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ABSTRACT

The present paper pursues, extends and concludes the theory and the presentation of

results initiated with the papers /1/, /2/ and /3/ prepared by the same authors. The pur

pose of the present paper is manifold. First, a brief revision is provided of the

mathematical background to derive radar detection algorithms for any type of probability

density and autocorrelation functions of target and clutter. A relevant requirement

concerning this theory is the derivation of adequate mathematical models for the target

and clutter processes. This is done with particular reference to the Lognormal and

Weibull cases. A remarkable result refers to the derivation of models for the coherent

echoes train case. The leading concept of "Whitening and Gaussianing" filter is then

introduced as a fundamental block to derive radar detection schematics. The

aforementioned theory is applied to the derivation of completely new detection schemes

and to the evaluation of the corresponding detection performance when the amplitude

probability density of the clutter is Lognormal or Weibull. Another novelty of this paper

refers to the presentation of detection schemes having adaptive features. More in detail,

methods are suggested -for the on-line estimation of the "whitening-Gaussianing" filter

weights. Results are presented concerning the detection loss versus the number of range

cells along which the average of weights estimate is performed. Detection loss are

evaluated for different number of processed pulses and for different parameters of

clutter and target signals. Another adaptive feature explored refers to the on line

evaluation of a CFAR detection threshold. Even in this case, an evaluation of the corre-

sponding detection loss is enclosed.

1. INTRODUCTION

This paper affords the problem of detecting target echoes modelled as a Gaussian

distributed and time correlated coherent sequence (Swerling cases belong to this model).

The clutter, in which the target is buried in addition to white Gaussian noise (WGN), has

non-Gaussian probability density for its in-phase and quadrature components. This problem
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is particular relevant for detection and tracking of aircraft flying at low elevation

over the ground or sea. It is also of practical interest when the radar has high

resolution in range and/or angle. The theory of optimum detection of target embedded in

clutter is well established when the probability density of clutter amplitude is Rayleigh

or, in other words, the in-phase and quadrature components are jointly Gaussian

distributed processes; the clutter autocorrelation function may have any shape. The

optimum processor is a coherent linear filter, for the suppression of clutter and

enhancement of target echo, cascaded with a modulus extractor and a comparison with a

suitable threshold. The optimum processor for non-Rayleigh clutter is no longer a linear

filter. The detection performance of conventional processors in non-Rayleigh clutter

generally deteriorates from that in Rayleigh clutter. This is due to the long tail of the

distribution which results in a problematic setting of the detection threshold. In fact,

an increase of false alarm rate should be expected or, alternatively, a reduction of

detection probability should occur to maintain proper CFAR characteristics. The paper is

organized as follows. The ensuing Section 2 outlines the background theory of radar

detection in a non-Gaussian frame. Section 3 derives mathematical models of a coherent

echoes sequence having an assigned time autocorrelation function and a Lognormal or

Weibull probability density for the amplitude. These two preliminary Sections set the

scene for deriving detection schemes to deal with Lognormal and Weibull clutter.

Detection performance are evaluated by resorting to a Monte Carlo simulation on a digital

computer (Section 4 ) . The conceived processors are then equipped with adaptive features

which are described in Section 5.

2. OPTIMUM RADAR DETECTION IN NON-GAUSSIAN FRAME

This Section affords the problem of optimum radar detection when the clutter, the target

or both are time correlated and have a non Gaussian probability density for their in-

phase and quadrature components. The optimum detection schemes are based en the recursive

evaluation of the log-likelihood ratio for the two alternative hypotheses, followed by a

comparison with a suitable threshold. In the two alternative hypotheses, the target and

clutter signals are represented as the output of two dynamic nonlinear systems driven by

white Gaussian noise. Roughly speaking, the optimum detector scheme is built around to

two nonlinear optimum (in the minimum-mean-square-error sense) estimators of the signal

in the two alternative hypotheses. The rationale of the approach is to transform the non

Gaussian time correlated incoming radar echoes in two white Gaussian noises ("Whitening-

Gaussianing approach11); this is achieved by making the difference of the two estimated

signals with the actual radar echo. At this point the detection problem is reduced to the

classical case of a Gaussian signal in Gaussian noise. The corresponding detection scheme

is shown in Fig. 1. The received echo z is processed through two nonlinear filters. The

upper filter is matched to the condition that the signal to be detected is the sum of

target plus clutter, while the bottom filter is built around the condition that the

signal to be detected is just the clutter source. By making a difference of the two



estimates z (k/k-l) and z (k/k-1) with the incoming echo z(k), two residulas of

estimates V and V are obtained. Detection is now achieved by integrating (over N

echoes) the difference between two quadratic forms in the residuals. It should be noted

that the processor operates on the correlated radar echo z(k) by providing two WGNs V

and V over which detection is accomplished. In other words, the two nonlinear filters

operate as whitening filters; whitening filter is a well known concept in the classic

radar detection theory. Four mayor problems are related to this scheme. The first one is

due to the difficulty of finding explicit equations for the two recursive nonlinear

filters. The second problem refers to the inability of evaluating the corresponding

detection performance of the conceived processor. The general way to proceed is to derive

suooptimal nonlinear estimators and to assess detection performance by means cf Monte

Carlo simulation techniques. The third problem refers to the on-line evaluation of tne

nonlinear filter parameters (Sect. 5.1). The last problem concerns with the threshold

setting which depends on the parameters of the processor and of the siqnai and clutter

sources. A simple way to avoid these dependencies is to resort to a cell averaging CFAR

threshold (Sect. 5.2) which evaluates in an automatic fashion the threshold value. In

Section 4 the theory so far presented is applied to the case of clutter having Lognorrnal

or Weibull probability density for the amplitude.

3. MODELS OF COHERENT ECHOES TRAIN FROM L06N0RMAL AND WEIBULL CLUTTER

The purpose of this Section is to illustrate the mathematical procedure of generating a

sequence of complex valued samples having an assigned covariance matrix and a Lognormal

or Weibull probability density of the amplitudes. Briefly speaking a coherent sequence of

WGN samples feeds the cascade of a linear dynamic filter and a nonlinear memoryless

device. The poles of the linear filter introduces a first shaping in the autocorrelation

of the process. The nonlinearity modifies further on the autocorrelation shape and in

addition, changes the shape of the probability density of the in-phase and quadrature

components. The output sequence is non Gaussian distributed and time correlated at will.

Two major problems are related with this model. The first concerns with the conception of

the nonlinearity shape to achieve the desired probability density. The second problem

refers to the derivation of a mathematical relationship between the covariance matrices

of the input and output sequences of the nonlinearity. The first problem is generally

solved in two steps. At first, a real valued variable (A, see Fig. 2) having the desired

probability density (i.e. Lognormal, Weibull) is generated. Then, by multiplying the real

valued variable by exp (j If ) • where ^f is an evenly distributed random phase, the complex

valued random variable is obtained. Figure 2 shows the nonlinearities for the Lognormal

and Weibull cases, respectively. The derivation of a mathematical relationship between

the covariance matrices of the input and the output of the nonlinearities of Figure 2 is

hardly successful. Nevertheless, solutions have been obtained for the Lognormal and

Weibull cases. Figs. 3-a and 3-b show the relationship between the one lag

autocorrelation coefficient "q" (y-axis) of the Lognormal and Weibull variables and the

autocorrelation npn(x-axis) of the input Gaussian variables, respectively. The parameters



of the curves are related to the skewness of the random variables. For the Lognormal

case, the skewness increases with the p a r a m e t e r ^ . For the Weibull case, the skewness

increases as the parameter "a" goes to zero.

4. NEW OETECTION SCHEMES AND PERFORMANCE EVALUATION

In accordance with the theory developed in the previous Sections, new detection schemes

are derived to deal with Loqnormal and Weibull clutter. For convenience, the analysis has

been limited to the cases of Rayleigh target amplitude. The main problem, common to the

Lognormal and Weibull cases, is to find a suitable architecture for the nonlinear

prediction filters of Figure 1. Indicating with f(.) the nonlinear memoryless device of

Figure 2 , the inverse function f (.) transforms the received echoes in Gaussian

samples. For large clutter-to-noise ratio values, it is possible to show that a

suboptimum nonlinear clutter prediction is the cascade of the nonlinearity f (.), a

linear prediction filter and aaain a nonlinearity f ( . ) . The Gaussian samples are

processsd by a linear filter which makes the prediction in the Gaussian frame. The

predicted variable is transformed in the non Gaussian world by the nonlinearity f ( . ) .

This is exactly true in HO hypothesis and for high clutter-to-noise ratio (CNR) values.

The Hl hypothesis is equivalent to HO, if the target signal is subtracted by the incoming

echoes. In the Lognormal clutter case the target signal has been assumed a-priori known.

The detection performance have been evaluated in a number of operational situations of

interest. Figure 4 is a sample of the performance. The clutter spectrum has been assumed

Gaussian shaped with mean Doppler frequency F - 0 and one step autocorrelation function

q taken as a parameter. The Doppler frequency of the target has been assumed F = 0.5

PRF, where PRF is the pulse-repetition-frequency. In the Weibull clutter case the target

signal has been assumed a coherent correlated Gaussian process, the one-step correlation

coefficient being J . Figure 5 compares the detection performance of the a-priori

known target, with the Swerling 0, and partially fluctuating target cases.

5. ADAPTIVE FEATURES FOR ON-LINE PROCESSING

In this Section results concerning the adaptive implementation of the proposed processors

are outlined. The problems of on-line estimation of the weights of nonlinear predictors

and CFAR threshold have been considered. Three relevant results have been obtained,

namely: (i) the evaluation of the number of independent range cells to estimate the

weights, (ii) the evaluation of a CFAR threshold for different P values and the

number of range cells along which the log-likelihood ratio is averaged, and (iii) the

evaluation of the corresponding loss for adaptation and CFAR processing.

The adaptivity can be confined to the on-line evaluation of the weights of the linear

prediction filter. This is achieved through the estimation • of the clutter covariance

matrix as seen after the transformation induced by f (.). The clutter covariance matrix



M is on-line evaluated by averaging along m contiguous range cells around that under

test. Detection loss due to the limited number "m" of range cells have been evaluated by

means of Monte Carlo simulation technique. Fig. 6 shows preliminary detection loss for

different values of correlation coefficient q for the Weibull clutter case.

One of the major limitation of the proposed processors refers to the great amount of

parameters from which the detection threshold depend. In addition to the P and the
FA

number of processed echoes N, the threshold depends on the clutter correlation
coefficient, the clutter-to-noise and the signal-to-noise values. A method to overcome

this problem is to implement a CFAR threshold. The value of the CFAR threshold is found

in two steps: (i) the mean value of the log-likelihood ratio is estimated by averaging

along a number of range cells surrounding that under tes»t; (ii) this mean value is

multiplied with a suitable constant ffyfl dependent on the desired P value. Fig. 7

shows the parameter )( versus the P value. By means of Monte Carlo simulation, it has
u FA

been shown that the parameter ^ does not change even if the receiver parameters are

varied. Exception is made for the SNR value (the detector is matched to that a-priori

known target amplitude). This is fairly true if the number of range cells along which the

likelihood ratio is averaged is around ten. It is noted that a loss of less than 1 dB is

experienced with ten range cells.
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FI6. 1 - QPTIHUH RADAR DETECTOR FOR TARGET AND/OR CLUTTER HAVING £NY TYPE
OF PROBABILITY DENSITY AND TIHE AUTOCORRELATION FUNCTIONS (THE PREDICTION
FILTERS ARE OF THE KALHAN TYPE WHEN THE PROBABILITY DENSITIES ARE GAUSSIAN,
OTHERWISE ARE NONLINEAR)

FIG. 2 - NONLINEAR HEHORYLESS DEVICE TO GENERATE A COHERENT LOGNORHAL
AND WEIBULL CLUTTER

FIG. 3a - RELATIONSHIP BETWEEN THE CORRELATION COEFFICIENT q OF THE LOGNORHAL
SEQUENCE AND THE CORRELATION COEFFICIENT p OF THE GAUSSIAN SEQUENCE.
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FIG. 3b - RELATIONSHIP BETWEEN THE CORRELATION COEFFICIENT q OF THE WEIBULL
SEQUENCE AND THE CORRELATION COEFFICIENT "P" OF THE GAUSSIAN SEQUENCE.
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FIG. 4 - DETECTION PERFORMANCE FOR A-PRIORI KNOWN TARGET IN COHERENT

LOG-NORMAL CLUTTER.



FIG. 7 - PARAMETER % OF CFAR THRESHOLD
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FIG. 6 - DETECTION LOSS DUE WEIGHT ESTIMATION
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FIG. 5 - DETECTION PERFORMANCE FOR FLUCTUATING TARGET IN WEIBULL CLUTTER.
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