, which, as expected, is a function
of the number of processors and the hardware parameters of the machine being used.

© 2000 by CRC Press LLC



The method described above for computing multiple 1D FFTs may be viewed as
employing an “all processor-to-all neighbor” communication scheme depicted in Fig-
ure 23.18. Although the simplest problem of computing many 1D FFTs is used in this
section to make various aspects of this communication scheme easily understood, the
method is not designed and should not be used for this simple case—because the “in-
dependent processor” method incurs no communication at all. However, this method
is useful for FFT of higher dimensions, which is revisited in the next section.

Figure 23.18 All processor–to–all neighbor communication scheme (p = 8).

© 2000 by CRC Press LLC



23.7 Changing Data Mappings During Parallel 2D

FFT Computation

The data mappings required in implementing the following four methods for computing
the 2D FFT are depicted in Figures 23.19–23.22.

• The TS (transpose split) method: Two different data mappings are required in
phases I and II (see Figure 23.19). Note that by distributing consecutive rows
to the processors in Phase II, one has effectively transposed the data matrix
as desired. Accordingly, an efficient parallel algorithm for changing the data
mapping is an efficient parallel algorithm for matrix transposition, and such an
algorithm will be presented in the next section.

Figure 23.19 The TS method: Different data mappings used in phases I and II (p = 8).

• The LD (local distributed) method: Identical data mappings are used in phases I
and II (see Figure 23.20).

• The GBLK (generalized block distributed) method: Identical data mappings are
used in phases I and II (see Figure 23.21).

• Calvin’s method [22]: Two different data mappings are required in phases I and
II (see Figure 23.22). This method appears to be called the LD method with
overlap in [22]. It is not clear how the cost for changing the mapping can be
masked from the very brief description in [22].

23.8 Parallel Matrix Transposition By Changing Data

Mapping

As indicated in the previous section, an efficient parallel algorithm for changing the
mappings from distributing the matrix columns to distributing the matrix rows is an

© 2000 by CRC Press LLC



Figure 23.20 The LD method: Identical data mappings used in phases I and II (p = 8).

Figure 23.21 The GBLK method: Identical data mappings used in phases I and II
(p = 8).

© 2000 by CRC Press LLC



Figure 23.22 Calvin’s method: Different data mappings used in phases I and II
(p = 8).

efficient parallel algorithm for matrix transposition. Observe from Figure 23.23 that
a data mapping by columns may be viewed as distributing the N1 × N2 matrix A

on a 1 × p subcube-grid, and a data mapping by rows may be viewed as distributing
the same matrix on a p × 1 subcube-grid, where p = 2d. That is, each row of the
matrix is initially shared by p = 2d processors, and is finally stored in its entirely
in a single processor. This objective can be accomplished by halving the number of
processors on each row of the subcube-grid, and doubling the number of processors
on each column of the subcube-grid in d steps. Observe from Figure 23.23 that each
time the subcube-grid changes its dimensions this way, all that is required is that
every processor exchange one half of its data with a directly connected processor.
Accordingly, the total communication cost for transposing an N1×N2 matrix is exactly
d concurrent exchanges of 1

2
N1×N2
p complex numbers among all pairs of processors. (If

desired, the initial column mapping can be restored by reversing the steps with the
same communication cost.)

Note that the communication cost in Phase II of the LD (local distributed) method
for a 2D FFT (without inter-processor data permutation) requires d concurrent ex-
changes of N1×N2

p complex numbers [98], and the communication cost of this matrix
transposition algorithm is one half of that amount. Therefore, if the initial column
mapping needs not to be restored, the TS (transpose split) method incurs half the
communication cost of the LD method; if the initial column mapping must be re-
stored, the communication cost of the TS method becomes the same as that of the LD
method.

23.9 Notes and References

As noted in Section 23.3.3, the performance of the 2D block distributed method is
not affected by the aspect ratio of the subcube-grid for reasons identified there. How-
ever, this is not the case for many parallel matrix algorithms, i.e., the choice of the

© 2000 by CRC Press LLC



Figure 23.23 Parallel matrix transposition by changing data mapping (p = 8).

© 2000 by CRC Press LLC



aspect ratio for the subcube-grid can severely impact the performance of parallel algo-
rithms, and the subcube-grid is an important and versatile physical network topology.
For example, Chu and George show in [26, 27, 29] that an optimal aspect ratio can be
determined at run time for a class of fundamental numerical algorithms including Gaus-
sian elimination with partial pivoting, QR factorization (with column pivoting [27]),
Gauss-Jordan inversion, and multiple least squares updating algorithms. The signif-
icant net saving in execution time and storage usage gained from using an optimal
subcube-grid was demonstrated by numerical experiments on iPSC/2 and iPSC/860
hypercubes in [26, 27, 29].

Furthermore, the authors reported in [27] the iPSC/2 and iPSC/860 execution times
to demonstrate an efficient data relocation algorithm which dynamically changes the
data mapping between the subcube-grids, and the same algorithm was used in the last
section for changing the aspect ratio from 1 × p to p × 1, which effectively transposes
the distributed matrix among the p processors as desired.

The interplay of optimal physical and logical network topologies in the design and
implementation of parallel matrix algorithms was investigated further by Chu in [25].

Other interesting algorithms for computing the 2D FFTs include the class of vector-
radix algorithms as well as the class of polynomial transform algorithms. The basic
principles underlying these two classes of sequential algorithms were reviewed in [41],
and their parallel implementation on hypercube and mesh machines was recently ex-
amined by Angelopoulos and Pitas in [2]. Readers are referred to [65, 66, 79, 80] for
more details on the vector-radix algorithms, and [69, 70] on the polynomial transforms
originally proposed by Nussbaumer for the computation of 2D cyclic convolutions.

© 2000 by CRC Press LLC


	INSIDE the FFT BLACK BOX: Serial and Parallel Fast Fourier Transform Algorithms
	Table of Contents
	Part III: Parallel FFT Algorithms
	Chapter 23: Parallelizing Two-dimensional FFTs
	23.1 The Computation of Multiple 1D FFTs
	23.2 The Sequential 2D FFT Algorithm
	23.2.1 Programming considerations
	23.2.2 Computing a single 1D FFT stored in a 2D matrix
	23.2.3 Sequential algorithms for matrix transposition

	23.3 Three Parallel 2D FFT Algorithms for Hypercubes
	23.3.1 The transpose split (TS)method
	23.3.2 The local distributed (LD)method
	23.3.3 The 2D block distributed method
	23.3.4 Transforming a rectangular signal matrix on hypercubes

	23.4 The Generalized 2D Block Distributed (GBLK) Method for Subcube-grids and Meshes
	23.4.1 Running hypercube (subcube-grid) programs on meshes

	23.5 Configuring an Optimal Physical Mesh for Running Hypercube (Subcube-grid) Programs
	23.5.1 Minimizing multi-hop penalty
	23.5.2 Minimizing traffic congestion
	23.5.3 Minimizing channel contention on a circuit-switched network

	23.6 Pipelining Subcube-doubling Communications on All Hypercube Channels
	23.7 Changing Data Mappings During Parallel 2D FFT Computation
	23.8 Parallel Matrix Transposition By Changing Data Mapping
	23.9 Notes and References



