
Instantaneous transmission bandwidth
Chirp signal bandwidth
Compression ratio C = T B = T/rc

Instantaneous frequency
Doppler frequency
Weighting factor of chirp instantaneous fre-
quency for sidelobe reduction
Distortion factor
Number of distinct code phases
Number of sub-pulses (elements) of the code
(for the Frank code N is the number of phases
and N2 the number of elements)
Number of bits
Ratio between peak and lobe amplitudes
Radio frequency
Total duration of transmitted code
Sampling period during reception
Group delay
Phase sampling period and element duration
S/N loss on the peak
Wavelength
Rate of variation of the (linear) chirp

1. Introduction

In modern coherent radar, the use of a transmitter
equipped with power amplifier (usually provided with
travelling wave tubes) often implies the necessity to ex-
ploit the pulse compression technique to satisfy the re-
quirement for high accuracy and discrimination at full
range, in spite of the unfavourable ratio between peak
and average power.

In long range surveillance radars (range up to 400 +
500 Km), the compression ratio, defined as the ratio of
the duration of the transmitted pulse and that of the com-
pressed pulse, is typically in the range of 100, or greater,
depending on the required resolution.

A number of factors enable the choice of the transmit-
ted waveform (which, due to available transmitter techni-
ques, must have a rectangular envelope and therefore can
only be phase coded). The main factors are:
— duration of the transmitted and compressed pulse,
— compressed signal sidelobes level,
— sensitivity to Doppler effect.

In the following, we make reference to a typical radar,
characterized by:
— transmitted pulse duration: 100/xsec,
— compressed pulse duration: 1 /xsec,
— maximum admissible Doppler frequency: _+_ 20 KHz,
— sidelobes level better than that of a maximum dura-

tion Barker code,
— digital compression.

These requirements are usually satisfied by a class of
S-band radar for the early warning of targets at speeds in
excess of Mach 3. In the following, a brief summary of
some of the codes used in pulse compression is made
before taking digital chirp into detailed examination.

© 1985 Selenia

SUMMARY

The problem of the synthesis of pulse compression radar signals is
examined. A family of waveforms suitable for digital compression is
identified in digital (or discrete) chirp.

Such a code, obtained through sampling and quantisation of known
chirp waveforms, has attractive features such as relative insensitivity to
frequency shift (Doppler effect) and low sidelobes.

Within the digital pulse compression technique, with compression
ratio higher than a few tens, digital chirp codes perform better than
other codes suggested.
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2. The Barker code

The Barker code is a Phase Shift Keying (PSK) binary
code where only two phase, 0° and 180° are transmitted
(M = 2). Let T be the total duration of the pulse and 6 =
T/N that of the single sub-pulse (that is the element of the
phase code) where N is the number of elements of the
code. Barker sequences benefit of the fact that if x (T, fD)
is the ambiguity function, than / 1 / :

(D

This relationship shows how the peak to sidelobe ratio
increases with the number of code elements; however, as
there are no Barker codes with more than 13 elements, at
the best, lobes are 22.3 dB below the peak. In the presence
of Doppler shift the code does not have good characte-
ristics. In fig. 1 the loss of signal to noise ratio on the
peak:

(2)

is given as a function of the product (fD-T).
From this figure it can be seen how the losses become

considerable as (fD -T) increases. If we want to limit such
losses to less than 1 dB, the following relation should app-
ly:

This shows that the coding of long pulses (T = 80 -r-
100 jisec) cannot take place with this code.

3. The Frank code

The polyphase Frank code can be described by the
following matrix / 1 / , / 2 / :

(5)

where each element is given by the multiplying factor of
an elementary phase <po = 2 TT p/N, where p and N are in-
teger prime numbers. Usually p is set equal to 1. If the
pulse to be coded is divided into N2 elements, N different
phases are obtained. The sequence of the N2 phases can be
derived from (5), in fact if Aij is the generic element of the
matrix then:

(6)

and the transmitted sequence is built up taking (5) by
rows, in other words:

(7)

In order to use this code, the pulse must be divided in-
to a number of elements which is the square of an integer.
As an example, for a Frank code of 100 elements there are
10 distinct phases spaced by 2 TT/10; the time sequence of
the phases is given in fig. 2. The compression filter used is
the usual delay line where, in the case under examination,
100 delays are needed, each being equal to:

(8)

and also 100 complex weights of the type e"j Ĵ.

It is worth mentioning that to generate those weights
100 different complex values (i.e. 200 real values) are not
needed, as it is required to generate only 6 distinct values,
i.e. 1.0, 0.0, 0.80902, 0.30902, 0.58778, 0.95106 (with
sign). Each general term is in fact of the type _+_ a ±_ j b
where a and b take one of the six values given above. Even
simpler is the structure of a Frank code with 8 elements,
which needs values 1, 0, yfl.

In absence of Doppler, the ambiguity function gives

VT

Loss
(dB)

F i g . 1 - P e a k a m p l i t u d e o f 13 e l e m e n t s B a r k e r c o d e v s . D o p p l e r

f r e q u e n c y .

which, in the worst case (fD = 20 KHz) gives:

(3)

(4)



good characteristics. By normalizing the signal amplitude
to 1, it results that:

(9)

and therefore the peak to sidelobe ratio is better than 29
dB. However, in the presence of Doppler, this code gives
way to considerable losses. The effects can be summarized
as follows:
a) For fD • T ^ 0.5, a progressive attenuation of the

peak x (0, fD) is noted, up to the worst case when fD T
= 0.5 where x (0, fD)/ x (0, 0) = 0.64 and therefore
the loss is 3.92 dB. At the same time, the adjacent
lobes increase and when fD • T = 0.5, then:

(10)

so that the peak to sidelobe ratio is 0 dB. It must also
be noted that x (KS, fD) is not symmetrical around r =
0, as is the case for the Barker code.

b) When 0.5 ^ fD T ^ < 1, the amplitude of the main
peak increases and when fD T = 1,

However, the peak is shifted by 6, that is x has a max-
imum when T = - S. This means that the range accuracy,
in terms of systematic error, is tied to the duration of S. If
6 = 1 fisec, the accuracy is 150 m.

Fig. 2 - Sequence of phase values for a 100 elements Frank co-
de.

c) When 1 ^ fD T ^ 2, the behaviour observed for 0 ^
fD T < 1 is repeated. In figure 3, the loss on the peak
is given as a function of fD T:

From fig. 3, a 4 dB ripple can be appreciated. Fur-
thermore it must be taken into account that the peak
shifts in the time domain by 5 each time fD T increases
by 1, so that if T = 100 /*sec and N2 = 100, in the
worst case when fD = 20 kHz, range accuracy is 300 m
(and the peak is shifted by 2 5).

AS/N(dB)

fD (KHz)

Fig. 3 - Peak amplitude vs. Doppler frequency for Frank codes
(100 and 64 elements).

VK

K = T/5



In fig. 4 the variation of the peak-to-highest sidelobe
ratio is reported. When fD-T = 0.5 and 1.5, peak and
lobe are of equal amplitude although, fortunately,
also adjacent. From figs. 3 and 4 it can be seen how in
passing from N = 8 to N = 10 with T constant, a
slight improvement is gained: increasing N further
without increasing the duration T over and above 80
•*• 100 /xsec gives way to implementation problems in
the generation and compression. The analysis per-
formed in /10/ proves incorrect some statements
given in /2 / . Frank infact, states that the code has a
property similar to that of chirp (linear FM modula-
tion). On the contrary, it appears that this code can be
used with advantage only when fD T ^ 0.25 as in the
Barker code. This fact may be explained as follows:
the higher the phase variation between the leading
edge and the trailing edge of the pulse, the more resis-
tent the code to the Doppler shift. With N = IO, the
first sub-pulse has a null relative phase, whereas the
last one has a phase 2/N ?r (N - I)2 = 16.2 TT. Cor-
respondingly, there is an associated frequency varia-
tion equal to 160 KHz, too small to contrast a Dop-
pler of 20 kHz. Also from this appreciation derives
the necessity to increase the number of code elements,
but this needs trading off against hardware complexi-
ty.

4. Frequency modulated pulse

A common technique in pulse compression radars is
that of a continuous frequency modulation of the pulse to
be transmitted (chirp). Let B be the instantaneous fre-
quency band transmitted and T the pulse duration. It is
known / 3 / that the response of the compression filter
follows, in the case of linear frequency modulation, a

Fig. 4 - Peak-to-sidelobe ratio vs. Doppler frequency for Frank
codes (100 and 64 elements).

temporal law of the sin x/x type, having a peak value
equal to VBT and width equal to 1/B. The main advan-
tage of this waveform is the almost total insensitivity to
Doppler, in the sense that the undesired Doppler frequen-
cy does not modify the shape of the compressed pulse; in
other words, it does not give way to an appreciable in-
crease of sidelobes and the main peak is at the worst at-
tenuated by 1 dB, up to |fD T| <2. However, a Doppler
shift gives an apparent range variation / 5 / due to the time
shift of the peak response of the matched filter. The
amount of such a shift is a linear function of the ratio
fD/B and therefore such effect can be easily minimized by
increasing B, keeping T constant.

To reduce the sidelobe levels from -13.2 dB due to
sin x/x to the desired values (-35-̂ --45 dB) the following
techniques can be adopted:
a) use of a nonlinear frequency modulation and a match-

ed filter in reception,
b) use of a linear modulation and a proper filter (not

perfectly matched) in reception.
The main characteristics of frequency modulated

signals and of the sidelobe reduction techniques are
reviewed in sects. 5 and 6. The use of frequency
modulated signals implies the use of intermediate fre-
quency analogue techniques for the generation and the
compression of a given pulse (Surface Acoustic Wave
devices, SAW). However it is possible to derive from such
signals some discrete phase codes (i.e. PSK) which ap-
proximate analog signals and maintain their main
features. These discrete codes are an extension of the bi-
phase codes (Barker type). The analysis and synthesis of
such codes is the subject of sects. 7 and 8, where some im-
plementation problems are also discussed.

5, Review of frequency modulated
signal techniques

4'Chirp" is a signal characterized by a rectangular
envelope in the time domain and a linear (true chirp) or
nonlinear (NLFM) frequency modulation. Chirp com-
pression is achieved by means of a dispersive filter having
a group delay which is an appropriate function of fre-
quency. Consider first the case of linear frequency
modulation. The transmitted signal is represented as:

(H)
elsewhere,

where:
(sec) is the pulse duration;
(rad/sec2) is the rate of change of the angular fre-
quency;
(rad/sec) is the overall variation of the angular
frequency within the pulse duration;
is the signal amplitude envelope; it is generally
rectangular and of unit amplitude within -T/2 < t
< T/2.

The mathematical expression of the matched filter im-
pulse response is

P/LdB

fD(KHz)



in the absence of Doppler. The presence of a Doppler
shift in the echo gives way, at the filter output, to the
following phenomena:
1) lowering of the peak
2) time-shift of the peak,
3) ambiguity in the joint estimation of t and fD.

Fig. 5 gives the peak losses and time shift as a function
of the Doppler fD related to the total frequency variation
B.

Fig. 6 shows how the output signals g(t, fD) are
distorted due to a Doppler shift of the received signal / 4 / .
It should be noted that the peaks are contained in a
triangular envelope, extending from - T to + T, cor-
responding to the autocorrelation of the envelope a (t) of
the input signal.

As for point 3) above, the filter output has a max-
imum for 27rfD 4- lit = 0. The time delay r of the peak, as a
function of fD, is:

In the case of perfect matching, the filter output has
an envelope of the sin x/x type as given in equation (12).

It can further be shown that for high compression ratios
the chirp signal has a flat amplitude spectrum within
(-B/2, B/2) and a square law phase spectrum of the type:

(13)

The corresponding matched filter is therefore a band-
pass, centered upon fo, with a group delay which is a
linear function of frequency, of opposite slope with

The output of the matched filter has the following ex-
pression / 3 / :

(12)

Fig. 6 - Envelope of linear FM pulse compression matched-filter outputs for different ratios fD/B.

Fig. 5 - Matched-filter-output amplitude and time shift as func-
tions of fD/B for LFM (chirp) codes.
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respect to that of the transmitted signal / 1 , 4 / .
The effect of a finite compression ratio on the signal

spectrum / 1 / , / 1 3 / , is shown in fig. 7 (C = 60) and fig. 8
(C= 120). As the compression ratio increases, the spec-
trum approximate all the more a rectangle. Two shortfalls
can however be singled out:

a ripple within the band ± B/2,
a tail outside the interval ± B/2.

A few notions / 1 , 3 / relative to nonlinear frequency
modulated signals will now be recalled:

instantaneous frequency,
group delay,
stationary-phase principle.

In particular, the stationary-phase principle provides a
very simple, although approximate, relationship between
the signal frequency spectrum characteristics and its time
characteristics, by means of expressions involving only
differentials, and not integrals, as is the case of Fourier
transforms.

Consider a narrow-band signal s (t):

having an envelope a (t) which is usually constant. In this
case, it is possible to define an instantaneous frequency,
(function of time):

(15)

such that the continuous-wave signal cos (2 -K f{ t) approx-
imates the function cos (2 TT fo t + <p (t)) in an interval
around t. Further, a group delay, (function of frequency)
can be defined as follows:

(16)

where 6 (f) is the phase spectrum of s (t).
For each frequency component of the spectrum, rg (f)

gives the delay with which such component will be
delivered at the output of a filter having 6 (f) (*) as a phase
spectrum.

Consider now signals having a group delay which is a
monotonous function of f. It follows that the frequency f
of the spectrum becomes the instantaneous frequency fx (V)
of the signal at a time instant equal to the group delay.
Therefore it can be derived that the instantaneous fre-
quency of a signal and the group delay are inverse func-
tions of each other:

(17)

The stationary-phase principle /A/ is based upon the
following consideration: in the integral relation which
defines the Fourier transform of the signal s(t), for each
frequency f, the most significant signal contributions are
those in an interval around time t where the phase is sta-
tionary, i.e.:

Fig. 7 - Fourier transform of a chirp signal with finite time-
bandwidth product (C = 60).

Fig. 8 - Fourier transform of a chirp signal with finite time-
bandwidth product (C = 120).

which defines the instantaneous frequency in t. Similarly,
in the inverse transform, for each value t, the most signifi-
cant frequency contributions come from an interval
around f where the dual relation holds:

AM
PL

ITU
DE

(f-fJ/B (*)In the following it will be assumed for sake of simplicity that co0 = 0, therefore:
I s(t)| = a(t), and *. s(t) = *> (t)

which defines the group delay rg (f).

(19)

(18)

AM
PL

ITU
DE

(f-fo)/B

(14)



(which holds in an interval around rg).

The above relationships enable to conveniently design
the phase spectrum (i.e. the phase modulation) as a func-
tion of the desired time and frequency envelope. In par-
ticular, if a signal having an envelope which is rectangular
in both time and frequency domains, is to be transmitted
then phases <p (t) and 6 (f) must be quadratic functions
(chirp signal, ref. to equations (11) and (13)).

A further, fundamental relation, which can be derived
from the stationary-phase principle, in the case of cons-
tant envelope signal (which is the case of the radar pulse)
is:

(23)

relating the group delay to the signal amplitude spectrum
("c" being a constant). This relation may be used to syn-
thesize a NLFM code having sidelobes lower than those of
linear chirp (see also /7/).

6. Review of methods for
sidelobes reduction

It has been shown that a chirp signal has an autocor-
relation function given by sin x/x, and the first sidelobe is
13.2 dB below the peak. Furthermore, the close-in
sidelobes decrease gradually, by approximately 4 dB for
each time interval between two consecutive nulls. Such
autocorrelation function behaviour is unacceptable in
radar applications, where more than one target is present,
giving rise to echoes of different amplitudes.

The optimum receiver for this application is not
generally the matched filter. In the practice, however, for
simplicity reasons, discrimination problems are faced by
using the matched filter in reception and optimizing the
waveform so as to keep the mutual interference between
targets at acceptable levels. An alternative, used in the

practice, is to introduce a mismatch in the receiver. This
mismatch must, however, be limited to keep the S/N ratio
degradation moderate.

As already recalled in Sect. 4, the methods which can
be used to obtain a response with low sidelobes are the
following:

1) Weighting in the time domain
2) Weighting in the frequency domain
3) Nonlinear frequency modulation.

Technique 1) correspons to the amplitude modulation
of the transmitted signal; as the transmitters used are peak
power limited and usually work in saturation, such solu-
tion implies a reduction of transmitted power, and
therefore a S/N loss. In practice such technique is not us-
ed.

The second method for sidelobes reduction exploits
the elementary properties of the Fourier tranform. In
fact, the transfer function of the receiver is tapered at the
band edges. This gives way, in the time domain, to the
reduction of the sidelobes, at the expense of a flattening
and spreading of the output peak.

The method for sidelobe reduction through receiving
filter mismatch is of limited use in the case the radar
return has a random Doppler shift. In fact, under the
assumption that the transmitted signal has a rectangular
spectrum, the mismatched filter output spectrum is a
good replica of the filter frequency response and therefore
it maintains its sidelobe regularity.

In the presence of a Doppler shifted echo, the output
presents an asymmetrical spectrum, with sharp variations
at one edge, like the transmitted signal, of which it main-
tains the high sidelobes.

The technique 2) is then based upon a receiving filter
having a properly shaped frequency response to obtain
low sidelobes at the output, whereas mismatch losses on
the peak are kept at an acceptable level. The shape of the
frequency weighting function is designed according to the
theory of paired echoes / 5 / . According to this theory, if
the spectrum G (f) of a signal g (t) is modified by
modulating it with a cosine law:

(24)

the corresponding time signal g, (t) becomes:

This shows that a pair of echoes have been added to
g(t), each having the same shape as g(t), but time-shifted
and weighted by an.

An application of this method is reported in Fig. 9,
where parameter F1, equal to an/2, appears. In Fig. (9.a)
the function w0 (t) is reported, corresponding to a spec-
trum having constant amplitude W0(Q. As W0 (f) decays
sharply at the band edges, W0 (t) has high sidelobes. In fig.
(9.b), on the contrary, it can be seen how by overlaying
W0 (f) with an opportune cosine law, the paired echoes
produced, are opposite in phase with the first lobes of
wo(t). This produces a lowering of sidelobes and a widen-
ing of the main peak.

We also have that the energy contained in an interval
around rg (f) is equal to that in an interval around f] (rg):

(20)

From equations (16-20) the following relevant rela-
tionships derive:

(21)

(which holds in an interval around the instantaneous fre-
quency Q and:

(22)

(25)



Therefore, for a Hamming weighting, a factor k = 0.08
is required. As a consequence of the weighting, the
sidelobes amplitudes become reduced and the output peak
is widened. The magnitude of such variations is given in
Fig. 10, where the ratio P/L and peak width between -3
dB points are given as functions of k.

The figure refers to a generalization of (26) where the
cosine is raised to a power n. In / 1 , p. 185/ the equivalence
(from the viewpoint of sidelobes structure) between fre-
quency weighting of the received signal and the time

weighting of the envelope of the transmitted signal is
demonstrated. This equivalence holds only for high com-
pression ratio values.

Technique 3) attempts the synthesis of an NLFM
signal, such that the response of its matched filter satisfies
the sidelobe requirements. The method for NLFM syn-
thesis is based upon the principle of stationary
phase,described in section 5. As the receiver is matched to
the signal shape, no mismatch losses, as in methods 1) and
2), take place. However, method 3) suffers from the
drawback of peak losses and increase of sidelobes when
the received signal has a very high Doppler shift. For an
intuitive understanding of this phenomena, one may think
that the signal, having a nonlinear frequency coding, can
be broken down into a number of chirp signals, each hav-
ing a different velocity rate fi; the ambiguity function of
each chirp will present a ridge in the (fD, t) plane along a
line fD + /xt = O.

The ambiguity function of the code will result from
the superposition of such ridges. These ridges add to each
other only in the origin of the plane (fD, t); as the volume
under the ambiguity function is constant, the amplitude
of each ridge decreases and this corresponds to a greater
sensitivity of the code to the Doppler shift.

Let us now describe a method for the synthesis of the

Setting F1 = 0.426, the so-called Hamming weighting is
obtained. The function W1 (f) is similar to the well known
weighting function "Cosine-square with pedestal":

where the amplitude k of the pedestal is related to the
parameter F1, as follows

(26)

(27)

Fig. 9 - Application of paired echoes tecnique (from pages 20, 27 of /5/).
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Fig. 10 - Effect of weighting in the frequency domain (from/1/).

NLFM code. A desirable spectrum is defined for the out-
put IS (f) 12 which corresponds to the filter response which
would be used in the frequency weighting technique. The
weighting function is shared between the expansion and
the compression channels; therefore the spectrum of the
transmitted signal and the response of the corresponding
matched filter may be assumed equal to | S (f) |. Such
spectrum can be approximated, for high compression
ratios, by a suitable modulation law rg (f) (ref equation
23) which is all the more accurate the higher the product
band-duration of the rectangular pulse is.

By adopting a cosine square on a pedestal (eq. (26))
law for IS (f) 12, the following expression /7 / can be deriv-
ed from equation (23) for the group delay:

(28)

which is reported in Fig. 11.
At the expansion filter output, a rectangular pulse is

obtained, having an amplitude equal to |S (0| J if the
compression channel in reception is matched, the output
spectrum is | S (f) |2 as desired (cos2 on a pedestal) with the
required sidelobes level, corresponding to the value
chosen for k.

To summarize, we may state that, through the techni-
que presented, it is possible to synthesize a chirp radar
signal having the following characteristics:

— low sensitivity to Doppler (like the linear chirp from
which it differs by a selected value k, ref figure 11);

— low sidelobes from the matched filter such as for a
signal which undergives frequency weighting of the
raised cosine type;

— no mismatch losses, because the compression filter is
matched to the transmitted signal;

— the parameter k sets the sidelobes level, the main peak
width and the sensitivity to Doppler.

In order to accomplish the signal synthesis from equa-
tion (28), /7 / , the inverse function:

(29)

must be numerically derived.
From this, through integration, the time phase

modulation law can be obtained:

(30)

The signal obtained has a continuous type of phase
modulation. The ensuing section 7 will show how it may
be approximated by a polyphase code (PSK), which can
be processed by digital techniques.

7. Digital chirp code synthesis and
performance evaluation

A) FM CODE SAMPLING

The main requirement set on the code is that of target
range resolution, which is related to the -4 dB width rc of
the compressed pulse. As rc is a function of band B (fre-
quency modulation shift) dependent upon the selected
modulation, the band is fixed. The available peak power

Fig. 11 - Nonlinear frequency modulation (from 171, p. 74): group
delay vs. frequency.
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and the energy required to satisfy the range requirement
set the duration T of the transmitted pulse: from this the
compression ratio value follows: C = BT.

The mathematical notation for a phase modulated
signal, in accordance with the parameters determined
above, is given by equation (14), where a(t) is equal to uni-
ty between.-T/2 and + T/2 and is zero elsewhere.

Taken back to base band, the analytic signal s(t) is of
the type:

(31)

According to the sampling theorem, such signal can be
represented by its samples taken at intervals of width <5
within -T/2 and +T/2

(32)

The signal so obtained is a succession (code) of sub-
pulses of same amplitude 1 and duration 5, each having a
suitable phase. Therefore starting from an analog fre-
quency modulation a phase modulation, well suited for
digital processing of the signal, is obtained. Such a code is
denoted by "polyphase code". A constraint in the sampl-
ing interval selection is that 1/5 be sufficiently larger than
the effective signal bandwidth Beff, in which greater part
of the signal energy (and therefore information) is con-
tained.

A value for Beff has been assumed between B10 and B.2O
(defined in Figs. 7 and 8) of the signal spectrum. The
polyphase code obtained through sampling of an FM code
keeps its salient features: same sidelobe levels and low
Doppler sensitivity.

B) EFFECT OF THE DISTORTION FACTOR KD AND
OF PHASE DOPPLER SHIFT

The nonlinear frequency modulation law used is, as
previously reported, the one at reference / 7 / which is
characterized by a distortion coefficient KD(*) which
varies in [0,1]:

KD = 0, maximum distortion

K 0 = I , no distortion (linear modulation).

KD determines <p (t) and therefore, in the polyphase code,
the sequence of phases j^kJ and it has an impact on the
peak-to-sidelobes ratios, the sidelobes distribution, the
sensitivity to Doppler and range resolution due to the
widening of the main lobe (see also Fig. 10).

Fig. 12 (curve "a" ) shows the peak-to-sidelobes ratio,
function of KD, at its worst, at the output of the matched
filter in absence of Doppler shift. The percentage distribu-
tion of the sidelobes is given in table 1.

(*) Such coefficient is the same denoted by k in paragraph 6.

Sidelobes d is t r i bu t ion versus K0 ; NLFM d iscre te code, w i t h :

fD = 0
N = 93
T = 80/ iS
B = 0.75 MHz
5 = 1/(1.55 B)

Fig. 13 shows the ratio P/L as a function of Doppler
frequency fD for different values of K0 and for linear
chirp, for comparison purposes. In the headings of Fig.
12 and following, the maximum of the peak-to-sidelobe
ratio obtainable with a discrete phase code is reported for
comparison purposes, i.e.:

a value which is certainly present at both the right and left
edges of the autocorrelation function.

As regards the presentation of the performance of the
codes examined, we have here generally adopted the

P/L (dB)

K0

a - (all different phases)b-(10 different phases)

Fig. 12 - Peak-to-sidelobe ratio vs. k0 for a NLFM digital code.

TABLE 1

^ ^ - - ^ ^ K D 0.5 0.2 0.1

P/L 24.3 32.3 32.6

% lobes
< 4 0 d B 5 3 3 6 3 ' 3 6 1

0/0'Tl 90 100 100
< -30 dB
% lobes
< -25 dB " ~ ~



Fig. 13 - Peak-to-sidelobe ratio vs. Doppler frequency, for dif-
ferent kD.

criteria to consider the peak-to-sidelobe ratio at its worst.
Other criteria could be adopted, depending upon system
requirements, (i.e. the quadratic average of the sidelobe
levels). More complete information is given by the
sidelobe level distribution, as in table 1.

The choice of coefficient KD must be based upon a
trade-off between low sidelobes and moderate sensitivity
to Doppler. The presence of a Doppler phase shift in the
return echo, through signal mismatch, has an impact
upon the response:

• peak attenuation (S/N loss),
• increase of sidelobe levels,
• time shifting of the response peak,
• response distortion around the peak.

In Fig. 14, the losses S/N (function of Doppler fre-
quency) of the discrete chirp code obtained through an
analog linear chirp, are compared with that obtained
from the sampling of a nonlinear analog chirp having a
distortion factor KD = 0.2. The slight increase of losses in
the case of nonlinear modulation is largely compensated
for by the improved ratio P/L which (Fig. 13) is, on
average (KD = 0.2), 14 dB. In the discrete case, the peak
shift is maintained proportional to the ratio fD/B, which is
typical of the analog chirp. Such shift, as fD is not known
a priori, is reflected in an error on range amounting at any
time to less than 3 5 when fD ^ 20 KHz and B = 0.8 MHz.

The last effect considered is the presence of a "hump"
on the main lobe at the matched filter output (see Fig. 15).

This distortion in the case of polyphase codes appears
as a secondary peak close to the main one and would
deteriorate range accuracy and discrimination; it is
anyway present also in analog chirp codes /6 / although
differently shaped.

8. Implementation problems

Putting into practice the previously analyzed
polyphase codes, one must take into consideration the

Fig. 15 - Output of a filter matched to a NLFM code, affected
by Doppler shift.

problems and the limitations which code generation and
compression give way to when dealing with available
technologies.

As for code generation, the RF must be phase
modulated to obtain the desired phase shift at the transi-
tion from one sub-pulse to the other. The following pro-
blems arise:

— modulator complexity normally increases (*) with the
number of distinct phase values (mod. 2TT);

— the effective phase values obtained are generally af-
fected by implementation errors;

(*) For a number 2 M of equally spaced phases, the resulting complexity is almost
proportional to M.
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— corresponding to phase transition there is a spot
where RF has a phase different from the steady-state
value.

As regards code compression, based upon digital
techniques, the following problems arise:

— lack of sync between echo starting point and sampling
clock, with a resulting optimization of sampling fre-
quency, that is of the ratio 6/Tc;

— selection of the number of bits necessary for an ac-
curate representation of signal and compression filter
coefficients, taking into account its complexity.

The number of distinct phases is generally equal to
half the number of code elements, because the phase se-
quence is usually symmetrical. It is most convenient to use
the least number of distinct phase values, whereas there is
no limitation to the phases themselves. To limit the
number of distinct phases, the following method has been
adopted: having synthesized a polyphase code, the values
obtained have been replaced by near values properly
selected so as to obtain a good approximation of the
original code with a limited number of distinct phases.

In fig. 12, which has already been called up regarding
the distortion factor, in addition to the curve indicated as
(a) related to the case of all distinct phases, the graph for
10 distinct phases is also reported. It may be noted that
the ratio P/L deteriorates all the more the lesser the
number of distinct phases. To complete the analysis, con-
sider the graphs in Fig. 16, where the ratio P/L is given as
a function of the Doppler. Although no contraint exists
a-priori in the choice of the distinct phase values, a
uniform quantization of (0, 2TT) has been adopted.

In conclusion, a number of distinct phases equal to 16
(with a phase quantum equal to 22.5°), seems to be the
minimum required so as not to deteriorate code perfor-
mance by too large an extent and also seems to be a
reasonable cost solution. The sequence of the phases for
the 120 elements code is given in fig. 17.

As regards the errors in the effective transmitted
phases, due to tolerances in the delay lines, to radar fre-

Fig. 16 - Peak-to-sidelobe ratio vs. Doppler frequency for dif-
ferent number of phases.

quency agility or thermal noise, their effect amounts to a
loss on the peak and a sidelobes degradation. The phase
error has been modelled as a random, white, Gaussian
process, with zero mean and assigned standard deviation.

In the case of 16 distinct phase values, errors having
a <4° do not influence, in any significant manner, the
filter response. As regards the phase transient (where the
phase may take any value), its duration is typically of a
few percent of the sub-pulse duration. This problem is
related to that of sampling in the receiver: assume, as an
example, to select one sample for each sub-pulse, then for
particular values of the target range the sampled values
may be completely random. To obviate the problem, a
shorter sampling interval is taken so as to have for each
pulse, on average (1 +e) samples, where e is opportunely
tailored on the basis of the duration of the transient.

P/L((JB)
a - all different phasesb - 29 phasesc - 16 phasesd - 10 phases

NLFM CODEN =93T = 80 fiSB =0.75 MHzK0 = 0.2(PILU, = 39.4 d B

fD, KHz

Fig. 17 - Sequence of phase values for a digital NLFM code with N = 120 elements.

*P (degrees)
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Through this technique, only a small percent of the
samples will be mismatched with the correlation filter.

This phenomenon has been simulated by assigning a
random value to a given fraction of the samples with a
different number and position of the random elements.
With a fraction of random samples between 1/20 and
1/40, the peak loss is less than 0.5 dB with a P/L ratio at
ail times greater than 24 dB, which stands for a degrada-
tion of the order of 4 or 5 dB, or less.

The results obtained are independent of the random
element position in the group of samples.

A detailed evaluation of the signal quantization effect
at the matched filter input and of the filter weights, is
given in /11/ .

The most significant result is that assuming that
weights and signal have the same number of bits nB (in-
clusive of sign), when nB ^ 3, a significant degradation of
the peak-to-sidelobe ratio takes place, at least for codes
having a relatively small number of elements.
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