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82.1 Introduction

In its broadest sense, a filter can be defined as a signal processing system whose output signal, usually
called the response, differs from the input signal, called the excitation, such that the output signal has
some prescribed properties. In more practical terms an electric filter is a device designed to suppress,
pass, or separate a group of signals from a mixture of signals according to the specifications in a particular
application. The application areas of filtering are manifold, for example to band-limit signals before
sampling to reduce aliasing, to eliminate unwanted noise in communication systems, to resolve signals
into their frequency components, to convert discrete-time signals into continuous-time signals, to
demodulate signals, etc. Filters are generally classified into three broad classes: continuous-time, sampled-
data, and discrete-time filters depending on the type of signal being processed by the filter. Therefore,
the concept of signals are fundamental in the design of filters.

A signal is a function of one or more independent variables such as time, space, temperature, etc. that
carries information. The independent variables of a signal can either be continuous or discrete. Assuming
that the signal is a function of time, in the first case the signal is called continuous-time and in the
second, discrete-time. A continuous-time signal is defined at every instant of time over a given interval,
whereas a discrete-time signal is defined only at a discrete-time instances. Similarly, the values of a signal
can also be classified in either continuous or discrete.
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In real-world signals, often referred to as analog signals, both amplitude and time are continuous.
These types of signals cannot be processed by digital machines unless they have been converted into
discrete-time signals. By contrast, a digital signal is characterized by discrete signal values, that are defined
only at discrete points in time. Digital signal values are represented by a finite number of digits, which
are usually binary coded. The relationship between a continuous-time signal and the corresponding
discrete-time signal can be expressed in the following form:

(82.1)

where T is called the sampling period.
Filters can be classified on the basis of the input, output, and internal operating signals. A continuous

data filter is used to process continuous-time or analog signals, whereas a digital filter processes digital
signals. Continuous data filters are further divided into passive or active filters, depending on the type
of elements used in their implementation. Perhaps the earliest type of filters known in the engineering
community are LC filters, which can be designed by using discrete components like inductors and
capacitors, or crystal and mechanical filters that can be implemented using LC equivalent circuits. Since
no external power is required to operate these filters, they are often referred to as passive filters. In contrast,
active filters are based on active devices, primarily RC elements, and amplifiers. In a sampled data filter,
on the other hand, the signal is sampled and processed at discrete instants of time. Depending on the
type of signal processed by such a filter, one may distinguish between an analog sampled data filter and
a digital filter. In an analog sampled data filter the sampled signal can principally take any value, whereas
in a digital filter the sampled signal is a digital signal, the definition of which was given earlier. Examples
of analog sampled data filters are switched capacitor (SC) filters and charge-transfer device (CTD) filters
made of capacitors, switches, and operational amplifiers.

82.2 Filter Classification

Filters are commonly classified according to the filter function they perform. The basic functions are:
low-pass, high-pass, bandpass, and bandstop. If a filter passes frequencies from zero to its cutoff frequency
Wc and stops all frequencies higher than the cutoff frequencies, then this filter type is called an ideal low-
pass filter. In contrast, an ideal high-pass filter stops all frequencies below its cutoff frequency and passes
all frequencies above it. Frequencies extending from W1 to W2 are passed by an ideal bandpass filter,
while all other frequencies are stopped. An ideal bandstop filter stops frequencies from W1 to W2 and
passes all other frequencies. Figure 82.1 depicts the magnitude functions of the four basic ideal filter types.

So far we have discussed ideal filter characteristics having rectangular magnitude responses. These
characteristics, however, are physically not realizable. As a consequence, the ideal response can only be
approximated by some nonideal realizable system. Several classical approximation schemes have been
developed, each of which satisfies a different criterion of optimization. This should be taken into account
when comparing the performance of these filter characteristics.

82.3 The Filter Approximation Problem

Generally the input and output variables of a linear, time-invariant, causal filter can be characterized
either in the time-domain through the convolution integral given by

(82.2)

or, equivalently, in the frequency-domain through the transfer function
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(82.3)

where Ha(s) is the Laplace transform of the impulse response ha(t) and X(s), Y(s) are the Laplace transforms
of the input signal x(t) and the output or the filtered signal y(t). X(s) and Y(s) are polynomials in s =
s + jW and the overall transfer function Ha(s) is a real rational function of s with real coefficients. The
zeroes of the polynomial X(s) given by s = s¥i are called the poles of Ha(s) and are commonly referred to
as the natural frequencies of the filter. The zeros of Y(s) given by s = s0i which are equivalent to the zeroes
of Ha(s) are called the transmission zeros of the filter. Clearly, at these frequencies the filter output is zero
for any finite input. Stability restricts the poles of Ha(s) to lie in the left half of the s-plane excluding the
jW-axis, that is Re{s¥i} < 0. For a stable transfer function Ha(s) reduces to Ha( jW) on the jW-axis, which
is the continuous-time Fourier transform of the impulse response ha(t) and can be expressed in the
following form:

(82.4)

where *Ha( jW)* is called the magnitude function and q(W) = arg Ha( jW) is the phase function. The gain
magnitude of the filter expressed in decibels (dB) is defined by

(82.5)

Note that a filter specification is often given in terms of its attenuation, which is the negative of the gain
function also given in decibels. While the specifications for a desired filter behavior are commonly given
in terms of the loss response a(W), the solution of the filter approximation problem is always carried
out with the help of the characteristic function C( jW) giving

(82.6)

FIGURE 82.1 The magnitude function of an ideal filter is 1 in the passband and 0 in the stopband as shown for
(a) low-pass, (b) high-pass, (c) bandpass, and (d) stopband filters.
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Note that a(W) is not a rational function, but C(jW) can be a polynomial or a rational function and
approximation with polynomial or rational functions is relatively convenient. It can also be shown that
frequency-dependent properties of *C(jW)* are in many ways identical to those of a(W). The approximation
problem consists of determining a desired response *Ha(jW)* such that the typical specifications depicted
in Figure 82.2 are met. This so-called tolerance scheme is characterized by the following parameters:

Wp Passband cutoff frequency (rad/s)
Ws Stopband cutoff frequency (rad/s)
Wc –3 dB cutoff frequency (rad/s)
e Permissible error in passband given by e = (10r/10 – 1)1/2, where r is the maximum acceptable

attenuation in dB; note that 10 log 1/(1 + e2)1/2 = –r
1/A Permissible maximum magnitude in the stopband, i.e., A = 10a/20, where a is the minimum

acceptable attenuation in dB; note that 20 log (1/A) = –a .

The passband of a low-pass filter is the region in the interval [0,Wp] where the desired characteristics of
a given signal are preserved. In contrast, the stopband of a low-pass filter (the region [Ws,¥]) rejects
signal components. The transition band is the region between (Wx – Wp), which would be 0 for an ideal
filter. Usually, the amplitudes of the permissible ripples for the magnitude response are given in decibels.

The following sections review four different classical approximations: Butterworth, Chebyshev Type I,
elliptic, and Bessel.

Butterworth Filters

The frequency response of an Nth-order Butterworth low-pass filter is defined by the squared magnitude
function

(82.7)

It is evident from the Equation 82.7 that the Butterworth approximation has only poles, i.e., no finite
zeros and yields a maximally flat response around zero and infinity. Therefore, this approximation is also

FIGURE 82.2 The squared magnitude function of an analog filter can have ripple in the passband and in the
stopband.

H j
Na

c

W
W W

( ) =
+ ( )

2

2

1

1

© 1999 by CRC Press LLC



called maximally flat magnitude (MFM). In addition, it exhibits a smooth response at all frequencies
and a monotonic decrease from the specified cutoff frequencies.

Equation 82.7 can be extended to the complex s-domain, resulting in

(82.8)

The poles of this function are given by the roots of the denominator

(82.9)

Note that for any N, these poles lie on the unit circle of radius Wc in the s-plane. To guarantee stability,
the poles that lie in the left half-plane are identified with Ha(s). As an example, we will determine the
transfer function corresponding to a third-order Butterworth filter, i.e., N = 3.

(82.10)

The roots of denominator of Equation 82.10 are given by

(82.11)

Therefore, we obtain

(82.12)

The corresponding transfer function is obtained by identifying the left half-plane poles with Ha(s). Note
that for the sake of simplicity we have chosen Wc = 1.

(82.13)

Table 82.1 gives the Butterworth denominator polynomials up N = 5.
Table 82.2 gives the Butterworth poles in real and imaginary components and in frequency and Q.
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In the next example, the order N of a low-pass Butterworth filter is to be determined whose cutoff
frequency (–3 dB) is Wc = 2 kHz and stopband attenuation is greater than 40 dB at Ws = 6 kHz. Thus
the desired filter specification is

(82.14)

or equivalently,

(82.15)

It follows from Equation 82.7

(82.16)

TABLE 82.1 Butterworth Denominator Polynomials

Order(N) Butterworth Denominator Polynomials of H(s)

1 s + 1
2 s2 + s + 1
3 s3 + 2s2 + 2s + 1
4 s4 + 2.6131s3 + 3.4142s2 + 2.6131s + 1
5 s5 + 3.2361s4 + 5.2361s3 + 5.2361s2 + 3.2361s + 1

TABLE 82.2 Butterworth and Bessel Poles

Butterworth Poles Bessel Poles (–3 dB)

Re Im(±j) Re Im(±j)
N a b W Q a b W Q

1 –1.000 0.000 1.000 — –1.000 0.000 1.000 —
2 –0.707 0.707 1.000 0.707 –1.102 0.636 1.272 0.577
3 –1.000 0.000 1.000 — –1.323 0.000 1.323 —

–0.500 0.866 1.000 1.000 –1.047 0.999 1.448 0.691
4 –0.924 0.383 1.000 0.541 –1.370 0.410 1.430 0.522

–0.383 0.924 1.000 1.307 –0.995 1.257 1.603 0.805
5 –1.000 0.000 1.000 — –1.502 0.000 1.502 —

–0.809 0.588 1.000 0.618 –1.381 0.718 1.556 0.564
–0.309 0.951 1.000 1.618 –0.958 1.471 1.755 0.916

6 –0.966 0.259 1.000 0.518 –1.571 0.321 1.604 0.510
–0.707 0.707 1.000 0.707 –1.382 0.971 1.689 0.611
–0.259 0.966 1.000 1.932 –0.931 1.662 1.905 1.023

7 –1.000 0.000 1.000 — –1.684 0.000 1.684 —
–0.901 0.434 1.000 0.555 –1.612 0.589 1.716 0.532
–0.623 0.782 1.000 0.802 –1.379 1.192 1.822 0.661
–0.223 0.975 1.000 2.247 –0.910 1.836 2.049 1.126

8 –0.981 0.195 1.000 0.510 –1.757 0.273 1.778 0.506
–0.831 0.556 1.000 0.601 –1.637 0.823 1.832 0.560
–0.556 0.831 1.000 0.900 –1.374 1.388 1.953 0.711
–0.195 0.981 1.000 2.563 –0.893 1.998 2.189 1.226
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Solving the above equation for N gives N = 4.19. Since N must be an integer, a fifth-order filter is required
for this specification.

Chebyshev Filters or Chebyshev I Filters

The frequency response of an Nth-order Chebyshev low-pass filter is specified by the squared-magnitude
frequency response function

(82.17)

where TN(x) is the Nth-order Chebyshev polynomial and e is a real constant less than 1 which determines
the ripple of the filter. Specifically, for nonnegative integers N, the Nth-order Chebyshev polynomial is
given by

(82.18)

High-order Chebyshev polynomials can be derived from the recursion relation

(82.19)

where T0(x) = 1 and T1(x) = x .
The Chebyshev approximation gives an equiripple characteristic in the passband and is maximally

flat near infinity in the stopband. Each of the Chebyshev polynomials has real zeros that lie within the
interval (–1,1) and the function values for x Î [–1,1] do not exceed +1 and –1.

The pole locations for Chebyshev filter can be determined by generating the appropriate Chebyshev
polynomials, inserting them into Equation 82.17, factoring, and then selecting only the left half plane
roots. Alternatively, the pole locations Pk of an Nth-order Chebyshev filter can be computed from the
relation, for k = 1 ® N

(82.20)

where Qk = (2k – 1)p/2N and b = sinh–1(1/e).
Note: PN–k+1 and Pk are complex conjugates and when N is odd there is one real pole at

For the Chebyshev polynomials, Wp is the last frequency where the amplitude response passes through
the value of ripple at the edge of the passband. For odd N polynomials, where the ripple of the Chebyshev
polynomial is negative going, it is the [–1/(1 + e2)](1/2) frequency and for even N, where the ripple is
positive going, is the 0 dB frequency.

The Chebyshev filter is completely specified by the three parameters e, Wp, and N. In a practical design
application, e is given by the permissible passband ripple and Wp is specified by the desired passband
cutoff frequency. The order of the filter, i.e., N, is then chosen such that the stopband specifications are
satisfied.
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Elliptic or Cauer Filters

The frequency response of an Nth-order elliptic low-pass filter can be expressed by

(82.21)

where FN(·) is called the Jacobian elliptic function. The elliptic approximation yields an equiripple passband
and an equiripple stopband. Compared with the same-order Butterworth or Chebyshev filters, the elliptic
design provides the sharpest transition between the passband and the stopband. The theory of elliptic filters,
initially developed by Cauer, is involved, therefore for an extensive treatment refer to Reference 1.

Elliptic filters are completely specified by the parameters e, a , Wp, Ws, and N

where e = passband ripple
a = stop band floor
Wp = the frequency at the edge of the passband (for a designated passband ripple)
Ws = the frequency at the edge of the stopband (for a designated stopband floor)
N = the order of the polynomial

In a practical design exercise, the desired passband ripple, stopband floor, and Ws are selected and N
is determined and rounded up to the nearest integer value. The appropriate Jacobian elliptic function
must be selected and Ha( jW) must be calculated and factored to extract only the left plane poles. For
some synthesis techniques, the roots must expanded into polynomial form.

This process is a formidable task. While some filter manufacturers have written their own computer
programs to carry out these calculations, they are not readily available. However, the majority of appli-
cations can be accommodated by use of published tables of the pole/zero configurations of low-pass
elliptic transfer functions. An extensive set of such tables for a common selection of passband ripples,
stopband floors, and shape factors is available in Reference 2.

Bessel Filters

The primary objectives of the preceding three approximations were to achieve specific loss characteristics.
The phase characteristics of these filters, however, are nonlinear. The Bessel filter is optimized to reduce
nonlinear phase distortion, i.e., a maximally flat delay. The transfer function of a Bessel filter is given by

(82.22)

where BN(s) is the Nth-order Bessel polynomial. The overall squared-magnitude frequency response
function is given by

(82.23)

To illustrate Equation 82.22 the Bessel transfer function for N = 4 is given below:

(82.24)
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Table 82.2 lists the factored pole frequencies as real and imaginary parts and as frequency and Q for
Bessel transfer functions that have been normalized to Wc = –3 dB.

82.4 Design Examples for Passive and Active Filters

Passive R, L, C Filter Design

The simplest and most commonly used passive filter is the simple, first-order (N = 1) R–C filter shown
in Figure 82.3. Its transfer function is that of a first-order Butterworth low-pass filter. The transfer
function and –3 dB Wc are

(82.25)

While this is the simplest possible filter implementation, both source and load impedance change the dc
gain and/or corner frequency and its rolloff rate is only first order, or –6 dB/octave.

To realize higher-order transfer functions, passive filters use R, L, C elements usually configured in a
ladder network. The design process is generally carried out in terms of a doubly terminated two-port
network with source and load resistors R1 and R2 as shown in Figure 82.4. Its symbolic representation is
given below.

The source and load resistors are normalized in regard to a reference resistance RB = R1, i.e.,

(82.26)

The values of L and C are also normalized in respect to a reference frequency to simplify calculations.
Their values can be easily scaled to any desired set of actual elements.

(82.27)

FIGURE 82.3 A passive first-order RC filter can serve as an 
antialiasing filter or to minimize high-frequency noise.

FIGURE 82.4 A passive filter can have the symbolic 
representation of a doubly terminated filter.
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Low-pass filters, whose magnitude-squared functions have no finite zero, i.e., whose characteristic func-
tions C( jW) are polynomials, can be realized by lossless ladder networks consisting of inductors as the
series elements and capacitors as the shunt elements. These types of approximations, also referred to as
all-pole approximations, include the previously discussed Butterworth, Chebyshev Type I, and Bessel
filters. Figure 82.5 shows four possible ladder structures for even and odd N, where N is the filter order.

In the case of doubly terminated Butterworth filters, the normalized values are precisely given by

(82.28)

where av is the normalized L or C element value. As an example we will derive two possible circuits for
a doubly terminated Butterworth low-pass of order 3 with RB = 100 W and a cutoff frequency Wc = WB =
10 kHz. The element values from Equation 82.28 are

(82.29)

A possible realization is shown in Figure 82.6.

FIGURE 82.5 Even and odd N passive all-pole filter networks can be realized by several circuit configurations
(N odd, above; N even, below).

FIGURE 82.6 A third-order passive all-pole filter can be realized by a doubly terminated third-order circuit.
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Table 82.3 gives normalized element values for the various all-pole filter approximations discussed in
the previous section up to order 3 and is based on the following normalization:

1. r1 = 1;
2. All the cutoff frequencies (end of the ripple band for the Chebyshev approximation) are Wc = 1 rad/s;
3. r2 is either 1 or ¥, so that both singly and doubly terminated filters are included.

The element values in Table 82.3 are numbered from the source end in the same manner as in Figure 82.4.
In addition, empty spaces indicate unrealizable networks. In the case of the Chebyshev filter, the amount
of ripple can be specified as desired, so that in the table only a selective sample can be given. Extensive
tables of prototype element values for many types of filters can be found in Reference 4.

The example given above, of a Butterworth filter of order 3, can also be verified using Table 82.3. The
steps necessary to convert the normalized element values in the table into actual filter values are the same
as previously illustrated.

In contrast to all-pole approximations, the characteristic function of an elliptic filter function is a
rational function. The resulting filter will again be a ladder network but the series elements may be
parallel combinations of capacitance and inductance and the shunt elements may be series combinations
of capacitance and inductance.

Figure 82.5 illustrates the general circuits for even and odd N, respectively. As in the case of all-pole
approximations, tabulations of element values for normalized low-pass filters based on elliptic approxi-
mations are also possible. Since these tables are quite involved the reader is referred to Reference 4.

Active Filter Design

Active filters are widely used and commercially available with cutoff frequencies from millihertz to
megahertz. The characteristics that make them the implementation of choice for several applications are
small size for low frequency filters because they do not use inductors; precision realization of theoretical
transfer functions by use of precision resistors and capacitors; high input impedance that is easy to drive
and for many circuit configurations the source impedance does not effect the transfer function; low
output impedance that can drive loads without effecting the transfer function and can drive the transient,
switched capacitive, loads of the input stages of A/D converters and low (N+THD) performance for pre-
A/D antialiasing applications (as low as –100 dBc).

Active filters use R, C, A (operational amplifier) circuits to implement polynomial transfer functions.
They are most often configured by cascading an appropriate number of first- and second-order sections.

The simplest first-order (N = 1) active filter is the first-order passive filter of Figure 82.3 with the
addition of a unity gain follower amplifier. Its cutoff frequency (Wc) is the same as that qiven in
Equation 82.25. Its advantage over its passive counterpart is that its operational amplifier can drive
whatever load that it can tolerate without interfering with the transfer function of the filter.

Table 82.3. Element Values for low-pass filter circuits

Filter Type r2

N = 2, Element Number N = 3, Element Number

1  2 1 2 3

Butterworth ¥
1

1.4142
1.4142

0.7071
1.4142

1.5000
1.0000

1.3333
2.0000

0.5000
1.0000

Chebyshev type I
0.1-dB ripple

¥
1

0.7159
—

0.4215
—

1.0895
1.0316

1.0864
1.1474

0.5158
1.0316

Chebyshev type I
0.5 dB ripple

¥
1

0.9403
—

0.7014
—

1.3465
1.5963

1.3001
1.0967

0.7981
1.5963

Bessel ¥
1

1.0000
1.5774

0.3333
0.4227

0.8333
1.2550

0.4800
0.5528

0.1667
0.1922
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The vast majority of higher-order filters have poles that are not located on the negative real axis in
the s-plane and therefore are in complex conjugate pairs that combine to create second-order pole pairs
of the form:

(82.30)

where p1, p2 = a ± jb
w2

p = a2 + b2

Q = 

The most commonly used two-pole active filter circuits are the Sallen and Key low-pass resonator, the
multiple feedback bandpass, and the state variable implementation as shown in Figure 82.7a, b, and c. In
the analyses that follow, the more commonly used circuits are used in their simplest form. A more
comprehensive treatment of these and numerous other circuits can be found in Reference 20.

The Sallen and Key circuit of Figure 82.7a is used primarily for its simplicity. Its component count is
the minimum possible for a two-pole active filter. It cannot generate stopband zeros and therefore is
limited in its use to monotonic roll-off transfer functions such as Butterworth and Bessel filters. Other
limitations are that the phase shift of the amplifier reduces the Q of the section and the capacitor ratio
becomes large for high-Q circuits. The amplifier is used in a follower configuration and therefore is
subjected to a large common mode input signal swing which is not the best condition for low distortion
performance. It is recommended to use this circuit for a section Q < 10 and to use an amplifier whose
gain bandwidth product is greater than 100 fp.

The transfer function and design equations for the Sallen and Key circuit of Figure 82.7a are

(82.31)

FIGURE 82.7 Second-order active filters can be realized by common filter circuits: (A) Sallen and Key low-pass,
(B) multiple feedback bandpass, (C) state variable.

H s s
Q

s s as a b( ) = + + Û + + +2 2 2 22
w

wp
p
2

w p

2 2

2 2

a

a b

a
= +( )

H s
R R C C

s
R C

s
R R C C

s
Q

s

( ) =
+ +

=
+ +

1

1 1
1 2 1 2

2

1 2  1 2 1 2

2

2

w
w

w

p

p
p
2

© 1999 by CRC Press LLC



from which obtains

(82.32)

(82.33)

which has valid solutions for

(82.34)

In the special case where

(82.35)

The design sequence for Sallen and Key low-pass of Figure 82.7a is as follows:

For a required fp and Q, select C1, C2 to satisfy Equation 82.34. Compute R1, R2 from Equation 82.33
(or Equation 82.35 if R1 is chosen to equal R2) and scale the values of C1 and C2 and R1 and R2 to
desired impedance levels.

As an example, a three-pole low-pass active filter is shown in Figure 82.8. It is realized with a buffered
single-pole RC low-pass filter section in cascade with a two-pole Sallen and Key section.

To construct a three-pole Butterworth filter, the pole locations are found in Table 82.2 and the element
values in the sections are calculated from Equation 82.25 for the single real pole and in accordance with
the Sallen and Key design sequence listed above for the complex pole pair.

From Table 82.2, the normalized pole locations are

For a cutoff frequency of 10 kHz and if it is desired to have an impedance level of 10 kW , then the
capacitor values are computed as follows:

FIGURE 82.8 A three-pole Butterworth active can be configured with a buffered first-order RC in cascade with a
two-pole Sallen and Key resonator.
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For R1 = 10 kW :

from Equation 82.25, 

For R2 = R3 = R = 10 kW :

from Equation 82.35, 

from which

The multiple feedback circuit of Figure 82.7b is a minimum component count, two-pole (or one-pole
pair), bandpass filter circuit with user definable gain. It cannot generate stopband zeros and therefore is
limited in its use to monotonic roll-off transfer functions. Phase shift of its amplifier reduces the Q of
the section and shifts the fp. It is recommended to use an amplifier whose open loop gain at fp is > 100Q2Hp.

The design equations for the multiple feedback circuit of Figure 82.4b are

(82.36)

when s = jwp, the gain Hp is

(82.37)

From Equation 82.36 and 82.37 for a required set of wp, Q, and Hp:

(82.38)

For R2 to be realizable,

(82.39)

The design sequence for a multiple feedback bandpass filter is as follows

Select C1 and C2 to satisfy Equation 82.39 for the Hp and Q required. Compute R1, R2, and R3. Scale
R1, R2, R3, C1, and C2 as required to meet desired impedance levels.

Note that it is common to use C1 = C2 = C for applications where Hp = 1 and Q > 0.707.
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The state variable circuit of Figure 82.7c is the most widely used active filter circuit. It is the basic
building block of programmable active filters and of switched capacitor designs. While it uses three or
four amplifiers and numerous other circuit elements to realize a two-pole filter section, it has many
desirable features. From a single input it provides low-pass (VL), high-pass (VH), and bandpass (VB) outputs
and by summation into an additional amplifier (A4) (or the input stage of the next section) a band reject
(VR) or stop band zero can be created. Its two integrator resistors connect to the virtual ground of their
amplifiers (A2, A3) and therefore have no signal swing on them. Therefore, programming resistors can be
switched to these summing junctions using electronic switches. The sensitivity of the circuit to the gain
and phase performance of its amplifiers is more than an order of magnitude less than single amplifier
designs. The open-loop gain at fp does not have to be multiplied by either the desired Q or the gain at dc
or fp. Second-order sections with Q up to 100 and fp up to 1 MHz can be built with this circuit.

There are several possible variations of this circuit that improve its performance at particular outputs.
The input can be brought into several places to create or eliminate phase of inversions; the damping
feedback can be implemented in several ways other than the RQa and RQb that are shown in Figure 82.7c
and the fp and Q of the section can be or adjusted independently from one another. DC offset adjustment
components can be added to allow the offset at any one output to be trimmed to zero.

For simplicity of presentation, Figure 82.7c makes several of the resistors equal and identifies others
with subscripts that relate to their function in the circuit. Specifically, the feedback amplifier A1, that
generates the VH output has equal feedback and input resistor from the VL feedback signal to create unity
gains from that input. Similarly, the “zero summing” amplifier, A4 has equal resistors for its feedback and
input from VL to make the dc gain at the VR output the same as that at VL. More general configurations
with all elements included in the equation of the transfer function are available in numerous reference
texts including Reference 20.

The state variable circuit, as configured in Figure 82.7c, has four outputs. Their transfer functions are

(82.40a)

(82.40b)

(82.40c)

(82.40d)

where

(82.41)
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Note that the dc gain at the low-pass output is

(82.42)

from which obtains

(82.42)

The design sequence for the state variable filter of Figure 82.7c is

Select the values of Rf and C to set the frequency wp, the values of Ri for the desired dc gain and RQa

and RQb for the desired Q and dc gain.

82.5 Discrete-Time Filters

A digital filter is a circuit or a computer program that computes a discrete output sequence from a discrete
input sequence. Digital filters belong to the class of discrete-time LTI (linear time invariant) systems,
which are characterized by the properties of causality, recursibility, and stability, and may be characterized
in the time domain by their impulse response and in the transform domain by their transfer function.
The most general case of a discrete-time LTI system with the input sequence denoted by x(kT) and the
resulting output sequence y(kT) can be described by a set of linear difference equations with constant
coefficients.

(82.43)

where a0 = 1. An equivalent relation between the input and output variables can be given through the
convolution sum in terms of the impulse response sequence h(kT):

(82.44)

The corresponding transfer function is given by

(82.45)

where H(z) is the z-transform of the impulse response h(kT) and X(z), Y(z) are the z-transform of the
input signal x(kT) and the output or the filtered signal y(kT). As can be seen from Equation 82.44, if for
at least one m, am ¹ 0, the corresponding system is recursive; its impulse response is of infinite duration —
infinite impulse response (IIR) filter. If am = 0, the corresponding system is nonrecursive — finite
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impulse response (FIR) filter; its impulse response is of finite duration and the transfer function H(z)
is a polynomial in z–1. The zeros of the polynomial X(z) given by z = z¥i are called the poles of H(z) and
are commonly referred to as the natural frequencies of the filter. The condition for the stability of the
filter is expressed by the constraint that all the poles of H(z) should lie inside the unit circle, that is
*z¥i* < 1. The zeros of Y(z) given by z = z0t which are equivalent to the zeros of H(z) are called the
transmission zeros of the filter. Clearly, at these frequencies the output of the filter is zero for any finite
input.

On the unit circle, the transfer function frequency H(z) reduces to the frequency response function
H(e jwT), the discrete-time Fourier transform of h(kT), which in general is complex and can be expressed
in terms of magnitude and phase

(82.46)

The gain function of the filter is given as

(82.47)

It is also common practice to call the negative of the gain function the attenuation. Note that the
attenuation is a positive number when the magnitude response is less than 1.

Figure 82.9 gives a block diagram realizing the difference equation of the filter, which is commonly
referred to as the direct-form I realization. Notice that the element values for the multipliers are obtained
directly from the numerator and denominator coefficients of the transfer function. By rearranging the
structure in regard to the number of delays, one can obtain the canonic structure called direct-form II
shown in Figure 82.10, which requires the minimum number of delays.

Physically, the input numbers are samples of a continuous signal and real-time digital filtering involves
the computation of the iteration of Equation 82.43 for each incoming new input sample. Design of a
filter consists of determining the constants am and bm that satisfies a given filtering requirement. If the
filtering is performed in real time, then the right side of Equation 82.46 must be computed in less than
the sampling interval T.

FIGURE 82.9 The difference equation of a digital filter can be realized by a direct-form I implementation that uses
separate delay paths for the X and Y summations.
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82.6 Digital Filter Design Process

The digital filter design procedure consists of the following basic steps:

1. Determine the desired response. The desired response is normally specified in the frequency
domain in terms of the desired magnitude response and/or the desired phase response.

2. Select a class of filters (e.g., linear-phase FIR filters or IIR filters) to approximate the desired
response.

3. Select the best member in the filter class.
4. Implement the best filter using a general-purpose computer, a DSP, or a custom hardware chip.
5. Analyze the filter performance to determine whether the filter satisfies all the given criteria.

82.7 FIR Filter Design

In many digital signal-processing applications, FIR filters are generally preferred over their IIR counterparts,
because they offer a number of advantages compared with their IIR equivalents. Some of the good properties
of FIR filters are a direct consequence of their nonrecursive structure. First, FIR filters are inherently stable
and free of limit cycle oscillations under finite-word length conditions. In addition, they exhibit a very low
sensitivity to variations in the filter coefficients. Second, the design of FIR filters with exactly linear phase
(constant group delay) vs. frequency behavior can be accomplished easily. This property is useful in many
application areas, such as speech processing, phase delay equalization, image processing, etc.

Finally, there exists a number of efficient algorithms for designing optimum FIR filters with arbitrary
specifications. The main disadvantage of FIR filters over IIR filter is that FIR filter designs generally
require, particularly in applications requiring narrow transition bands, considerably more computation
to implement.

An FIR filter of order N is described by a difference equation of the form

(82.48)

FIGURE 82.10 A direct-form II implementation of the difference equations minimizes the number of delay elements.
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and the corresponding transfer function is

(82.49)

The objective of FIR filter design is to determine N ± 1 coefficients given by

(82.50)

so that the transfer function H(e jwT) approximates a desired frequency characteristic. Note that because
Equation 82.47 is also in the form of a convolution summation, the impulse response of an FIR filter is
given by

(82.51)

Two equivalent structures for FIR filters are given in Figure 82.11.
The accuracy of an FIR approximation is described by the following parameters:

dP passband ripple
ds stopband attenuation
Dw transition bandwidth

These quantities are depicted in Figure 82.12 for a prototype low-pass filter. dp and ds characterize the
permissible errors in the passband and in stopband, respectively. Usually, the passband ripple and
stopband attenuation are given in decibels, in which case their values are related to the parameters dp

and ds by

(82.52)

FIGURE 82.11 The sequence of the delays and summations can be varied to produce alternative direct-form
implementations.
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(82.53)

Note that due to the symmetry and periodicity of the magnitude response of *H(e jwT)*, it is sufficient to
give the filter specifications in the interval 0 £ w £ p.

Windowed FIR Filters

Several design techniques can be employed to synthesize linear-phase FIR filters. The simplest imple-
mentation is based on windowing, which commonly begins by specifying the ideal frequency response
and expanding it in a Fourier series and then truncating and smoothing the ideal impulse response by
means of a window function. The truncation results in large ripples before and after the discontinuity
of the ideal frequency response known as the Gibbs phenomena, which can be reduced by using a window
function that tapers smoothly at both ends. Filters designed in this way possess equal passband ripple
and stopband attenuation, i.e.,

(82.54)

To illustrate this method, let us define an ideal desired frequency response that can be expanded in a
Fourier series

(82.55)

where hd(kT) is the corresponding impulse response sequence, which can be expressed in terms of Hd(e jwT)
as

(82.56)

The impulse response of the desired filter is then found by weighting this ideal impulse response with a
window w(kT) such that

FIGURE 82.12 Tolerance limits must be defined for an FIR low-pass filter magnitude response.
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(82.57)

Note that for w(kT) in the above-given interval we obtain the rectangular window. Some commonly used
windows are Bartlett (triangular), Hanning, Hamming, Blackmann, etc., the definitions of which can be
found in Reference 15.

As an example of this design method, consider a low-pass filter with a cutoff frequency of wc and a
desired frequency of the form

(82.58)

Using Equation 82.56 we obtain the corresponding ideal impulse response

(82.59)

Choosing N = 4, wc = 0.6p and a Hamming window defined by

(82.60)

we obtain the following impulse response coefficients:

(82.61)

Optimum FIR Filters

As mentioned earlier, one of the principal advantages of FIR filters over their IIR counterparts is the
availability of excellent design methods for optimizing arbitrary filter specifications. Generally, the design
criterion for the optimum solution of an FIR filter design problem can be characterized as follows. The
maximum error between the approximating response and the given desired response has to be minimized,
i.e.,

(82.62)
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where E(e jwT) is the weighted error function on a close range X of [0,p] and Wd(e jwT) a weighting function,
which emphasizes the approximation error parameters in the design process. If the maximum absolute
value of this function is less then or equal e on X, i.e.,

(82.63)

the desired response is guaranteed to meet the given criteria. Thus, this optimization condition implies
that the best approximation must have an equiripple error function. The most frequently used method
for designing optimum magnitude FIR filters is the Parks–McClellan algorithm. This method essentially
reduces the filter design problem into a problem in polynomial approximation in the Chebyshev approx-
imation sense as discussed above. The maximum error between the approximation and the desired
magnitude response is minimized. It offers more control over the approximation errors in different
frequency bands than is possible with the window method. Using the Parks–McClellan algorithm to
design FIR filters is computationally expensive. This method, however, produces optimum FIR filters by
applying time-consuming iterative techniques. A FORTRAN program for the Parks–McClellan algorithm
can be found in the IEEE publication Programs for DSP in Reference 12. As an example of an equiripple
filter design using the Parks–McClellan algorithm, a sixth-order low-pass filter with a passband 0 £ w £
0.6p, a stopband 0.8p £ w £ p, and equal weighting for each band was designed by means of this program.

The resulting impulse response coefficients are

(82.64)

Design of Narrowband FIR Filters

When using conventional techniques to design FIR filters with especially narrow bandwidths, the resulting
filter lengths may be very high. FIR filters with long filter lengths often require lengthy design and
implementation times, and are more susceptible to numerical inaccuracy. In some cases, conventional
filter design techniques, such as the Parks–McClellan algorithm, may fail the design altogether. A very
efficient algorithm called the interpolated finite impulse response (IFIR) filter design technique can be
employed to design narrowband FIR filters. Using this technique produces narrowband filters that require
far fewer coefficients than those filters designed by the direct application of the Parks–McClellan algo-
rithm. For more information on IFIR filter design, see Reference 7.

82.8 IIR Filter Design

The main advantage of IIR filters over FIR filters is that IIR filters can generally approximate a filter
design specification using a lower-order filter than that required by an FIR design to perform similar
filtering operations. As a consequence, IIR filters execute much faster and do not require extra memory,
because they execute in place. A disadvantage of IIR filters, however, is that they have a nonlinear phase
response. The two most common techniques used for designing IIR filters will be discussed in this section.
The first approach involves the transformation of an analog prototype filter. The second method is an
optimization-based approach allowing the approximation of an arbitrary frequency response.
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The transformation approach is quite popular because the approximation problem can be reduced to
the design of classical analog filters, the theory of which is well established, and many closed-form design
methods exist. Note that this in not true for FIR filters, for which the approximation problems are of an
entire different nature. The derivation of a transfer function for a desired filter specification requires the
following three basic steps:

1. Given a set of specifications for a digital filter, the first step is to map the specifications into those
for an equivalent analog filter.

2. The next step involves the derivation of a corresponding analog transfer function for the analog
prototype.

3. The final step is to translate the transfer function of the analog prototype into a corresponding
digital filter transfer function.

Once the corresponding analog transfer function for the analog prototype is derived, it must be
transformed using a transformation that maps Ha(s) into H(z). The simplest and most appropriate choice
for s is the well-known bilinear transform of the z-variable

(82.65)

which maps a stable analog filter in the s-plane into a stable digital filter in the z-plane. Substituting s
with the right-hand side of Equation 82.63 in Ha(s) results in

(82.66)

As it can be seen from Equation 82.66, the analog frequency domain (imaginary axis) maps onto the
digital frequency domain (unit circle) nonlinearly. This phenomena is called frequency warping and must
be compensated in a practical implementation. For low frequencies W and w are approximately equal.
We obtain the following relation between the analog frequency W and the digital frequency w

(82.67)

(82.68)

The overall bilinear transformation procedure is as follows:

1. Convert the critical digital frequencies (e.g., wp and ws for low-pass filters) to the corresponding
analog frequencies in the s-domain using the relationship given by Equation 82.67.

2. Derive the appropriate continuous prototype transfer function Ha(s) that has the properties of the
digital filter at the critical frequencies.

3. Apply the bilinear transform to Ha(s) to obtain H(z) which is the required digital filter transfer
function.

To illustrate the three-step IIR design procedure using the bilinear transform, consider the design of a
second-order Butterworth low-pass filter with a cutoff frequency of wc = 0.3p. The sampling rate of the
digital filter is to be fs = 10 Hz, giving T = 0.1 s. First, we map the cutoff frequency to the analog frequency
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(82.69)

The poles of the analog Butterworth filter transfer function Ha(s) are found using Equation 82.11. As
explained earlier, these poles lie equally spaced in the s-plane on a circle of radius Wc .

(82.70)

Application of the bilinear transformation

(82.71)

gives the digital transfer function

(82.72)

The above computations were carried out using Reference 9, which greatly automates the design procedure.

Design of Arbitrary IIR Filters

The IIR filter design approach discussed in the previous section is primarily suitable for frequency-
selective filters based on closed-form formulas. In general, however, if a design other than standard low-
pass, high-pass, bandpass, and stopband is required, or if the frequency responses of arbitrary specifica-
tions are to be matched, in such cases it is often necessary to employ algorithmic methods implemented
on computers. In fact, for nonstandard response characteristics, algorithmic procedures may be the only
possible design approach. Depending on the error criterion used, the algorithmic approach attempts to
minimize the approximation error between the desired frequency response Hd(e jwT) and H(e jwT) or
between the time-domain response hd(kT) and h(kT). Computer software is available for conveniently
implementing IIR filters approximating arbitrary frequency response functions [8,9].

Cascade-Form IIR Filter Structures

Recall that theoretically there exist an infinite number of structures to implement a digital filter. Filters
realized using the structure defined by Equation 82.44 directly are referred to as direct-form IIR filters.
The direct-form structure, however, is not employed in practice except when the filter order N £ 2,
because they are known to be sensitive to errors introduced by coefficient quantization and by finite-
arithmetic conditions. Additionally, they produce large round-off noise, particularly for poles closed to
the unit circle.

Two less-sensitive structures can be obtained by partial fraction expansion or by factoring the right-
hand side of Equation 82.46 in terms of real rational functions of order 1 and 2. The first method leads
to parallel connections and the second one to cascade connections of corresponding lower-order sections,
which are used as building blocks to realize higher-order transfer functions. In practice, the cascade form
is by far the preferred structure, since it gives the freedom to choose the pairing of numerators and
denominators and the ordering of the resulting structure. Figure 82.13 shows a cascade-form implemen-
tation, whose overall transfer function is given by
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(82.73)

where the transfer function of the kth building block is

(82.74)

Note this form is achieved by factoring Equation 82.45 into second-order sections.
There are, of course, many other realization possibilities for IIR filters, such as state-space structures

[9], lattice structures [10], and wave structures. The last is introduced in the next section.

82.9 Wave Digital Filters

It was shown earlier that for recursive digital filters the approximation problem can be reduced to classical
design problems by making use of the bilinear transform. For wave digital filters (WDFs) this is carried
one step farther in that the structures are obtained directly from classical circuits. Thus, to every WDF
there corresponds an LCR reference filter from which it is derived. This relationship accounts for their
excellent properties concerning coefficient sensitivity, dynamic range, and all aspects of stability under
finite-arithmetic conditions. The synthesis of WDFs is based on the wave network characterization;
therefore, the resulting structures are referred to as wave digital filters. To illustrate the basic idea behind
the theory of WDFs, consider an inductor L, which is electrically described by V(s) = sLI(s). In the next
step we define wave variables A1(s) and B1(s) as

(82.75)

where R is called the port resistance. Substituting V(s) = sLI(s) in the above relation and replacing s in
A1(s) and B1(s) with the bilinear transform given by Equation 82.65, we obtain

(82.76)

Letting R = L, the above relation reduces to

(82.77)

Thus an inductor translates into a unit delay in cascade with an inverter in the digital domain. Similarly,
it is easily verified that a capacitance can be simulated by a unit delay and a resistor by a digital sink.
Figure 82.14 shows the digital realizations of impedances and other useful one-port circuit elements.

FIGURE 82.13 An IIR filter can be implemented by a cascade of individual transfer functions.
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To establish an equivalence with classical circuits fully, the interconnections are also simulated by so-
called wave adaptors. The most important of these interconnections are series and parallel connections,
which are simulated by series and parallel adaptors, respectively. For most filters of interest, only two-
and three-port adaptors are employed. For a complete design example consider Figure 82.15.

FIGURE 82.14 Digital filter implementations use functional equivalents to one port linear filter elements.

FIGURE 82.15 Digital wave filters establish equivalence with classical filter circuits by use of wave adapter substi-
tutions: (A) LC reference low-pass; (B) identification of wire interconnections; (C) corresponding wave digital filter.
© 1999 by CRC Press LLC



For a given LC filter, one can readily derive a corresponding WDF by using the following procedure.
First, the various interconnections in the LC filter are identified as shown in Figure 82.15. In the next
step the electrical elements in the LC filter are replaced by its digital realization using Figure 82.15. Finally,
the interconnections are substituted using adaptors. Further discussions and numerical examples dealing
with WDFs can be found in Reference 3, 13, and 14.

82.10 Anti-Aliasing and Smoothing Filters

In this section two practical application areas of filters in the analog conditioning stage of a data
acquisition system are discussed. A block diagram of a typical data acquisition system is shown in
Figure 82.16, consisting of an antialiasing filter before the analog-to-digital converter (ADC) and a
smoothing filter after the digital-to-analog converter (DAC).

For a complete discrete reconstruction of a time-continuous, band-limited input signal having the
spectrum 0 £ f £ fmax, the sampling frequency must be, according to the well-known Shannon’s sampling
theorem, at least twice the highest frequency in the time signal. In our case, in order to be able to represent
frequencies up to fmax, the sampling frequency fs = 1/T > 2fmax. The necessary band limiting to f £ fmax of
the input time-continuous signal is performed by a low-pass filter, which suppresses higher spectral
components greater than fmax. Violation of this theorem results in alias frequencies. As a result, frequency
components above fx/2, the so-called Nyquist frequency, appear as frequency components below fx /2.
Aliasing is commonly addressed by using antialiasing filters to attenuate the frequency components at
and above the Nyquist frequency to a level below the dynamic range of an ADC before the signal is
digitized. Ideally, a low-pass filter with a response defined by

(82.78)

is desired to accomplish this task. In practice, a variety of techniques based on the principles of contin-
uous-time analog low-pass filter design can be employed to approximate this “brick-wall” type of char-
acteristic. Antialiasing filters typically exhibit attenuation slopes in the range from 45 to 120 dB/octave
and stopband rejection from 75 to 100 dB. Among the types of filters more commonly used for antialias
purposes are the Cauer elliptic, Bessel, and Butterworth. The optimum type of filter depends on which
kinds of imperfections, e.g., gain error, phase nonlinearity, passband and stopband ripple, etc., are most
likely to be tolerated in a particular application. For example, Butterworth filters exhibit very flat fre-
quency response in the passband, while Chebyshev filters provide steeper attenuation at the expense of
some passband ripple. The Bessel filter provides a linear phase response over the entire passband but less
attenuation in the stopband. The Cauer elliptic filter, with its extremely sharp roll-off, is especially useful
as an antialiasing filter for multichannel digitizing data acquisition systems. However, the large-phase
nonlinearity makes it more appropriate for applications involving analysis of the frequency content of
signals as opposed to phase content or waveform shape.

Many considerations discussed above also apply to smoothing filters. Due to the sampling process,
the frequency response after the digital-to-analog conversion becomes periodic with a period equal to
the sampling frequency. The quantitization steps that are created in the DAC reconstruction of the output
waveform and are harmonically related to the sampling frequency must be suppressed through a low-

FIGURE 82.16 A data acquisition system with continuous time inputs and outputs uses antialias prefiltering, an
A/D converter, digital signal processing, a D/A converter, and an output smoothing filter.
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pass filter having the frequency response of Equation 82.78 also referred to as a smoothing or recon-
struction filter. While an antialiasing filter on the input avoids unwanted errors that would result from
undersampling the input, a smoothing filter at the output reconstructs a continuous-time output from
the discrete-time signal applied to its input.

Consideration must be given to how much antialiasing protection is needed for a given application.
It is generally desirable to reduce all aliasable frequency components (at frequencies greater than half of
the sampling frequency) to less than the LSB of the ADC being used. If it is possible that the aliasable
input can have an amplitude as large as the full input signal range of the ADC, then it is necessary to
attenuate it by the full 2N range of the converter. Since each bit of an ADC represents a factor of 2 from
the ones adjacent to it, and 20 log(2) = 6 dB, the minimum attenuation required to reduce a full-scale
input to less than a LSB is

(82.79)

where N is the number of bits of the ADC.
The amount of attenuation required can be reduced considerably if there is knowledge of the input

frequency spectrum. For example, some sensors, for reasons of their electrical or mechanical frequency
response, might not be able to produce a full-scale signal at or above the Nyquist frequency of the system
and therefore “full-scale” protection is not required. In many applications, even for 16-bit converters
that, in the worst case, would require 96 dB of antialias protection, 50 to 60 dB is adequate.

Additional considerations in antialias protection of the system are the noise and distortion that are
introduced by the filter that is supposed to be eliminating aliasable inputs. It is possible to have a perfectly
clean input signal which, when it is passed through a prefilter, gains noise and harmonic distortion
components in the frequency range and of sufficient amplitude to be within a few LSBs of the ADC. The
ADC cannot distinguish between an actual signal that is present in the input data and a noise or distortion
component that is generated by the prefilter. It is necessary that both noise and distortion components
in the output of the antialias filter must also be kept within an LBS of the ADC to ensure system accuracy.

82.11 Switched Capacitor Filters

Switched-capacitor (SC) filters, also generally referred to as analog sampled data filters, provide an
alternative to conventional active-RC filters and are commonly used in the implementation of adjustable
antialiasing filters. SC filters comprise switches, capacitors, and op amps. Essentially, an SC replaces the
resistor in the more traditional analog filter designs. Because the impedance of the SC is a function of
the switching frequency, one can vary the cutoff frequency of the SC filter by varying the frequency of
the clock signal controlling the switching. The main advantage of SC filters is that they can be imple-
mented in digital circuit process technology, since the equivalent of large resistors can be simulated by
capacitors having small capacitance values.

When using SC filters, one must also be aware that they are in themselves a sampling device that
requires antialias protection on the input and filtering on their outputs to remove clock feedthrough.
However, since clock frequencies are typically 50 to 100 times fc of the filter, a simple first or second RC
filter on their inputs and outputs will reduce aliases and noise sufficient to permit their use with 12- to
14-bit ADCs. One need also to consider that they typically have dc offset errors that are large, vary with
time, temperature, and programming or clock frequency. Interested readers may refer to References 5
and 14.

82.12 Adaptive Filters

Adaptive filtering is employed when it is necessary to realize or simulate a system whose properties vary
with time. As the input characteristics of the filter change with time, the filter coefficients are varied with

a < - ( )20 6N  dB
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time as a function of the filter input. Some typical applications of adaptive filtering include spectral
estimation of speech, adaptive equalization, echo cancellation, and adaptive control, to name just a few.
Depending on the application, the variations in the coefficients are carried out according to an optimi-
zation criterion and the adaptation is performed at a rate up to the sampling rate of the system. The
self-adjustment capability of adaptive filter algorithms is very valuable when the application environment
cannot be precisely described. Some of the most widely used adaptive algorithms are LMS (least-mean
square), RLS (recursive least-squares), and frequency domain, also known as block algorithm. The
fundamental concept of an adaptive filter is depicted in Figure 82.17.

An adaptive filter is characterized by the filter input x(kT) and the desired response d(kT). The error
sequence e(kT) formed by

(82.80)

and x(kT),…,x(kT – T(N –1)) serve as inputs to an adaptive algorithm that recursively determines the
coefficients w0(kT + T),…,wN–1(kT + T). A number of adaptive algorithms and structures can be found
in the literature that satisfy different optimization criteria in different application areas. For more detailed
developments refer to References 1, 15, and 16.

Defining Terms

Antialiasing filter: Antialiasing filters remove any frequency elements above the Nyquist frequency.
They are employed before the sampling operation is conducted to prevent aliasing in the sampled
version of the continuous-time signal.

Bandpass filter: A filter whose passband extends from a lower cutoff frequency to an upper cutoff
frequency. All frequencies outside this range are stopped.

Equiripple: Characteristic of a frequency response function whose magnitude exhibits equal maxima
and minima in the passband.

Finite impulse response (FIR) filter: A filter whose response to a unit impulse function is of finite
length, i.e., identically zero outside a finite interval.

High-pass filter: A filter that passes all frequencies above its cutoff frequency and stops all frequencies
below it.

Ideal filter: An ideal filter passes all frequencies within its passband with no attenuation and rejects all
frequencies in its stopband with infinite attenuation. There are five basic types of ideal filters: low
pass, high pass, bandpass, stopband, and all pass.

FIGURE 82.17 An adaptive filter uses an adaptive algorithm to change the performance of a digital filter in response
to defined conditions.
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Infinite impulse response (IIR) filter: A filter whose response to a unit impulse function is of infinite
length, i.e., nonzero for infinite number of samples.

Low-pass filter: A filter that attenuates the power of any signals with frequencies above its defined
cutoff frequency.

Passband: The range of frequencies of a filter up to the cutoff frequency.
Stopband: The range of frequencies of a filter above the cutoff frequency.
Transition region: The range of frequencies of a filter between a passband and a stopband.
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