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85.1 Introduction

Almost every modern instrumentation system includes some form of digitizer, or analog-to-digital con-
verter (ADC). An ADC converts real-world signals (usually voltages) into digital numbers so that a
computer or digital processor can (1) acquire signals automatically, (2) store and retrieve information
about the signals, (3) process and analyze the information, and (4) display measurement results. A
digitizing system can do these jobs with greater speed, reliability, repeatability, accuracy, and resolution
than a purely analog system normally can.

The two main functions of an ADC are sampling and quantization. These two processes convert analog
signals from the time and voltage continuums (respectively) into digital numbers having discrete ampli-
tudes, at discrete times. To represent changing signals at every instant in time or at every possible voltage
would take an infinite amount of storage. So for every system there is an appropriate sampling rate and
degree of quantization (resolution) so that the system retains as much information as it needs about the
input signals while keeping track of manageable amounts of data. Ultimately, the purpose of sampling
and quantization is to reduce as much as possible the amount of information about a signal that a system
must store in order to reconstruct or analyze it meaningfully.

85.2 Sampling

To prevent having to digitize an infinite amount of information, an analog signal must first be sampled.
Sampling is the process of picking one value of a signal to represent the signal for some interval of time.
Normally, digitizers take samples uniformly in time, e.g., every microsecond. It is not necessary to sample
uniformly, but doing so has some interesting and convenient mathematical properties, which we will see
later.
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Sampling is done by a circuit called a sample-and-hold (S/H), which, at a sampling instant, transfers
the input signal to the output and holds it steady, even though the input signal may still be changing.
An S/H usually consists of a signal buffer followed by an electronic switch connected to a capacitor. At
a sampling instant, the switch briefly connects the buffer to the capacitor, allowing the capacitor to charge
to the input voltage. When the switch is disconnected, the capacitor retains its charge and thus keeps the
sampled input voltage steady while the ADC that follows does its job. Quite often, sampling is actually
done by a circuit called a track-and-hold (T/H), which differs from an S/H only slightly. Whereas the S/H
holds the analog signal until the next sampling instant, the T/H holds the analog signal still only until
the ADC has finished its conversion cycle. After the ADC is through, the T/H reconnects the buffer to
the capacitor and follows the input signal until the next sampling instant. The result is more accurate
sampling, because the buffer has more time to charge the capacitor and “catch up” with (track) the input
signal, which has changed since the last sampling instant. Nearly every modern ADC chip has a built-in
S/H or T/H, and virtually all data acquisition systems include them.

Of course, sampling necessarily throws away some information, so the art of sampling is in choosing
the right sample rate so that enough of the input signal is preserved. The major pitfall of undersampling
(sampling too slowly) is aliasing, which happens whenever the input signal has energy at frequencies
greater than one-half the sample rate. In Figure 85.1a, a signal (the fast sine wave) is sampled at a rate
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FIGURE85.1 A demonstration of aliasing. An ADC sampling at rate Fs cannot distinguish between a 0.8Fs sine
wave and a 0.2Fs sine wave. () A time-domain illustration. (b) A frequency-domain illustration. Theoretically, a
sampler aliases an infinite number of 0.5Fs-wide frequency bands into the baseband (0 to 0.5Fs). Practically, finite
analog bandwidth eventually limits how far out in frequency aliases can come from.
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Fs, shown by the hash marks at the bottom of the graph. The sine wave has a frequency of 0.8Fs, which
is higher than one half the sample rate (0.5Fs). Notice that sampling the lighter sine wave of 0.2Fs produces
the same set of samples. The resulting sampled data is ambiguous in that we cannot tell from the data
what the frequency of the incoming sine wave actually is. In fact, even though the data set appears to
represent a sine wave of 0.2Fs, the actual signal could be any sine wave having a frequency of (n)Fs £
0.2Fs, where n is any integer, starting with 0. So the original signal could be 0.2Fs, 0.8Fs, 1.2Fs, 1.8Fs,
2.2Fs, etc. (or even more than one of those). We say that 0.2Fs is the alias of a signal that may actually
be at another frequency entirely. During interpretation of sampled data, it is customary to treat signals
as though they occurred in the baseband (0 to 0.5Fs), whether or not that is the case. In general, in a
system sampling at Fs, a signal at a frequency F will alias into the baseband at

Fa=abs[(n)Fs—F], (85.1)

where abs denotes absolute value, n > 0, and (n)Fs is the closest integer multiple of Fs to F.

Everyone has seen a demonstration of aliasing at the movies, in the form of “wagon-wheeling.” As the
stagecoach or wagon takes off, the wheels begin to turn, slowly at first, then faster. As the wagon speeds
up, the spokes suddenly appear to be turning backward, even though the wagon is moving forward.
Sometimes the spokes appear to be standing still. The reason for this is that a motion picture camera
shooting film at 24 frames/s is a sampling system operating at 24 samples/s. The turning wagon wheel
is a periodic signal that the camera undersamples. When the wheel begins turning just fast enough that
one spoke travels at least half the distance to the next spoke in %.th of a second, the spokes begin to
appear to move backward, and the system is aliasing. When the wheel is turning so that a spoke moves
exactly the distance between two spokes in Y.sth of a second, the spokes appear to be standing still, since
they all look the same to the camera.

It follows from Equation 85.1 that if we put into a sampler a signal with no energy at frequencies
greater than one half the sample rate (0.5Fs), then aliasing will not occur. This is the essence of the
Shannon sampling theorem [1], which states that, with mathematical interpolation, the complete input
waveform can be recovered exactly from the sampled data, at all times at and in between the sampling
instants, as long as the sample rate is at least twice as high as the highest frequency content in the signal.
Sometimes we refer to 0.5Fs as the Nyquist frequency, because Nyquist was concerned with the maximum
bandwidth of signals [2]. Similarly, twice the highest frequency content of a signal (i.e., the minimum
nonaliasing sample rate) is sometimes called the Nyquist rate. Sample rates are specified in samples/s, or
S/s, and it is also common to specify rates in kS/s, MS/s, and even GS/s.

It is not always necessary to worry about aliasing. When an instrument is measuring slow-moving dc
signals or is gathering data for statistical analysis, for instance, getting frequencies right is not important.
In those cases we choose the sample rate so that we can take enough data in a reasonable amount of
time. On the other hand, if the instrument is a spectrum analyzer, where frequency does matter, or an
oscilloscope, where fine time detail is needed, aliasing certainly is an issue. When aliased signals from
beyond the frequency band of interest can interfere with measurement, an instrument needs to have an
antialias filter before the S/H. An antialias filter is a low-pass filter with a gain of 1 throughout most of
the frequency band of interest. As frequency increases, it begins to attenuate the signal; by the Nyquist
frequency it must have enough attenuation to prevent higher-frequency signals from reaching the S/H
with enough amplitude to disturb measurements. An efficient antialias filter must attenuate rapidly with
frequency in order to make most of the baseband usable. Popular analog filters with rapid cutoff include
elliptic and Chebyshev filters, which use zeros to achieve fast cutoff, and Butterworth filters (sixth order
and above), which do not attenuate as aggressively, but have very flat passband response. A good book
about filters is Reference 3.

Some ADCs do not need a S/H or T/H at all. If the ADC is converting a slow-moving or dc signal
and precise timing isn’t needed, the input may be stable enough during conversion that it is as good as
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FIGURE 85.2 The ideal three-bit quantizer has eight possible digital outputs. The analog input-to-digital output
transfer function is a uniform staircase with steps whose width and height are 1 LSB exactly. The bottom graph shows

the ideal transfer function (a straight line) subtracted from the staircase transfer function.

sampled. There are also integrating ADCs (discussed later), which average the input signal over a period
of time rather than sampling it. However, internally they actually sample the average.

85.3 Quantization

What sampling accomplishes in the time domain, quantization does in the amplitude domain. The
process of digitization is not complete until the sampled signal, which is still in analog form, is reduced
to digital information. An ADC quantizes a sampled signal by picking one integer value from a prede-
termined, finite list of integer values to represent each analog sample. Each integer value in the list
represents a fraction of the total analog input range. Normally, an ADC chooses the value closest to the
actual sample from a list of uniformly spaced values. This rule gives the transfer function of analog input-
to-digital output a uniform “staircase” characteristic. Figure 85.2 represents a three-bit quantizer, which
maps a continuum of analog input values to only eight (2%) possible output values. Each step in the
staircase has (ideally) the same width along the x-axis, which we call code width and define as 1 LSB (least
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significant bit). In this case 1 LSB is equal to 1V. Each digital code corresponds to one of eight 1-LSB
intervals making up the analog input range, which is 8 LSB (and also 8 V in this case).

Of course, we would like our measurement system to have a transfer function that is a straight line
and has no steps at all. The bottom graph in Figure 85.2 is the ideal transfer function (a straight diagonal
line) subtracted from the staircase function, or the quantization error. In an ideal ADC, the quantization
error is bounded by +£%4 LSB, and, over the input range, the average error is 0 LSB and the standard
deviation of error is 1/./12 LSB. As the bottom graph shows, the quantization error at any point is a
deterministic function of the input signal.

85.4 ADC Specifications

Range and Resolution

The input range of an ADC is the span of voltages over which a conversion is valid. The end points at
the bottom and the top of the range are called —full-scale and +full-scale, respectively. When —full-scale
is 0V the range is called unipolar, and when —full-scale is a negative voltage of the same magnitude as
+full-scale the range is said to be bipolar. When the input voltage exceeds the input range, the conversion
data are certain to be wrong, and most ADCs report the code at the end point of the range closest to the
input voltage. This condition is called an overrange.

The resolution of an ADC is the smallest change in voltage the ADC can detect, which is inherently
1 LSB. It is customary to refer to the resolution of an ADC by the number of binary bits or decimal digits
it produces; for example, “12 bits” means that the ADC can resolve one part in 2*2 (= 4096). In the case
of a digital voltmeter that reads decimal digits, we refer to the number of digits that it resolves. A “6-digit”
voltmeter on a 1V scale measures from —0.999999 V to +0.999999 V in 0.000001 V steps; it resolves one
part in 2 000 000. It is also common to refer to a voltmeter that measures from —1.999999 to +1.999999
as a “6% digit” voltmeter. Figure 85.3 compares the resolutions of common word lengths for ADCs.

Coding Conventions

There are several different formats for ADC output data. An ADC using binary coding produces all 0s
(e.g., 000 for the three-bit converter) at —full-scale and all 1s (e.g., 111) at +full-scale. If the range is
bipolar, so that —full-scale is a negative voltage, binary coding is sometimes called offset binary, since the
code 0 does not refer to 0 V. To make digital 0 correspond to 0 V, bipolar ADCs use two’s complement
coding, which is identical to offset binary coding except that the most significant bit (MSB) is inverted,
so that 100 ... 00 corresponds to —full-scale, 000 ... 00 corresponds to 0V (midscale), and 011 ... 11
corresponds to +full-scale. All of the figures in this chapter depicting three-bit ADC transfer functions
use two’s complement coding.

Decimal-digit ADCs, such as those used in digital voltmeters, use a coding scheme call binary-coded
decimal (BCD). BCD data consists of a string of four-bit groups of binary digits. Each four-bit group
represents a decimal digit, where 0000 is 0, 0001 is 1, and so on, up to 1001 for 9. The other six
combinations (1010 through 1111) are invalid, or can be used for special information, such as the sign
of the conversion.

Linear Errors

Linear errors are the largest and most common errors in an ADC and are easily corrected by simple
calibrations or by additions with and multiplications by correction constants. Linear errors do not distort
the transfer function; they only change somewhat the input range over which the ADC operates.
Figure 85.4 shows the transfer function of an ideal three-bit ADC with some offset error. The straight
line joining the centers of the code transitions is raised, or offset, by 0.6 LSB, and the bottom graph shows
the resulting error. Figure 85.5 shows an ideal three-bit ADC with a +25% gain error. The slope of the

© 1999 by CRC PressLLC



Voltmeter Step size, | Theoretical Dynamic

Bits Digits "Digits" Steps in FSR ppm Range (dB)
30 8.730 1073 741 824 0.001 182.379
28.575 8.301 812 400 000 000 0.003 173.802
28 8.128 268 435 456 0.004 170.338
27.575 8 8 200 000 000 0.005 167.782
26 7.526 67 108 864 0.015 158.297
25.253 7.301 712 40 000 000 0.025 153.802
24.253 7 7 20 000 000 0.05 147.782
24 6.924 16 777 216 0.060 146.255
22 6.322 4194 304 0.238 134.214
21.932 6.301 61 4000 000 0.25 133.802
20.932 6 6 2 000 000 0.5 127.782
* 20 5.720 1048 576 0.954 122.173
18.610 5.301 512 400 000 2.5 113.802
18 5.118 262 144 3.815 110.132
17.610 5 5 200 000 5 107.782
* 16 4515 65 536 15.259 98.091
15.288 4.301 41 40 000 25 93.802
14.288 4 4 20 000 50 87.782
14 3913 16 384 61.035 86.049
12 3.311 4096 244.141 74.008
11.966 3.301 32 4 000 250 73.802
10.966 3 3 2 000 500 67.782
10 2.709 1024 976.563 61.967
8.644 2.301 217 400 2500 53.802
- 8 2.107 256 3906.25 49.926
7.644 2 2 200 5000 47.782
6 1.505 64 | 15625 37.885

FIGURE 85.3 Comparison of theoretical resolutions of ADCs. “Bits” refers to binary word length, and “digits” refers
to decimal wordlength. « denotes popular binary word lengths. FSR is full-scale range, and theoretical dynamic range
is computed from the formula 1.7609 + 6.0206n, where n is the number of bits (see discussion of dynamic range).

line through the code transitions is 1.25 times the ideal slope of 1.00. If the slope of the line were 0.75
instead, the gain error would be —25%. The bottom graph shows the error resulting from excessive gain.
Offset errors can be compensated for simply by adding a correcting voltage in the analog circuitry or by
adding a constant to the digital data. Gain errors can be corrected by analog circuitry like potentiometers
or voltage-controlled amplifiers or by multiplying the digital data by a correction constant.

Nonlinear Errors

Nonlinear errors are much harder to compensate for in either the digital or analog domain, and are best
minimized by choosing well-designed, well-specified ADCs. Nonlinearities are characterized in two ways:
differential nonlinearity and integral nonlinearity.

Differential nonlinearity (DNL) measures the irregularity in the code step widths by comparing their
widths to the ideal value of 1 LSB. Figure 85.6 illustrates the three-bit ADC with some irregular code
widths. Most of the codes have the proper width of 1 LSB and thus contribute no DNL, but one narrow
code has a width of 0.6 LSB, producing a DNL of —0.4 LSB, and one wide code has a width of 1.8 LSB,
producing a DNL of +0.8 LSB at that code. This converter would be consistent with a DNL specification
of £0.9 LSB, for example, which guarantees that all code widths are between 0.1 and 1.9 LSB.

It is possible for a code not to appear at all in the transfer function. This happens when the code has
a width of 0 LSB, in which case we call it a missing code. Its DNL is -1 LSB. If an ADC has a single missing
code, the step size at that point in the transfer function is doubled, effectively reducing the local resolution
of the ADC by a factor of two. For this reason it is important for an ADC specification to declare that
the ADC has no missing codes, guaranteeing that every code has a width greater than 0 LSB. Even if an
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FIGURE 85.4 An ideal three-bit quantizer, only with +0.6 LSB of offset error.

ADC has missing codes, no code can have a width less than 0 LSB, so the DNL can never be worse than
-1 LSB.

Integral nonlinearity (INL) measures the deviation of the code transitions from the ideal straight line,
providing that the linear errors (offset and gain) have been removed. Figure 85.7 depicts an ADC with
an INL error of +0.7 LSB. The offset and gain errors have been calibrated at the end points of the transfer
function.

Relative accuracy (RA) is a measure of nonlinearity related to INL, but more useful. It indicates not
only how far away from ideal the code transitions are, but how far any part of the transfer function,
including quantization “staircase” error, deviates from ideal (assuming offset and gain errors have been
calibrated at the end points). In a noiseless ADC, the worst-case RA always exceeds the worst-cast INL
by £0.5 LSB, as demonstrated in Figure 85.7. In an ADC that has a little inherent noise or has noise
(called dither) added at the input, the RA actually improves because the addition of noise to the quantizer
tends to smooth the averaged transfer function. Figure 85.8 shows the average of the digital output data
as a function of the input voltage when 0.1 LSB rms of Gaussian random noise is intentionally added to
the input. The RA improves to £0.3 LSB from +0.5 LSB in the noiseless case. If about 0.5 LSB rms of
Gaussian noise is added, the quantization staircase becomes nearly straight. This improvement in linearity
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FIGURE 85.5 An ideal three-bit quantizer, only with a gain of 1.25 instead of 1.00. This represents a +25% gain error.

comes at the expense of the random error in each individual conversion caused by the noise. Adding
more noise to the ADC does not improve the average quantization error much more, but it does tend
to smooth out local nonlinearities in the averaged transfer function. For a good discussion of noise and
dither, see Reference 4.

Aperture Errors

Aperture errors have to do with the timing of analog-to-digital conversions, particularly of the S/H.
Aperture delay characterizes the amount of time that lapses from when an ADC (S/H) receives a convert
pulse to when the sample is held as a result of the pulse. Although aperture delay (sometimes called
aperture time) is usually specified as a few nanoseconds for an ADC or S/H by itself, this delay is usually
much more than negated by the group delay in any amplifiers that precede the S/H, so that the convert
pulse arrives at the S/H quite some time before the analog signal does. For instance, a typical 1 MHz
bandwidth amplifier has 160 ns of delay; if the ADC or S/H it was connected to had an aperture delay
of 10 ns, the effective aperture delay for the system would be —150 ns.
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FIGURE 85.6 A three-bit quantizer with substantial DNL errors. The bottom graph illustrates the resulting INL
errors.

Jitter (or aperture jitter) characterizes the irregularity in times at which samples are taken. If the nominal
period between samples in an ADC is 1 ps, the actual time may vary from 1 us by as much as a few
hundred picoseconds or even as much as a nanosecond from cycle to cycle. Contributions to these
variations can come from the crystal clock source (if included under the jitter specification), digital clock
circuitry, or the S/H. Jitter is usually specified in picoseconds peak-to-peak or picoseconds rms.

Jitter interferes with measurements (particularly spectral analysis) by effectively frequency modulating
the input signal by the jitter profile. A jittery ADC sampling a pure sine wave would scatter energy from
the sine wave all throughout the spectrum, perhaps covering up useful spectral information. In a typical
ADC, however, most of the interference from jitter tends to occur at frequencies very close to the main
signal.

Noise

Noise, whether inherent in an ADC or introduced intentionally (see dither above), limits the resolution
of an ADC by adding an interfering waveform to the input signal as the data is converted. Noise comes
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FIGURE 85.7 A three-bit quantizer with substantial INL errors. Here, the DNL error is still significant; but, for
example, a 12-bit converter with 0.7 LSB of INL from a smooth error “bow” like the one above could have negligible
DNL because it would have so many more steps over which to accumulate error.

from many places. The most common kind of noise is thermal noise, which is caused by the random
nature of electric conduction in resistors and transistors. Thermal noise is worse at higher temperatures
and higher resistances. Most other ADC noise is coupled electromagnetically from nearby circuitry, such
as clock or logic circuits, or from routing of other input signals. Noise is usually specified in volts rms
or peak-to-peak, or LSBs rms or peak-to-peak.

Quantization error (see above) can sometimes be thought of as quantization noise. Although quanti-
zation error is perfectly predictable with respect to the input signal, when a signal is fairly “busy” (i.e.,
busy enough that consecutive conversions do not tend to repeat data) the quantization error becomes
chaotic, and it can be thought of it as another source of random noise, whose statistical distribution is
uniform from 0.5 LSB to +0.5 LSB and whose standard deviation is 1/,/12 LSB. This is sometimes the
dominant source of noise in spectral analysis applications.

Once noise gets into an ADC, there are ways to process out the noise if it is independent of the signal.
Acquisitions of DC signals can be quieted by collecting a number of points and averaging the collection.
If the noise is white random noise, which has equal energy density at all frequencies, averaging can reduce
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FIGURE 85.8 An ideal three-bit quantizer with 0.1 LSB rms Gaussian random noise (dither) added at the input.
The relative accuracy has improved to £0.3 LSB rms from the £0.5 LSB expected from a noiseless quantizer. With
the application of 0.5 LSB rms Gaussian noise, the transfer function becomes almost perfectly straight. Larger amounts
of dither produce essentially no improvement in linearity.

the amount of noise by the square root of the number of samples averaged. The noise interfering with
a repetitive waveform can be quieted by acquiring many waveforms using a level trigger and averaging
the collection to produce an average waveform. Most digital oscilloscopes have waveform averaging.
Quantization noise, as described above, cannot be averaged out unless other random noise is present.

The noise specifications for an ADC are for quiet, low-impedance signals at the input, such as a dead
short. To preserve the noise performance of the ADCs, the user must carefully connect signals to the
input with tidy cabling that keeps away from sources of electromagnetic noise. For more information on
noise sources and treatment and prevention of noise, see References 5 and 6.

Dynamic Range

The dynamic range (DR) of an ADC is the ratio of the largest to the smallest signals the converter can
represent. The largest signal is usually taken to be a full-scale sine wave, and the smallest signal is usually
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taken to be the background noise level of the ADC. It can be expressed simply as a ratio, but it is more
common to express it in decibels (dB):

DR =20 |og(s/ N), (85.2)

where DR is dynamic range in dB, S is the rms amplitude of the largest signal, and N is the rms amplitude
of the smallest signal, the noise. The noise must include the quantization noise of the ADC, which for a
perfect, noiseless converter is 1/./12 LSB rms. For an n-bit converter, a full-scale sine wave has a peak
amplitude of 2"t LSB, which corresponds to an rms amplitude of 27%/,/2 LSB, or 25 LSB rms. Hence
a perfect ADC had a dynamic range of

DR =20 Iog(Z”’“’ \s‘/lz)

=20 |og(2”)+20 I09(2‘1'5 *3 12) (85.3)

- (n)[zo Iog(Z)]+20 Iog(\f‘/l.S)
~6.0206n +1.7609.

Equation 85.3 can be used to determine the effective number of bits (ENOB) of an imperfect ADC. ENOB
may take only noise into account, or it may include noise and harmonic distortion products of the input
signal. It is computed as

ENOB = (DR—1.7609) /6.0206. (85.4)
For example, a 16-bit ADC with a dynamic range of 92 dB has an ENOB of 14.988 bits.

85.5 Types of ADCs

The fundamental building block of analog-to-digital conversion is the comparator. Every type of ADC
has at least one comparator in it, and some ADCs have many. The comparator itself is a one-bit ADC;
it has two analog voltage inputs and (usually) one digital output. If the voltage at the + input is greater
than the voltage at the — input, the output of the comparator is a digital 1. If the voltage at the + input
is less than the voltage at the —input, the output is a digital 0 (see Figure 85.9).

Another piece that all ADCs have in common is a linearity reference. This is what a comparator in an
ADC compares the input signal with in the process of conversion. It directly determines the differential
and integral nonlinearities of the ADC. Examples of linearity references include capacitors (in integrating
ADCs) and DACs (found in successive-approximation ADCs).

The third piece that every ADC has is a voltage reference. The reference(s) determine the full-scale
input range of the ADC and are usually part of or closely associated with the linearity reference.

Flash

Flash converters are the fastest ADCs, achieving speeds near 1 GS/s and resolutions of 10 bits and below.
The flash converter with n bits of resolution has 2" — 1 high-speed comparators operating in parallel (see
Figure 85.10). A string of resistors between two voltage references supplies a set of uniformly spaced
voltages that span the input range, one for each comparator. The input voltage is compared with all of
these voltages simultaneously, and the comparator outputs are 1 for all voltages below the input voltage
and 0 for all the voltages above the input voltage. The resulting collection of digital outputs from the
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FIGURE 85.9 The comparator is the essential building block of all ADCs. (a) Comparator symbol. (b) Comparator
input/output transfer function.

comparators is called a “thermometer code,” because the transition between all 1s and all Os floats up
and down with the input voltage. Fast logic converts the thermometer codes to normal n-bit binary
numbers.

Because of their simplicity, they are fast, but flash converters are limited to resolutions of 10 bits and
below because the number of comparators and resistors goes up exponentially with resolution. Because
the string resistor values typically vary only a few percent from each other in practical devices, the
differential linearity of the flash ADC is quite good. But the same resistor variations can accumulate error
across the input range and cause integral nonlinearity of a few LSB.

Successive-Approximation Register

Successive-approximation register (SAR) ADCs are the most common ADCs, having resolutions of 8 to
16 bits and speeds of 1 MS/s and below. They are generally low in cost, and they typically have very good
integral linearity. The n-bit SAR ADC contains a high-speed n-bit DAC and comparator in a feedback
loop (see Figure 85.11). The successive-approximation register sequences the DAC through a series of n
“guesses,” which are compared with the input voltage (Figure 85.12). As the conversion progresses, the
register builds the n-bit binary conversion result out of the comparator outputs. By the end of the sequence
the register has converged to the closest DAC value to the input voltage.

The speed of an SAR ADC is limited by the speed of the DAC inside the feedback loop. The DAC
must settle n times to within 1/2-" of full-scale within the conversion time of the ADC. Current SAR
technology achieves 12-bit resolution at 1 MS/s and 16-bit resolution at 200 kS/s. Faster conversion at
these resolutions requires multistage architectures.

Multistage

To achieve higher sample rates than SAR ADCs at resolutions of 10 to 16 bits, multistage ADCs (sometimes
called subranging or multipass ADCs) use the iterative approach of SAR ADCs but reduce the number
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FIGURE 85.10 A flash converter has 2" — 1 comparators operating in parallel. It relies on the uniformity of the
resistors for linearity.
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FIGURE 85.11 A successive-approximation converter has only one comparator and relies on an internal, precision
DAC for linearity.

+

of iterations in a conversion. Instead of using just a comparator, the multistage ADC uses low-resolution
flash converters (4 to 8 bits) as building blocks. Figure 85.13 illustrates an example of a 12-bit two-stage
ADC built out of two flash ADCs and a fast DAC. The 6-bit flash ADC converts the residual error of the
8-bit flash ADC. The two digital outputs are combined to produce a 12-bit conversion result.
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FIGURE 85.12 (a) Decision tree shows all the possible digital “guesses” of a four-bit successive-approximation
converter over time. (b) Decision tree for conversion of four-bit code 1011.
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FIGURE 85.13 An example of a 12-bit multistage ADC built out of two flash ADCs and a fast DAC. The 8-bit flash
ADC takes a first “guess” at the input signal and the 6-bit flash ADC converts the error in the guess, called the
“residue.” The 12-bit DAC actually needs to have only 8 bits, but it must be accurate to 12 bits. If the 8-bit flash ADC
were perfect, the second flash ADC would only need 4 bits. But since the first flash actually may have some error,
the second flash has 2 bits of “overlap.”

If each flash ADC has a T/H at its input, then each stage can be converting the residual error from
the previous stage while the previous stage is converting the next sample. The whole converter then can
effectively operate at the sample rate of the slowest stage. Without the extra T/Hs, a new conversion
cannot start until the residues have propagated through all the stages. This variation of the multistage
ADC is called a pipelined ADC.

Integrating

Integrating converters are used for low-speed, high-resolution applications such as voltmeters. They are
conceptually simple, consisting of an integrating amplifier, a comparator, a digital counter, and a very
stable capacitor for accumulating charge (Figure 85.14). The most common integrating ADC in use is
the dual-slope ADC, whose action is illustrated in Figure 85.15. Initially, the capacitor is discharged and
50 has no voltage across it. At time 0, the input to the integrator is switched to the analog input and the
capacitor is allowed to charge for an amount of time, T1, which is always the same. Its rate of charging
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FIGURE 85.14 A dual-slope integrating converter uses a comparator to determine when the capacitor has fully
discharged and relies on the capacitor for linearity.
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FIGURE 85.15 Charge on the integrating capacitor vs. time. At time 0, the input is switched to analog input and
the switch across the capacitor opens. The capacitor integrates charge until fixed time T1. The input is then switched
to the voltage reference to discharge the capacitor, and the counter begins counting a known clock. The comparator
turns off the counter when the capacitor charge reaches 0 again, at time T2. The resulting count is proportional to
the average input voltage over the time interval 0 to T1.

and thus its voltage at T1 are proportional to the input voltage. At time T1 the input switch flips over
to the voltage reference, which has a negative value so that the capacitor will begin to discharge at a rate
proportional to the reference. The counter measures how long it takes to discharge the capacitor com-
pletely. If the capacitor is of high quality, the ratio of the discharge time to the charge time is proportional
to the ratio of the input voltage to the voltage reference, and so the counter output represents the analog
input voltage.

An elaboration of the dual-slope ADC is the multislope integrating ADC. It achieves even higher
resolution than the dual-slope ADC by discharging the capacitor at several progressively slower rates. At
each rate, the counter is able to resolve finer increments of accumulated charge.

An important distinction between integrating converters and other ADCs is the way they sample the
input voltage. Integrating converters do not sample the voltage itself; they average the voltage over the
integration period and then they sample the average that is accumulated on the capacitor. This tends to
reject noise that conventional sampling cannot, especially periodic noises. Most integrating ADCs operate
with an integration period that is a multiple of one AC line period (s or Ys s) so that any potential
interference from stray electric or magnetic fields caused by the power system is canceled.

Integrating converters are gradually being replaced in the marketplace with low-speed, high-resolution
sigma—delta converters, which see. Sigma—delta converters are generally more flexible than integrating
ADCs, and they are easier to use because they do not require an external charging capacitor. The resolution
and speed of the two types are comparable, although integrating converters still have the highest linearity.
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FIGURE 85.16 Spectrum of a 64-times oversampling SD ADC before the digital decimation filter. The modulator
loop samples at 3.072 MS/s and the data comes out of the filter at 48 kS/s. The filter cuts off sharply at Fs/2, or
24 kHz, leaving only the small amount of noise left below 24 kHz.

Sigma-Delta ADCs

The sigma—delta (SD) ADC is quickly becoming one of the most popular types of ADC. DS ADCs typically
have resolutions of 16 to 24 bits and sample rates of 100 kS/s down to 10 S/s. Because of their high
resolution at 48 kS/s, they are the most common type of converters in modern digital audio equipment.
DS ADCs defy intuition by quantizing initially with very low resolution (often one bit) at very high rates,
typically 64x to 128x the eventual sample rate (called oversampling). The high-rate, low-resolution
quantizer operates inside a feedback loop with an analog lowpass filter and a DAC to force the large
amount of otherwise unavoidable quantization error (noise) to frequencies higher than the band of
interest. The resulting spectral redistribution of the quantization noise is called noise shaping, illustrated
in Figure 85.16. The low-resolution digital output of the ADC loop is fed into a digital filter that increases
the resolution from the resolution of the ADC loop to the output resolution, reduces the data rate from
the rate of the ADC loop to the output sample rate, and applies a low-pass digital filter, leaving only the
signals in the frequency band of interest and a little inherent electronic noise.

Figure 85.17 shows how a one-bit sigma—delta ADC works. The comparator is the ADC, and its output
is processed digitally, so that no further analog errors can accumulate. The comparator is in a feedback
loop with a low-pass filter (typically third to fifth order) and a one-bit DAC. The one-bit DAC can take
on only one of two values, +full-scale and —full-scale, so it is perfectly linear. The low-pass filter causes
the loop gain to be high at low frequencies (the signal band of interest) and low at high frequencies.
Since the error in a feedback loop is low when the gain is high and high when the gain is low, the errors
dominate at high frequencies and are low in the band of interest. The result is a one-bit output whose
duty cycle is proportional to the input signal. Together, the elements of the feedback loop are called a
sigma—delta modulator.

Figure 85.18 illustrates the operation of a simple discrete-time (switched-capacitor) SD ADC. In this
first-order example, the low-pass filter is just an integrator. The loop tries to force the input to the
comparator back to the baseline, and the figure shows how the duty cycle of the resulting digital output
reflects input signal. The digital data here have undesirable patterns which tend to repeat, called limit
cycles. They can appear in the band of interest and interfere with the signal. Higher-order loop filters
(third and above) make the bit activity so chaotic that it has no substantial limit cycles.
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FIGURE 85.17 A SD modulating ADC uses a comparator simply as a one-bit quantizer. The linearity of a SD ADC
is theoretically perfect because the one-bit DAC can only assume two values, and thus is linear by definition. Modern
SD ADCs are made with switched-capacitor circuits which operate at KFs, where Fs is the output data sample rate
and K is the oversampling ratio.
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FIGURE 85.18 Behavior of a discrete-time (switched-capacitor) first-order SD modulator, where the low-pass filter
is simply an integrator. In each graph, the x-axis represents time, and the y-axis represents signal level. () The input
waveform. (b) Input to the comparator. (c) The one-bit digital comparator output. The duty cycle of this waveform
corresponds to the input waveform. The digital filter and decimator recover the original waveform from this one bit.

The chief advantage of a SD converter is that it has a built-in antialias filter, and a darn good one at
that. Most DS parts have a finite-impulse response (FIR) digital filter, which has an extremely flat frequency
response in the passband and an extremely sharp cutoff, properties impossible to implement in analog
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filters. The ADC still needs an antialias filter to reject signals above one half the oversampling rate. But
this filter is simple to build, since it has to be flat only up to one half the output sampling rate and has
many octaves (all the way to near the oversampling rate) to fall off. The combination of the two filters
provides watertight protection from aliases, often 96 dB of attenuation over the entire spectrum.

An important improvement of the one-bit SD is the multibit SD, wherein the comparator is replaced
by a flash converter with as much as four bits of resolution. This improves the ENOB of the whole
converter by several bits.

Voltage-to-Frequency Converters

Voltage-to-frequency converters (VFCs) are versatile, low-cost circuits that convert analog voltages to
periodic waveforms whose frequency is proportional to the analog input voltage. A VFC is conceptually
similar to an integrating converter (see above) except that the digital counter is missing and is replaced
with a short-pulse generator that quickly discharges the capacitor. The voltage reference is not connected
intermittently to the input; instead, it appears all the time at the minus input of the comparator instead
of ground. The capacitor charges at a rate proportional to the input voltage until the voltage is equal to
the voltage reference. Then the comparator trips the pulse generator, which quickly discharges the
capacitor, and the cycle begins again. The periodic pulse at the comparator output can be used as the
digital output.

The advantage of the VFC over conventional ADCs is that the one-bit output can be transmitted
digitally, through isolation transformers, through fiber-optic cable, or through any other isolating,
nonisolating, long-distance, or short-distance transmission medium. All that is needed at the receiving
end to complete the analog-to-digital conversion is a digital counter, which does not need to be synchro-
nized to the VFC itself. Sometimes, the digital conversion is not needed; a VFC can be used with an
isolating transformer and a frequency-to-voltage converter (FVC) to create an isolation amplifier. For a
good discussion of VFCs, see Reference 7.

85.6 Instrumentation and Components

Integrated Circuits

Table 85.1 lists several popular high-quality ADCs in integrated circuit form. The prices given are approx-
imate for small quantities and for the lowest grade of part, as of mid-1996. By no means exhaustive, the
list is sampling of a few of the most popular or best-performing chips of each type of ADC. Table 85.2
contains addresses, phone numbers, and internet sites for the manufacturers in Table 85.1.

Instrumentation

Plug-in data acquisition cards are becoming increasingly popular as personal computer prices come down
and processor performance goes up. These cards typically contain one or more ADCs (with S/H),
instrumentation amplifiers with gain and differential input, and multiplexers to switch to different inputs.
Some have DACs on-board, and some have digital data and timing functions as well. Once considered
low performance and hard to use, data acquisition cards have improved dramatically, equaling and in
some cases exceeding capabilities of stand-alone instruments. Most come with drivers that interface to
user-friendly software packages for creating easy-to-use yet custom-built computer instrumentation.
Table 85.3 lists a few popular plug-in data acquisition boards and Table 85.4 lists how their manufacturers
may be contacted.
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TABLE 85.1 ADC Integrated Circuits

Part Type Sample Rate  Resolution, bits Manufacturer Approx. Price, $
ADC160 Integrating 1S/s 24 Thaler 225.00
AD7714 Sigma-delta 2.62 S/s 24 Analog Devices 22.00
MAX132 Integrating 6 S/s 19 MAXIM 15.11
CSs5508 Sigma—delta 20 S/s 20 Crystal 21.50
H17190 Sigma-delta 10 S/s 24 Harris 17.85
AD1879 Sigma-delta 50 kS/s 18 Analog Devices 46.00
CS5390 Sigma—delta 50 kS/s 20 Crystal 75.30
ADS7809  SAR 100 kS/s 16 Burr-Brown 4154
CS5101A  SAR 100 kS/s 16 Crystal 67.20
AD7893 SAR 117 kS/s 12 Analog Devices 14.00
AD976 SAR 200 kS/s 16 Analog Devices 36.50
AD7722 Sigma-delta 200 kS/s 16 Analog Devices 39.80
LTC1278 SAR 500 kS/s 12 Linear Technology 17.08
AD1385 Multistage 500 kS/s 16 Analog Devices 1053.00
ADS7819  SAR 800 kS/s 12 Burr-Brown 31.90
AD9220 Multistage 10 MS/s 12 Analog Devices 22.95
AD775 Multistage 20 MS/s 8 Analog Devices 14.00
AD9050 Multistage 40 MS/s 10 Analog Devices 39.00
AD9066 Flash 60 MS/s 6 Analog Devices 7.00
HI11276 Flash 500 MS/s 8 Harris 338.58

TABLE 85.2 Companies That Manufacture ADC Integrated Circuits

Analog Devices, Inc.

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106
(617) 329-4700
http://www.analog.com

Harris Corp. Semiconductor
Products Division

P.O. Box 883

Melbourne, FL 37902

(407) 729-4984

http://www.semi.harris.com

Burr-Brown Corporation
P.O. Box 11400

Tucson, AZ 85734-1400
(520) 746-1111

Linear Technology Corporation
1630 McCarthy Blvd.

Milpitas, CA 95035-7417

(408) 432-1900

Maxim Integrated Products, Inc.
120 San Gabriel Drive
Sunnyvale, CA 94086

(408) 737-7600
http://www.maxim-ic.com

Thaler Corporation

2015 N. Forbes Boulevard
Tucson, AZ 85745

(520) 882-4000

http://www.burr-brown.com http://www.linear-tech.com http://www.thaler.com

Crystal Semiconductor Corporation

P.O. Box 17847

Austin, TX 78760

(512) 445-7222

http://www.cirrus.com/prodtech/crystal.html
TABLE 85.3 Plug-In Data Acquisition Boards
Part Type Sample Rate  Resolution, bits Manufacturer Approx. Price, $
AT-A2150 Sigma-—delta 51.2 kS/s 16 National Instruments 1495
AT-MIO-16XE-50  SAR 20 kS/s 16 National Instruments 995
AT-MIO-16E-10 SAR 100 kS/s 12 National Instruments 995
CIO-DAS1600/12  SAR 160 kS/s 12 ComputerBoards, Inc. 599
AT-MIO-16XE-10  SAR 100 kS/s 16 National Instruments 1995
CIO-DAS1600/16  SAR 100 kS/s 16 ComputerBoards, Inc. 699
DT-3001 SAR 330 kS/s 12 Data Translation, Inc. 995
DAS-1800A0 SAR 333 kS/s 12 Keithley Metrabyte 1299
AT-MIO-16E-1 SAR 1 MS/s 12 National Instruments 1795
FAST16-1 Multistage 1 MS/s 16 Analogic 3895
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TABLE 85.4 Companies That Manufacture Plug-In Data Acquisition Boards

Analogic Corporation Keithley Metrabyte

360 Audubon Road 440 Myles Standish Blvd.
Wiakefield, MA 01880 Taunton MA 02780
(508) 977-3000 (508) 880-3000

http://www.metrabyte.com
ComputerBoards, Inc.

125 High Street National Instruments Corporation
Mansfield, MA 02048 6504 Bridge Point Parkway
(508) 261-1123 Austin, TX 78730
(512) 794-0100
Data Translation, Inc. http://www.natinst.com

100 Locke Drive

Marlboro, MA 01752-1192
(508) 481-3700
http://www.datx.com
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