
                                     
23
Data Fusion for

Developing Predictive
Diagnostics for

Electromechanical
Systems

23.1 Introduction
Condition-Based Maintenance Motivation

23.2 Aspects of a CBM System
23.3 The Diagnosis Problem 

Feature-Level Fusion • Decision-Level Fusion • Model-
Based Development

23.4 Multisensor Fusion Toolkit
23.5 Application Examples

Mechanical Power Transmission • Fluid Systems • 
Electrochemical Systems

23.6 Concluding Remarks
Acknowledgments
References

23.1 Introduction

Condition-based maintenance (CBM) is a philosophy of performing maintenance on a machine or system
only when there is objective evidence of need or impending failure. By contrast, time-based or use-based
maintenance involves performing periodic maintenance after specified periods of time or hours of
operation. CBM has the potential to decrease life-cycle maintenance costs (by reducing unnecessary
maintenance actions), increase operational readiness, and improve safety.

Implementation of condition-based maintenance involves predictive diagnostics (i.e., diagnosing the
current state or health of a machine and predicting time to failure based on an assumed model of
anticipated use). CBM and predictive diagnostics depend on multisensor data — such as vibration,
temperature, pressure, and presence of oil debris — which must be effectively fused to determine
machinery health. Indeed, Hansen et al. suggested that predictive diagnostics involves many of the same
functions and challenges demonstrated in more traditional Department of Defense (DoD) applications
of data fusion (e.g., signal processing, pattern recognition, estimation, and automated reasoning).1 This
chapter demonstrates the potential for technology transfer from the study of CBM to DoD fusion
applications.
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23.1.1 Condition-Based Maintenance Motivation

CBM is an emerging concept enabled by the evolution of key technologies, including improvements in
sensors, microprocessors, digital signal processing, simulation modeling, multisensor data fusion, and
automated reasoning. CBM involves monitoring the health or status of a component or system and
performing maintenance based on that observed health and some predicted remaining useful life (RUL).2-5

This predictive maintenance philosophy contrasts with earlier ideologies, such as corrective maintenance —
in which action is taken after a component or system fails — and preventive maintenance — which is based
on event or time milestones. Each involves a cost tradeoff. Corrective maintenance incurs low maintenance
cost (minimal preventative actions), but high performance costs caused by operational failures. Conversely,
preventative maintenance produces low operational costs, but greater maintenance department costs.
Moreover, the application of statistical safe-life methods (which are common with preventative mainte-
nance) usually leads to very conservative estimates of the probability of failure. The result is the additional
hidden cost associated with disposing of components that still retain significant remaining useful life.

Another important consideration in most applications is the operational availability (a metric that is
popular in military applications) or equipment effectiveness (more popular in industrial applications).
Figure 23.1 illustrates regions of high total cost when overly corrective or overly preventive maintenance
dominate. These regions also provide a lower total availability of the equipment. On the corrective side,
equipment neglect typically leads to more operational failures during which time the equipment is
unavailable. On the preventive side, the equipment is typically unavailable because it is being maintained
much of the time. An additional concern that affects availability and cost in this region is the greater
likelihood of maintenance-induced failures.

The development of better maintenance practices is driven by the desire to reduce the risk of cata-
strophic failures, minimize maintenance costs, maximize system availability, and increase platform reli-
ability. These goals are desirable from the application arenas of aircraft, ships, and tanks to industrial
manufacturing of all types. Moreover, given that maintenance is a key cost driver in military and
commercial applications, it is an important area in which to focus research and development efforts. At
nuclear power plants, for example, the operations and maintenance portion of the direct operating costs
(DOC) grew by more than 120 percent between 1981 and 1991 — a level more than twice as great as
the fuel cost component.6

A more explicit cost savings can be seen in Figure 23.2 derived from an Electric Power Research Institute
study to estimate the costs associated with different maintenance practices in the utility industry. The
first three columns were taken directly from the study and the fourth is estimated from some unpublished

FIGURE 23.1 CBM provides the best range of operational availability or equipment effectiveness.
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cost studies. Clearly, predictive practices provide cost benefit. The estimated 50 percent additional cost
savings derived from predictive condition monitoring to automated CBM is manifested by the manpower
cost focused on data collection/analysis efforts and cost avoidances associated with continuous monitor-
ing and fault prediction.7

Such cost savings have motivated the development of CBM systems; furthermore, substantially more
benefit can be realized by automating a number of the functions to achieve improved screening and
robustness. This knowledge has driven CBM research and development efforts.

23.2 Aspects of a CBM System

CBM uses sensor systems to diagnose emerging equipment problems and to predict how long equipment
can effectively serve its operational purpose. The sensors collect and evaluate real-time data using signal
processing algorithms. These algorithms correlate the unique signals to their causes — for example,
vibrational sideband energy created by developing gear-tooth wear. The system alerts maintenance
personnel to the problem, enabling maintenance activities to be scheduled and performed before oper-
ational effectiveness is compromised.

The key to effectively implementing CBM is the ability to detect, classify, and predict the evolution of
a failure mechanism with sufficient robustness — and at a low enough cost — to use that information
as a basis to plan maintenance for mission- or safety-critical systems. “Mission critical” refers to those
activities that, if interrupted, would prohibit the organization from meeting its primary objectives (e.g.,
completion and delivery of 2500 control panels to meet an OEM’s assembly schedule). Safety critical
functions must remain operational to ensure the safety of humans (e.g., airline passengers).

Thus, a CBM system must be capable of

• Detecting the start of a failure evolution,

• Classifying the failure evolution,

• Predicting remaining useful life with a high degree of certainty,

• Recommending a remedial action to the operator,

• Taking the indicated action through the control system,

• Aiding the technician in making the repair,

• Providing feedback for the design process.

These activities represent a closed-loop process with several levels of feedback, which differentiates CBM
from preventive or time-directed maintenance. In a preventive maintenance system, time between overhaul

FIGURE 23.2 Moving toward condition monitoring and the optimal level of maintenance provided dramatic cost
savings in the electric industry.
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(TBO) is set at design, based on failure mode effects, criticality analyses (FMECA), and experience with
like machines’ mortality statistics. The general concept of a CBM system is shown in Figure 23.3.

23.3 The Diagnosis Problem

Multisensor data fusion has been recognized as an enabling technology for both military and nonmilitary
applications. However, improved diagnosis and increased performance do not result automatically from
increased data collection. The data must be contextually filtered to extract information that is relevant
to the task at hand. Another key requirement that justifies the use of data fusion is low false alarms. In
general, there is a tradeoff between missed detections and false alarms, which is greatly influenced by the
mission or operation profile. If a diagnostic system produces excessive false alarms, personnel will likely
ignore it, resulting in an unacceptably high number of missed detections. However, presently data fusion
is rarely employed in monitoring systems, and, when it is used, it is usually an afterthought. Data fusion
can most readily be employed at the feature or decision levels.

23.3.1 Feature-Level Fusion

Diagnosis is most commonly performed as classification using feature-based techniques.9 Machinery data
are processed to extract features that can be used to identify specific failure modes. Discriminant trans-
formations are often utilized to map the data characteristic of different failure mode effects into distinct
regions in the feature subspace. Multisensor systems frequently use this approach because each sensor
may contribute a unique set of features with varying degrees of correlation with the failure to be

FIGURE 23.3 The success of CBM systems depends on: (1) The ability to design or use robust sensors for measuring
relevant phenomena, (2) real-time processing of the sensor data to extract useful information (e.g., features or data
characteristics) in a noisy environment, and to detect parametric changes that could indicate impending failure
conditions, (3) fusion of multisensor data to obtain improved information (beyond what is available from a single
sensor), (4) micro- and macro-level models that predict the temporal evolution of failure phenomena, and
(5) automated approximate reasoning capable of interpreting the results of the sensor measurements, processed data,
and model prediction in the context of an operational environment.8
©2001 CRC Press LLC



                                                                      
diagnosed. These features, when combined, provide a better estimate of the object’s identity. Examples
of this approach will be illustrated in the applications section.

23.3.2 Decision-Level Fusion

Following the classification stage, decision-level fusion can be used to fuse identity. Several decision-level
fusion techniques exist, including voting, weighted decision, and Bayesian inference.10 Other techniques,
such as Dempster-Shafer’s method11,12 and generalized evidential processing theory,13 are described in
this text and in other publications.14,15

23.3.2.1 Voting

Voting, as a decision-level fusion method, is the simplest approach to fusing the outputs from multiple
estimates or predictions by emulating the way humans reach some group agreement.10 The fused output
decision is based on the majority rule (i.e., maximum number of votes wins). Variations of voting
techniques include weighted voting (in which sensors are given relative weights), plurality, consensus
methods, and other techniques.

For implementation of this structure, each classification or prediction, i, outputs a binary vector, xi,
with D elements, where D is the number of hypothesized output decisions. The binary vectors are
combined into a matrix X, with row i representing the input from sensor i. The voting fusion structure
sums the elements in each column as described by Equation 23.1.

(23.1)

The output, y(j), is a vector of length D, where each element indicates the total number of votes for
output class j. At time k, the decision rule selects the output, d(k), as the class that carries the majority
vote, according to Equation 23.2 .

(23.2)

23.3.2.2 Weighted Decision Fusion

A weighted decision method for data fusion generates the fused decision by weighting and combining
the outputs from multiple sensors. A priori assumptions of sensor reliability and confidence in the
classifier performance contribute to determining the weights used in a given scenario. Expert knowledge
or models regarding the sensor reliability can be used to implement this method. In the absence of such
knowledge, an assumption of equal reliability for each sensor can be made. This assumption reduces the
weighted decision method to voting. Note that at the other extreme, a weighted decision process could
selectively weight sensors so that, at a particular time, only one sensor is deemed to be credible (i.e.,
weight = 1), while all other sensors are ignored (i.e., weight = 0).

Several methods can be used for implementing a weighted decision fusion structure. Essentially, each
sensor, i, outputs a binary vector, xi, with D elements, where D is the number of hypothesized output
decisions. A binary one, in position j, indicates that the data was identified by the classifier as belonging
to class j. The classification vector from sensor i becomes the ith row of an array, X, that is passed to the
weighted decision fusion structure. Each row is weighted, using the a priori assumption of the sensor
reliability. Subsequently, the elements of the array are summed along each column. Equation 23.3
describes this process mathematically.

(23.3)
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The output, y(j), is a row vector of length D, where each element indicates the confidence that the
input data from the multiple sensor set has membership in a particular class. At time k, the output
decision, d(k), is the class that satisfies the maximum confidence criteria of Equation 23.4.

(23.4)

This implementation of weighted decision fusion permits future extension in two ways. First, it
provides a path to the use of confidence as an input from each sensor. This would allow the fusion process
to utilize fuzzy logic within the structure. Second, it enables an adaptive mechanism to be incorporated
that can modify the sensor weights as data are processed through the system.

23.3.2.3 Bayesian Inference

Bayes’ theorem16-18 serves as the basis for the Bayesian inference technique for identity fusion. This
technique provides a method for computing the a posteriori probability of a particular outcome, based
on previous estimates of the likelihood and additional evidence. Bayesian inference assumes that a set of
D mutually exclusive (and exhaustive) hypotheses or outcomes exists to explain a given situation.

In the decision-level, multisensor fusion problem, Bayesian inference is implemented as follows. A system
exists with N sensors that provide decisions on membership to one of D possible classes. The Bayesian fusion
structure uses a priori information on the probability that a particular hypothesis exists and the likelihood
that a particular sensor is able to classify the data to the correct hypothesis. The inputs to the structure are
(1) P(Oj), the a priori probabilities that object j exists (or equivalently that a fault condition exists), (2)
P(Dk,i|Oj), the likelihood that each sensor, k, will classify the data as belonging to any one of the D hypotheses,
and (3) Dk, the input decisions from the K sensors. Equation 23.5 describes the Bayesian combination rule.

(23.5)

The output is a vector with element j representing the a posteriori probability that the data belong to
hypothesis j. The fused decision is made based on the maximum a posteriori probability criteria given in
Equation 23.6.

(23.6)

A basic issue with the use of Bayesian inference techniques involves the selection of the a priori
probabilities and the likelihood values. The choice of this information has a significant impact on
performance. Expert knowledge can be used to determine these inputs. In the case where the a priori
probabilities are unknown, the user can resort to the principle of indifference, where the prior probabil-
ities are set to be equal, as in Equation 23.7.

(23.7)

The a priori probabilities are updated in the recursive implementation as described by Equation 23.8.
This update sets the value for the a priori probability in iteration t equal to the value of the a posteriori
probability from iteration (t – 1).

(23.8)
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23.3.3 Model-Based Development

Diagnostics model development can proceed down a purely data-driven, empirical path or model-based
path that uses physical and causal models to drive the diagnosis. Model-based diagnostics can provide
optimal damage detection and condition assessment because empirically verified mathematical models
at many state conditions are the most appropriate knowledge bases.19 The Pennsylvania State University
Applied Research Laboratory (Penn State ARL) has taken a model-based diagnostic approach towards
achieving CBM that has proven appropriate for fault detection, failure mode diagnosis, and, ultimately,
prognosis.20

The key modeling area for CBM is to develop models that can capture the salient effects of faults and
relate them to virtual or external observables. Some fundamental questions arise from this desired
modeling. How can mathematical models of physical systems be adapted or augmented with separate
damage models to capture symptoms? Moreover, how can model-based diagnostics approaches be used
for design in CBM requirements such as sensor type, location, and processing requirements?

In the model-based approach, the physical system is captured mathematically in the form of empirically
validated computational or functional models. The models possess or are augmented with damage
association models that can simulate a failure mode of given severity to produce a symptom that can be
compared to measured features. The failure mode symptoms are used to construct the appropriate
classification algorithms for diagnosis. The sensitivity of the failure modes to specific sensor processing
can be compared for various failure modes and evaluated over the entire system to aid in the determi-
nation of the most effective CBM approach.

23.3.3.1 Model-Based Identification and Damage Estimation

Figure 23.4 illustrates a conceptual method for identifying the type and amount of degradation using a
validated system model. The actual system output response (event and performance variables) is the
result of nominal system response plus fault effects and uncertainty. The model-based analysis and
identification of faults can be viewed as an optimization problem that produces the minimum residual
between the predicted and actual response.

23.4 Multisensor Fusion Toolkit

A multisensor data fusion toolkit was developed at the Penn State ARL to provide the user with a
standardized visual programming environment for data fusion (see Figure 23.5).21 With this toolkit, the
user can develop and compare techniques that combine data from actual and virtual sensors. Detection
performance and the number of false alarms are two of the metrics that can be used for such a comparison.

The outputs of one or more state/damage estimates can be combined with available usage information,
based on feature vector classification. This type of a tool is an asset because it utilizes key information
from multiple sensors for robustness and presents the results of the fusion assessment, rather than just a
data stream. Furthermore, the tool is very useful for rapid prototyping and evaluation of data analysis and
data fusion algorithms. The toolkit was written in Visual C++ using an object-oriented design approach.

FIGURE 23.4 Adaptive concept for deterministic damage estimation.
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23.5 Application Examples

This section presents several examples to illustrate the development of a data fusion approach and its
application to condition-based maintenance of real-world engineered systems. The topics chosen repre-
sent a range of machinery with different fundamental mechanisms and potential CBM strategies. The
first example is a mechanical (gear/shaft/bearing) power transmission that has been tested extensively at
Penn State ARL. The second example uses fluid systems (fuel/lubrication/hydraulic), and the third
example focuses on energy storage devices (battery/fuel cells). All are critical subsystems that address
fundamental CBM needs in the DoD and industry. Developers of data fusion solutions must carefully
select among the options that are applicable to the problem. Several pitfalls in using data fusion were
identified recently and suggestions were provided about how to avoid them.22

23.5.1 Mechanical Power Transmission

Individual components and systems, where a few critical components are coupled together in rotor power
generation and transmission machinery, are relatively well understood as a result of extensive research
that has been conducted over the past few decades. Many notable contributions have been made in the
analysis and design, in increasing the performance of rotor systems, and in the fundamental understand-
ing of different aspects of rotor system dynamics. More recently, many commercial and defense efforts
have focused on vibration/noise analysis and prediction for fault diagnostics. Many employ improved
modeling methods to understand the transmission phenomena more thoroughly,23-26 while others have
focused on detection techniques and experimental analysis of fault conditions.27-33

23.5.1.1 Industrial Gearbox Example

Well-documented transitional failure data from rotating machinery is critical for developing machinery
prognostics. However, such data is not readily or widely available to researchers and developers. Conse-
quently, a mechanical diagnostics test bed (MDTB) was constructed at the Penn State ARL for detecting
faults and tracking damage on an industrial gearbox (see Figure 23.6).

FIGURE 23.5 The Penn State ARL multisensor fusion toolkit is used to combine data from multiple sensors,
improving the ability to characterize the current state of a system.
©2001 CRC Press LLC



          
23.5.1.1.1 System and Data Description
The MDTB is a motor-drivetrain-generator test stand. (A complete description of the MDTB can be
found in Byington and Kozlowski.34) The gearbox is driven at a set input speed using a 30 Hp, 1750 rpm
AC (drive) motor, and the torque is applied by a 75 Hp, 1750 rpm AC (absorption) motor. The MDTB
can test single and double reduction industrial gearboxes with ratios from about 1.2:1 to 6:1. The
gearboxes are nominally in the 5 to 20 Hp range. The motors provide about 2 to 5 times the rated torque
of the selected gearboxes; thus, the system can provide good overload capability for accelerated failure
testing.

The gearbox is instrumented with accelerometers, acoustic emission sensors, thermocouples, and oil
quality sensors. Torque and speed (load inputs) are measured within 1% on the rig. Borescope images
are taken during the failure process to correlate degree of damage with measured sensor data. Given a
low contamination level in the oil, drive speed and load torque are the two major factors in gear failure.
Different values of torque and speed will cause different types of wear and faults. Figure 23.7 illustrates
potential regions of failures.

FIGURE 23.6 The Penn State ARL mechanical diagnostics testbed is used to collect transitional failure data, study
sensor optimization for fault detection, and to evaluate failure models.

FIGURE 23.7 Regions of gear failures.35
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23.5.1.1.2 Gearbox Failure Conditions
In Area 1, the gear is operating too slowly to develop an oil film, so adhesive wear occurs. In Area 2, the
speed is sufficiently fast to develop an oil film. The gears should be able to run with minimal wear. In Area
3, scoring is likely, because the load and speed are high enough to break down the existing oil film. Area 4
illustrates the dominance of pitting caused by high surface stresses that result from higher torque loads. As
the torque is increased further, tooth breakage will result from overload and stress fatigue, as shown in Area 5.

Based on the above discussion, the MDTB test plan includes test runs that set the operating drive
speed and load torque deep into each area to generate transitional data for each of the faults. These limits,
of course, are not known exactly a priori. Areas 4 and 5 are the primary focal points because they contain
critical and difficult-to-predict faults. Being able to control (to a degree) the conditions that affect the
type of failure that occurs allows some control over the amount of data for each fault, while still allowing
the fault to develop naturally (i.e., the fault is not seeded). If a particular type of fault requires more
transitional data for analysis, adjustment of the operating conditions can increase the likelihood of
producing the desired fault.

23.5.1.1.3 Oil Debris Analysis
Roylance and Raadnui36 examined the morphology of wear particles in circulating oil and correlated
their occurrences with wear characteristics and failure modes of gears and other components of rotating
machinery. Wear particles build up over time even under normal operating conditions. However, the
particles generated by benign wear differ markedly from those generated by the active wear associated
with pitting, abrasion, scuffing, fracturing, and other abnormal conditions that lead to failure. Roylance
and Raadnui36 correlated particle features (quantity, size, composition, and morphology) with wear
characteristics (severity, rate, type, and source).

Particle composition can be an important clue to the source of abnormal wear particles when com-
ponents are made of different materials. The relationship of particle type to size and morphology has
been well characterized by Roylance,36 and is summarized in Table 23.1.

23.5.1.1.4 Vibration Analysis
Vibration analysis is extremely useful for gearbox analysis and gear failures because the unsteady com-
ponent of relative angular motion of the meshing gears provides the major source of vibratory excitation.37

This effect is largely caused by a change in compliance of the gear teeth and deviation from perfect shape.
Such a modulated gear meshing vibration, y(t), is given by:

(23.9)

TABLE 23.1 Wear Particle Morphology – Ferrography Descriptors

Particle Description

Rubbing Particles, 20 µm chord dimension and approx. 1 µm thick. Results from flaking of pieces from mixed 
shear layer-mainly benign.

Cutting Swarf-like chops of fine wire coils, caused by abrasive cutting action.
Laminar Thin, bright, free-metal particles, typically 1 µm thick, 20–50 µm chord width. Holes in surface and 

uneven edge profile. Gear-rolling element bearing wear.
Fatigue Chunky, several microns thick from, e.g., gear wear, 20–50 µm chord width.
Spheres Typically ferrous, 1 to 2 µm diameter, generated when micro-cracks occur under rolling contact fatigue 

condition.
Severe Sliding Large/50 µm chord width, several microns thick. Surfaces heavily striated with long straight edges. 

Typically found in gear wear.
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where an(t) and bn(t) are the amplitude and phase modulation functions. Amplitude modulation produces
sidebands around the carrier (gear-meshing and harmonics) frequencies and is often associated with
eccentricity, uneven wear, or profile errors. As can be seen from the equation, frequency modulation will
produce a family of sidebands. These will both typically occur in gear systems, and the sidebands may
either combine or subtract to produce an asymmetrical family of sidebands.

Much of the analysis has focused on the use of the appropriate statistical processing and transform to
capture these effects. A number of figures of merit or features have been used to correlate mechanical
faults. Moreover, short-time Fourier, Hilbert, and wavelet transforms have also been used to develop
vibration features.38,39

23.5.1.1.5 Description of Features
Various signal and spectral modeling techniques have been used to characterize machinery data and
develop features indicative of various faults in the machinery. Such techniques include statistical modeling
(e.g., mean, rms, kurtosis), spectral modeling (e.g., Fourier transform, cepstral transform, autoregressive
modeling), and time frequency modeling (e.g., short-time Fourier transform, wavelet transform, wide-
band ambiguity functions). Several oil and vibration features are now well described. These can be fused
and integrated with knowledge of the system and history to provide indication of gearbox condition. In
addition to the obvious corroboration and increased confidence that can be gained, this approach to
using multiple sensors also aids in establishing the existence of sensor faults.

Features tend to organize into subspaces in feature space, as shown in Figure 23.8. Such subspaces can
be used to classify the failure mode. Multiple estimates of a specific failure mode can be produced through
the classification of each feature subspace. Other failure mode estimates can be processed at the same
time as well. Note that a gearbox may deteriorate into more than one failure mode with several critical
faults competing.

During 20+ run-to-failure transitional tests conducted on the MDTB, data were collected from accel-
erometer, temperature, torque, speed, and oil quality/debris measurements. This discussion pertains only
to Test 14. Borescope imaging was performed at periodic intervals to provide damage estimates as ground
truth for the collected data. Small oil samples of approximately 25 ml were taken from the gearbox during

FIGURE 23.8 Oil/vibration data fusion process.40
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the inspection periods. Post-run oil samples were also sent to the DoD Joint Oil Analysis Program (JOAP)
to determine particle composition, oil viscosity, and particle wear type.

The break-in and design load time for Test 14 ran for 96 hours. The 3.33 ratio gearbox was then loaded
at three times the design load to accelerate its failure, which occurred approximately 20 hours later
(including inspection times). This load transition time was at approximately 1200 (noon), and no visible
signs of deterioration were noted. The run was stopped every two hours for internal inspection and oil
sampling. At 0200 (2:00 a.m.), the inspection indicated no visible signs of wear or cracks. After 0300,
accelerometer data and a noticeable change in the sound of the gearbox were noted. Upon inspection,
one of the teeth on the follower gear had separated from the gear. The tooth had failed at the root on
the input side of the gear with the crack rising to the top of the gear on the load side (refer to Figure 23.9).
The gearbox was stopped again at 0330, and an inspection showed no observable increase in damage. At
0500, the tooth from the downstream broken tooth had suffered surface pitting, and there were small
cracks a millimeter in from the front and rear face of the tooth, parallel to the faces. The 0700 inspection
showed that two teeth had broken and the pitting had increased, but not excessively, even at three times
design load. Neighboring teeth now had small pits at the top-motor side corners.

On shutdown at 0815, with a significant increase in vibration (over 150% RMS), the test was concluded,
and eight teeth had suffered damage. The damaged teeth were dispersed in clusters around the gear.
There appeared to be independent clusters of failure processes. Within each cluster a tooth that had failed
as a result of root cracking was surrounded by teeth that had failed due to pitting. On both clusters, the
upstream tooth had failed by cracking at the root, and the follower tooth had experienced pitting.

Figure 23.9 shows the time sequence of three types of particle concentrations observed during this test
run: fatigue wear, cutting wear, and severe sliding wear. Initial increases in particle counts observed at
1200 reflect debris accumulations during break-in. Fatigue particles manifested the most dramatic change
in concentration of the three detectable wear particle types, nearly doubling between 1400 and 1800,
suggesting the onset of some fault that would give rise to this type of debris. This data is consistent with
the inspections that indicated pitting was occurring throughout this time period. No significant sliding
or cutting wear was found after break-in.

Figure 23.10 illustrates the breakdown of these fatigue particle concentrations by three different micron
size ranges. Between 1400 and 1800, particle concentrations increased for all three ranges with onset
occurring later for each larger size category. The smallest size range rose to over 1400 particles/ml by

FIGURE 23.9 Number of particles/ml for fatigue, cutting, and sliding wear modes (larger than 15 microns) collected
at various times.
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1800, while the particles in the midrange began to increase consistently after 1400 until the end of the
run. The largest particle size shows a gradual upward trend starting at 1600, though the concentration
variation is affected by sampling/measurement error. The observed trends could be explained by hypoth-
esizing the onset of a surface fatigue fault condition sometime before 1600, followed by steadily generated
fatigue wear debris.

Figures 23.11 and 23.12 show different features of the accelerometer data developed at Penn State ARL.
The results with a Penn State ARL enveloping technique, Figure 23.11, clearly show evidence of some
activity around 0200. The dashed line represents the approximate time the feature showed a notable
change. This corresponds to the time when tooth cracking is believed to have initiated/propagated. The
wavelet transform40 is shown in Figure 23.12. It is believed to be sensitive to the impact events during
breakage, and shows evidence of this type of failure after 0300. The processed indicators seem to indicate
activity well before RMS levels provided any indication.

During each stop, the internal components appeared normal until after 0300, when the borescope
verified a broken gear tooth. This information clearly supports the RMS and wavelet changes. The changes
in the interstitial enveloping that occurred around 0200 (almost one hour earlier) could be considered
as an early indicator of the witnessed tooth crack. Note that the indication is sensitive to threshold setting,
and the MDTB online wavelet detection threshold triggered about an hour (around the same time as
the interstitial) before that shown in Figure 23.12.

23.5.1.1.6 Feature Fusion41

Although the primary failure modes on MDTB gearboxes have been gear tooth and shaft breakage, pitting
has also been witnessed. Based on the previous vibration and oil debris figures in this section, a good
overlap of candidate features appears for both commensurate and noncommensurate data fusion. The
data from the vibration features in Figure 23.13 show potential clustering as the gearbox progresses towards
failure. Note from the borescope images that the damage progresses in clusters, which increase on both
scales. The features in this subspace were obtained from the same type of sensor (i.e., they are commen-
surate). Often two noncommensurate features — such as oil debris and vibration — are more desirable.

Figure 23.14 shows a subspace example using a vibration feature and an oil debris (fatigue particle
count) feature. There are fewer data points than in the previous example because the MDTB had to be
shut down to extract an oil sample as opposed to using on-demand, DAQ collection of accelerometer
data. During the progression of the run, the features seemed to cluster into regions that are discernible

FIGURE 23.10 Number of fatigue-wear particles/ml by bin size collected at various times.
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and trackable. Subspaces using multiple features from both commensurate and noncommensurate
sources would provide better information for classification, as would the inclusion of running conditions,
system knowledge, and history. This type of association of data is a necessary step toward accomplishing
more robust state estimation and higher levels of data fusion.

FIGURE 23.11 Interstitial enveloping of accelerometer.

FIGURE 23.12 Continuous wavelet transform (IIR count).
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23.5.1.1.7 Decision Fusion Analysis
Decision fusion is often performed as a part of reasoning in CBM systems. Automated reasoning and
data fusion are important for CBM. Because the monitored systems exhibit complex behavior, there is
generally no simple relationship between observable conditions and system health. Furthermore, sensor
data can be very unreliable, producing a high false alarm rate. Hence, data fusion and automated reasoning
must be used to contextually interpret the sensor data and model predictions. In this section, three
automated reasoning techniques, neural networks, fuzzy logic, and expert/rule-based systems, are com-
pared and evaluated for their ability to predict system failure.42 In addition, these system outputs are
compared to the output of a hybrid system that combines all three systems to realize the advantages of
each. Such a quantitative comparison is essential in producing high quality, reliable solutions for CBM
problems; however, it is rarely performed in practice.

Although expert systems, fuzzy logic systems, and neural networks are used in machinery diagnostics,
they are rarely used simultaneously or in combination. A comparison of these techniques and decision
fusion of their outputs was performed using the MDTB data. In particular, three systems were developed
(expert system, fuzzy logic, and neural network) to estimate the remaining useful life of the gearbox
during accelerated failure runs (see Figure 23.15). The inputs to the systems consisted of speed, torque,
temperature, and vibration RMS in several frequency bands.

A graphical tool was developed to provide a quick visual comparison of the outputs of the different
types of systems (see Figure 23.16). In this tool, colors are used to represent the relative levels of the
inputs and outputs and a confidence value is provided with each output. The time to failure curves for
the three systems and the hybrid system are shown in Figure 23.17. In this example, the fuzzy logic system
provided the earliest warning, but the hybrid system gave the best combination of early warning and
robustness.

FIGURE 23.13 Feature subspace classification example.
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FIGURE 23.14 Non-commensurate feature subspace.

FIGURE 23.15 Flow diagram for comparison of three reasoning methods with MDTB data.
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FIGURE 23.16 Graphical viewer for comparing the outputs of the reasoning systems.

FIGURE 23.17 Time-to-failure curves for the reasoning systems with MDTB data.
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23.5.2 Fluid Systems

Fluid systems comprise lubrication,43 fuel,44 and hydraulic power application examples. Some efforts at
evaluating a model-based, data fusion approach for fluid systems are discussed in the following sections.
Such fluid systems are critical to many Navy engine and power systems and clearly must be part of the
CBM solution.

23.5.2.1 Lubrication System Function

A pressure-fed lubrication system is designed to deliver a specific amount of lubricant to critical, oil-
wetted components in engines, transmissions, and like equipment. The primary function of a lubricant
is to reduce friction through the formation of film coatings on loaded surfaces. It also transports heat
from the load site and prevents corrosion. The lubricating oil in mechanical systems, however, can be
contaminated by wear particles, internal and external debris, foreign fluids, and even internal component
(additive) breakdown. All of these contaminants affect the ability of the fluid to accomplish its mission
of producing a lubricious (hydrodynamic, elastohydrodynamic, boundary, or mixed) layer between
mechanical parts with relative motion.45,46

Lubricant contamination can be caused by many mechanisms. Water ingestion through seals (common
in marine environments) or condensation will cause significant viscosity effects and corrosion. Fuel
leakage through the (turbine fuel-lube oil) heat exchanger will also adversely affect lubricity. Moreover,
fuel soot, dirt, and dust can increase viscosity and decrease the oil penetration into the loaded surface
of the gears or bearings.47 An often overlooked, but sometimes significant, source of contamination is
the addition of incorrect or old oil to the system. Table 23.2 provides a list of relevant faults that can
occur in oil lubrication systems and some wetted components’ faults.

Many offline, spectroscopic and ferrographic techniques exist to analyze lubricant condition and wear-
metal debris.48-52 These methods, while time-proven for their effectiveness at detecting many types of
evolving failures, are performed at specified time intervals through offline sampling.53 The sampling
interval is driven by the cost to perform the preventive maintenance versus the perceived degradation
window over an operational time scale. The use of intermittent condition assessment will miss some
lubricant failures. Moreover, the use of such offline methods is inconvenient and increases the preventive
maintenance cost and workload associated with operating the platform.

23.5.2.2 Lubrication System Test Bench

A lubrication system test bench (LSTB) was designed to emulate the lubrication system of a typical gas
turbine engine.54,55 The flow rate relates to typical turbine speeds, and flow resistance can be changed in
each of the three legs to simulate bearing heating and/or differences between various turbine systems.
To simplify operation, the LSTB uses facility water, rather than jet fuel in the oil heat exchanger. The
LSTB is also capable of adding a measured amount of foreign matter through a fixed-volume, dispensing
pump, which is used to inject known amounts of metallic and nonmetallic debris, dirty oil, fuel, and
water into the system. Contaminants are injected into a mixing block and pass through the debris sensors,
upstream of the filter. The LSTB provides a way to correlate known amounts of contaminants with the

TABLE 23.2 Lubricant and Wetted Component Faults

Lubricant Faults Gear Faults Bearing Faults

Viscosity breakdown Plastic deformation Surface wiping
Oxidation Pitting Fatigue
Emulsification Heavy scuffing Fretting
Additive depletion Chipping and tooth crack Foreign debris
Sludge formation Tooth breakage Spalling
Fluid contamination Case cracking Inadequate oil film
External debris contam. Surface fatigue Overheating
Internal debris contam. Abrasive wear Corrosion
System leakage Chemical wear Cavitation erosion
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system parameters and, thus, establishes a relationship between machinery wear levels, percentage of
filter clogged, and viscosity of the lubricant.

The failure effects are in the areas of lubricant degradation, contamination, debris generated internally
or externally, flow blockage, and leakage. These effects can be simulated or directly produced on the
LSTB. Both degradation and contamination will result in changes in the oil transport properties. Water,
incorrect oil, and sludge can be introduced in known amounts. Debris can be focused on metallic particles
of 100-micron mean diameter, as would be produced by bearing or gear wear. Flow blockage can be
emulated by restricting the flow through the control valves. Similarly, leakage effects can be produced
by actual leaks or by opening the leg valves. Alternatively, seal leakage effects can cause air to flow into
the lube system. This dramatically affects performance and is measurable. In addition, the LSTB can be
used to seed mechanical faults in the pump, relief valve, and instrumentation. In the case of mechanical
component failure, vibration sensors could be added.

23.5.2.3 TELSS Model and Metasensors

Note that association of failure modes to sensor and fused data signatures remains a hurdle in such CBM
work. Evaluation of operational data gathered on the gas turbine engine provided some association to
believed faults, but insufficient data on key parameters prevented the implementation of a fault tree or
even an implicit association. Given the lack of failure test data and the limited data available on the actual
engine, a simulation model was developed. The turbine engine lubrication system simulation (TELSS)
output was used to generate virtual or metasensor outputs. This data was evaluated in the data fusion
and automated reasoning modules.

The TELSS consists of a procedural program and a display interface. The procedural program is written
in C code and uses the analog of electrical impedances to model the oil flow circuit. The model contains
analytical expressions of mass, momentum, and energy equations, as well as empirical relationships. The
interface displays state parameters using an object-oriented development environment. Both scripted
and real system data can be run through the simulation. A great deal of effort was expended to properly
characterize the Reynolds number and temperature-dependent properties and characteristics in the
model. TELSS requires the geometry of the network, the gas generator speed, and a bulk oil temperature
to estimate the pressures and flows throughout.56

23.5.2.4 Data Fusion Construct

The initial approach for lubrication system data fusion is summarized in Figure 23.18. This example
follows the previous methodology of reviewing the data fusion steps within the context of the application.
There are five levels in the data fusion process:

1. Observation: This level involves the collection of measured signals from the lubrication system
being monitored (e.g., pressures, flow rates, pump speed, temperatures, debris sensors, and oil
quality measurements).

2. Feature extraction: At this level, modeling and signal processing begins to play a role. From the models
and signal processing, features (e.g., virtual sensor signals) are extracted; features are more informative
than the raw sensor data. The modeling provides additional physical and historical information.

3. Data association: In this level, the extracted features are mapped into commensurate and non-
commensurate failure mode spaces. In other words, the feature data is associated with other feature
data based on how they reveal the development of different faults.

4. System state estimation: In this level, classification of feature subspaces is performed to estimate
specific failure modes of the lubricant or oil-wetted components in the form of a state estimate
vector. The vector represents a confidence level that the system is in a particular failure mode; the
classification also includes information about the system and history of the lubrication system.

5. Fault condition and health assessment: For this level, system health decisions are made based on
the agreement, disagreement, or lack of information that the failure mode estimates indicate. The
decision processing should consider which estimates come from commensurate feature spaces and
which features map to other failure mode feature subspaces, as well as the historical trend of the
failure mode state estimate.
©2001 CRC Press LLC



23.5.2.5 Data Analysis Results

23.5.2.5.1 Engine Test Cell Correlation
Engine test cell data was collected to verify the performance of the system. The lubrication system
measurements were processed using the Data Fusion Toolkit to produce continuous data through inter-
polation. Typical data is seen in Figure 23.19. This data provided the opportunity to trend variables against

FIGURE 23.18 Lubrication system diagnostics/prognostics data fusion structure.

FIGURE 23.19 Processing of test stand data and correlation in the ARL data fusion toolkit.
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the fuel flow rate to the engine, gas generator speed and torque, and the power turbine speed and torque.
Ultimately, through various correlation analysis methods, the gas generator was deemed the most suitable
regression (independent) variable for the other parameters. It was used to develop three-dimensional
maps and regressions with a measured temperature to provide guidelines for normal operation.

23.5.2.5.2 Operational Data with Metasensor Processing
Operational data was made available by a Navy unit that uses the gas turbine engines. The operational
data was limited to the production engine variables, which consisted of one pressure and temperature.
The TELSS model was embedded within the Multisensor Fusion Toolkit. The TELSS interface for an
LPAS run is shown in Figure 23.20. Because the condition of the oil and filter was unknown for these
runs, the type of oil and a specified amount of clogging was assumed. The variation of oil and types of
filters can vary the results significantly. Different MIL-L-23699E oils, for many of which the model
possesses regressions, can vary the flow rate predictions by up to 5 percent. Similar variation is seen when
trying to apply the filter clogging to different vendors’ filter products.

The TELSS simulation model can be used to simulate different fault conditions to allow data association
and system state estimation. Figure 23.21 illustrates the output of the metasensor under simulated fault
conditions of filter clogging with debris. Filter clogging is typically monitored through a differential
pressure measurement or switch. This method does not account for other variables that affect the
differential pressure. The other variables are the viscosity, or the fluid resistance to flow, which is
dependent on temperature and the flow rate through the filter.

With this additional knowledge, the T-P-mdot relationship can be exploited in a predictive fashion.
Toward the mid to latter portion of the curves, the pressure increases slightly, but steadily, as the flow
rate remains constant or decreases. Meanwhile, the temperature increases around 1000 seconds and then
decreases steadily from 1500 until the engine is shut off. Let us investigate these effects more closely. The
increasing pressure drop from about 1200 to 1500 seconds occurs while the temperature and flow are
approximately constant. This is one indication of a clogging effect. From 1500 through 2100, the flow

FIGURE 23.20 TELSS processing of operational data to produce metasensors. Massflow in pounds per hour is
shown in bar scaled objects. Pressure throughout the circuit in pounds per square inch is illustrated by pressure
gauge objects.
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rate is at a lower level, but the pressure drop rises above its previous level at the higher oil flow rate.
Looking only at these two variables could suffice; however, deeper analysis reveals that during the same
timeframe, the temperature decreases, which means the viscosity (or resistance to flow) of the oil
increases. This lower temperature would indicate that higher pressure drops could be expected for the
same flow rate. This effect (increased viscosity due to lower temperature) is the reason why the pressure
drop is so high at the beginning of the run. Consequently, this consideration actually adds some ambiguity
to an otherwise crisp indication. The model analysis indicates, though, that the additional pressure drop
caused by higher viscosity does not comprise the entire difference. Thus, the diagnosis of filter clogging
is confirmed in light of all of the knowledge about the effects.

23.5.2.6 Health Assessment Example

The output from the TELSS model and Multisensor Toolkit was processed using an automated reasoning
shell tool. The output of a shell that could be used to detect filter-clogging fractions is shown in the
figures below. An expert system (ES), a fuzzy logic (FL) association, and a neural network (NN) perform
the evaluations of filter clogging. The flow, temperature, and differential pressure were divided into three
operational ranges. The ES was provided set values for fraction clogged. The FL was modeled with
trapezoidal membership functions. The NN was trained using the fuzzy logic outputs.56,57 For the first
case shown, the combination of 4.6 gpm, 175°F, and 12 psid, the reasoning techniques all predict relatively
low clogging. In the next case, the flow is slightly less, whereas the pressure is slightly higher at 12.5 psid.
The NN evaluation quickly leans toward a clogged filter, but the other techniques lag in fraction clogged.
The expert system is not sensitive enough to the relationships between the variables and the significance
of the pressure differential increasing while the flow decreases markedly. This study and others conducted
at ARL indicated that a hybrid approach based on decision fusion methods would allow the greatest
flexibility in such assessments.

23.5.2.7 Summary

The objective of this fluid systems research was to demonstrate an improved method of diagnosing
anomalies and maintaining oil lubrication systems for gas turbine engines. Virtual metasensors from the
TELSS program and operational engine data sets were used in a hybrid reasoning shell. A simple module
for the current-limited sensor suite on the test engine was proposed and recommendations for enhanced
sensor suites and modules were provided. The results and tools, while developed for the test engine, are

FIGURE 23.21 TELSS run illustrating the relationship between the system variables that can be fused to produce
filter clogging association and estimates.
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applicable to all gas turbine engines and mechanical transmissions with similar pressure-fed lubrication
systems.

As mentioned in a previous section, the ability to associate faulted conditions with measurable param-
eters is tantamount for developing predictive diagnostics. In the current example, metasensors were
generated using model knowledge and measured inputs that could be associated to estimate condition.
Development of diagnostic models results from the fusion of the system measurements as they are
correlated to an assessed damage state.

23.5.3 Electrochemical Systems

Batteries are an integral part of many operational environments and are critical backup systems for many
power and computer networks. Failure of the battery can lead to loss of operation, reduced capability,
and downtime. A method to accurately assess the condition (state of charge), capacity (amp-hr), and
remaining charge cycles (remaining useful life) of primary and secondary batteries could provide signif-
icant benefit. Accurate modeling characterization requires electrochemical and thermal elements. Data
from virtual (parametric system information) and available sensors can be combined using data fusion.
In particular, information from the data fusion feature vectors can be processed to achieve inferences
about the state of the system.

This section describes the process of computing battery state of charge (SOC) — a process that involves
model identification, feature extraction, and data fusion of the measured and virtual sensor data. In
addition to modeling the primary electrochemical and thermal processes, it incorporates the identifica-
tion of competing failure mechanisms. These mechanisms dictate the remaining useful life of the battery,
and their proper identification is a critical step for predictive diagnostics.

Figure 23.23 illustrates the model-based prognostics and control approach that the battery predictive
diagnostics project addresses. The modeling approach to prognostics requires the development of elec-
trical, chemical, and thermal model modules that are linked with coupled parameters. The output of the

FIGURE 23.22 Hybrid reasoning shell evaluation (Cases 1 and 2).
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models is then combined in a data fusion architecture that derives observational synergy, while reducing
the false alarm rate. The reasoning system provides the outputs shown at the bottom right of the figure.
Developments will be applicable to the eventual migration of the diagnosis and health monitoring to an
electronic chip embedded into the battery (i.e., intelligent battery health monitor).

23.5.3.1 The Battery As a System

A battery is an arrangement of electrochemical cells configured to produce a certain terminal voltage
and discharge capacity. Each cell in the battery is comprised of two electrodes where charge transfer
reactions occur. The anode is the electrode at which an oxidation (O) reaction occurs. The cathode is
the electrode at which a reduction (R) reaction occurs. The electrolyte provides a supply of chemical
species required to complete the charge transfer reactions and a medium through which the species (ions)
can move between the electrodes. Figure 23.24 illustrates the pathway ion transfer that takes place during
the reaction of the cell. A separator is generally placed between the electrodes to maintain proper electrode
separation despite deposition of corrosion products.58 The electrochemical reactions that occur at the
electrodes can generally be reversed by applying a higher potential that reverses the current through the
cell. In situations where the reverse reaction occurs at a lower potential than any collateral reaction, a
rechargeable or secondary cell can potentially be produced. A cell that cannot be recharged because of an
undesired reaction or an undesirable physical effect of cycling on the electrodes is called a primary cell.58

Changes in the electrode surface, diffusion layer, and solution are not directly observable without
disassembling the battery cell. Other variables such as potential, current, and temperature are observable
and can be used to indirectly determine the performance of physical processes. For overall performance,
the capacity and voltage of a cell are the primary specifications required for an application. The capacity
is defined as the time integral of current delivered to a specified load before the terminal voltage drops
below a predetermined cut-off voltage. The present condition of a cell is described nominally with the
state-of-charge (SOC), which is defined as the ratio of the remaining capacity and the capacity. Secondary
cells are observed to have a capacity that deteriorates over the service life of the cell. The term state-of-
health (SOH) is used to describe the physical condition of the battery, which can rang from external
behavior, such as loss of rate capacity, to internal behavior, such as severe corrosion. The remaining life
of the battery (i.e., how many cycles remain or the usable charge) is termed the state-of-life (SOL).

23.5.3.2 Mathematical Model

An impedance model called the Randles circuit, shown in Figure 23.25, is useful in assessing battery
condition. Impedance data can be collected online during discharge and charge to capture the full change

FIGURE 23.24 Electrode reaction process.58,59
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of battery impedance and identify the model parameters at various stages of SOC, as well as over multiple
cycles of the battery for SOH identification. Some of the identified model parameters of the nickel
cadmium battery are shown in Figure 23.26 as the batteries proceed from a fully charged to a discharged
state. Identification of these model-based parameters provides insight and observation into the physical
processes occurring in the electrochemical cell.60,61

23.5.3.3 Data Fusion of Sensor and Virtual Sensor Data

The approach for battery feature data fusion is summarized in Figure 23.27. There are five levels in the
data fusion processes: observation (data collection), feature extraction (computation of model parameters
and virtual sensor features), data association (mapping features into commensurate and noncommensu-
rate feature spaces), system state estimation (estimation of failure modes and confidence level), and fault
condition and health assessment (making system health decisions).

Figure 23.28 illustrates the sensor and virtual sensor input to the data fusion processing. The outputs
of the processing are the SOC, SOH, and SOL estimates that are fed into the automated reasoning
processing. After the data association processing, an estimate of the failure mechanism is determined.

Two approaches for SOC prediction are described in the following sections. Each performs a kind of
data fusion to utilize physically meaningful parameters to predict SOC. The definition of SOC is the
amount of useful capacity remaining in a battery during a discharge. Thus, 100% SOC indicates full
capacity and 0% SOC indicates that no useful capacity remains.

23.5.3.3.1 ARMA Prediction of SOC 62

An effective way to predict SOC of a battery has been developed using ARMA model methodology. This
model has performed well on batteries of various size and chemistry, as well as at different temperatures
and loading conditions. ARMA models are a very common system identification technique because they
are linear and easy to implement. The model used in this application is represented by the equation

FIGURE 23.25 Two-electrode randles circuit model with wiring inductance.

FIGURE 23.26 Nickel cadmium model parameters over discharge cycle.
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(23.10)

where y represents SOC, X represents a matrix of model inputs, and a, b, and c0 represent the ARMA
coefficients. Careful consideration was exercised in determining the inputs. These were determined to
be VD, ID, RΩ, θ, CDL, and Ts, and output is SOC. The inputs were smoothed and normalized to reduce
the dependence on noise and to prevent domination of the model by parameters with the largest
magnitudes.

FIGURE 23.27 Battery diagnostics/prognostics data fusion structure.

FIGURE 23.28 Generalized feature vector for battery predictive diagnostics.
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The model was determined by using one of the runs and then tested with the remaining runs.
Figure 23.29 shows the results for all eight size-C batteries. The average prediction error for lithium
batteries was less than 3%, for NiCad less than 5%, and for lead acid less than 10%. These results are
summarized in Table 23.3 below.

23.5.3.3.2 Neural Networks Prediction of SOC 62

Artificial neural networks have been used successfully in both classification and function approximation
tasks. One type of function approximation task is system identification. Although neural networks very
effectively model linear systems, their main strength is the ability to model nonlinear systems using
examples of input-output pairs. This was the basis for choosing neural networks for SOC estimation.
Neural network SOC estimators were trained for lithium batteries of sizes C and 2/3 A under different
loading conditions. For each type of battery, a subset (typically 3 to 6) of the available parameter vectors
was chosen as the model input. Networks were trained to produce either a direct prediction of battery
SOC or, alternatively, an estimation of initial battery capacity during the first few minutes of the run.

All networks used for battery SOC estimation had one hidden layer. The back propagation, gradient-
descent learning algorithm is used, which utilizes the error signal to optimize the weights and biases of
both network layers. The inputs to the network were a subset of ID, VD, RΩ θ, and CDL. As for the ARMA
case, the inputs were smoothed and normalized. This led to smaller networks, which tend to be better
at generalization. For time-delay neural networks, the selection of the number of delays and the length
of the delays is crucial to the performance of the networks. Both short and long delays were tried during
different training runs. The short delays gave better performance, which indicates that the battery SOC
does not involve long time constants. This is also evident from the ARMA examples. Several types of
neural networks were trained with battery data and extracted impedance parameters to directly predict
the battery state-of-charge. Among the several training methods that were used, the Levenburg-Marquadt
(L-M) provided the best results. The size of the network was also important in training. An excessively

FIGURE 23.29 ARMA SOC prediction results for size-C lithium (CF)x batteries.

TABLE 23.3 Results of ARMA Model SOC Predictions

Chemistry Size # Cells Type
Prediction
Error (%)

Lithium1 C 1 Primary 2.18
Lithium1 2/3 A 1 Primary 2.87
NiCad2 D 1 Secondary 3.17
NiCad2 C 1 Secondary 4.50
Lead-Acid 12-Volt 6 Secondary 9.13

1 Poly carbonmonofluoride lithium (spiral-type).
2 Nickel-Cadmium.
©2001 CRC Press LLC



small network size results in inadequate training and a larger than necessary network size leads to over-
training and poorer generalization.

Neural networks trained to directly provide the battery SOC provided consistently good performance.
However, the performance was much better when the battery’s initial capacity was first estimated. These
networks were also trained to estimate the initial capacity of the battery during the first few minutes of
the test. Then, the measured load current could easily be used to predict SOC because the current is the
rate of change of charge. This is even more useful for SOH and SOL prediction because as the secondary
batteries are reused they start at different initial capacity each time.

This method can also be used as a powerful tool in mission planning. Hypothetical load profiles can
be used to predict whether a battery would survive or fail a given mission, thus preventing the high cost
and risk of batteries failing in the field. The networks tend to slightly underestimate the battery SOC.
This is a very important practical feature, since it results in a conservative estimate and avoids unscheduled
downtime.

The results using radial basis function (RBF) neural networks were the best and are summarized in
Table 23.4. The SOC plots are shown for size-C lithium batteries in Figure 23.30. The results are quite
remarkable, considering that very little training data are required to produce the predictors. As more
data are collected and several runs of each of level of initial battery SOC become available, the robustness
of the predictors will likely improve. In addition, the neural network predictors have smaller error on
outliers and provide a conservative prediction (i.e., they do not over-predict the SOC). Both of these
advantages are very important in practical systems where certification and low false alarms are not just
requirements, but can make the difference between a system that is actually used or shelved.

23.6 Concluding Remarks

The application of data fusion in the field of CBM and predictive diagnostics for engineered systems is
rich with opportunity. The authors fully acknowledge that only a small amount of what is possible to
accomplish with data fusion was presented in this chapter. The predictive diagnostics application domain

TABLE 23.4 Error Rates for SOC Prediction Based on Initial Capacity Estimation 
with RBF Neural Networks

Battery Size
[# Hidden Neurons]

Average Training Error
[Training Set]

Average 
Testing Error

Maximum Testing 
Error [Run #]

Size C6

Size 2/3 A12

0.6%13,14,16

0.8%17,18,20

2.9%
2.9%

6.8%15

8.2%23

FIGURE 23.30 SOC prediction for size-C Lithium batteries using initial SOC estimation with RBF neural networks.
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is relatively new for data fusion, but the future is bright with the many analogies that can be drawn
between more mature data fusion applications and the current one. The authors anticipate that continu-
ing developments in actual and virtual feature fusion, as well as hybrid decision fusion of condition
assessments, will tend to dominate the research field for some time.
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