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Electronic circuits consist of numerous elements that can be lumped, distributed, or a combination of
both. The components are regarded as lumped if their size is much smaller than the signal wavelength.
This condition holds for resistors, inductors, capacitors, transformers, diodes, transistors, or similar
devices operating in printed circuits at frequencies up to a few hundred megahertz or even higher in
small integrated circuits. In the microwave or millimeter-wave region, the elements and their connecting
transmission lines must be considered as distributed. While in lumped circuits a change of voltage or
current at one single point immediately affects these quantities at all other points, in distributed circuits
the propagation properties now have to be taken into account. The same holds for long connecting cables
even at lower frequencies.

To describe the effect of any element within an electronic circuit or of the connection of different
circuits, the immittance is used as a characteristic quantity. It simply provides a relation of sinusoidal
voltage and current at the terminals of the element as a function of frequency. The immittance therefore
also characterizes arbitrarily complicated networks considered as one port. This is useful, since in practice
the single elements are interconnected to networks. On the other hand, the elements themselves are not
ideal. A resistor, for example, made of wound resistive wire, has parasitic components such as capacitance
and inductance of winding and terminals. It must be represented by an equivalent circuit forming a
complex network [1].

The word “immittance” was proposed by Bode [2] and is a combination of the words “impedance”
and the reverse quantity called “admittance.” These terms do not only occur in electrodynamics but
wherever wave propagation takes place — in acoustics as well as in elasticity. The emphasis of this chapter
is on lumped networks and guided electromagnetic waves. Readers interested in more general propagation
and scattering phenomena are referred to [3].
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51.1 Definitions

Assume a stable linear and time-invariant (LTI) network with only one port. Linearity and time inde-
pendence are generally met for combinations of passive elements but also for active devices with small-
signal driving under constant physical conditions (temperature, humidity, dimensions, etc.). In the steady
state, a voltage v(t) = Vm cos(ωt + ϕv) with amplitude Vm varying harmonically with the angular frequency
ω = 2πf which is applied to the terminal then only produces voltages and currents of the same frequency
within the network (Figure 51.1). Using complex notation:

(51.1)

the current flowing into the network is given by:

(51.2)

The phasors V and I are time independent and can be represented in the complex plane (Figure 51.2).
Relating voltage and current at the terminal, the network is uniquely described by means of a complex
frequency-dependent quantity, the impedance Z:

(51.3)

FIGURE 51.1 An arbitrarily complex network can be replaced by its impedance for a given frequency without
changing the electrical properties at the terminal.

FIGURE 51.2 Voltage and current phasors in the complex plane.
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For a given frequency, an arbitrarily complex network within a circuit thus can be replaced by a single
element without changing the electrical properties at the terminals. Sometimes it is more convenient to
use the inverse of Z, the admittance Y:

(51.4)

Both quantities are combined to form the word “immittance.” Figure 51.3 shows their representation in
the complex plane. Equations 51.3 and 51.4 give the definition in polar coordinates. In data sheets, they
are often written as:

(51.5)

Using Euler’s identity e jϕ = cosϕ + j sinϕ, one obtains in rectangular coordinates:

(51.6)

From Figure 51.3, the following relations between rectangular and polar coordinate representation can
be deduced immediately:

(51.7)

FIGURE 51.3 Representation of impedance and admittance in the complex plane showing the relations between
rectangular and polar coordinates. Note that the units are different for each vector.
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The real parts are the resistance R and the conductance G. They indicate the losses within the network.
The imaginary parts, which are termed reactance X and susceptance B, respectively, are a measure of the
reactive energy stored in the network during one period. In general, all these quantities are frequency
dependent.

Note that the correct sign of the imaginary parts must be used: the angle ϕ is in the range of –180° <
ϕ ≤ 180° and ϕ < 0 always corresponds to X, B < 0.

For elements with low losses, the loss angle δ or loss factor D are often given instead of the phases ϕz

and ϕy . They are always positive small quantities and tend to 0 for a lossless device

(51.8)

The inverse quantity is the quality factor Q = 1/D. It involves a ratio of stored electric energy to power
dissipated. A high Q indicates a nearly pure reactive component.

In high-power electronics, it is necessary to reduce losses on transmission lines and therefore avoid
currents associated with reactive load components. To obtain a criterion for the application and efficiency
of compensation techniques, a power factor is defined. From complex power representation:

(51.9)

(the asterisk indicates the conjugate complex number) follows from Equations 51.3 and 51.4.

(51.10)

and since the effective power is given by the real part of P:

(51.11)

the power factor is:

(51.12)

In general, rms values are used for the phasors. Otherwise, a factor 1/2 has to be taken into account
in Equations 51.9 and 51.10, since *P* = ½VmIm for sinusoidal quantities.

It can also be seen from Equations 51.9 and 51.10 that the immittances are directly related to the
apparent power:

(51.13)

51.2 Ideal Lumped Components

The immittances of the fundamental passive circuit elements are derived from their instantaneous voltage
current relations using Equations 51.1 through 51.4 and the differentiation rules.
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Resistances

From Equation 51.14:

(51.14)

it follows V = RI and thus Z = R or Y = G. The immittance of a resistance is real and identical to its dc
resistance or conductance.

Inductances

Voltage and current are related via the differential equation:

(51.15)

with inductance L, from which follows that V = jωLI and

(51.16)

Capacitances

From Equation 51.17:

(51.17)

with capacitance C, it follows that I = jωCV and

(51.18)

The immittance of ideal inductors and capacitors is purely imaginary with different signs according
to the phase shift of ±90° between voltage and current. A general element or network is therefore called
inductive or capacitive at a given frequency corresponding to the sign of the imaginary part of its
impedance. Note, however, that the frequency dependence can be much more complicated than for these
ideal elements and the impedance can even change several times between capacitive and inductive
characteristic.

51.3 Distributed Elements

At high frequencies, the size of the elements may no longer be small compared to the signal wavelength.
Propagation effects must then be taken into account and the components can no longer be described by
means of simple lumped equivalent circuits. If at all possible, they are replaced by transmission line
circuits, which are easier to characterize; they realize the required electrical properties more exactly within
a defined frequency range.
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Transmission Lines

Assuming a simplifying transverse electromagnetic wave (TEM mode) with no field components in the
propagation direction, voltages and currents can be uniquely defined and are given as solutions of the
corresponding wave equations [4]:

(51.19)

They vary along the line in the z-direction according to:

(51.20)

These solutions are sums of forward (e–γz) and backward (eγz) traveling waves with amplitudes V0
+,  I0

+

and V0
–, I0

– and a propagation constant:

(51.21)

The equivalent circuit of the transmission line is shown in Figure 51.4. The energy storage in the
electric field is accounted for by the distributed shunt capacitance C ′ per unit length, while the effect of
the magnetic field is represented by the series inductance L′ per unit length. The series resistance R′ per
unit length and the shunt conductance G ′ per unit length represent the power losses in the conductors
and in the dielectric, respectively. The amplitudes of voltage and current are related by means of the
characteristic impedance Zo:

(51.22)

Of special interest for the use within a network is the input impedance Zin of the transmission line. It
depends also on the termination ZL at the other end of the line. For a transmission line of length l, it is
given by:

(51.23)

that is, a transmission line transforms the impedance ZL into Zin at the input.

FIGURE 51.4 Equivalent circuit of a differential length of transmission line. The wave equations can be obtained
by simply applying Kirchhoff ’s laws to voltages and currents.
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A quantity more suitable to wave propagation and measurement at high frequencies is the reflection
coefficient Γ. It is defined by the relation of the voltages associated with forward and backward traveling
waves. At the end of the line, using V(l) = ZLI(l), one finds:

(51.24)

For devices that support quasi or strong non-TEM waves like microstrip lines, hollow waveguides,
dielectric and optical waveguides, a voltage cannot be uniquely defined. That is why several definitions
of the characteristic impedance Z0 exist [5].

51.4 Interconnections and Graphical Representations

Since Kirchhoff ’s laws for voltages and currents also holds for complex quantities, the rules for series
and parallel connections of resistances and susceptances in the dc case apply as well for immittances.

Series connection: (51.25)

Parallel connection: (51.26)

As an example, consider a simplified equivalent circuit of a resistor with the nominal value R0

(Figure 51.5). Gradually using the rules for series and parallel connection and the impedances for
inductances (Equation 51.16) and capacitances (Equation 51.18), the impedance of the real resistor with
parasitic elements as given leads to:

(51.27)

The magnitude and phase of Z/R0 as a function of ω/ω0 are shown in Figure 51.6 with ω0 = 1/
as the resonant frequency defined by the parasitic elements, which might be caused by the windings of
a wire-wound resistor. The network is inductive for low (ϕz > 0) and capacitve for high frequencies. An

FIGURE 51.5 The simple equivalent circuit of a wire-wound resistor with nominal value R0, inductance of the
winding L, and capacitance of winding and terminal C. It is valid for a wide frequency range.
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alternative representation is to plot real and imaginary parts in the impedance plane with the frequency
as parameter as indicated by the labels (Figure 51.7). This version, called the locus, is very suitable to see
immittance changes caused by parameters like frequency or adjustable elements within the network. Note
that both real and imaginary parts are parameter dependent and vary with frequency.

FIGURE 51.6 Normalized magnitude (a) and phase (b) of the impedance of a wire-wound resistor varying with
frequency. ω0 is the resonant frequency defined by the parasitic elements.
© 1999 by CRC Press LLC



In high-frequency applications, one obtains the impedance more easily from the reflection coefficient.
Rewriting Equation 51.24 in the form:

(51.28)

defines a transformation of which the graphical representation has been called the Smith chart
(Figure 51.8). It can be regarded as two coordinate systems lying one on top of the other. The reflection
coefficient is given in polar coordinates around the center, the circles give the real and imaginary part of
the associated impedance. The Smith chart is very useful for solving transmission line and waveguide
impedance matching problems [6]. 

51.5 Measurement Techniques

Since immittances are complex quantities, one must determine two parameters: magnitude and phase
or real and imaginary part, described as vector measurements. There exist several techniques depending
on frequency range and required accuracy [7].

Current–Voltage Methods

A simple way to measure immittances follows directly from the defining Equation 51.3. Applying a well-
known sinusoidal voltage to the terminal and measuring magnitude and phase of the current gives the

FIGURE 51.7 Normalized impedance of a wire-wound resistor in the complex plane. The arrow indicates the
direction of increasing frequency.
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desired quantity (Figure 51.1). However, the internal impedance ZA of the ammeter should be known
exactly and the unknown impedance is then given by:

(51.29)

In practical applications, impedances below 1000 Ω are measured by passing a predetermined current
through the unknown device and measuring the voltage across it. Phase angle information is obtained
by comparing the relative phase between voltage and current by means of a phase detector [8].

A variant on this method using only the better practicable voltage measurements is shown in
Figure 51.9. The accurately known resistor R must be small compared to Zx and to the internal resistance
of V2 . One finds that:

(51.30)

The measurement can be enhanced using an operational amplifier with high input and low output
resistance in an inverting circuit (Figure 51.10). The unknown is then given by

FIGURE 51.8 Smith chart representation of the impedance of a wire-wound resistor.
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(51.31)

Practical implementations use operational amplifiers as part of an autobalancing bridge; see [7, 8].

Bridge Methods

Alternating current bridges are low-cost standard laboratory devices to measure impedances over a wide
frequency range from dc up to 300 MHz with very high precision (Figure 51.11). A comprehensive survey
is given in [1]. Their main advantage is that only a zero indicator in the diagonal branch is necessary.
For this reason, the internal impedance does not influence the accuracy and the null point can be detected
with a high sensitivity ac galvanometer as well as with headphones in the audio frequency range.

If the bridge is balanced, the unknown immittance is given by:

(51.32)

FIGURE 51.9 Determination of an impedance Zx by phase-sensitive voltage measurements, only using a well-known
resistor R.

FIGURE 51.10 Impedance measurement with an inverting operational amplifier circuit. Its advantages are high
input and low output resistance.
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Since the quantities are complex, Equation 51.32 involves the adjustment of two parameters: magnitude
and phase:

(51.33)

or real and imaginary parts, respectively.
An important property of an impedance bridge is the sensitivity ε:

(51.34)

or (independent of Zx)

(51.35)

in the vicinity of zero crossing when the bridge is balanced.
The precision of the measurement not only depends on the exact zero adjustment, which can be

enhanced by choosing the elements and the voltage according to Equation 51.35 to obtain a high sensi-
tivity, but also on the realization of Z1…Z3. Mostly, these are connections of resistors and capacitors.
Inductors are avoided because they always have a resistive component and it is difficult and expensive
to manufacture inductors with exactly defined and reproducible electrical properties. There exist various
types of bridges depending on how the elements are designed and interconnected. To choose the correct
configuration, it must be known whether the unknown impedance is capacitive or inductive; otherwise,
a zero adjustment is not always possible since the balancing condition cannot be fulfilled. Bridges are
therefore principally used to measure capacitances and inductances as well as loss and quality factors of
capacitors and coils. Since magnitude and phase conditions must be matched simultaneously, two ele-
ments must be tuned. To obtain a wide measurement range, the variable elements are designed as
combinations of switchable and tunable capacitors and resistors. The sensitivity of the zero indicator can

FIGURE 51.11 Impedance measurement by bridge methods. The bridge is balanced when the voltage Vd across the
diagonal branch is adjusted to zero by tuning Z1, Z2, or Z3.
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be changed for global search and final adjustment. Unfortunately, magnitude and phase cannot be
adjusted independently of each other. If the balancing is performed by hand, a suitable strategy is to
search the minimum voltage by tuning each element successively.

Frequently used bridges are the Wheatstone bridge (Figure 51.12) for the measurement of lossy capac-
itances, and the Hay bridge (Figure 51.13) to determine inductivity and quality factor of coils. Because
of its symmetrical structure, the balancing condition for the Wheatstone bridge is simply:

FIGURE 51.12 Wheatstone bridge for the capacitance and dissipation factor measurement of capacitors. The
balancing condition is frequency independent. The resistor R1 and the capacitor C1 must be tuned successively until
the bridge is balanced.

FIGURE 51.13 Hay bridge for the measurement of the inductance and the quality factor of coils. If Q is sufficiently
high, the inductance can be determined nearly frequency independent.
© 1999 by CRC Press LLC



(51.36)

which is independent of frequency.
The measurement of a coil with the Hay bridge requires that:

(51.37)

from which the quality factor is obtained as:

(51.38)

The inductance of high-Q coils can be determined frequency independent since

(51.39)

A very interesting alternative is the Maxwell bridge (Figure 51.14), since it requires only resistors as
variable elements, which can be manufactured with high precision. The balancing is frequency indepen-
dent and leads to:

(51.40)

FIGURE 51.14 Maxwell bridge with simple and frequency-independent balancing conditions. Despite these advan-
tages, it is not recommended for high-Q coils because of a very large R1 value.
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Nevertheless, the Hay bridge is preferred for high-Q coils, because a very large value of R1 is required
for the Maxwell bridge leading to a disadvantageous balancing [9].

Resonant Method

Using the coil as part of a resonance circuit as in Figure 51.15 and tuning C to maximum voltage, the
quality factor can be measured directly as:

(51.41)

The unknown inductance is then obtained from the test frequency by means of the resonance condition:

(51.42)

If a capacitor with sufficiently low losses is used, Q values as high as 1000 can be measured.

Network Analysis Methods

Frequency Domain

In the case of distributed elements, measurements of currents and voltages depend on the position and
are often not directly applicable to high-frequency devices like waveguides or microstrip lines. For that
reason the determination of immittances is derived from measuring the reflection coefficient.
Equation 51.23 shows the importance of defining a proper measurement plane. This is the cross-section
of the line or waveguide perpendicular to the direction of propagation at a definite length l0, where the
reflection coefficient has to be measured. It can then be transformed along the line toward load or source
using this relation or the Smith chart. Exact microwave measurements are very sophisticated and need
a lot of practical experience. Further details can be found in the literature [5, 10–12].

Automated and precise immittance measurements over a wide frequency range are best carried out
with a vector network analyzer [11]. Unfortunately, this is also the most expensive method. The principle
of measurement is shown in Figure 51.16. A power divider splits the incident signal into a transmitted
and a reference part. The directional bridge or coupler separates forward and backward traveling waves,
and the reflected signal now appears in the branch with the phase-sensitive voltmeter V2. Using a bridge

FIGURE 51.15 Coil as part of a resonance circuit to determine inductance and quality factor. The capacitor C is
tuned to maximum voltage VC.
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with impedances matched to the line (Z1 = Z2 = Z3 = Z0), the voltage in the diagonal branch is given by
(Figure 51.11):

(51.43)

and thus the reflection coefficient:

(51.44)

is directly proportional to the voltage ratio.
Network analyzers use an automatic error correction to eliminate the effect of internal and external

couplers and junctions. Because of that, a calibration procedure with standard terminations is necessary.
These terminations must be manufactured very precisely, since they define the measurement plane and
determine the overall measurement error.

Time Domain

It is often necessary to locate an impedance step, whether to find out the distance of a cable defect or to
track down the origin of reflections within a connection. To this end, high-performance vector network
analyzers have a Fourier transform procedure. But there also exist cheaper time domain reflectometers
(TDR) [13, 14]. They use an incident step or impulse signal (Figure 51.17) and the reflected signal is
separated by means of a directional coupler and displayed on a CRT in the time domain. From the shape
of the signal, the impedance step can be localized by means of the time delay:

(51.45)

with vg as signal or group velocity on the line varying from step to step. Characteristic and magnitude
of the impedance can only be estimated, since phase information is usually not available. TDR measure-
ments are restricted to the localization of impedance steps and not to be recommended for exact
measurements. Moreover, additional pulse deformations occur in dispersive waveguides.

FIGURE 51.16 Schematic of network analyzer measurements. The voltage ratio V2 /V1 of reflected wave and reference
signal is proportional to the reflection coefficient Γ. The impedance Zx can then be computed.
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51.6 Instrumentation and Manufacturers

A broad range of instrumentation for measuring immittance is available. Some of these instruments are
included in Table 51.1. Table 51.2 provides the names and addresses of some companies that produce
immittance-measuring instrumentation.

FIGURE 51.17 Detection and measurement of impedance steps on a line or waveguide with a time domain reflec-
tometer (TDR). Since phase information is usually not available, the characteristics and magnitudes of the impedances
can only be estimated. Notice that the group or signal velocity vg varies from step to step.

TABLE 51.1 Instruments for Immittance Measurements

Manufacturer Model number Description

Anritsu Wiltron 360 B Vector network analyzer 10 MHz–65 GHz
Fluke PM 6303A Automatic RCL meter
Fluke PM 6304 Automatic RCL meter
Hewlett-Packard HP 4195A Vector network analyzer 10 Hz–500 MHz
Hewlett-Packard HP 4396A Vector network analyzer 100 kHz–1.8 GHz
Hewlett-Packard HP 8719C Vector network analyzer 50 MHz–13.5 GHz
Hewlett-Packard HP 8720C Vector network analyzer 50 MHz–20 GHz
Hewlett-Packard HP 8722C Vector network analyzer 50 MHz–40 GHz
Hewlett-Packard HP 8510C Vector network analyzer 45 MHz–110 GHz
Hewlett-Packard HP 8508A Vector voltmeter 100 kHz–1 GHz
Hewlett-Packard HP 4194A Impedance analyzer 100 Hz–40 MHz
Hewlett-Packard HP 4191A HF-impedance analyzer 1 MHz–1 GHz
Hewlett-Packard HP 4192A Impedance analyzer 5 Hz–13 MHz
Hewlett-Packard HP 4193A Impedance analyzer 400 kHz–110 MHz
Keithley 3321 LCZ meter, 4 test frequencies
Keithley 3322 LCZ meter, 11 test frequencies
Keithley 3330 LCZ meter 40 Hz–100 kHz
Rohde & Schwarz ZVRL Vector network analyzer
Rohde & Schwarz SR 720 LCR meter
Tektronix CSA 803A Communications signal analyzer
© 1999 by CRC Press LLC



Defining Terms

Admittance (Y): The reciprocal of impedance.
Immittance: A response function for which one variable is a voltage and the other a current. Immittance

is a general term for both impedance and admittance, used where the distinction is irrelevant.
Impedance (Z): The ratio of the phasor equivalent of a steady-state sine-wave voltage to the phasor

equivalent of a steady-state sine-wave current. The real part is the resistance, the imaginary part is
the reactance.

Phasor: A complex number, associated with sinusoidally varying electrical quantities, such that the
absolute value (modulus) of the complex number corresponds to either the peak amplitude or
root-mean-square (rms) value of the quantity, and the phase (argument) to the phase angle at zero
time. The term “phasor” can also be applied to impedance and related complex quantities that are
not time dependent.

Reflection coefficient: At a given frequency, at a given point, and for a given mode of propagation, the
ratio of voltage, current, or power of the reflected wave to the corresponding quantity of the
incident wave.
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TABLE 51.2 Companies Producing Immittance Measurement 
Equipment

Anritsu Wiltron Co. Keithley Instruments, Inc.
685 Jarvis Drive P.O. Box 391260
Morgan Hill, CA 95037-2809 Cleveland, OH 44139-9653
Tel: (408) 776-8300 Tel: (216) 248-0400

Fluke Corporation Rohde & Schwarz, Inc.
6929 Seaway Boulevard 4425 Nicole Dr.
P.O. Box 9090 Lanham, MD 20706
Everett, WA 98206 Tel: (301) 459-8800
Tel: (800) 443-5853

Tektronix, Inc.
Hewlett-Packard Co. 26600 SW Parkway
Test and Measurement Sector P.O. Box 1000
P.O. Box 58199 Wilsonville, OR 97070-1000
Santa Clara, CA 95052-9943 Tel: (503) 682-3411
Tel: (800) 452-4844 (800) 426-2200
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11. A. E. Bailey (ed.), Microwave Measurement, London: Peter Peregrinus, 1985.
12. T. S. Laverghetta, Handbook of Microwave Testing, Dedham, MA: Artech House, 1981.
13. E. K. Miller (ed.), Time-Domain Measurements in Electromagnetics, New York: Van Nostrand

Reinhold, 1986.
14. Anonymous, TDR Fundamentals for Use with HP 54120T Digitizing Oscilloscope and TDR, Appli-

cation notes AN 62, Palo Alto, CA: Hewlett-Packard, 1988.

Further Information

L. S. Bobrow, Fundamentals of Electrical Engineering, New York: Oxford University Press, 1996.
W. H. Roadstrum and D. H. Wolaver, Electrical Engineering for all Engineers, New York: John Wiley &

Sons, 1994.
A. S. Morris, Principles of Measurement and Instrumentation, London: Prentice Hall International (U.K.),

1993.
G. H. Bryant, Principles of Microwave Measurement, London: Peter Peregrinus, 1988.
Anonymous, Low Level Measurements, Cleveland, OH: Keithley Instruments, 1984.
© 1999 by CRC Press LLC


	Immittance Measurement
	51.1 Definitions
	51.2 Ideal Lumped Components
	Resistances
	Inductances
	Capacitances

	51.3 Distributed Elements
	Transmission Lines

	51.4 Interconnections and Graphical Representation...
	51.5 Measurement Techniques
	Current–Voltage Methods
	Bridge Methods
	Resonant Method
	Network Analysis Methods
	Time Domain


	51.6 Instrumentation and Manufacturers
	Defining Terms
	References


