
ABSTRACT

The first part of the paper provides flexible
and reliable stochastic models for the radar
signals scattered by target and clutter sources.
The models allow "to consider any shape of
autocorrelation function between consecutive pulse
echoes and any probability density function for
their in-phase and quadrature components. The
second part of the paper revises the theory of
detecting targets, with any type of probability
density and autocorrelation function, embedded in a
disturbance having any type of probability density
and autocorrelation function. In the third part of
the paper, the theory is applied to the cases in
which target and/or disturbance may have a log-
normal probability density for the amplitudes.
Several processing schemes are suggested and
corresponding detection performances evaluated.
Finally, adaptive implementation schematics are
suggested for some of the processors presented.

INTRODUCTION

High performance radar require more and more
accurate models of targets to be detected and
disturbance to be suppressed. This paper provides
flexible and reliable stochastic models which can
be tailored to accomodate experimental results at
disposal. The proposed models allow to consider any
shape of autocorrelation function between
successive radar echoes and any probability density
function for their in-phase and quadrature
components. Non-stationary target and disturbance
processes may be also considered, Swerling target
models and Gaussian noise intereference are dealt
with as special cases of the proposed models.

Current radar signal processing techniques /1/,
based on a linear filter (for disturbance
cancellation and useful signal enhancement)
cascaded; with an evelope detector and a comparison
with a threshold, suffer poor performance
especially when in-phase and quadrature components
of the target and/or the disturbances have non-
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Gaussian probability density function. This
observation motivates a deep revision of the radar
signal processing techniques which is afforded in
the second part of the paper. In particular, the
problem of detecting non-Gaussian distributed
target echoes in non-Gaussian distributed clutter
is tackled according to the theory developed by
Kailath /2/. This theory, which is essentially
available only for continuous-time, real-valued
stochastic processes, is extended to discrete-time
complex-valued stochastic processes as in the radar
case. Roughly speaking, the rationale of the
proposed approach is to estimate the disturbance
and the target signal in the two alternative
detection hypotheses H and H . The detection of
the useful signal, if present, is provided by first
making the difference between the estimates, then
correlating the result with the received echoes and
finally comparing the output with a threshold. The
estimates are in general complicated nonlinear
functions of the received radar echoes. However,
relatively simple solutions are conceived in this
paper in the special case of target and disturbance
having log-normal probability density for the
amplitudes.

The third part of the paper deals with the
application of the theory to a number of
operational cases of interest. For each case
considered the processor is derived, its detection
performance evaluated and, in some cases, compared
with the current signal processor schemes. The
following cases are afforded:
a) Gaussian distributed target signal, having any

shape of autocorrelation function, embedded in
Gaussian distributed clutter;

b) White Gaussian distributed target in log-normal
clutter;

c) A-priori known target signal embedded in log-
normal clutter;

d) Gaussian distributed and correlated target in
log-normal clutter;

e) Log-normal distributed target signal in thermal
noise;

f) Log-normal distributed target in log-normal
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clutter.

Finally, the problem of real-time implementation

of the proposed processors is briefly considered.

In particular, actractive adaptive procedures are

described for the cases (b) and (c).

ADVANCED MODELS FOR TARGET AND DISTURBANCES

Generally, radar echoes scattered by a useful

target are assumed to be generated by a very simple

stochastic model. The in-phase and quadrature

components are usually modelled as Gaussian

distributed random variables and the pulse-to-pulse

fluctuations are assumed to be completely

correlated or totally uncorrelated (Swerling

models). Now, some experimental evidence show that

the target may have a non-Rayleigh amplitude

density function and a fluctuation between pulses

intermediate among the two extreme cases. A chi-

squared and log-normal amplitude distributions was

hypothesized in /3/. As far as the time

correlation of consecutive radar echoes is

concerned, the approach followed /4/ was to model

the signal as a mixture of non fluctuating and

fluctuating components. The correlation was related

to the power ratio between the two signal

components. The approach, however, assumed the

hypothesis of stationary target and did not take in

consideration any shape of autocorrelation

function. A more general observation refers to the

lack, in the open literature, of a unified ap-

proach to target and disturbance modelling. A re-

levant exception is /5/ which, however, refers to

the continuous time real-valued signal case.

All the above mentioned limitations are overcome

by the model proposed in this paper. A white

Gaussian distributed complex-valued process feeds

the cascade of a linear dynamical filter followed

by a nonlinear zero-memory device. The shape of the

nonlinearity modifies the probability density of

the signal, while the poles of the linear filter

and the shape of nonlinearity tailor the

autocorrelation function of the process.

Consider now the case of modelling disturbances

such as clutter sources. Usually, a set of N

clutter echoes is modelled as a Gaussian

distributed, complex-valued process, having a

certain covariance matrix. However, in several

applications the statistic of the clutter amplitude

differs from the Rayleigh one. These situations

occur when sea clutter is viewed with a high

resolution radar (pulse width less than 0.5 us) at

low grazing angle (less than 5 degrees). They also

result when land clutter is viewed at low grazing,

regardless of the radar resolution. Measurements of

non-Rayleigh clutter statistics indicate that

either a log-normal or a Weibull distribution

provides a good match for the long term average

amplitude distribution of measurement data. A

number of papers refer experimental results on

non-Rayleigh clutter, see for example the commented

collection of papers in /6, Sect. 5/ and the recent

papers /7/, /8/ and /9/. Of course, the same model

proposed for the target fits to the clutter case.

This model has been extensively applied /10/ to

generate the in-phase and quadrature components of

N samples for a clutter having a log-normal

amplitude and any kind of covariance matrix. It is

possible to show that in this case the nonlinearity

is a complex exponential. Additionally, a suitable

mathematical relationship has been derived (see

Eqn. 4 of /11/) to design the linear filter from

the desired shape of the clutter autocorrelation

function (e.g. Gaussian or exponential).

In general, when target, clutter and thermal

noise are contemporary present the overall

mathematical model to be considered is that shown

in Fig. 1. Three independent N-dimensional

sequences of white Gaussian noise, namely n , n,
—s ~~d

and n, feed three separated branches to provide
target (^), clutter (d) and thermal noise (n)

samples. The N-dimensional matrices F and F
~"S ~d

perform a linear combination on the incoming

samples of n and n respectively, providing two

correlated sequences which are further processed

through the two N-dimensional nonlinearities h (.)

and h (.).
—d

AN OVERVIEW OF OPTIMUM RADAR DETECTION

The following detection problem should be

solved:

(D

where z is the set of N received radar echoes; £

and d represent the signal samples scattered by the

useful target (if present) and the clutter,

respectively. The probability densities p(s) and

p(d) may be non-Gaussian, while the thermal noise n

is a zero-mean white Gaussian process with a

diagonal covariance matrix M . The sequences s, d

and n are assumed independent from one another.

The optimum detector for this problem /2/

evaluates the log-likelihood ratio:

(2)

which is, in general, a complicated nonlinear

function of z.

When £ and d have Gaussian density with zero

mean and covariance matrices M and M ,

respectively, the LR is the following quadratic

form of z /12/, /13/:

(3)



An equation similar to (4) was found is /1/ for the

case of a-priori known target signal. The signal s

takes the place of the statistical estimate s which

is actually a linear function of 25. In the

literature, Equns. (4) and (5) are referred to as

"estimator-correlator", see for example /2/ for the

continuous-time real valued process case.

An equivalent recursive formulation /12/, in

place of the batch approach of Equns. (4), (5), is

represented in Fig. 2 where the estimates z and

z (in the H and H hypotheses respectively) and

the covariances P and P are given by recursive

Kalman filtering algorithms.

Now it is possible to show that Fig. 2 applies

also when the probability densities of s and d are

non Gaussian with the estimators being nonlinear

functions of z. This was demonstrated by Kailath

/2/ for the continuous-time real valued case.

Extensions are also available under suitable

hypotheses for the discrete-time case. It is worth

noting that the original test of hypotheses of

Equn. (1) can be replaced by the following one:

(6)

corresponding to the comparison of the likelihood

of "\) to be a white Gaussian process with zero

mean and variance P versus the likehood of %> to

be a white Gaussian process with zero mean and

variance P . In other words, the original radar

measurements z have been transformed in two white

Gaussian sequences %> and ~\> (statistical

innovations); the evaluation of the corresponding

likelihood ratio follows straightforward.

APPLICATION TO SEVERAL OPERATIONAL CASES

The purpose of this section is to apply the

previous theory to practical cases of interest;

original results are presented concerning to the

derivation of detection architectures and the

evaluation of corresponding detection performances.

Gaussian-distributed time-correlated target in

Gaussian-distributed time-correlated clutter

This topic has been widely analyzed in /13/.

Here a limited set of detection performance are

presented; they follow by Montecarlo simulation of

Equn. 3. Figure 3 shows the detection performance

of a target having a Gaussian shaped autocorrela-

tion function (the parameter being the correlation

coefficient between any two consecutive pulses of

the train) embedded in white noise. Five pulses

have been processed and the threshold was set to

maintain P = 1.4 10 . It can be seen that a
FA

small amount of fluctuation helps the detection for
relatively high signal-to-noise ratio (SNR). The

same conclusion does not apply when clutter is

present. An extensive set of detection curves can

be found in /13/.

Detection of white Gaussian target (Swerling II) in

log normal clutter

Only, the cancellation of clutter can be achie-

ved. For this particular case, a convenient

approximation /10/ of the general architecture of

Fig. 2 is the nice processor of Fig. 4. Briefly

speaking, the portion of clutter present in the

current sample z is cancelled by substracting the

estimated clutter z . The estimate is simply

performed in the following three steps:

i)transformation of the previous log normal clutter

samples (e.g. z and z ) in Gaussian

distributed samples by means of a complex

logarithm; ii)one-step ahead linear prediction of

Gaussian distributed clutter sample z1 ;

iii)transformation * with a complex exponential

function, of z1 in the log-normal clutter sample
A k

Y
The detection performance of this processor have

been evaluated in the following operational

situation: a) target signal according to Swerling

II model; b) one clutter source having a Gaussian

shaped autocorrelation function { ?c =0.9), a mean

Doppler frequency f =0 and a clutter-to-noise ratio

CNR=30 dB. Fig. 5 indicates an example of detection

performance when three pulses are processed and the
—4

threshold is set to obtain P =1.4 10 . In the
FA

same figure the performance of a conventional
linear MTI are also indicated; it is noted a loss

of 10 dB on average. A comprehensive set of

detection curves can be found elsewhere /10/

together with a detailed analysis of the proposed

processor.
A-priori known target signal in log normal clutter

The problem afforded in this case is the clutter

cancellation together with the enhancement of

useful signal. On the basis of the results of the

previous subsection the general architecture of

Fig. 2 is approximated by the schematic of Fig. 6.

Detection performance are illustrated in the Figs.

7 through 10. Figures 7 through 9 refer to the case

of two samples and to a Gaussian shaped

autocorrelation function for the clutter source.

The doppler frequencies of the target and clutter

are 0.5 PRF and 0, respectively. False alarm

with M = M + M . It can be shown that Eqn. 3 can

be rewritten as follows:

(4)

(5)



-4
probability has been set constantly equal to 10 ;

different values of fc and CNR have been

considered. Figs. 11 and 11 refer to 3 and 5

samples respectively.

For comparison purpose the detection performance

of a processor, optimized for Gaussian clutter,

have been evaluated when it is fed by a log-normal

clutter. Remarkable loss in SNR are noted; in the

case of N=2, P = 6 10~ , CNR=30 dB and fQ =0.99,

the loss amounts to 20 dB.

Log-normal distributed and time correlated target

in white Gaussian noise

The main problem in this case is to find a

suitable approximation of £ (n/n-1) (which is

equal to s (n/n-1)). The algorithm illustrated in

Fig. 12 shows the approach followed in this case.

The log normal, time-correlated, target signal is

first transformed in a Gaussian process, then

predicted one step ahead and finally re-transformed

in a log normal process. The statistical detection

test is now performed on the two new processes \>

and \> It has been assumed that P and P are
Q 1 0

equal [exact prediction of s), therefore they are

not required in the likelihood computation. The

time integration is performed over a number of N

pulses. Fig. 13 shows detection performance for N=2

and SNR=20dB for each pulse. A Gaussian shaped

autocorrelation function has been assumed for the

target, J^ being the one-lag correlation

coefficient. Fig. 14 illustrates detection

performance for different number of pulses and a

same value of Js =0.9.

Gaussian distributed and correlated target echoes

in log-normal clutter

In this case a convenient approach corresponds

to the replacement of the a-priori known signal s

of the Fig. 6 with a convenient estimate § (n/n-1)=

E (s (n)/z(k), k=l,2,...(n-l); H ) of the target

signal. The mathematical expression of s is a

complicated nonlinear function of z. An approxi-

mation of the signal estimate is represented by a

monocrornatic signal having the mean Doppler

frequency of the original spectrum and an amplitude

equal to the square root of SNR which is assumed

known a-priori. Fig. 15 illustrates the detection

performance for this particular approximation. An

on-line estimate of s is obtained by linearization

of the cexp(.) function which provides the clutter

portion of the scattered signal and applying Equn.

5 to the linearized measurement equation. Fig. 16

shows the detection performance for this more

accurated signal estimate; comparison with results

of Fig. 15 is straightforward. It is interesting to

note that when the autocorrelation of target signal

vanishes, the processor reduces to that of Fig. 4.

Log-normal distributed and time correlated target

signal in log-normal clutter

This topic is affordable with techniques similar

to those applied in the previous subsection.

Detection performance for the case of a-priori

known SNR are shown in Fig. 17. Comparison with the

curve of Fig. 15 shows the difference in detection

performance due to the different probability

density of the target signal. To obtain a more ac-

curate estimate of target signal is necessary to

linearize the cexp(.) functions partaining to

target and clutter signals. Corresponding detection

performance are not shown here.

IMPLEMENTATION PROBLEMS AND CONCLUDING REMARKS

The real-time implementation of the processors

presented in the previous Sections is now afforded.

Special attention should be paid to the adaptive

implementation which was shown /11/ to be a

powerful approach for the case in which target and

clutter are Gaussian distributed. In particular,

the adaptive methods described in /11/ are extended

to the processor of Fig. 4. Fig. 18 gives an idea

of a possible adaptive implementation for the

processor. The adaptive processing is confined to

the evaluation of the weights w and w of the

schematic of Fig. 4. The same adaptive procedure

can be applied to the other processors of Figs. 6

and 12 to accomplish the clutter and signal

estimation. Furthermore, adaptive calculation of

the decision threshold is generally needed, since

it depends on clutter and target parameters.

As a general conclusion, it can be said that

this paper makes a breakthrough in the theory of

target and clutter modelling and in the derivation

of related optimum and sub-optimum detection

processors. However, this area of research is at

the first stage of development and needs more

investigation. In particular, the approach followed

here should be extended to other target and clutter

models such as the Weibull one.
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