An Introduction To Digital Signal
Processors

11X

Bruno Paillard, Ph. D. - P.eng. - Professor
Génie électrique et informatique
Université de Sherbrooke

January 27 2002

© BRUNO PAILLARD ING. 1



INTRODUCTION

1. Computers and microprocessors
2.  Application areas of the microprocessor

3. Examples of embedded systems

MICROPROCESSORS

1. Applications and types of microprocessors

2.  Evolution of the software development tools and methodologies
3.  Present frontiers

4. Criteria for choosing a microprocessor

5. Building blocks of an embedded system

6. Program execution

SYSTEM ARCHITECTURE
1. Von Neumann architecture
2. Harvard architecture
3.  Pros and cons of each architecture
4. Busses, address decoding and three-state logic

5.  Memories: technology and operation

INTRODUCTION TO THE SIGNAL RANGER DSP BOARD

1. Hardware features

2.  Software tools

BINARY REPRESENTATIONS AND FIXED-POINT ARITHMETIC

1. Bases and positional notations
2.  Unsigned integer notation
3.  Signed Integer notation using a separate sign bit

4. 2’s complement signed notation

13
14
15
17

21

23
23
25
25
26

44

51
51

51

55
55
57
61

62

© BRUNO PAILLARD ING.



Offset binary notation
Fractional notations
Floating point notation
BCD notation

ASCII Codes

SOFTWARE DEVELOPMENT TOOLS

1.

2.

3.

Cross-development tools
Code development methodology

Code testing

THE TMS320C5402: ARCHITECTURE AND PROGRAMMING

1.

2.

3.

Architecture

CPU

Operands and addressing modes
Branch instructions

Repeats

Other conditional instructions
The stack

Functions

Interrupts

ON-CHIP PERIPHERALS OF THE TMS320C5402

1.

Introduction

Timers

Host Port Interface (HPI)

Multi-channel Buffered Serial Ports (McBSPs)
Direct Memory Access (DMA)

BIO and XF signals

Clock generator

Wait-state generator

68
69
73
75

77

79
79
82

88

91
91
93

107

118

120

121

122

127

145

157
157
158
158
158
159
160
160

161

2 © BRUNO PAILLARD



SOFTWARE DEVELOPMENT METHODOLOGY FOR EMBEDDED SYSTEMS
1. Introduction
2. Avoiding problems
3. Modular programming practices
4. Structured programming
5. Managing peripherals: interrupts vs. polling

6. High-level language development

SIGNAL RANGER’S DEVELOPMENT TOOLS

1. Introduction
2. Mini-debugger

3. Communication kernel

APPENDIX A — SCHEMATICS OF THE SIGNAL RANGER DSP BOARD

163
163
165
166
168
179

191

193
193
193

200

208

© BRUNO PAILLARD



Introduction

1 Computers and microprocessors
o 2. Applications areas of the microprocessor
3

Examples of embedded systems.

COMPUTERS AND MICROPROCESSORS

Charles Babbage invented the concept of computer in the mid 19" century, but the
concept had to wait for the development of vacuum tube electronics in the 1930s to
achieve its full potential.

John W. Mauchly and J. Presper Eckert at University of Pennsylvania’s Moore School of
Electrical Engineering developed one of the first electronic computers between 1942
and 1946. Called ENIAC (Electronic Numerical Integrator and Computer), it was
originally used to calculate ballistic tables for the military. With 17 468 vacuum tubes
and 100 feet of front panel, this 30 tons mighty machine was capable of doing 5000
additions and 300 multiplications a second. Although it is less than 1/10 000" the
computational speed found in a modern cellular phone, due to its “all electronic” design,
it was the fastest computer in use at the time. Later models were used for nuclear
physics and aerodynamics research, two fields where the super-computer is still a tool
of the trade today.

Although not publicised at the time, the first electronic computer was actually built by
Tommy Flowers, an electronics engineer in the British secret service, during the Second
World War. This computer called Colossus was used by the British secret service to
decipher German military codes. Because of the secrecy that surrounded these
operations it was not recognized as the first electronic computer until recently.

Initially computers were used to carry out numerical computations, but nowadays they
are used in many applications from music players to flight control systems.

A computer performs its task by the sequential execution of elementary binary
operations called “instructions”. These elementary instructions may represent the
addition of two numbers for instance, or a comparison between two numbers, or the
transfer of a binary word from one memory location to another. They are assembled in a
complete “program” that defines the global task carried out by the computer.

The part of the computer that executes the instructions is called the Central Processing
Unit (CPU).

A microprocessor is a silicon chip that implements the complete Central Processing Unit
of a computer. Silicon photolithographic and etching processes are used to mass-
produce microprocessors.

© BRUNO PAILLARD ING. 5



The development of the microprocessor in the 1970’s represents a major milestone in
the history of electronics and computer systems. It enabled the development of low cost
computers, which in time became “personal computers”. It also spawned the field of
“‘embedded systems”, in which a microprocessor is used to control an electronic device
or subsystem. Nowadays, nearly all customer, scientific and industrial electronics
incorporate microprocessors.

The paternity of the microprocessor is still debated today. In 1971, Intel introduced the
4004, which included all the elements of a 4-bit CPU. The same year Texas Instruments
introduced the TMS1802NC. Both microprocessors were originally intended to support
the functions of a desk calculator. The TMS1802NC was not very flexible. Its program,
in particular, was stored in a Read Only Memory, which contents were permanently
etched on the silicon chip. Modifying the program required the development of new
lithography masks. Texas Instruments received a patent in 1973 for the development of
the microprocessor.

Intel continued its development effort and produced the 8008 in 1972, the 8080 in 1974,
and the 8086 in 1978. These microprocessors were the precursors of today’s Pentiums.

Several companies followed in Intel and Texas Instrument’s footsteps. Motorola with the
6800 and Rockwell with the 6502 are two examples.

The first years, microprocessors were not very differentiated and these first machines
were used equally in computer systems and in embedded systems. For instance
Rockwell’'s 6502 was used in a number of embedded system development boards, such
as the KIM and the AIM65. It was also the CPU of one of the first personal computers:
the PET produced by the Commodore company.

Later, looking for increased performance, as well as new markets, microprocessor
manufacturers specialized their designs. The first micro-controller, the TMS1000 from
Texas instruments was introduced in 1974. Microcontrollers not only possess a CPU on
the silicon chip, but also integrate a number of peripherals (memory, parallel ports
analog to digital converters...etc.). In essence they constitute complete microcomputers
integrated on the same chip of silicon. The addition of peripherals to the core CPU
makes microcontrollers particularly efficient in embedded systems applications where
cost, size and power consumption must be kept low. For instance a microwave oven
control unit was one of the first applications targeted by the TMS1000 microcontroller. In
the 1980s Intel introduced the 8748 microcontroller family. This family integrated many
peripherals, including a program memory that was erasable and reprogrammable by the
developer. These characteristics lowered the development cost of microcontroller
systems, and enabled the use of microcontrollers in low-volume embedded applications.

The 1980s also saw the introduction of the first Digital Signal Processors. Introduced in
1983 by Texas Instruments, the TMS320C10 was a microprocessor specifically
designed to solve digital signal processing problems. Prior to its release, signal
processing was mostly the domain of analog electronics. Digital signal processing
applications were few and usually required high-cost complex machines that were only
viable in aerospace or military applications. The introduction of the DSP ushered the
establishment of digital signal processing as one of the core disciplines of Electrical
Engineering. Digital Signal processing progressively replaced analog signal processing
in applications that range from control to telecommunications. This “digital migration” is
still in progress today, and affects applications of ever-decreasing cost. Digital signal
processing implements techniques and technologies that are much more advanced and
entail a lot more complexity than its analog counterpart. However the flexibility allowed
by programming, the precision and inherent stability of the processing parameters, as
well as the possibility of very complex and adaptive processes, nearly impossible to

6 © BRUNO PAILLARD



implement in analog form, combined to the very low cost of today’s microprocessors
make this approach unavoidable.

The differentiation brought about by the integration of specialized peripherals onto the
microprocessor’s silicon chip produced devices that are extremely specialized. Some
microcontrollers for instance are specifically designed for applications such as
communications protocols (Ethernet, USB, etc.). Others still are specifically designed for
use in electric motor drives, and so on...

The benefit of such specialization is the production of very efficient designs, in terms of
cost, size and power consumption. On the other hand it forces the developer to learn
and master an ever-increasing variety of CPUs. This difficulty must not be under-
estimated. The time investment needed to get familiar with a new microprocessor and
its software development tools is so great that it is often a larger obstacle to the
adoption of this microprocessor by the developer, than the technical limitations of the
microprocessor itself. Many developers will go through untold contortions to keep
working with a microprocessor with which they are already familiar. On the
manufacturer’s side, the introduction of a new family of microprocessors is a very
complex and costly operation, and the adoption of the microprocessor by the market is
far from guaranteed.

To circumvent this problem some manufacturers are introducing new types of
microcontrollers that incorporate programmable logic and programmable analog
subsystems. This is the case of the PsoC (Programmable System on a Chip) family
from Cypress. The integration of programmable sub-systems gives tremendous
flexibility to the product. The developers can, to a great extent, specialize the
microcontroller themselves by designing their own set of peripherals tailored to the
application.

APPLICATION AREAS OF THE MICROPROCESSOR

The most obvious application of the microprocessor is the computer. From the super-
computer used for scientific computation to the pocket personal computer used for word
processing or Internet browsing, computers have become an essential tool in our
everyday life.

The world of computer systems however accounts only for a small fraction of the total
number of microprocessors deployed in applications around the world. The vast majority
of microprocessors are used in embedded systems. Embedded systems are electronic
devices or sub-systems that use microprocessors for their operation. The low cost of
microprocessors, combined to the flexibility offered by programming makes them
omnipresent in areas ranging from customer electronics to telecommunication systems.
Today, it is actually very difficult to find electronic devices or sub-systems that do not
incorporate at least one microprocessor. Needless to say, the vast majority of the
engineering and design activity related to microprocessor systems is in the area of
embedded systems.

By contrast to computer systems, the program of an embedded system is fixed, usually
unique, and designed during the development of the device. It is often permanently
stored in a Read Only Memory and begins its execution from the moment the device
powered on. Because it is fixed and usually resides in a Read Only Memory, the
software of an embedded system is often called firmware.

© BRUNO PAILLARD 7



EXAMPLES OF EMBEDDED SYSTEMS

At home, the microprocessor is used to control many appliances and electronic devices:
microwave oven, television set, compact-disk player, alarm system are only a few
examples. In the automobile microprocessors are used to control the combustion of the
engine, the door locks, the brake system (ABS brakes) and so on... Microprocessors
are used in most measuring instruments (oscilloscopes, multi-meters, signal
generators...etc). In telecommunication systems microprocessors are used in systems
ranging from telephone sets to telephone switches. In the aerospace industry they are
used in in-flight navigation systems and flight control systems.

Microprocessors are even used in very low-cost applications such as wristwatches,
medical thermometers and musical cards.

Even in computer systems, embedded microprocessors are used in pointing devices,
keyboards, displays, hard disk drives, modems... and even in the battery packs of
laptop computers!

8 © BRUNO PAILLARD



Microprocessors

Applications and types of microprocessors

Evolution of tools and software development methodologies
Present frontier

Criteria for choosing a microprocessor

Building blocks of an embedded system

[ ]
o ok~ w0 N =

Program execution

1. APPLICATIONS AND TYPES OF MICROPROCESSORS

Today, microprocessors are found in two major application areas:
e Computer system applications
o Embedded system applications

Embedded systems are often high-volume applications for which manufacturing cost is
a key factor. More and more embedded systems are mobile battery-operated systems.
For such systems power consumption (battery time) and size are also critical factors.
Because they are specifically designed to support a single application, embedded
systems only integrate the hardware required to support this application. They often
have simpler architectures than computer systems. On the other hand, they often have
to perform operations with timings that are much more critical than in computer systems.
A cellular phone for instance must compress the speech in real time; otherwise the
process will produce audible noise. They must also perform with very high reliability. A
software crash would be unacceptable in an ABS brake application.

Digital Signal Processing applications are often viewed as a third category of
microprocessor applications because they use specialized CPUs called DSPs. However,
in reality they qualify as specialized embedded applications.

Today, there are 3 different types of microprocessors optimized to be used in each
application area:

e Computer systems: General-purpose microprocessors.
o Embedded applications: Microcontrollers
o Signal processing applications: Digital Signal Processors (DSPs)

In reality the boundaries of application areas are not as well defined as they seem. For
instance DSPs can be used in applications requiring a high computational speed, but
not necessarily related to signal processing. Such applications include computer video
boards and specialized co-processor boards designed for intensive scientific
computation. On the other hand, powerful general-purpose microprocessors such as
Intel’s i860 or Digital’s Alpha-chip are used in high-end digital signal processing
equipment designed for algorithm development and rapid prototyping.

© BRUNO PAILLARD ING. 9



The following sections list the typical features and application areas for the three types
of microprocessors

1.1. General purpose microprocessors

1.1.1.Applications

e Computer systems

1.1.2. Manufacturers and models

Intel: Pentium

Motorola: PowerPC

Digital: Alpha Chip

LS/ Logic: SPARC family (SUN)
... ete.

1.1.3. Typical features

Wide address bus allowing the management of large memory spaces

Integrated hardware memory management unit

Wide data formats (32 bits or more)

Integrated co-processor, or Arithmetic Logic Unit supporting complex numerical
operations, such as floating point multiplications.

Sophisticated addressing modes to efficiently support high-level language functions.
Large silicon area

High cost

High power consumption

1.2. Embedded systems: Microcontrollers

1.2.1.Application examples

Television set
Wristwatches

TV/VCR remote control
Home appliances
Musical cards
Electronic fuel injection
ABS brakes

Hard disk drive
Computer mouse / keyboard
USB controller
Computer printer
Photocopy machine

.. efc.

1.2.2. Manufacturers and models

e Motorola: 68HC11
e Intel: 8751

10 © BRUNO PAILLARD



e Microchip: PIC16/17family
e Cypress PsoC family
e .. efc

1.2.3. Typical features

Memory and peripherals integrated on the chip

Narrow address bus allowing only limited amounts of memory.

Narrow data formats (8 bits or 16 bits typical)

No coprocessor, limited Arithmetic-Logic Unit.

Limited addressing modes (High-level language programming is often inefficient)
Small silicon area

Low cost

Low power consumption.

1.3. Signal processing: DSPs

1.3.1.Application examples

e Telecommunication systems.
e Control systems
o Attitude and Flight control systems in aerospace applications.
e Audio/video recording and play-back (Compact-disk/MP3 players, video
cameras...etc.)
e High-performance hard-disk drives
o Modems
e Video boards
o Noise cancellation systems
e .. elc
1.3.2.Manufacturers and models
e Texas Instruments: TMS320C6000, TMS320C5000...
e Motorola: 56000, 96000...
e Analog devices: ADSP2100, ADSP21000...
o .. eflc

1.3.3. Typical features

e Fixed-point processor (TMS320C5000, 56000...) or floating point processor
(TMS320C67, 96000...)

e Architecture optimized for intensive computation. For instance the TMS320C67 can
do 1000 Million floating point operations a second (1 GIGA Flop).

Narrow address bus supporting a only limited amounts of memory.

e Specialized addressing modes to efficiently support signal processing operations
(circular addressing for filters, bit-reverse addressing for Fast Fourier
Transforms...etc.)

e Narrow data formats (16 bits or 32 bits typical).

Many specialized peripherals integrated on the chip (serial ports, memory,
timers.. .etc.)

e [ ow power consumption.

e [ow cost.

© BRUNO PAILLARD 11



1.4. Cost of a microprocessor

Like many other electronic components, microprocessors are fabricated from large disks
of mono-crystalline silicon called “wafers”. Using photolithographic processes hundreds
of individual microprocessor chips are typically fabricated on a single wafer. The cost of
processing a wafer is in general fixed, irrespective of the complexity of the
microprocessors that are etched onto it.

The silicon surface occupied by a microprocessor on the wafer is dependant on several
factors. The most important factors being its complexity (number of gates, or
transistors), and the lithographic scale indicating how small a gate can be.

At first glance, for a given fabrication process and a given lithographic scale, it would
seem that the cost of a microprocessor is roughly proportional to its surface area,
therefore to its complexity.

However things are a little bit more complex. In practice the wafers are not perfect and
have a number of defects that are statistically distributed on their surface. A
microprocessor whose area includes the defect is generally not functional. There are
therefore always some defective microprocessors on the wafer at the end of the
process. The ratio of good microprocessors to the total number fabricated on the wafer
is called the “fabrication yield”. For a fixed number of defects per square inch on the
wafer, which is dependant on the quality of the wafer production, the probability of a
microprocessor containing a defect increases non-linearly with the microprocessor area.
Beyond a certain surface area (beyond a certain complexity) the fabrication yield
decreases considerably. Of course the selling price of the good microprocessors is
increased to offset the cost of having to process and test the defective ones. In other
words the cost of a microprocessor increases much faster than its complexity and
surface area.

1.5. Power consumption of a microprocessor

As we discussed earlier, some microprocessors are optimized to have a low power
consumption. Today almost all microprocessors are implemented in CMOS technology.
For this technology, the electric current drawn by the microprocessor is almost entirely
attributable to the electric charges used to charge and discharge the parasitic input
capacitance of its gates during transitions from 0 to 1 and 1 to 0. This charge loss is
proportional to the following factors:

e The voltage swing (normally the supply voltage).

e The input gate capacitance.

e The number of gates in the microprocessor.

e The average number of transitions per second per gate.

The input gate capacitance is fairly constant. As manufacturing processes improve, the
lateral dimensions of transistor gates get smaller, but so does the thickness of the oxide
layers used for the gates. Typical values are on the order of a few pF per gate.

With thinner oxide layers, lower supply voltages can be used to achieve the same
electric field. A lower supply voltage mean that less charge is transferred during each
transition, which leads to a lower current consumption. This is the main factor behind the
push for decreasing supply voltages in digital electronics.

12 © BRUNO PAILLARD



The current consumption is also proportional to the number of gates of the
microprocessor (its complexity), and to the average number of transitions per second
(its clock frequency).

At identical fabrication technology and lithographic scale, a microprocessor optimized for
power consumption is simpler (less gates), and operates at a lower clock frequency than
a high-performance microprocessor.

For a given processor, the developer can directly adjust the trade-off between
computational speed and power consumption by appropriately choosing the clock
frequency. Some microprocessors, even offer the possibility of dynamically adjusting the
clock frequency through the use of a Phase-Locked-Loop. It allows the reduction of the
clock frequency during less intensive computation periods to save energy. Such
systems are especially useful in battery-operated devices.

EVOLUTION OF THE SOFTWARE DEVELOPMENT TOOLS AND
METHODOLOGIES

In the field of embedded systems, software development tools and methodologies can
often appear to be lacking in sophistication, compared to the tools used in the field of
computer systems. For instance, many embedded applications are developed entirely in
assembly language. Software that is developed in high-level languages is often
developed in C, and rarely in C++, even today. When schedulers and multi-tasking
kernels are used, they are much simpler than their counterparts found in the operating
systems of modern-day computers.

This apparent lack of sophistication may be attributed to several factors:

o An embedded system is usually designed to run a unique application. Providing a
uniform set of standardized “operating system” services to software applications
is therefore much less critical than it is for a computer system designed to run
multiple applications that all have similar needs. In fact in many embedded
systems, “operating system” functions like peripheral drivers and user-interface
are custom-designed, along with the core functionality of the device.

¢ The software of an embedded system is generally much less complex than the
software that runs on a computer system. The difficulties of embedded system
development usually lie in the interaction between hardware and software, rather
than in the interaction between software and software (software complexity).

o Most embedded systems are very specific devices. Their hardware resources
have been optimized to provide the required function, and are often very specific
and very limited. This makes the use of complex operating systems difficult.
Indeed, to be efficient, a computer’s operating system often relies on
considerable resources (memory, computational speed... etc.). Furthermore, it
expects a certain level of uniformity and standard in the hardware resources
present in the system.

o For embedded systems, real-time execution constraints are often critical. This
does not necessarily mean that the computational speed must be high, but
rather that specific processes must execute within fixed and guaranteed time
limits. For instance, for a microcontroller driving an electric motor, the power
bridge protection process (process leading to the opening of all transistors) must
execute within 1 microsecond following the reception of a short-circuit signal,
otherwise the bridge may be damaged. In such a situation, the execution of code

© BRUNO PAILLARD 13



within a complex and computationally hungry operating system is obviously not a
good choice.

e The development of code in a high-level language is often less efficient than the
development in assembly language. For instance, even with the use of an
optimizing C compiler, designed specifically for the TMS320VC5402 DSP for
which it generates code, the development of a filter function can be 10 to 40
times slower when developed in C than when it is optimized in assembly
language. For one thing a high-level language does not (by definition) give the
developer access to low-level features of the microprocessor, which are often
essential in optimizing specific computationally intensive problems. Furthermore,
the developer usually possesses a much more complete description of the
process that must be achieved than what is directly specifiable to a compiler.
Using this more complete information, the developer can arrive at a solution that
is often more efficient than the generic one synthesized by the compiler.

¢ In the field of computer systems, software development tools and operating
systems are designed so that the developer does not have to be concerned with
the low-level software and hardware details of the machine. In the field of
embedded systems, the developer usually needs to have a fine control over low-
level software, and the way it interacts with the hardware.

¢ Finally, for an embedded system, the execution of the code must be perfectly
understood and controlled. For instance, a rollover instead of a saturation during
an overflow can be disastrous if the result of the calculation is the attitude control
signal of a satellite launch vehicle. This exact problem led to the destruction of
the ESA’s “Arianne V” rocket during its first launch in June 1996. In situations
such as this one, the use of a high-level language such as C, for which the
behaviour during overflow (rollover or saturation) is not defined in the standard,
may be a bad choice.

PRESENT FRONTIERS

Today, the traditional frontiers between embedded systems and computer systems are
getting increasingly blurred. More and more applications and devices have some
attributes of an embedded system and some attributes of a computer system. A cellular
telephone for instance may also provide typical “computer system” functions such as
Internet connexion. On the other hand, a PC may provide typical “embedded system”
functions such as DVD playback.

In many cases these devices are designed using a hybrid architecture in which a
general-purpose microprocessor executes software under the control of a complex
operating system, and in which special purpose microprocessors (DSPs for instance)
are used as peripherals, and execute function-specific software (or firmware) typical of
an embedded system. These architectures may even be implemented at the integrated
circuit level where the general-purpose microprocessor and the DSP reside on the same
silicon chip.

In other cases, microcontroller-based systems are enhanced by specialized peripherals
to rigidly support traditional computer-system functions in a limited way. For instance the
use of specialized peripherals to support a TCP/IP modem connexion can provide
Internet access to a microwave oven controller.

More than 30 years after the development of the first microprocessors, the field is still in
profound evolution.

14 © BRUNO PAILLARD



CRITERIA FOR CHOOSING A MICROPROCESSOR

The choice of a microprocessor for a given application is probably one of the most
difficult tasks facing the systems engineer today. To take this action correctly, the
engineer must know the whole range of microprocessors that could be used for the
application, well enough to precisely measure the pros and cons of each choice. For
instance, the engineer may be required to evaluate if a particular time-critical task can
execute within its time limits for each potential choice of microprocessor. This evaluation
may require the development of optimized software, which obviously entails a very good
knowledge of the microprocessor and its software development tools, and a lot of work!
In practice, the investment in time and experience necessary to know a microprocessor
well is very high. Most engineers try to make their choice within the set of devices with
which they are already familiar. This approach is sub-optimal, but reflects the reality of
systems design. In this field, even seasoned designers do not have an in-depth
experience of the very wide variety of microprocessors that are on the market today.

To help in the choice, most manufacturers offer “development kits” or “evaluation kits”.
These kits allow the engineer to design and test software, without having to design the
entire custom hardware required by the application. Manufacturers often also offer
software examples and libraries of functions that allow the engineer to evaluate typical
solutions without having to design the software. The availability of such tools and
information biases the choice toward one manufacturer, or one family of
microprocessors. On the other hand it is often seen by design engineers as legitimate
criteria on which to base their choice.

The following general criteria may be applied for the choice of a microprocessor:

1 Capacity of the microprocessor (It is advisable to take some margin because
the problem often evolves in the course of the design).

Logical criteria:

. Instruction set functionality.
. Architecture, addressing modes.
. Execution speed (not just clock frequency!)
. Arithmetic and Logic capabilities.
. Addressing capacity.
Physical criteria:
. Power consumption.
. Size.
. Presence of on-chip peripherals — Necessity of support circuitry.
2 Software tools and support: Development environment, assembler, compiler,

evaluation kit, function libraries and other software solutions. These may come
from the manufacturer or from third-party companies.

3 Cost
Market availability

5 Processor maturity

© BRUNO PAILLARD 15



When evaluating the capacity of a microprocessor for a given application, the clock
frequency is a good criterion to compare microprocessors in the same family, but should
not be used to compare microprocessors from separate manufacturers, or even from
separate families by the same manufacturer. For one thing, some microprocessors
process complete instructions at each clock cycle, while others may only process part of
an instruction. Furthermore the number and complexity of the basic operations that are
contained into single instructions vary significantly from one microprocessor family to the
next.

The instruction set and addressing modes are important criteria. Some microprocessors
have very specialized instructions and addressing modes, designed to handle certain
types of operations very efficiently. If these operations are critical for the application,
such microprocessors may be a good choice.

The capability of the Arithmetic and Logic Unit (ALU) is usually a critical factor. In
particular the number of bits (or resolution) of the numbers that can be handled by the
ALU is important. If the application requires operations to be carried out in 32-bit
precision, a 32-bit ALU may be able to do the operation in a single clock cycle. Using a
16-bit ALU, the operation has to be decomposed into several lower-resolution
operations by software, and it may take as much as 8 times longer to execute. Another
important factor is the ability of the ALU to carry out operations in fixed-point
representation only (fixed-point processors), or in fixed-point and floating-point
representations (floating-point processors). Fixed-point processors can perform floating-
point calculations in software, but the time penalty is very high. Of course there is a
trade-off between the capability of the ALU and other factors. A very wide (32 or even
64-bits) floating-point ALU accounts for a significant portion of the microprocessor’s
silicon area. It has a considerable impact on the cost and power consumption of the
CPU, and may prohibit or limit the integration of on-chip peripherals.

Most embedded applications only require limited amounts of memory. This is why most
microcontrollers and DSPs have limited address busses. For those few embedded
applications that need to manage very large amounts of memory, the choice of a
general-purpose microprocessor designed for computer systems and having a very wide
address bus may be appropriate.

As mentioned earlier, by carefully choosing the clock frequency, the designer can
directly adjust the power consumption. If power consumption is an important factor one
avenue may be to choose a microprocessor designed for its low power. Another, often
competitive, solution may be to choose a more complex and more powerful
microprocessor, and have it work at a lower frequency. In fact the latter solution
provides more flexibility because the system will be able to cope should unanticipated
computational needs appear during the development.

The presence of on-chip peripherals is an important factor for embedded designs. It can
contribute to lowering the power consumption, and the size of the system because
external peripherals can be avoided. These factors are especially important in portable
battery-operated devices.

The availability of good development and support tools is a critical factor. The availability
of relevant software functions and solutions in particular can cut down the development
time significantly and should be considered in the choice.

Cost is a function of the microprocessor’s complexity, but it is also a function of the
microprocessor’s intended market. Microprocessors that are produced for mass markets
are always less expensive (at equal complexity) than microprocessors produced in
smaller quantities. Even if the application is not intended for a large volume, it may be
good to choose a microprocessor that is, because the design will benefit from the lower

16 © BRUNO PAILLARD



cost of the microprocessor. On the other hand, if the application is intended for large
volume it is highly advisable to make sure that the processor will be available in large
enough quantities to support the production. Some microprocessors are not intended for
very high-volume markets and, as with any other electronics component, availability can
become a problem.

Finally the processor’s maturity may be a factor in the choice. Newer processors are
often not completely functional in their first release. It can take as long as a year or two
to discover and “iron-out” the early silicon bugs. In this case the designer has to balance
the need for performance with the risk of working with a newer microprocessor.

BUILDING BLOCKS OF AN EMBEDDED SYSTEM

Figure 2-1 describes the architecture of a typical microprocessor system. It is worth
noting that this generic architecture fits computer systems such as PCs, as well as
embedded systems such as a microwave oven controllers or a musical cards.

Outside world

Memory
(Program / Peripheral
Datq)

CPU

Address
Data
Control

Bus system

Architecture of an embedded system

Figure 2-1

Microprocessor (CPU):

The CPU is a sequential logic machine that reads instructions in memory and executes
them one after the other. A clock sequences the various operations performed by the
CPU.

The CPU:
e Executes the instructions found in memory.

o Performs the calculations and data processing operations specified by the
instructions.

o Initiates data exchanges with peripherals (memory, parallel ports, ...etc.)

© BRUNO PAILLARD 17



Before the development of the first microprocessor in 1971 the multi-circuit structure
that used to perform this role in early computers was called Central Processing Unit
(CPU). Today the words CPU and microprocessor are often used interchangeably.
However, the term microprocessor is generally reserved to CPUs that are completely
integrated on a single silicon chip. For microcontrollers, which also include peripherals
on the same silicon chip, the term CPU describes exclusively the part of the device that
executes the program. It excludes the peripherals.

Clock:

The clock circuit is usually implemented by a quartz oscillator. The oscillator may be part
of the microprocessor, or may be external. The quartz crystal itself is always external. In
low cost designs where frequency stability is not an issue, a low-cost ceramic resonator
may replace the quartz. The clock sequences all the operations that are performed by
the CPU. The signal from the oscillator may be divided-down by programmable dividers,
or it may be multiplied by an adjustable factor using a Phase-Locked-Loop (PLL).
Dividing or multiplying the clock frequency provides a way to dynamically adjust the
computational speed and the power consumption of the microprocessor. Multiplying the
oscillator frequency is also essential in modern designs because it is very difficult (and
therefore expensive) to produce stable quartz resonators at frequencies above 100MHz.
The PLL therefore enables the use of a lower frequency quartz resonator to produce the
high clock frequencies required by today’s microprocessors.

Memory:

Memory circuits are used to:
e Store program instructions.
o Store data words (constants and variables) that are used by the program.
e Exchange these data words with the CPU.

Peripherals:

Peripherals provide services to the CPU, or provide a connexion to the outside world.
Memory circuits are a special case of peripherals. Any electronic circuit connected to the
CPU by its bus system is considered to be a peripheral.

Bus system:

The bus system is the network of connexions between the CPU and the peripherals. It
allows instructions and data words to be exchanged between the CPU and its various
peripherals.

The following example describes the use of a microprocessor system in a balance
control application (figures 2-2 and 2-3).

18 © BRUNO PAILLARD



Figure 2-2

“Bikeman at DSPWorld 1997” Photo: Cory Roy

The microprocessor used in this application is a TMS320C50 from Texas Instruments.
The system