
1. ABSTRACT

In this paper two adaptive algorithms to imple-

•ent the optimum radar signal processor are pre

sented and their performance are evaluated. The

first method considered derives from the appli-

cation of the Gram-Schmidt orthonormalization

algorithm to the input. The second one refers to

an algorithm for the direct inversion of the clut

ter covariance latrix.

2. INTRODUCTION

The theory of detecting a useful target echo-em

bedded in thermal noise and clutter having known

statistic is well established in the literature

and will be briefly revised in Sect. 3. The opti

•ui processor consists of a linear filter, maxi-

•izing the output signal-to-interference ratio,

Cascaded with an envelope detector and threshold.

The coefficients of the linear filter, which al-

low to shape the frequency response, depend on

the characteristics of the interference (power,

correlation and mean doppler frequency) and of

the expected target echo. The performance achie

ved by the optimum filter in a number of rele-

vant operational conditions are also shown in

Sect. 3.

In practice the exploitation of this technique

iiplies the design of processors that automati-

cally adapt their filtering action in response

to a changing environ'-""*: and reach to the opti-

mum filter in the steady-state condition. Any

adaptive system should therefore optimize the

trade-off between the speed of adaptation and

the accuracy of estimation of the disturbance

characteristics which determine the steady-state

performance.

The first adaptive method described in Sect. 4,

is based on the Gram-Schmidt transformation which

resolves the input signals into a set of mutual-

ly decorrelated samples with the same power.

This processing, which performs a whitening ac-

tion on the clutter is cascaded with a filter

matched to the modified expected target echo.The

processor that orthonormalizes N input samples

consists of a modular structure of N (N-I)/2

blocks. Each block operates a transformation on a

couple of input samples giving rise to a new COJJ

pie of uncorrelated data. The main feature of

the proposed algorithm is that the transient re-

sponse time is independent of the clutter charac

teristics and is nearly proportional to N. The

steady-state performance, evaluated by means of

computer simulation, are very close to the opti-

mum.

The second method, described in Sect 5, is based

on the direct estimate, from the input data, of

the inverse of the clutter covariance matrix. A

recursive algorithm is employed which combines

in a non-linear way the input data and the esti-

mate at the previous step. The speed of adapta-

tion and the steady-state performance loss (due

to the limited accuracy of the estimate) depend

on a smoothing coefficient which is a-priori se-

lected. Computer simulation results are shown

for an environment consisting of one non-statio-

nary clutter. The steady-state performance are

achieved with limited losses comparable with tho-

se of the Gram-Schmidt algorithm. However, the

speed of adaptation is faster at the expense of

a more complex processing architecture.

3. OPTIWUH RADAR SIGNAL PROCESSOR

In this Section, the problem of detecting a ra-
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dar target echo, embedded in a Gaussian distri-

buted clutter and thermal noise is briefly revi-

sed. Assume that a coherent train of N pulses,T

second apart*is transmitted and the correspon-

ding echoes pertaining to a some range-cell are

processed in order to detect a target having a

doppler frequency f .

Denote with Z, S, C, the N-dimensional vectors

representing (in complex notation) the received

samples,the expected target saiplcs s.-exp(-j21f(i-

-l)f T) and the disturbance samples, respective-

ly. The zero-iean disturbance C is completely de

scribed through its covariance matrix ]Wc #C*l •

In Ref. 1 is shown that the processor maximizing

the probability of detection (for a given false

alarm rate) is that represented in FIG. 1.

It consists of a linear transversal filter pro-

viding the maximum signal-to-disturbance ratio

at the output, an envelope detector and a thre-

shold.

The filter coefficients, represented by the N-ve-c

tor M, allow to reject the clutter and to enhan-

ce the target component (if present) at frequen-

cy f . The optimum weights depend on the clutter

statistics and are ntunedM to the expected tar-

get echo:

(D

The performance of the linear filter can be de-

scribed in terms of the Improvement (IF) in the

signal-to-overall-disturbance power ratio. It

can be shown that the following equation holds:

(2)

In particular, in Fig. 2 the optimum IF is drawn

vs. the number of processed samples H9for a clut

ter having mean doppler frequency f = 0, a cor-

relation coefficient O between two consecutive

samples and a clutter-to-noise ratio CNR of 4OdB.

The target is assumed having a doppler frequen-

cy fD - 0.5/T.

The filtering action of the optimum processor is

well understood from FIG. 3, where the frequen-

cy response of the filter is shown together with

the input disturbance spectrum. The parameters

pertaining to the analysed case are also shown

in the same Figure.

4. 6RAW-SCHHIPT (G$)PROCESSOR

A fundamental decomposition property of the co-

variance matrix H is the base of the derivation

of this processor Refs (2,3). It can be shown

that the following relationships hold:

(3)

(*)

where L. denotes a diagonal matrix formed of real

eigenvalues of M and U is the matrix of the cor

responding eigenvectors. The previous decomposi-

tion is exploited to evaluate the filter output

y - Z PT S* without resorting to the inversion

of the covariance matrix, implying heavy compu-

tational resources.

By means of eqn.3 the filter output becomes:

(5)

from which the scheme of FIG.4 is derived.

To properly understand the working principle of

this scheme, evaluate the statistics of the Gaus

sian-distributed signal I j * D Z which is the out̂

put of the left-side block 11D". It results:

(6)

(7)

Therefore the transformation 0 corresponds to

whiten and equalize in power the input disturbani

ce. The right side block 11D" provides the coef-

ficients b* of the matched filter to the modified

target echo b contained in Z1 and embedded in

white noise.

The problem of the implementation of the tran-

sformation D in an environment with unknown sta

tistics, possibly time-varying, is now afforded.

To this end an adaptive processor is envisaged,

which estimates in real time the disturbance cha

racteristics and consequently adapts the proces-

sor parameters. The Gram-Schmidt orthonormaliza-

tion algorithm, applied to the input samples, re



presents a suitable mean to perform the transfor

•ation D (Ref. 2).

It can be shown that the algorithm is convenien-

tly implemented by means of the scheme of Fig.5,

which refers to the case of N = 5 samples. The

working principle is to separately perform the

orthogonalization and power equalization.The for

mer is obtained through (N-I) steps;at each step,

one sample is taken as a reference and all the

successive samples are decorrelated from it.

This is obtained by means of a set of equal blocks

"A" each producing an output orthogonal to the

reference input of the corresponding step. A mo-

dular processing architecture is obtained, consi

sting of N (N-l)/2 blocks for N samples. In the

power equalization section the orthogonal samples

are scaled through the blocks "SC" in order to

have unity power. The scaling coefficients, con-

sisting of an estimate G^^of the sample rms va-

lue, are directly provided by the blocks "A" on

the diagonal; this estimate is not available for

the N-th samples, for which a complete power equa

lizer (PE) is needed.

The block "A" can be implemented by a Howells.Ap

plebaum loop (Ref. 3), and estimates the corre-

lation coefficient between the input samples and

their power. These estimates, which are obtained

averaging over adjacent range cells, are more ac

curate as the number of cells increases; on the

other hand, a faster estimation is suited for a

time-varying disturbance.

The performance evaluation of the processor is

now considered. Two figures are of interest: the

steady-state loss of IF with respect to the op-

timum filter, due to the limited accuracy in the

orthonormalization process; the number of range

cells needed to reach the steady state. The ope-

rative conditions considered in Sect.3 to evalua

te the performance of the optimum processor have

been employed again to test the Gram-Schmidt al-

gorithm. The obtained results allow to draw the

following remarks:

a) The loss of improvement factor is limited to

1 + 2 dB in all the environments tested;

b) The steady-state condition is reached with a

number of range cells roughly equal to ten U.

mes the number of processed pulses N, regard

less of the assumed clutter conditions.

The previous results refer to the case of N ̂  5

processed samples. An import point to be noted

is that the speed of adaptation is independent

of the clutter parameters (i.e. CNR and correla-

tion coefficient).

5. DIRECT WATRIX INVERSION (DHI) PROCESSOR

In this approach, a recursive estimation of H ,

directly from the input samples Z , is attempted

to obtain the set of optimum weights (1). Also

in this case the matrix inversion, which is hard

ware costly, is avoided.

The proposed algorithm is the following (Ref.3):

(8)

-1

It can be noted that the estimate of H at the

k-th step is a non linear combination of the esti

mate at the previous step and the received sam-

ples 2 pertaining to the k-th range-cell.

The accuracy in the estimation of M~* and the ti_

me to achieve a steady-state condition are both

controlled through the parameter a , ranging in

(0,1). The value of a represents the relative im

portance given to the previous estimate with re-

spect to the current received samples. In other

words, when a goes to 1, the adaptation algorithm

performs a very narrow-band filtering on the da-

ta, and an accurate estimate is achieved after a

long transient time; on the opposite, for small

a , the speed of adaptation of the algorithm in

creases at the expence of the steady-state accu-

racy.

In order to evaluate the performance, the DMI al.

gorithm has been tested in a computer simulation

against a time-varying clutter environment.

In particular, a clutter parameter (e.g. CNR,

p , f ) has been allowed to switch after the

20-th range cell, from one value to another. The

IF has been drawn vs K (range-cell number) in

FIGS. 6,7,8, for different values of a and for

N = 4 processed pulses. The optimum IF values in

the examined conditions are also shown for com-

parison. As a general conclusion, with a suita-

ble choice of a , i t is possible to attain a

steady-state loss within 2-3 dBs or less, in a

transient time of nearly ten range cells. Also

in this case, these performance are not influen-

ced by the disturbance characteristics. It should

be investigated the dependence on the number N



of processed pulses.

6. CONCLUSIONS

Two different adaptative techhniques have been

proposed for the implementation of the optimum

radar processor. From a first comparison of per-

formance, it seems that two processors are near-

ly equivalent from the steady-state loss view-

point; however, the DMI shows a higher speed of

adaptation.

From the viewpoint of hardware complexity, the

GS leads to a modular architecture,whereas for

the DMI a suitable implementation is not availa-

ble up to now.
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