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Electricity can be thought of as a means of delivering power from one place to another to do work. The
laws and relationships for delivering power were originally developed for direct current. Power delivered,
expressed in watts, was calculated by multiplying the voltage and current as shown in Equation 40.1

(40.1)

The situation becomes more complex when alternating current is used to deliver power. Figure 40.1
shows a sine wave representing either ac current or voltage. Since the instantaneous value of the wave is
continually changing, a numerical quantity is defined to represent an average property of this wave. This
quantity, the root-mean-square, or rms value, calculated by squaring the instantaneous value, integrating
it during one cycle, dividing by the period, and taking the square root of the result, is equal to the peak
value of the ac wave divided by the square root of 2, or, for ac current, Irms = ipeak/ . In the physical
world, a sine wave ac current having an rms value of 1 A (A = ampere), passed through a resistive load,
produces the same heating effect as 1 A of dc current. Thus, one might expect delivered ac power to be
easily calculated in watts using Equation 40.1 and inserting rms values for current and voltage. While
this simple relationship holds true for the instantaneous voltage and current values as shown in
Equation 40.1a in general, it is not true for the rms quantities except for the special case when the ac
current and voltage are restricted to perfect sine waves and the load is a pure resistance.

(40.1a)

In real-world situations where current and/or voltage waveforms are not perfectly sinusoidal and/or
the loads are other than resistive, the relationships are no longer simple and the power delivered, or active
power, is usually less than the product of rms voltage and current, as shown in Equation 40.2.

P EIdc =

2

p eiinst. =

Michael Z. Lowenstein
Harmonics Limited
© 1999 by CRC Press LLC



                                   
(40.2)

The product of rms voltage and rms current does, however, define a quantity termed apparent power,
U, as shown in Equation 40.3.

(40.3)

A derived term, the power factor, Fp, used to express the relationship between delivered or active power,
P, and apparent power, U, is defined by Equation 40.4.

(40.4)

From Equations 40.2, 40.3, and 40.4, it is clear that the value of Fp must lie in a range between zero and one.
This chapter focuses on: (1) ac power relationships and the calculation of power factor; (2) the physical

meaning of these relationships; and (3) measurement techniques and instrumentation for determining
these relationships and calculating power factor.

40.1 Reasons for Interest in Power Factor

Power factor is a single number that relates the active power, P, to the apparent power, U. Electric
components of a utility distribution system are designed on a kVA basis; i.e., they are designed to operate

FIGURE 40.1 Sine wave characteristics. One cycle of a continuous wave is shown. The wave begins at a zero-crossing,
reaches a positive peak, continues through zero to a negative peak, and back to zero. The wave repeats every 360°.
The wave angle can also be expressed as a function of frequency f and time t. For a given frequency, the wave angle
is related to the expression, 2πft.
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at a given voltage and carry a rated current without undue temperature rise. Transformer and conductor
sizes are chosen on this basis. While active power does useful work, reactive and harmonic powers do
no useful work, absorb system capacity, and increase system losses; but reactive and harmonic powers
are needed to provide magnetic fields or nonlinear currents. The capacity of electric systems is limited by
apparent power, not active power. Power factor expresses, with a single value, the extent to which an electrical
distribution system is efficiently and effectively utilized. A low value for the power factor means that much
of the system capacity is not available for useful work. From a utility viewpoint, this means reduced
ability to deliver revenue-producing active power; from a user viewpoint, a low power factor reduces the
available active power or requires increased system size to deliver needed power.

40.2 ac Electric Loads

Linear Loads

Electric loads in ac power systems with sinusoidal voltages are categorized by the way they draw current
from the system. Loads that draw sinusoidal currents, i.e., the current waveshape is the same as the
voltage waveshape, are defined as linear loads. Historically, a high percentage of electric loads have been
linear. Linear loads include: (1) induction motors; (2) incandescent lighting; and (3) heaters and heating
elements. Linear loads use ac electric power directly to accomplish their functions.

Nonlinear Loads

Electric loads that draw nonsinusoidal currents, i.e., the current waveshape differs from the voltage
waveshape, are defined as nonlinear loads. As energy savings and efficient use of electricity are emphasized,
an increased percentage of nonlinear electric devices, both new and replacement, are being installed.
Nonlinear loads include: (1) adjustable-speed motor drives; (2) fluorescent and arc-discharge lighting;
(3) computers and computerized controls; and (4) temperature-controlled furnaces and heating elements.
Nonlinear loads, rather than using ac electric power directly, often convert ac power into direct current
before it is used to accomplish their functions. A common element in nonlinear loads is some kind of
rectifier to accomplish this ac to dc conversion. Rectifiers do not draw sinusoidal currents.

40.3 ac Power Relationships

Sinusoidal Voltage and Current

Power calculations for sinusoidal ac electric systems require knowledge of the rms voltage, the rms current,
and the phase relationships between the two. Figure 40.2 illustrates possible phase relationships between
voltage and current. If the positive-going zero-crossing of the voltage is considered the reference point,
then the nearest positive-going zero-crossing of the current can occur at a wave angle either less than or
greater than this reference. If the current zero-crossing occurs before the reference, the current is said to
lead the voltage. If the current zero-crossing occurs after the reference, the current is lagging. If the zero-
crossing for the current coincides with the reference, the two waves are said to be in phase. The wave
angle, θ, by which the current leads or lags the voltage is called the phase angle, in this case, 30°.

Single-Phase Circuits

Power Calculations

The power delivered to do work is easily calculated [1]. Given a sinusoidal voltage of rms magnitude E
and sinusoidal current of rms magnitude I, displaced by angle θ, at time t, 
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(40.5)

(40.5)

(40.5)

Equation 40.5 is the fundamental equation that defines power for systems in which the current and
voltage are sinusoidal. The application of this equation is illustrated for three cases: (1) the current and
voltage are in phase; (2) the current and voltage are out of phase by an angle less than 90°; and (3) the
current and voltage are out of phase by exactly 90°.

FIGURE 40.2 Sine wave phase angle. Two waves with the same zero-crossing are in phase. A sine wave that crosses
zero before the reference wave is leading, and one that crosses zero after the reference wave is lagging. The phase angle
θ illustrated is 30° lagging.
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Ac Power Examples

Figure 40.3 shows voltage current and power when the voltage and current are in phase and the current
displacement angle is zero (0). (An example would be a resistance space heater.) The power curve is
obtained by multiplying together the instantaneous values of voltage and current as the wave angle is
varied from 0° to 360°. Instantaneous power, the product of two sine waves, is also a sine wave. There
are two zero-crossings per cycle, dividing the cycle into two regions. In region (1) both the voltage and
current are positive and the resultant product, the power, is positive. In region (2) both the voltage and
current are negative and the power is again positive. The average power in watts, given by Equation 40.5,
EIcos(0°) = EI, is the maximum power that can be delivered to do work. When sinusoidal voltage and
current are in phase, the delivered power in watts is the same as for dc and is the maximum that can be
delivered. The power factor, Fp = cos(0°) = 1, or unity.

Figure 40.4 shows voltage, current, and power when the current lags the voltage by 60°. (An example
might be a lightly loaded induction motor.) The power sine wave again is obtained by multiplying together
the instantaneous values of voltage and current. There are now four zero-crossings per cycle, dividing
the cycle into four regions. In regions (2) and (4), voltage and current have the same sign and the power
is positive. In regions (1) and (3), voltage and current have opposite signs, resulting in a negative value
for the power. The average power in watts, given by Equation 40.5, EIcos(60°) = EI(0.5), is less than the
maximum that could be delivered for the particular values of voltage and current. When voltage and
current are out of phase, the delivered power in watts is always less than the maximum. In this example,
Fp = cos(60°) = 0.5.

Figure 40.5 shows voltage, current, and power when the current lags the voltage by 90°. (This situation
is not attainable in the real world.) The power sine wave again is obtained by multiplying together the
instantaneous values of voltage and current. Again, four zero-crossings divide the cycle into four regions.

FIGURE 40.3 Voltage, current, and power for sine waves in phase. The vertical scales for voltage and current are
equal. The scale for power is relative and is selected to permit the display of all three waves on a single graph. The
voltage and current are in phase and both are sinusoidal. The power is everywhere positive, and average power
delivered to do work is the maximum power.
© 1999 by CRC Press LLC



             
FIGURE 40.4 Voltage, current, and power for sine waves 60° out of phase. The vertical scales for voltage and current
amplitudes are the same as those for Figure 40.3. Current lags voltage by 60° and both are sinusoidal. The power is
positive in regions (2) and (4), and negative in regions (1) and (3). Average power delivered to do work is less than
the maximum power.

FIGURE 40.5 Voltage, current, and power for sine waves 90° out of phase. The vertical scales for voltage and current
amplitudes are the same as those for figure 40.3. Current lags voltage by 90° and both are sinusoidal. The power is
positive in regions (2) and (4), negative in regions (1) and (3), and is of equal absolute magnitude in all four regions.
Average power delivered to do work is zero.
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In regions (2) and (4), the power is positive, while in regions (1) and (3), the power is negative. The
average power in watts is given by Equation 40.5, EIcos(90°) = 0. No matter what the values of voltage
and current, when voltage and current are exactly 90° out of phase, the delivered power in watts is always
zero. The power factor, Fp = cos (90°) = zero.

Power Factor

Resolving the current into orthogonal components on a phasor diagram illustrates how delivered power
can vary from a maximum to zero, depending on the phase angle between the voltage and the current
sine waves. Figure 40.6 shows the voltage vector along with the current resolved into orthogonal compo-
nents [1]. The current I at an angle θ relative to the voltage can be resolved into two vectors: Icos(θ) and
Isin(θ). The in-phase component Icos(θ) multiplied by the voltage gives average power in watts. The
current component that is 90° out of phase with the voltage, Isin(θ), is not associated with delivered power
and does not contribute to work. For want of a better name, this was often termed the wattless component
of the current. Since this wattless current could be associated with magnetic fields, it was sometimes termed
magnetizing current because, while doing no work, this current interacts through the inductive reactance
of an ac motor winding to provide the magnetic field required for such a motor to operate.

Three types of power have been defined for systems in which both the voltage and current are
sinusoidal. Throughout the years, a number of different names have been given to the three power types.
The names in present usage will be emphasized.

Active power is given the symbol P and is defined by Equation 40.5:

(40.5)

Other names for active power include: (1) real power and (2) delivered power. Active power is the
power that does work. Note that while all power quantities are volt-ampere products, only active power
is expressed in watts.

Reactive power is given the symbol Q and is defined by the equation:

(40.6)

Other names for reactive power include: (1) imaginary power; (2) wattless power; (3) and magnetizing
power. Reactive power is expressed in voltamperesreactive or vars. If the load is predominantly inductive,
current lags the voltage and the reactive power is given a positive sign. If the load is predominantly
capacitive, current leads the voltage and the reactive power is given a negative sign.

Phasor power is given the symbol S and is defined by the equation:

(40.7)

FIGURE 40.6 Phasor diagram for current and voltage. Voltage is the reference phasor. The current I has been
resolved into orthogonal components Icosθ and Isinθ. (From Reference [1].)
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Phasor power was called apparent power for many years, and it will be seen in a later section that phasor
power S, for sinusoidal voltages and currents, is identical to what is now called apparent power U. Phasor
power is expressed in voltamperes or VA.

Figure 40.7 is a phasor diagram, often called a power triangle, which illustrates the relationships among
the three types of power defined above. Reactive power is orthogonal to active power, and is shown as
positive for lagging current. It is clear that the definition of phasor power, Equation 40.7, is geometrically
derived from active and reactive power.

Power factor is given the symbol Fp and for sinusoidal quantities is defined by the equation:

(40.8)

Since the power factor can be expressed in reference to the displacement angle between voltage and
current, power factor so defined should be termed displacement power factor, and the symbol is often
written Fp displacement. Values for displacement power factor range from one (unity) to zero as the current
displacement angle varies from 0° (current and voltage in phase) to 90°. Since the cosine function is
positive in both the first and fourth quadrants, the power factor is positive for both leading and lagging
currents. To completely specify the voltage–current phase relationship, the words leading or lagging must
be used in conjunction with power factor. Power factor can be expressed as a decimal fraction or as
percent. For example, the power factor of the case shown in Figure 40.4 is expressed either as 0.5 lagging
or 50% lagging.

Polyphase Circuits

Power Calculations

The power concepts developed for single-phase circuits with sinusoidal voltages and currents can be
extended to polyphase circuits. Such circuits can be considered to be divided into a group of two-wire
sets, with the neutral conductor (or a resistively derived neutral for the case of a delta-connected, three-
wire circuit) paired with each other conductor. Equations 40.3–40.5 can be rewritten to define power
terms equivalent to the single-phase terms. In these equations, k represents a phase number, m is the
total number of phases, and α and β are, respectively, the voltage and current phase angles with respect
to a common reference frame.

(40.9)

(40.10)

FIGURE 40.7 Power triangle showing the geometric relationships between active, reactive, and phasor power. Power
factor is defined geometrically as cosθ.
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and, restating Equation 40.7:

For example, a three-phase sinusoidal power distribution service, with phases a, b, and c:

Power Factor

Power factor is defined by Equation 40.11. Note that it is no longer always true to say that power factor
is equal to the cosine of the phase angle. In many three-phase balanced systems, the phase angles of all
three phases are equal and the cosine relationship holds. In unbalanced systems, such as that represented
by the phasor diagram Figure 40.8, each phase has a different phase angle, the phase voltages and currents
are not equal, and the cosine relationship fails [3].

(40.11)

Nonsinusoidal Voltage and Current

Fourier Analysis

Figure 40.9 shows voltage, current, and power for a typical single-phase nonlinear load, a computer
switch-mode power supply. Due to the nature of the bridge rectifier circuit in this power supply, current
is drawn from the line in sharp spikes. The current peak is only slightly displaced from the voltage peak
and the power is everywhere positive. However, power is delivered to the load during only part of the
cycle and the average power is much lower than if the current had been sinusoidal. The current waveshape

FIGURE 40.8 Phasor diagram for a sample polyphase sinusoidal service in which each phase has a different phase
angle. Power factor cannot be defined as the cosine of the phase angle in this case. (From Reference [3].)
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required by the load presents a problem to the ac power system, which is designed to deliver only sine
wave current. The solution to this problem is based on mathematical concepts developed in 1807 for
describing heat flow by Jean Baptiste Joseph Fourier, a French mathematician [4]. Fourier’s theorem
states that any periodic function, however complex, can be broken up into a series of simple sinusoids,
the sum of which will be the original complex periodic variation. Applied to the present electrical problem,
Fourier’s theorem can be stated: any periodic nonsinusoidal electrical waveform can be broken up into a
series of sinusoidal waveforms, each a harmonic of the fundamental, the sum of which will be the original
nonsinusoidal waveform.

Harmonics

Harmonics are defined as continuous integral multiples of the fundamental waveform. Figure 40.10 shows
a fundamental sine wave and two harmonic waves — the 3rd and 5th harmonics. The harmonic numbers
3 and 5 express the number of complete cycles for each harmonic wave per cycle of the fundamental (or
1st harmonic). Each harmonic wave is defined by its harmonic number, its amplitude, and its phase
relationship to the fundamental. Note that the fundamental frequency can have any value without
changing the harmonic relationships, as shown in Table 40.1.

Power Calculations

Calculating power delivered to do work for a nonlinear load is somewhat more complicated than if the
current were sinusoidal. If the fundamental component of the voltage at frequency f is taken as a reference
(the a-phase fundamental for a polyphase system), the subscript “1” means the fundamental, and E
denotes the peak value of the voltage; then the voltage can be expressed as:

FIGURE 40.9 Voltage, current, and power for a single-phase, switch-mode computer power supply, a typical
nonlinear load. The current is no longer sinusoidal.

ε
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The voltage fundamental will then have an amplitude Ea1 and pass through zero in the positive going
direction at time t = 0. If h = harmonic number, and Eh and Ih are peak amplitudes of the harmonic
voltage and current, respectively, then general expressions for any harmonic will be:

To compute the power associated with a voltage and current waveform, take advantage of the fact that
products of harmonic voltages and currents of different frequency have a time average of zero. Only
products of voltages and currents of the same frequency are of interest, giving a general expression for
harmonic power as:

FIGURE 40.10 Harmonics are continuous integral multiples of the fundamental frequency. The 5th harmonic is
shown, in phase with the fundamental, while the 3rd harmonic is 180° out of phase.

TABLE 40.1 Harmonics and Their Relationship 
to the Fundamental Frequency

Harmonic 
number

Frequency Frequency Frequency
(Hz) (Hz) (Hz)

1 60 50 400
2 120 100 800
3 180 150 1200
4 240 200 1600
5 300 250 2000
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Simplifying with trigonometric identities, evaluating over an integral number of cycles, and replacing
peak voltage and current with rms values, the average power becomes:

For a single-phase system where h is the harmonic number and H is the highest harmonic, the total
average power or active power is given by:

(40.12)

Total average reactive power is given by:

(40.13)

It should be noted that in the real world, the actual contribution of harmonic frequencies to active
and reactive power is small (usually less than 3% of the total active or reactive power). The major
contribution of harmonic frequencies to the power mix comes as distortion power, which will be defined
later.

For a polyphase system wherein r is the phase identification and N is the number of conductors in the
system, including the neutral conductor, total average power for a polyphase system is given by:

(40.14)

Total average reactive power is given by:

(40.15)

Power Factor

Single-Phase Systems

For a single-phase system, phasor power is again given by Equation 40.7 and illustrated by Figure 40.7,
where P is the algebraic sum of the active powers for the fundamental and all the harmonics
(Equation 40.12), and Q is the algebraic sum of the reactive powers for the fundamental and all the
harmonics (Equation 40.13). Therefore, phasor power is based on the fundamental and harmonic active
and reactive powers. It is found, however, that phasor power S is no longer equal to apparent power U
and a new power phasor must be defined to recognize the effects of waveform distortion. A phasor
representing the distortion, termed distortion power and given the symbol D, is defined by:

(40.16)

Without further definite information as to the sign of distortion power, its sign is selected the same
as the sign of the total active power. The relationships among the various power terms are displayed in

P E I
h t h h h

 
h
 

( ) = ° − °( )cos α β

P E I
h

H

= −( )
=

∑ h h h hcos α β
1

Q E I
h

H

= −( )
=

∑ h h h hsin α β
1

P E I
h

H

= −( )
=

∑∑ rh rh rh rh

r=1

N-1

cos α β
1

Q E I
h

H

= −( )
=

∑∑ rh rh rh rh

r=1

N-1

sin α β
1

D U S= ± −2 2
© 1999 by CRC Press LLC



Figure 40.11, a 3-dimensional phasor diagram. Power factor, in direct parallel with sinusoidal waveforms,
is defined by the equation:

(40.17)

From Equations 40.7 and 40.16 we obtain:

(40.7)

(40.18)

It is clear that when waveforms are sinusoidal, i.e., linear loads are drawing current, that there is no
distortion power and Equation 40.18 reduces to Equation 40.7. Likewise as shown in Figure 40.13, as the
distortion power vector goes to zero, the figure becomes two-dimensional and reduces to Figure 40.7,
and U becomes equal to S. When, however, nonlinear loads are drawing harmonic currents from the
system, U will be greater than S. As already noted, the contribution of the harmonics to the total power
quantities is small and one is frequently interested mainly in the fundamental quantities.

The power factor associated only with the fundamental voltage and current components was termed
the displacement power factor Fp displacement where Equations 40.7 and 40.8 are written [5]:

and

When harmonics are present, Fp is always smaller than Fp displacement.

FIGURE 40.11 Phasor diagram for a single-phase, nonsinusoidal service in which the voltage and current contain
harmonics. Geometric relationships are shown between active, reactive, phasor, distortion, and apparent powers.
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Polyphase Systems

For a polyphase system, phasor power, S, is again given by Equation 40.7, but one must now use the total
values for P and Q calculated using Equations 40.14 and 40.15. One can then define the apparent power U
in one of two ways.

• Arithmetic apparent power. The arithmetic apparent power is given the symbol Ua, and is defined
by Equation 40.19, where Er and Ir are the rms values for the respective phases and M equals the
number of phases. Ua is a scalar quantity.

(40.19)

• Apparent power. Apparent power is given the symbol U and is defined by Equation 40.18 using
total values for P and Q as defined by Equations 40.14 and 40.15, and a total value for D determined
using Equation 40.16 for each phase. Figure 40.12 illustrates the two alternative concepts for
polyphase apparent power [6]. Note that Ua uses arithmetic addition of vector magnitudes and is
equal to apparent power U only if the polyphase voltages and currents have equal magnitudes and
equal angular spacings, a situation that often exists in balanced three-phase systems. The two
alternative definitions of apparent power, U and Ua, give rise to two possible values for power
factor: (1) Fp = P/U; and (2) Fpa = P/Ua. Apparent power U and power factor Fp are the preferred
definitions since using Ua can give unexpected results with some nonsymmetric service arrange-
ments such as four-wire delta, and, with extremely unbalanced resistive loads, Fpa can exceed 1.0.
Despite these shortcomings, arithmetic apparent power has become quite widely used due to the
comparative simplicity of its measurement and calculation. With the advent of sophisticated digital
meters, there is no longer any advantage to using arithmetic apparent power and its use will surely
decrease.

FIGURE 40.12 Phasor diagram for a three-phase, nonsinusoidal service in which the voltage and current contain
harmonics. Arithmetic apparent power Ua is the length of the segmented line abcd and is a scaler quantity Ua can be
represented by the line ab′c′d′. The diagonal ad, a vector quantity, is the apparent power U [6].
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40.4 Power Factor “Measurement”

There are no instruments that measure power factor directly. (Power stations and large substations often
use phase angle meters with a power factor scale representing cos (θ) to display power factor. Such meters
are accurate only for sinusoidal balanced polyphase systems.) One must remember that, of all the ac
power quantities discussed, the only ones that can be directly measured are voltages, currents, and their
time relationships (phase angles). All other ac power quantities are derived mathematically from these
measured quantities. The only one of these derived values that has physical reality is the active power P
(the quantity that does work); the others are mathematical constructs. Therefore, correct determination
of power factor requires accurate measurement of voltage and current, and proficient mathematics.

Metering for Linear Loads

By the early 1920s, the concepts of active, reactive, and apparent (since renamed phasor) power, and
power factor were known, and metering capabilities had been developed to enable their determination.
Energy meters utilizing voltage and current coils driving an induction disk inherently measured active
power P (EI cosθ), which was displayed on a mechanical register. Using the trigonometric identity EI
sinθ = EI cos(90° + θ), with voltage delayed 90°, a similar energy meter displayed reactive power Q and,
with these two values, displacement power factor was calculated. Voltage delay (phase shifting) was
accomplished using specially wound transformers.

Through the years, the method of obtaining the 90° phase shift has been updated. Analog electronic
meters are available that provide the 90° phase shift electronically within the meter. More recently, digital
meters have been developed that sample voltages and currents at regular intervals and digitize the results.
Voltages and currents are multiplied as they are captured to compute active power. Past voltage samples
delayed by a time equal to a quarter cycle (90°) are multiplied by present current values to obtain reactive
power. Active–reactive metering of this type is a widely utilized method for determining displacement
power factor for utility billing. These meters do not accurately measure the effect of harmonic currents
because the delay of the voltage samples is based on the fundamental frequency and is incorrect for the
harmonics. (The important 5th harmonic, which is frequently the predominant harmonic component,
is accurately measured because it is delayed 450° (5 × 90°), which is equivalent to the correct 90° delay).

Metering for Nonlinear Loads

With the application of high-speed digital computing techniques to measurement of ac currents and
voltages, together with digital filtering, the quantities necessary for accurate and correct calculation of
power factor are susceptible to direct computation. In practice, the ac waveforms are sampled at a
frequency greater than twice the highest frequency to be measured, in compliance with well-known
sampling theories. Data obtained can be treated using Fourier’s equations to calculate rms values for
voltage, current, and phase angle for the fundamental and each harmonic frequency. Power quantities
can be obtained with digital filtering in strict accordance with their ANSI/IEEE STD 100 definitions.
Power quantities can be displayed for the fundamental only (displacement power factor), or for funda-
mental plus all harmonics (power factor for nonsinusoidal waveforms).

Metering Applications

Instruments with the capabilities described above are often called harmonic analyzers, and are available
in both single-phase and polyphase versions. They can be portable, in which case they are often used for
power surveys, or panel mounted for utility and industrial revenue metering. Polyphase analyzers can
be connected as shown in Figures 40.13 and 40.14. Care must be taken to connect the instrument properly.
Both voltage leads and current transformers must be connected to the proper phases, and the current
transformers must also be placed with the correct polarity. Most instruments use color-coded voltage
connectors. Correct polarity is indicated on the current transformers by arrows or symbols, and complete
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hook-up and operating instructions are included. When single-phase instruments are used, the same
precautions must be followed for making connections.

40.5 Instrumentation

Table 40.2 lists a sampling of harmonic and power factor measuring instruments available from major
manufacturers. All instruments listed use some type of Fourier calculations and/or digital filtering to
determine power values in accordance with accepted definitions. Many can be configured to measure
non-harmonic-related power quality concerns. Unless otherwise noted, all instruments require the pur-
chase of one current probe per input. Probes are available for measuring currents from 5 A to several
thousand amperes. For comparison purposes, priced probes will be those with a 600-A range. Voltage
leads are usually supplied as standard equipment. Table 40.3 contains addresses of these manufacturers.

FIGURE 40.13 Meter connections for a one-, two-, or three-phase, three-wire service. Voltage leads are connected
to phases a, b, and c, or to a, c, and neutral as the system dictates. Care must be taken to connect the voltage lead
for each phase to the input corresponding to the input for the current transformer reading that phase, and directional
characteristics of the transformers must be observed. Only two current connections are required.

FIGURE 40.14 Meter connections for a three-phase, four-wire wye or delta connected service. Voltage leads are
connected to phases a, b, and c, and to the neutral. Care must be taken to connect the voltage lead for each phase to
the input corresponding to the input for the current transformer reading that phase, and directional characteristics of
the transformers must be observed. In situations where measurement of neutral currents is desired, a fourth current
transformer can be used to read the neutral. A fourth voltage connection might be used to read neutral-ground voltages.
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ABLE 40.2 Selected Instrumentation for Harmonic and Power Factor Measurement

anufacturer Model V/I inputs Display type Communication Special features List price (US$

Hand-held units

mprobe HA2000 1/1 Visual RS232 Hand-held, probe 
included, 21 
nonvolatile 
memories

990

MI 155 1/1 Visual Optional printer, 
RS232

Hand-held, 1145 + 
550 (printer) + 
380 (probe)

MI 355 4/3 Visual Optional printer, 
RS232

Hand-held 1995 + 550 
(printer) + 
380/probe

ranetz 4300 4/4 Panel for 
data and 
graphs 
RS232

Hand-held, 
battery or 
ac power, 
optional 
PCMCIA 
memory 
card

5000 + 450/probe

luke 39 1/1 Visual None Probe included 895
luke 41b 1/1 Visual RS232 Probe included, 8 

memories, logging 
with computer 
and supplied 
software

1795

Portable units

MI 3030A 4/4 Built-in 
printer for 
data and 
graphs 
optional 
internal 
modem

Portable, optional 
built-in disk drive 
for storage, long-
term monitoring, 
optional PQ 
configurations

6800 + 600 
(modem) + 1895 
(disk storage) + 
590/probe

ranetz PP1-R 4/4 Panel for 
data and 
graphs

PCMCIA card slot Long-term 
monitoring, 
optional PQ 
configurations, 
remote control by 
software

12,000 + 
450/probe

PC-based units

MI 7100 4/4 PC-based 
(not 
included)

PC connection 
cord

Portable, uses 
computer for 
storage, optional 
software, long-
term monitoring, 
optional PQ 
configurations

5294 + PC + 395
(software) + 
415/probe

ooper V-Monitor II 4/4 PC-based 
(not 
included)

Serial port Portable, software 
and signal 
interface and data 
acquisition board, 
long-term 
monitoring

12,000 + 
500/probe
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PM 1650 4/5 PC-based, 
not 
included

Ethernet long-
term monitoring, 
optional PQ 
configurations, 
remote control by 
software

6250 + 750 software 
+ 490/probe

Panel-mounted

utler-
Hammer/
Westinghouse

4/4 Panel Optional 
IMPACC

Panel-mount to 
replace meters, 
monitoring

3690 + input 
devices

eneral 
Electric

kV Vector 
Electricity 
Meter

Socket Programmable 
multifunction 
LCD display 
pulse output for 
measured power 
quantities 
replaces 
industrial 
revenue meters, 
calculates and 
accumulates all 
power and 
revenue data

595 + 495 
(software)

quare D Powerlogic 
PM620

3/3 LCD panel RS485 Panel meter 
replacement, 
calculates and 
accumulates 
power data

1583 + probes

quare D Powerlogic 
CM2350

3/3 Panel RS485 Connect to 
network, remote 
controller, 
monitoring

4290 + probes

TABLE 40.3 Manufacturers of Power Factor Measuring Harmonic Analyzers

Amprobe Instruments Cutler Hammer Inc. GE Meter
630 Merrick Road Westinghouse & Cutler-Hammer Products 130 Main Street
Lynbrook, NY 11563 Five Parkway Center Somersworth, NH 03878
Tel: (516) 593-5600 Pittsburgh, PA 15220 Tel: (603) 749-8477

Tel: (412) 937-6100
BMI Reliable Power Meters, Inc.
3250 Jay Street Dranetz Technologies, Inc. 400 Blossom Hill Road
Santa Clara, CA 95054 1000 New Durham Road Los Gatos, CA 95032
Tel: (408) 970-3700 Edison, NJ 08818-4019 Tel: (408) 358-5100

Tel: (800) DRANTEC
Cooper Power Systems Division Square D Power Logic
11131 Adams Road Fluke Corporation 330 Weakley Road
P.O. Box 100 P.O. Box 9090 Smyrna, TN 37167-9969
Franksville, WI 53126-0100 Everett, WA 98206 Tel: (615) 459-8552
Tel: (414) 835-2921 Tel: (800) 44FLUKE

ABLE 40.2 (continued) Selected Instrumentation for Harmonic and Power Factor Measurement

anufacturer Model V/I inputs Display type Communication Special features List price (US$
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Defining Terms

Active power: A term used to express the real power delivered to do work in an ac distribution system.
Reactive power: A term used to express the imaginary power that does no work but provides magne-

tization to enable work in an ac distribution system.
Phasor power: A term used to express the product of volts and amperes in an ac distribution system

in which voltage and current are sinusoidal.
Harmonic power: A term used to express the power due to harmonic frequencies in an ac distribution

system in which voltage and/or current are nonsinusoidal.
Apparent power: A term used to express the product of volts and amperes in an ac distribution system

in which voltage and/or current are nonsinusoidal.
Power factor: A single number, calculated by dividing active power by either the phasor power or the

apparent power, which describes the effective utilization of ac distribution system capacity.
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