
Optimized

Implementation of Speech

Processing Algorithms

Sara Grassi

THÈSE SOUMISE À LA FACULTÉ DES SCIENCES

DE L’UNIVERSITÉ DE NEUCHÂTEL POUR L’OBTENTION

DU GRADE DE DOCTEUR ÈS SCIENCES

Copyright © 1998 Sara Grassi

Blank page

v

Abstract

Several speech processing applications such as digital hearing
aids and personal communications devices are characterized by
very tight requirements in power consumption, size, and voltage
supply. These requirements are difficult to fulfill, given the
complexity and number of functions to be implemented, together
with the real time requirement and large dynamic range of the
input signals. To meet these constraints, careful optimization
should be done at all levels, ranging from algorithmic level,
through system and circuit architecture, to layout and design of
the cell library. The key points of this optimization are among
others, the choice of the algorithms, the modification of the
algorithms to reduce computational complexity, the choice of a
fixed-point arithmetic unit, the minimization of the number of
bits required at every node of the algorithm, and a careful match
between algorithms and architecture.

The optimization method is explained and then applied to
two typical speech processing applications: noise
reduction/speech enhancement for digital hearing aids and
spectral analysis and quantization in the CELP FS1016 speech
coder.

Blank page

vii

Résumé

Les exigences relatives à la consommation d’énergie, la taille et
l’alimentation sont très sévères pour un certain nombre
d’applications du traitement de la parole, par exemple les aides
auditives digitales ou les appareils de communication portables.
Ces conditions sont difficiles à remplir, étant donné la
complexité et le grand nombre de fonctions à implanter,
auxquels s’ajoutent les contraintes liées au temps réel et à la
large dynamique des signaux d’entrée. Pour satisfaire ces
exigences, une optimisation soignée doit être menée à tous les
niveaux, depuis l’algorithme, jusqu’au circuit et à la conception
de la librairie de cellules, en passant par l’architecture du
système et du circuit. Les aspects majeurs de l’optimisation
concernent notamment le choix des algorithmes, les
modifications nécessaires pour réduire le coût de calcul, le choix
d’une unité arithmétique à virgule fixe, la minimisation du
nombre de bits nécessaires pour chaque valeur dans l’algorithme
ainsi que l’adéquation minutieuse entre algorithmes et
architecture.

La méthode d’optimisation est détaillée puis illustrée dans
le cas de deux applications types du traitement de la parole : la
réduction de bruit pour les aides auditives digitales ainsi que
l’analyse spectrale et la quantification du codeur CELP FS1016.

Blank page

ix

Acknowledgements

This work was made possible by the contribution of many
people.

First, I would like to thank my supervisor Professor Fausto
Pellandini for putting his trust in me, giving me the opportunity
to work in his research group, and for supervising the writing of
this thesis. I also would like to thank Professor Murat Kunt,
Professor Heinz Hügli and Mr. Michael Ansorge for co-
examining this thesis.

This work was partially financed by the Swiss Foundation
for Research in Microtechnology (FSRM), under the project
FSRM 91/07 and the Federal Commission for the
Encouragement of Scientific Research (CERS), under the project
CERS 2747.1.

Mr. Michael Ansorge also participated directly in the
research described in this report. He contributed to the
organization of my work, bringing useful ideas and carefully
examining and proof-reading our publications, contributing to
their improvement with his comments and corrections. Mr.
Alain Dufaux also worked with me during part of this research
and we had a lot of interesting discussions.

I am also very grateful to the following students, who did
their undergraduate thesis or their practical semester work
with me: Joerg Troger, Stéphane Kuenzi, Olivier Huesser, Beat
Rupp, François Seguin and Giuseppina Biundo. I have learned a
lot from them.

My husband, Andreas Pauletti, was most helpful during the
writing of this report. Besides his love, continuous moral

Optimized Implementation of Speech Processing Algorithms

x

support and encouragement, he proof-read (more than once!) the
whole manuscript and drew several of the figures.

Vincent Moser kindly provided the document style
definitions from his own Ph.D. report, as well as a lot of
typographical advice.

Catherine Marselli did the French translation, and
supported me endlessly before and during the writing of this
thesis.

My colleagues were always available and helpful during my
time at IMT. In particular our secretary Catherine Lehnherr
and our System Manager Heinz Burri.

Some of my colleagues were particularly friendly and
supportive. Among them Vincent Moser, Alexis Boegli,
Dominique Daudet, Dequn Sun, Christian Robert and Javier
Bracamonte.

Finally, I would like to thank all my family and friends, who
make my life worth living.

xi

Table of Contents

Chapter 1
Introduction... 1

1.1. Motivation..1
1.2. Scope of the Research ..2
1.3. Organization of the Report..3
1.4. Main Contributions ...4
1.5. Publications ...5
1.6. References ..5

Chapter 2
Digital Speech Processing.. 7

2.1. The Speech Signal ...7
2.2. Model of Speech Production ..8
2.3. Frequency-domain Analysis of the Speech Signal...........................10
2.4. Linear Predictive Modeling of the Speech Signal12
2.5. Calculation of the LPC Coefficients..13
2.6. Hearing and Speech Perception..14
2.7. Speech Processing and DSP Systems ...15
2.8. Digital Speech Processing Areas and Applications..........................16
2.9. Speech Coding..17

Vector Quantization ...18
CELP coding...20
Parametric Coders ..21

2.10. Speech Enhancement ..22
Digital Hearing Aids..22

2.11. Speech Processing Functional Blocks...24
Lattice FIR, IIR and GAL Predictor ..24

Optimized Implementation of Speech Processing Algorithms

xii

LPC Calculation ...25
LSP Representation of LPC Parameters..26

2.12. Implementation Issues ..26
Real-time Constraints ..27
Processing Delay...27
Programmable DSP versus Custom Hardware27
Programmable DSP Implementation ..28
Custom Hardware and ASIC...29

2.13. Fixed-point versus Floating-point Arithmetic................................29
2.14. Algorithmic Optimization..30
2.15. Summary of the Chapter...30
2.16. References ..31

Chapter 3
Methodology of Optimization.. 33

3.1. Methodology of Optimization ..33
3.2. Quantization Effects in Digital Signal Processing34
3.3. Binary Fixed-point Representation of Numbers..............................36
3.4. Rounding and Truncation ...37

Truncation ..38
Rounding ..38
Convergent Rounding...39

3.5. Dynamic Range, Overflow and Saturation Arithmetic....................39
3.6. Fixed-point Quantization Effects..40

Parameter Quantization ..41
Signal Quantization...41

3.7. Round-off Noise and Limit Cycles ..42
3.8. Adaptive and Non-linear Algorithms ...42
3.9. Simulation of Quantization Effects in DSP Algorithms..................43

The Environment Used ..43
Programs to Simulate Quantization Effects44
The Input Signals...46
Measures of Performance ...46

3.10. Simulation of DSP56001 Quantization Effects..............................47
The DSP56001 ..47
Simulation of DSP56001 Arithmetic...48

3.11. Conclusions and Summary of the Chapter.....................................51
3.12. References ..51

Table of Contents

xiii

Chapter 4
Noise Reduction / Speech Enhancement for Digital
Hearing Aids .. 53

4.1. Digital Hearing Aids ...53
4.2. Noise Reduction / Speech Enhancement Algorithms.......................54
4.3. High Level Simulation ..58

Testing the Algorithms and Choice of the Parameters....................58
Measure of Performance ...59

4.4. Real Time Implementation on DSP56001 ..60
4.5. Simplified Division ..60
4.6. Quantization Effects..61

Parameters of the System ...61
The Optimized System..61
Implications for the VLSI Implementation63
Implications for the DSP56001 Implementation64

4.7. VLSI Implementation..65
4.8. Further Work...66

Speech Coding ..66
Frequency Shaping for Digital Hearing Aids68

4.9. Conclusions and Summary of the Chapter.......................................68
4.10. References ..69

Chapter 5
Line Spectrum Pairs and the CELP FS1016 Speech Coder73

5.1. LPC Analysis ...73
5.2. Calculation of the LPC Coefficients..74

Autocorrelation Method and Durbin's Recursion75
5.3. Bandwidth Expansion ...76
5.4. Quantization of the LPC Coefficients ...77

Objective Measure of LPC Quantization Performance....................78
Alternative Representations of LPC Coefficients.............................79

5.5. Interpolation of the LPC Coefficients ...81
5.6. Line Spectrum Pairs..82

Use of LSP Representation in Speech Coding82
Definition of LSP Parameters ..83

5.7. Characteristics of the LSP Parameters ..86
Frequency Domain Representation ..86
Intra- and Inter-frame Correlation..86
Localized Spectral Sensitivity..87
Close Relationship with Formants of the Spectral Envelope..........87

Optimized Implementation of Speech Processing Algorithms

xiv

5.8. Quantization of the LSP Parameters ...88
Scalar Quantization...88
Vector Quantization ...89
Spectral Quantization in the FS1016 CELP Coder90

5.9. Determination of the LSP Parameters ...92
Kabal’s Method ...92
Saoudi’s Method ...95
Chan’s Method ..98
Spectral Transform Methods ...100
Adaptive Methods...101

5.10. LSP to LPC Transformation..101
Direct Expansion Method...102
LPC Analysis Filter Method...102
Kabal’s Method ...103

5.11. The CELP FS1016 Speech Coder..103
Short-term Spectral Analysis in the CELP FS1016 Coder105

5.12. Summary of the Chapter...108
5.13. References ..108

Chapter 6
Proposed Algorithms for LSP Calculation....................... 113

6.1. First Proposed Method: Mixed-LSP..114
Different Derivation of P′10(x) and Q′10(x).......................................114
Description of the Proposed Algorithm (Mixed-LSP)116
Experimental Evaluation ...116

6.2. LSP Quantization in the “x-domain” versus LSP Quantization in
the “ω-domain”..117
6.3. Second Proposed Method: Quantized-search Kabal118

«Single-correction»..119
«Coupled-correction»...121
Experimental Evaluation ...123
Quantized-search Chan..125
Computational Complexity ..125

6.4. Program for LSP Quantization ...126
6.5. Bandwidth Expansion and Spectral Smoothing127
6.6. Accuracy of the Different Algorithms ...127

Spectral Distortion ...129
6.7. Reliability of the Different Algorithms...131
6.8. LSP Interpolation in the “x-domain” versus LSP Interpolation in
the “ω-domain”..135
6.9. Computational Complexity ...136

Table of Contents

xv

DSP56001 Implementation ..138
6.10. Program Listings ...141
6.11. Further Work...141
6.12. Conclusions and Summary of the Chapter...................................141
6.13. References ..142

Chapter 7
DSP56001 Implementation of the CELP FS1016 Spectral
Analysis and Quantization... 145

7.1. Short-term Spectral Analysis and Quantization in the CELP
FS1016 Coder..145
7.2. Testing the Implemented Blocks ..147
7.3. Measure of Computational Complexity ..149
7.4. Calculation of Bandwidth-expanded LPC......................................149

High-pass Filter..150
Windowing..152
Calculation of the Autocorrelation Coefficients152
Levinson-Durbin Recursion ...154
Bandwidth Expansion ...154
Experimental Evaluation of the Calculation of Bandwidth
Expanded LPC..155

7.5. LSP Calculation and Quantization...156
Kabal’s Algorithm ..157
Experimental Evaluation of Kabal’s Algorithm Implementation 158
Mixed-LSP ..158
Experimental Evaluation of Mixed-LSP Implementation159
Quantized-search Kabal...160
Experimental Evaluation of Q.-search Kabal Implementation162
LSP Quantization in the “x-domain”...162
Experimental Evaluation of LSP Quantization in the “x-domain”163

7.6. LSP Interpolation and Conversion to LPC.....................................163
Experimental Evaluation of LSP Interpolation and Conversion to
LPC ...166

7.7. Total Computational Complexity..166
7.8. Program Listings ...167
7.9. Further Work...167
7.10. Conclusions and Summary of the Chapter...................................168
7.11. References ..168

Chapter 8
Conclusions.. 171

Optimized Implementation of Speech Processing Algorithms

xvi

Appendix A
Fixed-point Quantization Effects 173

A.1. Macros and Functions to Simulate Different Types of Truncation or
Rounding...173
A.2. Block Diagram of the DSP56001..174
A.3. Arithmetic Instructions of the DSP56001......................................175

Appendix B
LeRoux-Gueguen Algorithm .. 177

B.1. LeRoux-Gueguen Algorithm...177
B.2. References ...178

Appendix C
LSP to LPC Transformation .. 179

C.1. Direct Expansion Method ...179
C.2. LPC Analysis Filter Method...181
C.3. Kabal’s Method..182

Appendix D
Mixed-LSP Method... 185

D.1. Derivation of the Polynomials P′10(x) and Q′10(x)185
D.2. Properties of the Roots of D10(x) ...190
D.3. Direction of the Sign Changes..190
D.4. Calculation of the Roots of D10(x) ...191

Resolution of a 4-th Order Polynomial ..191
Resolution of a 3-rd Order Polynomial..195
Calculation of the Roots of D10(x) ...197

D.5. Optimization of the Root Sorting ...199
D.6. Property of the Roots of D10(x) ..200
D.7. References ...202

Appendix E
Quantized-search Kabal Method .. 203

E.1. Maximum Number of Evaluations...203
E.2. Differences with the Reference Algorithm.....................................204

1

Chapter 1
Introduction

The research presented in this Ph.D. report addresses the
optimized implementation of some functional blocks which are
found frequently in digital speech processing applications.

1.1. Motivation

The principal means of human communication is speech. This
fact is reflected in modern technology, as machines are used to
transmit, store, manipulate, recognize, and create speech, as
well as for recognizing the identity of the speaker. For these
tasks, the speech signal is usually represented digitally.

The development of VLSI and DSP chips has paved the way
for the implementation of highly complex digital speech
processing algorithms. As a result, speech processing technology
is now being used in telecommunications and business, for
applications like voice mail, personal communications systems,
automated operators, information retrieval systems, and voice
activated security.

On the other hand, some applications of digital speech
processing, such as personal communications systems and
hearing aids, require the use of portable, battery operated
devices. Their implementation is thus characterized by tight
constraints in power consumption and size. For high volume
applications, low cost is also a priority.

Optimized Implementation of Speech Processing Algorithms

2

The choice of a fixed-point arithmetic is a key point to
decrease cost, size and power consumption in ASIC
implementations. Furthermore, commercial fixed-point DSP
chips are cheaper and have a smaller power consumption than
floating-point DSPs. Therefore, the analysis of fixed-point
quantization effects is of great importance in carefully optimized
implementations.

Optimization at the algorithmic level (algorithm choice and
simplification) is the basis for a low power implementation as it
allows savings of orders of magnitude in power consumption.
Another aspect is the determination of the optimum scaling and
minimum wordlength needed at every node of the algorithm.

In order to reduce the number of iterations in the design
phase, it is desirable to be able to predict some aspects of the
performance of the hardware before actually implementing it. In
Chapter 3, a practical method for evaluating the effects
resulting from the use of fixed-point arithmetic is presented, as
part of a methodology aimed to optimize the implementation of
speech processing algorithms for low power applications.

This methodology was applied to the implementation of a
noise reduction algorithm for digital hearing aids, and to the
implementation of spectral analysis and quantization for speech
coding.

1.2. Scope of the Research

In the research presented in this report, only digital speech
processing algorithms were considered. In particular, the study
was restricted to two areas of speech processing: speech
enhancement with application to digital hearing aids, and
speech coding with application to portable communications
devices. Both applications are characterized by very tight
constraints in cost, power consumption and size.

As the choice of a fixed-point arithmetic is a key point to
decrease cost, size and power consumption, in both
programmable DSP and ASIC implementations, only fixed-point
implementations were considered. This implies a
higher development effort, as the designer has to determine the

Introduction

3

dynamic range and precision needs of the algorithms before
implementation, either analytically, or through simulation. The
practical and simple method for evaluating fixed-point
quantization effects on DSP algorithms, presented in Chapter 3,
aims to help the designer in this task. The proposed method
allows a simulation of the system in final working conditions
and at the same time benefit of the flexibility of using a high
level language, independently of the hardware.

Of all the possible optimization strategies at different
implementation levels, only optimization at the algorithmic level
allows power consumption savings of orders of magnitude. Thus,
in the research described in this report, the optimization effort
is restricted to algorithmic optimization. Algorithmic
optimization comprises the following strategies:

(1) Choice of the algorithms.

(2) Simplification of the algorithms in order to reduce the
complexity and decrease the dynamic range needs.

(3) Study of the fixed-point quantization effects, to determine
the optimum scaling and minimum wordlength required at
every node of the algorithm.

(4) Simplification of the interactions among the different
algorithms inside the whole system.

(5) Good interrelation between the algorithms and the target
architecture.

These optimization strategies were used in the
implementation of a noise reduction algorithm for digital
hearing aids on a fixed-point commercial DSP and on a low
power VLSI architecture, as described in Chapter 4. They were
also used in the implementation of the spectral analysis block of
the CELP FS1016 speech coder, as described in Chapter 7.

1.3. Organization of the Report

In Chapter 2, a brief introduction to the field of digital speech
processing and its applications is given. The purpose of this
chapter is to give some of the basic definitions and to show the
importance of optimization in speech applications.

Optimized Implementation of Speech Processing Algorithms

4

An optimization methodology, which is based on algorithmic
optimization and the study of fixed-point quantization effects, is
proposed in Chapter 3. This methodology was used in the
implementation of a noise reduction algorithm for digital
hearing aids, as explained in Chapter 4.

The theoretical fundamentals for understanding the LSP
representation of LPC coefficients, with application to speech
coding, are given in Chapter 5. The CELP FS1016 speech coder,
in particular its spectral analysis block, is also explained. These
concepts are used in Chapter 6, in which two novel efficient
algorithms for LPC to LSP conversion are presented. In Chapter
7, the DSP56001 optimized implementation of the CELP
FS1016 spectral analysis block is given.

Finally, the general conclusions are given in Chapter 8.

1.4. Main Contributions

The main contributions of the Ph.D. work described in this
report are:

(1) The optimization methodology for speech processing
algorithms presented in Chapter 3, together with a simple
and practical method for evaluating the behavior of digital
signal processing algorithms in the case of 2's complement
fixed-point implementations.

(2) Two novel efficient algorithms for LSP calculation from LPC
coefficients, named Mixed-LSP and "quantized-search
Kabal", presented in Chapter 6.

(3) The unified comparison among three existing LSP
calculation algorithms, and the two proposed methods, given
in Chapter 6. This comparison is done using the same
conditions (same speech database and target speech coder).

1.5. Publications

Part of the work described in this report has already been the
subject of some publications. The paper presented at the
Seventh European Signal Processing Conference in Scotland, in

Introduction

5

October 94 [Gras94], describes the methodology of optimization,
simulation of quantization effects, and its application to a noise
reduction/speech enhancement algorithm for digital hearing
aids. The optimization methodology and the application to the
noise reduction algorithm are explained with more details in
Chapter 3 and 4 of this report. A companion paper, presented by
A. Heubi at the same conference [Heub94], describes the low
power architecture used for the VLSI implementation
(see § 4.7).

The paper presented at the IEEE International Conference
on Acoustics, Speech, and Signal Processing in Munich, in
April 97 [Gras97a], describes the new efficient method for LPC
to LSP conversion, called Mixed-LSP, which is explained in
Chapter 6.

Two internal IMT reports, covering some parts of Chapter 3
and 4 [Gras95], and Chapter 5, 6 and 7 [Gras97b] were also
written. In particular, the listings for the C, Matlab, and
DSP56000 assembly programs, used in the work described in
this thesis are given in these two reports.

1.6. References

[Gras94] S. Grassi, A. Heubi, M. Ansorge, and F. Pellandini, “Study of
a VLSI Implementation of a Noise Reduction Algorithm for
Digital Hearing Aids”, Proc. EUSIPCO’94, Vol.3, pp. 1661-
1664, 1994.

[Gras95] S. Grassi, Simulation of Fixed-point Quantization Effects on
DSP Algorithms, IMT Report No 375 PE 03/95, University of
Neuchâtel, IMT, 1995.

[Gras97a] S. Grassi, A. Dufaux, M. Ansorge, and F. Pellandini,
"Efficient Algorithm to Compute LSP Parameters from 10-th
order LPC Coefficients", Proc. IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, ICASSP'97, Vol. 3, pp. 1707-
1710, 1997.

[Gras97b] S. Grassi, DSP56001 Implementation of the Spectral
Analysis and Quantization for the CELP FS1016 Speech
Coder, IMT Report No 421 PE 10/97, University of
Neuchâtel, IMT, 1997.

Optimized Implementation of Speech Processing Algorithms

6

[Heub94] A. Heubi, S. Grassi, M. Ansorge, and F. Pellandini, "A Low
Power VLSI Architecture for Digital Signal Processing with
an Application to Adaptive Algorithms for Digital Hearing
Aids", Proc. EUSIPCO'94, Vol. 3, pp. 1875-1878, 1994.

7

Chapter 2
Digital Speech Processing

In this chapter a brief introduction to the field of digital speech
processing and its applications is given. The purpose is to
mention some concepts and give some definitions that are used
throughout this report, and to show the importance of the
optimization of speech processing functional blocks for some
particular applications.

Theoretical fundamentals which are more specific to the
work done are given at the beginning of Chapter 3 and 4, and in
Chapter 5.

2.1. The Speech Signal

To communicate information to a listener a speaker produces a
speech signal in the form of pressure waves that travel from the
speaker’s head to the listener’s ears [Osha87]. These pressure
waves are converted to an analog electrical speech signal
through the use of transducers (e.g., microphones). This speech
signal contains frequencies ranging from 100 Hz up to perhaps
8 kHz, and has amplitudes between 30 to 90 dB.

To digitally process speech signals which are in analog form,
they are converted into a digital form (i.e., a sequence of
numbers). This is done in two steps. The signal is first
periodically sampled, obtaining a discrete-time, continuous-
amplitude signal which is then quantized in amplitude.

Optimized Implementation of Speech Processing Algorithms

8

The rate at which the analog signal is sampled is known as
the sampling frequency, Fs. The Nyquist theorem requires that
Fs be greater than twice the bandwidth of the signal to avoid
aliasing distortion. Thus the analog signal is low-pass filtered
before sampling. As the low-pass filter is not ideal, the sampling
frequency is chosen to be higher than twice the bandwidth. In
telecommunication networks, the analog speech signal is band-
limited to 300-3400 Hz and sampled at 8 kHz. Hereafter, the
term speech coding (see § 2.9) will refer to the coding of this type
of signal. For higher quality, speech is band-limited to 0-7000 Hz
and sampled at 16 kHz. The resulting signal is referred to as
wideband speech.

The sampled signal is quantized in amplitude via an analog-
to-digital converter, which represents each real sample by a
number selected from a finite set of L possible amplitudes
(where B = log2L is the number of bits used to digitally code the
values). This quantization process adds a distortion called
quantization noise, which is inversely proportional to L. In
practice 12 bits are needed to guarantee an SNR higher than
35 dB over typical speech ranges [Osha87].

2.2. Model of Speech Production

Speech production can be viewed as a filtering operation, in
which a sound source excites a vocal tract filter. The source may
be either periodic, resulting in voiced speech, or noisy and
aperiodic, causing unvoiced speech. There are also some parts of
speech which are neither voiced nor unvoiced but a mixture of
the two, called the transition regions. Amplitude versus time
plots of typical voiced and unvoiced speech are shown in
Figure 2.1.

In this speech production model the effects of the excitation
source and the vocal tract are considered independently. While
the source and tract interact acoustically, their independence
causes only secondary effects.

The voicing source occurs at the larynx at the base of the
vocal tract, where the airflow from the lungs is interrupted
periodically by the vocal folds generating periodic puffs of air.

Digital Speech Processing

9

0 50 100 150 200 250 300
−1

−0.5

0

0.5
Voiced speech

A
m

pl
itu

de

0 50 100 150 200 250 300
−0.1

0

0.1

Time (samples, 1 sample=0.125 ms)

Unvoiced speech

A
m

pl
itu

de

Figure 2.1: Typical voiced and unvoiced speech waveforms.

The rate of this excitation is the fundamental frequency F0,
also known as pitch. Voiced speech has thus a spectra consisting
of harmonics of F0. Typical speech has an F0 of 80-160 Hz for
males. Average F0 values for males and females are respectively
132 Hz and 223 Hz.

Unvoiced speech is noisy due to the random nature of the
excitation signal generated at a narrow constriction in the vocal
tract.

The vocal tract is the most important component in the
speech production process. For both, voiced and unvoiced
excitation, the vocal tract acts as a filter, amplifying certain
sound frequencies while attenuating others. The vocal tract can
be modeled as an acoustic tube with resonances, called
formants, and antiresonances (or spectral valleys). These
formants are denoted as Fi, where F1 is the formant with the
lowest center frequency). The formants correspond to poles of
the vocal tract frequency response, whereas some spectral nulls
are due to the zeros. Moving the articulations of the vocal tract
alters the shape of the acoustic tube, changing its frequency
response.

Optimized Implementation of Speech Processing Algorithms

10

Thus, the produced speech signal is non-stationary (time-
varying) changing characteristics as the muscles of the vocal
tract contract and relax. Whether or not the speech signal is
voiced, its characteristics (e.g., spectral amplitudes) are often
relatively fixed or quasi-stationary over short periods of time
(10-30 ms), but the signal changes substantially over intervals
greater than the duration of a given sound (typically 80 ms).

2.3. Frequency-domain Analysis of the Speech Signal

Most useful parameters in speech processing are found in the
spectral domain. The speech signal is more consistently and
easily analyzed spectrally than in the time domain and the
common model of speech production (see § 2.2) corresponds well
to separate spectral models for the excitation and the vocal
tract. The hearing mechanism appears to pay much more
attention to spectral amplitude of speech than to phase or
timing aspects (see § 2.6). For these reasons, spectral analysis is
used primarily to extract relevant parameters of the speech
signal. One form of spectral analysis is the short-time Fourier
transform, which is defined, for the signal s(n), as:

() ()S e w k n s n ek
j j n

n
()ω ω= − ⋅ ⋅ −

=−∞

∞

∑ (2.1)

Due to the non-stationary nature of speech, the signal is
windowed, by multiplication with ()w k n− , to isolate a quasi-
stationary portion for spectral analysis.

The choice of duration and shape of the window w(n), as well
as the degree of overlap between successive windows, reflects a
compromise in time and frequency resolution. Tapered cosine
windows such as the Hamming window are typically used, and
the length of the window is usually 10 to 30 ms for speech
sampled at 8 kHz.

In Equation (2.1), the variable ω is the angular frequency,
which is related to the real frequency Ω (in Hz) by the equation:

ω πΩ= 2 Fs (2.2)

Digital Speech Processing

11

0 1000 2000 3000 4000
−40

−20

0

20

40
Voiced speech

M
ag

ni
tu

de
 (

dB
)

0 1000 2000 3000 4000
−40

−20

0

20

40

Frequency (Hz)

Unvoiced speech

M
ag

ni
tu

de
 (

dB
)

Figure 2.2: Spectra of the voiced and unvoiced speech waveforms shown
in Figure 2.1, and 10-th order LPC envelope.

Another variable which is sometimes used is the normalized
frequency f, related to ω and Ω by:

f F fs= =Ω , ω π2 (2.3)

As the spectrum of a digital signal is periodic in ω, the useful
range for the frequency, corresponding to one period of the
spectrum is given by: 0 2≤ ≤ω π , 0 1≤ ≤f , and 0 ≤ ≤Ω Fs .
Furthermore, as the speech signal is real, the spectrum is
symmetric and the interesting frequency range is: 0 ≤ ≤ω π ,
0 0 5≤ ≤f . , and 0 2≤ ≤Ω Fs .

The short-time power spectra of the voiced and unvoiced
speech waveforms of Figure 2.1, as well as their 10-th order LPC
envelope (see § 2.4) are shown in Figure 2.2.

The discrete Fourier transform (DFT) is used for
computation of Equation (2.1) so that the frequency variable ω
takes N discrete values (N corresponding to the window
duration). Since the Fourier transform is invertible, no

Optimized Implementation of Speech Processing Algorithms

12

information is lost in this representation. A more economical
representation of speech parameters is achieved by the use of
linear predictive analysis.

2.4. Linear Predictive Modeling of the Speech Signal

Spectral magnitude is a relevant aspect of speech which is
widely used in speech processing. One source of spectral
magnitude is the short-time Fourier transform. Alternatively,
linear predictive coding (LPC) provides an accurate and
economical representation of the envelope of the short-time
power spectrum of speech.

In LPC analysis, the short-term correlation between speech
samples (formants) is modeled and removed. This technique is
based on the model of speech production explained in
Section 2.2. A simplified block diagram of this model is shown in
Figure 2.3.

In this model, the excitation signal, e(n), is either an
impulse train (for voiced speech) or white noise (for unvoiced
speech). The combined spectral contributions of the glottal flow,
the vocal tract, and the radiation of the lips are represented by a
time varying digital filter. This filter is called the
LPC synthesis filter. Its transfer function has both poles and
zeros, but to minimize analysis complexity, the filter is assumed
to be all-pole, with a transfer function given by:

H z
S z
E z a k z A zp

p
k

k
p

p
()

()
() () ()

= =
+ ⋅

=
−

=∑
1

1

1

1 (2.4)

where {ap(1),…,ap(p)} are the LPC coefficients and p is the order
of the filter (or LPC order). An order of 10 is typically used for
telephone bandwidth (300-3400 Hz) speech sampled at 8 kHz.
Using this LPC order, formant resonances and general spectral
shape (envelope) are modeled accurately. The 10-th order LPC
spectra for the voiced and unvoiced speech waveforms of
Figure 2.1 (superposed to its corresponding short-time power
spectra), is shown in Figure 2.2.

Digital Speech Processing

13

Random
Noise

Generator

Pitch Period

Impulse
Train

Generator

e(n) Time
Varying

Filter

LPC Coefficients

Output
Speech

s(n)

G

Voiced /
Unvoiced

Switch

Figure 2.3: Block diagram of the simplified source filter model of speech
production.

The LPC analysis filter is given by:

A z a k zp p
k

k
p() ()= + ⋅ −

=∑1 1 (2.5)

Transforming Equation (2.4) to the time domain results in:

e n s n a k s n k s n s npk
p() () () () () �()= + ⋅ − = −=∑ 1 (2.6)

It is seen that the current speech sample s(n) is predicted by a
linear combination of p past samples, �()s n . Thus the signal e(n)
is the prediction error or residual signal. Hence, the p-th order
LPC analysis problem is stated as follows: given measurements
of the signal s(n), determine the parameters {ap(1),…,ap(p)} so as
to minimize the error signal e(n).

2.5. Calculation of the LPC Coefficients

Using the least-squares method, the LPC coefficients are
determined by minimizing the mean energy of the error signal,
given by:

[]ε p pk
pe n s n a k s n k= = + ⋅ −

−∞

∞

=
−∞

∞
∑ ∑∑2

1

2
() () () ()

(2.7)

The summation range is limited by windowing either the speech
or the error signal, leading to the autocorrelation or covariance

Optimized Implementation of Speech Processing Algorithms

14

method, respectively. The autocorrelation method is
computationally more efficient than the covariance method and
the resulting synthesis filter is always stable. In the
autocorrelation method, the LPC coefficients are calculated by
using the efficient Levinson-Durbin recursion (see § 5.2). This
method is very popular in speech coders such as the CELP
FS1016 (see § 5.11).

An alternative representation of the LPC coefficients
(see § 5.4), which corresponds to the multipliers of a lattice filter
realization of the LPC synthesis filter, are the Parcor (partial
correlation) or reflection coefficients, {k1,…,kp}. The LPC
coefficients can be transformed to reflection coefficients and vice
versa, using the recursions given in Equations (5.18) and (5.19).
There are some LPC calculation methods, which give directly
the reflection coefficients, without calculating the LPC
coefficients. Two of these methods are Burg’s method [Kond94]
and LeRoux-Gueguen method (see § B.1).

Instantaneous (sample by sample) adaptation of the
reflection coefficients is obtained by using a gradient least-
mean-square (LMS) adaptive algorithm [Widr85]. In this case,
the LPC calculation algorithm is called the gradient adaptive
lattice (GAL) predictor. This LPC calculation algorithm is used
in the noise reduction/speech enhancement algorithm for digital
hearing aids described in Chapter 4.

2.6. Hearing and Speech Perception

The speech signal entering the listener’s ear is converted into a
linguistic message [Osha87]. The ear is especially responsive to
those frequencies in the speech signal that contain the most
information relevant to communication (i.e., frequencies
approximately in the 200-5600 Hz range). The listener is able to
discriminate small differences in time and frequency found in
speech sounds within this frequency range.

Key perceptual aspects of a speech signal are more evident
when represented spectrally than in the time domain. Spectral
amplitude is much more important than phase for speech
perception and whether a sound can be heard depends on its
spectral amplitude. The minimum intensity at which a sound

Digital Speech Processing

15

can be heard is known as the hearing threshold, which rises
sharply with decreasing frequency below 1 kHz and with
increasing frequency above 5 kHz. An upper limit is given by the
intensity at which a sound causes discomfort or pain, known as
the threshold of pain. The range between the thresholds of
hearing and pain is known as the auditory field. Speech
normally occupies only a portion of the auditory field.

Formant frequencies and amplitudes (see § 2.2) play an
important role in speech perception. Vowels are distinguished
primarily by the location of their three formant frequencies,
while formant transitions provide acoustic cues to the
perception of consonants. Formant bandwidths are poorly
discriminated and their changes appear to affect perception
primarily through their effects on formant amplitudes. The
valleys between formants are less perceptually important than
formant peaks and humans have relatively poor perceptual
resolution for spectral nulls.

2.7. Speech Processing and DSP Systems

A digital signal processing (DSP) system is an electronic system
applying mathematical operations to digitally represented
signals such as digitized speech [Laps97].

DSP enjoys several advantages over analog signal
processing. The most significant is that DSP systems are able to
accomplish tasks which would be very difficult, or even
impossible with analog electronics. Besides, DSP systems have
other advantages over analog systems such as flexibility and
programmability, greater precision, and insensitivity to
component tolerances. Analog signal processing requires specific
equipment, rewiring, and calibration for each new application,
while digital techniques may be implemented, tested and easily
modified on general purpose computers.

These advantages, coupled with the rapidly increasing
density of digital IC manufacturing processes make DSP the
solution of choice for speech processing.

Optimized Implementation of Speech Processing Algorithms

16

2.8. Digital Speech Processing Areas and Applications

In the previous sections, some aspects of speech signals that are
important in the communication process were described.

Some areas of speech processing, such as speech coding,
encryption, synthesis, recognition and enhancement, as well as
speaker verification, utilize the properties of the speech signal to
accomplish their goals [Rabi94], [Lim83]. In Table 2.1, typical
system applications of these speech processing areas are given
[Laps97]. It is seen that several of these applications are
characterized by tight constraints in power consumption and
size. Among them we can mention: hearing aids, digital cellular
telephones, vocal pagers and portable multimedia terminals
with speech i/o [Chan95].

Digital speech
processing area

System applications

Speech coding and
decoding

Digital cellular telephones, digital cordless
telephones, vocal pager, multimedia computers
and terminals, secure communications.

Speech encryption
and decryption

Digital cellular telephones, digital cordless
telephones, multimedia computers and
terminals, secure communications.

Speech recognition Advanced user interfaces, multimedia computers
and terminals, robotics, automotive, digital
cellular telephones, digital cordless telephones.

Speech synthesis Multimedia computers, advanced user interfaces,
robotics.

Speaker verification Security, multimedia computers, advanced user
interfaces.

Speech enhancement
(e.g., noise reduction,
echo cancellation,
equalization)

Hearing aids, hands-free telephone, telephone
switches, automotive, digital cellular telephones,
industrial applications.

Table 2.1: Typical system applications of different speech processing
areas.

Digital Speech Processing

17

2.9. Speech Coding

Speech coding is the process of compressing the information in a
speech signal either for economical storage or for transmission
over a channel whose bandwidth is significantly smaller than
that of the uncompressed signal.

The ideal coder has low bit rate, high perceived quality, low
signal delay, low complexity and high robustness to
transmission errors. In practice, a trade-off among these factors
is done, depending on the requirements of the application.

The term speech coding (or narrowband speech coding)
refers to the coding of telephone bandwidth (300-3400 Hz)
speech sampled at 8 kHz, whereas the term wideband speech
coding refers to the coding of speech band-limited to 0-7000 Hz
and sampled at 16 kHz.

The speech research community has given different names
to different qualities of speech found in a telecommunication
network [Osha87]:

(1) Toll quality describes speech as heard over the switched
telephone network. The frequency range is 300-3400 Hz,
with signal-to-noise ratio of more than 30 dB and less than
2-3 % of harmonic distortion.

(2) Communications quality speech is highly intelligible but has
noticeable distortion compared with toll quality.

(3) Synthetic quality speech is 80-90 % intelligible but has
substantial degradation, sounding “buzzy” or “machinelike”
and suffering from lack of speaker identifiability.

Some nuances in this characterization are found in speech
research, where sometimes a coder is described as having “near
toll quality”, or “good communications quality”.

The bit rate of a coder is expressed in bits per seconds (bps)
or kilobits per second (kbps) and is given by:

T kbps B (No. F kHzc s() ()= ⋅ of bits) (2.8)

Toll quality corresponds to (300-3400 Hz) band-limited
speech sampled at 8 kHz and represented with 12 bits (uniform
quantization). The bit rate is thus 96 kbps. Using µ-law or A-law
logarithmic compression, the number of bits is reduced to 8, and

Optimized Implementation of Speech Processing Algorithms

18

thus the bit rate to 64 kbps. This logarithmic coding was
standardized as the ITU-T G.711 and is used as a reference for
toll quality in speech coding research.

In communications systems such as satellite
communications, digital mobile radio, and private networks, the
bandwidth and power available are severely restricted, hence
reduction of the bit rate is vital. This is done at the expense of
decreased quality and higher complexity.

Toll quality is found in coders ranging from 64 kbps to
10 kbps, near toll and good communications quality is found in
the range of 10 to 2.4 kbps, and communications to synthetic
quality below 4.0 kbps.

Vector Quantization

Vector quantization (VQ) is the process of quantizing a set of k
values jointly as a single vector. If the vector elements are
correlated, the number of bits to represent them is reduced with
respect to scalar quantization.

The block diagram of a simple vector quantizer is shown in
Figure 2.4. The codebook Y contains a number L of codevectors yi

of dimension N: yi = [yi1, yi2, …, yiN]T. The subindex i is the
address or index of the codevector yi . Each codevector is
uniquely represented by its index. The length of the codebook L,
and the number of bits of the index B are related by: B = log2L.

The N dimensional input vector x = [x1, x2, …, xN]T is vector
quantized by first finding its “closest” vector in the codebook,
and then representing x by the index of this closest vector. The
closest vector is the one that minimizes some distortion
measure. Typical distortion measures are the mean squared
error and the weighted mean squared error. The codebook
design process is known as training or populating the codebook.
One popular method for codebook design is the k-means
algorithm [Kond94].

The number of codevectors L, should be large enough that
for each possible input vector, substitution by its closest
codevector does not introduce excessive error. However, L must
be limited to limit the computational complexity of the search
and because the bit rate is proportional to B = log2L.

Digital Speech Processing

19

The main drawback of vector quantization is its high
computational and storage cost. Compared to scalar
quantization, the major additional complexity of VQ lies in the
codebook search. In a full codebook search, the input vector is
compared with each of the L vectors of the codebook, requiring L
computationally expensive distance calculations.

The codebook size is also a problem for codebook training. As
an example, if a 20-bit representation is needed, the codebook
should contain 220 codevectors of dimension N. This would
require a prohibitively large amount of training data, and the
training process would need too much time. Besides, as the
codebook is stored at both the receiver and the transmitter, the
storage requirement would be prohibitively high.

Practical VQ systems use suboptimal search techniques that
reduce search time and sometimes codebook memory while
sacrificing performance. Among these techniques there are tree-
searched VQ, multistage VQ, classified VQ and split VQ
[Gers94].

In CELP coders, VQ is used for quantization of the
excitation signal, and sometimes also to model the long term
correlation of the speech signal (pitch) by means of an adaptive
codebook search.

Additionally, VQ is successfully used to quantize spectral
parameters (i.e., any representation of the LPC coefficients) as
explained in Section 5.8.

Vector
Matching

index i

yi

Input Vector
Buffer

x(n) x

Codebook

Y

Figure 2.4: Block diagram of a simple vector quantizer.

Optimized Implementation of Speech Processing Algorithms

20

CELP coding

Most notable and most popular for speech coding is code excited
linear prediction (CELP). These coders had a great impact in the
field of speech coding and had found their way in several
regional and international standards. While newer coding
techniques have been developed, none clearly outperforms CELP
in the range of bit rates from 4 to 16 kbps [CELP97]. The
obtained quality ranges from toll to good communications
quality. Furthermore, several reduced complexity methods for
CELP were studied in speech coding research. As a result, more
than one full-duplex CELP coder can nowadays be implemented
on a state-of-the-art DSP processor.

Current research goes in the direction of reducing
complexity and enhancing performance. Another current trend
is the use of speech classification, notably voice activity
detection (VAD) and voice/non voice classification for bit rate
reduction. The obtained coders are variable bit rate coders, with
an average bit rate lower than 3 kbps and the same quality of
fixed rate coders at 4.8 kbps.

CELP coding refers to a family of speech coding algorithms
which combine LPC-based analysis-by-synthesis (AbS-LPC) and
vector quantization (VQ) [Gers94]. The general diagram of a
CELP coder is shown in Figure 2.5.

In AbS-LPC systems, the LPC model is used (see § 2.4), in
which an excitation signal, e(n), is input to a synthesis filter,
Hp(z), to yield the synthetic speech output s n() .

There are two synthesis filters. The LPC synthesis filter
models the short-term correlation between speech samples
(formants) whereas the pitch synthesis filter models the long-
term correlation (pitch).

The coefficients of the LPC synthesis filter are determined
from a frame of the speech signal, using an open-loop technique
such as the autocorrelation method (see § 2.5). The coefficients
of the pitch synthesis filter are also determined by open loop
techniques [Kond94].

Digital Speech Processing

21

Stochastic
Codebook

Pitch Synthesis
Filter

LPC Synthesis
Filter

Original
Speech
Signal

Instantaneous
Objective

Error

Perceptual
Weighting

Filter

Long
Term

Predictor

Short
Term

Predictor

γ

Minimize
Perceptual

Error

Figure 2.5: Block diagram of a general CELP coder.

Once the parameters of the LPC and pitch synthesis filters
are determined, an appropriate excitation signal is found by a
closed-loop search. The input of the synthesis filters is varied
systematically, to find the excitation signal that produces the
synthesized output that best matches the speech signal, from a
perceptual point of view.

Vector quantization (VQ) is combined with AbS-LPC in
CELP coders [Gers94]. The optimum excitation signal is
selected from a stochastic codebook of possible excitation signals
(codevectors). Each codevector is passed through the LPC and
pitch synthesis filters. The codevector which produces the
output that best matches the speech signal is selected.

In some CELP coders, such as the FS1016 (see § 5.11) the
pitch synthesis filter is substituted by a search on an adaptive
codebook, which models long term correlation.

Parametric Coders

Fixed rate CELP coders do not perform well with bit rates below
4 kbps. Using parametric coders [LOWB97], good
communications and near toll quality is obtained at 2.4 kbps.
These speech coders are based on algorithmic approaches such
as sinusoidal coders, in particular sinusoidal transform coding
(STC) and multiband excitation (MBE). Another widely used
approach is prototype waveform interpolation (PWI), which is a

Optimized Implementation of Speech Processing Algorithms

22

technique to efficiently model voiced excitation. Combining
parametric coders with frame classification schemes, variable
bit rate coders with average bit rate of 1.3 kbps are obtained.
The main disadvantage of parametric coders is their high
complexity, and lower quality when compared with CELP
coders.

2.10. Speech Enhancement

Speech enhancement involves processing speech signals for
human listening or as preparation for further processing before
listening [Lim83]. The main objective of speech enhancement is
to improve one or more perceptual aspects of speech, such as
overall quality or intelligibility.

Speech enhancement is desirable in a variety of contexts.
For example, in environments in which interfering background
noise (e.g., office, streets and motor vehicles) results in
degradation of quality and intelligibility of speech. Other
applications of speech enhancement include correcting for room
reverberation, correcting for the distortion of speech due to
pathological difficulties of the speaker, postfiltering to improve
quality of speech coders, and improvement of normal
undegraded speech for hearing impaired people.

An example of speech enhancement is the algorithm
described in Chapter 4, which was studied and optimized for
implementation. In this algorithm, spectral sharpening is used
for both noise reduction and to compensate for the loss in
frequency selectivity encountered among hearing impaired
people.

Digital Hearing Aids

Analog electroacoustic hearing aids are the primary treatment
for most people with a moderate-to-severe sensorineural hearing
impairment [Work91]. These conventional hearing aids contain
the basic functions of amplification, frequency shaping, and
limiting of the speech signal. The conventional hearing aids
provide different amounts of amplification at different

Digital Speech Processing

23

frequencies so as to fit as much of the speech signal as possible
in the reduced auditory field (see § 2.6) of the hearing impaired
person.

Digital hearing aids promise many advantages over
conventional analog hearing aids. The first advantage is the
increased precision and programmability in the realization of
the basic functions. The frequency response can be tailored to
the needs of the patient and also change according to different
acoustic situations. Another advantage is the possibility of
adding new functions such as noise reduction, spectral
sharpening and feedback cancellation, which are impossible or
very difficult using analog circuits.

Furthermore, external computers can be used to simulate
and study new algorithms to be included in the hearing aid and
for new and improved methods of prescriptive fitting and
evaluation.

On the other hand, the physical implementation of digital
hearing aids is characterized by very tight requirements
[Lunn91]:

 (1) Size: the small physical dimensions of analog hearing aids
contribute to the acceptance by the user. The smallest
devices (in-the-channel hearing aids) have just some cm3 to
accommodate microphone, receiver, signal processing chip
and power supply.

(2) Power supply: for keeping a small dimension, only one 1.5
battery cell should be used.

(3) Power consumption: typical values of 1-2 mW, to allow a
battery life of several weeks.

These requirements are very difficult to fulfill given the
complexity and number of functions to be implemented, the real
time requirement and the large dynamic range of the input
signals. Therefore, the physical implementation of digital
hearing aids can only be achieved by a careful optimization that
ranges from algorithm level, through system and circuit
architecture to layout and design of the cell library.

In Chapter 4, the optimization of the implementation of a
noise reduction/speech enhancement algorithm for digital
hearing aids is presented.

Optimized Implementation of Speech Processing Algorithms

24

The sampling frequency for digital hearing aids is a
controversial issue. In [Lunn91] an Fs of 12 kHz is used,
whereas in several algorithms proposed in literature, an Fs of
8 kHz is used. Higher sampling rates may be unnecessary due to
the reduced auditory field of the hearing impaired person.

2.11. Speech Processing Functional Blocks

Some functional blocks which are typically used in the different
speech processing areas, and which were optimized for
implementation in the work described in this report, are
explained as follows.

Lattice FIR, IIR and GAL Predictor

Lattice filters and lattice linear predictors are used in many
areas of digital speech processing such as coding, synthesis and
recognition, as well as in the implementation of adaptive filters
[Proa89], [Osha87]. The lattice structure offers significant
advantages over the transversal filter realization. The lattice
filter performance using finite word-length implementation is
much superior to that exhibited by the direct implementation.
Also, the lattice adaptive linear predictor presents faster
convergence than the direct form when the stochastic gradient
algorithm (LMS) is used [Honi88]. In commercial speech
synthesis chips the lattice filter is prevalently used because of
its guaranteed stability and suitability for fixed-point arithmetic
[Osha87], [Wigg78], [Iked84]. Furthermore, lattice filter
structures are particularly suitable for VLSI implementation
due to their modular structure, local interconnections, and
rhythmic data flow [Kail85].

The noise reduction/speech enhancement algorithm
described and optimized in Chapter 4 is based on lattice filter
structures (GAL LPC predictor, and modified FIR and IIR
lattice filters). These functional blocks find also application in
other speech processing systems (see § 4.8). The GAL predictor
is used in backward predictive speech coders and other systems
where instantaneous update of spectral information is needed.

Digital Speech Processing

25

The modified FIR and IIR filters studied in Chapter 4 are the
basis for the postfiltering algorithm found in several speech
coders and vocoders to improve quality of the synthesized
speech. These modified FIR and IIR filters are also used in
CELP coders for perceptual weighting of the error between the
original and synthesized speech. Finally the IIR lattice filter is
ideal for the implementation of the LPC synthesis filter found in
most speech coding and synthesis systems.

LPC Calculation

LPC provides an accurate and economic representation of the
speech spectral envelope (see § 2.4). This representation is used
in speech coding to model and remove short-term correlation of
the input signal. The LPC coefficients are used in the synthesis
filter found in speech synthesis systems. Due to its
representation of perceptually important speech parameters it is
also used in speech recognition and speaker verification
systems.

An interesting aspect of LPC analysis is that it is not just
applied to speech processing, but also to a wide range of other
fields such as control and radar [Osha87].

Two types of LPC calculation algorithms were optimized for
implementation in the work described in this report. One is the
LPC calculation on a frame-by-frame basis using the
autocorrelation method and the Levinson-Durbin recursion.
This algorithm was optimized for implementation on a
fixed-point commercial DSP as part of the DSP56001
implementation of the CELP FS1016 spectral analysis and
quantization described in Chapter 7. The second is the sample-
by-sample calculation of the reflection coefficients done with the
GAL predictor, which was optimized for both implementation on
a DSP56001 and on a low power VLSI architecture, as described
in Chapter 4.

Optimized Implementation of Speech Processing Algorithms

26

LSP Representation of LPC Parameters

Line spectrum pair (LSP) parameters are a one to one
representation of the LPC coefficients. This representation
allows more efficient encoding (quantization) of spectral
information, and is very popular in low bit rate coding (see § 5.6,
5.7 and 5.8).

LSP parameters are not only used to encode speech spectral
information more efficiently than using other representations,
but also provide good performance in speech recognition
[Pali88], and speaker recognition [Liu90].

On the other hand, the calculation of LSP parameters from
LPC coefficients is a computationally intensive task, as it
involves the resolution of polynomials by numerical root search.

In Chapter 5, a survey of existing algorithms for LSP
calculation is given (see § 5.9). Three algorithms which are
found promising for efficient real time implementation are
retained for further study and comparison.

In Chapter 6, two new efficient algorithms for LSP
calculation are presented, and then compared with existing
algorithms from the point of view of accuracy, reliability and
computational complexity. The efficient implementation of these
algorithms on a DSP56001 is given in Chapter 7.

Efficient implementation of LSP to LPC conversion is also
addressed in Chapter 5, 6, and 7.

2.12. Implementation Issues

The goal of speech coding is reducing bit rate, without degrading
speech quality, whereas hearing aids are aimed to improve
speech intelligibility and perceived quality. However, in the
implementation of these algorithms, other factors apart from
the their functionality are of importance. Some of these factors
are discussed as follows.

Digital Speech Processing

27

Real-time Constraints

A real-time process is a task which needs to be performed within
a specified time limit. Most speech processing systems must
meet rigorous speed goals, since they operate on segments of
real-word signals in real-time.

While some systems (like databases) are required to meet
performance goals on average, speech processing algorithms
must meet goals at defined instants of time. In such systems,
failure to maintain the necessary processing rates is considered
a serious malfunction. These systems are said to be subject to
hard real-time constraints.

In digital speech processing, the processing needs to be
performed within 125 µs for sample-by-sample processes (with
Fs = 8 kHz). The allowed time is higher for processes performed
on a frame-by-frame basis, such as LPC calculation with
autocorrelation method (see § 2.5), with typical block lengths of
20-30 ms, and subframe lengths of 5-10 ms.

Processing Delay

In some speech processing applications, such as digital hearing
aids and telecommunications, the total delay has to be kept
within specified limits. The processing time usually adds to
other components of the total delay (e.g., algorithmic delay and
transmission delay). Thus, in some cases the processing speed
has to be increased beyond the speed required for real-time
operation, to keep up with the delay requirement.

Programmable DSP versus Custom Hardware

The designer needs to decide whether to use a programmable
DSP chip or to build custom hardware. These two options are
discussed next.

Optimized Implementation of Speech Processing Algorithms

28

Programmable DSP Implementation

Programmable digital signal processors (often called DSPs) are
microprocessors that are specialized to support the repetitive,
numerically intensive tasks found in DSP processing [Laps97].

Dozen of families of DSPs are available on the market today.
The first task in selecting a DSP processor is to weight the
relative importance of performance, cost, integration, ease and
cost of development, and size and power consumption for the
desired application.

Algorithmic optimization is very important from the cost
point of view. Any speech processing algorithm can be
implemented using commercially available DSP processors, but
the cost will increase rapidly with the number of DSP chips
used. Another important consideration is the power
consumption of the final product, especially if it is a portable,
battery operated device.

A key issue is the choice of a fixed-point or floating-point
device. Floating-point DSPs are costlier and have a higher
power consumption than fixed-point DSPs. Floating-point
operations require more complex circuitry and larger word sizes
(which imply wider buses and memory) increasing chip cost.
Also, the wider off-chip buses and memories required increase
the overall system cost and power consumption.

 On the other hand, floating-point DSPs are easier to
program, as, usually, the programmer does not have to be
concerned by dynamic range and precision considerations.

Most high volume applications use fixed-point processors
because the priority is low cost. For applications that are less
cost sensitive, or that have extremely demanding dynamic range
and precision requirements, or were ease of programming is
important, floating-point processors are the choice.

Note also that the implementation on a commercial
fixed-point DSP can be seen as an intermediate step before the
actual implementation using custom hardware (see § 4.4
and 4.6). This implementation allows real time evaluation,
optimization of the scheduling, and helps in the study and
optimization of the fixed-point behavior.

Digital Speech Processing

29

Custom Hardware and ASIC

There are two important reasons why custom-developed
hardware is sometimes a better choice than a commercial DSP
implementation: performance and production cost.

In virtually any application, custom hardware can be
designed which provides a better performance than a
programmable DSP. Furthermore, in some applications such as
digital hearing aids, the tight constraints in size and power can
only be met by using custom hardware.

For high volume products, custom hardware is less
expensive than a DSP processor. Due to its specialized nature,
custom hardware has the potential to be more cost effective
than commercial DSP chips. This is because a custom
implementation places in the hardware only those functions
needed by the application, whereas a DSP processor requires
every application to pay for the full functionality of the
processor, even if it uses only a small subset of its capabilities.

Custom hardware can take many forms, such as printed
circuit boards using off-the shelf components, but this form is
falling out of favor as the performance of DSP processors
increases. In case a very high performance is needed, or very low
power and size are required, the solution is the use of
application specific integrated circuits (ASIC).

Designing a custom chip provides the ultimate flexibility,
since the chip can be tailored to the needs of the application. On
the other hand, the development cost is high, and the
development time can be long.

A key point for an optimized ASIC DSP implementation is
the choice of a fixed-point arithmetic, and minimization of the
number of bits needed for the representation of constants and
variables (see § 3.1).

2.13. Fixed-point versus Floating-point Arithmetic

The choice of a fixed-point arithmetic is a key point to decrease
cost, size, and power consumption in both programmable DSP
and ASIC implementations. As in speech processing applications
such as hearing aids and portable communications devices,

Optimized Implementation of Speech Processing Algorithms

30

minimization of cost, size, and power consumption is essential, a
fixed-point arithmetic is chosen. This implies a higher
development effort. The designer has to determine the dynamic
range and precision needs of the algorithms before
implementation, either analytically, or through simulation.

2.14. Algorithmic Optimization

Algorithmic optimization is essential to obtain a low power
ASIC implementation. This is seen in Table 2.2, where the
expected power saving at different implementation levels is
given [Raba97]. An explanation of all the possible optimization
strategies listed in this table is out of the scope of this report.

Implementation level Optimization
strategy

Expected saving

Algorithm Algorithmic selection Orders of magnitude
Behavioral Concurrency memory Several times
Power Management Clock control 10-90%
Register Transfer
Level

Structural
transformation

10-15%

Technology
independent

Extraction/
decomposition

15%

Technology dependent Technology mapping
Gate sizing

20%

Layout Placement 20%

Table 2.2: Expected power saving by optimization carried out at
different implementation levels.

2.15. Summary of the Chapter

In this chapter a brief introduction to the field of digital speech
processing and its applications was given.

It was shown that algorithmic optimization and the choice of
a fixed-point arithmetic are essential in speech processing
applications such as hearing aids or portable communications
devices.

Digital Speech Processing

31

In Chapter 3, a methodology for optimization of speech
processing algorithms is presented. The emphasis is placed in
algorithmic optimization and the study of fixed-point
quantization effects.

2.16. References

[CELP97] ICASSP’97 session: "CELP Coding", 12 different papers,
Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, ICASSP’97, Vol.2, pp. 731-778, 1997.

[Chan95] A. Chandrakasan and R. Brodersen, “Minimizing Power
Consumption in Digital CMOS Circuits”, Proc. of the IEEE,
Vol. 83, No. 4, pp. 498-523, 1995.

[Gers94] A. Gersho, “Advances in Speech and Audio Compression”,
Proc. of the IEEE, Vol. 82, No. 6, 1994.

[Honi88] M. Honig and D. Messerschmitt, Adaptive Filters:
Structures, Algorithms, and Applications, Kluwer Academic
Publisher, Boston, USA, 1988.

[Iked84] O. Ikeda, "Speech Synthesis LSI LC8100", Proc. of Speech
Technology, New York, pp. 188-191, 1984.

[Kail85] T. Kailath, "Signal Processing in the VLSI Era" in VLSI and
Modern Signal Processing, ed. by S. Kung, H. Whitehouse,
and T. Kailath, Prentice Hall, Englewood Cliffs, NJ, 1985.

[Kond94] A. M. Kondoz, Digital Speech: Coding for Low Bit Rate
Communication Systems (Chapter 3, 11), Wiley, Chichester,
1994.

[Laps97] P. Lapsley et al., DSP Processor Fundamentals: Architectures
and Features, IEEE Press Series on Signal Processing,
Piscataway, NJ, 1997.

[Lim83] J. Lim (Editor), Speech Enhancement, Prentice-Hall Signal
Processing Series, Englewood Cliffs, New Jersey, 1983.

[Liu90] Chi-Shi Liu et al., "A Study of Line Spectrum Pair
Frequencies for Speaker Recognition", Proc. IEEE Int. Conf.
on Acoustics, Speech, and Signal Processing, ICASSP'90,
Vol. 1, pp. 277-280, 1990.

[LOWB97] ICASSP’97 session: "Speech Coding at Low Bit Rates", 14
different papers, Proc. IEEE Int. Conf. on Acoustics, Speech,
and Signal Processing, ICASSP'97, Vol.2, pp. 1555-1610,
1997.

Optimized Implementation of Speech Processing Algorithms

32

[Lunn91] T. Lunner and J. Hellgren, "A Digital Filterbank Hearing
Aid Design, Implementation and Evaluation", Proc. IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing,
ICASSP'91, Vol. 5, pp. 3661-3664, 1991.

[Neuv93] Y. Neuvo, "Digital Filter Implementation Considerations" in
Handbook for Digital Signal Processing, ed. by S. Mitra and
J. Kaiser, Wiley, New York, 1993.

[Osha87] D. O'Shaughnessy, Speech Communication: Human and
Machine (Chapter 3, 4, 5, 6 and 7), Addison-Wesley,
Reading, 1987.

[Pali88] K. Paliwal, "A Study of Line Spectrum Frequencies for
Speech Recognition", Proc. IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, ICASSP'88, Vol. 1, pp. 485-
488, 1988.

[Proa89] J. Proakis and D. Manolakis, Introduction to Digital Signal
Processing, Macmillan, New York, 1989.

[Raba97] J. Rabaey, Cad Tools for Low Power, Electronics
Laboratories Advanced Engineering Course on: Architectural
and Circuit Design for Portable Electronic Systems, EPFL,
Lausanne, 1997.

[Rabi94] L. Rabiner, “Applications of Voice Processing to
Telecommunications”, Proc. of the IEEE, Vol. 82, No. 2, pp.
199-228, 1994.

[Thon93] T. Thong and Y. Jenq, "Hardware and Architecture" in
Handbook for Digital Signal Processing, ed. by S. Mitra and
J. Kaiser, Wiley, New York, 1993.

[Widr85] B. Widrow and S. Stearns, Adaptive Signal Processing,
Prentice-Hall, Englewood Cliffs - N.J, 1985.

[Wigg78] R. Wiggins and L. Brantingham, "Three Chip System
Synthesizes Human Speech", Electronics, Vol. 51, No. 18,
pp. 109-116, 1978.

[Work91] Working-group on Communication and Aids for the Hearing-
impaired People, "Speech-perception Aids for Hearing-
impaired People: Current Status and Needed Research", J. of
the Acoustical Society of America, Vol. 90, No.2, pp. 637-685,
1991.

33

Chapter 3
Methodology of Optimization

In this chapter, a methodology for optimization of speech
processing algorithms is presented. The emphasis is placed in
algorithmic optimization (algorithm choice and simplification)
and the study of fixed-point quantization effects.

A practical method for evaluating the behavior of digital
signal processing (DSP) algorithms in the case of an
implementation using fixed-point 2's complement arithmetic is
proposed. A theoretical study of quantization effects is out of the
scope of this report and can be found among others in [Jack89]
and [Vaid87].

3.1. Methodology of Optimization

Some speech processing applications such as digital hearing aids
and portable telecommunications devices, are characterized by
very tight requirements in chip size and power consumption as
well as the complexity and number of functions to be
implemented. The proposed methodology of optimization
(Figure 3.1) is aimed to efficient implementation of these
devices. A good interrelation between algorithmic level and
target architecture is essential in this optimization process.

The system is simulated using a double-precision C
program. This program is first used to evaluate the performance

Optimized Implementation of Speech Processing Algorithms

34

of the system and to tune its parameters and then is used as
reference system for further optimization and simplification.

For each functional block of the system, a survey of different
algorithmic options for its realization is done. Only algorithms
that are promising for efficient implementation are chosen,
taking into account computational complexity, influence on the
performance of the whole system, and the suitability for a fixed-
point implementation. These algorithms are modified to reduce
computational complexity, improve overall performance, allow
better implementation on the target architecture, or improve
their fixed-point implementation.

A simulation of fixed-point quantization effects is done to
minimize the number of bits required at every node of the
algorithm while keeping a good performance.

Implementation on a commercial low-cost fixed-point DSP,
such as the DSP56001 is done for real time evaluation and to
observe which blocks are computationally more expensive.

Custom VLSI is done using either standard cell approach
and automatic CAD tools or the low power architecture and the
tool for optimal scheduling of DSP algorithms proposed in
[Heub94].

An example of the application of this methodology in the
optimal implementation of a noise reduction/ speech
enhancement algorithm for digital hearing aids is given in
Chapter 4.

3.2. Quantization Effects in Digital Signal Processing

Finite-precision effects are inherent of any digital realization
whether it be hardware or software. There are two common
forms to represent numbers in a digital computer, fixed-point
and floating-point notation. In practice fixed-point
implementation leads to more efficient solutions on custom
hardware, in terms of area and power consumption. Also, most
popular low-cost commercial DSP chips are based on fixed-point
arithmetic. Floating-point arithmetic is briefly described in
[Proa89] and [Vaid87]. Hereafter, only fixed-point
representation is considered.

Methodology of Optimization

35

F
ig

u
re

 3
.1

: M
et

h
od

ol
og

y
fo

r
al

go
ri

th
m

ic
 o

pt
im

iz
at

io
n

.

R
ea

l T
im

e,
F

ix
ed

-p
oi

nt

D
S

P
 Im

pl
em

en
ta

tio
n

on
 D

S
P

56
00

1

Lo
w

 P
ow

er
,

S
m

al
l A

re
a,

V
LS

I
Im

pl
em

en
ta

tio
n

H
ig

h
Le

ve
l

S
pe

ci
fic

at
io

n

A
lg

or
ith

m
ic

 S
tu

dy

T
ar

ge
t

A
rc

hi
te

ct
ur

e

A
lg

or
ith

m
ic

C
ho

ic
e

F
ix

ed
-p

oi
nt

O
pt

im
iz

at
io

n

A
lg

or
ith

m
ic

M
od

ifi
ca

tio
n

Optimized Implementation of Speech Processing Algorithms

36

3.3. Binary Fixed-point Representation of Numbers

A binary representation of a number is a means of writing the
number in terms of powers of two. For example the decimal
number 6.375 can be represented as 110 011. , an abbreviation
for: 1 2 1 2 0 2 0 2 1 2 1 22 1 0⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅–1 –2 –3 .

A binary number comes with a "binary point". The portion to
the left represents an integer (e.g., 110 6=) and the portion to
the right represents fractions less than one (e.g., 0 011 0 375. = .).
In fixed-point notation the binary point is constrained to lie at a
fixed position in the bit pattern, as shown in Figure 3.2.

ai = 0,1

2NI-1 21 20 2-1 2-NF

aNI-1 ... a1 a0 a-1 ... a-NF

binary point

least significant
bit

sign bit
NF bits for

fraction
NI bits for

integer

Figure 3.2: Allocation of bits in a word for fixed-point implementation.

The first bit to the left is called the sign bit. The precision of
the number system is defined as the increment between two
consecutive numbers and is determined by the value of the least
significant bit (LSB).

Within the subclass of fixed-point representations, there are
three commonly used methods to represent bipolar numbers:
sign-magnitude, one's complement, and two's complement
representation [Vaid87]. They are all based on the natural
binary code, but differ in the way they handle negative numbers.

In the sign-magnitude representation, the term:

ak
k

k NF

NI

⋅
=−

−

∑ 2
2

(3.1)

always represents the magnitude and the sign is kept in the
sign bit.

In the 2's complement notation a positive number is the
same as in sign-magnitude representation, and a negative
number is given by:

Methodology of Optimization

37

x a aNI
NI

k NF

NI

k
k= − ⋅ + ⋅−

−

=

−

∑1
1

2

2 2
– (3.2)

The negative of a number is obtained by subtracting the
corresponding positive number from 2NI . In the case of pure
fractional arithmetic (NI=1) a negative number is obtained by
subtracting its positive number from 2 (from there the name of
2's complement).

The 1's complement representation is identical to sign-
magnitude and 2's complement for positive numbers. A negative
number is formed by complementing its corresponding positive
number representation. Note that zero is now represented by
00 0� or 11 1� , which is an undesired ambiguity.

Two's complement arithmetic is easy to implement for both
additions and multiplications, and elegantly handles negative
numbers. In the work described in this report, only the case of
two's complement fixed-point arithmetic is studied.

3.4. Rounding and Truncation

In performing fixed-point computations such as multiplications
it is often necessary to quantize a binary fixed-point number x,
to another number Q[x], reducing the precision (number of
fractional bits) from NF1 to NF2 as shown in Figure 3.3. This
can be done via truncation or rounding.

The effect of this reduction of precision is to introduce an
error whose power depends on the values of NF1 and NF2 and
whose statistical behavior depends on the type of truncation or
rounding used. This error is referred to by the generic name of
round-off error (whether rounding or truncation is actually
employed) and is given by:

e Q x x= [] − (3.3)

Optimized Implementation of Speech Processing Algorithms

38

a’
NI-1

... a’
1

a’
0

a’
-1

... a’
-NF2

a
NI-1 ... a

1
a
0

a
-1 ... a

-NF2 ... a
-NF1

2NI-1 21 20 2-1 2-NF2 2-NF1

Q[x]

X

Figure 3.3: Truncation or rounding of a fixed-point binary number.

Regardless of the actual binary representation used, several
types of rounding or truncation can be implemented, among
them, 2's complement truncation, sign-magnitude truncation,
rounding and convergent rounding.

Truncation

In truncation, the least significant bits (NF2 to NF1) are simply
dropped, regardless of the sign and the convention to represent
negative numbers. If x is positive then:

–()2 2 02 1− −− ≤ ≤NF NF e (3.4)

If x is negative the error depends on which binary
representation is used:

Sign-magnitude truncation and 1's complement truncation:

0 2 22 1≤ ≤ − ≤− −e andNF NF() Q[x] x (3.5)

2's complement truncation:

− − ≤ ≤ ≥− −() ,2 2 02 1NF NF e and Q[x] x (3.6)

Rounding

In rounding, the value Q[x] is taken to be the nearest possible
number to x, thus the error is limited by:

− − ≤ ≤ −− − − −() ()2 2
2

2 2
2

2 1 2 1NF NF NF NF
e (3.7)

Rounding is more accurate than truncation but requires more
effort in its implementation. The quantization curve and

Methodology of Optimization

39

statistical behavior of the error for rounding and truncation is
given in Figure 3.4.

Convergent Rounding

The conventional rounding rounds up any value above one-half
and rounds down any value below one-half. The question arises
as to which way one-half should be rounded. If it is always
rounded one way, the result will eventually be biased in one
direction. Convergent rounding solves the problem by rounding
down if the number is odd and rounding up if the number is
even.

3.5. Dynamic Range, Overflow, and Saturation
Arithmetic

In general, a fixed-point DSP implementation is an elaborated
interconnection of multipliers, adders and delays in which all
the signals involved (including inputs, outputs and internal
signals) are represented with fixed-point arithmetic. An
overflow occurs when the value of a signal exceeds the dynamic
range available. The dynamic range is the range of numbers
which can be represented within the arithmetic used. In 2's
complement fixed-point arithmetic, this range is given by
(MIN NI= − −2 1, MAX NI NF= −− −2 21).

Scaling is the process of readjusting some internal gain
parameters to avoid overflows. In [Jack89] it is shown how
scaling should be performed, depending on the class of inputs.
For a fixed total number of bits there is a trade-off between
decreasing the probability of overflows by scaling and increasing
the round-off error. Therefore scaling is usually applied only to
minimize the probability of overflow to a reasonable extent and
not to preclude it entirely.

When an overflow actually occurs the resulting distortion is
minimized by using clipping or saturation arithmetic. The
overflowed result is substituted by the values MIN or MAX,
according to its sign.

Optimized Implementation of Speech Processing Algorithms

40

x

Q[x]

x

e = Q[x] - x

Rounding

e

P(e)

q/2-q/2

1/q

σ2 = q2 / 12
E = 0

x

Q[x]

x

e = Q[x] - x

2's complement
truncation

e

P(e)

-q

1/q

σ2 = q2 / 12
E = -q/2

x

Q[x]

x

e = Q[x] - x

Sign-magnitude and 1's
complement truncation

e

P(e)

q-q

1/(2q)

σ2 = q2 / 3
E = 0

Figure 3.4: Quantization curve, error and statistical behavior of the error
(P(e) = pdf, E = mean, σ2= variance and q = 2–NF2–2–NF1).

3.6. Fixed-point Quantization Effects

The implementation of a DSP algorithm using fixed-point
arithmetic involves quantization of the signals and parameters
of the system. As a result, the overall input-output behavior is
not ideal. Quantization is the process of transforming a value
into its closest representation in the number system by means of
truncation or rounding, and clipping [Jack89].

Two basic types of quantization effects should be
distinguished. The first is due to parameter quantization, where
the term parameter refers to the fixed values in the algorithm,
usually filter coefficients. The second is due to quantization of
the input, output and internal signals of the system.

Methodology of Optimization

41

Parameter Quantization

The filter coefficients are only quantized once (in the design
process) and those values remain constant in the filter
implementation. The effect of coefficient quantization is to
deviate the filter response from its ideal (designed) form in a
deterministic manner. The quantized design can be checked
and, if no longer meets the specifications, can be optimized,
redesigned, restructured, and/or more bit could be allocated to
satisfy the specifications.

The structure of the digital filter network influences directly
its sensitivity to coefficient quantization.

Signal Quantization

The effect of signal quantization is to add an error or noise
signal e(n) to the ideal output y(n) of the digital filter. This noise
is a composite of the errors from one or more of the following
sources, as applicable:

(1) The quantization error of the analog-to-digital converter at
the filter input.

(2) The accumulated errors resulting from rounding or
truncation within the filter (round-off noise).

(3) The quantization of the output y(n) to fewer bits for input to
a digital-to-analog converter or to another digital system.

Source (3) is sometimes overlooked, but because of the
accumulation of the noise in (2), more bits are usually allocated
to the internal arithmetic of the filter than are required at the
output. Hence, the output is usually requantized to fewer bits. It
is often reasonable for the input and output quantization to
employ the same number of bits, in which case their power noise
levels are the same.

Optimized Implementation of Speech Processing Algorithms

42

3.7. Round-off Noise and Limit Cycles

The internal signals in a digital filter are invariably subject to
quantization causing errors in the computed output. Such
quantization is a non-linear phenomenon and can be further
subdivided into two types of effects called limit-cycles and
round-off noise.

Round-off noise affects the filter output in the form of a
random disturbance, and can be analyzed by suitable noise
modeling and by the use of linear system theory [Jack89].

Limit-cycle oscillations, which contribute to undesirable
periodic components at the filter output are due to the fact that
quantization is a non linear operation. When such non-
linearities exist in a feedback path, they can lead to oscillations
[Jack89].

In the case of a zero or constant input, ideally the output of
a stable discrete-time filter would asymptotically approach zero
or a constant. However, with quantization, it is often found that
relatively small limit-cycle oscillations occur.

A different limit-cycle mode, called rolling-pin limit-cycle,
has larger amplitude and is rarely encountered [Jack89]. This
rolling-pin limit cycles cannot be predicted theoretically and
their occurrence is better checked by simulation.

Usually, limit cycles can be reduced to acceptable levels by
giving a sufficient number of bits to the signal representation.
Another possible type of oscillation, due to overflows, is avoided
by using saturation arithmetic.

3.8. Adaptive and Non-linear Algorithms

Adaptive filters are extensively used in signal processing
applications. The least-mean-square (LMS) algorithm is the
most attractive adaptation scheme because of its computational
simplicity. Adaptive algorithms are non-linear in nature,
therefore a theoretical analysis of their finite-precision behavior
is very difficult and can be performed only under very simplified
conditions [Frie92], [Cara84], assuming a
stationary input. The well-known theory of finite precision
filters with fixed coefficients is inapplicable for adaptive filters.

Methodology of Optimization

43

For instance the representation of coefficients in adaptive filters
requires a much longer word-length than in fixed filters.

In the case of an adaptive or non-linear algorithm with non-
stationary input such as speech, theoretical analysis becomes
untractable. Nevertheless the practical issue of how many bits
are required for proper functioning on a fixed-point
implementation remains. In this case the only solution is to
perform simulations of the quantized algorithms under final
working conditions with the appropriate input signals.

3.9. Simulation of Quantization Effects in DSP
Algorithms

In the study by simulation of finite word-length effects on a DSP
algorithm the main goal is to determine the minimum number
of integer and fractional bits (NI,NF) required at every node of
the algorithm, keeping the degradation of performance due to
quantization effects within acceptable levels. Additionally, this
study can also include optimization and modification of the
algorithm to simplify its implementation on the target
architecture and to improve the use of the dynamic range
available.

The Environment Used

The functional blocks of the DSP algorithm are coded in C
language, as Matlab functions, and interfaced under Matlab
[MATL93]. Inputs and outputs of a Matlab function are
matrices, vectors or scalars. When coding a particular functional
block, any value that the designer may wish to modify
iteratively is set as input while internal variables of particular
interest are returned together with the output signals of the
functional block.

Different functions were written to allow speech playback, to
load a speech file with two different formats, and to run a
program on a DSP56001 card from Matlab. The calling syntax
and description of this functions is given in Table 3.1.

Optimized Implementation of Speech Processing Algorithms

44

Within Matlab, the algorithms can be run with different
input parameters and the signals involved can be analyzed,
displayed and listened to have an immediate feed-back after
introducing any change in the system.

da (x, Fs) Play the sound vector x on the high
quality audio I/O card, with
sampling frequency Fs.

[x, Fs] = rd_timit ('filename') Load a speech file that is in TIMIT
format.

[x, Fs] = rd_hsw ('filename') Load a speech file that is in
Hypersignal format.

[y0, y1] = run (x0,x1,'prog_name') Load and run the DSP56001
program 'prog_name' on the
DSP56001 card with input x0, x1
and retrieve outputs y0, y1.

Table 3.1: Matlab functions used in fixed-point characterization of
digital speech processing algorithms.

Programs to Simulate Quantization Effects

The first step in the study of the quantization effects on a DSP
algorithm is implementing the algorithm in C code using double
precision floating-point arithmetic. This in order to determine
the optimal parameters that control the behavior of the
algorithm and to characterize the "infinite precision"
performance of the algorithm. Later this implementation is used
as “reference system” to evaluate the degradation in
performance of the quantized and optimized system.

A quantized version of the algorithm is obtained from the
reference system by placing quantizer operators at different
points of the system. A quantizer is an operator that transforms
a value into its closest representation in 2's complement fixed-
point arithmetic by means of clipping and rounding or
truncation. Each placed quantizer is described by its rounding
type and its number of integer bits and fractional bits (NI,NF).
The place of the quantizers as well as their rounding type is set
at the moment of compilation, whereas the number of bits of
each quantizer (NI,NF) is given at run time together with other

Methodology of Optimization

45

parameters of the algorithms and the input signal. The value of
an overflow counter for each quantizer is returned at the end of
the simulation.

An example of the C code for a quantizer with sign-
magnitude truncation is given in Figure 3.5. The general
expression for a Matlab function and its quantized version can
be observed in Table 3.2. The macros and functions to simulate
different types of truncation or rounding are given in
Appendix A.1.

x Q[x]qnti

/* define rounding policy, in this case is
truncation */
#define ROUND(a) ((a) < 0 ? ceil(a) : floor(a))

double qnt(double a, int i)
{

/* Clipping */
if (a>max[i]){a=max[i];ov[i]++;}
else if (a<min[i]){a=min[i];ov[i]++;}
/* round */
else a=(ROUND(con[i]*a))/con[i];
return a;

}

con[i] = 2NFi
min[i] = -2Nli-1
max[i] = -2Nli-1 - 2-NFi

Figure 3.5: The quantizer operator.

General Matlab function (m inputs, n outputs)

[y1, y2, … , yn] = function_name (x1, x2, … , xm)

General quantized Matlab function (m inputs, n outputs)

[y1, y2, … , yn, ov] = qfunction_name (x1, x2, … , xm, prec)

Table 3.2: General expression for a Matlab function and its quantized
version.

In Table 3.2, the input precision matrix (prec) and the
returned overflow vector (ov) are given by:

Optimized Implementation of Speech Processing Algorithms

46

[]

prec
NI NI NI
NF NF NF

ov ov ov ov

k

k

k

=










=

1 2

1 2

1 2

�

�

� (3.8)

where k is the number of placed quantizers.

The Input Signals

The input signals used during the simulation must be
representative of the kind of input that will be presented to the
system in operating conditions.

In the case of speech processing algorithms a collection of
speech recordings of good quality, at the appropriate sampling
rate, and from a sufficiently large number of speakers should be
used. The precision should be greater or equal to the precision of
the AD converter in the final implementation.

An existing digitized speech database on CD-ROM, called
the TIMIT database [Garo90], was used extensively in the work
described in this report.

Measures of Performance

To measure the performance of a quantized (or simplified)
system, its output is compared with the output of the reference
system using SNR measures. In this context, the output of the
reference system is the "non-noisy" signal and the "noise" is the
difference between the output of the modified system and the
output of the reference system.

Extensive listening tests should be done to determine a
threshold of SNR above which it can be assured that the two
compared signals cannot be distinguished. This SNR measure
should be used as an indicator to locate worst cases, specially
when a big amount of different inputs is processed, but should
not substitute completely a detailed observation of the
interesting cases. This detailed analysis is done by displaying
the two compared signals and their difference, and by listening
both signals.

Methodology of Optimization

47

3.10. Simulation of DSP56001 Quantization Effects

Producing an optimal real time implementation using
DSP56001 assembler is in most cases a time consuming task
which is preferably done only once. Arithmetic quantization
effects should be studied by simulation before investing much
time in assembler coding and in speed and resources
optimization. In particular, it should be checked that the
dynamic range available in the different registers of the
DSP56001 ALU can accommodate the requirements of the
algorithm, and the optimum scaling to be applied at each node of
the algorithm should be found.

The DSP56001

The DSP56001 is a 24-bit fixed-point, general purpose DSP
fabricated by MOTOROLA [MOTO90]. The heart of the
processor consists of three execution units operating in parallel:
the data arithmetic logic unit (ALU), the address generation
unit (AGU) and the program controller. A block diagram of the
DSP56001 is given in Appendix A.2.

The data ALU (Figure 3.6) performs all arithmetic and
logical operations on data operands. It consists of four 24-bit
input registers, two 48-bit accumulator registers with 8-bit
extension registers, an accumulator/shifter, two data bus
shifter/limiter circuits, and a parallel, single-cycle non-pipelined
multiply-accumulate unit (MAC).

Data ALU operations use fractional two's complement
arithmetic. Data ALU registers may be read or written, over the
X data bus and the Y data bus, as 24- or 48-bit operands. The
data ALU is capable of performing any of the following
operations in a single instruction cycle: multiplication, multiply-
accumulate with positive or negative accumulation, convergent
rounding, multiply-accumulate with positive or negative
accumulation and convergent rounding, addition, subtraction, a
divide iteration, a normalization iteration, shifting and logical
operations.

Data ALU source operands, which may be 24, 48, or, in some
cases, 56 bits, always originate from data ALU registers.

Optimized Implementation of Speech Processing Algorithms

48

Arithmetic operations always have a 56-bit result stored in an
accumulator. Saturation arithmetic is implemented when an
overflow occurs. The arithmetic instructions of the DSP56001
are given in Appendix A.3.

Simulation of DSP56001 Arithmetic

As explained in Section 3.9, finite arithmetic effects are
simulated by including quantizer operators in the high-level
code of the algorithm. The number of integer and fractional bits
of the DSP56001 ALU registers are given in Table 3.3.

Name Number of
bits <NI, NF>

Element

Word <1,23> 24-bit X0, X1, Y0, Y1 registers
and memory.

Long word <1,47> Concatenated X,Y registers
and memory.

Accumulator <9,47> Accumulator A, B.
Rounded accumulator <9,23> Accumulator after rounding.

Table 3.3: Number of integer and fractional bits, NI and NF, for the
DSP56001 ALU registers.

The quantization model for some of the most used
DSP56001 operations is shown in Figure 3.7.

Methodology of Optimization

49

24

SHIFTER

24 24

24 24

ACCUMULATOR,
ROUNDING,

AND LOGIC UNIT

MULTIPLIER

A(56)

B(56)

SHIFTER/LIMITER

24

5656

56 56

56

X DATA BUS

Y DATA BUS

24

24

X0
X1

Y0

Y1

Figure 3.6: Data ALU of the DSP56001.

Optimized Implementation of Speech Processing Algorithms

50

<9,47>

<1,47>

Saturation Arithmetic

MOVE Acc to
Concatenated
48-bit Register
X, Y or Memory

<9,47>

<9,23>

Convergent Rounding

RND

ASR

<9,47>

<1,23>

2’s Complement
Truncation and

Saturation Arithmetic

MOVE
Acc to
24-bit

Register
X, Y or
Memory

MPY

<9,47>

<1,23> <1,23>

<9,47>

MAC

<9,47>

<1,23> <1,23>

+
<9,47> <9,47>

2’s Complement Truncation

2

<9,47>

<9,47>

<1,23> <1,23>

<9,23>

MPYR

ADD

<1,23> <9,47>

<9,47>

+

ASL

Saturation Arithmetic

2

<9,47>

<9,47>

MACR <9,47> <9,47>

<9,23>

<1,23> <1,23>

+

MOVE
Rounded
Acc to 24-
bit Register

X, Y or
Memory Saturation Arithmetic

<1,23>

<9,23>

Figure 3.7: Quantization effects of DSP56001 operations.

Methodology of Optimization

51

3.11. Conclusions and Summary of the Chapter

A methodology for optimization of speech processing algorithms
was proposed in this chapter, as well as a practical and simple
method for evaluating fixed-point quantization effects on these
algorithms. Although the application is restricted to digital
speech processing algorithms, the method presented is general
enough to be easily extended to other classes of DSP algorithms.

The proposed method allows a simulation of the system in
final working conditions and at the same time benefit of the
flexibility of using high level language, independently of the
hardware. In this way, different implementation possibilities
can be easily tried out, before doing the actual implementation.
Even if the simulation is "independent of the hardware" in the
sense that is not running on the hardware itself, many choices
such as placing of the quantizers and their rounding strategy
are determined by the target architecture.

The characterization of fixed-point arithmetic effects plays
an essential role in the optimization of VLSI implementations
with tight constraints in size and power consumption such as
digital hearing aids and portable devices for
telecommunications. In the next chapter, the proposed
optimization methodology is used in the implementation of a
noise reduction/speech enhancement algorithm for digital
hearing aids on both a fixed-point commercial DSP and a low
power VLSI architecture.

3.12. References

[Cara84] C. Caraiscos and B. Liu, "A Roundoff Error Analysis of the
LMS Adaptive Algorithm", IEEE Trans. on Acoustics, Speech
and Signal Processing, Vol. 32, No. 1, pp. 34-41, 1984.

[Frie92] B. Friedrichs, "Analysis of Finite-precision Adaptive Filters
Part I and II", Frequenz, Vol. 46, No. 9-10, pp. 219-223 and
262-267, 1992.

[Garo90] J. Garofolo et al., "Darpa TIMIT, Acoustic-phonetic
Continuous Speech Corpus CD-ROM", National Institute of
Standards and Technology, NISTIR 493, Oct. 1990.

Optimized Implementation of Speech Processing Algorithms

52

[Gras94] S. Grassi, A. Heubi, M. Ansorge, and F. Pellandini, "Study of
a VLSI Implementation of a Noise Reduction Algorithm for
Digital Hearing Aids", Proc. EUSIPCO’94, Vol.3, pp. 1661-
1664, 1994.

[Heub94] A. Heubi, S. Grassi, M. Ansorge, and F. Pellandini, "A Low
Power VLSI Architecture for Digital Signal Processing with
an Application to Adaptive Algorithms for Digital Hearing
Aids", Proc. EUSIPCO'94, Vol. 3, pp. 1875-1878, 1994.

[Jack89] L. Jackson, Digital Filters and Signal Processing (Chapter
11), Kluwer Academic Publishers, Boston, 1989.

[MATL93] Matlab User's Guide, The Math Works Inc., 1993.

[MOTO90] DSP56000/DSP56001 Digital Signal Processor User's
Manual, DSP56000UM/AD Rev.2, Motorola Inc., 1990.

[MOTO93] A. Chrysafis and S. Lansdowne, “Fractional and Integer
Arithmetic Using the DSP56000 Family of General-purpose
Digital Signal Processors”, APR3/D Rev. 1, Motorola Inc.,
1993.

[Pepe87] R. Pepe and J. Rogers, "Simulation of Fixed-point Operations
with High Level Languages", IEEE Trans. on Acoustics,
Speech and Signal Processing, Vol. 35, No. 1, pp. 116-118,
1987.

[Proa89] J. Proakis and D. Manolakis, Introduction to Digital Signal
Processing, Macmillan, New York, 1989.

[Vaid87] P. Vaidyanathan, "Low-noise and Low-sensitivity Digital
Filters" (Chapter 5), in Handbook of Digital Signal
Processing, ed. by D. Elliott, Academic Press, San Diego,
1987.

53

Chapter 4
Noise Reduction / Speech
Enhancement for Digital
Hearing Aids

In this chapter, the optimization methodology explained in
Chapter 3 is used for meeting the tight constraints in the
physical realization of a noise reduction/speech enhancement
algorithm for digital hearing aids.

4.1. Digital Hearing Aids

Analog electroacoustic hearing aids are the primary treatment
for most hearing impaired people. They contain the basic
functions of amplification, frequency shaping, and limiting of the
output signal [Work91]. Digital hearing aids promise many
advantages over conventional analog hearing aids, among them
the increased precision and programmability of DSP techniques
and the possibility of adding new functions such as noise
reduction, spectral sharpening and feedback cancellation
[Levi87].

On the other hand the physical implementation of digital
hearing aids is characterized by very tight requirements in chip
size, voltage supply and power consumption, which are very
difficult to fulfill given the complexity and number of functions

Optimized Implementation of Speech Processing Algorithms

54

to be implemented together with the real time requirement and
large dynamic range of the input signals.

Several algorithms have been proposed to perform the
functions of frequency shaping [Lunn91], feedback cancellation
[Kate90] and noise reduction [Scha91]. However, the ultimate
problem remains the feasibility of a physical implementation of
these algorithms, in particular for meeting the constraints of
chip size and power consumption. This could be achieved by a
careful optimization that ranges from algorithm level, through
system and circuit architecture to layout and design of the cell
library. The key points in this optimization are among others
the choice of a fixed-point arithmetic unit, the optimization of
the algorithm minimizing the number of operations and the
number of bits required at every node of the algorithm, and a
careful match between algorithms and architecture.

4.2. Noise Reduction / Speech Enhancement Algorithms

In the algorithms proposed in [Scha91], spectral sharpening is
used for both noise reduction and compensation of the reduced
frequency selectivity encountered among many hearing
impaired people. The spectral sharpening technique is based on
a combination of a gradient adaptive lattice (GAL) linear
predictor and two, IIR and FIR, modified lattice filters
(synthesis and analysis filters). These algorithms are
particularly suitable for a fixed-point VLSI implementation.
This is due to the good quantization properties of lattice filters,
their modular structure, local interconnections, and rhythmic
data flow [Kail85].

The block diagrams of the noise reduction and the speech
enhancement algorithms are given in Figure 4.1 and Figure 4.2.
The GAL predictor extracts spectral information from the input
signal at every sampling instant. This spectral information is
encoded in the Parcor coefficients {km} and used by the analysis
and synthesis filters to perform a signal dependent (adaptive)
filtering of the input.

Noise Reduction / Speech Enhancement for Digital Hearing Aids

55

Adaptive Linear
Predictor

Modified
Lattice IIR

Modified
Lattice FIR

High-pass
Filter

y[n]

x[n]
k1, k2, ..., k8

Figure 4.1: Spectral sharpening for noise reduction.

k1, k2, ..., k8x[n]
y[n]V[n]

Modified
Lattice IIR

Modified
Lattice FIR

High-pass
Filter

Adaptive Linear
Predictor

Loudness
Control

Figure 4.2: Spectral sharpening for speech enhancement.

The sharpening effect applied to a synthesized vowel is
shown in Figure 4.3. The noise reduction effect applied to a
short phrase is shown in Figure 4.4.

The first cell of the GAL predictor and the analysis and
synthesis filters can be observed in Figure 4.5, Figure 4.6 and
Figure 4.7, respectively.

To obtain the speech enhancement system, the high pass
filter is placed at the input of the GAL and a gain control unit is
added at the output of the synthesis filter [Scha91].

Only the noise reduction algorithm was implemented and all
the optimization effort was done in the implementation of the
computationally expensive core of this algorithm (which
contains the GAL predictor and the analysis and synthesis
filters).

Optimized Implementation of Speech Processing Algorithms

56

0 1000 2000 3000 4000
−30

−20

−10

0

10

20

30

A
m

pl
itu

de
, d

B

Frequency, Hz

Figure 4.3: The sharpening effect applied to the synthesized english
vowel /α/, synthesized using the average formant frequencies
given in [Osha87].

0 0.1 0.2 0.3 0.4 0.5
−1

0

1

0 0.1 0.2 0.3 0.4 0.5
−1

0

1

time, s

Figure 4.4: Noise reduction applied to the french phrase: “Le pot de...”.

Noise Reduction / Speech Enhancement for Digital Hearing Aids

57

∆k1
η

z-1

z-1

∆σ1
2

σ
1
2

z -1

k
1

AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA

AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA

x[n]

Figure 4.5: GAL predictor (first cell).

k
8z-1

β

k
1

z-1

β

Figure 4.6: Analysis filter.

γ

k
1 z-1

k
8

γ

z-1

Figure 4.7: Synthesis filter.

Optimized Implementation of Speech Processing Algorithms

58

4.3. High Level Simulation

A high level simulation of the noise reduction algorithm was
done. This simulation was first used to determine the optimal
parameters (γ, β and η) and then used as reference system for
further simplification and optimization. All the functional blocks
were coded in C language as Matlab functions. The listings for
the C code of the GAL predictor and the analysis and synthesis
filters are given in [Gras95].

A set of 15 files recorded at 8 kHz with 16 bit precision, and
the 6300 files from the TIMIT database [Garo90] downsampled
to 8 kHz were used as input data. These files were scaled to the
range [–1, +1) and their precision was reduced to simulate a 12
bit AD converter. The set of 15 files was used to define the first
choice of the number of bits of each quantizer. This choice was
tuned by processing some (usually 100) files chosen at random
from the TIMIT database. Systematic testing on all the
available files was done in some cases such as overflow search.

Testing the Algorithms and Choice of the Parameters

All the functional blocks of the algorithms were implemented
and studied separately, in order to understand the influence of
the different parameters on each block and on the overall
system. These simulations were performed with synthetically
produced and digitized speech files.

In particular, the different trade-offs controlling the choice
of the parameters were found as well as useful ranges for these
values. Subjective and objective measures were used for testing
the algorithms. These measures were first used to fine-tune the
choice of the parameters obtained with theoretical analysis and
then used to characterize the performance of the algorithms
[Trog93].

In the case of the noise reduction system, the signal and
noise contribution at the output of the system were separated in
order to measure the SNR and segmental SNR at the output
[Trog93]. This measure was used together with measures of
subjectively perceived quality and observations of the time-
domain signals. It was found that there is a trade off between

Noise Reduction / Speech Enhancement for Digital Hearing Aids

59

subjective quality and noise reduction. Three different sets of
parameters, corresponding to different levels of noise reduction
and quality, were found. The improvements in SNR measured
using these sets of parameters were 4-5 dB, 5-7 dB, and 7-11 dB,
ordered by decreasing quality [Trog93].

The speech enhancement algorithm was evaluated using
cepstrum spectral envelope extraction for observing the
sharpening effect in dB. This was based on the assumption that
efficient speech enhancement requires that the various formants
are uniformly emphasized, regardless of their relative power
level [Scha91]. Only approximately 6 dB of uniform speech
enhancement could be obtained using data synthetically
produced. Using real speech as input data, it was not possible to
obtain at the same time a reasonable level of speech
enhancement and a uniform distribution of the gain at the
formants. This could be improved using a higher order high-pass
pre-processing filter [Trog93], [Scha91].

The performance of the noise reduction system was also
evaluated using informal listening tests with non-impaired
subjects for evaluating subjective quality. In the case of non-
impaired listeners the sharpening effect is probably perceived as
distortion, a "price to pay" for achieving a given noise reduction,
while for a hearing impaired individual, it is expected to help in
improving intelligibility. Therefore, it is not necessary that the
results obtained with normal listeners can be extrapolated to
hearing impaired individuals.

Measure of Performance

The high level implementation of the algorithm using double
precision floating-point arithmetic is used as reference system.

To measure the performance of a modified system, its output
is compared with the output of the reference system using SNR
measures, as explained in Section 3.9.

It was found that when the SNR was 15 dB or more, the
transfer function of the analysis-synthesis filter of both systems
did not differ significantly and their outputs could not be
distinguished in listening tests.

Optimized Implementation of Speech Processing Algorithms

60

4.4. Real Time Implementation on DSP56001

A first implementation of the noise reduction algorithm was
done on a DSP56001 for checking real time feasibility and
identifying which functional blocks are more time-consuming in
view of a possible simplification. These observations are
summarized in Table 4.1 for a system of order 8 with a sampling
frequency of 8 kHz and clock frequency of 20 MHz. A uniform
precision of 24 bit was used throughout the whole system. The
serious degradation observed in the performance motivated a
more detailed study of the quantization effects.

The computational load of the division was 63% of the time
available, therefore a particular effort has to be done in the
simplification of this operation. The listings for the assembler
implementation and its corresponding fixed-point simulation on
C code are given in [Gras95].

Function #Cycles % Remarks
GAL 682 82 Division: 63%
Synthesis 76 9
Analysis 78 9
Total 836 100 33% of time available

Table 4.1: Computational load of the first DSP56001 implementation.

4.5. Simplified Division

There is no divide operation in the low power architecture
previewed for the final implementation [Heub93]. Also, since the
division is a less frequent operation (1 division per 12
multiplications), it is not efficient to implement a full division in
a special unit.

GAL algorithms in which the division is replaced with a
multiplication by a small constant do not yield the fast
convergence independently of the input signal level required for
good speech enhancement results. A reasonable compromise is
the approximation of the divisor by a power of two.

The measured SNR between the output of a system with
simplified division (but otherwise no other change with respect
to the reference system) and the reference system was more

Noise Reduction / Speech Enhancement for Digital Hearing Aids

61

than 20 dB. This result shows that the simplified division is
feasible.

4.6. Quantization Effects

A simulation of the fixed-point quantization effects was done,
following the methodology explained in Chapter 3, in order to
determine the minimum word-length and the scaling required at
every node of the algorithms [Gras94], [Gras95]. The results
obtained in the study of the quantization effects were used for
both an efficient real time implementation on a DSP56001 and
an implementation on the low power architecture described in
[Heub93].

Parameters of the System

The interesting values of γ and β are in the ranges ()0 90 0 99. , .
and ()0 10 0 50. , . respectively. These parameters were quantized
to 12 bit. The effect of this quantization is negligible and was
included in the reference system for the remaining of the study.
All the simulations were done using values in these ranges and
the results obtained hold under these conditions. It was noticed
that the system was more sensitive to modifications when
γ = 0.99.

When η is in the range ()0 98, 0 985. . the GAL algorithm
performed well for all input signals. A value of 0.9805 yields to
an efficient implementation as explained in Section 4.7.

The Optimized System

The target architecture for the final VLSI implementation is a
low power architecture described in [Heub93], [Heub94]. The
placing of the quantizers and their rounding strategy is given by
the characteristics of the arithmetic unit of the target VLSI
architecture. The placing of the quantizers, qi, is shown (with
shadowed boxes) in Figure 4.8 to Figure 4.10. The used rounding
strategy is sign-magnitude truncation.

Optimized Implementation of Speech Processing Algorithms

62

z-1

β

q1

q1q1

k

Figure 4.8: Quantizers in the analysis filter.

k

z-1

γ

q3

q5q5

q5

Figure 4.9: Quantizers in the synthesis filter.

The number of bits of each quantizer is also influenced by
the final target architecture: the word-length of the multiplier
must be a multiple of four and the word-length of the
accumulator is twice the word-length of the multiplier.

The minimum number of bits for the quantizers is given in
Table 4.2. Using this specification, the measured SNR between
the output of the quantized system and the reference system
was more than 20 dB. A system with both quantization and
simplified division gives more than 15 dB of SNR when
compared to the reference system.

No. bits q1 q2 q3 q4 q5
NI 2 2 7 1 7
NF 14 25 25 15 9

Table 4.2: Number of bits for each quantizer.

The listings for the C code of the optimized system,
including the analysis and synthesis filters and both versions of
the GAL predictor (with and without simplified division) are
given in [Gras95].

Noise Reduction / Speech Enhancement for Digital Hearing Aids

63

η

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

q2 q2

q1

q1

q3

z-1q4 q4

k

z-1

Figure 4.10: Quantizers in the GAL predictor.

Implications for the VLSI Implementation

From the point of view of the word-length requirements we
could divide the circuit into two sections. These two sections will
be implemented using two different hardware units.

The first section corresponds to the dashed box in the GAL
predictor on Figure 4.10 and contains the power estimation
recursion and the division. This section requires a higher
dynamic range (although not necessarily a higher precision). It
contains the two most critical operations of the system which
are the long-word (32 bit) multiplication by η and the
computationally expensive long-word division. Using a fixed
choice of η = = − −− −0 9805 1 2 26 8. and the simplified division
yields to an efficient implementation on a dedicated unit that
contains a 32-bit adder, and the logic for the approximation of
the power estimation by a power of two. The multiply
accumulate is substituted by two additions and two hard-wired
shifts.

The second section corresponds to the rest of the GAL
algorithm together with the analysis and synthesis filters. The

Optimized Implementation of Speech Processing Algorithms

64

word-length requirements of this section are met by 16 bit
multipliers with 32 bit adder-accumulators.

Implications for the DSP56001 Implementation

In Table 4.2 it is observed that at some nodes of the algorithm
the minimum word-length required exceeds the uniform 24 bit
word-length used in the first DSP56001 implementation. Seven
steps of normalization and denormalization were added at these
nodes to extend the dynamic range of the temporal registers of
the DSP56001. The computational load of the GAL almost
doubled as seen in Table 4.3, but the real time constraint is still
met. The analysis and synthesis blocks were left unchanged but
a 6-bit scaling was included at the input of the synthesis filter to
compensate the amplification introduced by this block. Each
functional block was coded separately on DSP56001 assembler
and simulated in C language (including the effects of the
arithmetic used in the DSP56001). Both implementations gave
exactly the same results allowing the verification of the
accurateness of the simulations. The listings for both
implementations are given in [Gras95].

The output of this second DSP56001 implementation is
virtually equal to the output of the reference system, with a
measured SNR of more than 80 dB. Systematic search on the
TIMIT database showed no overflows. From a practical point of
view, the DSP implementation was a good verification of the
results obtained in the study of the quantization effects.

Function #Cycles % Remarks
Decorrelator 1530 91 Division: 31%
Synthesis 76 4.5
Analysis 78 4.5
Total 1684 100 67% of time available

Table 4.3: Computational load of the second DSP56001 implementation.

Noise Reduction / Speech Enhancement for Digital Hearing Aids

65

4.7. VLSI Implementation

An implementation of the optimized system was done using the
target low power VLSI architecture described in [Heub93]. The
architecture takes advantage of the regularity of the algorithm
to simplify the scheduling and the hardware implementation.
The processor architecture and modules are organized in a way
to limit the overall data transfer to the strict minimum, local
data traffic being preferred versus global traffic.

Larger memories are split into a set of smaller memories
where a single one is activated at a time. A sequential dynamic
memory is used for storing the Parcor coefficients, another for
storing the state variables of the analysis and synthesis filters,
and two remaining ones for the variables of the linear predictor.

The arithmetic unit is a serial-parallel unit optimized for
performing scalar products. The number of relevant partial
products occurring in the multiplications is reduced at least by a
factor of two using Booth's recoding scheme. Two arithmetic
units of this kind are used to achieve a sufficient computational
throughput. This for the implementation of the analysis and
synthesis filters, and the portion of the GAL outside the dashed
box in Figure 4.10.

The dedicated unit for the implementation of the portion of
the GAL inside the dashed boxed in Figure 4.10 was realized
separately using a low power standard cell library.

The scheduling was hierarchically organized to limit the
processing rate of each module to the strict minimum using an
adapted version of the "TABU search" optimization technique,
which is particularly suitable for the scheduling of DSP
algorithms.
The details of this implementation are given in [Heub94]. The
floor plan and the layout are shown in Figures 4.11 and 4.12.
The resulting silicon area was approximately 4 mm2 using VLSI
Technology's CMN12 1.2 µm CMOS process. The estimated
power consumption is 0.65 mW at 2V.

Optimized Implementation of Speech Processing Algorithms

66

k acc

η acc

mult 16

mult 16

no
rm

seq

se
q

seq

po
w

. e
st

.
m

em
or

y

m
em

or
ie

s

W
decor

W an +
sy

ki

1.
9

m
m

2.0 mm

Figure 4.11: Floor plan for the VLSI implementation.

4.8. Further Work

Some possible extensions, and applications of the work
described in this chapter are given next.

Given that lattice filters and lattice linear predictors are
used in many areas of speech processing such as coding,
synthesis and recognition [Osha87], the experience obtained in
studying and implementing the algorithms proposed in [Scha91]
can be reused in other different applications.

Speech Coding

The GAL linear predictor finds application in backward
predictive speech coders such as the 16 kbps ADPCM coder
proposed in [Scha90].

Noise Reduction / Speech Enhancement for Digital Hearing Aids

67

Figure 4.12: Layout for the VLSI implementation.

The high level implementation and testing of this coder was
done within a student project [Kunz94]. As the more
computationally expensive block of this system is the GAL
predictor, the optimized VLSI implementation of this functional
block can be reused in an efficient implementation of this speech
coder with application in portable devices.

The analysis and synthesis filters studied in this chapter are
the basis for the postfiltering algorithm proposed in [Chen87].
The use of this postfiltering technique is now very popular in
CELP coders, such as the CELP FS1016 (see § 5.11). These
analysis and synthesis filters are also used in CELP coders for
perceptual weighting of the error between the original and
synthesized speech. Thus the optimization of these filters can be
reused for efficient implementation of the CELP FS1016 speech
coder.

Optimized Implementation of Speech Processing Algorithms

68

Frequency Shaping for Digital Hearing Aids

The conventional analog hearing aid always contains the basic
function of frequency shaping which provides different levels of
amplification for different frequency ranges so as to fit as much
of the speech signal as possible between the threshold of audible
sound and the ceiling of a too-loud sound [Work91]. A filterbank
suitable for frequency shaping in a digital hearing aid is
proposed in [Lunn91]. In this algorithm, interpolated half-band
FIR filters are used to minimize the number of multiplications
per sample. This algorithm was implemented and studied as
part of a student work [Hues94]. This filterbank was used as an
application example in another student work [Henn94] for
estimating the size and power consumption in the case of a
VLSI implementation. This work was based on the low power
architecture described in [Heub93] and used a standard cells
approach (low power library Csel_Lib from CSEM). The
resulting silicon area was approximately 3 mm2 and the
estimated power consumption was 0.3 mW at 2V (without
sequencing unit).

As the results obtained are promising, it would be
interesting to apply the proposed methodology of optimization to
the implementation of this functional block.

4.9. Conclusions and Summary of the Chapter

The optimization methodology explained in Chapter 3 was used
for meeting the tight constraints in the physical realization of a
noise reduction/speech enhancement algorithm for digital
hearing aids. The emphasis was placed in the study of the
quantization effects and algorithmic optimization.

The interrelation between the target VLSI architecture and
the algorithmic level plays an essential role in the optimization
process. The resources available in the architecture influenced
some choices at the algorithmic level, whereas some constraints
and particular needs of the algorithm forced some choices in the
VLSI implementation.

Noise Reduction / Speech Enhancement for Digital Hearing Aids

69

The proposed simplification of the gradient adaptive lattice
algorithm improves the efficiency in the implementation while
keeping good convergence properties.

From a practical point of view, the approach using real input
signals is an appropriate means for the characterization of the
systems in final operating conditions. The implementation on a
commercial fixed-point DSP is an important intermediate step
which allows real time evaluation and gives further information
on the behavior of the final implementation.

Given that lattice filters and lattice linear predictors are
used in many areas of speech processing, the results obtained
can be used in other applications where the needs of reduced
size and power consumption plays an important role such as
portable devices for telecommunications.

4.10. References

[Chen87] J. Chen and A. Gersho, "Real-time Vector APC Speech
Coding at 4800 bps with Adaptive Postfiltering", Proc. IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing,
ICASSP'87, Vol. 3, pp. 2185-2188, 1987.

[Garo90] J. Garofolo et al., "Darpa TIMIT, Acoustic-phonetic
Continuous Speech Corpus CD-ROM", National Institute of
Standards and Technology, NISTIR 493, Oct. 1990.

[Gras94] S. Grassi, A. Heubi, M. Ansorge, and F. Pellandini, “Study of
a VLSI Implementation of a Noise Reduction Algorithm for
Digital Hearing Aids”, Proc. EUSIPCO’94, Vol. 3, pp. 1661-
1664, 1994.

[Gras95] S. Grassi, Simulation of Fixed-point Quantization Effects on
DSP Algorithms, IMT Report No 375 PE 03/95, University of
Neuchâtel, IMT, 1995.

[Henn94] C. Henny, Unité Arithmétique Faible Consommation Dédiée
au Calcul de Produits Scalaires, (in French), practical
semester project, IMT Uni-NE, winter semester 1993/94,
Neuchâtel, 1994.

[Heub93] A. Heubi, M. Ansorge, and F. Pellandini, ("Low Power VLSI
Architecture for Digital Signal Processing") "Architecture
VLSI Faible Consommation pour le Traitement Numérique
du Signal”, Proc. GRETSI'93, Vol. 2, pp. 3661-3664, 1993.

Optimized Implementation of Speech Processing Algorithms

70

[Heub94] A. Heubi, S. Grassi, M. Ansorge, and F. Pellandini, "A Low
Power VLSI Architecture for Digital Signal Processing with
an Application to Adaptive Algorithms for Digital Hearing
Aids", Proc. EUSIPCO'94, Vol. 3, pp. 1875-1878, 1994.

[Hues94] O. Huesser, Filtres de Compensation Spectrale pour
Prothèses Auditives Numériques, (in French), practical
semester project, IMT Uni-NE, winter semester 1993/94,
Neuchâtel, 1994.

[Kail85] T. Kailath, "Signal Processing in the VLSI Era" in VLSI and
Modern Signal Processing, ed. by S. Kung, H. Whitehouse,
and T. Kailath, Prentice-Hall, Englewood Cliffs, N.J., 1985.

[Kate90] J. Kates, "Feedback Cancellation in Hearing Aids", Proc.
IEEE Int. Conf. on Acoustics, Speech, and Signal Processing,
ICASSP'90, Vol. 2, pp. 1125-1128, 1990.

[Kunz94] S. Kunzi, Etude et Implémentation d'un Codec ADPCM Basé
sur un Prédicteur Adaptatif à Gradient, (in French),
practical semester project, winter semester 1993/94, Ecole
polytechnique fédérale de Lausanne, Laboratoire de
microtechnique EPFL - UNI NE, Neuchâtel, 1994.

[Levi87] H. Levitt, "Digital Hearing Aids: A Tutorial Review", J. of
Rehabilitation, Research and Development, Vol. 24, No. 4,
pp. 7-20, 1987.

[Lunn91] T. Lunner and J. Hellgren, "A Digital Filterbank Hearing
Aid Design, Implementation and Evaluation", Proc. IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing,
ICASSP'91, Vol. 5, pp. 3661-3664, 1991.

[Osha87] D. O'Shaughnessy, Speech Communication: Human and
Machine (Chapter 3), Addison-Wesley, Reading, 1987.

[Rutt85] M. Rutter, "An Adaptive Lattice Filter" in VLSI Signal
Processing: a Bit-serial Approach, ed. by P. Denyer and D.
Renshaw, Addison-Wesley, 1985.

[Scha90] A. Schaub, "Backward-adaptive Predictive DPCM", ASCOM
Technical Review, No.1, pp. 12-19, 1990.

[Scha91] A. Schaub and P. Straub, "Spectral Sharpening for Speech
Enhancement/Noise Reduction", Proc. IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing, ICASSP'91, Vol. 2,
pp. 993-996, 1991.

Noise Reduction / Speech Enhancement for Digital Hearing Aids

71

[Trog93] J. Troger, Filtrage Adaptatif pour la Réduction du Bruit
Appliqué au Traitement de la Parole, (in French), diploma
work, winter semester 1992/93, Ecole polytechnique fédérale
de Lausanne, Laboratoire de microtechnique EPFL - UNI
NE, Neuchâtel, 1993.

[Work91] Working-group on Communication and Aids for the Hearing-
impaired People, "Speech-perception Aids for Hearing-
impaired People: Current Status and Needed Research", J. of
the Acoustical Society of America, Vol. 90, No.2, pp. 637-685,
1991.

Blank page

73

Chapter 5
Line Spectrum Pairs and the
CELP FS1016 Speech Coder

This chapter gives the theoretical fundamentals for
understanding the line spectrum pair (LSP) representation of
linear predictive coding (LPC) coefficients with application to
narrowband speech coding. It also explains the structure of the
CELP FS1016 speech coder, in particular the spectral analysis
block, in which LPC analysis with LSP representation is used.

These concepts are used in Chapter 6, in which two novel
efficient algorithms for LPC to LSP conversion are presented
and in Chapter 7, in which the DSP56001 optimized
implementation of the CELP FS1016 spectral analysis block is
given.

5.1. LPC Analysis

Linear predictive coding (LPC) is widely used in different speech
processing applications for representing the envelope of the
short-term power spectrum of speech.

In LPC analysis of order p, the current speech sample s(n) is
predicted by a linear combination of p past samples, �()s n :

�(n) () (n)s a k s kpk
p= − ⋅ −=∑ 1 (5.1)

Optimized Implementation of Speech Processing Algorithms

74

where �(n)s is the predictor signal and {ap(1),…,ap(p)} are the
LPC coefficients. The calculation of these coefficients is given in
section 5.2. The value �(n)s is subtracted from s(n), giving the
residual signal e(n), with reduced variance:

e s s s a k s kpk
p(n) (n) �(n) (n) () (n)= − = + ⋅ −=∑ 1 (5.2)

Taking the z transform of Equation (5.2) gives:

E z A z S zp() () ()= ⋅ (5.3)

where S(z) and E(z) are the transforms of the speech signal and
the residual signal respectively, and Ap(z) is the LPC analysis
filter of order p:

A z a k zp p
k

k
p() ()= + ⋅ −

=∑1 1 (5.4)

This filter is used to remove the short term correlation of the
input speech signal, giving an output E(z) with approximately
flat spectrum. The short-term power spectral envelope of the
speech signal can therefore be modeled by the all-pole synthesis
filter:

H z
A z a k z

p
p p

k
k
p()

() ()
= =

+ ⋅ −
=∑

1 1

1 1
(5.5)

Equation (5.3) is the basis for the LPC analysis model.
Conversely, the LPC synthesis model (see § 2.4) consists of an
excitation source E(z), providing input to the spectral shaping
filter Hp(z), to yield the synthesized output speech S(z):

S z H z E zp() () ()= ⋅ (5.6)

E(z) and Hp(z) are chosen following certain constraints, so that
S(z) is as close as possible in some sense to the original speech.

5.2. Calculation of the LPC Coefficients

In the classical least-squares method, the LPC coefficients are
determined by minimizing the mean energy of the residual
signal, given by:

Line Spectrum Pairs and the CELP FS1016 Speech Coder

75

[]ε p pk
pe n s n a k s n k= = + ⋅ −

−∞

∞

=
−∞

∞
∑ ∑∑2

1

2
() () () ()

(5.7)

the summation range is limited by windowing either the speech
or the residual signal, leading to the autocorrelation or
covariance method, respectively. The autocorrelation method is
computationally more efficient than the covariance method and
the resulting synthesis filter is always stable.

Autocorrelation Method and Durbin's Recursion

As speech is non-stationary, a frame of N samples of the speech
signal, {s1,…,sN} is windowed using Hamming or other tapered
cosine windows. The length of the frame is usually 20 to 30 ms
for speech sampled at 8 kHz. Minimization of εp with respect to
the LPC coefficients leads to the Yule-Walker equations:

R a rp p p⋅ = − (5.8)

where:

R p

p

p

p

p p p

r r r r
r r r r
r r r r

r r r r

=























−

−

−

− − −

0 1 2 1

1 0 1 2

2 1 0 3

1 2 3 0

�

�

�

� � � � �

�

[]
[]

, () ()

,

a

r

p p p
T

p p
T

a a p

r r r

=

=

1

1 2

�

�

(5.9)

and rk is the k-th autocorrelation coefficient of the windowed
speech signal:

() () () ()r w n s n w n k s n kk
n k

N
= ⋅ ⋅ − ⋅ −

=

−

∑
1

(5.10)

here {w(n)} is the window function of N samples. The LPC
coefficients are given by:

a R rp p p= − ⋅−1 (5.11)

The autocorrelation matrix Rp has a Toepliz structure,
leading to the solution of Equation (5.11) through the very

Optimized Implementation of Speech Processing Algorithms

76

efficient Levinson-Durbin recursion, which is described as
follows:

ε

ε

ε ε

0 0

1
1

1

1

1 1

1
2

1
0 1

1 1

1

=
≤ ≤
=

= =
− −











= + − ≤ ≤ −

= −

−
=

−

−

−

− −

−

∑

r
m p

a

a m k

r a i r

a j a j k a m j for j m

k

m

m m

m m
i

m

m i

m

m m m m

m m m

for :
()

()

().

() () . ()

() (5.12)

The values {km} are known as the Parcor (partial correlation)
or reflection coefficients. In the case of an order p = 10, the
computational cost of the Levinson-Durbin recursion is 110
multiplications, 100 additions, and 10 divisions.

An order of p = 10 is typically used for narrowband or
telephone bandwidth (300-3400 Hz) speech sampled at 8 kHz.
Hereafter, an order of p = 10 is assumed.

The position of the zeros of the 10-th order LPC analysis
filter for a 30 ms segment of the vowel /æ/ is shown in Figure 5.1
(on page 84). These zeros correspond to the poles of the LPC
synthesis filter, whose power spectrum is shown in Figure 5.3.
The formants are the resonances or sharp peaks in the power
spectrum, and are due to poles close to the unit circle. The
bandwidth of the formants is narrower as the poles are closer to
the unit circle. The LPC coefficients are an attractive
description of the spectral envelope since they describe the
perceptually important spectral peaks more accurately than the
spectral valleys [Kond94].

5.3. Bandwidth Expansion

LPC analysis does not estimate accurately the spectral envelope
for high pitch voiced speech due to the harmonic spacing, which
is too large to provide adequate sampling of the spectral
envelope [Pali95a]. Such inaccuracy occurs mainly in formant

Line Spectrum Pairs and the CELP FS1016 Speech Coder

77

bandwidths, which are underestimated by a large amount,
resulting in metallic sounding synthesized speech.

One method to overcome this problem is bandwidth
expansion, in which each LPC coefficient ap(k) is multiplied by a
factor γk (γ < 1), moving the poles of Hp(z) inward by a factor of γ
and expanding the bandwidths of all the poles by the same
amount ∆B, given by:

∆B
Fs= − ⋅
π

γln() (5.13)

where Fs is the sampling frequency. The resulting bandwidth
expanded LPC synthesis filter is given by:

[]′ =
′

=
+ ⋅ ⋅ −

=∑
H z

A z a k z
p

p p
k k

k
p()

() ()

1 1

1 1
γ (5.14)

As bandwidth expansion decreases spectral sensitivity
around the spectral peaks, it is also beneficial for quantization of
LPC coefficients (see § 5.4).

Bandwidth expansion is commonly used in speech coders,
with typical values of γ between 0.996 and 0.988, at a sampling
frequency of 8 kHz, corresponding to 10 to 30 Hz of expansion.

5.4. Quantization of the LPC Coefficients

In low-bit rate speech coding, the LPC coefficients are widely
used to encode spectral envelope. In forward LPC-based coders,
the LPC coefficients are calculated from the original speech
input, quantized and transmitted frame-wise. The transmission
of these coefficients has a major contribution to the overall bit
rate. Thus, it is important to quantize the LPC coefficients using
as few bits as possible without introducing excessive spectral
distortion and with reasonable complexity. A very important
requirement is that the all-pole synthesis filter Hp(z) remains
stable after quantization.

Optimized Implementation of Speech Processing Algorithms

78

Objective Measure of LPC Quantization Performance

The root-mean-square spectral distortion, which is commonly
used for evaluating the performance of LPC quantization
[Pali95a], is defined, for a frame n, as follows:

SD
S

Sq
d dBn

n

n
=

−








∫

1
10

2 1
10

2

1

2

()
log

()
()

()
Ω Ω

Ω
Ω

Ω
Ω

Ω

(5.15)

where Ω is the frequency in Hz, and the frequency range is given
by Ω1 and Ω2. A frequency range of 125-3400 Hz is used in
[Rama95], for speech sampled at 8 kHz, while a range of 0-3000
Hz is used in [Pali95a] and [Atal89]. A most common practice is
to use the full band, 0-4000 Hz. This is the frequency range that
will be used throughout this report.

In Equation (5.15), Sn(Ω) and Sqn(Ω) are the original and
quantized spectrum of the LPC synthesis filter, associated with
the n-th frame of speech:

S

A z e

n

n

j
Fs

()

()

Ω
Ω

=

=

1
2 2π

, Sq

A z e

n

n
j

Fs

()

()

Ω
Ω

=

=
∧

1
2 2π

(5.16)

here An(z) and Ân(z) are the original and quantized LPC analysis
filters. The subindex n refers to the n-th frame, and not to the
order of the LPC filter. In practice the spectra Sn(Ω) and Sqn(Ω)
are evaluated using fast Fourier transform (FFT). Alternatively,
an efficient method for estimating the root-mean-square
spectral distortion is the cepstral measure [Gray76].

The spectral distortion is evaluated for all the Nf frames in
the test data. Its average value SD represents the distortion
associated with a particular quantizer:

SD
N

SD
f

n
n

Nf
=

=
∑1

1 (5.17)

Transparent quantization of LPC information means that
the LPC quantization does not introduce any audible distortion
in the coded speech. The spectral distortion measure is known

to have a good correspondence with subjective measures and the

Line Spectrum Pairs and the CELP FS1016 Speech Coder

79

following conditions are considered sufficient (but not necessary)
to achieve transparent quantization [Pali95a]:

• An average spectral distortion of less than about 1 dB.

• No outlier frames with spectral distortion larger than 4 dB.

• Less than 2% of outlier frames with spectral distortion in
the range of 2-4 dB.

Alternative Representations of LPC Coefficients

The LPC coefficients are not suitable for quantization because of
their high spectral sensitivity. Small quantization errors in the
individual LPC coefficients produce relatively large spectral
errors, and can also result in instability of the quantized all-pole
synthesis filter. To avoid unacceptable distortion, a large
amount of bits (80-100 bits/frame) is needed for scalar
quantization of the LPC coefficients. It is therefore necessary to
transform the LPC coefficients into a set of equivalent
parameters which have less spectral sensitivity and ensure
stability of the all-pole filter after quantization. Suitable
representations are the reflection coefficients (RC), the log-area
ratio (LAR), the inverse sine (IS), and the line spectrum pairs
(LSP).

The reflection coefficients {km} (see § 5.2) are spectrally less
sensitive to quantization than the LPC coefficients. They are
bounded in magnitude by unity, and the stability of the all pole
filter is easily ensured by keeping this bound on the quantized
reflection coefficient. These coefficients are also very important
in the physical realization of the all-pole synthesis filter, as they
are the multipliers of a lattice filter realization, which is
suitable for fixed-point implementation. The forward and
backward transformations are given below:

Optimized Implementation of Speech Processing Algorithms

80

LPC to RC transformation:

for m = −
=

=
− −

−
≤ ≤ −−

p p
k a

a j
a j k a j

k
for j m

m m

m
m m m

m

, , , :
(m)

()
() . (m)

1 1

1
1 11 2

�

(5.18)

RC to LPC transformation:

for m =
=

= + − ≤ ≤ −− −

1

1 11 1

, , :
(m)

() () . (m)

� p
a k

a j a j k a j for j m
m m

m m m m (5.19)

About 50 bits/frame are required for transparent
quantization using uniform scalar quantization of the reflection
coefficients, and 36 bits/frame using non-uniform scalar
quantization [Pali95a].

Although the reflection coefficients are more suitable for
quantization than the LPC coefficients, they have a non-flat
spectral sensitivity, with absolute values near unity requiring
more accuracy than values away from unity. This problem can
be overcome expanding the regions near |km| = 1 by means of
non-linear transformations, such as the log-area ratio (LAR) and
the inverse sine (IS). The forward and backward
transformations are given below:

RC to LAR transformation:

g
k
k

for m pm
m

m
=

+
−







 =log , ,

1
1

1�
(5.20)

LAR to RC transformation:

k for m pm

gm

gm
= −

+
=10 1

10 1
1, ,�

(5.21)

RC to IS transformation:

()s k for m pm m= =−sin , ,1 1� (5.22)

IS to RC transformation:

()k s for m pm m= =sin , ,1� (5.23)

Line Spectrum Pairs and the CELP FS1016 Speech Coder

81

Non-uniform scalar quantization using the IS and LAR
representation requires 34 bits/frame for transparent
quantization [Pali95a]. The major drawback of these
representations is that the frame to frame correlation of LPC
parameters is not highlighted [Kond94].

A widely used representation of LPC coefficients is line
spectrum pair (LSP) parameters. For scalar quantization, it
performs only slightly better than LAR, but this representation
has several properties which are desirable for quantization as
will be explained in Section 5.7. Although this representation is
also referred to as line spectrum frequencies (LSF), the term
LSP is adopted hereafter.

5.5. Interpolation of the LPC Coefficients

In speech coding systems, LPC analysis is generally carried out
on a frame-by-frame basis with a new set of parameters
computed, quantized and transmitted at frame intervals of 20 to
30 ms. This slow update of frames can lead to large changes in
LPC parameters in adjacent frames, which may introduce
undesired transients or clicks in the reconstructed signal. To
overcome this problem, interpolation of LPC parameters is used
at the receiver to get smooth variations in their values. Usually,
interpolation is done linearly, at equally spaced time instants
called sub-frames. Four sub-frames are generally used.

The interpolation is not done directly on the LPC coefficients
since the interpolated all-pole synthesis filter can become
unstable [Atal89]. In fact, stability issues in the interpolation
are very similar to those encountered in quantization (see § 5.4).
Interpolation on the reflection coefficients, log area ratios,
inverse sine coefficients and LSP parameters always produce
stable filters. Thus, it is natural to use for interpolation the
same LPC representation that was used for quantization. In
[Pali95b] it is shown that LSP representation has the best
interpolation performance.

Optimized Implementation of Speech Processing Algorithms

82

5.6. Line Spectrum Pairs

The LSP representation of LPC coefficients was first introduced
by Itakura in [Itak75]. This representation is widely used in the
domain of speech coding due to its desirable quantization
properties, such as bounded range, intra-frame and inter-frame
correlation, and simple check of filter stability [Kond94].
Additionally, LSP representation allows frame to frame
interpolation with smooth spectral changes (see § 5.5).

Use of LSP Representation in Speech Coding

LSP representation of 10-th order LPC coefficients is used in
nearly all narrowband speech coder standards, with bit rates of
less than 16 kbps, such as:

• The ITU-T G.729 CS-ACELP coder, at 8 kbps [Kata95].

• The ITU-T G.723.1, dual rate speech coder for multimedia,
at 5.3 /6.3 kbps [ITUT96].

• The GSM 6.60, enhanced full rate coder, at 13 kbps [Järv97].

• The TIA IS-96, North-American standard for CDMA cellular
telephony, variable rate QCELP [Gard93].

• The TIA IS-641, enhanced full rate coder for North-
American TDMA cellular telephony, at 7.4 kbps [Honk97].

• The Japanese half-rate personal digital cellular standard
[Ohya94].

• The US DoD Federal Standard for secure telephony, FS1016
CELP coder at 4.8 kbps[Fede91].

• The new US Federal Standard for secure telephony, MELP
coder, at 2.4 kbps [Supp97].

Older standard coders, such as the GSM 6.10 [ETSI92] and
the IS-54 [Gers91], use reflection coefficients and LAR to
quantize spectral information. These coders will be replaced by
newer standards which use LSP representation, respectively the
GSM 6.60 and the IS-641. In these new standards, LSP
representation allows more efficient quantization of the spectral

Line Spectrum Pairs and the CELP FS1016 Speech Coder

83

information, with less bits and better speech quality. The bit
rate saving is used to improve speech quality, through a better
representation of other coder parameters and allocation of more
bits to error protection.

All the CELP speech coders found in recent publications
[CELP97] use LSP representation of 10-th order LPC. The fixed
rate coders have a bit rate ranging from 4 to 12.2 kbps and the
variable rate coders have an average bit-rate ranging from 3 to 7
kbps. Also, LSP representation of 10-th order LPC is used in
some emerging very low bit rate coders, at bit rates of about 2.4
kbps (fixed) and 1.2 kbps (variable) [LOWB97].

Definition of LSP Parameters

The starting point for deriving the LSP parameters is the LPC
analysis filter of order p, Ap(z), given in Equation (5.4).

A symmetrical polynomial Pp(z) and an antisymmetrical
polynomial Qp(z) are formed by adding and subtracting to Ap(z)
its time reversed system function z–(p+1)Ap(z–1). If p is even, Pp(z)
and Qp(z) have a zero at z = −1 and z = +1, respectively:

P z A z z A z z P z

Q z A z z A z z Q z
p p

p
p p

p p
p

p p

() () () () ()

() () () () ()

()

()

= + = + ⋅ ′
= − = − ⋅ ′

− + − −

− + − −

1 1 1

1 1 1
1

1 (5.24)

The polynomials P′p(z) and Q′p(z) are symmetrical, and have
the following properties, which are proved in [Soon84]:

• If the roots of Ap(z) are inside the unit circle, then the roots
of P′p(z) and Q′p(z) lie on the unit circle and are interlaced,
starting with a root of P′p(z).

• Conversely, if the roots of P′p(z) and Q′p(z) lie on the unit
circle and are interlaced starting with a root of P′p(z), the
roots of Ap(z) are inside the unit circle.

The first property is referred to as the analysis theorem or
ordering property. The second property is called the synthesis
theorem, and is used to ensure stability of the LPC synthesis
filter Hp(z) upon quantization.

Optimized Implementation of Speech Processing Algorithms

84

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 5.1: Position of the zeros of the 10-th order LPC analysis filter,
A10(z), for a 30 ms segment of the vowel /æ/.

Given that the roots of P′p(z) and Q′p(z) lie on the unit circle,
the polynomials P′p(z) and Q′p(z) can be completely specified by
the angular positions of their roots. Furthermore, since P′p(z)
and Q′p(z) have real coefficients, their roots occur in complex
conjugate pairs. Hence, only the angular positions of the roots
located on the upper semicircle of the z-plane are necessary to
completely specify P′p(z) and Q′p(z):

The LSPs are defined as the angular positions of the
roots of P′p(z) and Q′p(z) located on the upper semicircle
of the z-plane.

Hereafter, the LSPs are denoted as { ωi }, in the angular
frequency domain, and their ordering property is expressed as:

0 1 2< < < < <ω ω ω π� p (5.25)

The odd-suffixed LSPs correspond to roots of P′p(z) while the
even-suffixed LSPs correspond to roots of Q′p(z). Other notations
that will be used are { fi }, in the normalized frequency domain,
in which fi = ωi/(2π), and { xi }, in the “x-domain”, in which
xi = cos(ωi).

For a segment of the vowel /æ/, the location of the zeros of
A10(z) is shown in Figure 5.1, and the location of the zeros of the
polynomials P′10(z) and Q′10(z) is shown in Figure 5.2. The LPC
power spectrum and position of the associated LSP parameters
are shown in Figure 5.3.

Line Spectrum Pairs and the CELP FS1016 Speech Coder

85

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 5.2: Position of the zeros of P′10(z) and Q′10(z), for a 30 ms segment
of the vowel /æ/. The zeros of P′10(z) and Q′10(z) are denoted by
‘+’ and ‘o’, respectively.

0 500 1000 1500 2000 2500 3000 3500 4000
−20

−10

0

10

20

30

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Figure 5.3: LPC power spectrum and position of the corresponding LSP
parameters, for a 30 ms segment of the vowel /æ/. Odd-
suffixed LSPs, corresponding to zeros of P′10(z), are plotted
with a continuous line, while even-suffixed LSPs,
corresponding to zeros of Q′10(z), are plotted with a dashed
line.

Optimized Implementation of Speech Processing Algorithms

86

5.7. Characteristics of the LSP Parameters

Some good quantization properties of LSP representation such
as bounded range and simple check of filter stability were
already mentioned in Section 5.6. Other advantageous
properties of LSP parameters are their intra-frame and inter-
frame correlation, their localized spectral sensitivity, their close
relationship with the perceptually important peaks of the speech
spectral envelope, and the fact that LSP parameters constitute a
“frequency-domain” representation.

Frequency Domain Representation

LSP representation is a frequency-domain representation of the
speech spectral envelope, as opposite to RC, LAR, and IS, which
are temporal parameters [Kond94]. Thus, LSP-based
quantization schemes can easily incorporate spectral features
known to be important for human perception. An example is
given in [Pali93], where lower frequency LSPs are quantized
more accurately than higher frequency LSPs, as human hear
resolve better the differences at lower frequencies.

Intra- and Inter-frame Correlation

A very important property of LSP parameters is their natural
ordering, which is given in Equation (5.25) and can be observed
in Figure 5.4. This ordering property is not only used to warrant
stability of the LPC synthesis filter upon quantization, but also
to speed up the calculation of LSP parameters (see § 5.9). The
ordering property also indicates that the LSPs within a frame
are correlated. This high correlation between neighboring LSPs
is shown in [Kond94] and is called intra-frame correlation.

Due to the slow changes in the configuration of the vocal
tract, there exists also a strong correlation between LSPs of
adjacent frames, which is called inter-frame correlation.

Both intra- and inter-frame correlation can be successfully
exploited for efficient quantization of LSP parameters.

Line Spectrum Pairs and the CELP FS1016 Speech Coder

87

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

frame number (240 samples/frame)

N
or

m
al

iz
ed

 fr
eq

ue
nc

y,
 f

Figure 5.4: LSP trajectories for the sentence “She had your dark suit in
greasy wash water all year” output by a male speaker.

Localized Spectral Sensitivity

The spectral sensitivity of each LSP is localized [Pali93], that is,
a perturbation in a given LSP produces a change in the LPC
power spectrum only in the neighborhood of this LSP frequency.
Thus, each LSP can be individually quantized without the
leakage of quantization distortion from one spectral region to
the other. Note that the other LPC representations such as RC,
LAR and IS, do not have this advantage as their spectral
sensitivities are not localized.

Close Relationship with Formants of the Spectral Envelope

In [Soon93], it is shown that LSP frequencies display a cluster
pattern around the peaks of the spectral envelope. This can also
be observed in Figure 5.3. A cluster of (2 to 3) LSPs
characterizes a formant frequency and the bandwidth of the
given formant depends on the closeness of these LSPs.

As formants are very important for human ear perception,
this property can be effectively used in LSP quantization. This is
done through the use of an appropriate weighted LSP distance
measure, which ensures a better quantization of the LSPs in the
formant regions [Pali93]. This property also provides a strong

Optimized Implementation of Speech Processing Algorithms

88

justification to the use of LSP differences in quantization
schemes [Soon93].

5.8. Quantization of the LSP Parameters

LSP is the most widely used representation for quantization of
spectral information as it can be seen in [SPEC96], [SPEC95a]
and [SPEC95b]. In this section, a brief overview of LSP-based
spectral quantization techniques is given. The discussion is
restricted to narrowband speech sampled at 8 kHz, 10-th order
LPC analysis and frame length of 20-30 ms, as these are the
conditions that characterize nearly all the systems used in
recently proposed spectral quantization methods. The methods
are evaluated in terms of spectral distortion measure and
number of bits needed to achieve transparent quantization
(see § 5.4). As the results reported in the literature do not use
the same speech database, the meaningfulness of the
comparison among different methods is limited. An attempt to
compare several methods using the same database is done in
[Pali95a].

Scalar Quantization

The localized spectral sensitivity property of the LSPs makes
them ideal for scalar quantization. Each LSP is quantized
separately, with a different quantizer. In practice, non uniform
bit allocation and quantizers with non-uniform quantization
levels are used, since they result in less quantization distortion
than uniform quantizers. In [Pali95a], the quantizers are
designed using the Lloyd algorithm, and transparent
quantization is achieved with 34 bits/frame, using either LSP or
LAR representation, but LSP-based quantization has a smaller
percentage of outlier frames.

Quantization of the differences between adjacent LSPs
(DLSPs) instead of the LSPs themselves, is used to exploit intra-
frame correlation. The DLSPs also exhibit less variability across
speakers and recording conditions [Soon93]. Using DLSPs, 32
bits/frame are needed for transparent quantization [Pali95a]. A

Line Spectrum Pairs and the CELP FS1016 Speech Coder

89

similar result is obtained with the method proposed in [Soon93],
in which DLSPs are quantized with an optimum quantizer,
designed taking into account both the statistical distribution
and the spectral sensitivity of each DLSP. Although DLSP-
based quantization allows a saving of 2 bits/frame, it is more
sensitive to channel errors than LSP-based quantization. Thus,
in practice, most speech coder systems, such as the FS1016
CELP coder [Fede91], use LSPs instead of DLSPs.

Vector Quantization

Vector quantization can effectively exploit the intra-frame
correlation of LSP parameters resulting in smaller quantization
distortion than scalar quantization at the same bit rate
[Gers92].

In [Pali95a] an informal estimate suggests that the bound
for transparent quantization is about 20 bits. In this case, direct
full codebook search (see § 2.9) would need a codebook
containing more than one million codevectors (220), of dimension
of 10. This would require a prohibitively large amount of
training data, and the training process would need too much
time. Furthermore, the storage and computational requirements
for vector quantization would be prohibitively high. The storage
requirement and computational complexity of direct VQ can be
reduced, at the cost of reduced performance, using various forms
of suboptimal VQ, such as split vector quantization [Pali93] and
multistage vector quantization [Lebl93]. The complexity of the
search can be reduced even further by using tree-structured
[Pham90] or classified VQ [Gers92].

In [Pali95a] some of these suboptimal methods are
implemented and tested using the same speech database.
Slightly more than 26 bits/frame are needed to achieve
transparent quantization using multistage VQ, while 26
bits/frame are sufficient with split VQ. If a weighted LSP
distance measure is used instead of euclidean measure, 25
bits/frame are needed with multistage VQ, and 24 bits/frame
with split VQ. This weighted LSP distance measure exploits the
close relationship between LSPs and formants of the spectral
envelope giving more weight to LSPs corresponding to sharp

Optimized Implementation of Speech Processing Algorithms

90

formants than LSPs corresponding to broad formants, and the
lowest weight to LSPs corresponding to spectral valleys
[Soon93]. Transparent quantization at 23 bits/frame is achieved
using linked split VQ as proposed in [Kim96], where the
ordering property of the LSP parameters is used to improve the
performance of split VQ.

As it was already mentioned, VQ schemes exploit the intra-
frame correlation of LSP parameters. To further exploit the
inter-frame correlation, predictive VQ can be used, with either
moving average (MA) or autoregressive (AR) predictors. In
[Skog97], 21 bits/frame are used to achieve transparent
quantization, using either first order AR prediction, or third
order MA prediction. Although AR prediction performs better
than MA, the latter is more robust to channel error conditions.

Transparent quantization can thus be achieved with 21 to
26 bits/frame using VQ, and with at least 32 bits using scalar
quantization. Nevertheless scalar quantization is sometimes
preferred because is computationally less expensive, more
robust against variations of speakers and environments, and can
be protected more efficiently against channel errors [Rama95].

Spectral Quantization in the FS1016 CELP Coder

In the FS1016 CELP coder the LSP coefficients are quantized
using 34-bit scalar quantization, according to the bit pattern
(3,4,4,4,4,3,3,3,3,3) and using the non-uniform quantization
levels given in Figure 5.5. This spectral quantizer was tested in
[Lebl93] using the TIMIT speech database [Garo90]. The
average spectral distortion was 1.48 dB, with 11.4 % of outliers
between 2-4 dB. Although the conditions to assure transparent
quantization are not fulfilled, the quantizer performed better in
subjective evaluation than a 24-bit VQ quantizer with 1.17 dB of
average spectral distortion and 2.12 % of outliers between 2-4
dB [Lebl93]. Good communications quality is obtained using this
quantizer in the CELP FS1016 speech coder [Fede91].

Line Spectrum Pairs and the CELP FS1016 Speech Coder

91

LSP6

0
1
2
3
4
5
6
7

index value
0.1838
0.1962
0.2112
0.2288
0.2500
0.2750
0.3000
0.3250

LSP7

0
1
2
3
4
5
6
7

index value
0.2250
0.2350
0.2450
0.2625
0.2875
0.3100
0.3375
0.3625

LSP8

0
1
2
3
4
5
6
7

index value
0.2781
0.3000
0.3156
0.3312
0.3500
0.3688
0.3938
0.4188

LSP10

0
1
2
3
4
5
6
7

index value
0.3988
0.4088
0.4188
0.4275
0.4362
0.4488
0.4638
0.4788

LSP9

0
1
2
3
4
5
6
7

index value
0.3450
0.3600
0.3750
0.3875
0.4000
0.4138
0.4288
0.4438

LSP1

0
1
2
3
4
5
6
7

index value
0.0125
0.0213
0.0281
0.0312
0.0350
0.0425
0.0525
0.0625

LSP2

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

index value
0.0262
0.0294
0.0331
0.0369
0.0406
0.0450
0.0500
0.0550
0.0600
0.0650
0.0700
0.0762
0.0838
0.0925
0.1013
0.1100

LSP3

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

index value
0.0525
0.0575
0.0625
0.0675
0.0731
0.0800
0.0881
0.0969
0.1062
0.1188
0.1312
0.1438
0.1562
0.1688
0.1812
0.1938

LSP4

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

index value
0.0775
0.0825
0.0900
0.0994
0.1100
0.1212
0.1350
0.1462
0.1588
0.1713
0.1838
0.1962
0.2088
0.2212
0.2338
0.2462

LSP5

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

index value
0.1250
0.1312
0.1412
0.1512
0.1606
0.1688
0.1788
0.1888
0.1988
0.2088
0.2188
0.2312
0.2438
0.2562
0.2688
0.2812

Figure 5.5: Non-uniform quantization levels of the 34-bit scalar
quantizer used in the CELP FS1016 speech coder.

Optimized Implementation of Speech Processing Algorithms

92

5.9. Determination of the LSP Parameters

In order to determine the LSP parameters, the roots of P′10(z)
and Q′10(z), given in Equation (5.24), have to be found. The
direct solution of the equations P′10(z) = 0 and Q′10(z) = 0, using a
numerical method such as Newton-Raphson [Sait85] is
computationally expensive, as it involves the solution of two
10-th order polynomials using complex arithmetic.

The methods proposed in [Kaba86], [Saou92] and [Chan91],
are more suitable for efficient real-time implementation and are
explained in this section. Also, other methods which are based
on discrete Fourier or cosine transform, as well as an adaptive
method are briefly explained at the end of this section.

Kabal’s Method

In Kabal’s method [Kaba86], the symmetry of the polynomials
P′10(z) and Q′10(z) is used to group their terms:

[]
[]

′ = ⋅ + + ′ + + + ′

′ = ⋅ + + ′ + + + ′

− + − + −

− + − + −

P z z z z p z z p

Q z z z z q z z q

10
5 5 5

1
4 4

5

10
5 5 5

1
4 4

5

() () ()

() () ()

�

� (5.26)

where:

()
() ()
() ()
() ()
() ()

′ = + −

′ = + − ′

′ = + − ′

′ = + − ′

′ = + − ′

p a a

p a a p

p a a p

p a a p

p a a p

1 10 10

2 10 10 1

3 10 10 2

4 10 10 3

5 10 10 4

1 10 1

2 9

3 8

4 7

5 6

() ,

,

,

,

,

() ()
() ()
() ()
() ()
() ()

′ = − +

′ = − + ′

′ = − + ′

′ = − + ′

′ = − + ′

q a a

q a a q

q a a q

q a a q

q a a q

1 10 10

2 10 10 1

3 10 10 2

4 10 10 3

5 10 10 4

1 10 1

2 9

3 8

4 7

5 6 (5.27)

here a10(k) are the 10-th order LPC coefficients. Polynomial
division, which only needs additions and subtractions, was done
on the coefficients of P10(z) and Q10(z), to remove the trivial zeros
at z = ±1. Evaluating P′10(z) and Q′10(z) on the unit circle, z = ejω,
and removing the linear phase term, e–5jω and the factor of 2,
gives:

Line Spectrum Pairs and the CELP FS1016 Speech Coder

93

′ = + ′ + + ′ +
′

′ = + ′ + + ′ +
′

P p p
p

Q q q
q

10 1 4
5

10 1 4
5

5 4
2

5 4
2

() cos() cos() cos()

() cos() cos() cos()

ω ω ω ω

ω ω ω ω

�

�
(5.28)

The Chebyshev polynomials of first kind are given by:

T x n xT x T x

T x

T x x

T x x

T x x x

T x x x

T x x x x

n n n() cos() () ()

() cos()

() cos()

() cos()

() cos()

() cos()

() cos()

= = −
= =
= =

= = −

= = −

= = − +

= = − +

− −ω

ω

ω

ω

ω

ω

2

0 1

2 2 1

3 4 3

4 8 8 1

5 16 20 5

1 2

0

1

2
2

3
3

4
4 2

5
5 3 (5.29)

applying the mapping x = cos(ω) to Equation (5.28) and using
the Chebyshev polynomials of first kind, two polynomials of 5-th
order, P′10(x) and Q′10(x), are obtained:

′ = + ′ + ′ − + ′ − ′ +
+ − ′ + ′ + ′ − ′ + ′

P x x p x p x p p x

p p x p p p
10

5
1

4
2

3
3 1

2

2 4 1 3 5

16 8 4 20 2 8

5 3 0 5

() () ()

() (.)

′ = + ′ + ′ − + ′ − ′ +
+ − ′ + ′ + ′ − ′ + ′

Q x x q x q x q q x

q q x q q q
10

5
1

4
2

3
3 1

2

2 4 1 3 5

16 8 4 20 2 8

5 3 0 5

() () ()

() (.) (5.30)

The roots of P′10(x) and Q′10(x) are the LSPs in the
“x-domain”, { xi }, with xi = cos(ωi). Equation (5.25) gives:

+ > > > > > −1 11 2 10x x x� (5.31)

An example of the behavior of the functions P′10(x) and
Q′10(x) is shown in Figure 5.6. As P′10(x) and Q′10(x) are 5-th
order polynomials, their roots cannot be calculated in a closed
form. In the numerical solution proposed in [Kaba86], zero
crossings are searched starting at x = +1, with decrements of
∆ = 0.02. Once an interval containing a zero crossing is found,
the position of the root is refined, first by using four successive
bisections, and then by doing linear interpolation. Giving the
ordering property of the roots, the search is done alternatively
on P′10(x) and Q′10(x), starting from the position of the last root

Optimized Implementation of Speech Processing Algorithms

94

that was found. For a 10-th order LPC system, a maximum of
150 polynomial evaluations is needed [Kaba86].

The grid separation of ∆ = 0.02, and the number of
bisections of 4, are chosen to avoid missing zero crossings in the
search. These values are based on the minimum difference
between roots found on 10 s of speech, sampled at 8 kHz
[Kaba86].

An efficient recursive evaluation of P′10(x) and Q′10(x) for a
given value of x, which uses the coefficients {q′i} and {p′i} defined
in Equation (5.27), is also proposed in [Kaba86]:

b x b x b x

b x x p

b x xb x b x p

b x xb x b x p

b x xb x b x p

P x xb x b x p

7 6 5

4 1

3 4 5 2

2 3 4 3

1 2 3 4

10 1 2 5

0 0 1

2

2

2

2

0 5

() , () , ()

()

() () ()

() () ()

() () ()

() () () .

= = =
= + ′
= − + ′
= − + ′
= − + ′

′ = − + ⋅ ′ (5.32)

The evaluation for Q′10(x) is similar, using the coefficients
{q′i} instead of {p′i}. Then, the expansion on powers of x given in
Equation (5.30) is not necessary. The computational cost of this
recursive evaluation is 4 multiplications and 9 additions.

−1 0 1
−3.7

0

3
Q’10(x)

P’10(x)

x10 x9 x8 x7 x6 x5 x4 x3 x2 x1

P’10(x) and Q’10(x)

Figure 5.6: Behavior of the functions P′10(x) and Q′10(x) (x1 to x10 are the
LSPs in the “x-domain”, in which x = cos(ω)).

Line Spectrum Pairs and the CELP FS1016 Speech Coder

95

Saoudi’s Method

In Saoudi’s method [Saou92], two new real functions are derived
from the symmetrical and the antisymmetrical polynomials,
P10(z) and Q10(z), given in Equation (5.24). These functions are
shown to obey a three-term recurrence relation, which leads to
the following tridiagonal matrices:

M

M

5

1 2

2 3 3 4

4 5 5 6

6 7 7 8

8 9 9 10

5

2

2 3 3 4

4 5 5 6

6 7 7 8

8 9 9 10

2 2 1 0 0 0
2 1 0 0

0 2 1 0
0 0 2 1
0 0 0 2

2 1 0 0 0
2 1 0 0

0 2 1 0
0 0 2 1
0 0 0 2

=























=














+

+

+

+

+

α α
α α α α

α α α α
α α α α

α α α α

α
α α α α

α α α α
α α α α

α α α α

–

–

–

–

–

*

*
–

* * *
–

*
–

* * *
–

*
–

* * *
–

*
–

* * *
–

*
– 








(5.33)

the values αm* and αm are obtained by using the antisymmetric
split Levinson recursion, which is described as follows:

P z P z z p for m

r

m

r r p m t

r r p r p m t

P z z

m

m

i
i

t

m i m i

i
i

t

m i m i t m t

m
m

m
m

m

m
m m m

m

0 1 0

0 0 0

0

0

1

1 1
1

1

0 1 1 1

1

1 10

2 1

2

2 2

1

* * –1
,

*

* *

*
– ,

*

–

– ,
*

,
*

*
*

*
*

*

–
*

*
–

*

* –1

() , () ,

,

:

(–)

(–)

, , ()

() ()

= = − = ≥

= =
≤ ≤

=
= +

+ =










= = − = −

= +

=

=

−

+

∑

∑

λ τ

τ

α τ
τ

λ α
λ

α λ λ

for

for

for

P z z P zm m m
* * –1

–
*() – ()α 1

(5.34)

Optimized Implementation of Speech Processing Algorithms

96

here rk is the k-th autocorrelation coefficient given in Equation
(5.10). As the polynomials Pm*(z) are antisymmetrical, only half
of their coefficients are calculated. For an order of 10, the
computational cost of the antisymmetric split Levinson
recursion is 58 multiplications, 122 additions, and 20 divisions.
This recursion is used instead of the Levinson-Durbin recursion
of Equation (5.12).

The eigenvalues of M5 and M5* correspond, respectively, to
the odd- and even-suffixed LSPs in the “x-domain”, except for a
gain factor of 2, thus, they will be denoted as {λi}, with
λi = 2cos(ωi), and the ordering property expressed as:

+ > > > > > −2 21 2 10λ λ λ� (5.35)

Different methods to compute the eigenvalues of the
tridiagonal matrices are compared in [Saou92], and the bisection
method is chosen, with a number of 8 bisections, as the one with
minimum complexity for the application. This method is briefly
explained in the next paragraphs.

The eigenvalues of M5 and M5* are the roots of their
characteristic polynomials, which are given by:

L x M xI

L x M xI

5 5 5

5 5 5

0

0

() –

() –* *

= =

= =
(5.36)

where I5 is the identity matrix of 5 elements. Due to the
tridiagonal form of M5 and M5*, their characteristic polynomials
obey the following recursions [Acto90]:

L x

L x d x

L x d x L x e L x

L x d x L x e L x

L x d x L x e L x

L x d x L x e L x

0

1

2 1 0

3 2 1

4 3 2

5 4 3

1

0

1 1

2 2

3 3

4 4

()

() (())

() (()) () – () ()

() (()) () – () ()

() (()) () – () ()

() (()) () – () ()

=
= −
= − ⋅
= − ⋅
= − ⋅
= − ⋅ (5.37)

Line Spectrum Pairs and the CELP FS1016 Speech Coder

97

L x

L x d x

L x d x L x e L x

L x d x L x e L x

L x d x L x e L x

L x d x L x e L x

0

1

2 1 0

3 2 1

4 3 2

5 4 3

1

0

1 1

2 2

3 3

4 4

*

* *

* * * * *

* * * * *

* * * * *

* * * * *

()

() (())

() (()) () – () ()

() (()) () – () ()

() (()) () – () ()

() (()) () – () ()

=

= −

= − ⋅

= − ⋅

= − ⋅

= − ⋅ (5.38)

where d(k) and d*(k) are respectively the diagonal elements of
M5 and M5*, and e(k) and e*(k) are the elements below the
diagonal. The sequence of polynomials Ln(x) is a Sturmanian
sequence [Acto90], thus, for a given value of x = γ, the number of
sign changes in the numerical sequence {L0(γ),…,L5(γ)} gives the
number of roots of L5(x) which are smaller than γ. This property
holds also for L5*(x), and is used, together with the ordering
property of Equation (5.35), to search each LSP independently.
If an odd LSP is searched, the evaluation given in Equation
(5.37) is used, while the evaluation given in Equation (5.38) is
used for even LSPs.

Each LSP is iteratively approximated from below. The
approximation value is initialized at –2, which is smaller than
the searched LSP. The addition value is initialized at 4, and is
halved at every step and added to the current approximation
value to obtain the trial value. The trial value is used with
either Equation (5.37) or (5.38). The number of sign changes in
the obtained sequence corresponds to the number of roots
between the trial value and -2. Thus, it is possible to know if the
trial value is smaller than the searched LSP, in which case the
trial value is accepted, and becomes the current approximation
value for the next iteration.

In order to search the 10 LSP parameters, 80 of the
evaluations given either in Equation (5.37) or (5.38) are needed.
The computational cost of each evaluation is 9 additions and 8
multiplications.

Optimized Implementation of Speech Processing Algorithms

98

Chan’s Method

In Chan’s method [Chan91], the LSP parameters {ωi} are
computed directly from the reflection coefficients {km}. Thus,
there is no need to calculate the LPC coefficients. The advantage
of using reflection coefficients is that they are bounded in
magnitude by 1 and thus can be computed entirely on
fixed-point arithmetic, using the LeRoux-Gueguen algorithm
[Lero77], which is given in Appendix B.

Chan’s method is based on the use of the auxiliary function:

ψ m

m

mz z A z() ()= ⋅
+1
2 (5.39)

evaluating this function on the unit circle, z = ejω, gives:

[] []ψ ψ ψω
ω

ω ω ω
10

11
2

10 10 10() () Re () Im ()e e A e e j ej
j

j j j= = + ⋅
⋅ ⋅

(5.40)

the symmetrical and antisymmetrical polynomials, Pp(z) and
Qp(z), given in Equation (5.24) can be expressed as:

[]
[]

P e A e e A e e e

Q e A e e A e e j e

j j j j j j

j j j j j j

10 10
11

10

11
2

10

10 10
11

10

11
2

10

2

2

() () () Re ()

() () () Im ()

ω ω ω ω ω ω

ω ω ω ω ω ω

ψ

ψ

= + = ⋅

= − = ⋅

− ⋅ ⋅ − −

− ⋅ ⋅ − −

(5.41)

Thus, the zero crossings of Re[ψ10(ejω)] and Im[ψ10(ejω)]
correspond to the odd- and even-suffixed LSPs, respectively.

From Equation (5.19) it is seen that the polynomial Am(z)
obeys to the following recursion:

A z A z k z A z m pm m m
m

m() () (),= + ≤ ≤−
−

−
−

1 1
1 1 (5.42)

Using Equation (5.39) and (5.42) the following recursive
evaluation is obtained:

Line Spectrum Pairs and the CELP FS1016 Speech Coder

99

()

Y r

Y r K Y

0

1

2

1
0

2

()

()

ω
ω

ω ω ω

= 



 ⋅ 





= 





⋅ ⋅ −m m m (5.43)

where Km is given in Equation (5.46) and:

{ }
{ }Y rm

m

m
()

Re ()
Im ()

,
cos sin

sin cos
ω

ψ ω
ψ ω

ω
ω ω

ω ω=














 =





 − 



































2
2 2

2 2 (5.44)

this recursion can be rearranged to decrease the computational
complexity, obtaining the following formula:

() () ()Y R K R K R K r10 10 9 4 3 2 1 2
1
0

()ω ω ω ω ω= ⋅ ⋅ ⋅ ⋅ ⋅ 





⋅ 





�
(5.45)

where:

() ()
() ()R Km

m

m
m

m

m

k
k

k
k

()
cos sin

sin cos
,ω

ω ω
ω ω

=
+ −

−








 =

+
−











1 0
0 1 (5.46)

thus, 30 multiplications and 20 additions are needed per
evaluation, as well as 10 additions per frame to prepare the
scaling matrices Km.

The functions Re[ψ10(ejω)] and Im[ψ10(ejω)] are searched
alternatively for zero-crossings, starting with Re[ψ10(ejω)]. The
evaluation of ψ10(ω) is done using Equation (5.45). The search is
done on the range (0,π), using a grid of 128 points, corresponding
to a resolution of 0.0078π. If more accuracy is needed, a bisection
technique can be used.

The total cost to search a set of LSPs, without using
bisection, is 3840 multiplications and 2570 additions. This is
computationally too expensive, and this algorithm was only
retained for its possible advantages for a fixed-point
implementation. Additionally, this algorithm requires the
storage (or evaluation) of trigonometric functions.

Optimized Implementation of Speech Processing Algorithms

100

Spectral Transform Methods

There exists several methods based on spectral transforms,
either discrete cosine transform (DCT) or discrete Fourier
transform (DFT), or their fast versions, fast Fourier transform
(FFT) or fast DCT. One of these methods, which is proposed by
Kang and Fransen [Kaba86] uses the all-pass ratio filter:

R z
z A z

A zp

p
p

p
()

()

()

()

=
− + −1 1

(5.47)

the phase spectrum of this filter is evaluated, and the LSPs
correspond to the frequencies where the phase value is a
multiple of π.

In [Soon84], P′10(ω) and Q′10(ω), given in Equation (5.28) are
evaluated on a fine grid by using DCT. Sign changes at adjacent
grid points isolate the intervals which contain a root, and
further bisection of these intervals approximates the root
positions.

In [Kond94], a DFT is done on the coefficients of P′10(z) and
Q′10(z), given in Equation (5.24). The LSPs are the frequency
location of the partial minima of the power spectrum. As the
coefficients are real and symmetrical, the number of
computation is reduced to 6 multiply-adds (MAC) per spectrum
point. The suggested DFT size is 1024 points. Similarly, in
[Kang87] a single complex fast Fourier transform is used to
compute both spectrums of P10(z) and Q10(z) at once, with a
transform size of 512, giving a frequency resolution of
15.625 Hz. To improve this frequency resolution, a three-point
parabolic approximation is suggested. A zero crossing search
using DFT with 64 to 128 points, together with linear
interpolation is proposed in [Furu89].

All these proposed spectral transform methods are
computationally too expensive, when compared to the methods
of Kabal and Saoudi. Besides, they require calculation or storage
of trigonometric functions. Thus, they are not further considered
in the work described in this report.

Line Spectrum Pairs and the CELP FS1016 Speech Coder

101

Adaptive Methods

All the LSP calculation methods previously described require
calculation of the LPC coefficients, or some equivalent
parameters such as the reflection coefficients or the values αm*

and αm, given in Equation (5.34).
A least-mean-square adaptive method to calculate the LSP

parameters directly from the speech samples is proposed in
[Chee87]. The initial estimation uses evenly distributed LSP
values and a new set of LSP parameters is estimated for each
input speech sample.

This method is very attractive because of its low complexity,
but as it is a “learning type” algorithm, outlier samples can
result in adaptation errors [Kond94]. If this error occurs at the
end of the frame, there is no time for correction, before the LSP
set is used. Furthermore, the experience done in [Chee87] is
limited to an order of p = 4, and uses synthetic speech. With an
order of p = 10, and using real speech as input, the convergence
behavior of the algorithm excludes its use on speech coders such
as the CELP FS1016 [Fede91], therefore, this method is not
considered hereafter.

5.10. LSP to LPC Transformation

The conversion of LSP parameters to LPC coefficients is less
computationally expensive than the LPC to LSP conversion. The
LPC analysis filter can be expressed as:

A z
P z Q z

10
10 10

2
()

() ()=
+

(5.48)

where P10(z) and Q10(z) are the symmetrical and
antisymmetrical polynomials given in Equation (5.24). These
polynomials are obtained from the LSP parameters {ωi} using
the following relations:

Optimized Implementation of Speech Processing Algorithms

102

()[]
()[]

P z z z z

Q z z z z

i
i

i
i

10
1 1 2

1 3 5 7,9

10
1 1 2

2 4 6 8 10

1 1 2

1 1 2

() () cos

() () cos

, , ,

, , , ,

= + − ⋅ +

= − − ⋅ +

− − −

=

− − −

=

∏

∏

ω

ω
(5.49)

It is important to notice that, if the LSP parameters are
expressed in the “x-domain”, where xi = cos(ωi), as it is done in
Kabal’s and Saoudi’s methods, the LSP to LPC conversion is
eased, avoiding the calculation or storage of trigonometric
functions.

Direct Expansion Method

The polynomials P10(z) and Q10(z) are found by multiplying the
product terms of Equation (5.49). Then the LPC coefficients are
calculated by means of Equation (5.48). This calculation is given
in Appendix C.1 and has a computational cost of 62
multiplications and 92 additions.

LPC Analysis Filter Method

Equation (5.48) shows that the LPC analysis filter is the parallel
combination of the filters P10(z) and Q10(z). Similarly, these
filters are each the cascade combination of five second-order
sections and one first-order section, corresponding to the factors
of Equation (5.49). The resulting structure is shown Figure 5.7
and is used to obtain the LPC coefficients, as explained in
Appendix C.2, at the cost of 30 multiplications and 70 additions.

Line Spectrum Pairs and the CELP FS1016 Speech Coder

103

−

a(n)h(n)

z-1

0.5

z-1 z-1 z-1 z-1

z-1 z-1 z-1 z-1 z-1

−2cos(ω)1 −2cos(ω)9

−2cos(ω)10−2cos(ω)2

Figure 5.7: Filter used to generate the LPC coefficients, in the LPC
analysis filter method. The {ωi} are the LSP parameters.

Kabal’s Method

In [Kaba86], an alternative reconstruction process using
Chebyshev series representation is formulated. This leads to an
efficient reconstruction process which takes the symmetry of the
polynomials into account. This procedure is given in
Appendix C.3. The computational cost is 20 multiplications and
59 additions. This is the least expensive of the three algorithms
for LSP to LPC conversion described in this section. Besides,
Kabal’s algorithm is highly regular and numerically stable
[Kaba86], which is advantageous for efficient implementation.

5.11. The CELP FS1016 Speech Coder

Code-excited linear predictive (CELP) (see § 2.9) speech coding
refers to a family of speech coding algorithms which combine
LPC-based analysis-by-synthesis (AbS-LPC) and vector
quantization (VQ) [Gers94].

In AbS-LPC systems, the LPC synthesis model is used
(see § 5.1), in which an excitation signal, e(n), is input to the
LPC synthesis filter, Hp(z), to yield the synthetic speech output
�s n() . The coefficients of the synthesis filter are determined from
a frame of the speech signal, using an open-loop technique such

Optimized Implementation of Speech Processing Algorithms

104

as the autocorrelation method (see § 5.2). Once the synthesis
filter is determined, an appropriate excitation signal is found by
a closed-loop search. The input of the synthesis filter is varied
systematically, to find the excitation signal that produces the
synthesized output that best matches the speech signal, from a
perceptual point of view.

Vector quantization (VQ) is combined with AbS-LPC in
CELP coders [Gers94]. The optimum excitation signal is
selected from a stochastic codebook of possible excitation signals
(codevectors). Each codevector is passed through the synthesis
filter, and the vector which produces the output that best
matches the speech signal is selected.

The U.S. Federal Standard 1016, is a CELP algorithm
operating at 4.8 kbps, intended primary for secure voice
transmission. The block diagram of this coder is shown in Figure
5.8. This coder uses an 8 kHz sampling rate and a 30 ms frame
size, with four subframes of 7.5 ms each.

Long-term correlation of the speech signal (pitch) is modeled
using an adaptive codebook and the excitation signal is formed
by the addition of two scaled codevectors, one selected from the
stochastic codebook and one selected from the adaptive
codebook. The search for the optimum codevectors and gains is
done for every subframe.

The encoder generates and transmits one set of LPC
coefficients per frame, and four sets of codebook indices and
gains per frame (one set per subframe).

The spectral analysis block corresponds to the shadowed
region in Figure 5.8. This block works on frames of 30 ms, while
the rest of the encoder, containing the dictionary searches and
gain selection, works on a subframe of 7.5 ms. The detailed
diagram of the spectral analysis block is given in Figure 5.10
and is explained next.

Line Spectrum Pairs and the CELP FS1016 Speech Coder

105

Spectral Analysis Block

Hp(z)

Interpolate
 by 4

Linear
Prediction
Analysis

128

1

T
ra

ns
m

itt
ed

 P
ar

am
et

er
s

LSP

ia
ga
is
gs

Stochastic Codebook

Adaptive Codebook

High-pass
Filter Input Speech512

1

ga

Perceptual
Weighting

Filter

s s
e

Minimize
Perceptual

Error

ia

gs

is

Figure 5.8: Block diagram of the CELP FS1016 speech coder.

Short-term Spectral Analysis in the CELP FS1016 Coder

The short-term linear prediction analysis is performed once per
frame by open-loop, 10-th order autocorrelation analysis
(see § 5.2) using a 30 ms Hamming window, no pre-emphasis,
and 15 Hz bandwidth expansion, with γ = 0.994 (see § 5.3). The
Hamming window is centered at the end of the last frame, as it
is shown in Figure 5.9.

Besides improving speech quality, the bandwidth expansion
is also beneficial for LSP quantization and for fast LSP
calculation (see § 6.3).

The bandwidth expanded LPC coefficients are converted to a
set of LSP parameters and quantized using the 34-bit,
independent nonuniform scalar quantization tables given in
Figure 5.5, as specified in [Fede91].

Two quantized sets of LSP parameters, corresponding to the
window positions A and B in Figure 5.9, are used for
interpolation with the weights given in Table 5.1, obtaining four
sets of LSP parameters, one set for each subframe. Each of these
LSP sets is converted to LPC coefficients, and used in the
synthesis filter for the dictionary searches and gain selection.

Optimized Implementation of Speech Processing Algorithms

106

1

window position
A

window position
B

previous frame current frame next frame

2 3 4 1 2 3 4 1 2 3 4subframes

effective duration of LPC
parameters in A

effective duration of LPC
parameters in B

Figure 5.9: Position of the LPC analysis windows for a given frame in the
CELP FS1016 speech coder.

Subframe LSP set A LSP set B
1 7/8 1/8
2 5/8 3/8
3 3/8 5/8
4 1/8 7/8

Table 5.1: Interpolation weights used to obtain four sets of LSP
parameters from the two quantized LSP sets corresponding to
the LPC analysis window position A and B.

Line Spectrum Pairs and the CELP FS1016 Speech Coder

107

Input Speech

Transmission of

To Synthesis Filter
4 LPC Sets

LSP to LPC
Conversion

1 High-passed, Hamming Windowed Input
Speech Frame of 30 ms = 4 Subframes of 7.5 ms

AAAA
AAAA

AAA
AAA

AAAA
AAAA

AAA
AAA

• •••

To Synthesis Filter
4 LPC Sets

LSP to LPC
Conversion

Interpolate
 by 4

Receiver10 LSP Indices

4 LSP Sets 4 LSP Sets

High-pass
Filter

Hamming
Windowing

Autocorrelation

Levinson-
Durbin

Bandwidth
Expansion

LPC to LSP
Conversion

Interpolate
 by 4

LSP
Quantization

Figure 5.10: Short-term spectral analysis in the CELP FS1016 speech
coder.

Optimized Implementation of Speech Processing Algorithms

108

5.12. Summary of the Chapter

Spectral analysis and quantization for speech coding was
introduced in this chapter. In particular, it was shown that LSP
is the most used representation for spectral quantization and
interpolation. The definition, properties, and characteristics of
LSP were discussed, as well as different methods for
quantization of LSP parameters.

Particular emphasis was placed on the different existing
methods for LSP calculation, and the computational complexity
of these methods was discussed. The methods of Kabal, Saoudi
and Chan are promising for efficient real time implementation,
and will be studied in the next chapter.

Finally, it was shown how spectral analysis and
quantization is done in the CELP FS1016 speech coder.

These concepts will be used in Chapter 6, in which two novel
algorithms for LSP calculation are presented, and in Chapter 7,
where the DSP56001 optimized implementation of the CELP
FS1016 spectral analysis block is given.

5.13. References

[Acto90] F. S. Acton, Numerical Methods that Work, Mathematical
Association of America, Washington, DC, 1990.

[Atal89] B. Atal, R. Cox, and P. Kroon, "Spectral Quantization and
Interpolation for CELP Coders", Proc. IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing, ICASSP’89, Vol.1,
pp. 69-72, 1989.

[CELP97] ICASSP97 session: "CELP Coding", 12 different papers, Proc.
IEEE Int. Conf. on Acoustics, Speech, and Signal Processing,
ICASSP’97, Vol.2, pp. 731-778, 1997.

[Chan91] C. Chan and K. Law, "An Algorithm for Computing the LSP
Frequencies Directly from the Reflection Coefficients", Proc.
European Conference on Speech Communication and
Technology, EUROSPEECH’91, pp. 913-916, 1991.

[Chee87] B. Cheetham, "Adaptive LSP Filter", IEE Electronics Letters,
Vol. 23, No. 2, pp. 89-90, 1987.

Line Spectrum Pairs and the CELP FS1016 Speech Coder

109

[ETSI92] European Telecommunication Standard Institute (ETSI),
“Full-rate Speech Transcoding”, Recommendation GSM
06.10, 1992.

[Fede91] "Federal Standard 1016, Telecommunications: Analog to
Digital Conversion of Radio Voice by 4,800 bit/second Code
Excited Linear Prediction (CELP)", National
Communications Systems, Office of Technology and
Standards, Washington, DC20305-2010, 1991.

[Furu89] S. Furui, Digital Speech Processing, Synthesis, and
Recognition (Chapter 5), Dekker, New York, 1989.

[Gard93] W. Gardner et al., "QCELP: A Variable Bit Rate Speech
Coder for CDMA Digital Cellular" in Speech and Audio
Coding for Wireless and Network Applications, ed. by B.
Atal, V. Cuperman, and A. Gersho, Kluwer Academic
Publishers, Boston, MA, USA, 1993.

[Garo90] J. Garofolo et al., "Darpa TIMIT, Acoustic-phonetic
Continuous Speech Corpus CD-ROM", National Institute of
Standards and Technology, NISTIR 493, 1990.

[Gers91] I. Gerson and M. Jasiuk, "Vector Sum Excited Linear
Prediction (VSELP)" in Advances in Speech Coding, ed. by B.
Atal, V. Cuperman, and A. Gersho, Kluwer Academic
Publishers, Boston, MA, USA, 1991.

[Gers92] A. Gersho and R. Gray, Vector Quantization and Signal
Compression, Kluwer Academic Publishers, Boston, 1992.

[Gers94] A. Gersho, “Advances in Speech and Audio Compression”,
Proc. of the IEEE, Vol. 82, No. 6, 1994.

[Gray76] A. Gray and J. Markel, "Distance Measures for Speech
Processing", IEEE Trans. on Acoustics, Speech and Signal
Processing, Vol. 24, No. 5, pp. 380-391, 1976.

[Honk97] T. Honkanen et al., "Enhanced Full Rate Speech Codec for
IS-136 Digital Cellular System", Proc. IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing, ICASSP'97, Vol. 2,
pp. 731-734, 1997.

[Itak75] F. Itakura, "Line Spectrum Representation of Linear
Predictive Coefficients of Speech Signals", J. of the
Acoustical Society of America , Vol. 57, pp. S35, 1975.

[ITUT96] International Telecommunications Union, “Dual Rate Speech
Coder for Multimedia Communications Transmitting at 5.3
and 6.3 kbps”, Recommendation G.723.1, 1996.

Optimized Implementation of Speech Processing Algorithms

110

[Järv97] K. Järvinen et al., "GSM Enhanced Full Rate Speech Codec",
Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, ICASSP'97, Vol. 2, pp. 771-774, 1997.

[Kaba86] P. Kabal and P. Ramachandran, "The Computation of Line
Spectral Frequencies Using Chebyshev Polynomials", IEEE
Trans. on Acoustics, Speech and Signal Processing, Vol. 34,
No. 6, pp. 1419-1426, 1986.

[Kang87] G. Kang and L. Fransen, "Experimentation with Synthesized
Speech Generated from Line Spectrum Pairs", IEEE Trans.
on Acoustics, Speech and Signal Processing, Vol. 35, No. 4,
pp. 568-571, 1987.

[Kata95] A. Kataoka et al., "LSP and Gain Quantization for the
Proposed ITU-T 8 kb/s Speech Coding Standard", IEEE
Speech Coding Workshop, pp. 7-8, 1995.

[Kim96] M. Kim et al., "Linked Split-vector Quantizer of LPC
Parameters", Proc. IEEE Int. Conf. on Acoustics, Speech, and
Signal Processing, ICASSP'96, Vol.1, pp. 741-744, 1996.

[Kond94] A. M. Kondoz, Digital Speech: Coding for Low Bit Rate
Communication Systems (Chapters 3, 4), Wiley, Chichester,
1994.

[Lebl93] W. LeBlanc et al., "Efficient Search and Design Procedures
for Robust Multi-stage VQ of LPC Parameters for 4 kbps
Speech Coding", IEEE Trans. on Speech and Audio
Processing, Vol. 1, No. 4, pp. 373-385, 1993.

[Lero77] J. LeRoux and C. Gueguen, "A Fixed Point Computation of
Partial Correlation Coefficients", IEEE Trans. on Acoustics,
Speech and Signal Processing, Vol. 25, No. 3, pp. 257-259,
1977.

[LOWB97] ICASSP97 session: "Speech Coding at Low Bit Rates", 14
different papers, Proc. IEEE Int. Conf. on Acoustics, Speech,
and Signal Processing, ICASSP'97, Vol.2, pp. 1555-1610,
1997.

[Ohya94] T. Ohya et al., "5.6 kbits/s PSI-CELP of the Half Rate PDC
Speech Coding Standard", Proc. IEEE Vehicular Technology
Conference, Vol. 1, pp. 1680-1684, 1994.

[Pali93] K. Paliwal and B. Atal, "Efficient Vector Quantization of
LPC Parameters at 24 bits/frame”, IEEE Trans. on Speech
and Audio Processing, Vol. 1, No. 1, pp. 3-14, 1993.

Line Spectrum Pairs and the CELP FS1016 Speech Coder

111

[Pali95a] K. Paliwal and W. Kleijn, "Quantization of LPC Parameters"
(Chapter 12) in Speech Coding and Synthesis, ed. by W.
Kleijn and K. Paliwal, Elsevier, Amsterdam, 1995.

[Pali95b] K. Paliwal, "Interpolation Properties of Linear Prediction
Parametric Representations", Proc. European Conference on
Speech Communication and Technology, EUROSPEECH'95,
Vol. 2, pp. 1029-1032, 1995.

[Pham90] N. Phamdo and N. Farvardin, "Coding of Speech LSP
Parameters Using TSVQ with Interblock Noiseless Coding",
Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, ICASSP'90 , Vol. 1, pp.193-196, 1990.

[Rama95] R. P. Ramachandran et al., "A Two Codebook Format for
Robust Quantization of Line Spectral Frequencies", IEEE
Trans. on Speech and Audio Processing, Vol. 3, No. 3, pp.
157-168, 1995.

[Sait85] S. Saito and K. Nakata, Fundamentals of Speech Signal
Processing (Chapter 9), Academic Press, New York, 1985.

[Saou92] S. Saoudi and J. Boucher, "A New Efficient Algorithm to
Compute the LSP Parameters for Speech Coding", Signal
Processing, Elsevier, Vol. 28, No. 2 , pp. 201-212, 1992.

[Skog97] J. Skoglund and J. Lindén, "Predictive VQ for Noisy Channel
Spectrum Coding: AR or MA", Proc. IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing, ICASSP'97, Vol. 3,
pp. 1351-1354, 1997.

[Soon84] F. Soong and B. Juang, "Line Spectrum Pair (LSP) and
Speech Data Compression", Proc. IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing, ICASSP'84,
pp. 1.10.1-1.10.4, 1984.

[Soon93] F. Soong and B. Juang, "Optimal Quantization of LSP
Parameters", IEEE Trans. on Speech and Audio Processing,
Vol. 1, No. 1, pp. 15-24, 1993.

[SPEC95a] ICASSP95 session: "Spectral Quantization", 10 different
papers, Proc. IEEE Int. Conf. on Acoustics, Speech, and
Signal Processing, ICASSP'95, USA, Vol.1, pp. 716-755,
1995.

[SPEC95b] EUROSPEECH95 session: "Quantization of Spectral
Parameters", 9 different papers, Proc. European Conference
on Speech Communication and Technology,
EUROSPEECH ‘95, Vol.2, pp. 1029-1064, 1995.

Optimized Implementation of Speech Processing Algorithms

112

[SPEC96] ICASSP96 session: "Spectral Quantization", 10 different
papers, Proc. IEEE Int. Conf. on Acoustics, Speech, and
Signal Processing, ICASSP'96, Vol.1, pp. 737-776, 1996.

[Supp97] L. Supplee et al., "MELP: The New Federal Standard at
2400 bps", Proc. IEEE Int. Conf. on Acoustics, Speech, and
Signal Processing, ICASSP'97, Vol.2, pp. 1591-1594, 1997.

113

Chapter 6
Proposed Algorithms for LSP
Calculation

In this chapter two novel efficient algorithms for calculation of
LSP parameters from LPC coefficients are presented. These
algorithms are referred to as “Mixed LSP” and “quantized-
search Kabal”. In the previous chapter, it was found that
Kabal’s, Saoudi’s and Chan’s algorithms are the most promising
for efficient real time implementation among the existing LSP
calculation algorithms.

The proposed LSP calculation algorithms are first explained
and then compared with the algorithms of Kabal, Chan and
Saoudi from the point of view of accuracy, reliability and
computational complexity.

Kabal’s algorithm is found to be the most efficient and
accurate of the existing methods. This algorithm, as well as
“Mixed LSP” and “quantized-search Kabal”, were implemented
on a DSP56001 and their computational complexity in MIPS
was compared.

The reader is reminded that, unless stated otherwise, an
LPC order of p = 10 is assumed through this chapter.

Optimized Implementation of Speech Processing Algorithms

114

6.1. First Proposed Method: Mixed-LSP

In order to derive the LSP parameters, the roots of P′10(z) and
Q′10(z), given in Equation (5.24), have to be found. In Kabal’s
method (see § 5.9), the 5-th order polynomials, P′10(x) and
Q′10(x), are obtained by evaluating P′10(z) and Q′10(z) on the unit
circle, and applying the mapping x = cos(ω) together with
Chebyshev polynomials of first kind. The LSPs are the roots of
P′10(x) and Q′10(x), and are found by a zero-crossing search on a
grid of ∆ = 0.02, followed by four successive bisections and a final
linear interpolation. The precision of the obtained LSPs is
higher than required by speech coding applications, but the
number of bisections cannot be decreased, or the size of the grid
increased, without compromising the zero-crossing search. In
this section, it is shown that five intervals, containing each only
one zero-crossing of P′10(x) and one zero-crossing of Q′10(x), can
be calculated, avoiding the zero-crossing search. This fact allows
a trade-off between LSP precision and computational complexity
[Gras97a].

Different Derivation of P′10(x) and Q′10(x)

A different derivation of the polynomials P′10(x) and Q′10(x) is
given in Appendix D.1. This derivation uses the auxiliary
function Ψm(z), given in Equation (5.39), and the mapping
x = cos(ω) together with Chebyshev polynomials of first and
second kind. Using this derivation the polynomials P′10(x) and
Q′10(x) are expressed as:

′ = −
′ = +

P x C x D x
Q x C x D x

10 10 10

10 10 10

() () ()
() () () (6.1)

where C10(x) is a 5-th order polynomial, and D10(x) is a 4-th
order polynomial, whose roots can be calculated in a closed form.
The behavior of the functions P′10(x), Q′10(x), and D10(x) is shown
in Figure 6.1, where x1 to x10 are the LSPs in the “x-domain”, in
which xi = cos(ωi), and r1 to r4 are the roots of D10(x).

Proposed Algorithms for LSP Calculation

115

−3.7

0

3

−1 −0.5 0 0.5 1
−3

0

3

x
r4 r3 r2 r1

Q’10(x)

P’10(x)

x10 x9 x8 x7 x6 x5 x4 x3 x2 x1

P’10(x) and Q’10(x)

D10(x)

Figure 6.1: Behavior of the functions P′10(x), Q′10(x), and D10(x) (x1 to x10

are the LSPs in the “x-domain”, in which x = cos(ω), and r1 to
r4 are roots of D10(x)).

In Appendix D.6, it is proved that the roots of D10(x) are real,
different, and inside the interval (−1,+1). Furthermore, in
Equation (6.1) it is seen that these roots correspond to the
intersections of P′10(x) with Q′10(x).

Due to the ordering property of the LSP parameters
(see § 5.6 and Equation (5.31)), when going from x = +1 to
x = −1, P′10(x) is crossing the x-axis first at x1, then Q′10(x) has
its first zero-crossing at x2. As the next LSP is x3, P′10(x) and
Q′10(x) intersect each other before crossing the x-axis at x3 and
x4, respectively, then they intersect again before x5, x6, before x7,
x8 and before x9, x10. Thus the roots of D10(x) divide the interval
()− +1 1, into five sections, each section containing only one zero-
crossing of P′10(x) and one zero-crossing of Q′10(x).

Optimized Implementation of Speech Processing Algorithms

116

Description of the Proposed Algorithm (Mixed-LSP)

The roots of D10(x) are calculated and ordered, to obtain the five
intervals containing each only one zero-crossing of P′10(x) and
one zero-crossing of Q′10(x). The position of these zero-crossings
is refined by five successive bisections, and a final linear
interpolation, similarly to Kabal’s method. A total of 60
polynomial evaluations is needed. Using the efficient recursive
evaluation proposed by Kabal, and given in Equation (5.32), the
computational cost of a polynomial evaluation is 4
multiplications and 9 additions.

In Appendices D.4 and D.5, particular attention is paid to
the optimization of the calculation and ordering of the roots of
D10(x), which finally needs the following operations: 20
multiplications, 34 add/sub, 2 divisions and 5 square roots, for
root calculation, as well as 3 comparison/swapping operations
for root ordering. The C program for the root calculation and
ordering is given in [Gras97b].

In Appendix D.3, it is shown that:

D x P x Q x10 10 101 0 1 0 1 0() , () , ()= + > ′ = + > ′ = + > (6.2)

Therefore the direction of the sign changes at every zero-
crossing is known. This property is used for improving efficiency
and reliability of the algorithm. In particular, this property
plays an essential role in the algorithm denoted as “quantized-
search Kabal” (see § 6.3).

Experimental Evaluation

The Mixed-LSP algorithm was tested using the whole TIMIT
database (6300 speech files) [Garo90]. For this experience, as
well as for the rest of the experiments reported in this chapter,
the speech files were downsampled to 8 kHz and the LPC
vectors were calculated as in the CELP FS1016 (see § 5.11),
using high-pass filtering of the speech input, 30 ms Hamming
windowing, autocorrelation method, and 15 Hz bandwidth
expansion (γ = 0.994). For every speech file, two sets of LSP
vectors were calculated, one using the Mixed-LSP algorithm,
and the other with a high accuracy method (ε < 10–16).

Proposed Algorithms for LSP Calculation

117

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

Absolute difference between LSP sets

N
b.

 o
f o

cc
ur

re
nc

es

Figure 6.2: Histogram of the absolute difference between LSP sets
calculated with Mixed-LSP on one side, and high accuracy on
the other side.

The histogram of the absolute differences found on the whole
TIMIT database is given in Figure 6.2. The maximum absolute
difference found is 0.0092.

6.2. LSP Quantization in the “x-domain” versus LSP
Quantization in the “ω-domain”

In the CELP FS1016, the LSP coefficients are quantized using
the quantization tables given in Figure 5.5.

As the LSPs obtained with the methods of Kabal, Saoudi
and Mixed-LSP are in the “x-domain”, it is desirable to perform
the quantization in this domain. This is done by applying the
mapping ξi = cos(2π fi) to the values fi of the quantization tables.

Both quantization in the angular frequency (“ω-domain”)
and in the “x-domain” were evaluated using spectral distortion
measure (see § 5.4) on the whole TIMIT database. The LSPs
were first calculated with high accuracy and then quantized.
The resulting average spectral distortion and percentage of
outliers is given in Table 6.1. It is observed that the
performance of both quantization in the “ω-domain” and in the

Optimized Implementation of Speech Processing Algorithms

118

“x-domain” are equivalent. Hereafter, the quantization will be
done in the “x-domain” for LSPs calculated with the methods of
Kabal, Saoudi and Mixed-LSP and in the “ω-domain” for Chan’s
Method.

Type of quantization Average SD
(dB)

% 2-4 dB
outliers

% >4 dB
outliers

Quantization in “ω-domain” 1.5326 12.3024 0.1881
Quantization in “x-domain” 1.5329 12.3450 0.1888

Table 6.1: Comparison between quantization performed in the
“x-domain” and quantization performed in the “ω-domain”.

6.3. Second Proposed Method: Quantized-search Kabal

As mentioned in the previous section, the LSP parameters can
be first calculated, using a method such as Kabal’s method, and
then quantized with the 34-bit non-uniform scalar quantizer of
Figure 5.5. To speed up the calculation and quantization
processes, a quantized-search technique is used, obtaining the
algorithm referred to as “quantized-search Kabal”.

The quantized LSPs in the “x-domain” are denoted as {qxi},
and the ordering property, which is a necessary condition for
stability of the quantized LPC synthesis filter (see § 5.6) is given
by:

+ > > > > > −1 11 2 10qx qx qx� (6.3)

To locate the quantized value, qxi, of the i-th LSP, xi, the
search for the corresponding zero-crossing is done on either
P′10(x) (odd-suffixed LSPs) or Q′10(x) (even-suffixed LSPs). This
search uses the values of the i-th quantization table, converted
to the “x-domain” and Kabal’s recursive polynomial evaluation
given in Equation (5.32). Once the interval containing the zero-
crossing, (ξk–1,ξk), is found, first the quantized LSP is selected as
ξk, and then its position is corrected using either the “single-
correction” or the “coupled-correction” criterion, which are
explained in the next subsections.

Once a quantized LSP, qxi, is determined, the search for the
next quantized LSP, qxi+1, is done using the values of the i+1-th
quantization table, starting from the first “allowed” value which

Proposed Algorithms for LSP Calculation

119

would ensure the ordering property of Equation (6.3). As the
direction of the sign change at every zero-crossing is known
(see § D.3), it is possible to detect if the zero-crossing has
already occurred at the first “allowed” value, improving
efficiency and reliability of the algorithm.

If the zero-crossing has already occurred at the first
“allowed” value, the “coupled-correction” criterion is used to
correct the position of the quantized LSP. Otherwise, the
“single-correction” criterion is used.

«Single-correction»

The criterion of “single-correction” is explained with the help of
Figure 6.3. If an interval (ξk–1,ξk) contains the i-th zero-crossing,
then qxi = ξk is selected. If ξk is not the first “allowed” value of
the quantization table, qxi can be “single-corrected”, choosing ξk–

1 if it is closer to xi.
The situation is illustrated in Figure 6.3 for the particular

case of a zero-crossing of the polynomial P′10(x) from positive to
negative (as it is the case for the LSPs x1, x5 and x9), but the
discussion that follows is general to all possible cases.

When the LSPs are first calculated and then quantized, xi is
known, and the “horizontal single-correction” (H-SC) criterion is
used [CELP3.2a]:

if H H qx
else qx

k k i k

i k

≥ ⇒ =
⇒ =

− −1 1ξ
ξ (6.4)

where Hk–1 and Hk are the horizontal distances from ξk–1 and ξk

to the actual LSP value xi, as shown in Figure 6.3.
In the case of a quantized domain search, only the values of

P′10(ξk–1) and P′10(ξk) are known, but not xi. In the direct
conversion from predictor coefficients to quantized LSPs
proposed by Wolovitz [Camp89], [CELP3.2a], qxi is selected
using a “vertical single-correction” (V-SC) criterion:

if V V qx
else qx

k k i k

i k

≥ ⇒ =
⇒ =

− −1 1ξ
ξ (6.5)

Optimized Implementation of Speech Processing Algorithms

120

k-1V

k-1ξ

kξ

x

+

−

Decreasing Value of x

k-1P’10(ξ

)

mP’10(ξ

)

kP’10(ξ

)

mξ

k-1H

kV

kH

actual LSP, x

(unknown)
i

Figure 6.3: Illustration of a zero-crossing of the polynomial P′10(x) from
positive to negative, used to explain “single-correction”
criterion.

where Vk–1 and Vk are the vertical distances from P′10(ξk–1) and
P′10(ξk) to the x-axis, as shown in Figure 6.3.

This “vertical single-correction” criterion does not necessary
choose the closest value to the actual LSP, depending on the
concavity of the polynomial P′10(x) or Q′10(x) at the zero-crossing.
We propose the following criterion that can be used in a
quantized domain search, at the cost of 10 extra polynomial
evaluations, and is equivalent to the “horizontal single-
correction” criterion. The polynomial P′10(x) is evaluated at the
center of the interval containing the zero-crossing:

ξ
ξ ξ

m
k k=

+−1

2 (6.6)

If the zero-crossing is from positive to negative, qxi is:

if P qx
else qx

m i k

i k

′ ≤ ⇒ =
⇒ =

−10 10()ξ ξ
ξ (6.7)

Else, if the zero-crossing is from negative to positive qxi is:

if P qx
else qx

m i k

i k

′ ≥ ⇒ =
⇒ =

−10 10()ξ ξ
ξ (6.8)

Proposed Algorithms for LSP Calculation

121

n-1V
m1V

k-1V

nξ n-1ξ m1ξ

kV

m2V

m2ξ

nP’10(ξ)

x
+

-

Decreasing Value of x

x
+

-

Present search:
i-th LSP on Q’10(x)

Previous search:

i-1-th LSP on P’10(x)

k-1ξ

kξ

n-1P’10(ξ)

k-1H kH

m1P’10(ξ)

k-1Q’10(ξ)

m2Q’10(ξ)

n-1H nH

nV

x i-1 xi

Q’10(ξ) k

Figure 6.4: Illustration of two successive zero-crossings, from positive to
negative, of the polynomials P′10(x) and Q′10(x), used to
explain “coupled-correction” criterion.

«Coupled-correction»

The criterion of “coupled-correction” considers the interaction
between two consecutive LSPs, and is better explained with the
help of Figure 6.4. Here, the interval (ξn–1,ξn) contains the i-1-th
LSP, xi–1, and the interval (ξk–1,ξk) contains the i-th LSP, xi. In
the previous search, as ξn is closer to xi–1 than ξn–1, qxi–1 = ξn was
selected (i.e. qxi–1 was not “single-corrected”).

If the zero-crossing corresponding to xi has already occurred
at the first “allowed” value of the i-th quantization table, the
intervals (ξn–1,ξn) and (ξk–1,ξk) overlap, with ξk–1 > ξn , and the
choice of qxi–1 = ξn would force the choice qxi = ξk, to preserve the
ordering property. In this case, the “coupled-correction” criterion
is used to decide which choice, (qxi–1,qxi)=(ξn,ξk) or
(qxi–1,qxi)=(ξn–1,ξk–1), is better.

When the LSPs are first calculated and then quantized, xi

and xi–1 are known, and the “horizontal coupled-correction”
criterion is used [CELP3.2a]:

Optimized Implementation of Speech Processing Algorithms

122

() ()
() ()

if H H H H qx qx
else qx qx

n k n k i i n k

i i n k

+ ≥ + ⇒ =
⇒ =

− − − − −

−

1 1 1 1 1

1

, ,
, ,

ξ ξ
ξ ξ (6.9)

where Hn–1 and Hn are the horizontal distances from ξn–1 and ξn

to xi–1, and Hk–1 and Hk are the horizontal distances from ξk–1

and ξk to xi, as shown in Figure 6.4.
In the case of a quantized domain search, the values of xi

and xi–1 are not known, thus the criterion of Equation (6.9)
cannot be used. The direct conversion from predictor coefficients
to quantized LSPs proposed by Wolovitz [Camp89], [CELP3.2a],
does not use “coupled-correction”. A “vertical coupled-correction”
criterion analogous to the “vertical single-correction” criterion,
could be used:

() ()
() ()

if V V V V qx qx
else qx qx

n k n k i i n k

i i n k

+ ≥ + ⇒ =
⇒ =

− − − − −

−

1 1 1 1 1

1

, ,
, ,

ξ ξ
ξ ξ (6.10)

where Vn–1 and Vn are the vertical distances from P′10(ξn–1) and
P′10(ξn) to the x-axis, and Vk–1 and Vk are the vertical distances
from Q′10(ξk–1) and Q′10(ξk) to the x-axis, as shown in Figure 6.4.

By simulation, it was found that this criterion differs
significantly from the “horizontal coupled-correction” criterion.
Thus, the following “enhanced vertical coupled-correction”
(EV-CC) criterion, whose performance is very similar to the
“horizontal coupled-correction” criterion, is proposed:

If the zero-crossing is from positive to negative:

() ()
() ()

if 0 and V V
else

m2 m1 ′ ≤ > ⇒ =
⇒ =

− − −

−

Q qx qx
qx qx

m i i n k

i i n k

10 2 1 1 1

1

() , ,
, ,

ξ ξ ξ
ξ ξ

(6.11)

Else, if the zero-crossing is from negative to positive:

() ()
() ()

if 0 and V V
else

m2 m1 ′ ≥ > ⇒ =
⇒ =

− − −

−

Q qx qx
qx qx

m i i n k

i i n k

10 2 1 1 1

1

() , ,
, ,

ξ ξ ξ
ξ ξ

(6.12)

where ξm1 and ξm2 are the center of the intervals (ξn–1,ξn) and (ξk–

1,ξk), respectively, and Vm1 and Vm2 are the vertical distances
from P′10(ξm1) and Q′10(ξm2) to the x-axis, as shown in Figure 6.4.

Proposed Algorithms for LSP Calculation

123

In the search for the 6-th quantized LSP, qx6, if the previous
quantized LSP, qx5, takes one of the three values marked in
boldface in the 5-th quantization table of Figure 5.5, a “coupled-
correction” would not preserve the ordering property. Thus in
these three particular cases, which correspond to
qx5 = ξn = 0.2563, qx5 = ξn = 0.0392, and qx5 = ξn = −0 1175. , the
“coupled-correction” is skipped.

In summary, “coupled-correction” for the i-th LSP, using
either of the proposed criteria, is considered only if the following
conditions are met:

• The zero-crossing corresponding to xi has already occurred
at the first “allowed” value of the i-th quantization table.

• The position of the previous quantized LSP, qxi–1, was not
corrected (either with single- or coupled-correction), and qxi–

1 was not the first “allowed” value of its quantization table
(or the first value of its quantization table).

• If, in the search for the 6-th quantized LSP, the previous
quantized LSP did not take one of these three particular
values: qx5 = 0.2563, qx5 = 0.0392, or qx5 = −0 1175. .

Experimental Evaluation

Several versions of the “quantized-search Kabal” algorithm,
with different correction criteria, were evaluated using spectral
distortion on the whole TIMIT database. Kabal’s method
followed by quantization was also evaluated for comparison.

The resulting average spectral distortion and percentage of
outliers is given in Table 6.2. It is observed that among the
“quantized-search Kabal” algorithms, the algorithm using both
“horizontal single-correction” (H-SC) and “enhanced vertical
coupled-correction” (EV-CC) criteria has the best performance.
Furthermore, the performance of this algorithm is very close to
the performance of Kabal’s algorithm followed by quantization
in the “x-domain”.

The different versions of the “quantized-search Kabal”
algorithm were also compared with the high accuracy method
followed by quantization (reference algorithm). The differences
between the LSP indices calculated with the algorithm under

Optimized Implementation of Speech Processing Algorithms

124

evaluation and the reference algorithm were counted, and the
results are given in Table 6.3. The number of frames containing
one, two, three, four and more than four differences of one on
the LSP indices are denoted as n1, n2, n3, n4 and n5
respectively. The number of frames containing at least a
difference bigger than one on the LSP indices is denoted as nn.

“Quantized-search Kabal”
correction criteria

Ave. SD
(dB)

% 2-4 dB
outliers

% >4 dB
outliers

V-SC 1.55552 13.88856 0.22244
V-SC + V-CC 1.55218 13.78761 0.19226
H-SC 1.53495 12.43227 0.19335
H-SC + V-CC 1.53368 12.36321 0.19008
H-SC + EV-CC 1.53295 12.35014 0.18946

Kabal + quant. in the “x-domain” 1.53288 12.34532 0.18884

Table 6.2: Comparison among “quantized-search Kabal” algorithms with
different correction criteria, and Kabal’s algorithm +
quantization, in terms of spectral distortion (V-SC = “vertical
single-correction”, H-SC = “horizontal single-correction”,
V-CC = “vertical coupled-correction”, EV-CC = “enhanced
vertical coupled-correction”).

“Quantized-search
Kabal”

correction criteria

n1 n2 n3 n4 n5 nn

V-SC 158620 27920 3376 287 26 10
V-SC + V-CC 159262 26059 2688 185 11 2
H-SC 0 3301 15 7 0 4
H-SC + V-CC 0 2336 10 2 0 1
H-SC + EV-CC 0 706 3 0 0 2

Table 6.3: Comparison among “quantized-search Kabal” algorithm with
different correction criteria, and high accuracy method +
quantization in the “x-domain”, in terms of differences in the
obtained indices (Differences of one: n1 = frames with one
difference, n2 = frames with two differences, n3 = frames
with three differences, n4 = frames with four differences,
n5 = frames with more than four differences. Differences
bigger than one: nn = frames with at least one difference).

Proposed Algorithms for LSP Calculation

125

Hereafter, the name “quantized-search Kabal” refers to the
version which uses both “horizontal single-correction” and
“enhanced vertical coupled-correction” criteria. The differences
between LSP indices calculated with this algorithm and the
reference algorithm are analyzed in Appendix E.2.

Quantized-search Chan

The LSPs in the “ω-domain” can be first calculated from the
reflection coefficients using Chan’s method (see § 5.9) and then
quantized using the 34-bit quantization tables of Figure 5.5.
Similarly to “quantized-search Kabal” algorithm, the LSP
calculation and quantization processes are embedded, obtaining
the algorithm referred to as “quantized-search Chan”.

The quantized LSPs in the “ω-domain” are denoted as {qωi},
and the ordering property is given by:

0 1 2 10< < < < <q q qω ω ω π� (6.13)

To locate the i-th quantized LSP, qωi, the search for the
corresponding zero-crossing of Re[ψ10(ejω)] or Im[ψ10(ejω)] is done
using the recursive evaluation for ψ10(ejω) given in Equation
(5.45) and the values of the i-th quantization table.

Once the interval containing the zero-crossing is found, the
quantized LSP is selected using either the “single-correction” or
the “coupled-correction” criterion, explained previously. The best
performance among different versions of the “quantized-search
Chan” algorithm, is obtained using both “horizontal single-
correction” (H-SC) and “enhanced vertical coupled-correction”
(EV-CC) criteria. Hereafter, this version will be denoted as
“quantized-search Chan”.

Computational Complexity

In “quantized-search Kabal” algorithm, polynomial evaluation is
done using the efficient Kabal’s recursion of Equation (5.32), at
the cost of 4 multiplications and 9 additions per evaluation,
whereas in “quantized-search Chan” algorithm the evaluation of
ψ10(ejω) is done with the recursion of Equation (5.45), at the cost

Optimized Implementation of Speech Processing Algorithms

126

of 30 multiplications and 20 additions per evaluation. In
appendix E.1 it is shown that the maximum possible number of
polynomial evaluations in both “quantized-search Kabal” and
“quantized-search Chan” is 71. In practice, the maximum
number of evaluations found by simulation on the whole TIMIT
database was 68.

The flow control of these algorithms is greatly simplified by
using flags to store the conditions tested in the correction
criteria. To avoid expensive comparisons, the quantization
tables of Figure 5.5 are modified to include, with each
quantization level, an index (or offset) to the first “allowed”
value of the next quantization table. Also, some flags indicating
conditions such as “first element of the table”, “last element of
the table” and “particular case of qx5” are stored in the
quantization table, to simplify the control flow of the algorithm.
More details are given in Chapter 7.

6.4. Program for LSP Quantization

In the CELP FS1016, the LSPs can be first obtained with the
methods of Kabal, Saoudi, Chan or Mixed-LSP and then
quantized (see § 6.2). In the quantization program distributed
with [CELP3.2a] the LSPs are first quantized independently
using the equivalent to the “horizontal single-correction” of
Equation (6.4), and then the ordering property is checked by
expensive comparisons, using the equivalent of the “horizontal
coupled-correction” of Equation (6.9) to correct the position if the
ordering property was not respected.

We have elaborated a quantization program more suitable
for efficient real-time implementation. This program produces
the same results as the program distributed with [CELP3.2a]
and is very similar to the “quantized-search Kabal” algorithm,
except that, as the LSPs are known, the single- and coupled-
correction criteria of Equations (6.4), and (6.9) are used.

Efficient real-time implementation is obtained with the use
of flags and offsets, similarly to the implementation of
“quantized-search Kabal” explained in the previous subsection.

Proposed Algorithms for LSP Calculation

127

6.5. Bandwidth Expansion and Spectral Smoothing

A drawback in the utilization of the algorithms of Saoudi and
Chan in the CELP FS1016 (see § 5.11) is that the 15 Hz
bandwidth expansion (see § 5.3) cannot be easily applied, as the
LPC coefficients are not calculated in the LeRoux-Gueguen and
in the antisymmetric split-Levinson recursions.

An effect similar to bandwidth expansion can be obtained
with the spectral smoothing technique described in [Tohk78], in
which the autocorrelation coefficients of Equation (5.10) are
multiplied by a Gaussian window. This is equivalent to
convoluting the LPC power spectrum with the Fourier
transform of a Gaussian window, which is itself a Gaussian
window. After such a convolution, sharp spectral peaks are
smoothed out, and the LPC poles are moved inward the unit
circle. Nevertheless, some effort would be necessary to adapt
this technique to the CELP FS1016 speech coder.

On the other hand the spectral smoothing technique would
not give numerically the same results than the bandwidth
expansion. Thus, in order to make meaningful comparisons
among the different algorithms (see § 6.6 and § 6.7) the
reflection coefficients needed in Chan’s method and the
autocorrelation coefficients needed in Saoudi’s method are
obtained by transformation from the bandwidth expanded LPC
coefficients.

6.6. Accuracy of the Different Algorithms

The accuracy of Kabal’s, Saoudi’s, Chan’s and the proposed
Mixed-LSP algorithms was evaluated, by comparison with the
high accuracy method, using the whole TIMIT database. For
every speech file, two sets of LSP vectors were compared, one
set calculated with the algorithm under evaluation, and the
other set with high accuracy. The histograms of the absolute
differences found for every algorithm under test are given in
Figure 6.5 and Figure 6.6. The maximum absolute difference
found for every algorithm is given in Table 6.4.

Optimized Implementation of Speech Processing Algorithms

128

10
−15

10
−10

10
−5

10
0

10
0

10
2

10
4

10
6 kabal mixed saoudi

N
b.

 o
f o

cc
ur

re
nc

es

Absolute difference between LSP sets

Figure 6.5: Histogram of the absolute difference between LSP sets
calculated with high accuracy on one side, and Kabal’s,
Saoudi’s and Mixed-LSP on the other side.

10
−15

10
−10

10
−5

10
0

10
0

10
2

10
4

10
6 kabal mixed chan

N
b.

 o
f o

cc
ur

re
nc

es

Absolute difference between LSP sets

Figure 6.6: Histogram of the absolute difference between LSP sets
calculated with high accuracy on one side, and Kabal’s,
Chan’s and Mixed-LSP on the other side.

Proposed Algorithms for LSP Calculation

129

Note that the LSPs calculated with Chan’s algorithm were
converted from the “ω-domain” to the “x-domain” in order to
make a meaningful comparison.

It is observed that Kabal’s is the most accurate among the
algorithms under evaluation, followed by Mixed-LSP and then
Saoudi’s and Chan’s. Saoudi’s algorithm is slightly more
accurate than Chan’s algorithm.

LSP calculation method Maximum absolute difference
Kabal 0.0000137
Mixed-LSP 0.0091698
Saoudi 0.0078124
Chan 0.0294831

Table 6.4: Maximum absolute difference between LSP sets calculated
with high accuracy on one side, and Kabal’s, Saoudi’s and
Mixed-LSP methods on the other side.

Spectral Distortion

Kabal’s, Saoudi’s, Chan’s and Mixed-LSP algorithms, as well as
the high accuracy method were used to calculate the LSPs,
which were then quantized with the 34-bit scalar quantizer.
Spectral distortion was measured in all cases, and the results
are given in Table 6.5, together with the spectral distortion
measured for the “quantized-search Kabal” algorithm.

Algorithms to obtain the
quantized LSPs

Ave. SD
(dB)

% 2-4 dB
outliers

% >4 dB
outliers

High accuracy + quant. in x 1.53287 12.34501 0.18884
Kabal + quant. in x 1.53288 12.34532 0.18884
Mixed-LSP + quant. in x 1.53308 12.36305 0.18853
Q.-search Kabal (H-SC + EV-CC) 1.53295 12.35014 0.18946
Saoudi + quant. in x 1.65362 19.11655 0.20253
Chan + quant. in ω 1.72734 24.46555 0.22648

Table 6.5: Comparison among different methods to calculate quantized
LSPs, in terms of spectral distortion.

Optimized Implementation of Speech Processing Algorithms

130

The results obtained using Kabal’s, Mixed-LSP and
“quantized-search Kabal” algorithms are very close to those
obtained with the high accuracy method. Furthermore, the
histograms of spectral distortion of these four algorithms
superpose. Thus, although the Mixed-LSP method is less
accurate than Kabal’s method, it is sufficient for speech coding
applications using the 34-bit scalar quantizer of the CELP
FS1016. It is also observed that the “quantized-search Kabal”
algorithm can be used to speed up the calculation and
quantization processes, without degradation of the quantization
performance.

On the other hand, the quantization performance is
degraded when the algorithms of Saoudi and Chan are used for
LSP calculation. This is due to the inaccuracy of these
algorithms, observed in Figure 6.5 and Figure 6.6.

The accuracy of Chan’s and Saoudi’s algorithms could be
increased by adding bisections and/or linear interpolation, at the
cost of increased computational complexity.

The most cost effective way of improving the accuracy of
Chan’s algorithm is through the use of linear interpolation, at
the added cost of 20 multiplications, 20 additions, and 10
divisions. The resulting algorithm was used to calculate the
LSPs, which were then quantized. Spectral distortion was
measured using the TIMIT database, and the results are
reported in Table 6.6. It is observed that the performance using
Chan’s method with linear interpolation is very close to the
performance of the high accuracy method.

Algorithms to obtain the quantized
LSPs

Ave. SD
(dB)

% 2-4 dB
outliers

% >4 dB
outliers

Chan with linear interp. + quant. in ω 1.53341 12.37892 0.18853
High accuracy + quant. in x 1.53287 12.34501 0.18884

Table 6.6: Evaluation of Chan’s method with linear interpolation used
to calculate quantized LSPs, in terms of spectral distortion.

 In Saoudi’s method, it is more cost effective to improve the
accuracy by adding extra bisections, at the cost of 10 additions
and 8 multiplications per bisection. Four versions of Saoudi’s
algorithm, differing in the number of bisections, were used to
calculate the LSPs before quantization. Spectral distortion was

Proposed Algorithms for LSP Calculation

131

measured in all cases, and is given in Table 6.7. It is observed
that a performance close to the performance using the high
accuracy method is obtained with Saoudi’s method using 11
bisections. A value of 10 bisections could also be acceptable.

Algorithms to obtain the
quantized LSPs

Ave. SD
(dB)

% 2-4 dB
outliers

% >4 dB
outliers

Saoudi, nbis. = 8, + quant. in x 1.65362 19.11655 0.20253
Saoudi, nbis. = 9, + quant. in x 1.55839 13.62490 0.19133
Saoudi, nbis. = 10, + quant. in x 1.54039 12.76484 0.18961
Saoudi, nbis. = 11, + quant. in x 1.53535 12.51223 0.18884
High accuracy + quant. in x 1.53287 12.34501 0.18884

Table 6.7: Evaluation, in terms of spectral distortion, of Saoudi’s method
with different number of bisections, used to calculate
quantized LSPs.

6.7. Reliability of the Different Algorithms

An important aspect of an LSP calculation algorithm is its
reliability, which is the ability to find the true LSP parameters,
without missing any zero-crossing. An additional requirement is
that the obtained LSP comply with the ordering property of
Equations (5.25) and (5.31), for stability of the corresponding
LPC synthesis filter.

The minimum difference between adjacent LSPs, as well as
the minimum difference between LSPs with the same suffix
type (either odd- or even-suffixed) plays an important role in the
reliability of LSP calculation algorithms. These differences were
measured on the TIMIT database. The LSPs were calculated in
both the “x-domain” and the “ω-domain” with high accuracy,
from LPC vectors obtained as in the CELP FS1016, with and
without the 15 Hz bandwidth expansion. The minimum
differences found are given in Table 6.8 for LSPs in the
“x-domain” and in Table 6.9 for LSPs in the “ω-domain”.

The minimum LSP differences reported in [Kaba86] are also
given in Table 6.8. These LSP differences were measured on 10 s
of speech sampled at 8 kHz, using a 20 ms Hamming window
and 10-th order LPC autocorrelation method [Kaba86].

Optimized Implementation of Speech Processing Algorithms

132

Minimum differences
Type of LSP

(in the “x-domain”)
on TIMIT
with BW

expansion

on TIMIT
without BW
expansion

as reported
in [Kaba86]

Odd-suffixed LSPs 0.0265 0.0167 0.0232
Even-suffixed LSPs 0.0389 0.0319 0.0564
Adjacent LSPs 0.0026 0.0006 0.0015

Table 6.8: Minimum differences between LSPs in the “x-domain”, as
reported in [Kaba86] and as measured on the TIMIT
database, with and without bandwidth expansion.

A search grid of ∆ = 0 02. was chosen in [Kaba86]. This grid
value was chosen smaller than the minimum distance between
LSPs of the same type (0.0232) found in [Kaba86], to avoid
missing zero-crossings. In Table 6.8 it is observed that this
choice of ∆ is also valid for the TIMIT database, but only when
the 15 Hz bandwidth expansion is used. In case that the
separation between LSPs of the same type is smaller than the
grid size, Kabal’s algorithm will fail to locate the right LSPs.
Nevertheless, we decided not to add any additional
(computational expensive) checking to avoid this unlikely
condition.

As bandwidth expansion smoothes out spectral peaks
(see § 5.3 and § 6.5), it increases the distance between LSPs
(see § 5.7), improving the reliability of LSP calculation
algorithms based on zero-crossing search, such as Kabal’s and
Chan’s algorithm. Note that bandwidth expansion is commonly
used in speech coders.

In Kabal’s algorithm, the number of bisections is specified
by the acceptable uncertainty in an root position,∈. This value
must be small enough so that, in switching the search from the
polynomial P′10(x) to Q′10(x) and vice versa, a root is not missed
or roots are not interchanged in order. Thus ∈ must be smaller
than the minimum difference between adjacent LSPs:

∈= < − +
∆

2
1nbis i

i ix xmin()
(6.14)

A number of 4 bisections is selected in [Kaba86], giving an
uncertainty of ∈= 0 00125. in the root position. This uncertainty

Proposed Algorithms for LSP Calculation

133

is smaller than the minimum difference between adjacent roots
found in [Kaba86] (0.0015). This choice of number of bisections
is also valid for the TIMIT database, but only if the 15 Hz
bandwidth expansion is used. Note also that the uncertainty in
the root position is significantly decreased by the linear
interpolation, which have thus a beneficial effect on reliability.
Furthermore, knowledge of the direction of sign changes
(see § D.3) was included in Kabal’s algorithm as a cost-effective
way of improving reliability in the case where the value of ∈ is
bigger than the difference between two adjacent LSPs.

It was found by simulation on the whole TIMIT database,
using bandwidth expanded LPC, that the LSPs calculated with
Kabal’s algorithm always produce an ordered set.

In Chan’s algorithm [Chan91], the search is done in the
“ω-domain” with a grid of ∆ = 0 0078. π . In Table 6.9 it is seen
that this grid is largely smaller than the minimum separation
between LSPs of the same type, whether bandwidth expansion
is used or not.

Minimum differences
Type of LSP

(in the “ωω-domain”)
on TIMIT with

BW exp.
on TIMIT without

BW exp.
Odd-suffixed LSPs 0.02071 π 0.01338 π
Even-suffixed LSPs 0.02708 π 0.01911 π
Adjacent LSPs 0.00430 π 0.00069 π

Table 6.9: Minimum differences between LSPs in the “ω-domain”,
measured on the TIMIT database, with and without
bandwidth expansion.

As Chan’s algorithm does not use bisections or interpolation,
the uncertainty in the LSP determination has the same value as
the grid size, ∈ = 0 0078. π . In Table 6.9, it is observed that this
value could become bigger than the minimum separation of
adjacent LSPs. Knowledge of the direction of sign changes
(see § D.3) was included in Chan’s algorithm to improve
reliability under this condition. The LSPs calculated with
Chan’s algorithm, on the whole TIMIT database and using
bandwidth expanded LPC, were always ordered.

Saoudi’s algorithm is intrinsically reliable [Saou95]. Each
LSP is calculated independently starting from the interval

Optimized Implementation of Speech Processing Algorithms

134

()− +2 2, and using 8 successive bisections: the value of the
bisection point is used to evaluate the recursion of Equation
(5.37) or (5.38), and the number of sign changes incurred in this
evaluation is used to know with exactitude in which of the two
bisected interval the LSP is located. Thus zero-crossings cannot
be missed, and this independently of the speech database
[Saou95].

On the other hand, as each LSP is searched independently,
and with a coarse precision of 2−7 = 0.0078, it is possible that two
contiguous LSP take the same value (i.e. the ordering property
is not respected) if their separation is smaller than the
precision. In Table 6.8 it is observed that this condition can
occur, even using bandwidth expansion, and in fact it was found
by simulation (using bandwidth expanded LPC) that this
condition occurs in a large amount of speech files of the TIMIT
database. Additionally, it was found that at least 10 bisections
would be required to avoid this condition on the TIMIT
database. As this problem is corrected by the quantization
program (see § 6.4), it is not important in the case of application
in the CELP FS1016. Nevertheless, care must be taken when
using Saoudi’s algorithm in other applications.

In the proposed Mixed-LSP algorithm (see § 6.1) five
intervals, containing each only one zero-crossing of P′10(x) and
one zero-crossing of Q′10(x), are calculated. Thus, zero-crossings
cannot be missed.

Inside each interval, the positions of the root of P′10(x) and
Q′10(x) are refined, independently of each other, using five
bisections. Thus there is the possibility that two roots take the
same value, or are interchanged in order. In practice, it was
found by simulation (using bandwidth expanded LPC) that this
condition never occurs on the TIMIT database. Furthermore, a
slight interchange in order would be corrected by the
quantization program. This condition could also be avoided with
certitude by calculating first the root of P′10(x), and then using
this value to limit the calculation interval of the root of Q′10(x).

The “quantized-search Kabal” algorithm always produces an
ordered set of LSPs. Simulations on the TIMIT database showed
that in four cases the zero-crossing were missed, due to the
coarse search grid. In one case a zero-crossing was detected
twice. More information on these conditions is given in

Proposed Algorithms for LSP Calculation

135

Appendix E.2. In listening tests using the CELP FS1016 speech
coder, these exceptions did not introduce additional audible
distortion (see § E.2). Thus, to keep the low complexity of
“quantized-search Kabal” we decided not to add any checking, or
to interpolate the grid values as proposed in [Chan95], to avoid
these unlikely conditions.

6.8. LSP Interpolation in the “x-domain” versus LSP
Interpolation in the “ω-domain”

In both the receiver and the transmitter of the CELP FS1016
(see § 5.11), two adjacent sets of quantized LSP parameters are
interpolated obtaining four sets of LSP parameters, which are
then converted to LPC coefficients and used in the synthesis
filter. The interpolation is usually done using LSPs expressed in
the “ω-domain” [Fede91], [CELP3.2a].

As the LSPs obtained with the methods of Kabal, Saoudi,
Mixed-LSP and “quantized-search Kabal” are in the “x-domain”,
it is desirable to perform the interpolation in this domain. This
avoids the computationally expensive conversion from the
“x-domain” to the “ω-domain” for interpolation, and then from
the “ω-domain” to “x-domain” for LSP to LPC transformation
(see § 5.10).

Both interpolation in the “ω-domain” and in the “x-domain”
were evaluated as it is proposed in [Pali95b] using spectral
distortion on the TIMIT database. This is explained next.

The LPC used for interpolation were calculated, for each
frame of 30 ms, as in the CELP FS1016, using high-pass
filtering of the speech input, non-overlapping 30 ms Hamming
windowing, autocorrelation method, and 15 Hz bandwidth
expansion. The Hamming window is centered at the end of every
frame, as indicated in Figure 5.9. For every frame, the LSPs
were calculated with high accuracy, in both the “x-domain” and
the “ω-domain”.

The interpolation process is explained as follows. For each
frame, two sets of LSP parameters, corresponding to the window
positions A and B in Figure 5.9, are used for interpolation with
the weights given in Table 5.1, obtaining four sets of LSP
parameters. Each of these LSP sets is converted to LPC

Optimized Implementation of Speech Processing Algorithms

136

coefficients, obtaining four sets of interpolated LPC coefficients,
one set per subframe.

The interpolation process was repeated twice, in one case
the LSPs were interpolated in the “x-domain” and in the other
case they were interpolated in the “ω-domain”. In both cases, the
obtained interpolated LPC synthesis filters were compared with
respect to the “true” LPC synthesis filters, using spectral
distortion measure (see § 5.4).

The “true” LPC coefficients were calculated, for each
subframe of 7.5 ms, using high-pass filtering of the speech input,
an overlapping 30 ms Hamming window centered at the
subframe, autocorrelation method and 15 Hz bandwidth
expansion.

The resulting average spectral distortion and percentage of
outliers is given in Table 6.10. It is observed that the measures
for both interpolation in the “ω-domain” and in the “x-domain”
are very similar. Hereafter, the interpolation will be done in the
“x-domain” for LSPs calculated with the methods of Kabal,
Saoudi, Mixed-LSP and “quantized-search Kabal”.

The reader is reminded that the measures reported in Table
6.10 do not represent audible distortion introduced by the
interpolation processes, but a “distance measure” to a (somehow
arbitrarily chosen) reference LPC, used to compare two different
types of interpolation.

Type of interpolation Average SD
(dB)

% 2-4 dB
outliers

% >4 dB
outliers

Interpolation in “ω-domain” 1.5568 21.8325 4.2183
Interpolation in “x-domain” 1.5656 21.9702 4.3733

Table 6.10: Comparison between interpolation performed in the
“x-domain” and interpolation performed in the “ω-domain”.

6.9. Computational Complexity

The proposed Mixed-LSP, "quantized-search Kabal" and
"quantized-search Chan" algorithms are compared in complexity
with the algorithms of Kabal, Saoudi, and Chan (see § 5.9). The
number of operations required by each algorithm is shown in
Figure 6.7.

Proposed Algorithms for LSP Calculation

137

The total number of operations per frame needed to obtain
the LSPs with the different algorithms is given in Table 6.11.
Here the algorithms of Chan and Saoudi are considered as they
are proposed originally in [Chan91] and [Saou92]. A similar
information is given in Table 6.12, but with the algorithms of
Chan and Saoudi modified to obtain a quantization performance
equivalent to the performance obtained with the algorithms of
Kabal’s, Mixed-LSP and “quantized-search Kabal” (see § 6.6).

Methods to obtain the LSPs Mult Add Div Sqrt
Chan 3930 2660 20
“quantized-search Chan” 2220 1520 20
Kabal 730 1530 20
Saoudi, nbis. = 8 706 941 20
Mixed-LSP 390 764 22 5
“quantized-search Kabal” 394 769 10

Table 6.11: Total number of operations per frame needed to obtain the
LSPs, using different algorithms. (The algorithms of Chan’s
and Saoudi’s are as proposed in [Chan91] and [Saou92]).

Methods to obtain the LSPs Mult Add Div Sqrt
Chan with linear interpolation 3950 2680 30
Saoudi, nbis. = 11 946 1241 20
Saoudi, nbis. = 10 866 1141 20

Table 6.12: Total number of operations per frame needed to obtain the
LSPs, using the algorithms of Chan and Saoudi, modified to
have a quantization performance equivalent to the other
algorithms, for application in the CELP FS1016.

Based on Table 6.11 we would conclude that Saoudi’s
algorithm is more efficient than Kabal’s. But, as Saoudi’s
algorithm does not have the accuracy required by the
application (see § 6.6), the comparison is not valid. Saoudi’s
algorithm with 11 bisections and Kabal’s algorithm have a
similar quantization performance. In this case, it is observed in
Table 6.11 and Table 6.12 that Kabal’s algorithm is less
computationally expensive.

Saoudi’s algorithm could be used with 10 bisections, with a
small degradation in the quantization performance, and a

Optimized Implementation of Speech Processing Algorithms

138

computational complexity no much higher than in Kabal’s
algorithm. Nevertheless, the use of Kabal’s algorithm in the
CELP FS1016 was preferred, due to the possibility to apply
directly the bandwidth expansion (see § 6.5).

Both versions of Chan’s algorithm, with and without linear
interpolation, are computationally too expensive. Originally this
algorithm was retained for its possible benefits in a fixed-point
implementation and because the LSPs are obtained in the
“ω-domain”, which is the domain in which the quantization and
interpolation is done in the original CELP FS1016
implementation [CELP3.2a]. As it is shown in sections 6.2 and
6.8, the quantization can be done in the “x-domain” with
basically no degradation in the performance. On the other hand,
given the enormous amount of computation required by Chan’s
algorithm, it was preferred to chose Kabal’s algorithm and do
the necessary effort to adapt the algorithm to a fixed-point
implementation (see Chapter 7). Furthermore, direct application
of bandwidth expansion is not possible in Chan’s algorithm.

The proposed “Mixed-LSP” and “quantized-search Kabal”
are computationally more efficient than Kabal’s algorithm, and
have a similar quantization performance, but “Mixed-LSP”
algorithm is specific for an LPC order of 10, while “quantized-
search Kabal” is tied to the utilization of the 34-bit scalar
quantizer of the CELP FS1016. These three algorithms were
retained for fixed-point optimization and implementation on a
DSP56001 processor, as explained next.

DSP56001 Implementation

The algorithms of Kabal, Mixed-LSP and "quantized-search
Kabal”, as well as the quantization in the “x-domain” were
implemented on a DSP56001 with a clock frequency of 20 MHz.

A simulation of the fixed-point quantization effects was
done, following the methodology explained in [Gras94] and

Proposed Algorithms for LSP Calculation

139

m
=5

8
a=

12
2

d=
20

F
ig

u
re

 6
.7

: C
om

pu
ta

ti
on

al
 c

om
pl

ex
it

y
of

 d
if

fe
re

n
t

L
S

P
 c

al
cu

la
ti

on
 m

et
h

od
s

(1
0-

th
 o

rd
er

 L
P

C
)

(m
=m

u
lt

ip
li

ca
ti

on
s,

 a
=a

dd
/s

u
b,

 d
=d

iv
is

io
n

s,
 s

=s
qu

ar
e

ro
ot

s)
.

In
pu

t
S

pe
ec

h

C
h

an
M

ix
ed

-L
S

P
K

ab
al

S
ao

u
di

Q
u

an
ti

ze
d-

se
ar

ch
 C

h
an

Q
u

an
ti

ze
d-

se
ar

ch
 K

ab
al

Q
u

an
ti

za
ti

on
 in

 ω

-d
om

ai
n

m
=3

84
0

a=
25

70
m

=2
13

0
a=

14
30

m
=2

84
a=

66
9

m
=6

20
a=

14
30

d=
10

m
=2

80
a=

66
4

d=
12

, s
=5

m
=6

48
a=

81
9

L
S

P
 I

n
di

ce
s

W
in

do
w

in
g

+
C

or
re

la
ti

on

L
er

ou
x-

G
u

eg
u

en
m

=9
0

a=
90

d=
20

m
=1

10
a=

10
0

d=
10

L
ev

in
so

n
-

D
u

rb
in

A
n

ti
sy

m
m

et
ri

c
S

pl
it

-L
ev

in
so

n

Q
u

an
ti

za
ti

on
 in

 x

-d
om

ai
n

Optimized Implementation of Speech Processing Algorithms

140

[Gras95], in order to determine the minimum word-length and
the scaling required at every node of the algorithms. The results
obtained in the study of the quantization effects were used for
efficient implementation on a DSP56001 processor. More details
on the implementation and testing are given in Chapter 7.

The computational complexity in MIPS and the maximum
number of clock cycles needed for processing one frame of 30 ms
are given in Table 6.13 and Table 6.14. The MIPS are calculated
assuming an “average instruction” of 2 cycles (thus, the
computational power of a DSP56001 at 20 MHz is 10 MIPS).

It is observed that the Mixed-LSP algorithm needs 33 % less
cycles than Kabal's algorithm, while "quantized-search Kabal"
algorithm needs 66% less cycles than Kabal's algorithm +
quantization.

Algorithm Number of
cycles

Execution
time (µs)

MIPS

Kabal 10540 527.0 0.1757
Mixed-LSP 6986 349.3 0.1164
“Q.-search Kabal” 4262 213.1 0.0710
Quantization (Q34) 2168 108.4 0.0361

Table 6.13: Computational complexity of the DSP56001 implementation
of Kabal’s, Mixed-LSP and “quantized-search Kabal”
algorithms, and quantization in the “x-domain” using the 34-
bit scalar quantizer of the CELP FS1016.

Algorithm Number of
cycles

Execution
time [µs]

MIPS

Kabal + Q34 12708 635.4 0.2118
Mixed-LSP + Q34 9154 457.7 0.1526
“Q.-search Kabal” 4262 213.1 0.0710

Table 6.14: Total computational complexity on a DSP56001
implementation, to obtain quantized LSPs, using either the
methods of Kabal’s, Mixed-LSP or “quantized-search Kabal”.

Proposed Algorithms for LSP Calculation

141

6.10. Program Listings

The listings for the C, Matlab, and DSP56001 assembly
programs, used for the simulation and evaluation of the
different LSP calculation methods, are given in [Gras97b].

6.11. Further Work

In the case of LPC of order p = 8, using Kabal’s method
(see § 5.9) the LSPs can be calculated as the roots of two
fourth-order polynomials, P′8(x) and Q′8(x). As the LSPs are real,
different, and inside the interval ()− +1 1, , the optimized
calculation and ordering of the roots of D10(x), given in
Appendices D.4 and D.5 (see § 6.1), can be used for efficient LSP
calculation from 8-th order LPC coefficients.

For higher order LPC systems, this efficient calculation of
LSP from 8-th order LPC can be combined with the mixed
LSP/Parcor representation proposed in [Chan94], for obtaining
both, better quantization performance and computational
efficiency.

Although “quantized-search Kabal" algorithm is more
efficient than Mixed-LSP and Kabal’s, its utilization is tied to
the 34-bits scalar quantizer of the CELP FS1016. Nevertheless,
this algorithm could find application in spectral quantization
systems in which this 34-bit scalar quantizer is used as
preprocessing, before further scalar quantization [Sade95a] or
vector quantization [Sade95b].

6.12. Conclusions and Summary of the Chapter

In this chapter two novel efficient algorithms for LSP
calculation from LPC coefficients, named Mixed-LSP and
“quantized-search Kabal”, were presented. These algorithms
were compared with the algorithms of Kabal, Chan and Saoudi
from the point of view of accuracy, reliability and computational
complexity.

Optimized Implementation of Speech Processing Algorithms

142

It was found that Kabal’s algorithm is more accurate and
computationally efficient than Saoudi’s and Chan’s algorithms.

The proposed Mixed-LSP algorithm is computationally less
expensive but also less accurate than Kabal’s method. On the
other hand, the accuracy of the Mixed-LSP algorithm is
sufficient for speech coding applications using the 34-bit
quantizer of the CELP FS1016.

The accuracy of the Mixed-LSP algorithm can be improved
using more bisections, at the cost of 10*(4⋅Mult+10⋅Add)
operations per bisection, and can also be decreased, trading
precision against computational complexity. In Kabal’s method,
the accuracy can be increased at the cost of more bisections, but
it cannot be decreased, reducing complexity, without affecting
the zero-crossing search.

The Mixed-LSP algorithm can be used not only with scalar
quantization but also with vector quantization or predictive
quantization. Its utilization is limited to an LPC order of 10.
Nevertheless, an LPC order of 10 is used in nearly all the
standard and emerging low bit rate narrowband speech coders.
In the case of a higher order LPC, Kabal’s algorithm should be
used, or, alternatively, a mixed LSP/Parcor representation
combined with Mixed-LSP algorithm.

“Quantized-search Kabal" algorithm is more efficient than
Mixed-LSP and Kabal’s, but is tied to the utilization of the
34-bits non-uniform scalar quantizer of the CELP FS1016.

The results obtained in these chapter are used in the
DSP56001 implementation of the CELP FS1016 spectral
analysis block explained the next chapter.

6.13. References

[Camp89] J. Campbell et al., "The New 4800 bps Voice Coding
Standard", Proc. of Military and Government Speech
Technology, pp. 64-70, 1989.

[CELP3.2a] The US FS1016 based 4800 bps CELP voice coder, Fortran
and C simulation source codes, version 3.2a (CELP 3.2a).
Available by ftp from ftp.super.org and other sites.

Proposed Algorithms for LSP Calculation

143

[Chan91] C. Chan and K. Law , "An Algorithm for Computing the LSP
Frequencies Directly from the Reflection Coefficients", Proc.
European Conference on Speech Communication and
Technology, EUROSPEECH’91, pp. 913-916, 1991.

[Chan94] C. Chan, “Efficient Quantization of LPC Parameters Using a
Mixed LSP/Parcor Representation”, Proc. EUSIPCO’94,
Vol. 1, pp. 939-942, 1994.

[Chan95] C. Chan, "An Extremely Low Complexity CELP Speech
Coder for Digital Telephone Answering Device Applications",
Proc. Int. Conf. on Signal Processing Applications and
Technology, ICSPAT'95, Vol. 2, pp. 1892-1896, 1995.

[Fede91] "Federal Standard 1016, Telecommunications: Analog to
Digital Conversion of Radio Voice by 4,800 bit/second Code
Excited Linear Prediction (CELP)", National
Communications Systems, Office of Technology and
Standards, Washington, DC20305-2010, 1991.

[Garo90] J. Garofolo et al., "Darpa TIMIT, Acoustic-phonetic
Continuous Speech Corpus CD-ROM", National Institute of
Standards and Technology, NISTIR 493, Oct. 1990.

[Gras94] S. Grassi, A. Heubi, M. Ansorge, and F. Pellandini, “Study of
a VLSI Implementation of a Noise Reduction Algorithm for
Digital Hearing Aids”, Proc. EUSIPCO’94, Vol.3, pp. 1661-
1664, 1994.

[Gras95] S. Grassi, Simulation of Fixed-point Quantization Effects on
DSP Algorithms, IMT Report No 375 PE 03/95, University of
Neuchâtel, IMT, 1995.

[Gras97a] S. Grassi, A. Dufaux, M. Ansorge, and F. Pellandini,
"Efficient Algorithm to Compute LSP Parameters from 10-th
order LPC Coefficients", Proc. IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, ICASSP'97, Vol. 3, pp. 1707-
1710, 1997.

[Gras97b] S. Grassi, DSP56001 Implementation of the Spectral
Analysis and Quantization for the CELP FS1016 Speech
Coder, IMT Report No 421 PE 10/97, University of
Neuchâtel, IMT, Oct. 1997.

[Kaba86] P. Kabal and P. Ramachandran, "The Computation of Line
Spectral Frequencies Using Chebyshev Polynomials", IEEE
Trans. on Acoustics, Speech and Signal Processing, Vol. 34,
No. 6, pp. 1419-1426, 1986.

Optimized Implementation of Speech Processing Algorithms

144

[Pali95b] K. Paliwal, "Interpolation Properties of Linear Prediction
Parametric Representations", Proc. European Conference on
Speech Communication and Technology, EUROSPEECH'95,
Vol. 2, pp. 1029-1032, 1995.

[Sade95a] H. Sadegh Mohammadi and W. Holmes, "Predictive Delta
Adaptive Scalar Quantization: an Efficient Method for
Coding the Short-term Speech Spectrum", Proc. European
Conference on Speech Communication and Technology,
EUROSPEECH'95, Vol. 2, pp. 1045-1048, 1995.

[Sade95b] H. Sadegh Mohammadi and W. Holmes, "Low Cost Vector
Quantization Methods for Spectral Coding in Low Rate
Speech Coders", Proc. IEEE Int. Conf. on Acoustics, Speech,
and Signal Processing, ICASSP'95, Vol. 1, pp. 720-723, 1995.

[Saou92] S. Saoudi and J. Boucher, "A New Efficient Algorithm to
Compute the LSP Parameters for Speech Coding", Signal
Processing, Elsevier, Vol. 28, No. 2 , pp. 201-212, 1992.

[Saou95] A. Goalic and S. Saoudi, "An Intrinsically Reliable and Fast
Algorithm to Compute the Line Spectrum Pairs (LSP) in Low
Bit Rate CELP Coding", Proc. IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, ICASSP'95, Vol. 1, pp. 728-
731, 1995.

[Tohk78] Y. Tohkura et al., "Spectral Smoothing Technique in Parcor
Speech Analysis-synthesis", IEEE Trans. on Acoustics,
Speech and Signal Processing, Vol. 26, No. 6, pp. 587-596,
1978.

145

Chapter 7
DSP56001 Implementation of the
CELP FS1016 Spectral Analysis
and Quantization

In this chapter, the optimization methodology explained in
Chapter 3 is used for an efficient real-time DSP56001
implementation of the CELP FS1016 short-term spectral
analysis block. The concepts to understand the algorithms and
algorithmic optimization used in this chapter are given in
Chapter 5 and 6.

7.1. Short-term Spectral Analysis and Quantization in
the CELP FS1016 Coder

In Section 5.11 it is explained how spectral analysis and
quantization is done in the CELP FS1016. The different
functional blocks which were implemented on the DSP56001 are
shown in Figure 7.1. The shadowed regions correspond to the
following subsystems:

(1) Calculation of bandwidth expanded LPC.

(2) LSP calculation and quantization.

(3) LSP interpolation and conversion to LPC.

Optimized Implementation of Speech Processing Algorithms

146

(3)

(1)

1 Set of Quantized LSP

LSP to LPC

Interpolation in
x-domain

4 Sets of Quantized and Interpolated LPC

1 Set Bandwidth Expanded LPC

(2)
Mixed-LSPKabal

Quantized-
search Kabal

Quantization in
x-domain

Input Speech

High-pass Filter

Hamming
Windowing

Autocorrelation

Levinson-Durbin

Bandwidth
Expansion

Figure 7.1: Different functional blocks of the CELP FS1016 spectral
analysis and quantization implemented on DSP56001.

DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization

147

The details on the DSP56001 implementation of these three
subsystems are given in Sections 7.4 to 7.6.

An explanation of the DSP56001 and its arithmetic is given
in [MOTO90] and [MOTO93]. The simulation of the DSP56001
quantization effects using C language and Matlab is explained
in Section 3.10.

In [Segu97], some of the functional blocks shown in
Figure 7.1 were implemented on a DSP56001. This
implementation is inefficient because it does not always exploit
the parallelism and other resources of the DSP56001.
Nevertheless, the study of the quantization effects done in
[Segu97], using the methodology described in Chapter 3, as well
as the algorithm transformations to account for these
quantization effects are valid. This information was partially
used in the implementation described in [Grass97b] which is
presented in this chapter.

7.2. Testing the Implemented Blocks

All the functional blocks shown in Figure 7.1 were coded in C
language (using double-precision floating-point arithmetic) and
interfaced as Matlab functions. These programs are used to
characterize the "infinite precision" behavior of each block and
are the “reference system” to evaluate the degradation in
performance in the case of a fixed-point implementation.

Each functional block was then implemented on a DSP56001
in assembly language and on a workstation in C language,
including the DSP56001 arithmetic effects (see § 3.10). This C
program is thus a “model” of the corresponding DSP56001
implementation. Each of these C “models” is also interfaced as a
Matlab function.

It was checked that each DSP56001 implementation and its
corresponding C model have exactly the same output under the
same input. This verification was carried out using the whole
TIMIT database. After that, the C model is used to measure the
performance of the DSP56001 implementation.

The advantage of this approach is that the C models are
easily interfaced (within Matlab) with the rest of the system.
The C models can also be used to try out different

Optimized Implementation of Speech Processing Algorithms

148

implementation options before actually implementing them on
the DSP56001.

Each model is introduced in the reference system to obtain a
modified system, and the deviation from the “infinite-precision”
behavior is observed using spectral distortion measure
(see § 5.4). In this context, there are two possible ways to use
this measure. The first way is comparing two sets of LPC
coefficients, the one produced with the reference system and the
other with the modified system, using Equations 5.15 to 5.17.
The second way is explained as follows.

Spectral distortion measure was used in Section 6.2 to
evaluate LSP-quantization in the “x-domain” on the whole
TIMIT database. The LSPs were calculated with high accuracy
and quantized using the 34-bit scalar quantizer of the CELP
FS1016. All the operations were carried out using double
precision floating-point arithmetic. The measured average
spectral distortion, due to the 34-bit scalar quantizer, and the
percentage of outliers are given in Table 7.1. This corresponds to
the “infinite-precision” behavior of this system. The
characterization of this “infinite-precision” behavior was also
done for other systems which use Kabal’s, Mixed-LSP, and
“quantized-search Kabal” methods for LSP calculation, and is
given in Table 7.1. In all cases, double precision floating-point
arithmetic was used.

The same measurement will be repeated for each modified
system under test, to observe the deviation from the values
given in Table 7.1.

Algorithms to obtain the
quantized LSPs

Ave. SD
(dB)

% 2-4 dB
outliers

% >4 dB
outliers

High accuracy + quant. in x 1.53287 12.34501 0.18884
Kabal + quant. in x 1.53288 12.34532 0.18884
Mixed-LSP + quant. in x 1.53308 12.36305 0.18853
Q.-search Kabal 1.53295 12.35014 0.18946

Table 7.1: Quantization performance of different “reference systems”
differing in their LSP calculation method, and using double-
precision floating-point operations.

The reader should not confuse “LSP-quantization” which is a
(desired) functionality to be implemented, with the (undesired)

DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization

149

quantization effects introduced in the implemented functional
blocks due to the use of fixed-point arithmetic.

7.3. Measure of Computational Complexity

The maximum number of clock cycles and time needed for
processing one frame of 30 ms, are used to measure the
computational complexity of the different blocks. The clock
frequency is 20 MHz.

The computational complexity is also given in MIPS (million
instructions per second) calculated assuming an “average
instruction” of 2 cycles. The computational power of a DSP56001
at 20 MHz is thus 10 MIPS.

7.4. Calculation of Bandwidth-expanded LPC

This subsystem does the calculation of the bandwidth-expanded
LPC vectors, as specified in the CELP FS1016 (see § 5.11). It
contains the following functional blocks: high-pass filtering,
30 ms Hamming windowing, calculation of the autocorrelation
coefficients, Levinson-Durbin recursion, and 15 Hz bandwidth
expansion [CELP3.2a]. The computational load for the
DSP56001 implementation of these blocks is given in Table 7.2.

Algorithm Number of
cycles

Execution
time (µµs)

MIPS

High-pass filter 3390 169.5 0.0565
Windowing 984 49.2 0.0164
Autocorrelation 6158 307.9 0.1026
Levinson-Durbin 1592 79.6 0.0265
Bandwidth Expansion 52 2.6 0.0009
Total 12176 608.8 0.2029

Table 7.2: Computational load for the DSP56001 implementation of the
calculation of the bandwidth expanded LPC coefficients.

Optimized Implementation of Speech Processing Algorithms

150

High-pass Filter

The input signal is filtered with the second order high-pass
digital Butterworth filter, with a 100 Hz cut-off frequency
[CELP3.2a]. The transfer function of the filter is given by:

H z
z z

z z
() = ⋅ −

−

− −

− −0 9459
1 2

1 1889033 0 8948743

1

1.
+

. + .

2

2 (7.1)

This filter was implemented using the canonical direct form II
[Proa89] shown in Figure 7.2. The gain G = 0.9459 ensures an
amplification of slightly less than 0 dB in the pass-band.

The coefficients of the filter are scaled by a factor of two, in
order to represent them in the fractional arithmetic of the
DSP56001. By simulation on the TIMIT database, it was found
that a scaling of 1/32 at the input is needed to avoid overflow in
the internal nodes of the filter [Segu97]. This scaling is
compensated at the output of the filter, to avoid unnecessary
loss of dynamic range. The resulting structure is shown in
Figure 7.3.

The filtering is done at every speech sample (240 times per
frame). It is thus essential to carefully optimize this block, as
every DSP instruction inside the time loop of the filter would
add 480 clock cycles per frame to the execution time.

In the DSP56001 there is no barrel shifter, and a scaling
needs 1 instruction (2 clock cycles) per factor of two. On the
other hand, it is possible to realize a scaling by 224 by an
internal transfer in the accumulator [MOTO93]. Thus the
structure of the filter was modified as shown in Figure 7.4. The
operations in the shadowed regions are done using 4 MAC
(multiply accumulate). There is a total of seven arithmetic
instructions per sample (scaling by 224 and delays are done with
data transfer). This corresponds to the minimum possible
number of instructions in the time loop, as the DSP56001 has
only one ALU. The scheduling of the operations was carefully
optimized to take advantage of the parallelism of the DSP56001,
performing all the data transfer in parallel with the arithmetic
instructions. The time loop contains thus seven instructions (14
cycles).

The high-passed values are stored in X memory, at the same
location of the input data.

DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization

151

b0= 1
b1= -2
b2= 1
G = 0.9459
a1=1.889033
a2=-0.8948743

b0

z-1

z-1

G

b2

b1

a2

a1

Xn Yn

Figure 7.2: Canonical direct form II structure of the high-pass filter.

AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA

AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA

z-1

z-1

1/2 b0

b2

b1

Xn Yn
2

a1
2

a2
2

G1/32 32

Figure 7.3: Scaling factors in the high-pass filter.

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

2 MAC

2 MAC

z-1

z-1

G/64 16*2-23
Xn Yn

2

a1
2

a2
2

224

16*2-23

-32*2-23

Figure 7.4: High-pass filter, as implemented on the DSP56001.

Optimized Implementation of Speech Processing Algorithms

152

In the implementation of all the functional blocks shown in
Figure 7.1 that are explained in the following sections, there is a
kind of optimization that was always done (although not always
mentioned explicitly): as much of the data transfer as possible is
done in parallel to the arithmetic instructions. The high-pass
filter implementation is a good example of this kind of
optimization.

Windowing

As the 240 coefficients of the Hamming window are in the range
[− +1 1,) no scaling is needed. These coefficients are quantized to
24 bits for storage in the DSP56001 memory. The quantization
effects introduced are negligible. As the high-passed signal
values are stored in X memory the window coefficients are
stored in Y memory to take advantage of the parallelism of the
DSP56001. One instruction is needed for performing
multiplication and fetching the next sample and its
corresponding window coefficient. Another instruction is used to
store the windowed samples in both X and Y memory, for
efficient implementation of the next functional block. A total of
two instructions (4 cycles) per sample is needed.

Calculation of the Autocorrelation Coefficients

The autocorrelation coefficients { }r r r0 1 10, , ,� needed by the
Levinson-Durbin recursion (see § 5.2) are calculated as:

r s n s n kk hw hw
n k

= ⋅ −
=
∑ () ()
239

(7.2)

here {shw(n)} are the high-passed and windowed speech samples,
which are in the range [− +1 1,). Thus, the autocorrelation
coefficients are limited by:

r r w n kk
n

< ≤ = =
=
∑0

2

0

239
1 10() , ,94.9850 < 27
�

(7.3)

When the inner product of Equation (7.2) is done using MAC
operations and the partial sum is accumulated in the DSP56001

DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization

153

accumulators A or B, there is no overflow. The 56-bit dynamic
range of the accumulator registers can largely accommodate the
dynamic range needs of this operation.

A problem arises when the correlation coefficient have to be
stored in 24-bit X or Y memory, or used in the 24-bit input of the
multiplier. It was found by simulation [Segu97] that the
dynamic range of the autocorrelation coefficients is larger than
24 bits. This is due to the signal multiplication observed in
Equation (7.2) that doubles the dynamic range of the signals.
The problem could be overcome by storing the variables in the
48-bit concatenated XY memory. But, as this coefficients are
used in the Levinson-Durbin recursion, time-consuming long-
word multiplications and divisions would be needed [Moto93].

An efficient solution is to reduce the dynamic range of the
{rk} by means of normalization steps. The first autocorrelation
coefficient or energy, r0, is calculated on the accumulator A and
then normalized using 23 normalization instructions of the
DSP56001, obtaining a mantissa m0 and exponent e0:

r m

m

e
0 0

0

0

2

0 5 1

= ⋅
≤ <. (7.4)

The mantissa is stored in a 24-bit register for further use, and
the exponent is used to scale the correlation coefficients:

′ = ⋅ =

′ = ⋅ =

−

−

r r for k

r r m

k k
e

e

2 1 10

2

0

0 0
0

0

, ,�

(7.5)

Note that this scaling does not change the functionality of the
Levinson-Durbin recursion (see Equation 5.12). From Equations
(7.3) to (7.5) it is seen that:

′ < ′ = <r r mk 0 0 1 (7.6)

the scaled correlation coefficients are within the range [− +1 1,).
Also, the scaling reduces the dynamic range of the correlation
coefficient so that the { ′rk } can be represented with 24-bit for
storage and further use as input of the multiplier.

The calculation of each of the 11 correlation coefficients uses
a loop repeated (240-k) times. Thus any extra instruction inside
this loop would add 5170 clock cycles per frame to the execution
time. It is thus essential to reduce the number of instructions in

Optimized Implementation of Speech Processing Algorithms

154

the loop to the bare minimum. The windowed samples were
stored in both X and Y memory in the windowing operation, to
take advantage of the parallelism of the DSP56001. In this way,
only one instruction (2 cycles) is needed inside the loop, for
performing multiplication and accumulation and fetching the
next samples s nhw () and s n khw ()− .

Levinson-Durbin Recursion

The Levinson-Durbin recursion is used to calculate the 10-th
order LPC coefficients {a10(k)} from the autocorrelation
coefficients as shown in Equation (5.12). The autocorrelation
coefficients were calculated and dynamically scaled as explained
in the previous subsection, to obtain a set of bounded
autocorrelation coefficients, { ′rk }, which have reduced dynamic
range needs. The use of this scaled correlation coefficients also
decreases the dynamic range needed in the Levinson-Durbin
recursion and makes it easier to prevent overflows.

It was found by simulation that the final LPC coefficients
{a10(k)} need a scaling of 1/16 to be represented in the fractional
arithmetic of the DSP56001. The Levinson-Durbin recursion
was modified to include this scaling, as shown in Equation (7.7).

Bandwidth Expansion

In bandwidth expansion (see § 5.3) each LPC coefficient a10(k) is
multiplied by a factor 0.994k. This operation is similar to the
windowing. The ten expansion factors are quantized to 24-bit
and stored in Y memory, while the LPC coefficients are stored in
X memory. One instruction is needed for performing
multiplication and fetching the next a10(k) and its corresponding
expansion factor. Another instruction is used to store the
expanded LPC coefficients in X memory, overwriting the
original LPC coefficients.

DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization

155

()

k
r
r

r k

k
r r

a
k k k

a a
k

k

a

r
a i) r

a

k a

a j a j k a j for j m

m m m

m

m
m

i

m

m i

m
m

m m

m m m m

1
1

0

1 0 1
2

2
2 1 1

1

2
1 2 1

2 2
2

1
2

1
1

1

1

1 1

1

1
16

0
1

16
2

16

1

16
0

1
16

16

1

= − ′
′

= ′ −

− ′ ⋅ ′

=
+

= =

= −

= −

′ + ′
=

= ⋅
= + − ≤ ≤









−

−
=

−

−

−

− −

∑

ε

ε

ε ε

ε

()

()
.

, () , ()

:

(m)
(.

, ()

(m)

() () . (m)

=
+ k

for m = 3, ,10�





 (7.7)

Experimental Evaluation of the Calculation of Bandwidth
Expanded LPC

Spectral distortion measure was used to compare the bandwidth
expanded LPC obtained with the DSP56001 implementation
and with a C (double precision floating-point) program. The
measured average spectral distortion was 0.013 dB.

Also, a reference system using high accuracy method for
LSP calculation and double precision floating-point arithmetic is
compared with a modified system. The modified system is
obtained by substituting, in the reference system, the
calculation of bandwidth expanded LPC by its corresponding
DSP56001 model. The quantization performance is measured in
both systems and given in Table 7.3. It is observed that the
degradation introduced in the performance is negligible.

Optimized Implementation of Speech Processing Algorithms

156

Ave. SD
(dB)

% 2-4 dB
outliers

% >4 dB
outliers

Reference system 1.53287 12.34501 0.18884
Modified system 1.53310 12.34874 0.18899

Table 7.3: Quantization performance of the “reference system” and the
modified system which uses DSP56001 LPC calculation.

7.5. LSP Calculation and Quantization

Algorithmic optimization of LSP calculation and quantization is
discussed in Chapter 6. Based on comparisons in accuracy,
reliability and computational complexity, three LSP calculation
algorithms were retained for DSP56001 implementation. These
algorithms are Kabal’s, Mixed-LSP and “quantized-search
Kabal”.

As the LSPs obtained with Kabal’s and Mixed-LSP
algorithm are in the “x-domain”, the quantization is done in this
domain for computational saving (see § 6.2). Furthermore, in the
“quantized-search Kabal“ algorithm, the LSP calculation and
quantization are embedded for efficiency (see § 6.3).

The computational load for the DSP56001 implementation of
the different functional blocks is given in Table 7.4. Details on
the implementation of these blocks are given in the next
subsections. In Table 7.5, the total computational load for the
three implemented ways to obtain quantized LSP is given.

Algorithm Number of
cycles

Execution
time (µs)

MIPS

Kabal 10540 527.0 0.1757
Mixed-LSP 6986 349.3 0.1164
“Q.-search Kabal” 4262 213.1 0.0710
Quantization (Q34) 2168 108.4 0.0361

Table 7.4: Computational load for the DSP56001 implementation of
LSP-quantization and Kabal’s, Mixed-LSP and “quantized-
search Kabal” algorithms for LSP calculation.

DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization

157

Algorithm Number of
cycles

Execution
time [µµs]

MIPS

Kabal + Q34 12708 635.4 0.2118
Mixed-LSP + Q34 9154 457.7 0.1526
“Q.-search Kabal” 4262 213.1 0.0710

Table 7.5: Total computational load for DSP56001 implementation, to
obtain quantized LSPs, using either the methods of Kabal’s,
Mixed-LSP or “quantized-search Kabal”.

Kabal’s Algorithm

Kabal’s algorithm for LSP calculation is explained in
Section 5.9. The main arithmetic task in this algorithm is
polynomial evaluation which is done with the efficient recursion
of Equation (5.32). It was found, by simulation on the TIMIT
database, that a scaling of 1/64 is needed on the coefficients {q′i}
and {p′i}. As the LPC coefficients a10(k) were already scaled by
1/16 in the Levinson-Durbin recursion, they are scaled by 1/4,
before using them in the calculation of {q′i} and {p′i} with
Equation 5.27. The recursion of Equation 5.32 was modified to
account for this scaling:

temp

temp

1

2

= ⋅ + ′
= ⋅ ⋅ − + ′
= ⋅ ⋅ − + ′
= ⋅ ⋅ − + ′
= ⋅ − + ⋅ ′

2 64

2 1 64

2

2

0 5

1

1 2

0 2 1 3

1 0 2 4

2 1 0 5

x p

x temp p

temp x temp temp p

temp x temp temp p

temp x temp temp p

i

i

i

i

i . (7.8)

For the zero-crossing search and bisections, only the sign of
temp2 is used. On the other hand, a linear interpolation is done
on the final interval, using the last two values calculated with
Equation (7.8). As this two values are close to zero, they are
scaled up by 32, before moving them to a 24-bit register to avoid
excessive round-off error in the linear interpolation.

Optimized Implementation of Speech Processing Algorithms

158

Experimental Evaluation of Kabal’s Algorithm Implementation

A reference system using Kabal’s method for LSP calculation
and double precision floating-point arithmetic is compared with
a modified system. The modified system is obtained by
substituting, in the reference system, Kabal’s algorithm by its
corresponding DSP56001 model.

The LSPs obtained with the reference and the modified
system were converted to LPC, and compared using spectral
distortion measure. The measured average spectral distortion
was 0.0023 dB.

Quantization performance is measured in both the reference
and the modified system and given in Table 7.6. It is observed
that there is no degradation in the performance due to the
DSP56001 implementation of Kabal’s algorithm.

Ave. SD
(dB)

% 2-4 dB
outliers

% >4 dB
outliers

Reference system 1.53288 12.34532 0.18884
Modified system 1.53287 12.34454 0.18884

Table 7.6: Quantization performance of the “reference system” and the
modified system which uses DSP56001 Kabal’s algorithm.

Mixed-LSP

Mixed-LSP algorithm for LSP calculation is explained in
Section 6.1. In this algorithm the roots of the 4-th order
polynomial D10(x) are calculated and ordered, to obtain the
intervals containing a zero-crossing. The position of the zero-
crossings are refined by five bisections and a final linear
interpolation, similarly to Kabal’s method.

The root calculation and ordering is explained and optimized
in Appendix D.4 to D.5. As this calculation is a highly non-linear
algorithm, care must be taken in scaling the internal nodes of
this algorithm, as the propagation of the amplification is non-
linear.

First a simulation was done to determine the optimum
scaling, and then this scaling was partially included in the
algorithm, taking into account its (non-linear) propagation

DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization

159

through the algorithm. The algorithm was then re-simulated, to
determine again the needed scaling. Several steps of this
optimization were done, until an algorithm that has all the
internal signals and parameters in the range [− +1 1,) was
obtained. It was also checked that the dynamic range did not
exceed 24 bits.

As there is no square root operation in the DSP56001, the
five square roots were done using a 4-th order polynomial fitting
in the region 0 5 1. ≤ ≤x :

f x x

x

()

.

= ≈ ⋅ ⋅ ⋅ ⋅
≤ ≤

ρ ρ ρ ρ ρ0 1
2

3
3

4
4+ x + x + x + x2

0 5 1 (7.9)

The argument of the square root is normalized using 23
normalization instructions, obtaining a mantissa x and exponent
e:

arg , .= ⋅ ≤ <x xe2 0 5 1 (7.10)

The square root of the mantissa is done with the following
polynomial evaluation:

temp = + x

temp = + x temp

temp = + x temp

temp = + x temp

3 4

1

0

ρ ρ
ρ
ρ
ρ

⋅
⋅
⋅
⋅

2

(7.11)

and the result is multiplied by 2 if the exponent is odd, and
shifted by half of the exponent. In total, a square root evaluation
needs 140 clock cycles.

Once the intervals containing the zero-crossings are found,
the rest of the implementation (bisections and linear
interpolation) is done as in Kabal’s algorithm, previously
explained.

Experimental Evaluation of Mixed-LSP Implementation

A reference system, using Mixed-LSP method for LSP
calculation and double precision floating-point arithmetic, is
compared with a modified system. The modified system is

Optimized Implementation of Speech Processing Algorithms

160

obtained by substituting, in the reference system, Mixed-LSP
algorithm by its corresponding DSP56001 model.

The LSPs obtained with the reference and the modified
system were converted to LPC, and compared using spectral
distortion measure. The measured average spectral distortion
was 0.0011 dB.

Quantization performance is measured in both the reference
and the modified system and given in Table 7.7. It is observed
that there is no degradation in the performance.

Ave. SD
(dB)

% 2-4 dB
outliers

% >4 dB
outliers

Reference system 1.53308 12.36305 0.18853
Modified system 1.53308 12.36274 0.18853

Table 7.7: Quantization performance of the “reference system” and the
modified system which uses DSP56001 Mixed-LSP algorithm.

Quantized-search Kabal

“Quantized-search Kabal” algorithm for LSP calculation (and
quantization) is explained in Section 6.3. In this algorithm the
search for zero crossings is done on the grid defined by the
quantization levels of the 34-bit quantizer of Figure 5.5.
(converted to the “x-domain”).

The values of the quantization tables of Figure 5.5 were
quantized to 24 bits for storage in the DSP56001 memory. The
quantization effects introduced are negligible. This tables were
converted to the “x-domain” using the mapping ξi = cos(2π fi),
thus the values are in the range [− +1 1,), and no scaling is
needed.

Polynomial evaluation is done using the efficient Kabal’s
recursion of Equation (5.32), thus the scaling and quantization
issues are the same as in Kabal’s algorithm, previously
explained. In particular, the modified recursion given in
Equation (7.8) is used. In appendix E.1 it is shown that the
maximum possible number of polynomial evaluations is 71
(while it is 150 in Kabal’s algorithm). This number is used in the

DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization

161

calculation of the maximum number of clock cycles and time
needed for processing one frame of 30 ms.

To avoid expensive comparisons, the quantization tables of
Figure 5.5 were modified to include, with each quantization
level, an index (offset) to the first “allowed” value of the next
quantization table. Also, some flags indicating conditions such
as “first element of the table”, “last element of the table” and
“particular case of qx5” (qx5 = 0.2563, qx5 = 0.0392, or
qx5 = −0 1175.) are stored in the quantization table, to be used in
the control flow of the algorithm.

The flow control of the algorithm was simplified by the use
of two flags, called “mark” and “last_mark”, which are used to
keep track of the conditions needed in the correction criteria
(see § 6.3). The use of these two flags is explained as follows.

The flag “last_mark” is cleared at the beginning of the
algorithm. This flag is used to store the value of “mark” at the
end of the last search for a quantized LSP.

At the beginning of the search for a quantized LSP, the flag
“mark” is set to one, to indicate that the first allowed value of
the quantization table is being tested. This value of the
quantization table is used in the polynomial evaluation of
Equation (7.8). If the zero-crossing is not detected, the flag
“mark” is cleared, indicating that the zero crossing is not at the
first allowed value, and the search proceeds, testing the next
value of the quantization table, until either the zero crossing is
detected, or the last element of the table is reached.

Then, the flag “mark” is used to decide whether a “single-
correction” (“mark” = 0) or a “coupled-correction” (“mark”=1) is
to be tested.

If the position of the quantized LSP is single- or coupled-
corrected, the value of “mark” is set to one, to indicate that a
coupled correction cannot be done in the next search.

If the 5-th quantized LSP takes one of these three values:
qx5 = 0.2563, qx5 = 0.0392, or qx5 = −0 1175. , the flag “mark” is
set to one, to indicate that a coupled correction cannot be done
in the next search.

Then the flag “mark” is copied onto “last_mark” to be used
in the next search (if “last_mark”=1, coupled correction cannot
be done).

Optimized Implementation of Speech Processing Algorithms

162

The resulting algorithm is robust and simple in its
implementation. In Table 7.5 it is observed that this algorithm
needs 66 % less cycles than Kabal's algorithm + quantization
and 53 % less cycles than Mixed-LSP algorithm + quantization.

Experimental Evaluation of Q.-search Kabal Implementation

A reference system, using “quantized-search Kabal” for LSP
calculation and double precision floating-point arithmetic, is
compared with a modified system. The modified system is
obtained by substituting, in the reference system, “quantized-
search Kabal” algorithm by its corresponding DSP56001 model.

The LSPs obtained with the reference and the modified
system were converted to LPC, and compared using spectral
distortion measure. The measured average spectral distortion
was 0.0072 dB.

Quantization performance is measured in both the reference
and the modified system and given in Table 7.8. It is observed
that there is no degradation in the performance.

Ave. SD
(dB)

% 2-4 dB
outliers

% >4 dB
outliers

Reference system 1.53295 12.35014 0.18946
Modified system 1.53292 12.34967 0.18946

Table 7.8: Quantization performance of the “reference system” and the
modified system which uses DSP56001 “quantized-search
Kabal” algorithm.

LSP Quantization in the “x-domain”

The algorithm for LSP quantization in the “x-domain” is
explained in Section 6.4. This algorithm is used to quantize the
LSPs which were first calculated with the methods of Kabal or
Mixed-LSP.

This algorithm for LSP quantization is very similar to the
“quantized-search Kabal” algorithm, except that the actual

DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization

163

LSPs are known. Thus the single- and coupled-correction
criteria of Equations (6.4) and (6.9) are used.

Efficient DSP56001 implementation is obtained with the use
of flags and offsets, as it is done in the implementation of
“quantized-search Kabal” explained previously.

Experimental Evaluation of LSP Quantization in the “x-domain”

A reference system using high accuracy method for LSP
calculation and double precision floating-point arithmetic is
compared with a modified system. The modified system is
obtained by substituting, in the reference system, LSP
quantization by its corresponding DSP56001 model.

Both systems gave exactly the same LSP indices. The only
source of error is due to the 24-bit representation (for storage in
the DSP56001 memory) of the quantization tables.

Quantization performance is measured in both the reference
and the modified system and given in Table 7.9. It is observed
that there is no degradation in the performance.

Ave. SD
(dB)

% 2-4 dB
outliers

% >4 dB
outliers

Reference system 1.53287 12.34501 0.18884
Modified system 1.53284 12.34516 0.18884

Table 7.9: Quantization performance of the “reference system” and the
modified system which uses DSP56001 LSP-quantization.

7.6. LSP Interpolation and Conversion to LPC

In this subsystem, two adjacent sets of quantized LSP
parameters are interpolated obtaining four sets of LSP
parameters, which are then converted to LPC coefficients to be
used in the synthesis filter (see § 5.11). The computational load
for the DSP56001 implementation of these blocks is given in
Table 7.10.

Optimized Implementation of Speech Processing Algorithms

164

Algorithm Number of
cycles

Execution
time (µs)

MIPS

Interpolation 236 11.8 0.0039
4 set LSP to 4 set LPC 906 45.3 0.0151

Table 7.10: Computational load for the DSP56001 implementation of LSP
interpolation and conversion to LPC.

Algorithmic optimization of LSP interpolation and
conversion to LPC is discussed in Section 5.10 and 6.8.

In Section 6.8 it is shown that LSP interpolation can be done
in the “x-domain” instead of “ω-domain”. As the LSPs obtained
with the methods of Kabal, Mixed-LSP and “quantized-search
Kabal” are in the “x-domain”, the computationally expensive
conversion from “x-domain” to “ω-domain” for interpolation, and
then from “ω-domain” to “x-domain” for LSP to LPC
transformation is avoided.

In Section 5.10, three methods for LSP to LPC
transformation are discussed. It is shown that Kabal’s method is
the least expensive. Besides, this algorithm is highly regular
and numerically stable which is advantageous for efficient
implementation.

As the quantized LSPs used in the linear interpolation are
in the range [− +1 1,), the resulting interpolated LSPs are also in
this range. The weights used in the interpolation, given in Table
5.1 are also in the range [− +1 1,). Furthermore, the dynamic
range needs of the interpolation operation can largely be
accommodated in 24-bits registers.

In LSP to LPC conversion, it was found that a scaling of 1/32
is needed in the recursion of Equation C.7, which is modified as
follows:

DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization

165

()

()

()

()

c x

c x c

c c x

c x c c

c c x c

c c x

c x c c

c c x c c

c c x c

c c x

c x c c

p c x c c

p c x c c

10 1

20 3 10

21 10 3

30 5 20 21

31 20 5 21

32 21 5

40 7 30 31

41 30 7 31 32

42 31 7 32

43 32 7

50 9 40 41

4 40 9 41 42

3 41 9 42 43

32

2 1 32

2 32

2

2 1 32

2 32

2

2

2 1 32

2 32

2

2

2

= −
= − ⋅ ⋅ +

= ⋅ −

= − ⋅ ⋅ +

= ⋅ − ⋅ +

= − ⋅
= − ⋅ ⋅ +

= ⋅ − ⋅ +

= − ⋅ ⋅ +
= − ⋅
= − ⋅ ⋅ +

′ = ⋅ − ⋅ +

′ = − ⋅ ⋅ +
′ = − ⋅ ⋅ +
′ = − ⋅
′ = ⋅

p c x c

p c x

p c

2 42 9 43

1 43 9

5 50

2 1 32

2 32

2

()

()

()

′ = −
′ = − ⋅ ⋅ ′ +

′ = ⋅ ′ −

′ = − ⋅ ⋅ ′ + ′

′ = ⋅ ′ − ⋅ ′ +

′ = ′ − ⋅
′ = − ⋅ ⋅ ′ + ′

′ = ⋅ ′ − ⋅ ′ + ′
′ = ′ − ⋅ ⋅ ′ +
′ = ′ − ⋅
′ = − ⋅ ⋅ ′ + ′

′ = ⋅

c x

c x c

c c x

c x c c

c c x c

c c x

c x c c

c c x c c

c c x c

c c x

c x c c

q

10 2

20 4 10

21 10 4

30 6 20 21

31 20 6 21

32 21 6

40 8 30 31

41 30 8 31 32

42 31 8 32

43 32 8

50 10 40 41

4

32

2 1 32

2 32

2

2 1 32

2 32

2

2

2 1 32

2 32

2

2 ()′ − ⋅ ′ + ′

′ = ′ − ⋅ ⋅ ′ + ′
′ = ′ − ⋅ ⋅ ′ +
′ = ′ − ⋅
′ = ⋅ ′

c x c c

q c x c c

q c x c

q c x

q c

40 10 41 42

3 41 10 42 43

2 42 10 43

1 43 10

5 50

2

2 1 32

2 32

2

(7.12)

The scaling by 1/32 is done with a multiplication (2 cycles)
instead of 5 shifts (10 cycles). The last terms of the recursion
give the coefficients {q′i} and {p′i} scaled by a factor of 1/32. This
coefficients are used to obtain the LPC coefficients:

() ()
() ()
() ()
() ()

a p q

a p p q q

a p p q q

a p p q q

a p p q q

1 1 1

2 2 1 2 1

3 3 2 3 2

4 4 3 4 3

5 5 4 5 4

= ′ + ′

= ′ + ′ + ′ − ′

= ′ + ′ + ′ − ′

= ′ + ′ + ′ − ′

= ′ + ′ + ′ − ′

() ()
() ()
() ()
() ()

a p q

a p p q q

a p p q q

a p p q q

a p p q q

10 1 1

9 2 1 2 1

8 3 2 3 2

7 4 3 4 3

6 5 4 5 4

1 16= ′ − ′ +

= ′ + ′ − ′ − ′

= ′ + ′ − ′ − ′

= ′ + ′ − ′ − ′

= ′ + ′ − ′ − ′ (7.13)

Note that the obtained LPC coefficients are scaled by a
factor of 1/16, which is needed to avoid overflows. This scaling
should be taken into account in the implementation of the
synthesis filter for the stochastic codebook search.

Optimized Implementation of Speech Processing Algorithms

166

Experimental Evaluation of LSP Interpolation and Conversion to
LPC

The reference system contains all the algorithms to obtain the
four interpolated LPC, and uses high accuracy method for LSP
calculation and double precision floating-point arithmetic.

The modified system is obtained by substituting, in the
reference system, the LSP interpolation and conversion to LPC,
by its corresponding DSP56001 model.

Both systems are compared using spectral distortion
measure. The measured average spectral distortion was 0.00083
dB, and the maximum value of spectral distortion was 0.017 dB.

It is seen that the distortion introduced by this subsystem is
really small, due to the numerical robustness of Kabal’s method
for LSP to LPC conversion and the fact that the interpolation
was done in the “x-domain” avoiding (inexact) trigonometric
calculations.

7.7. Total Computational Complexity

In Figure 7.1 it is observed that three possible ways to obtain
the 4 sets of interpolated LPC, from 30 ms of speech (240
samples) were implemented. These three variants depend on the
LSP calculation method used, which is either Kabal’s, Mixed-
LSP or “quantized-search Kabal”. The total computational load
for each variant is given in Table 7.11.

LSP calculation
method

Number of
cycles

Execution
time [µs]

MIPS

Kabal 26026 1301.3 0.4338
Mixed-LSP 22472 1123.6 0.3745
“Q.-search Kabal” 17580 879.0 0.2930

Table 7.11: Total computational load for DSP56001 implementation to
obtain the four sets of interpolated LPC, from a frame of 240
speech samples. Three variants are shown, depending on the
LSP calculation method used.

DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization

167

7.8. Program Listings

The listings for the C, Matlab, and DSP56001 assembly
programs are given in [Gras97b].

7.9. Further Work

The optimization of the implementation of the CELP FS1016
spectral analysis and quantization can be seen as a preparation
for an optimal low power, small size custom VLSI
implementation. The careful algorithmic optimization and
transformation of the algorithms to improve the use of the
dynamic range available and to prevent overflows, is of great
importance for an optimal VLSI implementation.

In Table 7.11 it is observed that the most efficient
implementation is the one that uses “quantized-search Kabal”
for LSP calculation. This implementation should be chosen for
the VLSI implementation.

The next step is to use the quantized C models to find the
minimum wordlength needed, while keeping an acceptable
performance. Preliminary work suggests that a word-length of
16 to 20 is needed as input of the multiplier and storage. The
accumulator of the ALU should have 32 to 40 bits, plus 8 bits
extension.

For the VLSI implementation, we propose an architecture
similar to the one of the DSP56001, with a bit-parallel MAC and
separate X and Y data memories, buses and address generation
units. Only the subset of instructions used in the algorithms
need to be implemented. As the sequencing of DSP56001
instructions was carefully optimized, it can be used directly in
the controller of the designed unit.

In the efficient implementation of the CELP FS1016 it is
also of great importance to optimize the search on the stochastic
codebook, using methods such as the methods proposed in
[Bour97] or [Chan95].

Optimized Implementation of Speech Processing Algorithms

168

7.10. Conclusions and Summary of the Chapter

In this Chapter, the optimized implementation of the CELP
FS1016 spectral analysis and quantization on a DSP56001 was
presented. The key points for this optimized implementation are
careful algorithmic optimization, study of the fixed-point
quantization effects, and careful match between algorithms and
target architecture.

Algorithmic optimization is discussed in Chapter 6, and
deals with the choice and modification of the algorithms, as well
as their optimal interrelation in the whole system.

The study of the quantization effects is done to find the
optimum scaling, modifying the algorithms to include this
scaling and also to improve the use of the dynamic range
available. This is done by using normalization and
denormalization at some localized nodes of the algorithms which
have higher dynamic range needs.

The parallelism of the DSP56001 is exploited, trying to
perform as much as the data transfer as possible in parallel to
the arithmetic instructions.

Finally, it is shown that the optimal implementation on a
fixed-point commercial DSP such as the DSP56001 can be seen
as a preparation for an optimal low power, small size, custom
VLSI implementation.

7.11. References

[Bour97] M. Bouraoui et al., "HCELP: Low Bit Rate Speech Coder for
Voice Storage Applications", Proc. IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing, ICASSP'97, Vol. 2,
pp. 739-742, 1997.

[CELP3.2a] The US FS1016 based 4800 bps CELP voice coder, Fortran
and C simulation source codes, version 3.2a (CELP 3.2a).
Available by ftp from ftp.super.org and other sites.

[Chan95] C. Chan, "An Extremely Low Complexity CELP Speech
Coder for Digital Telephone Answering Device Applications",
Proc. Int. Conf. on Signal Processing Applications and
Technology, ICSPAT'95, Vol. 2, pp. 1892-1896, 1995.

DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization

169

[Gras97b] S. Grassi, DSP56001 Implementation of the Spectral
Analysis and Quantization for the CELP FS1016 Speech
Coder, IMT Report No 421 PE 10/97, University of
Neuchâtel, IMT, Oct. 1997.

[MOTO90] DSP56000/DSP56001 Digital Signal Processor User's
Manual, DSP56000UM/AD Rev.2, Motorola Inc., 1990.

[MOTO93] A. Chrysafis and S. Lansdowne, “Fractional and Integer
Arithmetic Using the DSP56000 Family of General-purpose
Digital Signal Processors”, APR3/D Rev. 1, Motorola Inc.,
1993.

[Proa89] J. Proakis and D. Manolakis, Introduction to Digital Signal
Processing, Macmillan, New York, 1989.

[Rupp96] B. Rupp, Implantation Temps Réel d’un Codec CELP selon la
norme "U.S. Fédéral Standard 1016" sur un Processeur de
Traitement de Signal DSP56001, (in French), practical
semester project, winter semester 1995/96, Ecole
polytechnique fédérale de Lausanne, Laboratoire de
microtechnique EPFL - UNI NE, Neuchâtel, 1996.

[Saou95] A. Goalic and S. Saoudi, "An Intrinsically Reliable and Fast
Algorithm to Compute the Line Spectrum Pairs (LSP) in Low
Bit Rate CELP Coding", Proc. IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, ICASSP'95, Vol. 1, pp. 728-
731, 1995.

[Segu97] F. Seguin, Implantation en Temps Réel d’un Codec CELP sur
un Processeur de Traitement de Signal DSP56001, (in
French), diploma work, winter semester 1996/97, Ecole
polytechnique fédérale de Lausanne, Laboratoire de
microtechnique EPFL - UNI NE, Neuchâtel, 1997.

Blank page

171

Chapter 8
Conclusions

The research presented in this Ph.D. report addressed the
optimized implementation of some functional blocks which are
found frequently in digital speech processing applications.

It was shown that algorithmic optimization and the choice of
a fixed-point arithmetic are essential to meet the tight
constraints in power consumption and size of applications such
as digital hearing aids or portable communications devices.

A methodology for optimization of speech processing
algorithms was proposed, as well as a practical and simple
method for evaluating fixed-point quantization effects on these
algorithms. Although the application is restricted to digital
speech processing algorithms, the method presented is general
enough to be easily extended to other classes of DSP algorithms.

The developed method allows the simulation of a system in
final working conditions and at the same time benefit of the
flexibility of using a high level language, independently of the
hardware. In this way, different implementation possibilities
can be easily tried out, before doing the actual implementation.

The proposed optimization methodology was used in the
implementation of a noise reduction/speech enhancement
algorithm for digital hearing aids on a fixed-point commercial
DSP and using a low power VLSI architecture.

Two novel efficient algorithms for LSP calculation from LPC
coefficients, named Mixed-LSP and "quantized-search Kabal"
were presented. These proposed LSP calculation algorithms

Optimized Implementation of Speech Processing Algorithms

172

were compared with existing algorithms from the point of view
of accuracy, reliability and computational complexity.

Kabal’s algorithm was found to be the most efficient and
accurate of the existing methods. This algorithm, as well as
Mixed-LSP and “quantized-search Kabal”, were implemented on
a DSP56001 and their computational complexity in MIPS was
compared. It was found that “quantized-search Kabal" algorithm
was more efficient than Kabal’s algorithm, for the
implementation in the CELP FS1016 speech coder.

These results were used in the efficient DSP56001
implementation of the CELP FS1016 spectral analysis and
quantization.

To summarize, the key points for optimized low power
implementations are careful algorithmic optimization, study of
the fixed-point quantization effects, and careful match between
algorithms and target architecture.

Possible extensions of the work done were given at the end
of Chapter 4, 6 and 7.

173

Appendix A
Fixed-point Quantization Effects

A.1. Macros and Functions to Simulate Different Types
of Truncation or Rounding

/* rounding */
#define RND1(a) (((a)<0) ? ceil((a-0.5):floor((a)+0.5))

/* 2sc truncation */
#define TCTRNK(a) (floor(a))

/* Sign magnitude truncation */
#define SMTRNK(a) (((a) < 0) ? ceil(a) : floor(a))

/* convergent rounding */
#define RND(a) crnd(a, prec)

/* convergent rounding */
double crnd(double a, int prec)
{

double a1; long a0;

a0= 2.0*conv[prec]*fabs(modf(a,&a1));

if (a < 0) a= ceil(a-0.5) ;
else a= floor(a+0.5);

/* Correction for convergent rounding */
if ((a0==conv[prec])&&(fmod(a1,2.0)==0))

(a < 0) ? (a++) : (a--);

return a;
}

Optimized Implementation of Speech Processing Algorithms

174

A.2. Block Diagram of the DSP56001

P
ro

gr
am

M

em
or

y
51

2
×

24
 R

A
M

64
 ×

 2
4

R
O

M
(b

oo
t)

P
ro

gr
am

 C
on

tr
ol

 U
ni

t

24
-b

it
56

00
0

D
S

P
C

or
e

6

S
yn

c.

S
er

ia
l

(S
S

I)
 o

r
I/O

3

S
er

ia
l

C
om

m
.

(S
C

I)

or
 I/

O

15

H
os

t
In

te
rf

ac
e

(H
I)

or

 I/
O

16
-b

it
B

us
24

-b
it

B
us

E
xt

er
na

l
A

dd
re

ss

B
us

S

w
itc

h

E
xt

er
na

l
D

at
a

 B
us

S

w
itc

h

B
us

C

on
tr

ol
D

at
a

A
LU

24
 ×

 2
4

+
 5

6
→

 5
6-

bi
t M

A
C

T
w

o
56

-b
it

A
cc

um
ul

at
or

s

2

IR
Q

P
A

B

X
A

B

Y
A

B

G
D

B

P
D

B

X
D

B

Y
D

B

A
dd

re
ss

 1
6

D
at

a

 2
4

C
on

tr
ol

 7

P
ro

gr
am

A

dd
re

ss

G
en

er
at

or

P
ro

gr
am

D

ec
od

e
C

on
tr

ol
le

r

In
te

rr
up

t
C

on
tr

ol

X
 D

at
a

M
em

or
y

25
6

×
24

 R
A

M
25

6
×

24
 R

O
M

(A
-la

w
/µ

-la
w

)

Y
 D

at
a

M
em

or
y

25
6

×
24

 R
A

M
25

6
×

24
 R

O
M

(s
in

e)

C
lo

ck

G
en

er
at

or 2

A
dd

re
ss

G
en

er
at

io
n

U
ni

t

In
te

rn
al

D

at
a

 B
us

S

w
itc

h

Fixed-point Quantization Effects

175

A.3. Arithmetic Instructions of the DSP56001

Instruction Description

ABS D (parallel move) Store the absolute value of the destination operand D in the

destination accumulator

ADD S,D (parallel

move)

Add the source operand S to the destination operand D and

store the result in the destination accumulator

ADDR S,D (parallel

move)

Add the source operand S to one-half the destination operand

D and store the result in the destination accumulator

ASR D (parallel move) Arithmetically shift the destination operand D one bit to the

right and store the result in the destination accumulator

CMP S1, S2 (parallel

move)

Subtract the source one operand, S1, from the source two

accumulator, S2, and update the condition code register

DIV S,D Divide the destination operand D (48-bit positive fraction

dividend sign extended to 56-bit) by the source operand S (24-

bit signed fraction divisor) and store the partial remainder

and the formed quotient (one new bit) in the destination

accumulator D

MACR (+,-) S1,S2,D

(parallel move)

Multiply the two signed 24-bit source operands S1 and S2 and

add/subtract the product to/from the specified 56-bit

destination accumulator D, and then round the result using

convergent rounding

MPYR (+,-) S1,S2,D

(parallel move)

Multiply the two signed 24-bit source operands S1 and S2

round the result using convergent rounding, and store the

resulting product (with optional negation) in the specified 56-

bit destination accumulator

NORM Ra,D Based upon the result of one 56-bit normalization iteration on

the specified destination operand D, update the specified

address register Ra and store the result back in the

destination accumulator

SBC S,D (parallel

move)

Subtract the source operand S and the carry bit C of the

condition code register from the destination operand D and

store the result in the destination accumulator

SUBL S,D (parallel

move)

Subtract the source operand S from two times the destination

operand D and store the result in the destination accumulator

Tcc S1,D1 Transfer data from the specified source register S1 to the

specified destination accumulator D1 if the specified condition

“cc” is true

Optimized Implementation of Speech Processing Algorithms

176

TST S (parallel move) Compare the specified source accumulator S with zero and set

the condition code accordingly

ADC S,D (parallel

move)

Add the source operand S and the carry bit C of the condition

code register to the destination operand D and store the result

in the destination accumulator

ADDL S,D (parallel

move)

Add the source operand S to two times the destination operand

D and store the result in the destination accumulator

ASL D (parallel move) Arithmetically shift the destination operand D one bit to the

left and store the result in the destination accumulator

CLR D (parallel move) Clear the 56-bit destination accumulator

CMPM S1,S2 (parallel

move)

Subtract the magnitude of the source one operand, S1, from

the magnitude of the source two accumulator, S2, an update

the condition code register

MAC (+,-) S1,S2,D

(parallel move)

Multiply the two signed 24-bit source operands S1 and S2 and

add/subtract the product to/from the specified 56-bit

destination accumulator D

MPY (+,-) S1,S2,D

(parallel move)

Multiply the two signed 24-bit source operands S1 and S2 and

store the resulting product (with optional negation) in the

specified 56-bit destination accumulator

NEG D (parallel

move)

Negate (56-bit twos-complement) the destination operand D

and store the result in the destination accumulator

RND D (parallel

move)

Round the 56-bit value in the specified destination operand D

by convergent rounding and store the result in the most

significant portion of the destination accumulator (A1 to B1)

SUB S,D (parallel

move)

Subtract the source operand S from the destination operand D

and store the result in the destination operand D

SUBR S,D (parallel

move)

Subtract the source operand S from the one-half the

destination operand D and store the result in the destination

accumulator

TFR S,D (parallel

move)

Transfer data from the specified source data ALU register S to

the specified destination data ALU accumulator D

177

Appendix B
LeRoux-Gueguen Algorithm

The Levinson-Durbin recursion given in Equation (5.12) is an
efficient way to determine the LPC coefficients (see § 5.2), but if
the goal is to compute the reflection coefficients, {km}, the LPC
coefficients are also computed, as intermediate quantities. As
the LPC coefficients are not bounded and have large dynamic
range, the implementation of the Levinson-Durbin algorithm in
a fixed-point device is difficult. LeRoux and Gueguen [Lero77]
solved the problem by introducing the quantities:

e i) r a r a rm i m i m i m(() (m)= + ⋅ + + ⋅− −1 1 � (B.1)

where {am(i)} are the m-th order LPC coefficients and rk is the k-
th autocorrelation coefficient of the windowed speech signal:

() ()r w n s n w n k s n k

r r

k
n k

N

k k

= ⋅ ⋅ − ⋅ −

=
=

−

−

∑ () ()
1

(B.2)

B.1. LeRoux-Gueguen Algorithm

The reflection coefficients, {km}, are computed using the
relations:

Optimized Implementation of Speech Processing Algorithms

178

e i) r for i p p

for m p

k
e
e

e i) e i) k e i) for i p m p

i

m
m

m

m m m m

0

1

1

1 1

1

1

0

1

(, ,

, , :
(m)
()

(((m , ,

= = − +
=

= −

= + − = − + +

−

−

− −

�

�

�

(B.3)

the values em(i) for i = 1,…,m, turn out to be zero, thus they need
not be computed.

One important result of the formulation is that if the
autocorrelation sequence is normalized, i.e., | rk | ≤ 1, all the
quantities em(i) lie between −1 and +1. Consequently the
computation can be easily implemented using fixed-point
arithmetic. The normalization of the autocorrelation sequence
needs 10 divisions.

The total computational cost is 90 multiplications, 90
additions and 20 divisions.

B.2. References

[Lero77] J. LeRoux and C. Gueguen, "A Fixed Point Computation of
Partial Correlation Coefficients", IEEE Trans. on Acoustics,
Speech and Signal Processing, Vol. 25, No. 3, pp. 257-259,
1977.

[Papa87] P. Papamichalis, Practical Approaches to Speech Coding
(Chapter 5), Prentice-Hall, Englewood Cliffs, New Jersey,
1987.

179

Appendix C
LSP to LPC Transformation

C.1. Direct Expansion Method

The symmetrical and antisymmetrical polynomials, P10(z) and
Q10(z), are given by:

()

()
()

P z z c z z p z

Q z z c z z q z

with c

i
i

i
i

i

i
i

i
i

i

i i

10
1 1 2

1 3 5 7,9 0

11

10
1 1 2

2 4 6 8 10 0

11

1 1

1 1

2

() ()

() ()

cos

, , ,

, , , ,

= + + ⋅ + =

= − + ⋅ + =

= −

− − −

=

−

=

− − −

=

−

=

∏ ∑

∏ ∑

ω (C.1)

where the {ωi} are the LSPs. The coefficients {pi} and {qi} are
found by multiplying the product terms of Equation (C.1):

p p

p p s

p p s s

p p s s s

p p s s s s

p p s s s s s

0 11

1 10 1

2 9 1 2

3 8 1 2 3

4 7 1 2 3 4

5 6 1 2 3 4 5

1

4

4 3

6 3 2

= =
= = +
= = + +
= = + + +
= = + + + +
= = + + + + +

1

5

5

10

10

Optimized Implementation of Speech Processing Algorithms

180

q q

q q s

q q s s

q q s s s

q q s s s s

q q s s s s s

0 11

1 10 1

2 9 1 2

3 8 1 2 3

4 7 1 2 3 4

5 6 1 2 3 4 5

1

4

4 3

6 3 2

= − =
= − = − + ′
= − = − ′ + ′
= − = − + ′ − ′ + ′
= − = − ′ + ′ − ′ + ′
= − = − + ′ − ′ + ′ − ′ + ′

1

5

5

10

10 (C.2)

where {si} and {s′i} are the summation of product terms of the
odd- and even-suffixed ci respectively:

s c c c c c

s c c c c c c c c c c c c c c c c

c c c c

s c c c c c c c c c c c c c c c c c c

c c c c c c c c c c c c

s c c c c c c c c c c c c c c c c

1 1 3 5 7 9

2 1 3 1 5 1 7 1 9 3 5 3 7 3 9 5 7

5 9 7 9

3 1 3 5 1 3 7 1 3 9 1 5 7 1 5 9 1 7 9

3 5 7 3 5 9 3 7 9 5 7 9

4 1 3 5 7 1 3 5 9 1 3 7 9 1 5 7 9

= + + + +
= + + + + + + + +
+ +

= + + + + + +
+ + + +

= + + + +
=

′ = + + + +
′ = + + + + + + + +

+ +
′ = + + + + + +

+ + + +
′ =

c c c c

s c c c c c

s c c c c c

s c c c c c c c c c c c c c c c c

c c c c

s c c c c c c c c c c c c c c c c c c

c c c c c c c c c c c c

s c c c c

3 5 7 9

5 1 3 5 7 9

1 2 4 6 8 10

2 2 4 2 6 2 8 2 10 4 6 4 8 4 10 6 8

6 10 8 10

3 2 4 6 2 4 8 2 4 10 2 6 8 2 6 10 2 8 10

4 6 8 4 6 10 4 8 10 6 8 10

4 2 4 6 8 + + + +
′ =

c c c c c c c c c c c c c c c c

s c c c c c
2 4 6 10 2 4 8 10 2 6 8 10 4 6 8 10

5 2 4 6 8 10

(C.3)

finally the LPC filter is given by:

A z
P z Q z

10
10 10

2
()

() ()
=

+
(C.4)

The total computational cost is 62 multiplications and 92
additions. The shift operations (by a factor of two) were not
counted.

LSP to LPC Transformation

181

C.2. LPC Analysis Filter Method

When the filter of Figure C.1 is excited with an 11-term impulse
sequence, the resulting output sequence {1,a1,…,a10} gives the
LPC coefficients. Each second-order section requires 1
multiplication and 2 additions and the first-order sections
require 1 addition. Thus, the total cost would be 110
multiplications and 253 additions, but several savings are
possible. The output sequences of each section, denoted as hi and
h′i, for the upper and lower branch respectively, are shown in
Figure C.1 and given by:

{ }
{ }
{ }
{ }
{ }

h

h p p

h p p p p

h p p p p p p

h p p p p p p p p

h p p p p p p p p

0

1 11 11

2 21 22 22 21

3 31 32 33 33 32 31

4 41 42 43 44 44 43 42 41

5 51 52 53 54 55 55 54 53

1 10 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 10 0 0 0

1 10 0

1

=

=

=

=

=

=

, , , , , , , , , , ,

, , , , , , , , , , ,

, , , , , , , , , , ,

, , , , , , , , , , ,

, , , , , , , , , , ,

, , , , , , , , ,{ }
{ }
{ }
{ }
{ }
{ }

p p

h

h q q

h q q q q

h q q q q q q

h q q q q q q q q

h

52 51

0

1 11 11

2 21 22 22 21

3 31 32 33 33 32 31

4 41 42 43 44 44 43 42 41

1

1 1 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 1 0 0 0 0

1 1 0 0

, ,

, , , , , , , , , , ,

, , , , , , , , , , ,

, , , , , , , , , , ,

, , , , , , , , , , ,

, , , , , , , , , , ,

′ = −

′ = − −

′ = − − −

′ = − − − −

′ = − − − − −

′ { }5 51 52 53 54 55 55 54 53 52 511 1= − − − − − −, , , , , , , , , , ,q q q q q q q q q q (C.5)

Thus, only 30 different terms are calculated, as outputs of a
second order section. Ten extra additions are needed to obtain
the LPC coefficients from these terms. The total cost is reduced
to 30 multiplications and 70 additions, at the cost of increased
effort in the flow control of the algorithm.

Optimized Implementation of Speech Processing Algorithms

182

−

h0 h1 h5

h’0 h’1 h’5

a(n)h(n)

z-1

0.5

z-1 z-1 z-1 z-1

z-1 z-1 z-1 z-1 z-1

−2cos(ω)1 −2cos(ω)9

−2cos(ω)10−2cos(ω)2

Figure C.1: Filter used to generate the LPC coefficients, in the LPC
analysis filter method. The {ωi} are the LSP parameters.

C.3. Kabal’s Method

The polynomials P10(z) and Q10(z) are expressed as:

P z z p z

Q z z q z

i
i

i

i
i

i

10
1

0

10

10
1

0

10

1

1

() ()

() ()

= + ⋅ ′

= − ⋅ ′

− −

=

− −

=

∑

∑
(C.6)

As P′10(z) and Q′10(z) are symmetrical, only their first five
coefficients need to be calculated. The coefficients {q′i} and {p′i}
are obtained using the following recursions:

LSP to LPC Transformation

183

c x

c x c

c c x

c x c c

c c x c

c c x

c x c c

c c x c c

c c x c

c c x

c x c c

c c x c c

c c x c c

c

10 1

20 3 10

21 10 3

30 5 20 21

31 20 5 21

32 21 5

40 7 30 31

41 30 7 31 32

42 31 7 32

43 32 7

50 9 40 41

51 40 9 41 42

52 41 9 42 43

2 1

2 2

2

2 2 1

2

2

2 2

2 1

2

2

2 2

2

= −
= − ⋅ ⋅ +
= ⋅ − ⋅
= − ⋅ ⋅ +
= ⋅ − ⋅ ⋅ +
= − ⋅
= − ⋅ ⋅ +
= ⋅ − ⋅ ⋅ +
= − ⋅ ⋅ +
= − ⋅
= − ⋅ ⋅ +
= ⋅ − ⋅ ⋅ +
= − ⋅ ⋅ +

53 42 9 43

54 43 9

2 1

2

= − ⋅ ⋅ +
= − ⋅

c x c

c c x

′ = −
′ = − ⋅ ⋅ ′ +
′ = ⋅ ′ − ⋅
′ = − ⋅ ⋅ ′ + ′
′ = ⋅ ′ − ⋅ ⋅ ′ +
′ = ′ − ⋅
′ = − ⋅ ⋅ ′ + ′
′ = ⋅ ′ − ⋅ ⋅ ′ + ′
′ = ′ − ⋅ ⋅ ′ +
′ = ′ − ⋅
′ = − ⋅ ⋅ ′ + ′
′ = ⋅ ′

c x

c x c

c c x

c x c c

c c x c

c c x

c x c c

c c x c c

c c x c

c c x

c x c c

c c

10 2

20 4 10

21 10 4

30 6 20 21

31 20 6 21

32 21 6

40 8 30 31

41 30 8 31 32

42 31 8 32

43 32 8

50 10 40 41

51

2 1

2 2

2

2 2 1

2

2

2 2

2 1

2

2

2 40 10 41 42

52 41 10 42 43

53 42 10 43

54 43 10

2

2

2 1

2

− ⋅ ⋅ ′ + ′
′ = ′ − ⋅ ⋅ ′ + ′
′ = ′ − ⋅ ⋅ ′ +
′ = ′ − ⋅

x c c

c c x c c

c c x c

c c x

(C.7)

where {xi} are the LSPs in the “x domain”, with xi = cos(ωi). The
last terms of this recursion give the coefficients {q′i} and {p′i}:

′ = ⋅
′ =
′ =
′ =
′ =

p c

p c

p c

p c

p c

5 50

4 51

3 52

2 53

1 54

2 ′ = ⋅ ′
′ = ′
′ = ′
′ = ′
′ = ′

q c

q c

q c

q c

q c

5 50

4 51

3 52

2 53

1 54

2

(C.8)

Following Equation (C.6), the LPC coefficients are given by:

Optimized Implementation of Speech Processing Algorithms

184

() ()

() ()

() ()

() ()

a
p q

a
p p q q

a
p p q q

a
p p q q

a
p p q q

1
1 1

2
2 1 2 1

3
3 2 3 2

4
4 3 4 3

5
5 4 5 4

2

2

2

2

2

= ′ + ′

=
′ + ′ + ′ − ′

=
′ + ′ + ′ − ′

=
′ + ′ + ′ − ′

=
′ + ′ + ′ − ′

() ()

() ()

() ()

() ()

a
p q

a
p p q q

a
p p q q

a
p p q q

a
p p q q

10
1 1

9
2 1 2 1

8
3 2 3 2

7
4 3 4 3

6
5 4 5 4

2
2

2

2

2

2

= ′ − ′ +

=
′ + ′ − ′ − ′

=
′ + ′ − ′ − ′

=
′ + ′ − ′ − ′

=
′ + ′ − ′ − ′

(C.9)

The total computational cost is 20 multiplications and 59
additions. This is the least expensive of the three algorithms for
LSP to LPC conversion given in this appendix. Besides, the
algorithm is highly regular, which is a advantageous for efficient
implementation.

185

Appendix D
Mixed-LSP Method

D.1. Derivation of the Polynomials P′10(x) and Q′10(x)

The derivation given in this section is done for an LPC order
p = 10, but it can be extended to any even p. Starting from the
auxiliary function ψm(z), given in Equation (5.39):

ψ 10

11
2

10() ()z z A z= ⋅ (D.1)

where A10(z) is the 10-th order LPC analysis filter, given by:

A z a zk
k

k10 1
101() = + ⋅ −

=∑ (D.2)

the function ψm(z) is evaluated on the unit circle, z = ejω:

ψ ψ ψω
ω

ω ω ω
10

11
2

10 10 10
() () () ()() ()e e A e e j ej

j
j r j i j= = + ⋅

⋅ ⋅

(D.3)

The symmetrical and antisymmetrical polynomials, P10(z) and
Q10(z), given in Equation (5.24) are also evaluated on the unit
circle:

Optimized Implementation of Speech Processing Algorithms

186

P e A e e A e e e

Q e A e e A e je e

j j j j j r j

j j j j j i j

10 10
11

10

11
2

10

10 10
11

10

11
2

10

2

2

() () () ()

() () () ()

()

()

ω ω ω ω ω ω

ω ω ω ω ω ω

ψ

ψ

= + =

= − =

− ⋅ ⋅ − −

− ⋅ ⋅ − −

(D.4)

Thus, the zero crossings of ψ(r)10(ejω) and ψ(i)10(ejω) correspond to
the odd- and even-suffixed LSPs, respectively. Equation (D.3)
can be arranged as:

[]

ψ

ω ω

ω
ω

ω ω

ω
ω ω ω ω

ω ω

10

11
2

1 10
10

2 5
1

4
9

4
10

5

10 10

1

2 2

() ()

()

cos sin () ()

e e a e a e

e e a e a e a e

j R e j I e

j
j

j j

j j j j j

j j

= + ⋅ + + ⋅

= + ⋅ + + ⋅ + ⋅

= 





+ ⋅ 











⋅ + ⋅

⋅ ⋅
− − ⋅ ⋅

− −

�

�

(D.5)

thus, the real and imaginary parts of ψ10(ejω) are:

ψ ω ω

ψ ω ω

ω ω ω

ω ω ω

10 10 10

10 10 10

2 2

2 2

()

()

() cos () sin ()

() sin () cos ()

r j j j

i j j j

e R e I e

e R e I e

= 





⋅ − 





⋅

= 



 ⋅ + 



 ⋅

(D.6)

where R10(ejω) and I10(ejω) are given by:

() () () () ()
() () ()

() () () () ()
() () ()

R e a a a a

A A A A

I e a a a

E E E

j

j

10 10 4 6 5

5 4 1 0

10 10 4 6

5 4 1

1 5

5 4

1 5

5 4

ω

ω

ω ω

ω ω ω

ω ω

ω ω ω

= + ⋅ + + + ⋅ +

= + + + +

= − ⋅ + + − ⋅

= + + +

cos cos

cos cos cos

sin sin

sin sin sin

�

�

�

� (D.7)

Using the mapping x = cos(ω), the Chebyshev polynomials of
first kind are given by:

Mixed-LSP Method

187

T x n xT x T x

T x

T x x

T x x

T x x x

T x x x

T x x x x

n n n() cos() () ()

() cos()

() cos()

() cos()

() cos()

() cos()

() cos()

= = −
= =
= =

= = −

= = −

= = − +

= = − +

− −ω

ω

ω

ω

ω

ω

2

0 1

2 2 1

3 4 3

4 8 8 1

5 16 20 5

1 2

0

1

2
2

3
3

4
4 2

5
5 3 (D.8)

while the Chebyshev polynomials of second kind are given by:

U x n xU x U x

U x

U x x

U x x x

U x x x

U x x x x

U x x x x

n n n() sin() () ()

()

() sin()

() sin() ()

() sin() ()

() sin() ()

() sin() ()

= = −
=

= = ± −

= = ± − ⋅

= = ± − ⋅ −

= = ± − ⋅ −

= = ± − ⋅ − +

− −ω

ω

ω

ω

ω

ω

2

0

1

2 1 2

3 1 4 1

4 1 8 4

5 1 16 12 1

1 2

0

1
2

2
2

3
2 2

4
2 3

5
2 4 2 (D.9)

In the upper semicircle of the z-plane, ω∈[0,π], in which the
LSPs are located, the trigonometric formulas for double-angle
give:

cos() cos cos

cos() sin sin

ω ω ω

ω ω ω

= 



 − ⇒ 



 = +

= − 



 ⇒ 



 = −

2
2

1
2

1
2

1 2
2 2

1
2

2

2

x

x
(D.10)

Then, using the mapping x = cos(ω) and Chebyshev
polynomials of first and second kind Equation (D.7) is expressed
as:

Optimized Implementation of Speech Processing Algorithms

188

[
]

[]

R x A x A x A A x A A x

A A A x A A A

D x D x D x D x D x D

I x x E x E x E E x

E E x E E E

x B x B x B x B x B

10 5
5

4
4

5 3
3

4 2
2

5 3 1 4 2 0

5
5

4
4

3
3

2
2

1 0

10
2

5
4

4
3

3 5
2

2 4 5 3 1

2
4

4
3

3
2

2
1 0

16 8 20 4 8 2

5 3

1 16 8 4 12

2 4

1

() () ()

() ()

() ()

() ()

= + + − + + − + +
+ − + + − +

= + + + + +

= ± − + + − +

+ − + − +

= ± − + + + +

= ± − ′1 2
10x I x()

(D.11)

and using the mapping x = cos(ω) and the trigonometric
formulas for double angle, Equation (D.6) can be expressed as:

()[]

()[]

ψ

ψ

ψ

ψ

10 10
2

10

10 10 10

10 10
2

10

10 10 10

1
2

1
2

1

1
2

1
1

2

1
2

1
2

1

1
2

1
1

2

()

()

()

()

() () ()

() () ()

() () ()

() () ()

r

r

i

i

x
x

R x
x

x I x

x
R x x I x

x
x

x
x

R x
x

x I x

x
R x x I x

x
x

= + ⋅ − − ⋅ − ⋅ ′

= + ⋅ − − ⋅ ′ = + ⋅ ′

= − ⋅ + + ⋅ − ⋅ ′

= − ⋅ + + ⋅ ′ = − ⋅ ′

(D.12)

In the upper semicircle of the z-plane, ω∈[0,π], in which the
LSPs are located, the terms:

1
2 2

1
2 2

+ = 





− = 





x x
cos sin

ω ω
and

(D.13)

are different from zero, except at x = –1 and x = +1, respectively.
Thus, these terms can be removed without affecting the position
of the other zeros (LSPs). Then the functions:

()[]
()[]

′ = − − ⋅ ′

′ = + + ⋅ ′

ψ

ψ
10 10 10

10 10 10

1

1

()

()

() () ()

() () ()

r

i

x R x x I x

x R x x I x (D.14)

Mixed-LSP Method

189

have all the zero crossings (LSPs) of Kabal’s polynomials P′10(x)
and Q′10(x). The leading coefficient, which is the coefficient that
multiplies the higher power of x (x5) is, for both functions:

[]γ = ⋅ + = ⋅ + + − =16 16 1 1 325 5 10 10() () ()A E a a (D.15)

while in Equation (5.30) it is seen that the leading coefficient of
Kabal polynomials, P′10(x) and Q′10(x), is 16. Thus, Kabal’s
polynomials can be expressed as:

′ = ′ = −

′ =
′

= +

P x
x

C x D x

Q x
x

C x D x

r

i

10
10

10 10

10
10

10 10

2

2

()
()

() ()

()
()

() ()

()

()

ψ

ψ
(D.16)

where C10(x) is a 5-th order polynomial and D10(x) is the 4-th
order polynomial, given by:

2 16 8 4 12

2 4
10 10 5

4
4

3
3 5

2

2 4 5 3 1

⋅ = ′ = + + − +
+ − + − +

D x I x E x E x E E x

E E x E E E

() () ()

() () (D.17)

where:

E a E a a E a a

E a a E a a
5 10 4 1 9 3 2 8

2 3 7 1 4 6

1= − = − = −
= − = −

, , ,

, (D.18)

From Equation (D.16):

D x
Q x P x

10
10 10

2
()

() ()=
′ − ′

(D.19)

Thus the polynomial D10(x) could have also been obtained from
Kabal’s derivation, using Equation (5.30) and realizing that
P′10(x) and Q′10(x) have the same leading term. Nevertheless, the
derivation given in this section leads naturally to Equation
(D.16) which is the base of the Mixed-LSP algorithm.

For the purpose of the Mixed-LSP algorithm, only the
position of the roots of D10(x) is of interest. Thus the factor of 2,
multiplying D10(x) in Equation (D.17) will be ignored.

Optimized Implementation of Speech Processing Algorithms

190

D.2. Properties of the Roots of D10(x)

As D10(x) is a fourth order polynomial, it has four roots, in which
D10(x)=0. In section D.6, it is proved that the roots of D10(x) are
real, different, and inside the interval (-1,1). Furthermore, the
roots of D10(x) correspond to the values of x in which functions
P′10(x) and Q′10(x), cross each other, as it can be seen in
Equation (D.16), setting D10(x)=0.

D.3. Direction of the Sign Changes

Kabal’s polynomials, P′10(x) and Q′10(x), given in Equation (5.30),
can be expressed as:

′ = − − − − −
′ = − − − − −

P x x x x x x x x x x x

Q x x x x x x x x x x x
10 1 3 5 7 9

10 2 4 6 8 10

16

16

() ()()()()()

() ()()()()()

(D.20)

where the { xi }, which are the roots of P′10(x) and Q′10(x),
correspond to the LSPs in the “x domain”. On the other hand,
D10(x), can be expressed as:

D x E x r x r x r x r

a x r x r x r x r
10 5 1 2 3 4

10 1 2 3 4

8

8 1

() ()()()()

()()()()()

= ⋅ − − − −
= ⋅ − − − − − (D.21)

where {ri} are the roots of D10(x). In Equation (5.18), it is seen
that the LPC coefficient a10, is equal to the reflection coefficient
k10. Thus, a10 is bounded in magnitude by 1, and (1-a10) is always
positive. As the leading terms of P′10(x), Q′10(x) and D10(x) are
positive, and their roots are smaller than +1, then:

D x P x Q x10 10 101 0 1 0 1 0() , () , ()= + > ′ = + > ′ = + > (D.22)

Therefore the directions of the sign changes at every zero
crossing (+ to –, or – to +) are known. This property can be used
for improving efficiency and reliability of the Mixed-LSP
algorithm. From Equation (D.19) and (D.22), it is also seen that:

′ = + − ′ = + = ⋅ = + >
⇒ ′ = + > ′ = +

Q x P x D x

Q x P x
10 10 10

10 10

1 1 2 1 0

1 1

() () ()

() () (D.23)

Mixed-LSP Method

191

D.4. Calculation of the Roots of D10(x)

In this section the calculation of the roots of the 4-th order
polynomial D10(x) is optimized. It is reminded that D10(x) has
four roots which are real, different and in the interval (-1,1).

Resolution of a 4-th Order Polynomial

Given the 4-th order polynomial, with real coefficients [Ango72],
[Barb89]:

x ax bx cx d4 3 2 0+ + + + = (D.24)

factoring this polynomial as a multiplication of two second order
polynomials with real coefficients:

()()x ax bx cx d x p x q x p x q4 3 2 2
1 1

2
2 2 0+ + + + = + + + + = (D.25)

The following system of equations has to be solved for p1, p2, q1

and q2:

a p p

b q q p p

c p q p q

d q q

= +
= + +
= +
=

1 2

1 2 1 2

1 2 2 1

1 2 (D.26)

Considering the trial solutions for the system (D.26), where the
unknown variable z has been introduced:

p
a a

b z q
z z

d

p
a a

b z q
z z

d

1

2

1

2

2

2

2

2

2 2 2 2

2 2 2 2

= + 





− + = + ⋅ 





−

= 





− + = ⋅ 





−

,

– , –

ε

ε
(D.27)

where ε=±1. Introducing these trial solutions in the system of
equations given in (D.26), leads to Equations (D.28) and (D.29):

Optimized Implementation of Speech Processing Algorithms

192

a
a a

b z
a a

b z a

b
z z

d
z z

d

a a
b z

a a
b z b

d
z z

d

= + 



 − +











 + 



 − +











 =

= + ⋅ 



 −











 + ⋅ 



 −











 +

+ + 



 − +

















 − +











 =

= + ⋅ 



 −












2 2 2 2

2 2 2 2

2 2 2 2

2 2

2 2

2 2

2 2

2

–

–

–

ε ε

ε  ⋅ 



 −











 =z z

d d
2 2

2

– ε
(D.28)

It is seen that the equalities in (D.28) are always satisfied for
any value of z. Thus z is chosen to satisfy the equation of c:

c
a a

b z
z z

d

a a
b z

z z
d

= + 



 − +











 ⋅ 



 −













+ 



 − +











 + ⋅ 



 −













2 2 2 2

2 2 2 2

2 2

2 2

–

–

ε

ε
(D.29)

giving:

c
az a

b z
z

d

sign
az

c

= − ⋅ 



 − +

















 −













= 





2
2

2 2

2

2 2

ε

εwhere – for consistency
(D.30)

thus z must be a solution of the 3-rd order equation:

z rz sz t

r b s ac d t d b a c

3 2

2 2

0

4 4

+ + + =

= − = − = −, , () – (D.31)

then there are three possible solutions for z, namely za, zb, and
zc, and at least one of these solutions is real. For p1, p2, q1 and q2

to be real, a real value of z must be chosen.

Mixed-LSP Method

193

Thus, to solve the 4-th order polynomial given in Equation
(D.24), the 3-rd order polynomial of Equation (D.31) must be
solved first.

Property

If the roots of the original 4-th order polynomial of
Equation (D.24) are real and different, then the roots of
the 3-rd order polynomial of Equation (D.31) are real
and different.

Proof

If the 4-th order polynomial of (D.24) has four different real
roots, x1, x2, x3 and x4, then it can be expressed as:

()()()()x ax bx cx d x x x x x x x x

a x x x x

b x x x x x x x x x x x x

c x x x x x x x x x x x x

d x x x x

4 3 2
1 2 3 4

1 2 3 4

1 2 1 3 1 4 2 3 2 4 3 4

1 2 3 1 2 4 1 3 4 2 3 4

1 2 3 4

+ + + + = − − − −

= − − − −
= + + + + +
= − − − −
= (D.32)

there are three possible ways to factor the fourth order
polynomial of (D.24) into a multiplication of two second order
polynomials with real coefficients, as in Equation (D.25), each
factorization corresponds to one root, za, zb, or zc, of the third
order polynomial of Equation (D.31). These factorizations are
given next:

Factorization 1:

()()

() ()

x ax bx cx d x p x q x p x q

p x x p x x
q x x q x x

p q p q

a a a a

a a

a a

a a a a

4 3 2 2
1 1

2
2 2

1 1 2 2 3 4

1 1 2 2 3 4

1 1 2 2

+ + + + = + + + +

= − − = − −
= =

,
,

, ,Note: can be exchanged with (D.33)

and from Equation (D.27):

z q q x x x xa a a= + = +1 2 1 2 3 4 (D.34)

Optimized Implementation of Speech Processing Algorithms

194

Factorization 2:

()()

() ()

x ax bx cx d x p x q x p x q

p x x p x x
q x x q x x

p q p q

b b b b

b b

b b

b b b b

4 3 2 2
1 1

2
2 2

1 1 3 2 2 4

1 1 3 2 2 4

1 1 2 2

+ + + + = + + + +

= − − = − −
= =

,
,

, ,Note: can be exchanged with (D.35)

and from Equation (D.27):

z q q x x x xb b b= + = +1 2 1 3 2 4 (D.36)

Factorization 3:

()()

() ()

x ax bx cx d x p x q x p x q

p x x p x x
q x x q x x

p q p q

c c c c

c c

c c

c c c c

4 3 2 2
1 1

2
2 2

1 1 4 2 3 2

1 1 4 2 3 2

1 1 2 2

+ + + + = + + + +

= − − = − −
= =

,
,

, ,Note: can be exchanged with (D.37)

and from Equation (D.27):

z q q x x x xc c c= + = +1 2 1 4 3 2 (D.38)

From Equations (D.34), (D.36) and (D.38) it is seen that if the
roots of the 4-th order polynomial of Equation (D.24) are real,
then the roots of the 3-rd order polynomial of Equation (D.31)
are real. Furthermore, if the roots of the 4-th order polynomial
of Equation (D.24), are different, that is x x x x1 2 3 4≠ ≠ ≠ , then:

() () () ()
() () () ()
() () () ()

z z x x x x x x x x x x x x

z z x x x x x x x x x x x x

z z x x x x x x x x x x x x

a b

a c

b c

− = + − + = − ⋅ − ≠

− = + − + = − ⋅ − ≠

− = + − + = − ⋅ − ≠

1 2 3 4 1 3 2 4 1 4 2 3

1 2 3 4 1 4 3 2 1 3 2 4

1 3 2 4 1 4 3 2 1 2 3 4

0

0

0

(D.39)

it is seen that the roots of the 3-rd order polynomial of Equation
(D.31) are also different.

Mixed-LSP Method

195

Resolution of a 3-rd Order Polynomial

Given the 3-rd order polynomial, with real coefficients[Ango72],
[Barb89]:

z rz sz t3 2 0+ + + = (D.40)

The change of variable z w r= − / 3 , gives a third order
polynomial in w, with zero quadratic coefficient:

w pw q3 0− − = (D.41)

with:

p s
r

and q t
rs r= − + = − +

2 3

3 3
2
27

– (D.42)

setting w u v= + , gives:

u v uv p u v q3 3 3 0+ + − + − =()() (D.43)

imposing the condition 3 0uv p− = , the following system of
equations is obtained:

u v q

uv
p

3 3

3

+ =

= (D.44)
Thus, u3 and v3 are the roots of the quadratic equation:

x qx
p2

3

27
0− + = (D.45)

There are three possible cases :

Case 1:

Case 2:

Case 3:

D q p
p q

D q p
p q

D q p
p q

= − < ⇒ 



 > 





= − = ⇒ 



 = 





= − > ⇒ 



 < 





27 4 0
3 2

27 4 0
3 2

27 4 0
3 2

2 3
3 2

2 3
3 2

2 3
3 2

(D.46)

Only in case 1, which is explained next, the roots of the 3-rd
order polynomial of (D.40) are real and different. Therefore, only
this case is used in the resolution of the roots of D10(x).

Optimized Implementation of Speech Processing Algorithms

196

Case 1

In this case, the two solutions of the quadratic Equation (D.45)
are complex conjugate, x1=m.ejθ and x2=m.e−jθ, and the system
given in Equation (D.44) is satisfied by:

()

(m ,)

(m ,)

(m ,)

u,v

e m e

e m e

e m e

j j

j j

j j

=















−

+ − −

− − +

1
3 3

1
3 3

1
3

2
3

1
3

2
3

1
3

2
3

1
3

2
3

θ θ

θ π θ π

θ π θ π

(D.47)

with:

cos()θ = =3
2

3
3 3

q
p p

and m
p p

(D.48)

and the original 3-th order polynomial of Equation (D.40) has
three different real zeros:

z m e m e
r p r

z m e m e
r p r

z m e m e
r p r

a

j j

b

j j

c

j j

= + − = 





−

= + − = −
−



 −

= + − = −
+



 −

−

+ − −

− − +

1
3 3

1
3 3

1
3

2
3

1
3

2
3

1
3

2
3

1
3

2
3

3
2

3 3 3

3
2

3 3 3

3
2

3 3 3

θ θ

θ π θ π

θ π θ π

θ

π θ

π θ

cos

cos

cos (D.49)

Note that case 2 is included in case 3 when:

cos()θ = =3
2

3
1

q
p p (D.50)

and, in this case, the original cubic polynomial of Equation
(D.40) has three real zeros, but two of these zeros are equal:

z u
r

z z u
r

with u
q
p

a b c= − = = − −

=

2
3 3

3
2

0 0

0

,

(D.51)

Mixed-LSP Method

197

Calculation of the Roots of D10(x)

The coefficients of D10(x) are calculated from the LPC values,
{ai}, and normalized, to obtain the 4-th order equation:

x ax bx cx d4 3 2 0+ + + + = (D.52)

with the coefficients:

E a B E

E a a B E a
B
B

E a a B E E b
B
B

E a a B E E c
B
B

E a a B E E E d
B
B

5 10 4 5

4 1 9 3 4
3

4

3 2 8 2 3 5
2

4

2 3 7 1 2 4
1

4

1 4 6 0 5 3 1
0

4

1 16

8

4 12

2 4

= − =

= − = =

= − = − =

= − = − =

= − = − + =

, ,

, ,

, ,

, ,

, ,
(D.53)

Equation (D.52) is solved using the resolution of a 4-th order
polynomial explained previously. Thus, the following 3-rd order
equation must be solved:

z rz sz t3 2 0+ + + = (D.54)

with the coefficients:

r b s ac d t d b a c= − = − = −, , () –4 4 2 2 (D.55)

As the roots of D10(x) are real and different, only case 1 of the
method for resolution of a 3-rd order equation explained in the
previous subsection applies, and za, zb, and zc are given by
Equation (D.49). If Z is chosen as the biggest in absolute value
among za, zb, and zc:

if

else

cos cos

cos

θ
θ

π θ

≥ ⇒ = = 



 −

⇒ = = − −





−

0 2
3 3 3

2
3 3 3

Z z
p r

Z z
p r

a

b (D.56)

where t = cos(θ) is given by Equation (D.48). The curves for
cos(π/3−arccos(t)/3) and cos(arccos(t)/3) for t∈[−1,+1] are given in
Figure D.1.

Optimized Implementation of Speech Processing Algorithms

198

−1 −0.5 0 0.5 1
0.5

0.6

0.7

0.8

0.9

1

t

Figure D.1: The curves for cos(π/3−arccos(t)/3), plotted with a continuous
line, and cos(arccos(t)/3), plotted with a dashed line, for
t∈[-1,+1].

It can be noticed that the curve of interest, which
corresponds to cos(arccos(t)/3) for t∈[0,+1], is almost linear. This
curve can be modeled either using polynomial fitting of five
coefficients, or a table of 9 elements and linear interpolation.

Finally, calculation of the roots of D10(x) is summarized as:

E a

E a a

E a a

E a a

E a a

B E

B E

B E E

B E E

B E E E

a
B
B

b
B
B

c
B
B

d
B
B

r b
s ac d

t d b a c

p s
r

q t
rs

5 10

4 1 9

3 2 8

2 3 7

1 4 6

4 5

3 4

2 3 5

1 2 4

0 5 3 1

3

4

2

4

1

4

0

4

2 2

2

1 16

8

4 12

2 4

4

4

3

3
2

= −
= −
= −
= −
= −














→

=
=
= −
= −
= − +














→
= =

= =










= −
= −

= −









→
= − +

= − +

,

,

() – –
r

q
p p3

27

3
2

3









→ =cos()θ

(D.57)

Mixed-LSP Method

199

[]
[]

s co sign

a co abs
Z s co

p a a co r

sign
az

c

p
a a

b z q
z z

d

p
a a

b z q
z z

d

r
p p

q r
p p

_ cos()

_ cos()
_ cos

cos(_)

,

– , –

,

=

=




→ = ⋅ 



 −

= 





= + 



 − + = + ⋅ 



 −

= 



 − + = ⋅ 



 −











= − − 



 − = − + 



θ

θ

ε

ε

ε

2
3 3 3

2

2 2 2 2

2 2 2 2

2 2 2 2

1

2

1

2

2

2

2

2

1
1 1

2

1 2
1 1

–

 
 −

= − − 



 − = − + 



 −











2

1

3
2 2

2

2 4
2 2

2

22 2 2 2

q

r
p p

q r
p p

q,

(D.58)

The C program for the resolution of the roots of D10(x) is
given in [Gras97b]. This calculation needs the following
operations: 20 multiplications, 34 add/sub, 2 divisions and 5
square roots. Three comparison/swapping operations are needed
for root ordering, as explained in the next section.

D.5. Optimization of the Root Sorting

In order to obtain the five intervals where only one even-suffixed
and one odd-suffixed LSP are contained, the roots of D10(x) must
be ordered. Given that these roots are related by Equation
(D.58), only the following ordered sets are possible:

r r r r

r r r r

r r r r

r r r r

1 2 3 4

1 3 2 4

1 3 4 2

3 1 2 4

< < <
< < <
< < <
< < < (D.59)

The ordering algorithm needs three comparisons and swapping.

Optimized Implementation of Speech Processing Algorithms

200

D.6. Property of the Roots of D10(x)

Property

The roots of D10(x) are real, different and inside the
interval (-1,1).

Proof

The Levinson-Durbin recursion, given in Equation (5.12), leads
to the recursion [Proa89]:

A z B z

for m p

A z A z k z B z

B z k A z z B z

m m m m

m m m m

0 0

1
1

1

1
1

1

1

1

() ()

, , :

() () ()

() () ()

= =
=

= +

= +
−

−
−

−
−

−

�

(D.60)

where Bm(z) are the reciprocal polynomials of Am(z), given by:

B z z A zm
m

m() ()= − −1 (D.61)

If the LPC analysis filter Ap(z) is minimum phase (i.e., all
the zeros are inside the unit circle) then the reflection
coefficients {k1,…,kp} are bounded in magnitude by one.
Conversely, if the reflection coefficients {k1,…,kp} are bounded in
magnitude by one, then Ap(z) is minimum phase as well as all
the lower-order LPC analysis filters {A1(z),…,Ap–1(z)} [Proa89].
Note that the Ap(z) obtained using the Levinson-Durbin
recursion is minimum phase.

For any of the filters {A1(z),…,Ap(z)}, a symmetrical
polynomial Pm(z) and an antisymmetrical polynomial Qm(z) can
be formed by adding and subtracting to Am(z) its time reversed
system function z−(m+1)Am(z−1) [Kaba86]:

P z A z z B z
Q z A z z B z

m m m

m m m

() () ()
() () ()

= +
= −

−

−

1

1 (D.62)

If m is even, Pm(z) and Qm(z) have a zero at z = −1 and at
z = +1, respectively. If m is odd, Qm(z) have a zero at z = −1 and
a zero at z = +1 [Kaba86]. These trivial zeros could be removed
by polynomial division :

Mixed-LSP Method

201

′ =
+

′ =
−

′ = ′ =
−

− −

−

P z
P z

z
and Q z

Q z
z

P z P z and Q z
Q z

z

m
m

m
m

m m m
m

()
()

()
()

()
()

,

() () ()
()

()
,

1 1

1

1 1

2

m even

m odd
(D.63)

The polynomials P′m(z) and Q′m(z) are symmetrical, and if
Am(z) is minimum phase, then the roots of P′m(z) and Q′m(z) lie
on the unit circle and are interlaced [Soon84].

The m-th order LSP parameters are defined as the angular
positions of the roots of P′m(z) and Q′m(z) located on the upper
semicircle of the z-plane, they are denoted as { ωi }, in the
angular frequency domain, and their ordering property is
expressed as [Kaba86]:

0 1 2< < < < <ω ω ω π� m (D.64)

Combining Equation (D.60) with Equation(D.62), gives:

()() ()()
()() ()()

2 1 1 1 1

2 1 1 1 1
1

1
1

1

1
1

1
1

P z P z k z Q z k z

Q z P z k z Q z k z
m m m m m

m m m m m

() () ()

() () ()

= + + + − −

= + − + − +
−

−
−

−

−
−

−
−

(D.65)

and using Equations (D.63) and (D.65):

() ()′ − ′
=

− −

−
= − − ′

−

−
−P z Q z z k Q z

z
z k Q z10 10

1
10 9

2
1

10 92

1

1
1

() () ()

()
()

(D.66)

The polynomials P′10(z), Q′10(z) are symmetric and of 10-th
order, while Q′9(z) is symmetric and of 8-th order. The symmetry
of these three polynomials is used to group their terms as:

[]
[]

[]

′ = ⋅ + + ′ + + + ′

′ = ⋅ + + ′ + + + ′

′ = ⋅ + + ′ + + + ′

− + − + −

− + − + −

− + − + −

P z z z z p z z p

Q z z z z q z z q

Q z z z z z z

10
5 5 5

1
4 4

5

10
5 5 5

1
4 4

5

9
4 4 4

1
3 3

4

() () ()

() () ()

() () ()

�

�

�α α (D.67)

Introducing Equation (D.67) into Equation (D.66), applying the
mapping x = cos(ω) and using Equation (D.19), the following
relation is obtained:

()D x
P x Q x

k Q x10
10 10

10 92
1()

() ()
()=

′ − ′
= − ′ (D.68)

Optimized Implementation of Speech Processing Algorithms

202

As k10 is bound in magnitude by one, the factor (1-k10) is
different from zero. The roots of D10(x) correspond to the roots of
Q′9(x), which are the even-suffixed LSPs of a 9-th order LPC
system, in the “x domain”, in which x = cos(ω). From the
ordering property of Equation (D.64), it is seen that these roots
are real, different, and in the interval (-1,+1).

D.7. References

[Ango72] A. Angot, Complements de mathematiques a l'usage des
ingenieurs de l'electrotechnique et des telecommunications,
Masson, Paris, 1972.

[Barb89] E. Barbeau, Polynomials, Springer, New York, 1989.

[Gras97b] S. Grassi, DSP56001 Implementation of the Spectral
Analysis and Quantization for the CELP FS1016 Speech
Coder, IMT Report No 421 PE 10/97, University of
Neuchâtel, IMT, Oct. 1997.

[Kaba86] P. Kabal and P. Ramachandran, "The Computation of Line
Spectral Frequencies Using Chebyshev Polynomials", IEEE
Trans. on Acoustics, Speech and Signal Processing, Vol. 34,
No. 6, pp. 1419-1426, 1986.

[Proa89] J. Proakis and D. Manolakis, Introduction to Digital Signal
Processing (Chapter 7), Macmillan, New York, 1989.

[Soon84] F. Soong and B. Juang, "Line Spectrum Pair (LSP) and
Speech Data Compression", Proc. IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing, ICASSP'84,
pp. 1.10.1-1.10.4, 1984.

203

Appendix E
Quantized-search Kabal Method

The reader is reminded that the name “quantized-search Kabal”
refers to the version of “quantized-search Kabal” algorithm
which uses both “horizontal single-correction” and “enhanced
vertical coupled-correction” criteria (see § 6.3).

E.1. Maximum Number of Evaluations

To obtain the maximum number of evaluation in “quantized-
search Kabal” and “quantized-search Chan” algorithms, one of
the longest possible search paths on the quantization tables of
Figure 5.5 has to be found. The search is constrained by the
ordering property of the LSP parameters given in
Equation (5.25). One of longest path can be easily found by
inspection of the quantization tables of Figure 5.5. A weight is
assigned to each point of the i-th quantization table,
corresponding to the maximum length to arrive to this point,
starting from the first element of the first table, this weight is
then used to find the longest path to arrive to every point of the
i+1-th quantization table, and the process is repeated up to the
10-th quantization table. One of the longest path, obtained with
this method is described by the set of LSP indices
{ 1, 6, 4, 5, 14, 5, 4, 3, 3, 7 }. The length of this path is 52. Thus
52 evaluations are needed to search through this path.
Additionally, the search could advance one extra point (except in

204

the last LSP which is the last of the table) and then come back
by means of a single correction. This would add 9 more
evaluations. One extra evaluation per LSP could be used to test
single correction, for a total of 10 evaluation. Thus the
maximum number of possible evaluations is given by
52 + 9 + 10 = 71. In practice, the maximum number of
evaluations found by simulation on the whole TIMIT database is
68.

E.2. Differences with the Reference Algorithm

The “quantized-search Kabal” algorithm was compared with the
high accuracy method followed by quantization (reference
algorithm). The differences between the LSP indices calculated
with the algorithm under evaluation and the reference
algorithm were counted, and the results are given in Table E.1.
The number of frames containing one, two, three, four and more
than four differences of one on the LSP indices are denoted as
n1, n2, n3, n4 and n5 respectively. The number of frames
containing at least one difference bigger than one on the LSP
indices is denoted as nn.

n1 n2 n3 n4 n5 nn
 “Q.-search Kabal” 0 706 3 0 0 2

Table E.1 : Comparison among “quantized-search Kabal” algorithm, and
high accuracy method + quantization in the “x-domain”, in
terms of differences in the obtained indices.

It is seen that there are no frames containing one
difference of one on the LSP indices. This is due to the fact that
the single-correction criterion proposed in Equations 6.6 to 6.8 is
perfectly equivalent to the “horizontal single-correction”
criterion.

The 706 frames containing two differences of one on the LSP
indices are due to the fact that the “enhanced vertical coupled-
correction” criterion of Equations 6.11 and 6.12 does not
correspond exactly to the “horizontal coupled-correction”
criterion. Thus there are some missed “coupled-corrections” and
coupled corrections that were erroneously done. These 706

Quantized-Search Kabal Method

205

frames have an average spectral distortion of 2.42 dB while the
same frames, using the reference algorithm, have a spectral
distortion of 2.39 dB. Furthermore this frames correspond to the
0.1098 % of the tested frames. Thus they do not affect
significantly the quantization performance.

In Table E.1 it is observed that there are three frames
containing three differences of one on the LSP indices and two
frames containing at least one difference bigger than one on the
LSP indices. Four of these five particular cases correspond to
missed zero-crossings due to the coarse quantization grid, as
observed in Figure E.1, and one of the cases corresponds to a
doubly detected zero crossing. The spectral distortion was
measured on these five frames using both “quantized-search
Kabal” and the reference algorithm, and is given in Table E.2.

Speech file / frame Reference “Q.-search Kabal”
2371 / 57 3.9462 15.9480
2785 / 24 2.2258 10.5166

2858 / 113 0.5224 5.7037
5199 / 9 3.4225 3.2096

6205 / 50 1.4617 5.8248

Table E.2 : Spectral distortion for the frames with missed or doubly-
detected zero-crossing.

It is observed that most of these frames introduce a very
high distortion, but they correspond only to the 0.0008 % of the
tested frames. Furthermore, in listening tests using the CELP
FS1016 speech coder, these cases did not introduce additional
audible distortion. Thus, to keep the low complexity of
“quantized-search Kabal” it was decided not to add any extra
computation to avoid these unlikely conditions.

206

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

neg neg

Figure E.1: Missing zero-crossing in speech file 2371, frame 57, when
searching the 7-th LSP.

Sara Grassi
Electronics and Signal Processing Laboratory

Institute of Microtechnology, University of Neuchâtel,

Breguet 2, CH-2000 Neuchâtel, Switzerland

sara.grassi@imt.unine.ch

Born March 9th, 1966, in Maracay, Venezuela.

Citizenship : Venezuelan / Italian

Current Field of Research : Speech coding and enhancement

Languages : Spanish / Italian / English / French

Educational Degrees

October 1990 - October 1991 : M.Sc. in Communications &
Digital Signal Processing, Imperial College of Science and
Technology, University of London.

September 1982 - January 1988 : Electronic Engineer,
Universidad Simon Bolivar, Caracas, Venezuela.

Working Experience

Since March 1992 : Research Assistant at the Institute of
Microtechnology, University of Neuchâtel, Switzerland.

March 1988 - August 1990 : Project Engineer with Microtel S.A.,
Venezuela.

April 1987 - Sept. 1987 : Degree project undertaken in
association with GENTE C.A., Venezuela.

July 1985 - August 1985 : Industrial training with Maraven
S.A., a branch of "Petroleos de Venezuela".

Teaching Experience

Since March 1992 definition and supervision of student projects
at the University of Neuchâtel, Switzerland.

Sept. 1985 - March 1987 : Teaching assistant in Electronics I,
Electronics II, Electronics III at the Electronics and Circuits
Department, Universidad Simon Bolivar, Caracas, Venezuela.

Publications

S. Grassi, M. Ansorge, and F. Pellandini, "Fast LSP Calculation
and Quantization with Application to the CELP FS1016 Speech
Coder", Proc. EUSIPCO'98, Sept. 1998.

S. Grassi, M. Ansorge, and F. Pellandini, "Optimized Real Time
Implementation of Spectral Analysis and Quantization for the
CELP FS1016 Speech Coder", Proc. Cost #254 Workshop on
Intelligent Communications, L'Aquila, Italy, June 4-6, 1998.

S. Grassi, A. Dufaux, M. Ansorge, and F. Pellandini, "Efficient
Algorithm to Compute LSP Parameters from 10-th order LPC
Coefficients", Proc. ICASSP'97, Vol. 3, pp. 1707-1710, 1997.

S. Grassi, A. Heubi, M. Ansorge, and F. Pellandini, "Study of a
VLSI Implementation of a Noise Reduction Algorithm for
Digital Hearing Aids", Proc. EUSIPCO'94, Vol.3, pp. 1661-1664,
1994.

S. Grassi, "Noise Elimination in Speech Using Adaptive
Filtering in Subbands", Master Thesis, Imperial College,
London, October 1991.

A. Heubi, S. Grassi, M. Ansorge, and F. Pellandini, "A Low
Power VLSI Architecture for Digital Signal Processing with an
Application to Adaptive Algorithms for Digital Hearing Aids",
Proc. EUSIPCO'94, Vol. 3, pp. 1875-1878, 1994.

������

�� ���	
��

��������
����

��������	
�����
���	�������
���	�������

�

�

�

� �

� � � �

� � � �

� � � �

� 	 	 �

�

�

� � � �

� � � �

� � � �

� 	 	 �

� � � � � �

� � � �

� � � �

� � � �

� � � �

� � � � �

� � � �

� � � �

� � � �

� � � �

=























=
+

+
+

+














+

+

+

+

+

α α
α α α α

α α α α
α α α α

α α α α

α
α α α α

α α α α
α α α α

α α α α

�

�

�

�

�

�

�
�

� � � �
�

� � � �
�

� � � �
�

� � � �
� 








������

�� ���	
���

��������
���

���������
������	������ ���� ��
��� �	
� ���� ������	
� �	
� ε�� �
� ���

���
��	
��
�����
���
��������	
��

�

()

�
�

�

� �

�
� �

�
� � �

� �
�

�

�

�
� �� �

�

� �

� 	 � 	 � � 	
�� 	 �

� � �

�

�
�

�

�

� �

�

�

� �

� � � �

�
�

�

� � �

�

�
� � �

�

�
� � �

� �
�

� � �

�

�

�

�

�

� �

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

= − ′
′

= ′ −

− ′ ⋅ ′

= + = =

= −

= −

′ + ′
=

= ⋅
= + − ≤ ≤

 − − −

−
=

−

−

−

− −

∑

ε

ε

ε ε

ε

� �

� �
�

� � � � � �

�

���

� �

� � �

���

� � � � � �� �

�
� ��

����� � �� ����












�����

