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A sine-wave signal will have only a single-frequency component in its spectrum; that is, the frequency
of the tone. However, if the sine wave is transmitted through a system (such as an amplifier) having some
nonlinearity, then the signal emerging from the output of the system will no longer be a pure sine wave.
That is, the output signal will be a distorted representation of the input signal. Since only a pure sine
wave can have a single component in its frequency spectrum, this situation implies that the output must
have other frequencies in its spectral composition. In the case of harmonic distortion, the frequency
spectrum of the distorted signal will consist of the fundamental (which is the same frequency as the
input sine wave) plus harmonic frequency components that are at integer multiples of the fundamental
frequency. Taken together, these will form a Fourier representation of the distorted output signal. This
phenomenon can be described mathematically. Refer to Figure 53.1, which depicts a sine-wave input
signal x(t) at frequency f, applied to the input of a system A(x), which has an output y(t). Assume that
system A(X) has some nonlinearity. If the nonlinearity is severe enough, then the output y(t) might have
excessive harmonic distortion such that its shape no longer resembles the input sine wave. Consider the
example where the system A(x) is an audio amplifier and x(t) is a voice signal. Severe distortion can
result in a situation where the output signal y(t) does not represent intelligible speech. The total harmonic
distortion (THD) is a figure of merit that is indicative of the quality with which the system A(x) can
reproduce an input signal x(t). The output signal y(t) can be expressed as:

y(t) =a,+ iak cos(ZTkalt + Bk) (53.1)
=1

where the a,, k=0, 1, ..., N are the magnitudes of the Fourier coefficients, and 6,, k=0, 1, ..., N are
the corresponding phases. The THD is defined as the percentage ratio of the rms voltage of all harmonics
components above the fundamental frequency to the rms voltage of the fundamental. Mathematically,
the definition is written:

'N
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THD:\‘L % 100% (53.2)
a'1
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FIGURE53.1 Any system with a nonlinearity gives rise to distortion.

If the system has good linearity (which implies low distortion), then the THD will be a smaller number
than that for a system having poorer linearity (higher distortion). To provide the reader with some feeling
for the order of magnitude of a realistic THD, a reasonable audio amplifier for an intercom system might
have a THD of about 2% or less, while a high-quality sound system might have a THD of 0.01% or less.
For the THD to be meaningful, the bandwidth of the system must be such that the fundamental and the
harmonics will lie within the passband. Therefore, the THD is usually used in relation to low-pass systems,
or bandpass systems with a wide bandwidth. For example, an audio amplifier might have a 20 Hz to
20 kHz bandwidth, which means that a 1-kHz input sine wave could give rise to distortion up to the 20t
harmonic (i.e., 20 kHz), which can lie within the passband of the amplifier. On the other hand, a sine
wave applied to the input of a narrow-band system such as a radio frequency amplifier will give rise to
harmonic frequencies that are outside the bandwidth of the amplifier. These kinds of narrow-band
systems are best measured using intermodulation distortion, which is treated elsewhere in this Handbook.
For the rest of the discussion at hand, consider the example system illustrated in Figure 53.1 which shows
an amplifier system A(x) that is intended to be linear but has some undesired nonlinearities. Obviously,
if a linear amplifier is the design objective, then the THD should be minimized.

53.1 Mathematical Background

Lety = A(x) represent the input-output transfer characteristic of the system A(x) in Figure 53.1 containing
the nonlinearity. Expanding into a power series yields

k=0

Let the input to the system be x = cos(2t,t). Then the output will be
y= A(x) =c, +C,A, cos(ZT[fot) +¢,A’ cos? (2T[fot) +¢,AS cos® (anot) +... (53.4)

This can be simplified using the trigonometric relationships:

cosz(e) ==- cos(ZB) (53.5)

1
2

N |-

0053(9) = %cos(e) + %cos(se) (53.6)
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FIGURE53.2 An off nonlinearity with f(—x) = —f(x).

cos“(e) = % - %cos(ze) + %003(49) (53.7)
cos5(e) = gcos(e) + %cos(%) + %003(58) (53.8)

and so on. Performing the appropriate substitutions and collecting terms results in an expression for the
distorted signal y(t) that is of the form shown in Equation 53.1. The THD can then be computed from
Equation 53.2.

Closer inspection of Equations 53.6 and 53.8 reveal that a cosine wave raised to an odd power gives
rise to only the fundamental and odd harmonics, with the highest harmonic corresponding to the highest
power. A similar phenomenon is observed for a cosine raised to even powers; however, the result is only
a dc component and even harmonics without any fundamental component. In fact, any nonlinear system
that possesses an odd input-output transfer characteristic A(x) (i.e., the function A(x) is such that —A(x) =
A(—x)) will give rise to odd harmonics only. Consider Figure 53.2, which illustrates an example of two-
sided symmetrical clipping. It is an odd function. The application of a sine wave to its input will result
in a waveform similar to that shown in Figure 53.3, which has only odd harmonics as shown in
Figure 53.4. The majority of physical systems are neither odd nor even. (An even function is one that
has the property A(x) = A(-x); for example, a full-wave rectifier.) Consider the enhancement NMOS
transistor illustrated in Figure 53.5, which has the square-law characteristic shown. Assume that the
voltage Vg consists of a dc bias plus a sine wave such that Vg is always more positive than V; (the
threshold voltage). Then the current flowing in the drain of this NMOS transistor could have the
appearance shown in Figure 53.6. It is observed that the drain current is distorted, since the positive-
going side has a greater swing than the negative-going side. The equation for the drain current can be
derived mathematically as follows. A MOS transistor operating in its saturation region can be approxi-
mated as a square-law device:

= “Cox ﬂ

DS 2 L (Ves _VT)Z (53.9)
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FIGURE 53.3 Distortion due to symmetrical two-sided clipping.
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FIGURE 53.4 Frequency spectrum of signal distorted by symmetrical two-sided clipping.

If the gate of the n-channel enhancement MOSFET is driven by a voltage source consisting of a sine-
wave generator in series with a dc bias, i.e.:

Ve =V, + Asin(2rt) (53.10)
then the current in the drain can be written as:

- ucox ﬂ

= om { v, +Aosin(2T[fOt)] —VT}2 (53.11)
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FIGURE53.5 NMOS enhancement transistor is actually a nonlinear device. It is neither odd nor even in the strict
sense.
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FIGURE53.6 Showing how the drain current of the enhancement NMOS device is distorted.

Expanding and using the trigonometric relationship:

a O
sinz(e) :l—lsinEzeHE (53.12)
2 2 28
Equation 53.11 can be rewritten as:

_HC, W
2 L

DS

QVB -v,) +A2§+2(vB -V, |A,sin(2rt) —Afsin(4r[f0t) +’;§ (53.13)

which clearly shows the dc bias, the fundamental, and the second harmonic that are visible in the spectrum
of the drain current I in Figure 53.7. There is one odd harmonic (i.e., the fundamental) and two even
harmonics (strictly counting the dc component and the second harmonic). This particular transfer
characteristic is neither odd nor even. Finally, for an ideal square-law characteristic, the second harmonic
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FIGURE53.7 The drain current contains a dc bias, the fundamental, and the second harmonic only, for an ideal
device.
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FIGURE53.8 Single-sided clipping is neither even nor odd.

is the highest frequency component generated in response to a sine-wave input. Another example of a
transfer characteristic that is neither even nor odd is single-sided clipping as shown in Figure 53.8, which
gives rise to the distortion of Figure 53.9. One last example of an odd input-output transfer characteristic
is symmetrical cross-over distortion as depicted in Figure 53.10. The distorted output in response to a
1-kHz sine-wave input is shown in Figure 53.11. The spectrum of the output signal is shown in
Figure 53.12. Note that only odd harmonics have been generated.

To round out the discussion, consider a mathematical example wherein the harmonics are derived
algebraically. Consider an input-output transfer function f (x) = ¢,x + ¢;x® + ¢;x5 that has only odd powers
of x. If the input is a cosine x = A, cos(27t,t), then the output will be of the form:
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Single-Sided Clipping Distortion
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FIGURE53.9 Distortion due to single-sided clipping.
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FIGURE53.10 Symmetrical cross-over distortion is odd.

y(t) =f (x) =c,A, cos(ZT[fot) +¢,A cos’ (ZT[fO'[) +C. A oS’ (2T[f0t) (53.14)

This can be simplified using the trigonometric relationships given in Equations 53.5 through 53.8 with
the following result:

y(t)= Btle TR al 3C3A° Seghy H:os(zm t)+ ETAS + E)(:f?é—JEFOS(ZTBfOt)HsAS cos®(2r1,t) (53.15)
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FIGURE53.11 An example of cross-over distortion.
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FIGURE53.12 Symmetrical cross-over distortion gives rise to odd harmonics.

Clearly, only the fundamental plus the third and fifth harmonics are present. Should the exercise be
repeated for an input-output transfer function consisting of only even powers of x, then only a dc offset
plus even harmonics (not the fundamental) would be present in the output.

53.2 Intercept Points (IP)

It is often desirable to visualize how the various harmonics increase or decrease as the amplitude of the
input sine wave x(t) is changed. Consider the example of a signal applied to a nonlinear system A(x)
having single-sided clipping distortion as shown in Figure 53.8. The clipping becomes more severe as
the amplitude of the input signal x(t) increases in amplitude, so the distortion of the output signal y(t)
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FIGURE53.13 An example showing the second- and third-order intercept points for a hypothetical system. Both
axes are plotted on a logarithmic scale.
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FIGURE53.14 Illustrating the classical method of measuring THD.

becomes worse. The intercept point (IP) is used to provide a figure of merit to quantify this phenomenon.
Consider Figure 53.13, which shows an example of the power levels of the first three harmonics of the
distorted output y(t) of a hypothetical system A(x) in response to a sine-wave input x(t). It is convenient
to plot both axes on a log scale. It can be seen that the power in the harmonics increases more quickly
than the power in the fundamental. This is consistent with the observation of how clipping becomes
worse as the amplitude increases. It is also consistent with the observation that, in the equations above,
the higher harmonics will rapidly become more prominent because they are proportional to higher
exponential powers of the input signal amplitude. The intercept point for a particular harmonic is the
power level where the extrapolated line for that harmonic intersects with the extrapolated line for the
fundamental. The second-order intercept is often abbreviated 1P2, the third-order intercept abbreviated
IP3, etc.

53.3 Measurement of the THD

Classical Method

The traditional method of measuring THD is shown in Figure 53.14. A sine-wave test stimulus x(t) is
applied to the input of the system A(X) under test. The system output y(t) is fed through a bandpass
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FIGURE53.15 lllustrating measurement of THD using a spectrum analyzer.

filter tuned to the frequency of the input stimulus to extract the signal. Its power p, can be measured
with a power meter. The bandpass filter is then tuned to each of the desired harmonics in turn and the
measurement is repeated to determine the required p;. The THD is then calculated from:

N
ezpk
THD=1 %2 x100% (53.16)
[

In the case of an ordinary audio amplifier, nearly all of the power in the distorted output signal is
contained in the first 10 or 11 harmonics. However, in more specialized applications, a much larger
number of harmonics might need to be considered.

Spectrum Analyzer Method

THD measurements are often made with a spectrum analyzer using the setup shown in Figure 53.15.
The readings for the power levels of each of the desired harmonic components in the frequency spectrum
of the distorted signal y(t) are collected from the spectrum analyzer, usually in units of dB. They are
converted to linear units by means of the relationship:

a, =10%/% (53.17)

where r; is the reading for the i"" component in dB. The THD is then computed from Equation 53.2. The
spectrum analyzer method can be considered as an extension of the classical method described above,
except that the spectrum analyzer itself is replacing both the bandpass filter and the power meter.

DSP Method

Digital signal processing (DSP) techniques have recently become popular for use in THD measurement.
In this method, the distorted output y(t) is digitized by a precision A/D converter and the samples are
stored in the computer’s memory as shown in Figure 53.16. One assumes that the samples have been
collected with a uniform sample period T, and that appropriate precautions have been taken with regard
to the Nyquist criterion and aliasing. Let y(n) refer to the nt stored sample. A fast Fourier transform
(FFT) is executed on the stored data using the relationship:

v(k)= Y y(n)e‘i(zr“'“)k” (53.18)

n=
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FIGURE53.16 Illustrating the measurement of THD using FFT.

where N is the number of samples that have been captured. The frequency of the input test stimulus is
chosen such that the sampling is coherent. Coherency in this context means that if N samples have been
captured, then the input test stimulus is made to be a harmonic of the primitive frequency f,, which is
defined as:

(53.19)

One can view the primitive frequency f; as the frequency of a sinusoidal signal whose period is exactly
equal to the time interval formed by the N-points. Thus, the frequency of the test stimulus can be written
as:

ff. M
f=Mxf,=Mx-S=—xf 53.20
0 p NN (53.20)

S

where M and N are integers. To maximize the information content collected by a set of N-points, M and
N are selected so that they have no common factors, i.e., relatively prime. This ensures that every sample
is taken at a different point on the periodic waveform. An example is provided in Figure 53.17, where
M =3 and N =32. The FFT is executed on the distorted signal as per Equation 53.18, and then the THD
is computed from:

2

N Y|k x M
THD:\;()Xloo% (53.21)
Y(m)

53.4 Conclusions

The total harmonic distortion (THD) is a figure of merit for the quality of the transmission of a signal
through a system having some nonlinearity. Its causes and some methods of measuring it have been
discussed. Some simple mathematical examples have been presented. However, in real-world systems, it
is generally quite difficult to extract all of the parameters c, in the transfer characteristic. The examples
were intended merely to assist the reader’s understanding of the relationship between even and odd
functions and the harmonics that arise in response to them.
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FIGURE 53.17 With coherent sampling, each sample occurs on a unique point of the signal.

Defining Terms

Total harmonic distortion (THD): A numerical figure of merit of the quality of transmission of a
signal, defined as the ratio of the power in all the harmonics to the power in the fundamental.

Fundamental: The lowest frequency component of a signal other than zero frequency.

Harmonic: Any frequency component of a signal that is an integer multiple of the fundamental
frequency.

Distortion: The effect of corrupting a signal with undesired frequency components.

Nonlinearity: The deviation from the ideal of the transfer function, resulting in such effects as clipping
or saturation of the signal.
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