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Magnetic field strength is measured using a variety of different technologies. Each technique has unique
properties that make it more suitable for particular applications. These applications can range from
simply sensing the presence or change in the field to the precise measurements of a magnetic field’s scalar
and vector properties. A very good and exhaustive fundamental description of both mechanical and
electrical means for sensing magnetic fields can be found in Lion [1]. Less detailed but more up-to-date
surveys of magnetic sensor technologies can be found in [2, 3]. It is not possible to adequately describe
all of these technologies in the space available in a Handbook. This chapter concentrates on sensors that
are commonly used in magnetic field measuring instruments.

As shown in Figure 48.1, magnetic field sensors can be divided into vector component and scalar
magnitude types. The vector types can be further divided into sensors that are used to measure low fields
(<1 mT) and high fields (>1 mT). Instruments that measure low fields are commonly called magnetom-
eters. High-field instruments are usually called gaussmeters.

The induction coil and fluxgate magnetometers are the most widely used vector measuring instru-
ments. They are rugged, reliable, and relatively less expensive than the other low-field vector measuring
instruments. The fiber optic magnetometer is the most recently developed low-field instrument. Although
it currently has about the same sensitivity as a fluxgate magnetometer, its potential for better performance
is large. The optical fiber magnetometer has not yet left the laboratory, but work on making it more
rugged and field worthy is under way. The superconducting quantum interference device (SQUID)
magnetometers are the most sensitive of all magnetic field measuring instruments. These sensors operate
at temperatures near absolute zero and require special thermal control systems. This makes the SQUID-
based magnetometer more expensive, less rugged, and less reliable.

The Hall effect device is the oldest and most common high-field vector sensor used in gaussmeters.
It is especially useful for measuring extremely high fields (>1 T). The magnetoresistive sensors cover the
middle ground between the low- and high-field sensors. Anisotropic magnetoresistors (AMR) are cur-
rently being used in many applications, including magnetometers. The recent discovery of the giant
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magnetoresistive (GMR) effect, with its tenfold improvement in sensitivity, promises to be a good
competitor for the traditional fluxgate magnetometer in medium-sensitivity applications.

The proton (nuclear) precession magnetometer is the most popular instrument for measuring the
scalar magnetic field strength. Its major applications are in geological exploration and aerial mapping of
the geomagnetic field. Since its operating principle is based on fundamental atomic constants, it is also
used as the primary standard for calibrating magnetometers. The proton precession magnetometer has
a very low sampling rate, on the order of 1 to 3 samples per second, so it cannot measure fast changes
in the magnetic field. The optically pumped magnetometer operates at a higher sampling rate and is
capable of higher sensitivities than the proton precession magnetometer, but it is more expensive and
not as rugged and reliable.

Table 48.1 lists various magnetic field strength instruments and their characteristics.

48.1 Magnetic Field Fundamentals

An understanding of the nature of magnetic fields is necessary in order to understand the techniques
used for measuring magnetic field strength. The most familiar source of a magnetic field is the bar

FIGURE 48.1 Magnetic field sensors are divided into two categories based on their field strengths and measurement
range: magnetometers measure low fields and gaussmeters measure high fields.

TABLE 48.1 Field Strength Instrument Characteristics

Instrument
Range Resolution Bandwidth

Comment(mT) (nT) (Hz)

Induction coil 10–10 to 106 Variable 10–1 to 106 Cannot measure static fields
Fluxgate 10–4 to 0.5 0.1 dc to 2 × 103 General-purpose vector magnetometer
SQUID 10–9 to 0.1 10–4 dc to 5 Highest sensitivity magnetometer
Hall effect 0.1 to 3 × 104 100 dc to 108 Best for fields above 1T
Magnetoresistance 10–3 to 5 10 dc to 107 Good for mid-range applications
Proton precession 0.02 to 0.1 0.05 dc to 2 General-purpose scalar magnetometer
Optically pumped 0.01 to 0.1 0.005 dc to 5 Highest resolution scalar magnetometer
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magnet. The field it produces is shown in Figure 48.2. Magnetic field is a vector quantity; that is, it has
both a magnitude and a direction. The field of a bar magnet or any other magnetized object, when
measured at a distance much greater than its longest dimension, is described by Equation 48.1:

(48.1)

where âr is a unit vector along r, r is the distance between the magnetic field source and the measurement
point, and

→
m  is called the magnetic dipole moment. The derivation of this equation can be found in

many textbooks on electromagnetics. This is a very convenient equation for estimating the field produced
by many magnetized objects.

The strength or intensity of a magnetized object depends on the density of its volume-distributed
moments. This intensity is called its magnetization M, which is defined as the moments per unit volume:

(48.2)

Like magnetic field, magnetization is a vector quantity. Magnetization is a material property that can
arise from internal magnetic sources as well as be induced by an external magnetic field.

There is a third magnetic vector
→
B  called magnetic induction or flux density. In free space, magnetic

field and magnetic induction are proportional to one another by a constant factor µ0.

(48.3)

Things are different in matter. Equation 48.4 describes the relationship among the magnetic field, mag-
netic induction, and magnetization vectors in matter:

(48.4)

FIGURE 48.2 Magnets produce magnetic fields. A magnetic field is a vector quantity with both magnitude and
direction properties.
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In this case, the magnetic induction and the magnetic field vectors do not necessarily have the same
direction. Some materials have anisotropic magnetic properties that make these two vectors point in
different directions. The magnetization vector can consist of permanent and induced magnetization
components. The permanent magnetization vector does not depend on the presence of an external field.
The induced magnetization vector does depend on an external magnetic field and only exists while the
inducing field is present.

Magnetic materials can be loosely classified as magnetically “soft” or magnetically “hard.” In a mag-
netically hard material, the permanent magnetization component dominates (a magnet is an example).
Magnetization in a soft magnetic material is largely induced and is described by the following equation:

(48.5)

where χ is called the material’s magnetic susceptibility. In an isotropic material (magnetic properties are
not direction dependent), χ is a scalar quantity, and the magnetization and field vectors are proportional
and aligned. In anisotropic material (magnetic properties depend on direction), χ is a tensor represented
by a 3 × 3 matrix; therefore, the magnetization vector magnitude and direction depend on the direction
and strength of the inducing field. As a result, the magnetization vector will not always align with the
magnetization inducing field vectors. Equation 48.5 can be modified for magnetically “soft” material to
the following:

(48.6)

where µ is called the relative permeability of the material.
A magnetized object with a magnetic moment

→
m  will experience torque

→
T  in the presence of a uniform

magnetic field
→
H.  Equation 48.7 expresses this relationship.

(48.7)

Torque is the cross-product of the magnetic moment and field vectors. The magnitude equation is:

(48.8)

where θ is the angle between the direction of
→
m and

→
H.

There is an intimate relationship between electric and magnetic fields. Oersted discovered that passing
a current through a wire near a compass causes the compass needle to rotate. The compass was the first
magnetic field strength sensor. Faraday found that he could produce an electric voltage at the terminals
of a loop of wire if he moved a magnet near it. This led to the induction or search coil sensor.

Magnetic fields are produced by the flow of electric charge (i.e., electric currents). In effect, a magnetic
field is a velocity-transformed electric field (through a Lorentz transformation). Current flowing through
a straight wire, a loop of wire, or a solenoid will also produce a magnetic field as illustrated in Figure 48.3.

Units are always a problem when dealing with magnetic fields. The Gaussian cgs (centimeter, gram,
and second) system of units was favored for many years. Since µ0 = 1 in the cgs system, magnetic field
and flux density have the same numeric value in air, and their units (oerstedt for field and gauss for flux
density) are often indiscriminately interchanged. This has led to great confusion. The cgs system has now
been replaced by the International System of Units (SI). The SI system uses, among others, the meter
(m), kilogram (kg), second (s) and ampere (A) as the fundamental units. Payne [4] gives a very good
explanation of the differences between these systems of units as they relate to magnetic fields. Table 48.2
summarizes the relationships between the two systems of units.

The SI system of units is used throughout this chapter.

r r
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48.2 Low-Field Vector Magnetometers

The Induction Coil Magnetometer

The induction or search coil, which is one of the simplest magnetic field sensing devices, is based on
Faraday’s law. This law states that if a loop of wire is subjected to a changing magnetic flux, φ, through
the area enclosed by the loop, then a voltage will be induced in the loop that is proportional to the rate
of change of the flux:

(48.9)

FIGURE 48.3 Magnetic fields are also produced by electric currents.

TABLE 48.2 Factors for Converting from cgs to SI Magnetic Field Units

Description Symbol SI unit Gaussian cgs unit Multiply by

Magnetic induction B Tesla gauss 104

Magnetic field strength H A m–1 oerstedt (oe) 4π × 10–3

Magnetization M A m–1 emu m3 10–3

Magnetic dipole moment m A m2 emu 103

Magnetic flux φ Weber (Wb) maxwell 108

Magnetic pole strength p A m emu
Permeability of free space µ0 H m–1 4π × 10–7 1

e t
t

( ) = − d

d

φ
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Since magnetic induction
→
B  is flux density, then a loop with cross-sectional area

→
A  will have a terminal

voltage:

(48.10)

for spatially uniform magnetic induction fields.
Equation 48.10 states that a temporal change in

→
B  or the mechanical orientation of

→
A  relative to

→
B

will produce a terminal voltage. If the coil remains fixed with respect to
→
B, then static fields cannot be

detected; but if the loop is rotated or the magnitude of
→
A  is changed, then it is possible to measure a

static field. The relationship described by Equation 48.10 is exploited in many magnetic field measuring
instruments (see [1]).

Figure 48.4 shows the two most common induction coil configurations for measuring field strength:
the air core loop antenna and the rod antenna. The operating principle is the same for both configurations.
Substituting µ0 µeH(t) for B in Equation 48.10 and, assuming the loop is stationary with respect to the
field vector, the terminal voltage becomes:

(48.11)

where n is the number of turns in the coil, and µe is the effective relative permeability of the core. The
core of a rod antenna is normally constructed of magnetically “soft” material so one can assume the flux
density in the core is induced by an external magnetic field and, therefore, the substitution above is valid.
With an air (no) core, the effective relative permeability is one. The effective permeability of an induction

FIGURE 48.4 Induction or search coil sensors consist of a loop of wire (or a solenoid), which may or may not
surround a ferromagnetic core. (a) Air core loop antenna; (b) solenoid induction coil antenna with ferromagnetic core.

e t
B A

t
( ) = −

•( )d

d

r r

e t  nA
H t

t
( ) = −µ µ

( )
0 e

d

d

© 1999 by CRC Press LLC



             
coil that contains a core is usually much greater than one and is strongly dependent on the shape of the
core and, to some extent, on the configuration of the winding.

Taking the Laplace transform of Equation 48.11 and dividing both sides by H, one obtains the following
transfer function T(s) for an induction coil antenna:

(48.12)

where E(s) = T(s) H(s), E(s) and H(s) are the Laplace transforms of e(t) and H(t), and s is the Laplace
transform operator. Inspection of Equation 48.12 reveals that the magnitude of the coil voltage is pro-
portional to both the magnitude and frequency of the magnetic field being measured. The coil constant
or sensitivity of the loop antenna is:

(48.13)

Figure 48.5 is the equivalent circuit for an induction coil antenna. The actual voltage measured at the
terminals of the loop is modified by the inductance L, resistance R, and the distributed stray and shield
capacitances represented by the lumped capacitor C. These circuit parameters depend on the geometry
of the core, coil, and winding.

The electrostatic shield made of nonmagnetic material shown in Figure 48.4 is an important element
in the design of an induction coil. It prevents coupling of electric fields into the coil, thereby assuring
that the signal seen at the coil terminals is only that due to a magnetic field. The shield should not be
placed too close to the winding since it contributes to coil capacitance and noise.

The Air Core Loop Antenna

The air core loop antenna consists of a circular or rectangular loop containing one or more turns of wire
and no magnetic core. The diameter of the loop is usually much greater than the dimensions of the
winding cross-section. The sensitivity of a circular loop antenna with a winding inside diameter d and
rectangular cross-section is approximately:

(48.14)

where t is the thickness of the winding and n is the number of turns.
The resistance of the coil is:

(48.15)

FIGURE 48.5 The induction coil equivalent circuit is a frequency-dependent voltage source in series with an
inductor, resistor, and lumped capacitor.
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where dw is the diameter of the bare wire and ρ is its resistivity in Ω m (1.7 × 10–8 Ω m for copper).
The inductance of the coil is more difficult to compute since it depends heavily on the geometry of

the coil. Those who are interested in computing very accurate inductance values for a wide variety of
coil shapes should consult [5]. Equation 48.16 is a general expression that gives a good approximation
for the inductance of a circular air core coil.

(48.16)

where w is the width of the winding,
–
d is the average diameter, and k is Nagaoka’s constant:

(48.17)

The distributed capacitance of the coil contributes the most to the overall antenna capacitance. The
parasitic capacitances can usually be ignored. Equation 48.18 can be used to estimate the distributed
capacitance of a coil.

(48.18)

where εw is the dielectric constant of the wire insulation, εl is the dielectric constant of the interlayer
insulation if any, tw is the thickness of the wire insulation, tl is the thickness of the interlayer insulation,
and nl is the number of layers. Adding a second layer to a single-layer coil significantly increases the
capacitance but, as the number of layers increases, the capacitance decreases.

The air core loop antenna is particularly useful for measuring magnetic fields with frequencies from
100 Hz to several megahertz. Because it has a linear response to magnetic field strength, it has virtually
no intermodulation distortion. On the negative side, the size of the sensor can get quite large for
applications that require high sensitivities at low frequencies.

The Rod Antenna

The rod antenna is a good alternative to an air core loop antenna. It is smaller in size than a loop antenna
with the same sensitivity, and it can be designed to operate at lower frequencies. Unfortunately, its
response to magnetic field strength can be nonlinear and the core adds noise.

Figure 48.4(b) is a typical configuration for a rod antenna. It is basically a solenoid with a magnetic
core. The core can have a circular or rectangular cross-section and can be made from a ferrite, a nickel-
iron alloy, an amorphous metal glass alloy, or some other material with high relative permeability. The
winding can be wound directly on the core or on a form through which the core is inserted. Insulation
is sometimes placed between layers of the winding to reduce distributed capacitance. An electrostatic
shield is placed around the winding to attenuate any electric field coupling into the signal. The shield
has a gap that runs the length of the winding. This prevents circulating currents in the shield from
attenuating the magnetic field within the coil.

The most common rod antenna configuration is a core with a circular cross-section and a tightly
coupled winding that runs most of the length of the core. The sensitivity of the rod antenna is computed
by substituting µe in Equation 48.13 with the following:

(48.19)
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where dc is the core diameter and –µ is the core average effective permeability. The core effective or apparent
permeability depends on its geometry and initial permeability, as well as the winding length relative to
the core length. A rod becomes magnetized when a magnetic field is applied to it. In response, a magnetic
field is created within the rod that opposes the externally applied field and reduces the flux density. The
demagnetizing field is proportional to the magnetization and the net field H in the core is:

(48.20)

where H ′ is the applied external field, N is the demagnetizing factor, and M is the magnetization. The
apparent relative permeability of a core is the ratio of the flux density B in the middle of the core to the
flux density in air:

(48.21)

where µi is the initial relative permeability of the core material. Initial relative permeability is the slope
of the B–H magnetization curve near zero applied field for a closed magnetic path.

The value of N is shape dependent. As the length-to-diameter ratio m of a rod increases, N decreases
and the apparent relative permeability approaches the initial permeability. Table 48.3, which is reproduced
from [6], lists demagnetizing factors for a rod, prolate ellipsoid (cigar shape), and oblate ellipsoid (disk
shape).

Equation 48.22 can be used to approximate the value of N for cylindrical rods with m > 10 and µi >
1000:

(48.22)

The apparent permeability of a rod with a small m and large µi is almost exclusively determined by m
alone. Table 48.4 lists the magnetic properties of several ferromagnetic materials that can be used to
construct a core.

Bozorth [7] found that the apparent permeability of a rod is not constant throughout the length of
the rod. It reaches a maximum at the center of the rod and continuously drops in value until the ends
of the rod are reached. The variation in permeability can be approximated by:

TABLE 48.3 Demagnetizing Factors, N for Rods 
and Ellipsoids Magnetized Parallel to Long Axis

Dimensional ratio
Rod

Prolate Oblate
(length/diameter) ellipsoid ellipsoid

0 1.0 1.0 1.0
1 0.27 0.3333 0.3333
2 0.14 0.1735 0.2364
5 0.040 0.0558 0.1248

10 0.0172 0.0203 0.0696
20 0.00617 0.00675 0.0369
50 0.00129 0.00144 0.01472

100 0.00036 0.000430 0.00776
200 0.000090 0.000125 0.00390
500 0.000014 0.0000236 0.001576

1000 0.0000036 0.0000066 0.000784
2000 0.0000009 0.0000019 0.000392

H H NM= ′ −

B

H Nµ ′
= µ = µ

+ µ −( )0 1 1
a

i

i

N
m

m
= × −2 01  0 4610

2

. log .
© 1999 by CRC Press LLC



(48.23)

where l is the distance from the center of the rod to the measurement point, l0 is the half length of the
rod, and F is a constant that varies from 0.72 to 0.96. The average permeability seen by the coil is the
integral of Equation 48.23 over the length of the coil:

(48.24)

where lw is the length of the winding and lc is the length of the core. Equation 48.24 is substituted into
Equation 48.19 to compute the rod’s effective relative permeability which is used in Equation 48.13 to
compute sensitivity.

The inductance of the rod antenna can be computed using the following equations:

(48.25)

(48.26)

(48.27)

The function f(lw /lc) accounts for the variation in flux density from the middle of the winding to its ends
and assumes the winding is centered about the middle of the core.

Equations 48.15 and 48.16 can be used to compute the resistance and capacitance of a rod antenna.

Signal Conditioning

To be useful, the induction coil signal must be conditioned using either a voltage or a current amplifier.
Figure 48.6 illustrates the circuit configurations for both of these signal conditioning methods. The voltage

TABLE 48.4 Magnetic Properties of Typical Core Material

Name Composition Manufacturer µi µmax

Mild steel 0.2 C, 99 Fe 120 2000
Silicon iron 4.0 Si, 96 Fe 500 7000
CN20 Ni-Zn Ferrite Ceramic Magnetics 800 4500
MN60 Mn-Zn Ferrite Ceramic Magnetics 5000 10,500
“49” Alloy 48 Ni, 52 Fe Carpenter 6500 75,000
2605S-2 Fe-based amorphous alloy Allied-Signal 10,000 600,000
4-79 Permalloy 4 Mn, 79 Ni, 17 Fe Magnetics 20,000 100,000
Mumetal 5 Cu, 2 Cr, 77 Ni, 16 Fe Magnetics 20,000 100,000
HyMu “80” 4.2 Mo, 80 Ni, 15 Fe Carpenter 50,000 200,000
2826MB NiFe-based amorphous alloy Allied-Signal 100,000 800,000

Note: µi is the slope of the magnetization curve at the origin. µmax is the maximum incremental
slope of the magnetization curve.
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amplifier can have either a single-ended or differential input and it can be tuned or untuned. The signal
output of the voltage amplifier is proportional to the magnitude and frequency of the field for frequencies
well below resonance. Its output will peak at the resonant frequency of the coil or at the tuning frequency.
Because its output signal depends on both the frequency and strength of the magnetic field, the voltage
amplifier is more suited to narrow band or tuned frequency applications.

In the current amplifier configuration, the induction coil terminals are connected to a virtual ground.
As long as the product of the amplifier forward gain and the coil ohmic resistance is much greater than
the feedback resistor, the output signal magnitude is independent of the frequency of the magnetic field
beyond the R/L (rad s–1) corner of the coil. This remains true up to the coil’s resonant frequency. For
this reason, the current amplifier configuration is particularly suited to broadband magnetic field strength
measurements. The current amplifier configuration minimizes intermodulation distortion in induction
coils with magnetic cores. The current flowing through the coil produces a magnetic field that opposes
the ambient field. This keeps the net field in the core near zero and in a linear region of the B–H curve.

Current-amplifier-based induction coil magnetometers have been built that have a flat frequency
response from 10 Hz to over 200 kHz. Some magnetometers designed for geophysical exploration
applications have low frequency corners that extend down to 0.1 Hz. For further information on this
subject, see [8, 9].

The Fluxgate Magnetometer

The fluxgate magnetometer has been and is the workhorse of magnetic field strength instruments both
on Earth and in space. It is rugged, reliable, physically small, and requires very little power to operate.
These characteristics, along with its ability to measure the vector components of magnetic fields over a

FIGURE 48.6 (a) The amplitude of a voltage-amplified induction coil signal is proportional to the frequency and
strength of the field. (b) The amplitude of a current-amplified induction coil signal is only proportional to field
strength beyond its L/R corner frequency.
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0.1 nT to 1 mT range from dc to several kHz, make it a very versatile instrument. Geologists use them
for exploration and geophysicists use them to study the geomagnetic field (about 20 µT to 75 µT on the
Earth’s surface). Satellite engineers use them to determine and control the attitude of spacecraft, scientists
use them in their research, and the military uses them in many applications, including mine detection,
vehicle detection, and target recognition. Some airport security systems use them to detect weapons.

The Fluxgate

The heart of the magnetometer is the fluxgate. It is the transducer that converts a magnetic field into an
electric voltage. There are many different fluxgate configurations. Two of the more popular ones are
shown in Figure 48.7. A very comprehensive explanation of the fluxgate principle and the different
fluxgate configurations is given in [10].

The ring core fluxgate is constructed from a thin ribbon of easily saturable ferromagnetic material,
such as 4-79 Permalloy wrapped around a bobbin to form a ring or toroid. As shown in Figure 48.8, an
alternating current is applied through a coil that is wound about the toroid. This creates a magnetic field
that circulates around the magnetic core. This magnetic field causes the flux in the ferrous material to
periodically saturate first clockwise and then counterclockwise. A pick-up (signal) winding is wrapped
around the outside of the toroid. While the ferrous material is between saturation extremes, it maintains
an average permeability much greater than that of air. When the core is in saturation, the core permeability

FIGURE 48.7 In Schonstedt (a) and ring core (b) fluxgate sensors, the excitation field is at right angles to the signal
winding axis. This configuration minimizes coupling between the excitation field and the signal winding.
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becomes equal to that of air. If there is no component of magnetic field along the axis of the signal
winding, the flux change seen by the winding is zero. If, on the other hand, a field component is present
along the signal winding axis, then each time the ferrous material goes from one saturation extreme to
the other, the flux within the core will change from a low level to a high level. According to Faraday’s
law, a changing flux will produce a voltage at the terminals of the signal winding that is proportional to
the rate of change of flux. For dc and low-frequency magnetic fields, the signal winding voltage is:

(48.28)

where H = Component of the magnetic field being measured
n = Number of turns on the signal winding
A = Cross-sectional area of the signal winding
µe (t) = Effective relative permeability of the core

FIGURE 48.8 The excitation field of a fluxgate magnetometer alternately drives the core into positive or negative
saturation, causing the core’s effective permeability to switch between 1 and a large value twice each cycle.
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As the core permeability alternates from a low value to a high value, it produces a voltage pulse at the
signal winding output that has an amplitude proportional to the magnitude of the external magnetic
field and a phase indicating the direction of the field. The frequency of the signal is twice the excitation
frequency since the saturation-to-saturation transition occurs twice each excitation period.

The discussion about effective permeability in the induction coil section applies here as well. Consult
[10, 13] for comprehensive discussions about fluxgate effective permeability and signal characteristics as
they relate to excitation field level, excitation waveform, and winding geometry.

Signal Conditioning

The signal from the fluxgate is an amplitude-modulated suppressed carrier signal that is synchronous with
the second harmonic of the excitation signal. In a simple low-power magnetometer, this signal is converted
to the base band using a synchronous demodulator, filtered, and presented as the final output. Example
circuits are given in [11, 12]. The accuracy of magnetometers that use this open-loop architecture is limited
by the linearity of the core’s magnetization curve and is about 5% for Earth’s field (60 µT) applications.

More precise and stable magnetometers use magnetic field feedback rather than the open-loop struc-
ture described above. A simplified schematic of a typical second harmonic field feedback fluxgate mag-
netometer is shown in Figure 48.9. The circuitry to the left of the fluxgate is called the excitation circuit.
It consists of an oscillator tuned to twice the excitation frequency, a flip-flop that divides the oscillator
frequency by two, and a power amplifier driven by the flip-flop and, in turn, provides the excitation
current to the excitation winding.

The circuitry to the right of the fluxgate is called the signal channel circuit. It amplifies the output
from the fluxgate signal winding, synchronously demodulates the ac signal using the oscillator signal as
a reference, integrates and amplifies the base band output, and then feeds back the output through a
resistor to the signal winding. The fed-back signal produces a magnetic field inside the sensor that opposes
the external field. This keeps the field inside the sensor near zero and in a linear portion of the magne-
tization curve of the ferromagnetic core.

The flow diagram for the magnetometer is given in Figure 48.10. The external field Ha is opposed by
the feedback field Hf , and the difference is converted into a voltage signal (Ks represents the transfer
function from field to voltage). This signal is amplified (A), and the amplified signal is converted into a
current If and then into the feedback field (Kc represents the transfer function from current to field).
The overall transfer function for the magnetometer is:

(48.29)

FIGURE 48.9 Typical circuit configuration for a field feedback fluxgate magnetometer. The sensor output is ac
amplified, synchronously demodulated, and filtered. A magnetic field that nulls the ambient field at the sensor is
produced by connecting the resistor Rf between the output and the signal winding.
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The amplifier gain is normally very high such that the second term in the denominator is much larger
than one, and Equation 48.29 reduces to

(48.30)

Under these circumstances, the transfer function becomes almost completely determined by the ratio of
Rf (the feedback resistor) to Kc (the current-to-field coil constant of the sensor winding). Both of these
constants can be very well controlled. The consequence of this circuit topology is a highly stable and
accurate magnetometer that is insensitive to circuit component variations with temperature or time. An
accuracy of 1% over a temperature range of –80°C to 80°C is easily achievable. Accuracy and stability
can be improved using a current feedback circuit, like the one described in [13], that compensates for
the resistance of the signal winding or by using a separate feedback winding and a high-quality voltage-
to-current converter instead of a simple feedback resistor.

The SQUID Magnetometer

Brian D. Josephson in 1962, while a graduate student at Cambridge University, predicted that supercon-
ducting current could flow between two superconductors that are separated by a thin insulation layer.
The magnitude of the superconductor (critical) current through this “Josephson junction” is affected by
the presence of a magnetic field and forms the basis for the SQUID magnetometer.

Figure 48.11 illustrates the general structure of a Josephson junction and the voltage–current (V–I)
relationship. Two superconductors (e.g., niobium) are separated by a very thin insulating layer (e.g.,
aluminum oxide). The thickness of this layer is typically 1 nm. When the temperature of the junction is
reduced to below 4.2 K (–269°C), a superconductor current will flow in the junction with 0 V across the
junction. The magnitude of this current, called the critical current Ic, is a periodic function of the magnetic
flux present in the junction. Its maximum magnitude occurs for flux values equal to nφ0, where φ0 is one
flux quantum (2 fW), and its minimum magnitude occurs for flux values equal to (n + ½)φ0. The period
is one flux quantum. This phenomenon is called the “dc Josephson effect” and is only one of the
“Josephson effects.”

Magnetometers based on the Superconducting Quantum Interference Device (SQUID) are currently
the most sensitive instruments available for measuring magnetic field strength. SQUID magnetometers
measure the change in the magnetic field from some arbitrary field level; they do not intrinsically measure
the absolute value of the field. Biomedical research is one of the more important applications of SQUID
magnetometers. SQUID magnetometers and gradiometers (measure spatial variation in the magnetic
field) have the high sensitivities needed to measure the weak magnetic fields generated by the body [15].

FIGURE 48.10 Block diagram of a field feedback fluxgate magnetometer. Kc is the current-to-field constant for the
coil. Ks is the field-to-voltage transduction constant for the sensor. The feedback field Hf opposes the ambient field
Ha, thus keeping the net sensor field very small.
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Other application areas include paleomagnetics (measuring remnant magnetism in rocks) and magne-
totellurics (Earth resistivity measurements). Descriptions of these applications as well as the general
theory of SQUIDs can be found in [16]. Clark [17], one of the pioneers in SQUID magnetometers,
provides a good contemporary overview of SQUID technology and applications.

A dc SQUID magnetometer uses two Josephson junctions in the two legs of a toroid as shown in
Figure 48.12(a). The toroid is biased with a constant current that exceeds the maximum critical current
of the junctions. When the flux through the toroid is an integral multiple of φ0, the voltage across the
junctions is determined by the intersection of Ib and the nφ0 V–I curve (point A). As the flux increases,
the critical current decreases. The V–I curve and thus the intersection point move to the right (the
junction voltage increases). The critical current reaches a minimum when the flux has increased by ½φ0

and the junction voltage is at its maximum (point B). As the flux continues to increase, the critical current
increases back toward its maximum value and the junction voltage decreases. Thus, the period of the
flux cycle is φ0.

Signal Conditioning

Figure 48.13 is a block diagram of one implementation of a dc SQUID magnetometer that can be used
for wide dynamic range field measurements. A large superconducting loop, which is exposed to the
magnetic field being measured, is connected to a multiturn signal winding that is magnetically coupled
directly to the SQUID. At cryogenic temperatures, the loop and signal winding effectively form a dc
induction coil. External flux applied to the coil will generate a current in the loop that keeps the net flux
within the loop constant, even for dc magnetic fields. The signal winding magnifies the flux that is applied
to the SQUID.

The SQUID is magnetically biased at an optimal sensitivity point. A small ac magnetic field at 100 kHz
to 500 kHz is superimposed on the bias field. The output of the SQUID is a suppressed carrier amplitude
modulated signal where the amplitude indicates the change in magnetic field from the bias point, and
the phase indicates the polarity of the change. The output signal is amplified and then synchronously
demodulated down to the base band. The resulting dc signal is amplified and fed back through a resistor
to a coil coupled to the SQUID. The current through the coil generates a magnetic field at the SQUID
that opposes the applied field. This keeps the SQUID operating point very near the bias point. The scale

FIGURE 48.11 The Josephson junction in (a) consists of a superconductor such as niobium separated by a thin
insulation layer. The voltage (V ) vs. current (I) curve in (b) shows that a superconducting current flows through the
junction with zero volts across the junction.
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factor of the magnetometer depends on the feedback resistor and the coil constant of the feedback winding
in the same manner that it does for a field feedback fluxgate magnetometer.

The pick-up loop, signal coil, SQUID, feedback coil and feedback resistor are kept in a cryogenic
temperature chamber and, except for the pick-up coil, are magnetically shielded. The rest of the circuit
is operated at room temperature.

48.3 High-Field Vector Gaussmeters

The Hall Effect Gaussmeter

The Hall effect device, which is probably the most familiar and widely used sensor for measuring strong
magnetic fields, is based on the discovery of the Hall effect by Edwin H. Hall in 1897. The Hall effect is
a consequence of the Lorentz force law, which states that a moving charge q, when acted upon by a
magnetic induction field

→
B,  will experience a force

→
F that is at right angles to the field vector and the

velocity vector v of the charge as expressed by the following equation:

FIGURE 48.12 Use of a dc SQUID to measure magnetic flux. The dc SQUID in (a) consists of a superconductor
loop and two Josephson junctions with a bias current that is greater than the maximum critical current Ih. The V–I
curve in (b) illustrates how the voltage across the SQUID oscillates with a period equal to one flux quantum φ0.
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(48.31)

The Hall effect device consists of a flat, thin rectangular conductor or semiconductor with two pairs
of electrodes at right angles to one another as illustrated in Figure 48.14. An electric field Ex is applied
along the x or control axis. When a magnetic field Bz is applied perpendicular to the surface of the device,
the free charge, which is flowing along the x-axis as a result of Ex, will be deflected toward the y or Hall
voltage axis. Since current cannot flow in the y-axis under open-loop conditions, this will cause a buildup
of charge along the y-axis that will create an electric field which produces a force opposing the motion
of the charge:

(48.32)

FIGURE 48.13 Wide dynamic range dc SQUID magnetometer. A magnetic field produced by connecting resistor
Rf between the output and a feedback coil keeps the field in the SQUID within one flux quantum over its operating
range. (Adapted from Wellstood, Heiden and Clark, 1984.)

FIGURE 48.14 Hall effect sensor. A magnetic field H applied normal to the surface of the sensor, which is conducting
current along the x-direction, will generate a voltage along the y-direction. Ex is the applied electric field along the
x-direction, and Ey is the Hall effect electric field along the y-direction.
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where vx is the average drift velocity of the electrons (or majority carriers). In a conductor that contains
n free charges per unit volume having an average drift velocity of vx, the current density is:

(48.33)

and

(48.34)

where RH is called the Hall coefficient.
A semiconductor is treated in terms of the mobility µ (drift velocity/field) of the majority carrier

(electron or hole) and conductivity σ. In this case,

(48.35)

Therefore,

(48.36)

The value of RH varies substantially from one material to another and is both temperature and field
magnitude dependent. Its characteristics can be controlled to a certain extent by doping the base material
with some impurities. For example, doping germanium with arsenic can reduce the temperature depen-
dence at the expense of magnitude.

The voltage measured across the y-axis terminals is the integral of the electric field along the y-axis.
If a constant control current I is flowing along the x axis, then:

(48.37)

and the measured output voltage is:

(48.38)

where t is thickness (m) and w is the distance between the y-axis terminals.
Another characteristic specified by manufacturers of Hall effect devices is the magnetic sensitivity γb

at the rated control current Ic:

(48.39)

Although conductors such as copper (Cu) can be used to make a Hall effect device, semiconductor
materials, such as gallium arsenide (GaAs), indium antimonide (InSb), and indium arsenide (InAs),
produce the highest and most stable Hall coefficients. InAs, because of its combined low temperature
coefficient of sensitivity (<0.1%/°C), low resistance, and relatively good sensitivity, is the material favored
by commercial manufacturers of Hall effect devices.
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The typical control current for Hall effect devices is 100 mA, but some do operate at currents as low
as 1 mA. Sensitivities range from 10 mV/T to 1.4 V/T. Linearity ranges from ¼% to 2% over their rated
operating field range. The control input and the voltage output resistance are typically in the range of
1 Ω to 3 Ω. The sensor element is usually tiny (on the order of 10 mm square by 0.5 mm thick), and a
three-axis version can be housed in a very small package. These devices are most effective for measuring
flux densities ranging from 50 µT to 30 T.

Signal Conditioning

A simple Hall effect gaussmeter can be constructed using the signal conditioning circuit shown in
Figure 48.15. The voltage reference, operational amplifier, and sense resistor Rs form a precision constant-
current source for the Hall effect device control current Ic . For best performance, the voltage reference
and Rs should be very stable with temperature and time. A general-purpose operational amplifier can be
used for low control currents. A power amplifier is required for control currents above 20 mA.

The Hall voltage can be conditioned and amplified by any high input impedance (>1 kΩ) differential
amplifier. A precision instrumentation amplifier is a good choice because it has adequate input imped-
ance, its gain can be determined by a stable resistor, and the amplifier zero offset trim resistor can be
used to cancel the zero offset of the Hall effect device. Some devices require a load resistor across the
Hall voltage terminal to achieve optimum linearity.

The zero offset and 1/f noise of the Hall voltage amplifier limit the performance of a Hall effect
gaussmeter for low field strength measurements. Sometimes, these effects can be reduced by using an ac
precision current source. The ac amplitude modulated Hall voltage can then be amplified in a more
favorable frequency band and synchronously detected to extract the Hall voltage signal. If the field to be
measured requires this amount of signal conditioning, it probably is better to use a fluxgate magnetometer
for the application.

The Magnetoresistive Gaussmeter

The magnetoresistance effect was first reported by William Thomson (Lord Kelvin) in the middle of the
19th century. He found that a magnetic field applied to a ferromagnetic material caused its resistivity to
change. The amount of change depends on the magnetization magnitude and the direction in which the
current used to measure resistivity is flowing. Nickel–iron alloys show the greatest change in resistivity
(about 5% maximum). Figure 48.16 illustrates how the resistivity changes in Permalloy (a nickel–iron
alloy) for a field applied parallel to the current flow. As magnetic field is increased, the change in resistivity
increases and asymptotically approaches its maximum value when the material approaches saturation.
Bozorth [6] points out that the shape of the curve and the magnitude of the change depend on the

FIGURE 48.15 Example of how to construct a Hall effect gaussmeter. The operational amplifier and resistor Rs

form a stable constant-current source for the Hall effect sensor. An instrumentation or differential amplifier amplifies
and scales the Hall voltage. A load resistor is sometimes required across the Hall voltage output terminals.
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composition of the alloy. Permalloy with 80% Ni and 20% Fe provides a high magnetoresistance effect
with near-zero magnetostriction and is a favorite material for magnetoresistors.

The change in resistivity in permalloy film [18] is also a function of the angle θ between the magne-
tization direction and the current direction:

(48.40)

where ∆ρm is the magnetoresistivity anisotropy change and ρ0 is the resistivity for θ = π/2.
It was mentioned earlier that magnetic materials have anisotropic magnetic properties (their magnetic

properties are direction dependent). The physical shape of an object (see the discussion on demagnetizing
factor above) and the conditions that exist during fabrication strongly determine its anisotropic charac-
teristics. A thin long film of permalloy can be made to have highly uniaxial anisotropic properties if it
is exposed to a magnetizing field during deposition. This characteristic is exploited in the anisotropic
magnetoresistance (AMR) sensor.

The basic resistor element in an AMR is a thin rectangular shaped film as shown in Figure 48.17. One
axis, called the anisotropy or easy axis, has a much higher susceptibility to magnetization than the other
two. The easy axis is normally along the length of the film. Because of its thinness, the axis normal to
the film has virtually no magnetic susceptibility. The axis transverse to the easy axis (across the width)
has very little susceptibility as well.

A bias field Hb is used to saturate the magnetization along the easy axis and establish the magnetization
direction for zero external field. For a simplified analysis, the film can be modeled as a single domain.

FIGURE 48.16 Change in resistivity in a ferromagnetic material. As field is applied, the resistivity changes rapidly
at first. As the material approaches magnetic flux saturation, the resistivity change approaches its maximum value.

FIGURE 48.17 An AMR resistor element. During fabrication, a magnetic field is applied along the strip’s length to
magnetize it and establish its easy axis. Current I is passed through the film at 45° to the easy or anisotropic axis. A
magnetic field Ha applied at right angles to the magnetization vector M causes the magnetization vector to rotate
and the magnetoresistance to change.

ρ θ ρ  ρ  θ( ) = +0
2∆ m cos
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The effect of an external field in the plane of the film and normal to the anisotropy axis is to rotate the
magnetization vector and, according to Equation 48.40, change the resistivity. Kwiatkowski and Tumanski
[19] stated that the change in resistance of the film can be approximated by Equation 48.41:

(48.41)

where ha is the normalized externally applied field (i.e., ha = Ha/Hk), Rs is the nominal resistance, and
∆ρm/ρ is the maximum resistivity change. Hk is the anisotropy field. Optimum linear performance is
obtained when θ = π/4 and Equation 48.41 reduces to:

(48.42)

The anisotropy field is given by:

(48.43)

where Hk0 is the film anisotropy field, N is the demagnetizing factor (≈ thickness(t)/width(w)) and Ms

is the saturation magnetization.
An AMR is constructed using long thin film segments of deposited permalloy. During deposition, a

magnetic field is applied along the length of the film to establish its easy axis of magnetization. The shape
of the film also favors the length as an easy axis. As shown in Figure 48.18, a series of these permalloy
films is connected together to form the magnetoresistor. The current is forced to flow at a 45° angle to
the easy axis by depositing thin strips of highly conductive material (e.g., gold) across the permalloy film.
The level of magnetization of the film is controlled by a bias field that is created through the deposition
of a thin layer of cobalt over the resistors, which is then magnetized parallel to the easy axis of the
permalloy.

FIGURE 48.18 Magnetoresistor construction. (a) A typical AMR element consists of multiple strips of permalloy
connected together in a serpentine pattern. Current shunts force the current to flow through the permalloy at 45°
to the easy axis. (b) A close-up view.
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A typical AMR sensor suitable for a gaussmeter or magnetometer consists of four AMRs connected
in a Wheatstone bridge as shown in Figure 48.19. The transfer function polarity of the A and D resistors
is made to be opposite that of the B and C resistors by rotating the current shunt 90°. This complimentary
arrangement enhances the output voltage signal for a given field by a factor of four over a single resistor.
Kwiatkowski and Tumanski [19] showed that the transfer function for the bridge configuration is
described by:

(48.44)

Where:

(48.45)

(48.46)

For best linearity, Ha < 0.1 Hk. The linearity of the bridge can be controlled during fabrication by adjusting
the l/w ratio and Hk0. The bias field can also be used to optimize linearity and establish the measurement
field range. Some transfer functions for a typical AMR bridge [20] are shown in Figure 48.20. A more
comprehensive discussion of AMR theory can be found in [21–23].

Signal Conditioning

Conventional Wheatstone bridge signal conditioning circuits can be used to process the AMR bridge.
The bridge sensitivity and zero offset are proportional to the bridge voltage, so it is important to use a
well-regulated supply with low noise and good temperature stability.

FIGURE 48.19 AMR bridge sensor. In an AMR bridge, the current shunts of resistors A and D are the same and
reversed from B and C. Thus, the resistors on diagonal legs of the bridge have the same response to an applied field
and opposite that of the other diagonal pair. Bridge leg resistance varies from 1 kΩ to 100 kΩ.
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As Equation 48.44 shows, the polarity of the transfer function is determined by the polarity of (Hk +
Hb). If the sensor is exposed to an external field that is strong enough to reverse this field, then the
transfer function polarity will reverse. To overcome this ambiguity, the polarity should be established
prior to making a measurement. This can be accomplished by momentarily applying a strong magnetic
field along the easy axis of the AMR bridge. Some commercial AMR bridges come with a built-in method
for performing this action.

Figure 48.21 is a block diagram for a signal conditioner that takes advantage of the bias field polarity
flipping property to eliminate zero offset errors and low frequency 1/f noise. A square wave oscillator is
used to alternately change the direction of the bias field and thus the polarity of the transfer function. The
duration of the current used to set the bias field direction should be short in order to minimize power
consumption. The amplitude of the ac signal from the bridge is proportional to the field magnitude, and
its phase relative to the oscillator gives the field direction. This signal can be amplified and then phase-
detected to extract the field-related voltage. Optionally, the output signal can be fed back through a coil
that produces a magnetic field opposing the field being measured. This feedback arrangement makes the
AMR bridge a null detector and minimizes the influence of changes in its transfer function on overall
performance. Of course, the added circuitry increases the size, cost, and complexity of the instrument.

48.4 Scalar Magnetometers

Scalar magnetometers measure the magnitude of the magnetic field vector by exploiting the atomic and
nuclear properties of matter. The two most widely used scalar magnetometers are the proton precession
and the optically pumped magnetometer. When operated under the right conditions, these instruments
have extremely high resolution and accuracy and are relatively insensitive to orientation. They both have
several common operating limitations. The instruments require the magnetic field to be uniform through-
out the sensing element volume. They have a limited magnetic field magnitude measurement range:
typically 20 µT to 100 µT. And they have limitations with respect to the orientation of the magnetic field
vector relative to the sensor element.

FIGURE 48.20 Typical AMR bridge sensor transfer functions. The sensitivity of an AMR bridge can be adjusted by
changing its bias field. Increases in sensitivity are accompanied by corresponding decreases in range.
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The proton precession magnetometer uses a strong magnetic field to polarize the protons in a hydro-
carbon and then detects the precession frequency of the protons while they decay to the nonpolarized
state after the polarizing field is turned off. The precession frequency is proportional to the magnitude
of any ambient magnetic field that is present after the polarizing field is removed. This sampling of the
magnetic field strength through the polarize-listen sequence makes the proton precession magnetometer
response very slow. Maximum rates of only a few samples per second are typical. Because of its dependence
on atomic constants, the proton precession magnetometer is the primary standard for calibrating systems
used to generate magnetic fields and calibrate magnetometers.

The optically pumped magnetometer is based on the Zeeman effect. Zeeman discovered that applying
a field to atoms, which are emitting or absorbing light, will cause the spectral lines of the atoms to split
into a set of new spectral lines that are much closer together than the normal lines. The energy-related
frequency interval between these hyperfine lines is proportional to the magnitude of the applied field.
These energy levels represent the only possible energy states that an atom can possess. The optically
pumped magnetometer exploits this characteristic by optically stimulating atoms to produce an over-
populated energy state in one of the hyperfine spectral lines and then causing the energy state to
depopulate using an RF magnetic field. The RF frequency required to depopulate the energy state is equal
to the spectral difference of the hyperfine lines produced by a magnetic field and, therefore, is proportional
to the magnetic field strength. The optically pumped magnetometer can be used to sample the magnetic

FIGURE 48.21 Example AMR gaussmeter. The magnetization direction can be alternately flipped to eliminate zero
offset. The resulting ac signal can then be amplified and synchronously phase-detected to recover the field-related
signal. Optionally, the range and stability of the AMR gaussmeter can be increased by connecting the output voltage
through a resistor to a feedback coil that produces a field that nulls the applied field.
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field at a much higher rate than the proton precession magnetometer and generally can achieve a higher
resolution. The sample rate and instrument resolution are interdependent.

The Proton Precession Magnetometer

The proton precession magnetometer works on the principle that a spinning nucleus, which has both
angular momentum

→
L and a magnetic moment

→µp, will precess about a magnetic field like a gyroscope,
as shown in Figure 48.22. The precession frequency ωρ is proportional to the applied field. When the
magnetic field

→
Ha is applied to the nucleus, it will produce a torque:

(48.47)

on the nucleus. Because the nucleus has angular momentum, this torque will cause the nucleus to precess
about the direction of the field. At equilibrium, the relationship between the torque, precession rate, and
angular momentum is:

(48.48)

Solving for the magnitude of the (Larmor) precession frequency, one finds that:

(48.49)

where γ is called the gyromagnetic ratio and equals (2.6751526 ± 0.0000008) × 10–8 T–1 s–1.
Figure 48.23 is a block diagram of a proton precession magnetometer. The sensor is a container of

hydrocarbon rich in free hydrogen nuclei. A solenoid wrapped around the container is used to both
polarize the nuclei and detect the precession caused by the ambient field. Before the polarizing field is
applied, the magnetic moments of the nuclei are randomly oriented, and the net magnetization is zero.
Application of the polarizing field (typically 3 mT to 10 mT) causes the nuclei to precess about the field.
The precession axis can be parallel or antiparallel (nuclear magnetic moment pointing in the direction
of the field) to the applied field. From a quantum mechanical standpoint, the antiparallel state is a lower
energy level than the parallel state. In the absence of thermal agitation, which causes collisions between
atoms, the fluid would remain unmagnetized. When a collision occurs, the parallel precession-axis nuclei
lose energy and switch to the antiparallel state. After a short time, there are more nuclei with magnetic

FIGURE 48.22 Nuclear precession. A spinning proton with angular momentum L and magnetic moment µρ, when
subjected to a magnetic field Ha, will precess about the field at an angular rate ωρ equal to µρHa/L.
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moments pointing in the direction of the field than away from it, and the fluid reaches an equilibrium
magnetization M0. The equation that relates magnetization buildup to time is:

(48.50)

where τe is the spin-lattice relaxation time.
The equilibrium magnetization is based on thermodynamic considerations. From Boltzmann statistics

for a system with spins of ½:

(48.51)

where np is the number of precession spin axes parallel to Ha, na is the number of precession spin axes
antiparallel to Ha, k is Boltzmann’s constant, and T is temperature (kelvin). If n is the number of magnetic
moments per unit volume, then:

(48.52)

FIGURE 48.23 Typical proton precession magnetometer. A polarizing field is applied to the hydrocarbon when S1
is closed. The amplifier input is shorted to prevent switching transients from overdriving it. After a few seconds, S1
is opened and the coil is connected to the signal processor to measure the Larmor frequency.
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and

(48.53)

Once the fluid has reached equilibrium magnetization, the field is removed and the nuclei are allowed
to precess about the local ambient field until they become randomized again. This process of excita-
tion–relaxation can take as long as several seconds.

The hydrocarbon spin-lattice relaxation time can be adjusted by mixing paramagnetic salts, such as
ferrous nitrate, into the solution. The trade-off in reduced relaxation time is increased signal-to-noise
and resolution. Benzene is a good general-purpose hydrocarbon that can be used in a proton precession
magnetometer.

Signal Conditioning

The block diagram shown in Figure 48.23 is an example of the signal conditioning required for a proton
precession magnetometer. The coil surrounding the bottle containing the hydrocarbon serves two pur-
poses. At the beginning of a measurement, the current source is connected to the coil to generate the
magnetic field that polarizes the fluid. This field is on the order of 10 mT. After a few seconds, the current
source is disconnected and the coil, which now has a decaying nuclear precession signal at its output, is
connected to the input of the amplifier. The signal is amplified, filtered, and then the period of the Larmor
frequency is measured, averaged, scaled, and presented to the user in magnetic field units on a digital
display.

The scale factor of the proton precession magnetometer is based on the gyromagnetic ratio, which is
0.042579 Hz nT–1. High resolution, up to 0.01 nT, is achieved by measuring the period of the signal rather
than the frequency. The signal frequency can be divided down and used to gate a high-frequency oscillator
that is driving a counter.

The sampling of the field is controlled manually in many commercially available proton precession
magnetometers. Some magnetometers have an internally controlled sample rate. The sample rate and
resolution are inversely related to one another. A higher sample rate produces a poorer resolution.

The Optically Pumped Magnetometer

As explained earlier, the optically pumped magnetometer is based on the Zeeman effect. This effect is
most pronounced in alkaline vapors (rubidium, lithium, cesium, sodium, and potassium). Figure 48.24
is the hyperfine spectral structure for the valence electrons of rubidium (Rb) 85, which is commonly
used in these types of magnetometers. The energy-related frequency interval between these hyperfine
lines is proportional to the applied field. The magnetic quantum number m is related to the angular
momentum number and specifies the possible component magnitude of the magnetic moment along
the applied field. The optically pumped magnetometer takes advantage of this characteristic.

Transitions occur between levels of different m values and obey the rule that the change in m can only
have the values 0, 1, and –1. Table 48.5 lists the relationship between the polarization of the light
stimulating the transition and the allowable change in m.

When not optically excited, the energy states of the valence electrons will be distributed according to
Boltzmann statistics and will be in a state of equilibrium. If the electrons are excited with circularly
polarized light at the D1 frequency (794.8 nm wavelength), they will absorb photons and transition from
the 2S1/2 state to the 2P1/2 state according to the transition rules. The excited electrons will then fall back
in a random fashion to the lower states, being distributed with an equal probability among all the m states.

But the rules state that the change in m can only be 1 or –1 for polarized light. If one uses right
circularly polarized light, then the change in m can only be 1, and the electrons in the m = 3 level of the
2S1/2 state cannot transition since there is no m = 4 level at the 2P1/2 state. Therefore, these electrons remain
in the m = 3 state. All other electrons transition to the higher state and then fall back to the lower state
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with equal probability of arriving at any of the m levels, including m = 3. Thus, the m = 3 level fills up,
and the other levels empty until all the electrons are in the m = 3 level, and no more transitions to the
higher state can take place. Pumping stops.

When pumping begins, the vapor is opaque. As time goes on, less electrons are available for absorbing
photons, and the vapor becomes more transparent until, finally, pumping action stops and the vapor is
completely transparent.

If a small RF magnetic field at the Larmor frequency is applied at right angles to the magnetic field
being measured, the electrons in the m = 3 state will be depumped to the other m levels, making them
available for further pumping. The optically pumped magnetometer exploits this situation in a positive
feedback arrangement to produce an oscillator at the Larmor frequency.

The scale factors for optically pumped magnetometers are significantly higher than for the proton
precession magnetometer. Table 48.6 lists these scale factors for a number of alkali vapors.

FIGURE 48.24 Rb-85 energy diagram. When a magnetic field is applied, the energy levels split into Zeeman sublevels
that diverge as the field increases. Quantum mechanical factors determine the number of sublevels at each primary
energy level.

TABLE 48.5 The Allowable Change in m 
When Jumping from One Energy Level to 
Another Depends on the Polarization of 
the Light Causing the Transition

Polarization m

Left circular –1
Parallel 0
Right circular 1
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As a result, the sample rate and resolution can be much higher. A resolution of 0.005 nT is possible.
Sampling rates can be as high as 15 samples per second.

Signal Conditioning

Descriptions of several optically pumped magnetometers and their operating principles can be found in
[24–26]. There are a number of different signal conditioning arrangements that can be used to derive a
useful readout of the measured fields. Two of the more common methods are described in [26] and are
shown in Figure 48.25.

In the servoed type shown in Figure 48.25(a), the magnetic field being measured and the RF field are
coaxial. The frequency of the RF oscillator is modulated with a fixed low-frequency oscillator. This causes
the RF frequency to sweep through the Larmor frequency. If the sweeped RF oscillator is not centered
about the Larmor frequency, the photocell output signal will contain a fundamental component of the
RF modulation frequency. The phase of the signal relative to the modulator oscillator determines whether
the central RF frequency is above or below the Larmor frequency. The photocell output is phase-detected
to produce an error voltage that is used to drive the RF frequency toward the Larmor frequency. The RF
frequency can be measured to determine the magnetic field. If a linear voltage controlled oscillator is
used as the RF oscillator, its control voltage can also be used as an output since it is a measure of the
Larmor frequency.

The auto-oscillating type shown in Figure 48.25(b) is based on the transmission of a polarized beam
that is at right angles to the field being measured. The intensity of this cross-beam will be modulated at
the Larmor frequency. The photocell signal will be shifted by 90° relative to the RF field. By amplifying
the photocell signal, shifting it 90° and feeding it back to drive the RF field coil, an oscillator is created
at the Larmor frequency. In practice, only one light source is used, and the field being measured is set
at an angle of 45°.

Defining Terms

Anisotropic: The material property depends on direction.
Gaussmeter: An instrument used to measure magnetic fields greater than 1 mT.
Induced magnetization: The object’s magnetization is induced by an external magnetic field and

disappears when the inducing field is removed.
Initial permeability: The slope at the origin of the magnetization curve.
Isotropic: The material property is the same in all directions.
Magnetic dipole moment: A vector quantity that describes the strength and direction of a magnetic

field source, such as a small current loop or spinning atomic nucleus.
Magnetically “hard” material: The material has a significant residual (permanent) magnetization after

an external magnetic field is removed.
Magnetically “soft” material: The material’s magnetization is induced by an external magnetic field

and the material has no significant residual (permanent) magnetization after the field is removed.

TABLE 48.6 The Change in 
Frequency for a Change in Field Is 
Much Higher in Optically Pumped 
Magnetometers Than in Proton 
Precession Magnetometers

Alkali Scale factor
(Hz nT–1)

Rb-85 4.66737
Rb-87 ~7
Cesium 3.4986
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Magnetization curve: A plot of flux density B vs. magnetic field H for an initially unmagnetized
ferromagnetic material.

Magnetization: A vector quantity describing the average density and direction of magnetic dipole
moments.

FIGURE 48.25 Two examples of optically pumped scalar magnetometers. The servoed magnetometer: (a) slightly
modulates the RF field at a low frequency, causing the vapor transmissivity to modulate. A phase detector provides
an error signal that is used to lock the RF oscillator to the Larmor frequency. (b) A self-oscillating magnetometer:
the transmissivity of the vapor, at right angles to the applied field, is made to oscillate at the Larmor frequency by
phase-shifting the detected light modulation and feeding it back to the RF field generator. (Adapted from Hartmann,
1972.)
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Magnetometer: An instrument used to measure magnetic fields with magnitudes up to 1 mT.
Magnetoresistance: The change in the electrical resistivity of a material in response to an applied

magnetic field.
Maximum permeability: The maximum slope of the line drawn from the origin of the magnetization

curve to a point on the magnetization curve.
Permanent magnetization: The source of an object’s magnetization is internal and does not depend

on the presence of an external field.
Permeability: A function that describes the relationship between an applied magnetic field and the

resulting flux density.
Relative permeability: The permeability of a material normalized (divided) by the permeability of a

vacuum.
Scalar magnetometer: A magnetometer that measures the magnitude of a magnetic field vector.
Vector magnetometer: A magnetometer that measures one or more of the individual components of

a magnetic field vector.
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