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8.1 Introduction

In tracking targets with less-than-unity probability of detection in the presence of false alarms (clutter),
data association — deciding which of the received multiple measurements to use to update each track —
is crucial. A number of algorithms have been developed to solve this problem.!** Two simple solutions
are the Strongest Neighbor Filter (SNF) and the Nearest Neighbor Filter (NNF). In the SNE, the signal
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with the highest intensity among the validated measurements (in a gate) is used for track update and
the others are discarded. In the NNF, the measurement closest to the predicted measurement is used.
While these simple techniques work reasonably well with benign targets in sparse scenarios, they begin
to fail as the false alarm rate increases or with low observable (low probability of target detection)
maneuvering targets.>® Instead of using only one measurement among the received ones and discarding
the others, an alternative approach is to use all of the validated measurements with different weights
(probabilities), known as Probabilistic Data Association (PDA).> The standard PDA and its numerous
improved versions have been shown to be very effective in tracking a single target in clutter.®’

Data association becomes more difficult with multiple targets where the tracks compete for measure-
ments. Here, in addition to a track validating multiple measurements as in the single target case, a
measurement itself can be validated by multiple tracks (i.e., contention occurs among tracks for mea-
surements). Many algorithms exist to handle this contention. The Joint Probabilistic Data Association
(JPDA) algorithm is used to track multiple targets by evaluating the measurement-to-track association
probabilities and combining them to find the state estimate.> The Multiple-Hypothesis Tracking (MHT)
is a more powerful (but much more complex) algorithm that handles the multitarget tracking problem
by evaluating the likelihood that there is a target given a sequence of measurements.* In the tracking
benchmark problem?® designed to compare the performance of different algorithms for tracking highly
maneuvering targets in the presence of electronic countermeasures, the PDA-based estimator, in con-
junction with the Interacting Multiple Model (IMM) estimator, yielded one of the best solutions. Its
performance was comparable to that of the MHT algorithm.®®

This chapter presents an overview of the PDA technique and its application for different target-tracking
scenarios. Section 8.2 summarizes the PDA technique. Section 8.3 describes the use of the PDA technique
for tracking low observable targets with passive sonar measurements. This target motion analysis (TMA)
is an application of the PDA technique, in conjunction with the maximum likelihood (ML) approach
for target motion parameter estimation via a batch procedure. Section 8.4 presents the use of the PDA
technique for tracking highly maneuvering targets and for radar resource management. It illustrates the
application of the PDA technique for recursive state estimation using the IMMPDAF. Section 8.5 presents
a state-of-the-art sliding-window (which can also expand and contract) parameter estimator using the
PDA approach for tracking the state of a maneuvering target using measurements from an electro-optical
sensor. This, while still a batch procedure, offers the flexibility of varying the batches depending on the
estimation results.

8.2 Probabilistic Data Association

The PDA algorithm calculates in real-time the probability that each validated measurement is attributable
to the target of interest. This probabilistic (Bayesian) information is used in a tracking filter, the PDA
filter (PDAF), which accounts for the measurement origin uncertainty.

8.2.1 Assumptions
The following assumptions are made to obtain the recursive PDAF state estimator (tracker):

+ There is only one target of interest whose state evolves according to a dynamic equation driven
by process noise.

+ The track has been initialized.
+ The past information about the target is summarized approximately by

x(k)‘ZH] = N%(k);fc(k‘k - 1),P(k‘k - 1)5 (8.1)

P
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where N[x(k); X(k|k — 1)] denotes the normal probability density function (pdf) with argument
x(k), mean %(k|k — 1), and covariance matrix P(k|k — 1). This assumption of the PDAF is similar
to the GPB1 (Generalized Pseudo-Bayesian) approach,!® where a single “lumped” state estimate
is a quasi-sufficient statistic.

+ At each time, a validation region as in Reference 3 is set up (see Equation 8.4).

+ Among the possibly several validated measurements, at most one of them can be target-originated —
if the target was detected and the corresponding measurement fell into the validation region.

+ The remaining measurements are assumed to be false alarms or clutter and are modeled as
independent identically distributed (iid) measurements with uniform spatial distribution.

+ The target detections occur independently over time with known probability PD.

These assumptions enable a state estimation scheme to be obtained, which is almost as simple as the
Kalman filter, but much more effective in clutter.

8.2.2 The PDAF Approach

The PDAF uses a decomposition of the estimation with respect to the origin of each element of the latest
set of validated measurements, denoted as

2(K)={= () Z(f) (8.2)

where z; (k) is the i-th validated measurement and m (k) is the number of measurements in the validation
region at time k.
The cumulative set (sequence) of measurements* is

z={z(j} (8.3)

8.2.3 Measurement Validation

From the Gaussian assumption (Equation 8.1), the validation region is the elliptical region

V(k,y) = gz:%—é(kk —1)5’s(k)'1 % —é(k‘k —1)% yg (8.4)
where Y is the gate threshold and

(k)= H(k)p(kk=1)r(K) +R(x) (8.5)

is the covariance of the innovation corresponding to the true measurement. The volume of the validation
region (Equation 8.4) is

nZ

)=ty

s(k)

(8.6)

)=,

* When the running index is a time argument, a sequence exists; otherwise it is a set where the order is not
relevant. The context should indicate which is the case.
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where the coefficient ¢, depends on the dimension of the measurement (it is the volume of the 7, -
dimensional unit hypersphere: ¢, = 2, ¢, = T, ¢; = 4703, etc.).

8.2.4 The State Estimation

In view of the assumptions listed, the association events
0 ( zi(k) is the target originated measuremen} i=1,.. m(k)
. k) =
l none of the measurements is target originatec} i=0

are mutually exclusive and exhaustive for m(k) = 1.
Using the total probability theorem!® with regard to the above events, the conditional mean of the
state at time k can be written as

#{e) =

0

ei(k),Zk]P{ ei(k)\zk} (8.8)

1=0

where x,(k|k) is the updated state conditioned on the event that the i-th validated measurement is correct,
and

B,(k)2P{0,(k) ) (8.9)

is the conditional probability of this event — the association probability, obtained from the PDA proce-
dure presented in the next subsection.
The estimate conditioned on measurement i being correct is

i kk) = &kk=1)+ WKy (6)  i=1em(k) (8.10)
where the corresponding innovation is
v, (k) = 2, () ~2(kk 1) (8.11)
The gain W(k) is the same as in the standard filter
w(k) = p(kk=1)H(K) (k)" (8.12)

since, conditioned on 6,(k), there is no measurement origin uncertainty.
For i = 0 (i.e., if none of the measurements is correct) or m(k) = 0 (i.e., there is no validated
measurement)
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5 (k) = 5{Kk 1) (8.13)

8.2.5 The State and Covariance Update
Combining Equations 8.10 and 8.13 into Equation 8.8 yields the state update equation of the PDAF

fc(k‘k) = &(k‘k - 1) +w(k)v(k) (8.14)

where the combined innovation is

m(k)
v(k)= Z B,(k)v,(k) (8.15)
The covariance associated with the updated state is
P(k\k) =B, (k)p(k\k - 1) +[1 -B, (k)] P (k\k) +P(K) (8.16)
where the covariance of the state updated with the correct measurement is?
P (k) = Pkk =1) - w{K)s()w (k) (8.17)
and the spread of the innovations term (similar to the spread of the means term in a mixture') is

)5S 8 (6] (i) Ew(k)' .19

o=

8.2.6 The Prediction Equations

The prediction of the state and measurement to K + 1 is done as in the standard filter, i.e.,
fc(k +1\k) = F(k)fc(k\k) (8.19)
2(k +1\k) = H(k +1)5c(k +1\k) (8.20)
The covariance of the predicted state is, similarly,
P(k + l‘k) = F(k)P(k\k)F(k) + Q(k) (8.21)
where P(k|k) is given by Equation 8.16.
The innovation covariance (for the correct measurement) is, again, as in the standard filter

S(k+1)=H(k +1)P(k+1\k)H(k+1)' +R(k+1) (8.22)
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8.2.7 The Probabilistic Data Association

To evaluate the association probabilities, the conditioning is broken down into the past data Z*! and the
latest data Z(k). A probabilistic inference can be made on both the number of measurements in the
validation region (from the clutter density, if known) and on their location, expressed as:

Bi(k):P{ei(k)‘Z"} = { k) 2 (k) m{k). 2+~ 1} (8.23)

Using Bayes’ formula, the above is rewritten as

B(k)= *1%7() (k) mlk) 2 {Gi(k)‘m(k),z"‘l] i=0,...,m(k) (8.24)

The joint density of the validated measurements conditioned on 8,(k), i # 0, is the product of

+ The (assumed) Gaussian pdf of the correct (target-originated) measurements

+ The pdf of the incorrect measurements, which are assumed to be uniform in the validation region
whose volume V(k) is given in Equation 8.6.

The pdf of the correct measurement (with the P, factor that accounts for restricting the normal density

to the validation gate) is
v ko, S(k)] (8.25)

p (Ko K)nlih 2 B it G (el {k)ge i v

The pdf from Equation 8.24 is then

Ao bhnle) 7] ) o] | .20

The probabilities of the association events conditioned only on the number of validated measurements are

p’Z(k)‘ 2 1] Eyk o (;IN[vi(k);o,s(k)] z:1m(k) -

WI

where [, (m) is the probability mass function (pmf) of the number of false measurements (false alarms
or clutter) in the validation region.
Two models can be used for the pmf [ (m) in a volume of interest V:

1. A Poisson model with a certain spacial density A

u,(m) :e‘W()\n‘;)m (8.28)
2. A diffuse prior model®
u,(m)=p,(m-1)=5 (8.29)

where the constant & is irrelevant since it cancels out.
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Using the (parametric) Poisson model in Equation 8.27 yields

| k]:BPDPG[pDPGm(k)+(1_prG)w(k)] ’ e

fi-r v

The (nonparametric) diffuse prior (Equation 8.29) yields

B m(K)+(1-p,B p V(k)] T =0

yi[m(k)]:%PDPG i=1,...,m(k) (5.31)
Qi-pp) =0

The nonparametric model (Equation 8.31) can be obtained from Equation 8.30 by setting
mlk
A= ( ) (8.32)
Viki

i.e., replacing the Poisson parameter with the sample spatial density of the validated measurements. The
volume V(k) of the elliptical (i.e., Gaussian-based) validation region is given in Equation 8.6.

8.2.8 The Parametric PDA

Using Equations 8.30 and 8.26 with the explicit expression of the Gaussian pdf in Equation 8.24 yields,
after some cancellations, the final equations of the parametric PDA with the Poisson clutter model

O e. .
Dil(k) 1:1,...,m(k)

l3,-(k):§k+z"=1 K | (8.33)

where

e=e? (8.34)
V21-P P
pENmS(k) e (8.35)
D
The last expression above can be rewritten as

Con L1-PP.
b= AV(k)e ' —L¢ 8.36
g Wk (8.36)

8.2.9 The Nonparametric PDA

The nonparametric PDA is the same as above except for replacing AV(k) in Equation 8.36 by m(k) —
this obviates the need to know A.
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8.3 Low Observable TMA Using the ML-PDA Approach
with Features

This section considers the problem of target motion analysis (TMA) — estimation of the trajectory
parameters of a constant velocity target — with a passive sonar, which does not provide full target position
measurements. The methodology presented here applies equally to any target motion characterized by a
deterministic equation, in which case the initial conditions (a finite dimensional parameter vector) char-
acterize in full the entire motion. In this case the (batch) maximum likelihood (ML) parameter estimation
can be used; this method is more powerful than state estimation when the target motion is deterministic
(it does not have to be linear). Furthermore, the ML-PDA approach makes no approximation, unlike
the PDAF in Equation 8.1.

8.3.1 Amplitude Information Feature

The standard TMA consists of estimating the target’s position and its constant velocity from bearings-
only (wideband sonar) measurements corrupted by noise.!® Narrowband passive sonar tracking, where
frequency measurements are also available, has been studied.!! The advantages of narrowband sonar are
that it does not require a maneuver of the platform for observability, and it greatly enhances the accuracy
of the estimates. However, not all passive sonars have frequency information available. In both cases, the
intensity of the signal at the output of the signal processor, which is referred to as measurement amplitude
or amplitude information (Al), is used implicitly to determine whether there is a valid measurement. This
is usually done by comparing it with the detection threshold, which is a design parameter.

This section shows that the measurement amplitude carries valuable information and that its use in
the estimation process increases the observability even though the amplitude information cannot be
correlated to the target state directly. Also superior global convergence properties are obtained.

The pdf of the envelope detector output (i.e., the AI) a when the signal is due to noise only is denoted
as py(a) and the corresponding pdf when the signal originated from the target is p,(a). If the signal-to-
noise ratio (SNR — this is the SNR in a resolution cell, to be denoted later as SNR,) is d, the density
functions of noise only and target-originated measurements can be written as

po(a)=aexp5ra;§ az0 (8.37)
_ a D a’ .
pl(a)_1+deXp§_2(1+d)§ @20 (8.38)

respectively. This is a Rayleigh fading amplitude (Swerling I) model believed to be the most appropriate
for shallow water passive sonar.

A suitable threshold, denoted by T, is used to declare a detection. The probability of detection and the
probability of false alarm are denoted by P}, and Py, respectively. Both P}, and Py, can be evaluated from
the probability density functions of the measurements. Clearly, in order to increase P, the threshold T
must be lowered. However, this also increases Pg,. Therefore, depending on the SNR, T must be selected
to satisfy two conflicting requirements.*

The density functions given above correspond to the signal at the envelope detector output. Those
corresponding to the output of the threshold detector are

*For other probabilistic models of the detection process, different SNR values correspond to the same P, Py,
pair. Compared to the Rician model receiver operating characteristic (ROC) curve, the Rayleigh model ROC curve
requires a higher SNR for the same pair (P, Pg,), i.e., the Rayleigh model considered here is pessimistic.
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Pé(ﬂ) Pipo(a)—ianpB- Ha>T (8.39)

FA

)= o)=L 2 o 0o
D

where pj(a) is the pdf of the validated measurements that are caused by noise only, and p|(a) is the pdf
of those that originated from the target. In the following, a is the amplitude of the candidate measure-
ments. The amplitude likelihood ratio, p, is defined as

p:pi(a) (8.41)
Py\a

8.3.2 Target Models

Assume that n sets of measurements, made at times ¢ = t,, t,,..., t,, are available.
For bearings-only estimation, the target motion is defined by the four-dimensional parameter vector

X=

£ft,) nft). & (8.42)
where &(t,) and n(t,) are the distances of the target in the east and north directions, respectively, from
the origin at the reference time t,. The corresponding velocities, assumed constant, are & and 1, respec-
tively. This assumes deterministic target motion (i.e., no process noise'®). Any other deterministic motion

(e.g., constant acceleration) can be handled within the same framework.
The state of the platform at t; (i = 1,..., n) is defined by

) ) ) )

The relative position components in the east and north directions of the target with respect to the platform
at t; are defined by r; (;, x) and r,, (t;, x), respectively. Similarly, v; (¢, x) and v, (¢, x) define the relative
velocity components. The true bearing of the target from the platform at ¢, is given by

A, -
Bi(x) 2 tan l[rZ (ti,x)/rrI (ti,x)] (8.44)
The range of possible bearing measurements is
4
U, & [el,ez] D[o,zn] (8.45)
The set of measurements at ¢; is denoted by

2())4{= (i} " (8.46)

where m; is the number of measurements at #;, and the pair of bearing and amplitude measurements

z(i), is defined by
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AW '
z (i) [ij aij] (8.47)
The cumulative set of measurements during the entire period is
A é{z(i)} (8.48)
i=1
The following additional assumptions about the statistical characteristics of the measurements are also
made:!!

1. The measurements at two different sampling instants are conditionally independent, i.e.,

p[Z(il),Z(iz)‘x = p[Z(il) 2(i,)x

where p[-]is the probability density function.

2. A measurement that originated from the target at a particular sampling instant is received by the
sensor only once during the corresponding scan with probability P, and is corrupted by zero-
mean Gaussian noise of known variance. That is

x|p Oiz i, (8.49)

B,=6,x)+ g (8.50)

where [;~ N ’:‘), o4 ] is the bearing measurement noise. Due to the presence of false measurements,
the index of the true measurement is not known.
3. The false bearing measurements are distributed uniformly in the surveillance region, i.e.,

B, ~u[6,.6] (8.51)

4. The number of false measurements at a sampling instant is generated according to a Poisson law
with a known expected number of false measurements in the surveillance region. This is deter-
mined by the detection threshold at the sensor (exact equations are given in Section 8.3.5).

For narrowband sonar (with frequency measurements) the target motion model is defined by the
five-dimensional vector

x = (8.52)

E(ﬂ)a n(fl), & n,y

where Y is the unknown emitted frequency assumed constant. Due to the relative motion between the
target and platform at ¢, this frequency will be Doppler shifted at the platform. The (noise-free) shifted
frequency, denoted by v, (x), is given by

0 vy (ti,x)sinei(x)+v” (ti,x)cos 6, (x)D
(x)=ya--=2 ad
=g c -

where c is the velocity of sound in the medium. If the bandwidth of the signal processor in the sonar is
[Q,, Q,], the measurements can lie anywhere within this range. As in the case of bearing measurements,

(8.53)
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we assume that an operator is able to select a frequency subregion [I},I",] for scanning. In addition to
the bearing surveillance region given in Equation 8.45, the region for frequency is defined as

u, &[r.r]ofe,0,] (8.54)

The noisy frequency measurements are denoted by f; and the measurement vector is

2 (1) [Blj’ fin aij]' (8.55)

As for the statistical assumptions, those related to the conditional independence of measurements (assump-
tion 1) and the number of false measurements (assumption 4) are still valid. The equations relating the
number of false alarms in the surveillance region to detection threshold are given in Section 8.3.5.

The noisy bearing measurements satisfy Equation 8.50 and the noisy frequency measurements f; satisfy

£=vi(x)+v, (8.56)

where v~ N [0, 0;] is the frequency measurement noise.
It is also assumed that these two measurement noise components are conditionally independent. That is,

il

The measurements resulting from noise only are assumed to be uniformly distributed in the entire
surveillance region.

x) (8.57)

x) =p(El,-

P(qj"’ﬁ

8.3.3 Maximum Likelihood Estimator Combined
with PDA — The ML-PDA

In this section we present the derivation and implementation of the maximum likelihood estimator
combined with the PDA technique for both bearings-only tracking and narrowband sonar tracking. If
there are m; detections at t;, one has the following mutually exclusive and exhaustive events:?

» [ measurement zj(i) is from the targe} i=L..,m,
e (i) (8.58)
all measurements are fals j=0
The pdf of the measurements corresponding to the above events can be written as
] f— m; .
[1"1 ,p(Blj)le I_I v_lp;(ai].) j=L..,m,
oele b=, (5.59)
—m; ! T —
%l I_ljzlpo(a']) =0

where u = Uy is the area of the surveillance region.
Using the total probability theorem, the likelihood function of the set of measurements at ¢; can be
expressed as
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=u"(1-P “a u, (m)+—2 D”f( 1) 8.60
( D) Po( U)p‘f( 1) ”Po ( )

where {1, (m,) is the Poisson probability mass function of the number of false measurements at #,. Dividing
the above by p[Z(I)|€,(1), x] yields the dimensionless likelihood ratio ®; [Z(I), x] at t;. Then

(8.61)
p[l_ "9( )

REE R B
AJZ@% i DZH g, HD

where A is the expected number of false alarms per unit area. Alternately, the log-likelihood ratio at ¢,
can be defined as

o[7(i).4 :1n§1—pp)+ L Zr p,ex pD ZMD{D (8.62)

Using conditional independence of measurements, the likelihood function of the entire set of mea-
surements can be written in terms of the individual likelihood functions as

(8.63)

Then the dimensionless likelihood ratio for the entire data is given by

GJ[Z",x] = ” CDi[Z(i),x] (8.64)

From the above, the total log-likelihood ratio ®,[Z(i), x]¢; can be expressed as

=g 7% 1 ETED
CD[Zﬂ’x] = Zlngl—PD)+ \21109 p;: exp%l—2 E 0'9 E% (8.65)

1=1
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The maximum likelihood estimate (MLE) is obtained by finding the state x = x that maximizes the
total log-likelihood function. In deriving the likelihood function, the gate probability mass, which is the
probability that a target-originated measurement falls within the surveillance region, is assumed to be
one. The operator selects the appropriate region.

Arguments similar to those given earlier can be used to derive the MLE when frequency measurements
are also available. Defining €(i) as in Equation 8.58, the pdf of the measurements is

(),x %llm ( )(ff)Pﬁrl:;PS(ﬂﬁ) i=L..,m,
%‘ nﬂp()(u) i=0

where u = UpU, is the volume of the surveillance region.

(8.66)

rirlie

After some lengthy manipulations, the total log-likelihood function is obtained as

m; g 6 ( )DZ [fED

q{ ] zln%lp L D—LD 1 D (8.67)

p
)\ L 210, O, % H %% [ 2§ oy H

For narrowband sonar, the MLE is found by maximizing Equation 8.67.

This section demonstrated the essence of the use of the PDA — all the measurements are accounted
for and the likelihood function is evaluated using the total probability theorem, similar to Equation 8.8.
However, since Equation 8.67 is exact (for the parameter estimation formulation), there is no need for
the approximation in Equation 8.1, which is necessary in the PDAF for state estimation.

The same ML-PDA approach is applicable to the estimation of the trajectory of an exoatmospheric
ballistic missile.!>!* The modification of this fixed-batch ML-PDA estimator to a flexible (sliding/expand-
ing/contracting) procedure is discussed in Section 8.5 and demonstrated with an actual electro-optics
(EO) data example.

8.3.4 Cramér-Rao Lower Bound for the Estimate

For an unbiased estimate, the Cramér-Rao lower bound (CRLB) is given by
. N O -
Eﬁx—x)(x—x) = (8.68)
U

where ] is the Fisher information matrix (FIM) given by

]=E%]xlnp(2” x)%]xlnp(Z” x)gax:xm (8.69)

Only in simulations will the true value of the state parameter be available. In practice CRLB is evaluated
at the estimate.

As expounded in Reference 14, the FIM ] is given in the present ML-PDA approach for the bearings-
only case — wideband sonar — by

I:qz(PD,)\vg,g)i;[Dxei(x)][ﬂxei(x)]' (8.70)
& Op
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where g,(Pp, Av,, g) is the information reduction factor that accounts for the loss of information resulting
from the presence of false measurements and less-than-unity probability of detection,® and the expected
number of false alarms per unit volume is denoted by A.

In deriving Equation 8.70, only the bearing measurements that fall within the validation region

i\ A B;‘_ei(x) E
Vix =§3ij:]75g[j (8.71)
(+) =

at t; were considered. The validation region volume (g-sigma region), v,, is given by
v, =20,¢ (8.72)

The information reduction factor q,(Py, Av,, g) for the present two-dimensional measurement situation
(bearing and amplitude) is given by

fiz(PDJWg,g):L ?iuf(m_})l (m,PD,g) (8.73)

1+d\‘nm: (gPFA)m e

where I,(m, Pp, g) is a 2m-fold integral given in Reference 14 where numerical values of q,(P, Av,, g)
for different combinations of Pj, and Av, are also presented. The derivation of the integral is based on
Bar-Shalom and Li’ In this implementation, g = 5 was selected. Knowing Pj, and Av,, Py, can be
determined by using

)\vg =P (8.74)

Vs
FA
Vv
c

where V_ is the resolution cell volume of the signal processor (discussed in more detail in Section 8.3.5).
Finally, d, the SNR, can be calculated from Pj, and 7\vg.

The rationale for the term information reduction factor follows from the fact that the FIM for zero false
alarm probability and unity target detection probability, J,, is given by Reference 10

= i;é[mxei(x)][mxei(x)]' (.75)

1=

Equations 8.70 and 8.75 clearly show that g,(Py, Av,, g), which is always less than or equal to unity,
represents the loss of information due to clutter.
For narrowband sonar (bearing and frequency measurements), the FIM is given by
‘B

]:qz(PD,)\V ,g)zﬁ 0 e( ) Dxei(x)' O, i(x) %

where g,(Pp, Av,, g) for this three-dimensional measurement (bearing, frequency, and amplitude) case

+% I:nyi(x)

Oy

(8.76)

is evaluated!' using

( )'"‘1
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The expression for I,(m, Py, g) and the numerical values for q,(Pp, Av,, g) are also given by Kirubarajan
and Bar-Shalom.!*

For narrowband sonar, the validation region is defined by

O _ f fH
; 0.
vi(x) & s, fg)% =) g ()DE <g’ (8.78)
H % H B % 8f
and the volume of the validation region, v,, is
v, =0'0"g’ (8.79)

8.3.5 Results

Both the bearings-only and narrowband sonar problems with amplitude information were implemented
to track a target moving at constant velocity. The results for the narrowband case are given below,
accompanied by a discussion of the advantages of using amplitude information by comparing the
performances of the estimators with and without amplitude information.

In narrowband signal processing, different bands in the frequency domain are defined by an appro-
priate cell resolution and a center frequency about which these bands are located. The received signal is
sampled and filtered in these bands before applying FFT and beamforming. Then the angle of arrival is
estimated using a suitable algorithm.'> As explained earlier, the received signal is registered as a valid
measurement only if it exceeds the threshold T. The threshold value, together with the SNR, determines
the probability of detection and the probability of false alarm.

The signal processor was assumed to consist of the frequency band [500Hz, 1000Hz] with a 2048-
point FFT. This results in a frequency cell whose size is given by

G = 500/2048 =0.25Hz (8.80)

Regarding azimuth measurements, the sonar is assumed to have 60 equal beams, resulting in an
azimuth cell Cy with size

C, =180°/60 =3.0° (8.81)

Assuming uniform distribution in a cell, the frequency and azimuth measurement standard deviations
are given by*

0, =0.25/12 =0.0722Hz (8.82)
0, =3.0/\12 =0.866° (8.83)

The SNR( in a cell** was taken as 6.1dB and P,, = 0.5. The estimator is not very sensitive to an incorrect
P,,. This is verified by running the estimator with an incorrect P, on the data generated with a different

* The “uniform” factor /12 corresponds to the worst case. In practice, Gy and 0, are functions of the 3dB-
bandwidth and of the SNR.

** The commonly used SNR, designated here as SNR,, is signal strength divided by the noise power in a 1-Hz
bandwidth. SNR. is signal strength divided by the noise power in a resolution cell. The relationship between them, for
C,=0.25Hzis SNR. = SNR, — 6dB. SNR is believed to be the more meaningful SNR because it determines the ROC curve.
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P,,. Differences up to 0.15 are tolerated by the estimator. The corresponding SNR in a 1-Hz bandwidth
SNR, is 0.1dB. These values give

T=2.64 (8.84)

P,, =0.306 (8.85)

From P,,, the expected number of false alarms per unit volume, denoted by A, can be calculated using

P, =AC,C, (8.86)
Substituting the values for Cy and A gives
:w:0.0407/deg (Hz (8.87)
3.0 x0.25

The surveillance regions for azimuth and frequency, denoted by Uy and U,, respectively, are taken as
Uy =[ 20207 (8.88)

U, = [747Hz, 753Hz] (8.89)

The expected number of false alarms in the entire surveillance region and that in the validation gate
V, can be calculated. These values are 9.8 and 0.2, respectively, where the validation gate is restricted to
g = 5. These values mean that, for every true measurement that originated from the target, there are
about 10 false alarms that exceed the threshold.

The estimated tracks were validated using the hypothesis testing procedure described in Reference 14.
The track acceptance test was carried out with a miss probability of five percent.

To check the performance of the estimator, simulations were carried out with clutter only (i.e., without
a target) and also with a target present; measurements were generated accordingly. Simulations were
done in batches of 100 runs.

When there was no target, irrespective of the initial guess, the estimated track was always rejected.
This corroborates the accuracy of the validation algorithm given by Kirubarajan and Bar-Shalom.!*

For the set of simulations with a target, the following scenario was selected: the target moves at a speed
of 10 m/s heading west and 5 m/s heading north starting from (5000 m, 35,000 m). The signal frequency
is 750 Hz. The target parameter is x = [5000 m, 35,000 m, —10 m/s, 5 m/s, 750 Hz]. The motion of the
platform consisted of two velocity legs in the northwest direction during the first half, and in the northeast
direction during the second half of the simulation period with a constant speed of 7:1 m/s. Measurements
were taken at regular intervals of 30 s. The observation period was 900 s. Figure 8.1 shows the scenario
including the target true trajectory (solid line), platform trajectory (dashed line), and the 95% probability
regions of the position estimates at the initial and final sampling instants based on the CRLB
(Equation 8.76). The initial and the final positions of the trajectories are marked by I and F, respectively.
The purpose of the probability region is to verify the validity of the CRLB as the actual parameter estimate
covariance matrix from a number of Monte Carlo runs.*

Figure 8.1 shows the 100 tracks formed from the estimates. Note that in all but six runs (i.e., 94 runs)
the estimated trajectory endpoints fall in the corresponding 95% uncertainty ellipses.
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FIGURE 8.1 Estimated tracks from 100 runs for narrowband sonar with AL

TABLE 8.1 Results of 100 Monte Carlo Runs
for Narrowband Sonar with AI (SNRC = 6:1dB)

Unit Xitrue Xinit X Ocrip G

m 5000 —12,000 to 12,000 4991 667 821

m 35,000 49,000 to 50,000 35,423 5576 5588
m/s -10 -16to 5 -9.96 0.85 0.96
m/s 5 —4to9 4.87 4.89 4.99
Hz 750 747 to 751 749.52 2.371 2.531

Table 8.1 gives the numerical results from 100 runs. Here x is the average of the estimates, G the
variance of the estimates evaluated from 100 runs, and O, ; the theoretical CRLB derived in Section 8.3.4.
The range of initial guesses found by rough grid search to start off the estimator are given by x;,;.

The efficiency of the estimator was verified using the normalized estimation error squared (NEES)'
defined by

0=" (= #) 7(x-%) (8.90)

where x is the estimate, and J is the FIM (Equation 8.76). Assuming approximately Gaussian estimation
error, the NEES is chi-square distributed with # degrees-of-freedom where # is the number of estimated
parameters. For the 94 accepted tracks the NEES obtained was 5.46, which lies within the 95% confidence

region [4:39; 5:65]. Also note that each component of x is within 26/,/100 of the corresponding compo-
nent of x,

true®

8.4 The IMMPDAF for Tracking Maneuvering Targets

Target tracking is a problem that has been well studied and documented. Some specific problems of
interest in the single-target, single-sensor case are tracking maneuvering targets,!° tracking in the presence
of clutter,’ and electronic countermeasures (ECM). In addition to these tracking issues, a complete
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tracking system for a sophisticated electronically steered antenna radar has to consider radar scheduling,
waveform selection, and detection threshold selection.

Although many researchers have worked on these issues and many algorithms are available, there had
been no standard problem comparing the performances of the various algorithms. Rectifying this, the
first benchmark problem!® was developed, focusing only on tracking a maneuvering target and point-
ing/scheduling a phased array radar. Of all the algorithms considered for this problem, the interacting
multiple model (IMM) estimator yielded the best performance.!” The second benchmark problem’
included false alarms (FA) and ECM — specifically, a stand-off jammer (SOJ) and range gate pull off
(RGPO) — as well as several possible radar waveforms (from which the resource allocator has to select
one at every revisit time). Preliminary results for this problem showed that the IMM and multiple-
hypothesis tracking (MHT) algorithms were the best solutions.*® For the problem considered, the MHT
algorithm yielded similar results as the IMM estimator with probabilistic data association filter (IMMP-
DAF) modules,® although the MHT algorithm was one to two orders of magnitude costlier computa-
tionally (as many as 40 hypotheses were needed*). The benchmark problem of Reference 18 was upgraded
in Reference 8 to require the radar resource allocator/manager to select the operating constant false alarm
rate (CFAR) and included the effects of the SOJ on the direction of arrival (DOA) measurements; also
the SOJ power was increased to present a more challenging benchmark problem. While, in Reference 18,
the primary performance criterion for the tracking algorithm was minimization of radar energy, the
primary performance was changed in Reference 8 to minimization of a weighted combination of radar
time and energy.

This section presents the IMMPDAF technique for automatic track formation, maintenance, and
termination. The coordinate selection for tracking, radar scheduling/pointing and the models used for
mode-matched filtering (the modules inside the IMM estimator) are also discussed. These cover the
target tracking aspects of the solution to the benchmark problem. These are based on the benchmark
problem tracking and sensor resource management.®$

8.4.1 Coordinate Selection

For target tracking in track-dwell mode of the radar, the number of detections at scan k (time f,) is
denoted by m,. The m-th detection report (,, (f,) (m = 1,2,...,m,) consists of a time stamp #,, range 7,
bearing b,,, elevation e, amplitude information (AI) p,, given by the SNR, and the standard deviations
of bearing and elevation measurements, 0, and G, respectively. Thus,

Em(tk)z[tk, r, b, e, P,y O ofn' (8.91)

where the overbar indicates that this is in the radar’s spherical coordinate system.

The Al is used only to declare detections and select the radar waveform for the next scan. Since the
use of AL for example, as in Reference 17, can be counterproductive in discounting RGPO measurements,
which generally have higher SNR than target-originated measurements, Al is not utilized in the estimation
process itself. Using the Al would require a separate model for the RGPO intensity, which cannot be
estimated in real time due to its short duration and variability.!”

For target tracking, the measurements are converted from spherical coordinates to Cartesian coordi-
nates, and then the IMMPDAF is used on these converted measurements. This conversion avoids the use
of extended Kalman filters and makes the problem linear.* The converted measurement report ¢, (f,)
corresponding to C,,(t,) is given by$

Cm(tk):[tk, X5 Vo> 2, P, R, (8.92)

* The more recent IMM-MHT (as opposed to Kalman filter-based MHT) requires six to eight hypotheses.
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where x,,, ¥,,» z,,» and R, are the three position measurements in the Cartesian frame and their covariance
matrix, respectively. The converted values are

x,, =1, cos(b, Jcos(e,) (8.93)
s o) ws

2, =,sinfe, ) (8.95)

R =T, miaggc;)z,(c;)z,(cfn)zEET;" (8.96)

where 0} is the standard deviation of range measurements at scan k and T,, is the spherical-to-Cartesian
transformation matrix given by

%os(bm)cos(em) -1, sin(bm)cos(em) -, cos(bm)cos(em)g

T, = Bin(bm)cos(em) r cos(bm)cos(em) -, sin(bm)cos(em) O (8.97)
O O

g sinfe 0 r_cos\e, g

For the scenarios considered here, this transformation is practically unbiased and there is no need for
the debiasing procedure of Reference 4.

8.4.2 Track Formation

In the presence of false alarms, track formation is crucial. Incorrect track initiation will result in target
loss. In Reference 3, an automatic track formation/deletion algorithm in the presence of clutter is
presented based on the IMM algorithm. In the present benchmark problem, a noisy measurement
corresponding to the target of interest is given in the first scan.* Forming new tracks for each validated
measurement (based on a velocity gate) at subsequent scans, as suggested in Reference 3 and as imple-
mented in Reference 6, is expensive in terms of both radar energy and computational load. In this
implementation, track formation is simplified and handled as follows:

Scan 1 (t = 0s) — As defined by the benchmark problem, there is only one (target-originated, noisy)
measurement. The position component of this measurement is used as the starting point for the
estimated track.

Scan 2 (t = 0.1s) — The beam is pointed at the location of the first measurement. This yields, possibly,
more than one measurement and these measurements are gated using the maximum possible
velocity of the targets to avoid the formation of impossible tracks. This validation region volume,
which is centered on the initial measurement, is given by

-0 e OO Rr e OJ
nyz - %%max62 + 3\“‘ Rm2 %D}/maxaz +3\f Rm2 %%maxéz +3\/Rmz Eﬁ (898)

where 8, = 0:1s is the sampling interval and x,,.8,, ¥,,..9, and z,,,,8, are the maximum speeds in
the X, Y, and Z directions respectively; R, , R}, , and R;,  are the variances of position measurements
in these directions obtained from the diagonal components of Equation 8.96. The maximum speed
in each direction is assumed to be 500 m/s.

*Assuming that this is a search pulse without (monopulse) split-beam processing, the angular errors are uniformly
distributed in the beam.
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The measurement in the first scan and the measurement with the highest SNR in the second
scan are used to form a track with the two-point initialization technique.'® The track splitting
used in References 3 and 6 was found unnecessary — the strongest validated measurement was
adequate. This technique yields the position and velocity estimates and the associated covariance
matrices in all three coordinates.

Scan 3 (t = 0.2s) — The pointing direction for the radar is given by the predicted position at t = 0.2 s
using the estimates at scan 2. An IMMPDA filter with three models discussed in the sequel is
initialized with the estimates and covariance matrices obtained at the second scan. The acceleration

component for the third order model is assumed zero with variance (a,,,,)? , where a,,, = 70 m/s?

max)

is the maximum expected acceleration of the target.

From scan 3 on, the track is maintained using the IMMPDAF as described in Section 8.4.3. In order
to maintain a high SNR for the target-originated measurement during track formation, a high-energy
waveform is used. Also, scan 3 dwells are used to ensure target detection. This simplified approach cannot
be used if the target-originated measurement is not given at the first scan. In that case, the track formation
technique in Reference 3 can be used.

Immediate revisit with sampling interval 0.1s is carried out during track formation because the initial
velocity of the target is not known — in the first scan only the position is measured and there is no a
priori velocity. This means that in the second scan the radar must be pointed at the first scan position,
assuming zero velocity. Waiting longer to obtain the second measurement could result in the loss of the
target-originated measurement due to incorrect pointing. Also, in order to make the IMM mode prob-
abilities converge to the correct values as quickly as possible, the target is revisited at a high rate.

8.4.3 Track Maintenance

The true state of the target at #, is

)=l o) o) o) o) 50 o) o) o))

where x(t,), y(t,), and z(t,) are the positions, x(#,), y(f,), and z(#,) are the velocities, and X(z,), J(t,),
and Zz(t,) are the accelerations of the target in the corresponding coordinates, respectively. The measure-
ment vector consists of the Cartesian position components at f, and is denoted by z(z,).

Assuming that the target motion is linear in the Cartesian coordinate system, the true state of the
target can be written as

)= (5o )+ (8 o) (3.99)
and the target-originated measurement is related to the state according to

o) = ix{r,) +w(r,) (8.100)
where &, = t — t,_,. The white Gaussian noise sequences v(t,) and w(t,) are independent and their

covariances are Q(8,) and R(#,), respectively.
With the above matrices, the predicted state x(¢;) at time , is

f((t,:):F(ék)+§((tk_l) (8.101)

and the predicted measurement is

i(tk’) :H&(tk’) (8.102)
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with associated innovation covariance
(1) = Hp(t; ) + R 1) (8.103)
where P(t;) is the predicted state covariance to be defined in Equation 8.117 and R(#,) is the (expected)

measurement noise covariance.

8.4.3.1 Probabilistic Data Association

During track maintenance, each measurement at scan t, is validated against the established track. This
is achieved by setting up a validation region centered around the predicted measurement at ¢;. The

validation region is
[z(tk) —i(t;) S(tk)_l z(tk) —i(t;)

where S(#,) is the expected covariance of the innovation corresponding to the correct measurement and
Y = 16 (0.9989 probability mass®) is the gate size. The appropriate covariance matrix to be used in the
above is discussed in the sequel.

<y (8.104)

The set of measurements validated for the track at t, is

Z(k)Z{zm(tk),m :1,2,...,mk} (8.105)

where m,, is the number of measurements validated and associated with the track. Also, the cumulative
set of validated measurements up to and including scan k is denoted by Z¥. All unvalidated measurements
are discarded.

With these m, validated measurements at t,, one has the following mutually exclusive and exhaustive
events:

3 (t ) a []measurement z,, (tk) is from the targe% m=1,...,m

(8.106)

1
(e}

all measurements are false} m

Using the nonparametric version of the PDAF?* the validated measurements are associated probabilisti-
cally to the track. The combined target state estimate is obtained as

fc(tk) = ZBm(tk)fcm(tk) (8.107)

where B, (t,) is the probability that the m-th validated measurement is correct and x,,(t,) is the updated
state conditioned on that event. The conditionally updated states are given by

fcm(tk) = &(tk’) +Wm(tk)vm(tk) m=12,...m, (8.108)

where W, (t,) is the filter gain and v,,(t,) = z,,(t,) — ,(t;) is the innovation associated with the m-th
validated measurement. The gain, which depends on the measurement noise covariance, is

W, (1,)= P(t;)H'[HP(t,;)H' +R (tk)] A P )s, (i) (8.109)

where R, (t,) depends on the observed SNR for measurement 1.5
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The association event probabilities 3,,(¢,) are given by

B.(1) :P{Em(tk)‘zl"} (8.110)

+Zlee(j) (8.111)

+y i) "
where
elm)= Ny (05, 1) (5.112)
1-p

D

b=m 8.113)
“pv(t) (

and Pj, is the probability of detection of a target-originated measurement. The probability that a target-
originated measurement, if detected, falls within the validation gate is assumed to be unity. Also, N'[v;0, S]
denotes the normal pdf with argument v, mean zero, and covariance matrix S. The common validation
volume V(%) is the union of the validation volumes V,,(%,) used to validate the individual measurements
associated with the target V(%) and is given by

1/2

v, (t) =y, [s, (t.) (8.114)

where V,_is the volume of the unit hypersphere of dimension 7,, the dimension of the measurement z.
For the three-dimensional position measurements V, = 4771 (see Reference 3).
The state estimate is updated as

q@#@pimhmwmwg (5.115)

and the associated covariance matrix is updated as

qqﬁﬁyimmM@m@WwJ@w (5.116)

where

r

p(t;) =F(5,)P(1..)F(3.) +r(a)e(a)r (3) (8.117)

is the predicted state covariance and the term
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3

)= S bbb -

(8.118)
Oy Oy

@; B, (1), (fk)vm(tk)g g B, 1), e o 1)

is analogous to the spread of the innovations in the standard PDA.> Monopulse processing results in
different accuracies (standard deviations) for different measurements within the same dwell. This
accounts for the difference in the above equations from the standard PDA, where the measurement
accuracies are assumed to be the same for all of the validated measurements.

To initialize the filter at k = 3, the following estimates are used:!°
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where h is the index corresponding to the validated measurement with the highest SNR in the second
scan, and the superscripts x, y, and z denote the components in the corresponding directions, respectively.
The associated covariance matrix can be derived!® using the measurement covariance R, and the maxi-
mum target acceleration a,,.. If the two point differencing results in a velocity component that exceeds
the corresponding maximum speed, it is replaced by that speed. Similarly, the covariance terms corre-
sponding to the velocity components are upper bounded by the corresponding maximum values.

8.4.3.2 IMM Estimator Combined with the PDA Technique

In the IMM estimator it is assumed that at any time the target trajectory evolves according to one of a
finite number of models, which differ in their noise levels and/or structures.!’ By probabilistically com-
bining the estimates of the filters, typically Kalman, matched to these modes, an overall estimate is found.
In the IMM-PDAF the Kalman filter is replaced with the PDA filter (given in Section 8.4.3.1 for mode-
conditioned filtering of the states), which handles the data association.

Let r be the number of mode-matched filters used, M(#,) the index of the mode in effect in the semi-
open interval (#_,, ;) and I; (t,) be the probability that mode j (j = 1, 2,..., r) is in effect in the above
interval. Thus,

u,(t)= P{M(tk) = j‘Zl"} (8.120)
The mode transition probability is defined as

3 :P{M(tk) :j‘M(tk_l):z} (8.121)
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The state estimates and their covariance matrix at #, conditioned on the j-th mode are denoted by and
P(1;), respectively.
The steps of the IMMPDAF are as follows®

Step 1 — Mode interaction or mixing. The mode-conditioned state estimate and the associated
covariances from the previous iteration are mixed to obtain the initial condition for the mode-
matched filters. The initial condition in cycle k for the PDAF matched to the j-th mode is computed
using

T

%,,(1,) = Zf{i(tk—l)“i‘j(tk—l) (8.122)

1=1

where

ui‘j(tk_l)=P{M(tk_l)=i‘M(tk_l) ' 1’"1}: il ) i, j=12,..,r  (8.123)

Z Pt kl

are the mixing probabilities. The covariance matrix associated with Equation 8.122 is given by

- | . . . . g
P()j(tk—l) = Z "'li‘j(tk—l) EPf(tH) +[Xi(tk) _Xoj(tk—l)] [Xi(tk) _XOj(tk—l)] E (8.124)

Step 2 — Mode-conditioned filtering. A PDAF is used for each mode to calculate the mode-condi-
tioned state estimates and covariances. In addition, we evaluate the likelihood function A; (#,) of
each mode at ¢, using the Gaussian-uniform mixture

(8.125)

=2k §,+ > ej(m)% (8.126)

where e,(m) is defined in Equation 8.112 and b in Equation 8.113. Note that the likelihood function,
as a pdf, has a physical dimension that depends on m,. Since ratios of these likelihood functions
are to be calculated, they all must have the same dimension, i.e., the same m,. Thus a common
validation region (Equation 8.104) is vital for all the models in the IMMPDAE Typically the
“largest” innovation covariance matrix corresponding to “noisiest” model covers the others and,
therefore, this can be used in Equations 8.104 and 8.114.

Step 3— Mode update. The mode probabilities are updated based on the likelihood of each mode using

() Z p]] kl (8.127)
ZIZI (1)
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Step 4 — State combination. The mode-conditioned estimates and covariances are combined to find
the overall estimate x(,) and its covariance matrix P(t,), as follows:

x(t,)= Zuj(tk)fi(tk) (8.128)

Pr)=S )2 o) )-8 e) - 50] 5 (8.129)

J=1

8.4.3.3 The Models in the IMM Estimator

The selection of the model structures and their parameters is one of the critical aspects of the imple-
mentation of IMMPDAEF. Designing a good set of filters requires a priori knowledge about the target
motion, usually in the form of maximum accelerations and sojourn times in various motion modes.!
The tracks considered in the benchmark problem span a wide variety of motion modes — from benign
constant velocity motions to maneuvers up to 7g. To handle all possible motion modes and to handle
automatic track formation and termination, the following models are used:

Benign motion model (M!) — This second-order model with low noise level (to be given later) has
a probability of target detection P}, given by the target’s expected SNR and corresponds to the
nonmaneuvering intervals of the target trajectory. For this model the process noise is, typically,
assumed to model air turbulence.

Maneuver model (M?) — This second-order model with high noise level corresponds to ongoing
maneuvers. For this white noise acceleration model, the process noise standard deviation 0,, is
obtained using

0, =0a (8.130)

v2 max
where a,,,, is the maximum acceleration in the corresponding modes and 0.5 < a < 1.1
Maneuver detection model (M?) — This is a third-order (Wiener process acceleration) model with
high level noise. For highly maneuvering targets, like military attack aircraft, this model is useful
for detecting the onset and termination of maneuvers. For civilian air traffic surveillance," this
model is not necessary.
For a Wiener process acceleration model, the standard deviation 0,5 is chosen using

a,, =min{BA, 3a,,} (8.131)

where A, is the maximum acceleration increment per unit time (jerk), & is the sampling interval,
and 0.5<a<1?

For the targets under consideration, a,,, = 70 m/s?> and A, = 35 m/s. Using these values, the process

‘max

noise standard deviations were taken as

0, = 3 m/s? (for nonmaneuvering intervals)

0,, = 35 m/s? (for maneuvering intervals)

0,; = min {350,70} (for maneuver start/termination)

In addition to the process noise levels, the elements of the Markov chain transition matrix between the
modes, defined in Equation 8.121, are also design parameters. Their selection depends on the sojourn
time in each motion mode. The transition probability depends on the expected sojourn time via
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o)
1-p;

T =

1

(8.132)

where T, is the expected sojourn time of the I-th mode, p;, is the probability of transition from I-th mode
to the same mode and & is the sampling interval.'®
For the above models, p;;, I = 1,2,3 are calculated using

O
b, :min%i,maxgi,l—f% (8.133)

i

where [, = 0:1 and u; = 0:9 are the lower and upper limits, respectively, for the I-th model transition
probability.

The expected sojourn times of 15, 4, and 2s, are assumed for modes M!, M?, and M?, respectively.
The selection of the off-diagonal elements of the Markov transition matrix depends on the switching
characteristics among the various modes and is done as follows:

P = 0.1(1 _pll) P15 = 0.9(1 _Pn)
P = 0.1(1 = py) P23 = 0.9(1 = py)

P31 = 0.3(1 = ps3) P32 = 0.7(1 = ps3)

The x, y, z components of target dynamics are uncoupled, and the same process noise is used in each
coordinate.

8.4.4 Track Termination

According to the benchmark problem, a track is declared lost if the estimation error is greater than the
two-way beam width in angles or 1.5 range gates in range. In addition to this problem-specific criterion,
the IMMPDAF declares (on its own) track loss if the track is not updated for 100s. Alternatively, one
can include a “no target” model,’> which is useful for automatic track termination, in the IMM mode set.
In a more general tracking problem, where the true target state is not known, the “no target” mode
probability or the track update interval would serve as the criterion for track termination, and the
IMMPDAF would provide a unified framework for track formation, maintenance, and termination.

8.4.5 Simulation Results

This section presents the simulation results obtained using the algorithms described earlier. The com-
putational requirements and root-mean-square errors (RMSE) are given.

The tracking algorithm using the IMMPDAF is tested on the following six benchmark tracks (the
tracking algorithm does not know the type of the target under track — the parameters are selected
to handle any target):

Target 1 — A large military cargo aircraft with maneuvers up to 3g.

Target 2 — A Learjet or commercial aircraft which is smaller and more maneuverable than target 1
with maneuvers up to 4g.

Target 3 — A high-speed medium bomber with maneuvers up to 4g.

Target 4 — Another medium bomber with good maneuverability up to 6g.

Targets 5 and 6 — Fighter or attack aircraft with very high maneuverability up to 7g.

In Table 8.2, the performance measures and their averages of the IMMPDAF (in the presence of FA,
RGPO, and SOJ*®) are given. The averages are obtained by adding the corresponding performance metrics
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TABLE 8.2 Performance of IMMPDAF in the Presence of False Alarms, Range Gate Pull-Off,
and the Standoff Jammer

Time Man. Sample Avg. Pos. Vel. Lost
Length  Max. Acc.  Density ~ Period  Power RMSE RMSE  Ave.Load  Tracks
Target (s) (m/s,) (%) (s) (W) (m) (m/s) (KFLOPS) (%)
1 165 31 25 2.65 8.9 98.1 61.3 22.2 1
2 150 39 28.5 2.39 5.0 97.2 68.5 24.3 0
3 145 42 20 2.38 10.9 142.1 101.2 24.6 1
4 184 58 20 2.34 3.0 26.5 25.9 24.3 0
5 182 68 38 2.33 18.4 148.1 110.7 27.1 2
6 188 70 35 2.52 12.4 98.6 71.4 24.6 1
Avg. — — — 2.48 8.3 — — 24.5 —

of the six targets (with those of target 1 added twice) and dividing the sum by 7. In the table, the maneuver
density is the percentage of the total time that the target acceleration exceeds 0.5¢. The average floating
point operation (FLOP) count per second was obtained by dividing the total number of floating point
operations by the target track length. This is the computational requirement for target and jammer
tracking, neutralizing techniques for ECM, and adaptive parameter selection for the estimator, i.e., it
excludes the computational load for radar emulation.

The average FLOP requirement is 25 KFLOPS, which can be compared with the FLOP rate of
78 MFLOPS of a Pentium® processor running at 133 MHz. (The FLOP count is obtained using the built-
in MATLAB function flops. Note that these counts, which are given in terms of thousands of floating
point operations per second (kFLOPS) or millions of floating point operations per second (MFLOPS),
are rather pessimistic — the actual FLOP requirement would be considerably lower.) Thus, the real-time
implementation of the complete tracking system is possible. With the average revisit interval of 2.5s, the
FLOP requirement of the IMMPDAF is 62.5 kFLOP/radar cycle. With the revisit time calculations taking
about the same amount of computation as a cycle of the IMMPDAF, but running at half the rate of the
Kalman filter (which runs at constant rate), the IMMPDAF with adaptive revisit time is about 10 times
costlier computationally than a Kalman filter. Due to its ability to save radar resources, which are much
more expensive than computational resources, the IMMPDAF is a viable alternative to the Kalman filter,
which is the standard “workhorse” in many current tracking systems. (Some systems still use the a-3
filter as their “work mule.”)

8.5 A Flexible-Window ML-PDA Estimator for Tracking Low
Observable (LO) Targets

One difficulty with the ML-PDA approach of Section 8.3, which uses a set of scans of measurements as
a batch, is the incorporation of noninformative scans when the target is not present in the surveillance
region for some consecutive scans. For example, if the target appears within the surveillance region of
the sensor after the first few scans, the estimator can be misled by the pure clutter in those scans — the
earlier scans contain no relevant information, and the incorporation of these into the estimator not only
increases the amount of processing (without adding any more information), but also results in less
accurate estimates or even track rejection. Also, a target could disappear from the surveillance region for
a while during tracking and reappear sometime later. Again, these intervening scans contain little or no
information about the target and can potentially mislead the tracker.

In addition, the standard ML-PDA estimator assumes that the target SNR, the target velocity, and the
density of false alarms over the entire tracking period remain constant. In practice, this may not be the
case, and then the standard ML-PDA estimator will not yield the desired results. For example, the average
target SNR may vary significantly as the target gets closer to or moves away from the sensor. In addition,
the target might change its course and/or speed intermittently over time. For electro-optical sensors,
depending on the time of the day and weather, the number of false alarms may vary as well.
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FIGURE 8.2 The last frame in the F1 Mirage sequence.

Because of these concerns, an estimator capable of handling time-varying SNR (with online adapta-
tion), false alarm density, and slowly evolving course and speed is needed. While a recursive estimator
like the IMM-PDA is a candidate, in order to operate under low SNR conditions in heavy clutter, a batch
estimator is still preferred. In this section, the above problems are addressed by introducing an estimator
that uses the ML-PDA with Al adaptively in a sliding-window fashion,” rather than using all the
measurements in a single batch as the standard ML-PDA estimator does.!* The initial time and the length
of this sliding window are adjusted adaptively based on the information content in the measurements
in the window. Thus, scans with little or no information content are eliminated and the window is moved
over to scans with “informative” measurements.

This algorithm is also effective when the target is temporarily lost and reappears later. In contrast,
recursive algorithms will diverge in this situation and may require an expensive track reinitiation. The
standard batch estimator will be oblivious to the disappearance and may lose the whole track. This section
demonstrates the performance of the adaptive sliding-window ML-PDA estimator on a real scenario with
heavy clutter for tracking a fast-moving aircraft using an electro-optical (EO) sensor.

8.5.1 The Scenario

The adaptive ML-PDA algorithm was tested on an actual scenario consisting of 78 frames of Long Wave
Infrared (LWIR) IR data collected during the Laptex data collection, which occurred in July, 1996 at
Crete, Greece. The sequence contains a single target — a fast-moving Mirage F1 fighter jet. The 920 x
480 pixel frames, taken at a rate of 1Hz were registered to compensate for frame-to-frame line-of-sight
(LOS) jitter. Figure 8.2 shows the last frame in the F1 Mirage sequence.

A sample detection list for the Mirage F1 sequence obtained at the end of preprocessing is shown in
Figure 8.3. Each “x” in the figure represents a detection above the threshold.
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FIGURE 8.3 Detection list corresponding to the frame in Figure 8.2.

8.5.2 Formulation of the ML-PDA Estimator

0
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This section describes the target models used by the estimator in the tracking algorithm and the statistical

assumptions made by the algorithm. The ML-PDA estimator for these models is introduced, and the
CRLB for the estimator and the hypothesis test used to validate the track are presented.

8.5.2.1 Target Models

The ML-PDA tracking algorithm is used on the detection lists after the data preprocessing phase. It is
assumed that there are n detection lists obtained at times t = t,,t,,...t,. The i-th detection list, where

1 i< n, consists of m; detections at pixel positions (x;,

y;;) along the X and Y directions. In addition to

locations, the signal strength or amplitude, a;;, of the j-th detection in the i-th list, where 1 < j < m, is
also known. Thus, assuming constant velocity over a number of scans, the problem can be formulated
as a two-dimensional scenario in space with the target motion defined by the four-dimensional vector

]

<E[e

(8.134)

where &(t,) and n(t,) are the horizontal and vertical pixel positions of the target, respectively, from the
origin at the reference time t,. The corresponding velocities along these directions are assumed constant

at &(t,) pixel/s and N(z,) pixel/s, respectively.
The set of measurements in list 7 at time ¢ is denoted by

2()={= i},

(8.135)

where m; is the number of measurements at ;. The measurement vector z(i) is denoted by
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1>

Zj(i)

where x;; and y; are observed X and Y positions, respectively.
The cumulative set of measurements made in scans ¢, through ¢, is given by

[xij Vi aij] (8.136)

z" ={Z(i)} " (8.137)

i=1

A measurement can either originate from a true target or from a spurious source. In the former case,
each measurement is assumed to have been received only once in each scan with a detection probability
P, and to have been corrupted by zero-mean additive Gaussian noise of known variance, i.e.,

x, =&(c)+ (8.138)

yy=n(e)+v, (8.139)

where [J; and v;; are the zero-mean Gaussian noise components with variances 07 and o7 along the X
and Y directions, respectively.
Thus, the joint probability density function of the position components of z; is given by

(8.140)

2 -¢(1)d 1 _”(ti)%2
H H

[ [ -

The false alarms are assumed to be distributed uniformly in the surveillance region and their number
at any sampling instant obeys the Poisson probability mass function

uf(mi):()\Uzni'e_w (8.141)

i

where U is the area of surveillance and A is the expected number of false alarms per unit of this area.
Kirubarajan and Bar-Shalom!* have shown that the performance of the ML-PDA estimator can be
improved by using amplitude information (AI) of the received signal in the estimation process itself, in
addition to thresholding. After the signal has been passed through the matched filter, an envelope detector
can be used to obtain the amplitude of the signal. The noise at the matched filter is assumed to be
narrowband Gaussian. When this is fed through the envelope detector, the output is Rayleigh distributed.
Given the detection threshold, T, the probability of detection P,, and the probability of false alarm Py, are

P, = P(The target-oriented measurement exceeds the threshold T) (8.142)

and

P., £p (A measurement caused by noise only exceeds the threshold T) (8.143)
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where P(-) is the probability of an event.

The probability density functions at the output of the threshold detector, which corresponds to signals
from the target and false alarms are denoted by p](a) and p; (a), respectively. Then the amplitude
likelihood ratio, p, can then be written as®

_ pr(a) _ P O a2d 0
p= PE(G) - PD(fid)expE)Z(l'Fd)E (8.144)

where T is the detection threshold.

8.5.2.2 The Maximum Likelihood-Probabilistic Data Association Estimator

This section focuses on the maximum likelihood estimator combined with the PDA approach. If there
are m; detections at t,, one has the following mutually exclusive and exhaustive events®

\ a [} measurement zj(i) is from the targe} j=L..,m,
e (i) . (8.145)
all measurements are fals j=0
The pdf of the measurements corresponding to the above events can be written as®
el [T le)
el (b-E o [Tl =t (8.146)
gﬂ_’m |_| J_;pé(aij) =0
Using the total probability theorem,
olzfi)=S ol (hx)ele ()
’:‘0 (8.147)
=S o{2i)e,()x)ofe. (1)
=
the above can be written explicitly as
: - U Byt (1) i
plelifs)=um=r) [ eifa ) e = 25 ] i) Y el
j=1 ! j=1 =1
i - UI_Mi H i -1)
=1 —PD)D pi(a ) + ZT;] gf: ) I pi(a,) (8.148)
m; O U
1 p,»,-expg-l %C” _E(ti)g —lgy’j _ ﬂ( ’)gg
I DZH o H ZH oE HD
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To obtain the likelihood ratio, ®[Z(i), x], at t;, divide Equation 8.148 by p[Z(i)|€,(i), x]

. . (8.149)
Oc —&(e )0 —n(e)D
Tt 01 02 D H 01 B H 02 a D
Assuming that measurements at different sampling instants are conditionally independent, i.e.,
P2 = |_| P[Z(i)\x (8.150)

the total likelihood ratio® for the entire data set is given by

cb[zﬂ,x] = |_| dJi[Z(i),x] (8.151)

Then, the total log-likelihood ratio, ®[Z", x], expressed in terms of the individual log-likelihood ratios
@[ Z(i), x] at sampling time instants t;, becomes

d7]=y of2()

O p m; O
= Zln%l —PD)+m Zpijexp%—
H 17 4= 0

The maximum likelihood estimate (MLE) is obtained by finding the vector x = x that maximizes the
total log-likelihood ratio given in Equation 8.152. This maximization is performed using a quasi-Newton
(variable metric) method. This can also be accomplished by minimizing the negative log-likelihood
function. In our implementation of the MLE, the Davidon-Fletcher-Powell variant of the variable metric
method is used. This method is a conjugate gradient technique that finds the minimum value of the
function iteratively.?! However, the negative log-likelihood function may have several local minima; i.e.,
it has multiple modes. Due to this property, if the search is initiated too far away from the global
minimum, the line search algorithm may converge to a local minimum. To remedy this, a multi-pass
approach is used as in Reference 14.

8.5.3 Adaptive ML-PDA

Often, the measurement process begins before the target becomes visible — that is, the target enters the
surveillance region of the sensor some time after the sensor started to record measurements. In addition,
the target may disappear from the surveillance region for a certain period of time before reappearing.
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During these periods of blackout, the received measurements are purely noise-only, and the scans of data

contain no information about the target under track. Incorporating these scans into a tracker reduces

its accuracy and efficiency. Thus, detecting and rejecting these scans is important to ensure the fidelity
of the estimator. This subsection presents a method that uses the ML-PDA algorithm in a sliding-window
fashion. In this case, the algorithm uses only a subset of the data at a time rather than all of the frames

at once, to eliminate the use of scans that have no target. The initial time and the length of the sliding

window are adjusted adaptively based on the information content of the data — the smallest window,

and thus the fewest number of scans, required to identify the target is determined online and adapted

over

time.

The key steps in the adaptive ML-PDA estimator are as follows:

1.
2.
3.

7.

Start with a window of minimum size.

Run the ML-PDA estimator within this window and carry out the validation test on the estimates.
If the estimate is accepted (i.e., if the test is passed), and if the window is of minimum size, accept
the window. The next window is the present window advanced by one scan. Go to step 2.

If the estimate is accepted, and if the window is greater than minimum size, try a shorter window
by removing the initial scan. Go to step 2 and accept the window only if estimates are better than
those from the previous window.

If the test fails and if the window is of minimum size, increase the window length to include one
more scan of measurements and, thus, increase the information content in the window. Go to
step 2.

If the test fails and if the window is greater than minimum size, eliminate the first scan, which
could contain pure noise only. Go to step 2.

Stop when all scans are used.

The algorithm is described below. In order to specify the exact steps in the estimator, the following

variables are defined:

W = Current window length

W,

= Minimum window length

min

Z(t,) = Scan (set) of measurements at time ¢

With these definitions, the algorithm is given below:

BEGIN PROCEDURE Adaptive ML PDA estimator(W,,, , Z(t,), Z(t,))

i = 1 — Initialize the window at the first scan.
W = W,,, — Initially, use a window of minimum size.
WHILE (i + W < n) — Repeat until the last scan at ¢,
Do grid search for initial estimates by numerical search on Z(t,), Z(t,,,),...,Z(t;,w)
Apply ML-PDA Estimator on the measurements in Z(t,), Z(t,,), ..., Z(t,w)
Validate the estimates
IF the estimates are rejected

IF (W>W,

mi

) — Check if we can reduce the window size.

i =i+ 1 — Eliminate the initial scan that might be due to noise only.
ELSEIF (W = W,,,)

W =W + 1 — Expand window size to include an additional scan.

ENDIF
ENDIF
IF the estimates are accepted
IF (W > W,_,) — Check if we can reduce the window size.

Try a shorter window by removing the initial scan and check if estimates are
better, 1 = i + 1
ENDIF
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IF estimates for shorter window are NOT better OR (W = W_, )
Accept estimates and try next window, i =i + 1
ENDIF
ENDIF
END WHILE
END PROCEDURE

To illustrate the adaptive algorithm, consider a scenario where a sensor records 10 scans of measure-
ments over a surveillance region. The target, however, appears in this region (i.e., its intensity exceeds
the threshold) only after the second scan (i.e., from the third scan onward). This case is illustrated in
Figure 8.4. The first two scans are useless because they contain only noise.

Consider the smallest window size required for a detection to be 5. Then the algorithm will evolve as
shown in Figure 8.5. First, for the sake of illustration, assume that a single “noisy” scan present in the
data set is sufficient to cause the MLE to fail the hypothesis test for track acceptance. The algorithm tries
to expand the window to include an additional scan if a track detection is not made. This is done because
an additional scan of data may bring enough additional information to detect the target track. The
algorithm next tries to cut down the window size by removing the initial scans. This is done to check
whether a better estimate can be obtained without this scan. If this initial scan is noise only, then it
degrades the accuracy of the estimate. If a better estimate is found (i.e., a more accurate estimate) without
this scan, the latter is eliminated. Thus, as in the example given above, the algorithm expands at the front
(most recent scan used) and contracts at the rear end of the window to find the best window that produces
the strongest detection, based on the validation test.

|
®
®
®
®
2

ol

lol
Scan 10 Scan 100

¢ Measurement scanld

0 Target present

FIGURE 8.4 Scenario with a target being present for only a partial time during observation.
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FIGURE 8.5 Adaptive ML-PDA algorithm applied to the scenario illustrated above.
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TABLE 8.3 Parameters Used
in the ML-PDA Algorithm
for the F1 Mirage Jet

Parameter Value
o, 1.25
o, 1.25

Min Window Size, W 10
Initial Target SNR, d, 9.5

Ppe 0.70
a 0.85
T, 5%
v 5.0
o, 0.15
K 4

8.5.4 Results

8.5.4.1 Estimation Results

The Mirage F1 data set consists of 78 scans or frames of LWIR IR data. The target appears late in this
scenario and moves towards the sensor. There are about 600 detections per frame. In this implementation
the parameters shown in Table 8.3 were chosen.

The choice of these parameters is explained below:

+ 0, and 0O, are, as in Equation 8.140, the standard deviations along the horizontal and vertical axes
respectively. The value of 1:25 for both variables models the results of the preprocessing.

+ The minimum window size, W,,;,, was chosen to be 10. The algorithm will expand this window
if a target is not detected in 10 frames. Initially a shorter window was used, but the estimates
appeared to be unstable. Therefore, fewer than 10 scans is assumed to be ineffective at producing

an accurate estimate.

+ The initial target SNR, d,, was chosen as 9:5 dB because the average SNR of all the detections over
the frames is approximately 9:0 dB. However, in most frames, random spikes were noted. In the
first frame, where a target is unlikely to be present, a single spike of 15:0 dB is noted. These spikes,
however, cannot and should not be modeled as the target SNR.

+ A constant probability of detection (Pp.) of 0:7 was chosen. A value that is too high would bring
down the detection threshold and increase Py,.

+ a is the parameter used to update the estimated target SNR with an o filter. A high value is chosen
for the purpose of detecting a distant target that approaches the sensor over time and to account
for the presence of occasional spikes of noise. Thus, the estimated SNR is less dependent on a
detection that could originate from a noisy source and, thus, set the bar too high for future
detections.

* T, is the miss probability.

+ ¥ and 0, are used in the multipass approach of the optimization algorithm.!4

+ The number of passes K in the multipass approach of the optimization algorithm was chosen as 4.

Figure 8.6 further clarifies the detection process by depicting the windows where the target has been
detected.
From the above results, note the following:

+ The first detection uses 22 scans and occurs at scan 28. This occurs because the initial scans have
low-information content as the target appears late in the frame of surveillance. The IMM-MHT
algorithm?? required 38 scans for a detection, while the IMMPDA? required 39 scans. Some
spurious detections were noticed at earlier scans, but these were rejected.
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FIGURE 8.6 Progress of the algorithm showing windows with detections.

+ The next few detection windows produce similar target estimates. This is because a large number
of scans repeat themselves in these windows.

+ After the initial detections, there is a “jump” in the scan number at which a detection is made. In
addition, the estimates, particularly the velocity estimates, deteriorate. This could indicate either
that the target has suddenly disappeared (became less visible) from the region of surveillance or
that the target made a maneuver.

+ From scan 44 onward, the algorithm stabilizes for several next windows. At scan 52, however,
there is another jump in detection windows. This is also followed by a drop in the estimated target
SNR, as explained above. This, however, indicates that the algorithm can adjust itself and restart
after a target has become suddenly invisible. Recursive algorithms will diverge in this case.

+ From scan 54 onward, the algorithm stabilizes, as indicated by the estimates. Also, a detection is
made for every increasing window because the target has come closer to the sensor and, thus, is
more visible. This is noted by the sharp rise in the estimated target SNR after scan 54.

+ The above results provide an understanding of the target’s behavior. The results suggest that the
Mirage F1 fighter jet appears late in the area of surveillance and moves towards the sensor. However,
initially it remains quite invisible and possibly undergoes maneuvers. As it approaches the sensor,
it becomes more and more visible and, thus, easier to detect.

8.5.4.2 Computational Load

The adaptive ML-PDA tracker took 442s, including the time for data input/output, on a Pentium® III
processor running at 550MHz to process the 78 scans of the Mirage F1 data. This translates into about
5.67s per frame (or 5.67s running time for one-second data), including input/output time. A more
efficient implementation on a dedicated processor can easily make the algorithm real-time capable on a
similar processor. Also, by parallelizing the initial grid search, which required more than 90% of the time,
the adaptive ML-PDA estimator can be made even more efficient.
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8.6 Summary

This chapter presented the use of the PDA technique for different tracking problems. Specifically, the
PDA approach was used for parameter estimation as well as recursive state estimation. As an example of
parameter estimation, track formation of a low observable target using a nonlinear maximum likelihood
estimator in conjunction with the PDA technique with passive (sonar) measurements was presented. The
use of the PDA technique in conjunction with the IMM estimator, resulting in the IMMPDAF, was
presented as an example of recursive estimation on a radar-tracking problem in the presence of ECM.
Also presented was an adaptive sliding-window PDA-based estimator that retains the advantages of the
batch (parameter) estimator while being capable of tracking the motion of maneuvering targets. This
was illustrated on an EO surveillance problem. These applications demonstrate the usefulness of the PDA
approach for a wide variety of real tracking problems.

References

1. Bar-Shalom, Y. (Ed.), Multitarget-Multisensor Tracking: Advanced Applications, Vol. I, Artech House
Inc., Dedham, MA, 1990. Reprinted by YBS Publishing, 1998.

2. Bar-Shalom, Y. (Ed.), Multitarget-Multisensor Tracking: Applications and Advances, Vol. II, Artech
House Inc., Dedham, MA, 1992. Reprinted by YBS Publishing, 1998.

3. Bar-Shalom, Y. and Li, X. R., Multitarget-Multisensor Tracking: Principles and Techniques, Storrs,
CT: YBS Publishing, 1995.

4. Blackman, S. S. and Popoli, R., Design and Analysis of Modern Tracking Systems, Artech House Inc.,
Dedham, MA, 1999.

5. Feo, M., Graziano, A., Miglioli, R., and Farina, A., IMMJPDA vs. MHT and Kalman Filter with
NN Correlation: Performance Comparison, IEE Proc. on Radar, Sonar and Navigation (Part F),
144(2), 49-56, 1997.

6. Kirubarajan, T., Bar-Shalom, Y., Blair, W. D., and Watson, G. A., IMMPDA Solution to Benchmark
for Radar Resource Allocation and Tracking in the Presence of ECM, IEEE Trans. Aerospace and
Electronic Systems, 34(3), 1023-1036, 1998.

7. Lerro, D., and Bar-Shalom, Y., Interacting Multiple Model Tracking with Target Amplitude Feature,
IEEE Trans. Aerospace and Electronic Systems, AES-29, No. 2, 494-509, 1993.

8. Blair, W. D., Watson, G. A., Kirubarajan, T., and Bar-Shalom, Y., Benchmark for radar resource
allocation and tracking in the presence of ECM, IEEE Trans. Aerospace and Electronic Systems,
34(3), 1015-1022, 1998.

9. Blackman, S. S., Dempster, R. J., Busch, M. T., and Popoli, R. E, IMM/MHT solution to radar
benchmark tracking problem, IEEE Trans. Aerospace and Electronic Systems, Vol. 35(2), 730-738, 1999.

10. Bar-Shalom, Y. and Li, X. R., Estimation and Tracking: Principles, Techniques and Software, Artech
House, Dedham, MA, 1993. Reprinted by YBS Publishing, 1998.

11. Jauffret, C., and Bar-Shalom, Y., Track formation with bearing and frequency measurements in
clutter, IEEE Trans. Aerospace and Electronic Systems, AES-26, 999-1010, 1990.

12. Kirubarajan, T., Wang, Y., and Bar-Shalom, Y., Passive ranging of a low observable ballistic missile
in a gravitational field using a single sensor, Proc. 2nd International Conf. Information Fusion, July
1999.

13. Sivananthan, S., Kirubarajan, T., and Bar-Shalom, Y., A radar power multiplier algorithm for
acquisition of LO ballistic missiles using an ESA radar, Proc. IEEE Aerospace Conf., March 1999.

14. Kirubarajan, T., and Bar-Shalom, Y., Target motion analysis in clutter for passive sonar using
amplitude information, IEEE Trans. Aerospace and Electronic Systems, 32(4), 1367—1384, 1996.

15. Nielsen, R. O., Sonar Signal Processing, Artech House Inc., Boston, MA, 1991.

16. Blair, W. D., Watson, G. A., and Hoffman, S. A., Benchmark problem for beam pointing control
of phased array radar against maneuvering targets, Proc. Am. Control Conf., June 1994.

©2001 CRC PressLLC



17.

18.

19.

20.

21.

22.

23.

Blair, W. D., and Watson, G. A., IMM algorithm for solution to benchmark problem for tracking
maneuvering targets, Proc. SPIE Acquisition, Tracking and Pointing Conf., April, 1994.

Blair, W. D., Watson, G. A., Hoffman, S. A., and Gentry, G. L., Benchmark problem for beam
pointing control of phased array radar against maneuvering targets in the presence of ECM and
false alarms, Proc. American Control Conf., June 1995.

Yeddanapudi, M., Bar-Shalom, Y., and Pattipati, K. R., IMM estimation for multitarget-multisensor
air traffic surveillance, Proc. IEEE, 85(1), 80-94, 1997.

Chummun, M. R,, Kirubarajan, T., and Bar-Shalom, Y., An adaptive early-detection ML-PDA
estimator for LO targets with EO sensors, Proc. SPIE Conf. Signal and Data Processing of Small
Targets, April 2000.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and, Flannery, B. P., Numerical Recipes in C,
Cambridge University Press, Cambridge, U.K., 1992.

Roszkowski, S. H., Common database for tracker comparison, Proc. SPIE Conf. Signal and Data
Processing of Small Targets, Vol. 3373, April 1998.

Lerro, D., and Bar-Shalom, Y., IR Target detection and clutter reduction using the interacting
multiple model estimator, Proc. SPIE Conf. on Signal and Data Processing of Small Targets, Vol.
3373, April 1998.

©2001 CRC PressLLC



	Handbook of Multisensor Data Fusion
	Table of Contents
	Chapter 8: Target Tracking Using Probabilistic Data Association-Based Techniques with Applications to Sonar, Radar, and EO Se
	8.1 Introduction
	8.2 Probabilistic Data Association
	8.2.1 Assumptions
	8.2.2 The PDAF Approach
	8.2.3 Measurement Validation
	8.2.4 The State Estimation
	8.2.5 The State and Covariance Update
	8.2.6 The Prediction Equations
	8.2.7 The Probabilistic Data Association
	8.2.8 The Parametric PDA
	8.2.9 The Nonparametric PDA

	8.3 Low Observable TMA Using the ML-PDA Approach with Features
	8.3.1 Amplitude Information Feature
	8.3.2 Target Models
	8.3.3 Maximum Likelihood Estimator Combined with PDA — The ML-PDA
	8.3.4 Cramér-Rao Lower Bound for the Estimate
	8.3.5 Results

	8.4 The IMMPDAF for Tracking Maneuvering Targets
	8.4.1 Coordinate Selection
	8.4.2 Track Formation
	8.4.3 Track Maintenance
	8.4.3.1 Probabilistic Data Association
	8.4.3.2 IMM Estimator Combined with the PDA Technique
	8.4.3.3 The Models in the IMM Estimator

	8.4.4 Track Termination
	8.4.5 Simulation Results

	8.5 A Flexible-Window ML-PDA Estimator for Tracking Low Observable (LO) Targets
	8.5.1 The Scenario
	8.5.2 Formulation of the ML-PDA Estimator
	8.5.2.1 Target Models
	8.5.2.2 The Maximum Likelihood-Probabilistic Data Association Estimator

	8.5.3 Adaptive ML-PDA
	8.5.4 Results
	8.5.4.1 Estimation Results
	8.5.4.2 Computational Load


	8.6 Summary
	References



