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60.1 Basic Concepts of Polarization

Polarization of light is a property of electromagnetic (EM) waves, which include heat, microwaves, radio
waves, and x-rays. An EM wave has orthogonal electric and magnetic fields associated with it which
vibrate in directions perpendicular to the direction of propagation. The electric field of a sinusoidal EM
wave, in particular, can always be decomposed into two orthogonal components; each component has
an amplitude and a phase. The amplitude is the maximum value of the field component, and the light
intensity is proportional to the square of the amplitude. The phase, referred to a fixed position or time,
tells what part of the cycle the electric field is vibrating in. G. G. Stokes pointed out in 1852 that these
two orthogonal components do not interfere in amplitude but are additive according to vector algebra [1].
When the two orthogonal components are in phase, the EM wave is linearly polarized. When the two
orthogonal components have the same amplitude and a relative phase of 90°, the EM wave is circularly
polarized. In general, an EM wave has arbitrary amplitudes and phases for the two orthogonal fields and
is elliptically polarized. The concept of polarization ellipse and the descriptions for the polarization of
an EM wave in terms of Jones vectors and Stokes vectors are given in the subsection, “Polarization of an
EM Wave,” and also in References 1 through 9.

Light is composed of an ensemble of EM waves. A group of EM waves traveling in the same direction
can have some linearly polarized waves, some circularly polarized waves, and some elliptically polarized
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waves. When they are combined, resulting light can be unpolarized, partially linearly polarized, or
partially elliptically polarized. Unpolarized light occurs when there are no fixed directions of the electric
field and also no fixed phase relations between the two orthogonal field components. In general, light is
partially polarized and can be decomposed into unpolarized light and elliptically polarized light. These
concepts are described in terms of Stokes vector in the subsection, “Polarization of Light,” and also in
References 1 through 6.

Polarized light can be produced by passing light through a polarizer. An ideal polarizer transmits only
light whose electric field is parallel to the transmission axis of the polarizer and rejects light with the
orthogonal field. Polarization of light can be observed by stacking two polarizers together and turning
one with respect to the other. The transmitted light intensity through these two polarizers will vary, and
at some particular positions it will vanish. In this case, light is linearly polarized after passing through
the first polarizer. When the second polarizer is turned until its axis is perpendicular to the axis of the
first polarizer, light cannot pass through the second polarizer. The transmitted intensity varies according
to the square of the cosine of the angle between the two polarizers [5, 9–12]. Real polarizers are not
perfect and transmit light with minimum intensity Imin when the polarizer axis is perpendicular to the
polarization of purely linearly polarized incident light. This is caused by the small depolarization of a
polarizer [12]. Depolarization is a mechanism that turns polarized light into unpolarized light and is the
opposite effect of polarization. The maximum transmitted intensity Imax occurs when the polarizer axis
is parallel to the incident polarization direction. The extinction ratio of a polarizer is defined as Imin/Imax.
Other relations for polarizers can be found in References 9 through 12. 

Besides the polarizer, another basic element in polarization measurements is the phase retarder or
wave plate. A phase retarder changes the relative phase between the two orthogonal fields of an EM wave
[4–11]. The change of relative phase between the two orthogonal components is called the phase
retardation or retardance. The retardance of a quarter-wave retarder is 90°, and that of a half-wave
retarder is 180°. Circularly polarized light can be generated by passing linearly polarized light through
a quarter-wave plate whose axis is at 45° with respect to the incident linear polarization direction. A
half-wave plate may change the polarization direction of linearly polarized light. In general, a phase
retarder changes linearly polarized light into elliptically polarized light. Representations of the optical
response of polarizers, retarders, and other materials in terms of the Müeller matrix and Jones matrix
are given in the subsection “Polarization by the Response of a Medium” and also in References 4 through
8 and 12 through 24.

Polarization is generated by the anisotropic response of materials and/or anisotropic geometry of
systems. The mechanisms for producing polarization include preferential absorption in a dichroic mate-
rial, reflection and transmission at oblique incidence, double refraction in a birefringent material, dif-
fraction by grating or wires, and scattering by particles [2–11, 13]. These properties can be utilized to
make polarizers and phase retarders. For example, a wire-grid polarizer is made of parallel fine conducting
wires. When light is incident on a wire-grid polarizer with the grid period smaller than the wavelength,
the electric field parallel to the wires is shorted and absorbed so that only the electric field perpendicular
to the wires passes through the polarizer. In a dichroic polarizer, anisotropic molecules are aligned in a
preferential direction so that absorption is very different for the two orthogonal directions referred to
the alignment direction. The nonpreferential field is absorbed by the molecules in the medium, while
the preferential field passes through the medium [5, 8]. In a prism polarizer, the two orthogonal fields
are separated by double refraction in a birefringent crystal, and the unwanted polarization is deflected
away by the special geometry of a prism. A material is birefringent when it has different refractive indices
for different field directions. When a light beam passes through a birefringent slab, a phase retardation
is generated. Birefringent slabs can be used to make phase retarders or wave plates. Different kinds of
polarizers and retarders are described in detail in References 5 and 9 through 11. 

When special arrangements of polarizers and phase retarders are combined with a light source and a
detector, polarized light can be generated and analyzed. Such an optical system is called a polarimeter or
an ellipsometer. The subsection “Principles of Polarimetry” discusses the generation and analysis of
polarized light and the operational principles for Polarizer-Sample-Analyzer (PSA) ellipsometry and
© 1999 by CRC Press LLC
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Polarizer-Compensator-Sample-Analyzer (PCSA) ellipsometry using the intensity approach associated
with Stokes vectors and Müeller matrices [4, 17–23, 25, 26]. A phase retarder is also called a compensator
because it was introduced into a polarimeter to compensate the phase change by a sample. The intensity
approach was chosen because intensity, but not electric field, is measured in most experiments, and also
because the electric field approach cannot treat depolarization. However, the electric field approach is
convenient to use for highly polarized light when depolarization does not cause appreciable errors in the
measurement. Discussion of ellipsometry using the electric field approach can be found in References 4,
15, 16, and 27 through 33].

Polarization effects are widely applied in modern optical technologies. The electro-optic modulator
and shutter are based on tunable birefringence by applying a high voltage across a birefringent crystal
to modulate the phase of transmitted light and hence to achieve intensity modulation [4, 7, 9, 34, 35].
Liquid crystal displays use similar principles [36]. Birefringence can also be modulated by the photo-
elastic effect [37, 38]. The magneto-optical readout for laser disks utilizes the magneto-optical Kerr effect
that generates phase retardation upon reflection from magnetic materials [34, 39]. Other applications of
polarization are fiber optics, nonlinear optics, material characterization, medical optics, and many other
fields. All of these applications utilize the anisotropic nature of materials or the anisotropic geometry of
systems. This chapter is concerned with the application of polarization on material characterization. In
this application, a polarimeter or ellipsometer is used to measure optical properties and surface properties
of materials and thin films [40–48, see also Chapter 61, “Refractive Index”]. In the subsection “Polarization
Instrumentation and Experiments,” different components of polarimeters are discussed using an example
of an automated reflection null ellipsometer, and two sample experiments are described to measure
birefringence of a birefringent slab and the optical constants of a material. 

60.2 Polarization of an Electromagnetic Wave

The electric field E(z, t) of a monochromatic EM wave propagating along the z-direction with a frequency
w and an angular wave-number k can be decomposed into two orthogonal components Ex and Ey, and
represented by

(60.1)

where ax and dx are the amplitude and phase, respectively, for Ex, and ay and dy are for Ey [1–4]. k is
related to wavelength l by k = 2p/l. In vacuum, k = w/c. Let d = dy –dx be the relative phase between Ey

and Ex. Then Equation 60.1 can be simplified to 

(60.2)

Polarization Ellipse

It is often convenient to express E in terms of a complex variable. The observed field is actually the real
part of E. The projection of Re[E(z, t)] with dx = 0 onto the xy-plane at z = 0 is given by 

(60.3)

The loci of E(0,t) with ax = 3, ay = 2 and different values of d are shown in Figure 60.1. For d = 0, the
locus of E is a line with a slope of ay/ax. The EM wave is linearly polarized when Ex and Ey are in phase

E z t,( ) = x̂Ex z t,( ) ŷEy z t,( )+

Ex z t,( ) = axe
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with each other. In other cases, the loci are ellipses, which are called polarization ellipses, and the EM
wave is elliptically polarized. The instantaneous electric field can be visualized by drawing an arrow from
the origin to a point on an ellipse. The electric field direction rotates in the clockwise direction for 0 <
d < 180°, while in the counter clockwise direction for –180 < d < 0°. When d = ±90°, the axes of the
ellipse correspond to the x and y coordinate axes. If ax = ay, this ellipse then becomes a circle, and the
EM wave is circularly polarized. The convention in ellipsometry defines the right-handed circularly
polarized wave as the one whose field rotates in the clockwise direction with d = 90° [4, 5]. A left-handed
circularly polarized wave thus corresponds to d = –90° for a counterclockwise rotating electric field. 

In Figure 60.1, a polarization ellipse is specified by a set of three parameters: ax, ay, and d. The ellipse
can also be specified by the other set of three parameters: the major axis a, the minor axis b, and the
orientation angle f of the major axis measured from the x-axis. Figure 60.2 shows the geometry of an
ellipse with these parameters. Parameters a and b can also be expressed in terms of the ellipticity e and
ellipticity angle e, defined by e = b/a = tan e. For linear polarization, d = 0, b = 0 = e = e, and tan f =
ay/ax. For f = 0, the major and minor axes of the ellipse always correspond to the coordinate axes. For
circular polarization, a = b = ax = ay and d = ±90°. Right-handed circularly polarized light has a positive
ellipticity with e = 1 and e = 45°, and left-handed circularly polarized light has a negative ellipticity with
e = –1 and e = –45°. In general, f represents the orientation of the ellipse, and e indicates the shape of
the ellipse and the direction of field rotation. References 2 through 7 give more details about this subject.

Jones Vector and Stokes Vector

The electric field expressed in vector form in Equation 60.1 can also be expressed as a column matrix.
A polarization ellipse depends on ax, ay, dx, and dy, but not on k and w. By neglecting the common factor
of ei(wt – kz) in both Ex and Ey, the Jones vector is defined as [4, 7, 8]

FIGURE 60.1 Projection of the electric field of an EM wave with amplitudes ax = 3, ay = 2 and different values of
phase retardation d onto the z = 0 plane. Most of these loci are ellipses and reduce to lines or circles in special cases.
The electric field changes in the clockwise direction for d between 0 and 180°.
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(60.4)

Both elements of a Jones vector are complex numbers. Jones algebra is convenient for describing perfectly
polarized light. Since a light sensor measures only intensity but not electric field in most cases, the Stokes
vector is more convenient to use in metrology. The Stokes parameters are four intensity-based parameters
used to describe the polarization state of light, represented by S0, S1, S2, S3, or by I, Q, U, V [1–6, 14].
The Stokes vector is the set of these Stokes parameters, defined as [4, 14]

(60.5)

For an EM wave, the average bracket in Equation 60.5 represents the time average.  = Ix is the

intensity of the component of light linearly polarized in the x-direction. Similarly,  = Iy . All of

the Stokes parameters are real numbers and are measurable. For an ensemble of EM waves, the average

brackets represent both time and ensemble averages.

FIGURE 60.2 Characteristic parameters for a polarization ellipse. ax and ay are the field amplitudes in the x- and y-
directions, and d is the phase retardance; a and b are the major and minor axes of the ellipse, f is the orientation of
the major axis with respect to the x-axis, and e is the ellipticity angle which is equal to tan–1 (b/a). A polarization
ellipse can be characterized by (ax, ay, d), (a, b, f) or (I, f, e), where I is the intensity of the EM wave. 
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Perfectly Polarized Light

Stokes vectors for different polarization states of light can be evaluated using Equation 60.5. Table 60.1
lists the Jones vectors and Stokes vectors for different states of perfectly polarized light. The Jones vector
E and Stokes vector S expressed in terms of ellipticity angle e and orientation angle f are

(60.6)

(60.7)

In Equations 60.6 and 60.7, the amplitude a and intensity I are totally separated from the angles f and
e which determine the polarization state. The degrees of linear and circular polarization are cos2e and
sin2e, correspondingly. Stokes parameters for perfectly polarized light given in Equation 60.7 satisfy the
identity

(60.8)

60.3 Polarization of Light

Light is composed of an ensemble of EM waves. A single EM wave has a certain electric field direction
and phase. Unpolarized light can be visualized as an ensemble of EM waves with random field directions
and phases. The field direction and phase for unpolarized light can not be defined then. The description
of light in terms of Jones vector is therefore inadequate to describe the polarization of unpolarized light.
For an ensemble of many EM waves, the electric field components in the Stokes vector given by Equation
60.5 is the sum of the corresponding components for all waves. In particular, for an ensemble of
incoherent EM waves, the Stokes vectors for individual waves are additive: 

(60.9)
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For an ensemble of EM waves with identical fi = f and ei = e, the resultant polarization is still the
same as the individual wave, as indicated by Equations 60.6 and 60.7, regardless of whether these waves
are coherent. 

Unpolarized and Partially Polarized Light

If an ensemble consists of randomly oriented linearly polarized waves, all ei = 0 and fi are random, then
S1 = S2 = S3 = 0, according to Equations 60.7 and 60.9. Light is thus unpolarized, and S = I(1, 0, 0, 0).
If an ensemble consists of elliptically polarized waves with the same orientation fi = f or f + p and
perfectly random ellipticity angle ei, then the Stokes vector is I(1, 0, 0, 0), and light is also unpolarized.
Thus, the Stokes vector S in Equation 60.9 already implies the sense of the ensemble average of polar-
ization. The average brackets in Eq. (5) can be considered as both the time average and ensemble average
for incoherent waves.

For unpolarized light with S1 = S2 = S3 = 0, Equation 60.8 does not hold. In general, light is partially
polarized, i.e., part of it is perfectly polarized and the rest is unpolarized [1–6]. Stokes parameters for
arbitrary polarizations satisfy 

(60.10)

The degree of polarization is given by

(60.11)

Perfectly polarized light has P = 1, and unpolarized light has P = 0. Partially polarized light has 0 < P < 1.
The intensity of the polarized part is PI, and the intensity of the unpolarized part is I(1 – P). By the
superposition concept, the Stokes vector for partially polarized light can be obtained from Equation 60.7 as

(60.12)

The degree of linear polarization PL and circular polarization PC are

(60.13)

Polarization by the Response of a Medium
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To measure polarization, light must interact with a medium to give a response. The response of a polarizer
is to pass one polarization and reject the orthogonal one. The response of a phase retarder is to change
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the relative phase between the two polarizations. A medium can be any optical component, a test sample
or any object under investigation. The response of a medium relates the state of output light to the state
of incident light. The polarization state of light can be described by a complex vector EM field, a Jones
vector, or a Stokes vector [4, 5, 7, 8]. Let an incident EM wave be specified by a complex field or Jones
vector (Ex, Ey), and the output field be (Ex´, Ey´), the general relations between these two fields are

(60.14)

J in Equation 60.14 is a 2 ´ 2 matrix that relates the input Jones vector E to the output Jones vector E´
and is called the Jones matrix. The response of a medium is characterized by the elements of the Jones
matrix, rxx, rxy, ryx, and ryy, which are all complex numbers. 

Principal Coordinate System

Since the directions of an electric field are different in different rotated coordinate systems, {rij} are not
unique. For many symmetric media, there exists a coordinate system in which rxy and ryx are zero, and
rxx and ryy are called the eigenvalues for {rij}. This is the principal coordinate system or principal frame
whose x- and y-axes are the two principal axes. Finding the principal frame is an eigenvalue problem. If
the incident polarization is along one of the principal-axis , then the output polarization is still along

. In the principal frame, {rij} are called the coefficients of response. For example, {rij} may represent
the reflection coefficients for a reflection response, or the scattering coefficients for a scattering response,
etc. In the principal coordinate system, Equation 60.14is simplified to

(60.15)

J(0) is the diagonalized Jones matrix in the principal frame. For a polarizer, the principal axes are the
transmission and extinction axes. The former is assigned to the x-axis. For a phase retarder, the principal
axes are the fast- and slow-axes. The phase change for the EM wave with its field along the fast-axis is
larger than the slow-axis. The fast-axis is usually assigned to the x-axis. The principal Jones matrices p
for a perfect polarizer, and c for a perfect wave plate with a retardance t are [4, 5, 7, 8]

(60.16)

Ellipsometric Parameters

For reflection from a surface, the two principal axes are the s- and p-polarizations. The s-polarization
field is along the y-axis which is chosen to be perpendicular to the plane of incidence. The p-polarization
field is along the x-axis which is in the plane of incidence. The complex reflection coefficients for these
two polarizations are designated as rp = rxx and rs = ryy. The ellipsometric parameters y and D  are defined
by [4, 15, 16]

(60.17)

E¢
Ex¢
Ey¢è ø

æ ö rxx rxy

ryx ryyè ø
ç ÷
ç ÷
æ ö Ex

Eyè ø
æ ö J E= = =

x̂
x̂

E¢
Ex¢
Ey¢è ø

æ ö rxx 0

0 ryyè ø
ç ÷
ç ÷
æ ö Ex

Eyè ø
æ ö J 0( )E= = =

p 1 0

0 0è ø
ç ÷
æ ö

c e
it 2¤

0

0 e
it 2¤–è ø

ç ÷
ç ÷
æ ö

= =

rp

rs
-----

rxx

ryy
------- y iD( )exptan= =
© 1999 by CRC Press LLC



60  Page 9  Thursday, January 7, 1999  2:53 PM
D is the phase change between reflected and incident light. If the electric field direction of incident light
is given by f0, then the field direction f of reflected light can be obtained from tanf = tanf0/tany. At
the Brewster angle, where rp = 0 and y = 0, then f = 90°, and reflected light is vertically polarized.
Equation 60.17 can also be applied to transmissive systems. Since a vacuum does not change the polar-
ization of light, the ellipsometric parameters are y = 45° and D = 0°. A perfect polarizer with the
polarization along the x-axis has y = 90° and D = 0°, a perfect quarter-wave plate has y = 45° and D =
90°, and a perfect half-wave plate has y = 45° and D = 180°. 

Müeller Matrix

The Jones calculus is convenient for perfectly polarized light and a nondepolarizing response [8]. If
unpolarized light is incident on a sample, the Jones vector can not describe the field direction and phase
for unpolarized light. The Stokes vector and Müeller matrix are more convenient to use in treating
polarization for general cases. A relation between the output Stokes vector S´ and the input Stokes vector S is 

(60.18)

The matrix M that relates the input and output Stokes vectors is called a Müeller matrix. M is a 4 ´ 4
matrix of real numbers. 

For the general transformation of electric field given by Equation 60.14, the components Mij of M can
be derived from Equations 60.5, 60.14, and 60.18. The expressions for Mij have been obtained by van de
Hulst [13] and are also given as Equation (2.243) of Reference 4. In a measurement, the EM waves of
output light may come from many different area or volume elements of a medium, so that statistical
averages must be considered in the evaluation of Mij. The ensemble average of M can still be expressed
by the same expressions, with the ensemble average bracket applying to all Mij. To make the Müeller
matrix meaningful, the new subscripts of Equation 60.14 are reassigned as 1: xx, 2: yy, 3: xy, 4: yx.
Subscripts 1 and 2 correspond to the copolarized response, and subscripts 3 and 4 correspond to the
cross-polarized response. The ensemble average of any two of the response coefficients is called a corre-
lation function for these coefficients. Let us define the self-correlation functions to be 2Fj and the cross-
correlation functions to be Gjm + i gjm as follows:

(60.19)

The cross-correlation functions have the properties of Gjm = Gmj = , and gjm = –gmj = .
All Fj, Gjm, and gjm are real numbers. M is then 

(60.20)

The upper left quadrant of M corresponds to the self-correlation terms. The lower right quadrant
corresponds to the cross-correlations between the two co-polarized responses and between the two cross-
polarized responses. The upper right and lower left quadrants correspond to the cross-correlations
between the co-polarized and cross-polarized responses. 
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Principal Müeller Matrix

For the Jones matrix in the principal frame given by Equation 60.15, the cross-polarized responses are
zero, so that the Mjm in the upper right and lower left quadrants of Equation 60.20 are zero. M can be
expressed in terms of y and D using Equations 60.17 and 60.20 as [4, 17–19]

(60.21)

where R = (rxx rxx* + ryy ryy*)/2. For reflection, R is the average reflectance, and for transmission, R is the
average transmittance. For a vacuum, y = 45° and D = 0°, M is a unit matrix. Using Equation 60.21 or
Equations 60.16, 60.19, and 60.20 directly, matrix P for a perfect polarizer (y = 90°, D = 0°) and matrix
C for a perfect wave plate (y = 45°, D = t) in the principal frame are obtained as [4, 5, 20] 

(60.22)

Depolarization

A very interesting example is the perfectly random response. Analogous to the conditions used for
incoherent scattering [17–19], the random response coefficients drj have the properties that

(60.23)

The first line states that all drj are each averaged to zero, so that they would not appear in the average of
Equation 60.14. By substitution of rj of Equation 60.19 by drj and using the conditions for drj given by
Equation set 60.23, the correlation functions Fj and Gjm + i gjm can be evaluated. The second line of
Equation set 60.23 states that all drj are uncorrelated with one another, so that all Gij and gij are zero. The
third line states that drj are isotropic, so that all Fj are the same. Eventually, all Mjm = 0 except M00 = 4
F1. The depolarization matrix D for a perfectly random response is then

(60.24)

D is an ideal depolarizer as defined in Reference 20. The general Müeller matrix of Equation 60.20 satisfies
the physical condition [14, 24]

(60.25)
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The sum of all the squares of the elements of D is . D satisfies the inequality of criterion in Equation
60.25. The matrix of Equation 60.21 is nondepolarizing such that output light is still perfectly polarized
if incident light is perfectly polarized. The equality in Equation 60.25 holds for M of Equation 60.21.
This section discusses optical components and samples that are nondepolarizing. References 12 and 17
through 19 give more details about the Müeller matrices for samples that exhibit both polarization and
depolarization properties.

Coordinate Transformation

In polarimetric measurements, polarizers and retarders are frequently rotated to desired positions. When
a component is rotated, the incident field is not changed, but the representations of this field in the
principal and laboratory coordinate systems are different. Transformations of the electric fields, Stokes
vectors, Jones and Müeller matrices between these two coordinate systems or frames are basic exercises
in polarimetry. Let the laboratory frame axes be x- and y-axes, and the principal frame axes be x´- and
y´-axes, and the principal frame is rotated to an angle a with respect to the laboratory frame, as shown
in Figure 60.3. The Jones vector (Ex´, Ey´) in the principal frame is related to (Ex, Ey) in the laboratory
frame by 

(60.26)

The rotation matrix r(a) is the 2 ´ 2 matrix in Equation 60.26 for transformation of Jones vectors. The
inverse transform is given by E = rT(a) E´, where the superscript T denotes the transpose of a matrix.
In Figure 60.3, E´ appears to be turned by an angle of –a, since the coordinate system is rotated by an
angle a. The Faraday rotation matrix that rotates E by an angle of a is equivalent to r(a).

One can substitute r1 = r2 = cosa and r3 = –r4 = sina into Equations 60.19 and 60.20 to construct the
rotation matrix R(a) for transformation of a Stokes vector S to a coordinate system oriented at an angle a.

(60.27)

M00
2

FIGURE 60.3 Coordinate transformation for the
electric field components (Ex, Ey) in the laboratory
system (x, y) and the components (Ex´, Ey´) in the
principal coordinate system (x´, y´). The principal
frame is oriented at an angle a with respect to the
laboratory frame.
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The transformations between Stokes vector S´ in the principal frame and S in the laboratory frame are

(60.28)

The transformation of a Müeller matrix M(0) in the principal frame to M(a) in the laboratory frame
can be obtained by a similarity transformation:

(60.29)

Equation 60.29 can also be used for the transformation of Jones matrix J(0) in the principal coordinate
frame to J(a) in the laboratory frame, provided that M is replaced by J and R(a) by r(a) in Equation 60.29.

The Jones matrix for a polarimetric component orientated at an angle a is

(60.30)

The Müeller matrix P(P) for a perfect polarizer oriented at an angle P and C(C) for a perfect compensator
with a retardance t at an angle C are [4, 6, 21]

(60.31)

(60.32)

Equations 60.16, 60.22, and 60.30 through 60.32 can be used to calculate the Jones matrices and Müeller
matrices for polarizers and wave plates at arbitrary orientations. Table 60.2 lists some of these matrices
for the most frequently used devices.

For a light beam passing through successive components oriented at different angles, Müeller matrices
or Jones matrices in the laboratory frame must be used for successive multiplications. According to
Equation 60.18, the matrix M1(a1) for the component that light first passes through should be placed at
the extreme right, and the matrix Mn(an) for the last component at the extreme left. The combined
matrix M is

(60.33)
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60.4 Principles of Polarimetry

Polarimetry is a method for measuring the polarization of light and the polarization response of materials.
An optical system used for such purposes is called a polarimeter or an ellipsometer. To measure the
polarization response of a sample, polarized light is generated and incident on the sample. By examining
the polarization states of both incident and reflected or transmitted light, the characteristics of a sample
can be determined. A schematic diagram of a polarimeter used to measure the polarization response of
a sample is shown in Figure 60.4. The light source and polarizer are used to generate polarized light, and
the analyzer and detector are used to analyze the polarization of light [4, 20]. An analyzer is a polarizer
used to analyze polarized light. 

TABLE 60.2 The Jones Matrices and Müeller Matrices for Perfect
Polarizer and Wave Plates at Different Orientation Angles

Device Angle Jones matrix Müeller matrix

Polarizer 0°

Polarizer 90°

Polarizer ±45°

l/4-plate 0°

l/4-plate ±45°

l/2-plate 0°

l/2-plate ±45°

1 0

0 0è ø
ç ÷
æ ö 1

2
---

1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0è ø
ç ÷
ç ÷
ç ÷
ç ÷
æ ö

0 0

0 1è ø
ç ÷
æ ö 1

2
---

1 1– 0 0

1– 1 0 0

0 0 0 0

0 0 0 0è ø
ç ÷
ç ÷
ç ÷
ç ÷
æ ö

1
2
--- 1 1±

1± 1è ø
ç ÷
æ ö 1

2
---

1 0 1± 0

0 0 0 0

1± 0 1 0

0 0 0 0è ø
ç ÷
ç ÷
ç ÷
ç ÷
æ ö

e
ip 4¤

0

0 e
i– p 4¤è ø

ç ÷
ç ÷
æ ö

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1– 0è ø
ç ÷
ç ÷
ç ÷
ç ÷
æ ö

1

2
------- 1 i±

i± 1è ø
ç ÷
æ ö

1 0 0 0

0 0 0  1–( )±
0 0 1 0

0 1± 0 0è ø
ç ÷
ç ÷
ç ÷
ç ÷
æ ö

1 0

0 1–è ø
ç ÷
æ ö

1 0 0 0

0 1 0 0

0 0 1– 0

0 0 0 1–è ø
ç ÷
ç ÷
ç ÷
ç ÷
æ ö

0 1±
1± 0è ø

ç ÷
æ ö

1 0 0 0

0 1– 0 0

0 0 1 0

0 0 0 1–è ø
ç ÷
ç ÷
ç ÷
ç ÷
æ ö
© 1999 by CRC Press LLC



60  Page 14  Thursday, January 7, 1999  2:53 PM
Analysis of Polarized Light

Measurement of polarization of light is essential in polarimetry, since polarized light to be examined is
not limited to that generated in a laboratory. The instrument to measure the four Stokes parameters is
called a photo-polarimeter or a Stokesmeter. To measure linear polarization, pass the light beam through
a linear analyzer oriented at angle A = 0°, 90°, and ±45°, and measure the corresponding intensities Ix,
Iy, I+ and I–. To measure circular polarization, first pass the light beam through a quarter-wave retarder
with C = 0°, then through an analyzer oriented at A = ±45°, and measure the intensities IR and IL. The
pair of quarter-wave retarder and analyzer constitutes a circular analyzer. A detector measuring intensity
corresponds to an operation given by a row vector I = (1, 0, 0, 0). The combined operation of a detector
following an analyzer is IA = 0.5 (1, cos 2A, sin 2A, 0). The operations for the linear and circular analyzers
on a Stokes vector S and the intensities obtained are given in Table 60.3. The Stokes parameters can be
obtained from the difference and sum of the intensities for these pair operations, and are given by

(60.34)

Equation 60.34 is a general expression that is good for any polarization states and is also the operational
principle for most Stokesmeters. The four-detector Stokesmeter designed by Azzam is an exception that
contains no moving components and can measure the four Stokes parameters in real time [26]. 

Generation of Polarized Light

Characterization of polarization response of a sample requires incident polarized light whose polarization
state is controllable. A convenient source is a laser, which may be constructed to emit polarized light
directly without the help of extra devices. A half-wave plate may be used to rotate the laser polarization

FIGURE 60.4 Schematic diagram of a polarimeter to measure polarization response. The light source and polarizer
are used to generate polarized light, and the analyzer and detector are used to analyze the state of polarization of the
light.

TABLE 60.3 Intensities I for a Light Beam with Stokes Parameters S0, S1, S2, and S3 Analyzed by Linear and Circular 
Analyzers. A circular analyzer consists of a quarter-wave plate oriented at C = 0°, followed by an analyzer oriented 
at A = ±45°.

Analyzer Linear Linear Circular

C (°) NA NA 0

A (°) 0, 90 45, –45 45, –45

Operation 0.5(1, ±1, 0, 0) 0.5(1, 0, ±1, 0) 0.5(1, 0, 0, ±1)

Intensity Ix, Iy I+, I– IR, IL

I = (S0 ± S1)/2 (S0 ± S2)/2 (S0 ± S3)/2
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to a desired direction by placing the fast-axis bisecting the new and old directions, as shown in Figure
60.5a. Light generated from a lamp and a monochromator is usually partially polarized [12]. To generate
linearly polarized light at an angle P, a linear polarizer oriented at an angle P is placed behind the
monochromator as shown in Figure 60.5b. To generate circularly polarized light, first generate linearly
polarized light, and then put a quarter-wave plate behind with the fast-axis oriented at an angle of 45°
or –45° with respect to the linear polarization as shown in Figure 60.5c. Such a combination of polarizer
and quarter-wave plate is called a circular polarizer. When a phase retarder has an arbitrary retardance
or is placed at an arbitrary angle relative to the polarizer, elliptically polarized light is then generated.
Given an incident Stokes vector of (S0, S1, S2, S3), the Stokes vector S´ for polarized light generated by
the polarizers mentioned above can be obtained from Equations 60.18 and 60.31 through 60.33. The
obtained S´ are listed in Table 60.4. Note that S´ is not directly proportional to S0 unless incident light
is unpolarized. Care must be taken in generating polarized light in an ellipsometer because incident light
is rarely completely unpolarized.

Polarizer–Sample–Analyzer Ellipsometry

An ellipsometer is an instrument to measure the ellipsometric parameters y and D of a sample. It can
be used for both reflection and transmission. An ellipsometer is usually referred to as the reflection
system, and a polarimeter as the transmissive system [4]. Different ellipsometers are designed to measure
different responses for different kinds of samples. It is important to know about the sample when
designing an experiment. The simplest ellipsometer is a polarizer–sample–analyzer (PSA) ellipsometer.
A more general one is a polarizer–compensator–sample–analyzer (PCSA) ellipsometer. Figure 60.6 shows

FIGURE 60.5 Generation of light linearly polarized at a desired direction using (a) a laser source and a half-wave
plate and (b) a lamp, monochromator, and a polarizer, plus (c) generation of circularly polarized light using a
polarizer and a quarter-wave plate.
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a schematic diagram of a PCSA reflection ellipsometer. A PSA system can be visualized by removing the
compensator C in Figure 60.6. 

Let the oriented angles of the polarizer and analyzer be P and A, respectively, as measured from the
plane of incidence. For unpolarized incident light and a sample matrix M given by Equation 60.21, the
measured intensity I for a PSA ellipsometer is [22]

(60.35)

I0 is the intensity of incident light, Tp and Ta are the transmittance of the polarizer and analyzer,
respectively. If incident light is partially polarized with a Stokes vector (S0, S1, S2, S3), then the right-hand
side of Equation 60.35 should be multiplied by the factor (S0 + S1 cos2P + S2 sin2P)/S0. In such a case,
the dependence on P is more complicated. A good practice is to keep P fixed and vary only A. Many
different ways can be devised to extract y and D from Equation 60.35, such as the Stokes polarimeter,
null polarimeter, and rotating-analyzer ellipsometer.

For a Stokes polarimeter, P is set at 45° or -45°, and A at 0°, 90°, and ±45°. The ellipsometric parameters
y and D can be solved from the four equations evaluated at these P and A positions via the relations

TABLE 60.4 Stokes Vectors S´ for Linearly and Circularly Polarized Light Generated by Specific Combinations of a 
Polarizer Oriented at an Angle P and a Quarter-Wave Retarder at an Angle C. The incident Stokes vector is S = (S0, 
S1, S2, S3).

Polarizer Linear Linear Circular

P(°) 0, 90 45, –45 –45, 45

C(°) NA NA 0

Operation P(P)S P(P)S Q(C) P(P) S

Stokes Vector Sx´, Sy´ S+´, S–´ SR´, SL´

S´

FIGURE 60.6 Schematic diagram of a PCSA ellipsometer.
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(60.36)

For a null polarimeter, set P = ±45°, and vary A to find the null positions. This method is excellent
for reflection from transparent materials with D equal to 0 or p. The value of y is related to the null
position A± as [22] 

(60.37)

Average of A±at P = ±45° can eliminate errors from the misalignment of analyzer and polarizer. 

In a rotating-analyzer ellipsometer (RAE), the analyzer is rotated at an angular frequency wr. Set P =
45° or –45°, and A = wrt. The measured intensity is 

(60.38)

The Fourier coefficients, being equal to –cos2y and sin2y cosD, can be recovered from the demodulated
signals or from a fast Fourier transform (FFT) technique [28, 29]. However, the measured D cannot be
distinguished from –D. This system can be fully automated for realtime operation. With a white light
source and monochromator, an RAE can serve as a spectroscopic ellipsometer [15, 16, 28, 29]. 

Polarizer–Compensator–Sample–Analyzer Ellipsometry

In a PCSA or a PSCA ellipsometer, a compensator of retardance t is inserted in front of or following the
sample. Figure 60.6 shows a schematic diagram of a PCSA ellipsometer. For unpolarized incident light
in a PCSA system, the measured intensity for general conditions of P, C, and A is given by [21]

(60.39)

where

(60.40)

If incident light is partially polarized, then I0 in Equation 60.39 should be replaced by (S0 + S1 cos2P +
S2 sin2P). For a PSCA system, interchange P and A in Equations 60.39 and 60.40. These formulas can
be used to design different kinds of PCSA ellipsometers by choosing different conditions and different
types of modulation. For certain special conditions, Equations 60.40 can be greatly simplified. 

Null Ellipsometry

Consider a PCSA null ellipsometer (NE) in which the compensator is a perfect quarter-wave retarder
(t = 90°) which is set at C± = ±45°. The measured intensity is
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(60.41)

An NE is an instrument to find the null positions in order to determine y  and D. The four zones that
will null the intensity in Equation 60.41 and the null positions are listed in Table 60.5. The null positions
of A give y directly, and the null positions of P give D directly. Although y and D can be determined
from measurements in only one zone, systematic errors caused by imperfect components, misalignment,
and partially polarized incident light can be nonnegligible. By taking the average of four zones, many of
these linear systematic errors can be cancelled [4, 21, 30, 31]. To look for the null positions manually is
a slow process; automation of the nulling process can speed up the measurements. Different methods
can be used to automate the NE: (1) both polarizer and analyzer are controlled by servo-motors with
the feedback from the detector to find the null intensity, (2) the intensity is digitized and fed into a
computer which is used to find the null positions, (3) Faraday rotators are used to rotate and modulate
the polarization directions of light incident on and reflected from the sample to get the slopes of intensity
versus angle until the slopes are zero at the null positions [4, 27]. The advantage of NE is its simplicity
in obtaining y and D. Also, its accuracy is unbeatable by other kinds of ellipsometry.

Phase-Modulated Ellipsometry

A phase-modulated ellipsometer (PME) uses a phase retarder whose retardance is modulative. For a
PME, a good choice of P, C, and A in Equations 60.39 and 60.40 is P = 0°, C = 45°, and A = 45°. The
intensity is then

(60.42)

The retardance t is modulated, and the modulated intensity is detected. If t is modulated according to
t = to cosWt, then I(t) can be expanded in a Fourier series with the Fourier coefficients, depending on
cos2y, sin2y cosD and the Bessel functions of to. These coefficients can be recovered from the demod-
ulated signals, and the values of y and D can then be solved. t can be modulated by electro-optic
modulation using the Pockels effect, or piezoelectric modulation using the photoelastic effect [32, 33].
These modulations are fast, and demodulation using a lock-in amplifier is convenient. The advantage of
a PME is that it contains no moving components and offers real-time measurement. 

60.5 Polarization Instrumentation and Experiments

Figure 60.7 shows a schematic diagram of a PCSA reflection null ellipsometer. The instrument is com-
posed of five systems: the source system, polarimetric system, sample system, detection system, and
computer system for automatic control, data acquisition, and processing. 

The simplest source is a polarized laser. The monochromatic source system in Figure 60.7 is usually
used in visible, ultraviolet and infrared spectrometers. Light from a lamp source L is focused by a lens
system or a spherical mirror system onto the entrance slit of a grating monochromator M. Light leaving

TABLE 60.5 The Null Positions of Polarizer Angle P and Analyzer Angle A for the Four Different Zones at C = ±45° 
in a Null Ellipsometer.

Zone C(°) P A

1 –45 –45° + D/2 y

2 45 –45° – D/2 y

3 –45 45° + D/2 –y

4 45 45° – D/2 –y

Average y = (A1 + A2 – A3 – A4)/4, D = (P1 – P2 + P3 – P4)/2

I P C± A, ,( ) T pT cRT aI0 1 2y 2A 2y 2A D 2P 90°–( )±cossinsin±coscos–[ ]=

I t( ) T pT cRT aI0 1 2y tcoscos– 2y D tsinsinsin+[ ]=
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the exit slit of M is collimated by another lens system and a set of iris apertures. The long-pass filter F
in the detector arm is used with a grating monochromator to remove undesired short-wavelength
radiation. Choices of monochromators include a grating monochromator, prism monochromator or
Fourier transform spectrometer. A spectrometer is a necessary component for a spectroscopic ellipsom-
eter. Synchrotron radiation is also a continuum source and is used to replace the lamp in the vacuum
ultraviolet region [25]. The synchrotron radiation beam is intense and polarized. Grazing incidence
reflection optics are usually used to avoid absorption in the components.

The polarimetric system shown in Figure 60.7 is a PCSA ellipsometer. For a PSA ellipsometer, remove
the compensator C. For a PCSCA system, add another compensator in the detector arm [20]. It is better
to mount the polarizers and phase retarders on automatic rotators so that their orientations can be easily
aligned and read. For simple experiments, manual rotators can also do the job. References 10 and 11
give detailed descriptions and references for different kinds of polarizers and phase retarders. Many of
the well known optical companies sell polarizers and wave plates (retarders) for use in the visible,
ultraviolet, and near infrared spectral regions. The Buyers Guide of Laser Focus World [49] and the
Photonics Buyers’ Guide [50] list companies that manufacture and sell polarizers, phase retarders and
polarimeters. Tables 60.6 and 60.7 list some companies that make these products. Commonly used
polarizers in the visible are Glan prisms and dichroic sheets or plates. The best polarizer in the visible is
the calcite Glan-Thompson prism, which has a very small extinction ratio and a large acceptance angle.
It is more difficult to find a good broadband polarizer in the mid-infrared spectral region (l: 3 to 5 µm).
Wire-grid polarizers are good in the long-wave infrared region (l > 8 µm). For a broadband phase
retarder, a Babinet-Soleil compensator is convenient, since it can be set to any retardance value using a
micrometer adjustment. Inexpensive wave plates are good for laser sources. Phase modulation can be
achieved by modulation of the birefringence of electro-optic or photo-elastic retarders. 

The sample system depends on the type of experiment to be performed. Components on the detector
side of Figure 60.7 are normally mounted on a rail that is rotatable about the axis of the rotation stage.
The sample holder S on the rotation stage should have enough degrees of freedom for easy alignment.
In a reflection ellipsometer, the x-axes for P, C, and A should be well aligned to lie in the plane of incidence.
A transmission polarimeter is much simpler to align. 

The detection system consists of a detector and a noise suppression system. Diode detectors for use
in the visible and near-infrared spectral regions are inexpensive. Photomultipliers for the visible and

FIGURE 60.7 Schematic diagram of a PCSA reflection null ellipsometer, which is composed of five systems: the
source system, polarimetric system, sample system, detection system, and computer system. The symbols are L =
light source, M = monochromator, F = wavelength filter, and D detector. The symbols P, C, S, and A have their
customary meanings.
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near-infrared regions have high sensitivity, and cooled semiconductor detectors give good performance
in the mid-infrared to far-infrared regions. In Figure 60.7, the noise suppression system includes a chopper
and a lock-in amplifier. The chopper modulates incident light intensity, and the intensity detected by
detector D is demodulated by a lock-in amplifier. This combination eliminates most broadband noise
and greatly improves the signal-to-noise ratio. RAE and PME have their own modulations, and do not
need a chopper.

TABLE 60.6 Companies That Make Polarizers and Phase Retarders

Company Tel/Fax Address

Cleveland Crystals (216) 486-6100
(216) 486-6103

19306 Redwood Ave., Cleveland, OH 44110

Corning, Inc. (607) 974-7966
(607) 974-7210

POLARCOR Team, Advance Materials, HP-CB, Corning, NY 14831

CVI Laser (505) 296-9541
(505) 298-9908

P.O. Box 11308, Albuquerque, NM 87192

Hinds Instruments (503) 690-2000
(503-690-3000

3175 NW Aloclek Drive, Hillsboro, OR 97124

Karl Lambrecht (312) 472-5442
(312) 472-2724

4204 N. Lincoln Ave., Chicago, IL 60618

Meadowlark (303) 833-4333
(303) 833-4335

P.O. Box 1000, 5964 Iris Parkway, Frederick, CO 80530

Molectron, Inc. (503) 620-9069
(503) 620-8964

7470 SW Bridgeport Rd., Portland, OR 97224

New Focus, Inc. (408) 980-8088
(408) 980-8883

2630 Walsh Ave., Santa Clara, CA 95051-0905

Rocky Mountain 
Instrument

(303) 651-2211
(303) 651-2648

1501 S. Sunset St., Longmont, Colorado 80501

Special Optics (201) 785-4015
(201) 785-0166

P.O. Box 163, Little Falls, NJ 07424

Tower Opt. Corp. (201) 305-9626
(201) 305-1175

130 Ryerson Ave., Wayne, NJ 07470

II-VI, Inc. (412) 352-1504
(412) 352-4980

375 Saxonburg Blvd., Saxonburg, PA 16056

TABLE 60.7 Companies That Make Ellipsometers

Company Tel/Fax Address

Gaertner Scientific 847-673-5006
847-673-5009

8228 McCormick Blvd., Skokie, IL 60076

Instrument SA, Inc. 908-494-8660
908-494-8796

6 Olsen Ave., Edison, NJ 08820

J. A. Woolam Co., Inc. 402-477-7501
402-477-8214

650 J. Street, Suite 39, Lincoln, NE 68508

Leonard Research 937-426-1222
937-426-3642

2792 Indian Riffle Rd., Beavercreek, OH 45440 
P.O. Box 607, Beavercreek, OH 45434-0607

Rudolph Research 201-691-1300
201-691-5480

1 Rudolph Rd., P.O. Box 1000, Flanders, NJ 07836

SOPRA (1) 47 81 09 49
(1) 42 42 29 34

26, rue Pierre Joigneaux, 92270 Bois-Colombes, FRANCE

Tencor Instrument 415-969-6767
415-969-6731

2400 Charleston Rd., Mountain View, CA 94043-9958
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A computer system provides the automatic functions to control the polarizers, retarder, and mono-
chromator, and to acquire and process data. A computer system is essential for making accurate and
rapid measurements. In Figure 60.7, the computer records the polarizer angle P, the analyzer angle A,
the intensity I from the detector, and the wavelength l of the monochromator. The data of I(P) and I(A)
can be used to find the null positions of P and A. Then the computer controls the drivers to move P or
A to the null positions. In a spectroscopic RAE, data of I(t) are recorded as the analyzer is rotating. The
computer uses the FFT program to find the Fourier coefficients, solves for y and D, records the results,
and then drives the monochromator to a new wavelength and repeats the process. A spectroscopic PME
uses similar computer process as RAE, besides the different modulation and demodulation.

Measurement of Birefringence

Retardance can be measured using a transmission PSA ellipsometer. A wave plate is a good sample for
this experiment. The retardance d for a birefringent slab of thickness d and principal refractive indices
ne and no is 

(60.43)

in the absence of multiple reflections. For a wave plate, the value of y is close to 45°, and the D value is
equal to d. Use a lamp source with a monochromator to scan the wavelength. Put a polarizer at 45° and
an analyzer at –45° with respect to the fast-axis of the wave plate [40]. When l is scanned, the transmitted
intensity I through the PSA ellipsometer will vary, in proportion to (1 + cosd) according to Equation
60.35. I is a maximum when d is 0°, and is a minimum when d = 180°. From the wavelengths at which
a maximum or a minimum intensity occurs, the birefringence ne – no can be determined. 

Measurement of Optical Constants

A reflection ellipsometer can be used to measure optical constants n and k of materials. Light is incident
obliquely on a sample at an angle of q. The refractive index n and the extinction coefficient k can be
calculated from the measured y and D values using the following formula [2, 4, 16, 22] 

(60.44)

If an automated system is not available, try an NE to obtain y and D manually. Automated systems such
as an RAE or a PME can take data much faster. For transparent materials, D is either 0 or p, the simple
null polarimeter with a PSA system offers satisfactory results [22]. The method is effective near the
Brewster angle region. At the Brewster angle qB, y = 0, then n = tan qB according to Equation 60.44. For
metals whose y is large when D = –90°, the principal angle ellipsometry (PAE) can be used [2]. At the
principal angle qP, cos D = 0, Equation 60.44 can be simplified to

(60.45)

In PAE, the principal angle qP is searched and then y is measured. The Stokes polarimeter with a PSA
system is suitable to search qP and measure y for PAE. 

Determination of optical constants using reflection ellipsometry is subject to errors caused by surface
roughness, natural oxides and surface contamination [15, 16, 41–48]. These effects can be corrected by
assuming that there is an effective layer on the surface and then using a least-square regression method
to fit the ellipsometric data to the appropriate model [16, 43–48]. Ellipsometry is also used to measure
refractive index and thickness of a thin film on a bulk substrate whose optical constants are known [4,
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15, 16, 27]. Other applications of polarimetry and ellipsometry can be found in recent proceedings about
polarization [51–53].
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