

Practical
Analog and Digital Filter

Design

Artech House, Inc.

Les Thede

2004

This text is dedicated to my wife who keeps me grounded,

and to my grandchildren who know no bounds.

vii

Contents

Preface xi

Chapter 1 Introduction to Filters and Filter Design Software 1
 1.1 Filter Selectivity 2
 1.1.1 Lowpass Filters 3
 1.1.2 Highpass Filters 4
 1.1.3 Bandpass Filters 5
 1.1.4 Bandstop Filters 5
 1.2 Filter Approximation 6
 1.3 Filter Implementation 8
 1.4 WFilter - Filter Design Software 9
 1.5 Conclusion 14

Chapter 2 Analog Filter Approximation Functions 15
 2.1 Filter Transfer Functions 15
 2.1.1 Transfer Function Characterization 16
 2.1.2 Pole-Zero Plots and Transfer Functions 17
 2.1.3 Normalized Transfer Functions 18
 2.2 Butterworth Normalized Approximation Functions 19
 2.2.1 Butterworth Magnitude Response 19
 2.2.2 Butterworth Order 20
 2.2.3 Butterworth Pole Locations 20
 2.2.4 Butterworth Transfer Functions 21
 2.3 Chebyshev Normalized Approximation Functions 27
 2.3.1 Chebyshev Magnitude Response 27
 2.3.2 Chebyshev Order 28
 2.3.3 Chebyshev Pole Locations 28
 2.3.4 Chebyshev Transfer Functions 29
 2.4 Inverse Chebyshev Normalized Approximation Functions 34

viii Practical Analog and Digital Filter Design

 2.4.1 Inverse Chebyshev Magnitude Response 34
 2.4.2 Inverse Chebyshev Order 35
 2.4.3 Inverse Chebyshev Pole-Zero Locations 35
 2.4.4 Inverse Chebyshev Transfer Functions 37
 2.5 Elliptic Normalized Approximation Functions 43
 2.5.1 Elliptic Magnitude Response 43
 2.5.2 Elliptic Order 45
 2.5.3 Elliptic Pole-Zero Locations 45
 2.5.4 Elliptic Transfer Functions 47
 2.6 Comparison of Approximation Methods 52
 2.7 Conclusion 54

Chapter 3 Analog Lowpass, Highpass, Bandpass, and Bandstop Filters 55
 3.1 Unnormalized Lowpass Approximation Functions 55
 3.1.1 Handling a First-Order Factor 57
 3.1.2 Handling a Second-Order Factor 58
 3.2 Unnormalized Highpass Approximation Functions 60
 3.2.1 Handling a First-Order Factor 61
 3.2.2 Handling a Second-Order Factor 62
 3.3 Unnormalized Bandpass Approximation Functions 64
 3.3.1 Handling a First-Order Factor 66
 3.3.2 Handling a Second-Order Factor 66
 3.4 Unnormalized Bandstop Approximation Functions 72
 3.4.1 Handling a First-Order Factor 73
 3.4.2 Handling a Second-Order Factor 73
 3.5 Analog Frequency Response 76
 3.5.1 Mathematics for Frequency Response Calculation 76
 3.5.2 C Code for Frequency Response Calculation 80
 3.6 Saving the Filter Parameters 82
 3.7 Conclusion 84

Chapter 4 Analog Filter Implementation Using Active Filters 85
 4.1 Implementation Procedures for Analog Filters 85
 4.2 Lowpass Active Filters Using Op-amps 87
 4.3 Highpass Active Filters Using Op-amps 92
 4.4 Bandpass Active Filters Using Op-amps 96
 4.5 Bandstop Active Filters Using Op-amps 98
 4.6 Implementing Complex Zeros with Active Filters 103
 4.7 Analog Filter Implementation Issues 106
 4.7.1 Component Selection 106
 4.7.2 Sensitivity Analysis 108
 4.8 Using WFilter in Active Filter Implementation 111
 4.9 Conclusion 113

 Contents ix

Chapter 5 Introduction to Discrete-Time Systems 115
 5.1 Analog-to-Digital Conversion 115
 5.1.1 Frequency Spectrum and Sampling Rate 116
 5.1.2 Quantization of Samples 118
 5.1.3 A Complete Analog-to-Digital-to-Analog System 119
 5.2 Linear Difference Equations and Convolution 120
 5.2.1 Linear Difference Equations 121
 5.2.2 Impulse Response and Convolution 124
 5.3 Discrete-Time Systems and z-Transforms 126
 5.4 Frequency Response of Discrete-Time Systems 130
 5.5 Playing Digitized Waveforms on a Computer System 137
 5.6 Conclusion 139

Chapter 6 Infinite Impulse Response Digital Filter Design 141
 6.1 Impulse Response Invariant Design 142
 6.2 Step Response Invariant Design 146
 6.3 Bilinear Transform Design 151
 6.4 C Code for IIR Frequency Response Calculation 158
 6.5 Conclusion 160

Chapter 7 Finite Impulse Response Digital Filter Design 161
 7.1 Using Fourier Series in Filter Design 161
 7.1.1 Frequency Response and Impulse Response
 Coefficients 162
 7.1.2 Characteristics of FIR Filters 165
 7.1.3 Ideal FIR Impulse Response Coefficients 166
 7.2 Windowing Techniques to Improve Design 170
 7.3 Parks-McClellan Optimization Procedure 177
 7.3.1 Description of the Problem 177
 7.3.2 The Remez Exchange Algorithm 179
 7.3.3 Using the Parks-McClellan Algorithm 180
 7.3.4 Limitations of the Parks-McClellan Algorithm 183
 7.4 C Code for FIR Frequency Response Calculation 183
 7.5 Conclusion 185

Chapter 8 Digital Filter Implementation Using C 187
 8.1 Digital Filter Implementation Issues 187
 8.1.1 Input and Output Signal Representation 188
 8.1.2 Coefficient Representation 190
 8.1.3 Retaining Accuracy and Stability 192
 8.2 C Code for IIR Filter Implementation 194
 8.3 C Code for FIR Filter Implementation 200
 8.3.1 Real-Time Implementation of FIR Filters 201

x Practical Analog and Digital Filter Design

 8.3.2 Nonreal-Time Implementation of FIR Filters 203
 8.4 Filtering Sound Files 205
 8.5 Conclusion 207

Chapter 9 Digital Filtering Using the FFT 209
 9.1 The Discrete Fourier Transform (DFT) 209
 9.2 The Fast Fourier Transform (FFT) 214
 9.2.1 The Derivation of the FFT 215
 9.2.2 The Inverse FFT 217
 9.3 C Code for the FFT 218
 9.4 Application of FFT to Filtering 221
 9.5 Conclusion 225

Appendix A Technical References 227

Appendix B Filter Design Software and C Code 229

Appendix C Filter Design Using C 231

Appendix D C Code for Normalized Approximation Functions 233

Appendix E C Code for Unnormalized Approximation Functions 239

Appendix F C Code for Active Filter Implementation 247

Appendix G C Code for IIR Filter Design 253

Appendix H C Code for FIR Filter Design 257

Appendix I Filtering Sound Files 259

About the Author 263

Index 265

xi

Preface

This book was intentionally written to be different from other filter design books
in two important ways. First, the most common analog and digital filter design and
implementation methods are covered in a no-nonsense manner. All important
derivations and descriptions are provided to allow the reader to apply them
directly to his or her own filter design problem. Over forty examples are provided
to help illustrate the fundamentals of filter design. Not only are the details of
analog active and digital IIR and FIR filter design presented in an organized and
direct manner, but implementation issues are discussed to alert the reader to
potential pitfalls. An added feature to this text is the discussion of fast Fourier
transforms and how they can be used in filtering applications. The simulation of
analog filters is made easier by the generation of PSpice circuit description files
that include R-C component values calculated directly from the filter coefficients.
In addition, the testing of IIR and FIR filters designed for audio signals is
enhanced by providing sample sound files that can be filtered by using the digital
filter design coefficients. Anyone with a sound card on their computer can then
play the original and processed sound files for immediate evaluation.

The second difference between this book and others is that the text is
accompanied by WFilter, a fully functional, Windows®-based filter design
software package, and the source code on which it is based. The CD provides the
reader with the ability to install WFilter with a few simple clicks of the mouse,
and also supplies the reader with the well organized and clearly documented
source code detailing the intricacies of filter design. No, the source code provided
is not just a collection of fragmented functions, but rather a set of three organized
programs that have been developed (with the addition of an easy-to-use graphical
interface) into the organized structure of WFilter.

A basic knowledge of C programming is expected of the reader, but the code
presented in the text and the appendixes is thoroughly discussed and well
documented. The text does assume the reader is familiar with the fundamental
concepts of linear systems such as system transfer functions and frequency
response although no prior knowledge of filter design is needed.

xii Practical Analog and Digital Filter Design

CHAPTER CONTENTS

Chapter 1 introduces the reader to the filter design problem. An overview of
WFilter is presented. Chapter 2 develops the normalized transfer functions for the
Butterworth, Chebyshev, inverse Chebyshev, and elliptic approximation cases.
Chapter 3 describes the conversion of the normalized lowpass filter to an
unnormalized lowpass, highpass, bandpass, or bandstop filter. In addition, the
calculation of the frequency response for analog filters is discussed. By the end of
the third chapter, a complete analog filter design can be performed. In Chapter 4,
the implementation of analog filters is considered using popular techniques in
active filter design with discussion of real-world considerations. A PSpice circuit
description file is generated to enable the filter developer to analyze the circuit.
Chapter 4 completes the discussion of analog filters in this book.

Chapter 5 begins the discussion of discrete-time systems and digital filter
design in this book. Several key features of discrete-time systems, including the
notion of analog-to-digital conversion, Nyquist sampling theorem, the z-transform,
and discrete-time system diagrams, are reviewed. Similarities and differences
between discrete-time and continuous-time systems are discussed. In Chapter 6,
digital IIR (recursive) filters are designed. Three methods of designing IIR filters
are considered. In addition, the frequency response calculations and related C code
for the IIR filter are developed. Chapter 7 considers digital FIR (nonrecursive)
filters using a variety of window methods and the Parks-McClellan optimization
routine. The special techniques necessary for FIR frequency response calculation
are discussed. The implementation of real-time and nonreal-time digital FIR and
IIR filters is discussed in Chapter 8. Implementation issues such as which type of
digital filter to use, accuracy of quantized samples, fixed or floating point
processing, and finite register length computation are discussed. The reader can
then hear the effects of filtering by replaying the original and processed sound
files on a sound card. Chapter 9 completes the text with an introduction of the
discrete Fourier transform and the more efficient fast Fourier transform (FFT).
The reader will learn how to use the FFT in filtering applications and see the code
necessary for this operation.

For those readers who desire filter design references or further details of the C
code for the design of analog and digital filters, nine separate appendixes provide
that added information.

ACKNOWLEDGMENTS

I would not have been able to complete this book without the help and support of
a number of people. First, I thank the reviewers of this text who provided many
helpful comments, both in the initial and final stages of development. In particular
I want to thank Walter A. Serdijn of Delft University of Technology, The
Netherlands.

 Preface xiii

I also thank the friendly people at Artech House, Inc. who have provided me
with so much help. This book could not have been written without their
professional guidance throughout the publication process.

I also thank Ohio Northern University and the Department of Electrical &
Computer Engineering and Computer Science for their support.

And finally, I thank my wife Diane for all of her encouragement and for the
many hours of proofreading a second text that made no sense to her!

TRADEMARKS

Windows® is a registered trademark of Microsoft Corp.

1

Chapter 1

Introduction to Filters and Filter Design
Software

Everyone has probably come in contact with one type of filter or another in their
lifetime. Maybe it was a coffee filter used to separate the grounds from the liquid,
or perhaps an oil filter to remove contaminants from the oil of an engine. Anyone
working in an office often filters the unimportant work from the important. In
essence then the act of filtering is the act of separating desired items from
undesired items. Of course when we discuss filters in this text, we are not talking
about coffee, oil, or paperwork, but rather electronic signals. The electronic filters
we will be designing will separate the desirable signal frequencies from the
undesirable, or in other applications simply change the frequency content which
then changes the signal waveform.

There are many types of electronic filters and many ways that they can be
classified. A filter's frequency selectivity is probably the most common method of
classification. A filter can have a lowpass, highpass, bandpass, or bandstop
response, where each name indicates how a band of frequencies is affected. For
example, a lowpass filter would pass low frequencies with little attenuation
(reduction in amplitude), while high frequencies would be significantly reduced.
A bandstop filter would severely attenuate a middle band of frequencies while
passing frequencies above and below the attenuated frequencies. Filter selectivity
will be the focus of the first section in this chapter.

Filters can also be described by the method used to approximate the ideal
filter. Some approximation methods emphasize low distortion in the passband of
the filter while others stress the ability of the filter to attenuate the signals in the
stopband. Each approximation method has visible characteristics that distinguish it
from the others. Most notably, the absence or presence of ripple (variations) in the
passband and stopband clearly set one approximation method apart from another.
Filter approximation methods will be discussed in further detail in the second
section.

2 Practical Analog and Digital Filter Design

Another means of classifying filters is by the implementation method used.
Some filters will be built to filter analog signals using individual components
mounted on circuit boards, while other filters might simply be part of a larger
digital system which has other functions as well. Several implementation methods
will be described in the third section of this chapter as well as the differences
between analog and digital signals. However, it should be noted that digital filter
design and implementation will be considered in detail starting in Chapter 5, while
the first four chapters concentrate on filter approximation theory and analog filter
implementation.

In the final section of this chapter we discuss WFilter, an analog and digital
filter design package for Windows®, which is included on the software disk.
WFilter determines the transfer function coefficients necessary for analog filters or
for digital FIR or IIR filters. After the filter has been designed, the user can view
the pole-zero plot, as well as the magnitude and phase responses. The filter design
parameters or the frequency response parameters can also be edited for ease of
use. In addition, for analog filters, the Spice circuit file can be generated to aid in
the analysis of active filters. After digital filters have been designed, they may be
used to filter wave files and the results can be played for comparison (a sound card
must be present). Further discussion of WFilter and the C code supplied with this
text can be found in Appendix B.

1.1 FILTER SELECTIVITY

As indicated earlier, a filter’s primary purpose is to differentiate between different
bands of frequencies, and therefore frequency selectivity is the most common
method of classifying filters. Names such as lowpass, highpass, bandpass, and
bandstop are used to categorize filters, but it takes more than a name to completely
describe a filter. In most cases a precise set of specifications is required in order to
allow the proper design of a filter. There are two primary sets of specifications
necessary to completely define a filter's response, and each of these can be
provided in different ways.

The frequency specifications used to describe the passband(s) and stopband(s)
could be provided in hertz (Hz) or in radians/second (rad/sec). We will use the
frequency variable f measured in hertz as filter input and output specifications
because it is a slightly more common way of discussing frequency. However, the
frequency variable ω measured in radians/second will also be used as WFilter’s
internal variable of choice as well as for unnormalized frequency responses since
most of those calculations will use radians/second.

The other major filter specifications are the gain characteristics of the
passband(s) and stopband(s) of the filter response. A filter's gain is simply the
ratio of the output signal level to the input signal level. If the filter's gain is greater
than 1, then the output signal is larger than the input signal, while if the gain is
less than 1, the output is smaller than the input. In most filter applications, the gain

 Introduction to Filters and Filter Design Software 3

response in the stopband is very small. For this reason, the gain is typically
converted to decibels (dB) as indicated in (1.1). For example, a filter's passband
gain response could be specified as 0.707 or as −3.0103 dB, while the stopband
gain might be specified as 0.0001 or −80.0 dB.

)gainlog(20gain dB ⋅= (1.1)

As we can see, the values in decibels are more manageable for very small

gains. Some filter designers prefer to use attenuation (or loss) values instead of
gain values. Attenuation is simply the inverse of gain. For example, a filter with a
gain of 1/2 at a particular frequency would have an attenuation of 2 at that
frequency. If we express attenuation in decibels we will find that it is simply the
negative of the gain in decibels as indicated in (1.2). Gain values expressed in
decibels will be the standard quantities used as filter specifications, although the
term attenuation (or loss) will be used occasionally when appropriate.

 (1.2) dB
1

dB gain)gainlog(20)gainlog(20attn −=⋅−=⋅= −

1.1.1 Lowpass Filters

Figure 1.1 shows a typical lowpass filter’s response using frequency and gain
specifications necessary for precision filter design. The frequency range of the
filter specification has been divided into three areas. The passband extends from
zero frequency (dc) to the passband edge frequency fpass, and the stopband extends
from the stopband edge frequency fstop to infinity. (We will see later in this text
that digital filters have a finite upper frequency limit. We will discuss that issue at
the appropriate time.) These two bands are separated by the transition band that
extends from fpass to fstop. The filter response within the passband is allowed to vary
between 0 dB and the passband gain apass, while the gain in the stopband can vary
between the stopband gain astop and negative infinity. (The 0 dB gain in the
passband relates to a gain of 1.0, while the gain of negative infinity in the
stopband relates to a gain of 0.0.) A lowpass filter's selectivity can now be
specified with only four parameters: the passband gain apass, the stopband gain
astop, the passband edge frequency fpass, and the stopband edge frequency fstop.

Lowpass filters are used whenever it is important to limit the high-frequency
content of a signal. For example, if an old audiotape has a lot of high-frequency
“hiss,” a lowpass filter with a passband edge frequency of 8 kHz could be used to
eliminate much of the hiss. Of course, it also eliminates high frequencies that were
intended to be reproduced. We should remember that any filter can differentiate
only between bands of frequencies, not between information and noise.

4 Practical Analog and Digital Filter Design

Figure 1.1 Lowpass filter specification.

1.1.2 Highpass Filters

A highpass filter can be specified as shown in Figure 1.2. Note that in this case the
passband extends from fpass to infinity (for analog filters) and is located at a higher
frequency than the stopband which extends from zero to fstop. The transition band
still separates the passband and stopband. The passband gain is still specified as
apass (dB) and the stopband gain is still specified as astop (dB).

Figure 1.2 Highpass filter specification.

Highpass filters are used when it is important to eliminate low frequencies
from a signal. For example, when turntables are used to play LP records (some
readers may remember those black vinyl disks that would warp in a car's back
window), turntable rumble can sometimes occur, producing distracting low-

 Introduction to Filters and Filter Design Software 5

frequency signals. A highpass filter set to a passband edge frequency of 100 Hz
could help to eliminate this distracting signal.

1.1.3 Bandpass Filters

The filter specification for a bandpass filter shown in Figure 1.3 requires a bit
more description. A bandpass filter will pass a band of frequencies while
attenuating frequencies above or below that band. In this case the passband exists
between the lower passband edge frequency fpass1 and the upper passband edge
frequency fpass2. A bandpass filter has two stopbands. The lower stopband extends
from zero to fstop1, while the upper stopband extends from fstop2 to infinity (for
analog filters). Within the passband, there is a single passband gain parameter apass
in decibels. However, individual parameters for the lower stopband gain astop1
(dB) and the upper stopband gain astop2 (dB) could be used if necessary.

Figure 1.3 Bandpass filter specification.

A good example for the application of a bandpass filter is the processing of
voice signals. The normal human voice has a frequency content located primarily
in the range of 300–3,000 Hz. Therefore, the frequency response for any system
designed to pass primarily voice signals should contain the input signal to that
frequency range. In this case, fpass1 would be 300 Hz and fpass2 would be 3,000 Hz.
The stopband edge frequencies would be selected by how fast we would want the
signal response to roll off above and below the passband.

1.1.4 Bandstop Filters

The final type of filter to be discussed in this section is the bandstop filter as
shown in Figure 1.4. In this case the band of frequencies being rejected is located
between the two passbands. The stopband exists between the lower stopband edge
frequency fstop1 and the upper stopband edge frequency fstop2. The bandstop filter

6 Practical Analog and Digital Filter Design

has two passbands. The lower passband extends from zero to fpass1, while the upper
passband extends from fpass2 to infinity (for analog filters). Within the stopband,
the single stopband gain parameter astop is used. However, individual gain
parameters for the lower and upper passbands, apass1 and apass2 (in dB) respectively,
could be used if necessary.

Figure 1.4 Bandstop filter specification.

An excellent example of a bandstop application would be a 60-Hz notch filter
used in sensitive measurement equipment. Most electronic measurement
equipment today runs from an AC power source using a 60-Hz input frequency.
However, it is not uncommon for some of the 60-Hz signal to make its way into
the sensitive measurement areas of the equipment. In order to eliminate this
troublesome frequency, a bandstop filter (sometimes called a notch filter in these
applications) could be used with fstop1 set to 58 Hz and fstop2 set to 62 Hz. The
passband edge frequencies could be adjusted based on the other technical
requirements of the filter.

1.2 FILTER APPROXIMATION

The response of an ideal lowpass filter is shown in Figure 1.5, where all
frequencies from 0 to fo are passed with a gain of 1, and all frequencies above fo
are completely attenuated (gain = 0). This type of filter response is physically
unattainable. Practical filter responses that can be attained are also shown. As a
filter's response becomes closer and closer to the ideal, the cost of the filter (time
delay, number of elements, dollars, power consumption, etc.) will increase. These
practical responses are referred to as approximations to the ideal. There are a
variety of ways to approximate an ideal response based on different criteria. For
example, some designs may emphasize the need for minimum distortion of the
signals in the passband and would be willing to trade off stopband attenuation for

 Introduction to Filters and Filter Design Software 7

that feature. Other designs may need the fastest transition from passband to
stopband and will allow more distortion in the passband to accomplish that aim. It
is this engineering tradeoff that makes the design of filters so interesting.

Figure 1.5 Practical and ideal filter responses.

We will be discussing the primary approximation functions used in filter
design today that can be classified both by name and the presence of ripple or
variation in the signal bands. Elliptic or Cauer filter approximations provide the
fastest transition between passband and stopband of any studied in this text. An
illustration of the magnitude response of an elliptic filter is shown in Figure 1.1,
where we can see that ripple exists in both the passband and stopband. What is not
shown in that figure is the phase distortion that the elliptic filter generates. If the
filter is to be used with audio signals, this phase distortion must usually be
corrected. However, in other applications, for example the transmission of data,
the elliptic filter is a popular choice because of its excellent selectivity
characteristics. The elliptic approximation is also one of the more complicated to
develop. (We will discuss all approximation methods in detail in Chapter 2.)

The inverse Chebyshev response is another popular approximation method
that has a smooth response in the passband, but variations in the stopband. On the
other hand, the normal Chebyshev response has ripple in the passband, but a
smooth, ever-decreasing gain in the stopband. The phase distortion produced by
these filters is not as severe as for the elliptic filter, and they are typically easier to
design. The inverse Chebyshev response is shown in Figure 1.2, and the normal
Chebyshev response is illustrated in Figure 1.3. The Chebyshev approximations
provide a good compromise between the elliptic and Butterworth approximation.

The Butterworth filter is a classic filter approximation that has a smooth
response in both the passband and stopband as shown in Figure 1.4. It provides
the most linear phase response of any approximation technique discussed in this
text. (The Bessel approximation provides better phase characteristics, but has very
poor transition band characteristics.) However, as we will see in Chapter 2, a

8 Practical Analog and Digital Filter Design

Butterworth filter will require a much higher order to match the transition band
characteristics of a Chebyshev or elliptic filter.

1.3 FILTER IMPLEMENTATION

After a filter has been completely specified, various numerical coefficients can be
calculated (as described in Chapter 2). But after all the paperwork has been
completed, the filter still has to be placed into operation. The first major decision
is whether to use analog or digital technology to implement the filter. The
differences between analog and digital filter design are based primarily on the
differences between analog and digital signals themselves. Any signal can be
represented in the time domain by plotting its amplitude versus time. However, the
amplitude and time variations can be either continuous or discrete. If both the
amplitude and time variations are continuous as shown in Figure 1.6, the signal is
referred to as an analog signal. Most real-life signals are analog in nature; for
example, sounds that we hear, electrocardiogram signals recorded in a medical
lab, and seismic variations recorded on monitoring equipment. However, the
problem with analog signals is that they contain so much information. The exact
amplitude of the signal (with infinite precision) is available at every instant of
time. Do we actually need all of that information? And how do we store and
transfer that information?

Figure 1.6 Comparison of analog and digital signals.

As techniques for the storage and transmission of information in digital form
are becoming more efficient and cost effective, it is increasingly advantageous to
use signals that are in a digital form. The advantage of using the resulting digital
signals is that the amount of information can be managed to a level appropriate for
each application. An analog signal can be converted to a digital signal in two
steps. First, the signal must be sampled at fixed time intervals, and then the

 Introduction to Filters and Filter Design Software 9

amplitude of the signal must be quantized to one of a set of fixed levels. Once the
analog signal has been converted to a discrete-time and discrete-amplitude signal
it is commonly referred to as a digital signal as shown in Figure 1.6. The operation
of sampling and quantizing is accomplished by an analog-to-digital converter
(ADC). After filtering the signal in the digital domain, a digital-to-analog
converter (DAC) can be used to return the signal to analog form. (A more
complete discussion of these operations will be given in Chapter 5 where digital
filter design is introduced and in Chapter 8 where practical considerations of
digital filter implementation are discussed.) Today the digital images and sound
files on computers as well as the music on compact discs are examples of signals
in digital form.

If we choose to implement a filter in analog form, we still have further
choices to make. We could choose to implement the filter with purely passive
components such as resistors, capacitors, and inductors. This approach might be
the best choice when high frequencies or high power is used. In other
circumstances, analog active filters might be the best choice where either
transistors or operational amplifiers are used to provide a gain element in the filter.
The implementation of analog active filters is considered in Chapter 4.

Digital filters will be implemented by using digital technology available
today. Generally, the process will take place within a microprocessor system that
could have other functions besides the filtering of signals. We discuss two basic
types of digital filters in Chapters 6 and 7 of this text. The first is the infinite
impulse response (IIR) digital filter that is based in a large part on the design
methodology of analog filters. The second type is the finite impulse response
(FIR) digital filter that uses a completely different method for its design. The
implementation of digital filters is considered in Chapter 8. Chapter 9 introduces
the fast Fourier transform (FFT) and discusses how it can be used in filtering.

As we can now see, there is more to describing a filter than referring to it as a
lowpass filter. For example, we might be designing an “analog active lowpass
Butterworth filter” or a “digital IIR bandpass Chebyshev filter.” These names
along with a filter's specification parameters will completely describe a filter.

1.4 WFILTER - FILTER DESIGN SOFTWARE

Although we haven’t discussed filter design in detail, it may be educational to see
how to use a filter design software package. This book includes a filter design
software package called WFilter that automates the design process and provides
filter coefficients and frequency response characteristics for the filters, and other
features as well. As a first example, we will choose an analog lowpass Chebyshev
filter with passband and stopband gains of −1 dB and −30 dB, respectively. The
passband and stopband edge frequencies will be 500 Hz and 1,000 Hz and the data
files and frequency plots will be labeled with the title “Lowpass Chebyshev
Filter.” (You will need to install WFilter on your computer before you can

10 Practical Analog and Digital Filter Design

duplicate the actions described below. Please see Appendix B for contents of the
accompanying disc and installation instructions for WFilter.)

After starting WFilter, you can begin the design of a new filter by selecting
New from the File menu bar as shown in Figure 1.7. You can also Open a
previously designed filter or seek Help from this startup screen.

Figure 1.7 WFilter opening screen.

After selecting New, you will be able to select the type of filter you want to
design and specify a description as indicated earlier. The Filter Specification
dialog box shown in Figure 1.8 includes sections for the different characteristics
of the filter, as well as sampling frequency (for digital filters only) and a filter
title.

Figure 1.8 Filter Specification dialog box.

After selecting the characteristics of the filter, you can select Next and the
Lowpass Specification dialog box shown in Figure 1.9 will appear, allowing you
to specify the gain and frequency characteristics. For a lowpass filter you must

 Introduction to Filters and Filter Design Software 11

enter the passband gain and edge frequency as well as the stopband gain and edge
frequency as specified in our sample filter. You then have the option of designing
the filter or returning to the previous dialog box to make changes. At each stage of
this process you can cancel your actions or seek help determining proper actions.

Figure 1.9 Lowpass Specification dialog box.

After completing the specifications, you can select Design Filter and the
following information will be displayed in the Filter Parameter text window as
shown in Figure 1.10. (Pole-zero information will also be displayed, but is not
shown in this example.) As indicated, our filter will be fourth-order (length is a
term used with digital FIR filters) and will have an overall gain as indicated. The
coefficients of the transfer function are given in the form of quadratics. Details
concerning these values will be discussed in the next chapter.

Lowpass Chebyshev Filter

Selectivity: Lowpass
Approximation: Chebyshev
Implementation: Analog
Passband gain (dB): -1.0
Stopband gain (dB): -30.0
Passband freq (Hz): 500.0
Stopband freq (Hz): 1000.0

Filter Length/Order: 04
Overall Filter Gain: 8.91250938134E-01

Numerator Coefficients
QD [S^2 + S + 1]
== ===
01 0.0 0.00000000000E+00 9.73641285912E+06
02 0.0 0.00000000000E+00 2.75754865948E+06

Denominator Coefficients
QD [S^2 + S + 1]
== ===
01 1.0 8.76730519296E+02 9.73641285912E+06
02 1.0 2.11661471023E+03 2.75754865948E+06

Figure 1.10 Filter Characteristic screen.

12 Practical Analog and Digital Filter Design

We can now display the frequency response of our filter by selecting
Magnitude Response from the View menu. As indicated in the Response
Specification dialog box shown in Figure 1.11, the user can specify frequency
limits of the display as well as the magnitude range. Both the frequency and
magnitude axes can be scaled in a linear or logarithmic fashion. WFilter initializes
the values with educated guesses that can be changed by the user.

Figure 1.11 Response Specification dialog box.

Selecting Display Response will bring up the graphics plots of the magnitude
and phase responses. These graphs are shown in Figures 1.12 and 1.13. Notice
that on the phase plot, the phase angle is always displayed as a value between
+180 and −180 degrees. Therefore there is actually no discontinuity in the phase
plot.

Figure 1.12 Magnitude response screen.

 Introduction to Filters and Filter Design Software 13

Figure 1.13 Phase response screen.

In addition, for analog and digital IIR filters, the pole-zero positions for a
filter can be displayed by selecting Pole-Zero Plot from the View menu. (The
significance of poles and zeros will be discussed in the next chapter.) The pole-
zero plot for our filter is shown in Figure 1.14.

Figure 1.14 Pole-zero plot.

Any or all of the information provided by WFilter can be printed by selecting
Print from the File menu. The Print dialog box as shown in Figure 1.15 will be
displayed and the user can choose from several options for printing.

The details of this filter design can now be saved by selecting Save or Save
As from the File menu. After saving the information, you can exit the program by
selecting Exit from the File menu. Further details about the WFilter program will

14 Practical Analog and Digital Filter Design

be presented in the chapters to come. We will have many more chances to use this
program as we develop the theory behind analog and digital filter design.

Figure 1.15 Print dialog box.

1.5 CONCLUSION

At this point we have provided an introduction to filter design by providing the
standard definitions used to describe filters. We have also introduced WFilter, a
powerful filter design software package. But we still need to learn the theory
behind filter design and how we can design and implement the filters. We’ll begin
in the next chapter to study the design of analog filters. For those interested in the
C code used in the design and implementation of filters, please refer to Appendix
C–I.

15

Chapter 2

Analog Filter Approximation Functions

As indicated in the first chapter, an ideal filter is unattainable; the best we can do
is to approximate it. There are a number of approximations we can use based on
how we want to define “best.” In this chapter we discuss four methods of
approximation, each using a slightly different definition. Four sections are devoted
to the major approximation methods used in analog filter design: the Butterworth,
Chebyshev, inverse Chebyshev, and elliptic approximations. In each of these
sections we determine the order of the filter required given the filter’s
specifications and the required normalized transfer function to satisfy the
specifications. In the following section we discuss the relative advantages and
disadvantages of using these approximation methods. But first we begin this
chapter by describing analog filters mathematically in the form of linear system
transfer functions.

2.1 FILTER TRANSFER FUNCTIONS

An analog filter is a linear system that has an input and output signal. This
system’s primary purpose is to change the frequency response characteristics of
the input signal as it moves through the filter. The characteristics of this filter
system could be studied in the time domain or the frequency domain. From a
systems point of view, the impulse response h(t) could be used to describe the
system in the time domain. The impulse response of a system is the output of a
system that has had an impulse applied to the input. Of course, many systems
would not be able to sustain an infinite spike (the impulse) being applied to the
input of the system, but there are ways to determine h(t) without actually applying
the impulse.

A filter system can also be described in the frequency domain by using the
transfer function H(s). The transfer function of the system can be determined by
finding the Laplace transform of h(t). Figure 2.1 indicates that the filter system
can be considered either in the time domain or in the frequency domain. However,

16 Practical Analog and Digital Filter Design

the transfer function description is the predominant method used in filter design,
and we will perform most of our filter design using it.

Figure 2.1 The filter as a system.

2.1.1 Transfer Function Characterization

The transfer function H(s) for a filter system can be characterized in a number of
ways. As shown in (2.1), H(s) is typically represented as the ratio of two
polynomials in s where in this case the numerator polynomial is order m and the
denominator is a polynomial of order n. G represents an overall gain constant that
can take on any value.

][

][
)(

01
2

2
1

1

01
2

2
1

1

bsbsbsbs
asasasasG

sH n
n

n
n

n

m
m

m
m

m

+⋅++⋅+⋅+

+⋅++⋅+⋅+⋅
=

−
−

−
−

−
−

−
−

"
"

 (2.1)

Alternately, the polynomials can be factored to give a form as shown in (2.2).
In this representation, the numerator and denominator polynomials have been
separated into first-order factors. The zs represent the roots of the numerator and
are referred to as the zeros of the transfer function. Similarly, the ps represent the
roots of the denominator and are referred to as the poles of the transfer function.

)]()()()[(
)]()()()[(

)(
1210

1210

−−

−−

+⋅++⋅+
+⋅++⋅+⋅

=
nn

mm

pspspsps
zszszszsG

sH
"
"

 (2.2)

Most of the poles and zeros in filter design will be complex valued and will
occur as complex conjugate pairs. In this case, it will be more convenient to
represent the transfer function as a ratio of quadratic terms that combine the
individual complex conjugate factors as shown in (2.3). The first-order factors that
are included will be present only if the numerator or denominator polynomial
orders are odd. We will be using this form for most of the analog filter design
material.

)]()()[(

)]()()[(
)(

21
2

0201
2

0

21
2

0201
2

0

rr

qq

bsbsbsbsps

asasasaszsG
sH

+⋅++⋅+⋅+

+⋅++⋅+⋅+⋅
=

"

"
 (2.3)

 Analog Filter Approximation Functions 17

As an example of each expression, consider the three forms of a transfer
function that have a second-order numerator and third-order denominator:

0001.40081.51650.3

)66667.0(0.6)(23

2

+⋅+⋅+

+⋅
=

sss
ssH a (2.4a)

)3747.17837.0()3747.17837.0()5975.1(

)81650.0)(81650.0(0.6)(
jsjss

jsjssHb −+⋅++⋅+
−+⋅

= (2.4b)

)5040.25675.1()5975.1(

)66667.0(0.6)(
2

2

+⋅+⋅+

+⋅
=

sss
ssH c (2.4c)

2.1.2 Pole-Zero Plots and Transfer Functions

When the quadratic form of the transfer function is used, it is easy to generate the
pole-zero plot for a particular transfer function. The pole-zero plot simply plots
the roots of the numerator (zeros) and the denominator (poles) on the complex s-
plane. As an example, the pole-zero plot for the sample transfer function given in
(2.4) is shown in Figure 2.2.

Figure 2.2 Pole-zero plot for (2.4).

A pole is traditionally represented by an X and a zero by an O. If the transfer

function is odd, the first-order pole or zero will be located on the real axis. All
poles and zeros from the quadratic factors are symmetrically located pairs in the
complex plane on opposite sides of the real axis. The gain of the transfer function

18 Practical Analog and Digital Filter Design

must be indicated on the plot or the information would be incomplete. Note that
there are only two zeros shown, but there is one located at infinity. We can verify
this by observing that if we were to allow |s| to approach infinity, |H(s)| would
approach zero. Transfer functions always have the same number of poles and
zeros, but some exist at infinity.

Conversely, we can also determine a filter’s transfer function from the pole-
zero plot. In general, any critical frequency (pole or zero) is specified by
indicating the real (σ) and imaginary (ω) component. The transfer function would
then include a factor of [s − (σ + jω)]. If the critical frequency is complex, we can
combine the two complex conjugate factors into a single quadratic factor by
multiplying them as shown in (2.5):

 (2.5))(2)]([)]([222 ωσσωσωσ ++⋅⋅−=−−⋅+− ssjsjs

Example 2.1 Generating a Transfer Function from a Pole-Zero Plot

Problem: Assume that a pole-zero plot shows poles at (−3 ± j2) and (−4.5)
and zeros at (−5 ± j1) and (−1). Determine the transfer function if its gain is 1.0 at
s = 0.

Solution: Using the technique of (2.5), the complex conjugate poles and
zeros can be combined into quadratic factors as indicated. The first-order factors
are handled directly and the gain is included in the numerator. The easiest method
to use when given a gain requirement of 1.0 at s = 0 is to prepare each factor
independently to have a gain of 1 at that frequency as shown in the first transfer
function. Then the set of constants can be combined as shown in the second
equation.

)136()5.4(
)2610()1(25.2=

)136(
13

)5.4(
5.4

1
)1(

26
)2610()(

2

2

2

2

+⋅+⋅+
+⋅+⋅+⋅

+⋅+
⋅

+
⋅

+
⋅

+⋅+
=

sss
sss

sss
ssssH

2.1.3 Normalized Transfer Functions

In this chapter we concentrate on developing what is referred to as a normalized
transfer function. A normalized lowpass transfer function is one in which the
passband edge radian frequency is set to 1 rad/sec. Of course, this seems a rather
unusual frequency, since seldom would a lowpass filter be required to have such a
low frequency. However, the technique actually allows the filter designer
considerable latitude in designing filters because a normalized transfer function

 Analog Filter Approximation Functions 19

can easily be unnormalized to any other frequency. In the next chapter, we will
discuss in detail the procedures used to unnormalize lowpass filters to other
frequencies and even learn how to translate a lowpass filter to a highpass,
bandpass, or bandstop filter.

Before we begin the development of the approximation functions for analog
filters, it may be helpful to go over the general approach taken in these sections. In
each case, the general characteristics of the approximation method will be
discussed, including its relative advantages and disadvantages. Next, a description
of the transfer function for each approximation will be given. There will be no
attempt to give an exhaustive derivation of each approximation method in this
text; there are more than enough sources of theoretical developments already
available. (A list of references for material presented in this chapter is given in
Appendix A. The texts by Daniels, Van Valkenburg, and Parks/Burrus are
particularly helpful when studying approximation theory.) We will then determine
numerical methods to find the order and the coefficients of the transfer function
necessary to meet the filter specifications.

2.2 BUTTERWORTH NORMALIZED APPROXIMATION FUNCTIONS

The Butterworth approximation function is often called the maximally flat
response because no other approximation has a smoother transition through the
passband to the stopband. The phase response also is very smooth, which is
important when considering distortion. The lowpass Butterworth polynomial has
an all-pole transfer function with no finite zeros present. It is the approximation
method of choice when low phase distortion and moderate selectivity are required.

2.2.1 Butterworth Magnitude Response

Equation 2.6 gives the Butterworth approximation’s magnitude response where ωo
is the passband edge frequency for the filter, n is the order of the approximation
function, and ε is the passband gain adjustment factor. The transfer functions will
carry subscripts to help identify them in this chapter. In this case, the subscript B
indicates a Butterworth filter, and n indicates an nth-order transfer function.

 []
n

o

onB jH
⋅⋅+

=
22,

)/(1

1)/(
ωωε

ωω (2.6)

where

 110 pass1.0 −= ⋅− aε (2.7)

20 Practical Analog and Digital Filter Design

If we set both ε = 1 and ωo = 1, the filter will have a gain of 1/2 or −3.01 dB
at the normalized passband edge frequency of 1 rad/sec.

The Butterworth approximation has a number of interesting properties. First,
the response will always have unity gain at ω = 0, no matter what value is given to
ε. However, the gain at the normalized passband edge frequency of ω = 1 will
depend on the value of ε. In addition, the response gain decreases by a factor of
−20n dB per decade of frequency change. That happens because for large ω, the
transfer function gain becomes inversely proportional to ω, which increases by 10
for every decade. (A decade in frequency is a ratio of 10. For example, the span of
frequencies from 1 to 10 rad/sec and the span of frequencies from 1,000 to 10,000
Hz are both referred to as one decade.) Therefore, if we design a fifth-order
Butterworth filter, the gain will decrease 100 dB per decade for frequencies above
the passband edge frequency.

2.2.2 Butterworth Order

The order of the Butterworth filter is dependent on the specifications provided by
the user. These specifications include the edge frequencies and gains. The
standard formula for the Butterworth order calculation is given in (2.8). In this
formulation, note that it is the ratio of the stopband and passband frequencies
which is important, not either one of these independently. This means that a filter
with a given set of gains will require the same order whether the edge frequencies
are 100 and 200 rad/sec or 100,000 and 200,000 Hz. The value of n calculated
using this equation must always be rounded to the next highest integer in order to
guarantee that the specifications will be met by the integer order of the filter
designed:

)/log(2

)]110/()110log[(

passstop

1.01.0 passstop

ωω⋅
−−

=
⋅−⋅− aa

Bn (2.8)

2.2.3 Butterworth Pole Locations

The poles for a Butterworth approximation function are equally spaced around a
circle in the s-plane and are symmetrical about the jω axis. Plotting the poles of
the magnitude-squared function |H(s)|2 shows twice as many poles as the order of
the filter. We are able to determine the Butterworth transfer function from the
poles in the left half plane (LHP) that produce a stable system. In order to
determine the exact pole positions in the s-plane we use the polar form for
specifying the complex location. For each of the poles, we must know the distance
from the origin (the radius of the circle) and the angle from the positive real axis.

 Analog Filter Approximation Functions 21

The radius of the circle for our normalized case is a function of the passband
gain and is given in (2.9):

 (2.9) nR /1−= ε

Once the radius of the circle is known, the pole positions are determined by
calculating the necessary angles. Equation 2.10 can be used to determine the
angles for those complex poles in the second quadrant:

 even) (1/2)(, 1, 0,= ,
2

)12(nnm
n

nm
m −

⋅
++⋅⋅

= …πθ (2.10a)

 odd) (1]2)/1[(, ,1 ,0= ,
2

)12(nnm
n

nm
m −−

⋅
++⋅⋅

= …πθ (2.10b)

It is important to remember that in this equation θm represents only the angles
in the second quadrant that have complex conjugates in the third quadrant. In
other words, θm does not include the pole on the real axis for odd-order functions.
For this reason, (2.10b) is valid only for odd-order filters where n ≥ 3 since a first-
order filter would have no complex conjugate poles. (We’ll see that this definition
allows a cleaner algorithm for the C code that is discussed in Appendix D.) The
precise pole locations can then be determined from (2.11) and (2.12):

)cos(mm R θσ ⋅= (2.11)

)sin(mm R θω ⋅= (2.12)

In the case of odd-order transfer functions, the first-order pole will be located
at a position σR equal to the radius of the circle as indicated in (2.13):

 RR −=σ (2.13)

2.2.4 Butterworth Transfer Functions

The Butterworth transfer function can be determined from the pole locations in the
LHP as we saw in the first section of this chapter. Since most of these poles are
complex conjugate pairs (except for the possible pole on the real axis for odd
orders), we can get all of the information we need from the poles in the second
quadrant. The complete approximation transfer function can be determined from a
combination of a first-order factor (for odd orders) and quadratic factors. Each of

22 Practical Analog and Digital Filter Design

these factors will have a constant in the numerator to adjust the gain to unity at
ω = 0 as illustrated in Example 2.1. We start by defining the form of the first-order
factor in (2.14). Note that at this point the transfer function variables are
represented by an uppercase S where prior to this we have been using a lowercase
s. This is an attempt to distinguish between the normalized transfer function (using
S) and the unnormalized functions (using s), which will be developed in the next
chapter.

RS

RSH o +
=)((2.14)

For each complex conjugate pole in the second quadrant, there will be the
following quadratic factor in the transfer function:

mm

m
m BSBS

B
SH

21
2

2)(
+⋅+

= (2.15)

where

 mmB σ⋅−= 21 (2.16)

 (2.17) 22
2 mmmB ωσ +=

The complete Butterworth transfer function can now be defined as shown in
(2.18):

even) (1)2/(, ,1 ,0=

 ,
)(

)(
)(

21
2

2

,

nnm

BSBS

B
SH

m
mm

m
m

nB

−

+⋅+
=
∏

∏

…

 (2.18a)

odd) (1]2)/1[(, ,1 ,0=

 ,
)()(

)(
)(

21
2

2

,

nnm

BSBSRS

BR
SH

m
mm

m
m

nB

−−

+⋅+⋅+

⋅

=
∏

∏

…

 (2.18b)

 Analog Filter Approximation Functions 23

We have now reached a point where some examples are in order. First, we
will consider some numerical examples, and then test the WFilter program on the
same specifications.

Example 2.2 Butterworth Third-Order Normalized Transfer Function

Problem: Determine the order, pole locations, and transfer function
coefficients for a Butterworth filter to satisfy the following specifications:

 apass = −1 dB, astop = −12 dB, ωpass = 1 rad/sec, and ωstop = 2 rad/sec

Solution: First, we determine the fundamental constants needed from (2.7)–
(2.9):

 ε = 0.508847 n = 2.92 (3rd order) R = 1.252576

Next, we find the locations of the first-order pole and the complex pole in the
second quadrant from (2.10)–(2.13). A graph of the pole locations (including
those from the magnitude-squared function in the right-half plane) is shown in
Figure 2.3.

(1st order) σR = −1.252576 ωR = 0.0
θ0 = 2π/3 σ0 = −0.626288 ω0 = 1.084763

Finally, we generate the transfer function from (2.14)–(2.18):

)5689.12526.1()2526.1(

5689.12526.1)(23,
+⋅+⋅+

⋅
=

SSS
SH B

Figure 2.3 Pole locations for third-order Butterworth normalized filter.

24 Practical Analog and Digital Filter Design

In order to use WFilter to determine the normalized transfer functions, we
will assume a passband edge frequency of 1 rad/sec (0.159154943092 Hz) and a
stopband edge frequency of 2 rad/sec (0.318309886184 Hz). (We must enter the
frequencies into WFilter using the hertz values and they must have more
significant digits than we require in our answer.) Twelve significant digits were
used to enter the edge frequencies, but they are displayed on the coefficient screen
with only ten significant digits. Rest assured that they are stored internally with
the higher accuracy, but the display is set for the more typical requirements of
filter frequency. The coefficient values determined are shown in Figure 2.4.

Butterworth 3rd-Order Normalized Lowpass

Selectivity: Lowpass
Approximation: Butterworth
Implementation: Analog
Passband gain (dB): -1.0
Stopband gain (dB): -12.0
Passband freq (Hz): 0.1591549431
Stopband freq (Hz): 0.3183098862

Filter Length/Order: 03
Overall Filter Gain: 1.00000000000E+00

 Numerator Coefficients
QD [S^2 + S + 1]
== ===
01 0.0 0.00000000000E+00 1.25257638818E+00
02 0.0 0.00000000000E+00 1.56894760823E+00

 Denominator Coefficients
QD [S^2 + S + 1]
== ===
01 0.0 1.00000000000E+00 1.25257638818E+00
02 1.0 1.25257638818E+00 1.56894760823E+00

Figure 2.4 Butterworth normalized third-order coefficients from WFilter.

Example 2.3 Butterworth Fourth-Order Normalized Transfer Function

Problem: Determine the order, pole locations, and transfer function
coefficients for a Butterworth filter to satisfy the following specifications:

 apass = −1 dB, astop = −18 dB, ωpass = 1 rad/sec, and ωstop = 2 rad/sec

Solution: First, we determine the constants needed from (2.7)–(2.9):

 ε = 0.508847 n = 3.95 (4th order) R = 1.184004

Next, we find the locations of the two complex poles in the second quadrant
from (2.10)–(2.13). A graph of the pole locations is shown in Figure 2.5.

θ0 = 5π/8 σ0 = −0.453099 ω0 = +1.093877
θ1 = 7π/8 σ1 = −1.093877 ω1 = +0.453099

 Analog Filter Approximation Functions 25

Finally, we generate the transfer function from (2.14)–(2.18). The coefficient
values determined by WFilter are shown in Figure 2.6.

)4019.190620.0()4019.11878.2(

)4019.1()(22

2

4,
+⋅+⋅+⋅+

=
SSSS

SH B

Figure 2.5 Pole locations for fourth-order Butterworth normalized filter.

Butterworth 4th-Order Normalized Lowpass

Selectivity: Lowpass
Approximation: Butterworth
Implementation: Analog
Passband gain (dB): -1.0
Stopband gain (dB): -18.0
Passband freq (Hz): 0.1591549431
Stopband freq (Hz): 0.3183098862

Filter Length/Order: 04
Overall Filter Gain: 1.00000000000E+00

 Numerator Coefficients
QD [S^2 + S + 1]
== ===
01 0.0 0.00000000000E+00 1.40186544588E+00
02 0.0 0.00000000000E+00 1.40186544588E+00

 Denominator Coefficients
QD [S^2 + S + 1]
== ===
01 1.0 9.06197420862E-01 1.40186544588E+00
02 1.0 2.18775410363E+00 1.40186544588E+00

Figure 2.6 Butterworth normalized fourth-order coefficients from WFilter.

26 Practical Analog and Digital Filter Design

The associated magnitude and phase responses for the previous two examples
are shown in Figures 2.7 and 2.8 and illustrate the difference between a third-
order and fourth-order filter. Notice that the magnitude response uses a different
scale for the passband and stopband response. (WFilter does not put two different
responses on the same graph or use different scales for passband and stopband.
They are displayed here in that manner for ease of comparison. However, the
magnitude scale of WFilter can be changed on different graphs to provide more
detail.)

Figure 2.7 Butterworth third-order and fourth-order magnitude responses.

Figure 2.8 Butterworth third-order and fourth-order phase responses.

 Analog Filter Approximation Functions 27

2.3 CHEBYSHEV NORMALIZED APPROXIMATION FUNCTIONS

The Chebyshev approximation function also has an all-pole transfer function like
the Butterworth approximation. However, unlike the Butterworth case, the
Chebyshev filter allows variation or ripple in the passband of the filter. This
reduction in the restrictions placed on the characteristics of the passband enables
the transition characteristics of the Chebyshev to be steeper than the Butterworth
transition. Because of this more rapid transition, the Chebyshev filter is able to
satisfy user specifications with lower-order filters than the Butterworth case.
However, the phase response is not as linear as the Butterworth case, and therefore
if low phase distortion is a priority, the Chebyshev approximation may not be the
best choice.

2.3.1 Chebyshev Magnitude Response

The magnitude response function for the Chebyshev approximation is shown in
(2.19):

)/(1

1)]/([
22

,

on

onC
C

jH
ωωε

ωω
⋅+

= (2.19)

where the definition of ε is again

 110 pass1.0 −= ⋅− aε (2.20)

and Cn(ω) is the Chebyshev polynomial of the first kind of degree n. The
normalized Chebyshev polynomial (ωo = 1) is defined as

 (2.21a) 0 ,])(cos cos[)(1 ≤⋅= − ωωω nCn

 (2.21b) 0 > ,])(cosh cosh[)(1 ωωω −⋅= nCn

We can see that the mathematical description used for this approximation is
more involved than the Butterworth case. We will be concerned with the
expression where ω > 0, but the Chebyshev polynomial has many interesting
features which are discussed in the references at the end of this text.

28 Practical Analog and Digital Filter Design

2.3.2 Chebyshev Order

The order of the Chebyshev filter will be dependent on the specifications provided
by the user. The general form of the calculation for the order is the same as for the
Butterworth, except that the inverse hyperbolic cosine function is used in place of
the common logarithm function. As in the Butterworth case, the value of n
actually calculated must be rounded to the next highest integer in order to
guarantee that the specifications will be met.

)/(cosh

)110/()110(cosh

passstop
1

1.01.01 passstop

ωω−

⋅−⋅−−
⎥⎦
⎤

⎢⎣
⎡ −−

=

aa

Cn (2.22)

2.3.3 Chebyshev Pole Locations

The poles for a Chebyshev approximation function are located on an ellipse
instead of a circle as in the Butterworth case. The ellipse is centered at the origin
of the s-plane with its major axis along the jω axis with intercepts of ± cosh(D),
while the minor axis is along the real axis with intercepts of ± sinh(D). The
variable D is defined as

n

D)(sinh 11 −−

=
ε (2.23)

The pole locations can be defined in terms of D and an angle φ as shown in
(2.24). The angles determined locate the poles of the transfer function in the first
quadrant. However, we can use them to find the poles in the second quadrant by
simply changing the sign of the real part of each complex pole. The real and
imaginary components of the pole locations can now be defined as shown in
(2.25) and (2.26):

 even) (1)2/(, ,1 ,0= ,
2

)12(nnm
n
m

m −
⋅

+⋅⋅
= …πφ (2.24a)

 odd) (1]2)/1[(, ,1 ,0= ,
2

)12(nnm
n
m

m −−
⋅

+⋅⋅
= …πφ (2.24b)

)sin()sinh(mm D φσ ⋅−= (2.25)

 Analog Filter Approximation Functions 29

)cos()cosh(mm D φω ⋅= (2.26)

If the function has an odd-order, there will be a real pole located in the LHP
as indicted by (2.27):

)sinh(DR −=σ (2.27)

2.3.4 Chebyshev Transfer Functions

Using the results of (2.27), we know that an odd-order Chebyshev transfer
function will have a factor of the form illustrated in (2.28):

)sinh(

)sinh()(
DS

DSH o +
= (2.28)

The quadratic factors for the Chebyshev transfer function will take on exactly

the same form as the Butterworth case, as shown below:

mm

m
m BSBS

B
SH

21
2

2)(
+⋅+

= (2.29)

 mmB σ⋅−= 21 (2.30)

 (2.31) 22
2 mmmB ωσ +=

We are now just about ready to define the general form of the Chebyshev
transfer function. However, one small detail still must be considered. Because
there is ripple in the passband, Chebyshev even and odd-order approximations do
not have the same gain at ω = 0. As seen in Figure 2.13 (a result of a future
example), each approximation has a number of half-cycles of ripple in the
passband equal to the order of the filter. This forces even-order filters to have a
gain of apass at ω = 0. However, the first-order and quadratic factors we have
defined are all set to give 0 dB gain at ω = 0. Therefore, if no adjustment of gain is
made to even-order Chebyshev approximations, they would have a gain of 0 dB at
ω = 0 and a gain of −apass (that is, a gain greater than 1.0) at certain other
frequencies where the ripple peaks. A gain constant must therefore be included for
even-order transfer functions with the value of

30 Practical Analog and Digital Filter Design

 (2.32) pass05.010 aG ⋅=

We are now ready to define a generalized transfer function for the Chebyshev
approximation function as shown below:

even) (1)2/(, ,1 ,0=

 ,
)(

)()10(
)(

21
2

2
05.0

,

pass

nnm

BSBS

B
SH

m
mm

m
m

a

nC

−

+⋅+

⋅

=
∏

∏⋅

…

 (2.33a)

odd) (1]2)/1[(, ,1 ,0=

,
)())sinh((

)()sinh(
)(

21
2

2

,

nnm

BSBSDS

BD
SH

m
mm

m
m

nC

−−

++⋅+

⋅

=
∏

∏

…

 (2.33b)

It is again time to consider some numerical examples before using WFilter to
determine the filter coefficients.

Example 2.4 Chebyshev Third-Order Normalized Transfer Function

Problem: Determine the order, pole locations, and coefficients of the transfer
function for a Chebyshev filter to satisfy the following specifications:

 apass = −1 dB, astop = −22 dB, ωpass = 1 rad/sec, and ωstop = 2 rad/sec

Solution: First, we determine the fundamental constants needed from (2.20),
(2.22), and (2.23):

ε = 0.508847 n = 2.96 (3rd order)
D = 0.475992 cosh(D) = 1.115439 sinh(D) = 0.494171

Next, we find the locations of the first-order pole and the complex pole in the

second quadrant from (2.24)–(2.27). A plot of the poles is shown in Figure 2.9:

(1st order) σR = −0.494171 ωR = 0.0
φ0 = 1π/6 σ0 = −0.247085 ω0 = +0.965999

Finally, we generate the transfer function from (2.28)–(2.33). The results
from WFilter are shown in Figure 2.10.

 Analog Filter Approximation Functions 31

)99420.049417.0()49417.0(

99420.049417.0)(23,
+⋅+⋅+

⋅
=

SSS
sHC

Figure 2.9 Pole locations for third-order Chebyshev normalized filter.

Chebyshev 3rd-Order Normalized Lowpass

Selectivity: Lowpass
Approximation: Chebyshev
Implementation: Analog
Passband gain (dB): -1.0
Stopband gain (dB): -22.0
Passband freq (Hz): 0.1591549431
Stopband freq (Hz): 0.3183098862

Filter Length/Order: 03
Overall Filter Gain: 1.00000000000E+00

 Numerator Coefficients
QD [S^2 + S + 1]
== ===
01 0.0 0.00000000000E+00 4.94170604943E-01
02 0.0 0.00000000000E+00 9.94204586790E-01

 Denominator Coefficients
QD [S^2 + S + 1]
== ===
01 0.0 1.00000000000E+00 4.94170604943E-01
02 1.0 4.94170604943E-01 9.94204586790E-01

Figure 2.10 Chebyshev normalized third-order coefficients from WFilter.

32 Practical Analog and Digital Filter Design

Example 2.5 Chebyshev Fourth-Order Normalized Transfer Function

Problem: Determine the order, pole locations, and transfer function
coefficients for a Chebyshev filter to satisfy the following specifications:

 apass = −1 dB, astop = −33 dB, ωpass = 1 rad/sec, and ωstop = 2 rad/sec

Solution: First, we determine the fundamental constants needed from (2.20),

(2.22), and (2.23):

ε = 0.508847 n = 3.92 (4th order)
D = 0.356994 cosh(D) = 1.064402 sinh(D) = 0.364625

Next, we find the locations of the two complex poles in the second quadrant

from (2.24)–(2.27). A plot of the poles is shown in Figure 2.11.

θ0= 1π/8 σ0 = −0.139536 ω0 = +0.983379
θ1= 3π/8 σ1 = −0.336870 ω1 = +0.407329

Finally, we generate the transfer function from (2.28)–(2.33). Note that in this

even-order case, the gain constant of 0.891251 is included. The results from
WFilter for this Chebyshev specification are shown in Figure 2.12.

)27940.067374.0()98650.027907.0(

27940.098650.089125.0)(224,
+⋅+⋅+⋅+

⋅⋅
=

SSSS
SHC

Figure 2.11 Pole locations for fourth-order Chebyshev normalized filter.

 Analog Filter Approximation Functions 33

The magnitude and phase responses for the third and fourth-order Chebyshev
filters are shown in Figures 2.13 and 2.14.

Chebyshev 4th-Order Normalized Lowpass

Selectivity: Lowpass
Approximation: Chebyshev
Implementation: Analog
Passband gain (dB): -1.0
Stopband gain (dB): -33.0
Passband freq (Hz): 0.1591549431
Stopband freq (Hz): 0.3183098862

Filter Length/Order: 04
Overall Filter Gain: 8.91250938134E-01

 Numerator Coefficients
QD [S^2 + S + 1]
== ===
01 0.0 0.00000000000E+00 9.86504875318E-01
02 0.0 0.00000000000E+00 2.79398094130E-01

 Denominator Coefficients
QD [S^2 + S + 1]
== ===
01 1.0 2.79071991811E-01 9.86504875318E-01
02 1.0 6.73739387509E-01 2.79398094130E-01

Figure 2.12 Chebyshev normalized fourth-order coefficients from WFilter.

Figure 2.13 Chebyshev third-order and fourth-order magnitude responses.

34 Practical Analog and Digital Filter Design

Figure 2.14 Chebyshev third-order and fourth-order phase responses.

2.4 INVERSE CHEBYSHEV NORMALIZED APPROXIMATION
FUNCTIONS

The inverse Chebyshev approximation function, also called the Chebyshev type II
function, is a rational approximation with both poles and zeros in its transfer
function. This approximation has a smooth, maximally flat response in the
passband, just as the Butterworth approximation, but has ripple in the stopband
caused by the zeros of the transfer function. The inverse Chebyshev
approximation provides better transition characteristics than the Butterworth filter
and better phase response than the standard Chebyshev. Although the inverse
Chebyshev has these features to recommend it to the filter designer, it is more
involved to design.

2.4.1 Inverse Chebyshev Magnitude Response

The development of the inverse Chebyshev response is derived from the standard
Chebyshev response. We will discuss the methods needed to determine the inverse
Chebyshev approximation function while leaving the intricate details to the
reference works. The name “inverse Chebyshev” is well-deserved in this case
since we will see that many of the computations are based on inverse or reciprocal
values from the standard computations. Let’s begin with the definition of the
magnitude frequency response function as shown in (2.34).

The first observation concerning (2.34) is that it indeed has a numerator
portion that allows for the finite zeros in the transfer function. Upon closer
inspection, we find the use of εi in place of ε. Equation (2.35) indicates εi, the

 Analog Filter Approximation Functions 35

inverse of ε, where apass is replaced with astop. Because of the differences, we will
use the subscript to distinguish εi from the standard ε. Although Cn still represents
the Chebyshev polynomial of the first kind of degree n as defined in (2.21), we
notice that the argument of the function is the inverse of the standard definition
(ωo/ω instead of ω/ωo). We will see a little later in this section how these
differences affect our determination of the poles and zeros of the transfer function.

 []
)/(1

)/(
)/(

22

22

,
ωωε

ωωε
ωω

oni

oni
onI

C

C
jH

⋅+

⋅
= (2.34)

where

110

1
stop1.0 −

=
⋅− aiε (2.35)

2.4.2 Inverse Chebyshev Order

Because of the nature of the derivation of the inverse Chebyshev approximation
function from the standard Chebyshev approximation, it should come as no
surprise that the calculation of the order for an inverse Chebyshev is the same as
for the standard Chebyshev. The expression is given in (2.36) and is the same as
(2.22) except for the subscript I designating the calculation as the inverse
Chebyshev order:

)/(cosh

)110/()110(cosh

passstop
1

1.01.01 passstop

ωω−

⋅−⋅−−
⎥⎦
⎤

⎢⎣
⎡ −−

=

aa

In (2.36)

2.4.3 Inverse Chebyshev Pole-Zero Locations

The determination of the pole locations for the normalized inverse Chebyshev
approximation is based on techniques similar to those used for the standard
normalized Chebyshev approximation. The pole positions for the inverse
Chebyshev case are found using the same values of φm, but the value of εi is
calculated differently. Once the pole positions are found, however, the inverse
Chebyshev poles are the reciprocals of the standard poles. (There’s that inverse
relationship again.) For example, if there exists a standard Chebyshev pole at

 ωσ jp += (2.37)

36 Practical Analog and Digital Filter Design

then the reciprocal of p gives the inverse Chebyshev pole position as

 2222
1

)()(ωσ
ω

ωσ
σ

ωσωσ
ωσ

+
−

+
=

−⋅+
−

=− j
jj

jp (2.38)

Notice that if a pole’s distance from the origin is greater than one, the
reciprocal’s distance will be less than one, and vice versa. In addition, the position
of the pole is reflected across the real axis, so although the original pole position
may be in the second quadrant, the reciprocal is located in the third quadrant.
Consequently, if we are able to determine pole positions for the standard
Chebyshev approximation function as discussed in the previous section, we should
have little problem finding the inverse Chebyshev pole locations.

Let’s derive the mathematical equations necessary to determine the pole
locations for the inverse Chebyshev approximation function along the same lines
as we did for the standard Chebyshev case. First, Di will be defined in terms of εi
in (2.39).

n

D i
i

)(sinh 11 −−

=
ε

 (2.39)

Next, we can define the pole locations in the second quadrant in the manner
of the previous section as shown in (2.40)–(2.42), remembering that these primed
values must still be inverted.

)sin()sinh(mim D φσ ⋅−=′ (2.40)

)cos()cosh(mim D φω ⋅=′ (2.41)

 even) (1)2/(, ,1 ,0= ,
2

)12(nnm
n
m

m −
⋅

+⋅⋅
= …πφ (2.42a)

 odd) (1]2)/1[(, ,1 ,0= ,
2

)12(nnm
n
m

m −−
⋅

+⋅⋅
= …πφ (2.42b)

We can determine the final pole locations by inverting these poles as
indicated in (2.43) and (2.44):

22

mm

m
m

ωσ
σ

σ
′+′

′
= (2.43)

 Analog Filter Approximation Functions 37

 22
mm

m
m

ωσ
ω

ω
′+′

′−
= (2.44)

If the approximation function is odd-order, then there will be a first-order
pole on the negative real axis at σR as defined in (2.45):

 (2.45) 1)][sinh(−−= iR Dσ

Next, we need to determine the placement of the finite zeros of the inverse
Chebyshev approximation function, which are all purely imaginary complex
conjugate pairs located on the jω axis. Because they only occur in pairs, the
numerator of an inverse Chebyshev transfer function will always be even. If the
order of the denominator is odd, then one zero of the transfer function will be
located at infinity. The location of the zeros on the jω axis is determined by (2.46)
and (2.47), where φm is as defined in (2.42). A z is used in the subscript to
differentiate the zero locations from the pole locations. (By the way, did you
notice that the secant function in (2.47) is the reciprocal of the cosine function
used in the standard Chebyshev function?)

 0.0=zmσ (2.46)

)sec(mzm φω = (2.47)

2.4.4 Inverse Chebyshev Transfer Functions

Now that we have located the necessary poles and zeros that are pertinent to the
definition of the inverse Chebyshev approximation, we can define the various
factors that describe the transfer function. First, for odd-order approximations,
(2.48) describes the first-order factor:

 1

1

)][sinh(
)][sinh(

)(
−

−

+
=

i

i
o

DS
D

SH (2.48)

Next, the quadratic components of the transfer function are described in
(2.49)–(2.53). These are similar to the quadratic definition for the Chebyshev case,
but we have added a numerator quadratic for the zeros as well.

)(
)(

)(
21

2
2

21
2

2

mmm

mmm
m

BSBSA
ASASB

SH
+⋅+⋅

+⋅+⋅
= (2.49)

38 Practical Analog and Digital Filter Design

where

 mmB σ⋅−= 21 (2.50)

 (2.51) 22
2 mmmB ωσ +=

 0.021 =⋅−= zmmA σ (2.52)

 (2.53) 222
2 zmzmzmmA ωωσ =+=

Although the value of A1m is zero, it is included to be consistent with the
format used throughout the remainder of the text.

We are now ready to define the generalized transfer function form for the
inverse Chebyshev approximation function shown in (2.54). Since the inverse
Chebyshev has a maximally flat response in the passband as the Butterworth, there
is no need for a gain adjustment constant as in the standard Chebyshev case.

even) (1)2/(, ,1 ,0=

 ,
)()(

)()(
)(

21
2

2

21
2

2

,

nnm

BSBSA

ASASB
SH

m
mm

m
m

m
mm

m
m

nI

−

+⋅+⋅

+⋅+⋅

=
∏∏

∏∏

…

 (2.54a)

odd) (1]2)/1[(, ,1 ,0=

 ,
)()())][sinh((

)()()][sinh(
)(

21
2

2
1

21
2

2
1

,

nnm

BSBSADS

ASASBD
SH

m
mm

m
mi

m
mm

m
mi

nI

−−

+⋅+⋅⋅+

+⋅+⋅⋅

=
∏∏

∏∏
−

−

…

 (2.54b)

The following numerical examples should help to illustrate the process.

Example 2.6 Inverse Chebyshev Third-Order Normalized Transfer Function

Problem: Determine the order, pole and zero locations, and transfer function
coefficients for an inverse Chebyshev filter to satisfy the following specifications:

 apass = −1 dB, astop = −22 dB, ωpass = 1 rad/sec, and ωstop = 2 rad/sec

 Analog Filter Approximation Functions 39

Solution: First, we determine the fundamental constants needed from (2.35),
(2.36), and (2.39):

εi = 0.079685 n = 2.96 (3rd order)
Di = 1.074803 cosh(Di) = 1.635391 sinh(Di) = 1.294026

Next, we find the locations of the first-order pole, the complex pole in the
second quadrant, and the second-order zeros on the jω axis from (2.40)–(2.47). A
pole-zero plot is shown in Figure 2.15.

(1st order) σR = −0.772782 ωR = 0.0
φ0 = 1π/6 σ‘0 = −0.647013 ω‘0 = +1.416290
 σ0 = −0.266864 ω0 = −0.584157
(zeros) σz0 = +0.0 ωz0 = +1.154701

Finally, we generate the transfer function from (2.48)–(2.54):

)41246.053373.0()77278.0(3333.1

)3333.1(41246.077278.0)(2

2
*

3,
+⋅+⋅+⋅

+⋅⋅
=

SSS
SSH I

)6498.10675.1()5456.1(

)3333.5(5456.130934.0)(2

2

3,
+⋅+⋅+

+⋅⋅
=

SSS
SSH I

Figure 2.15 Pole and zero locations for third-order inverse Chebyshev filter.

There is a problem with the first transfer function above (shown with an
asterisk *). It implements an inverse Chebyshev approximation function that is
normalized to ωstop = 1 rad/sec instead of ωpass = 1 rad/sec. (This means that ωpass

40 Practical Analog and Digital Filter Design

would be at 0.5 rad/sec.) Therefore the entire frequency response is a factor of 2
too low. The attenuation at ω = 0.5 rad/sec is ~ 1 dB and the attenuation at ω = 1
rad/sec is ~22 dB. The process we use to correct the problem is actually an
unnormalization procedure that is covered in Chapter 3. This unnormalization will
usually occur as part of the total filter design process, but we can make the
adjustment manually in this particular case. The correct transfer function can be
determined by substituting S/2 for S and then simplifying as indicated in the
second transfer function above. This process is mentioned here so we understand
the WFilter coefficients, which are shown in Figure 2.16.

Inv. Chebyshev 3rd-Order Normal. Lowpass

Selectivity: Lowpass
Approximation: Inv. Chebyshev
Implementation: Analog
Passband gain (dB): -1.0
Stopband gain (dB): -22.0
Passband freq (Hz): 0.1591549431
Stopband freq (Hz): 0.3183098862

Filter Length/Order: 03
Overall Filter Gain: 3.09341803036E-01

 Numerator Coefficients
QD [S^2 + S + 1]
== ===
01 0.0 0.00000000000E+00 1.54556432589E+00
02 1.0 0.00000000000E+00 5.33333333334E+00

 Denominator Coefficients
QD [S^2 + S + 1]
== ===
01 0.0 1.00000000000E+00 1.54556432589E+00
02 1.0 1.06745667061E+00 1.64982294953E+00

Figure 2.16 Inverse Chebyshev normalized third-order coefficients from WFilter.

Example 2.7 Inverse Chebyshev Fourth-Order Normalized Transfer
Function

Problem: Determine the order, pole and zero locations, and transfer function
coefficients for an inverse Chebyshev filter to satisfy the following specifications:

 apass = −1 dB, astop = −33 dB, ωpass = 1 rad/sec, and ωstop = 2 rad/sec

Solution: First, we determine the fundamental constants needed from (2.35),
(2.36), and (2.39):

εi = 0.022393 n = 3.92 (4th order)
Di = 1.123072 cosh(Di) = 1.699781 sinh(Di) = 1.374502

 Analog Filter Approximation Functions 41

Next, we find the locations of the two complex poles in the second quadrant
and the second-order zeros from (2.40)–(2.47). A pole-zero plot is shown in
Figure 2.17.

φ0= 1π/8 σ‘0 = −0.525999 ω‘0 = +1.570393
 σ0 = −0.191774 ω0 = −0.572549
φ0= 3π/8 σ‘0 = −1.269874 ω‘0 = +0.650478
 σ0 = −0.623801 ω0 = −0.319535
(Zeros) σz0 = +0.0 ωz0 = +1.082392
(Zeros) σz1 = +0.0 ωz1 = +2.613126

Finally, we generate the transfer function from (2.48)–(2.54). (Refer to

Example 2.6 for an explanation of the two transfer functions.) The WFilter
coefficients are shown in Figure 2.18.

)49123.02476.1()36459.038355.0(

)8284.6()1716.1(022387.0)(
22

22
*

4,
+⋅+⋅+⋅+

+⋅+⋅
=

SSSS
SSSH I

)9649.14952.2()4584.176710.0(

)314.27()6863.4(022387.0)(
22

22

4,
+⋅+⋅+⋅+

+⋅+⋅
=

SSSS
SSSH I

Figure 2.17 Pole and zero locations for fourth-order inverse Chebyshev filter.

42 Practical Analog and Digital Filter Design

Inv. Chebyshev 4th-Order Normal. Lowpass

Selectivity: Lowpass
Approximation: Inv. Chebyshev
Implementation: Analog
Passband gain (dB): -1.0
Stopband gain (dB): -33.0
Passband freq (Hz): 0.1591549431
Stopband freq (Hz): 0.3183098862

Filter Length/Order: 04
Overall Filter Gain: 2.23872113857E-02

 Numerator Coefficients
QD [S^2 + S + 1]
== ===
01 1.0 0.00000000000E+00 4.68629150102E+00
02 1.0 0.00000000000E+00 2.73137084990E+01

 Denominator Coefficients
QD [S^2 + S + 1]
== ===
01 1.0 7.67095479088E-01 1.45835864853E+00
02 1.0 2.49520593780E+00 1.96492341597E+00

Figure 2.18 Inverse Chebyshev normalized fourth-order coefficients.

The magnitude and phase responses for the two inverse Chebyshev examples
are presented in Figures 2.19 and 2.20. The same procedure was used as in the
Butterworth and Chebyshev cases.

Figure 2.19 Inverse Chebyshev third-order and fourth-order magnitude
responses.

 Analog Filter Approximation Functions 43

Figure 2.20 Inverse Chebyshev third-order and fourth-order phase responses.

2.5 ELLIPTIC NORMALIZED APPROXIMATION FUNCTIONS

The elliptic or Cauer approximation function provides the best selectivity
characteristic of any of the approximation methods discussed thus far. No other
approximation method will be able to provide a lower-order filter for the
specifications provided. The elliptic filter combines ripple in the passband and
stopband in order to accomplish this feat. However, the elliptic approximation is
also the most difficult to design. It involves the most sophisticated mathematical
functions of any of the methods discussed in this text. Luckily, many good minds
have laid the foundation for this work and their results will be presented here so
that we can put the design procedure into a workable algorithm.

2.5.1 Elliptic Magnitude Response

The elliptic approximation’s magnitude frequency response function is shown in
(2.55), where Rn is the Chebyshev rational function of order n. Rn is composed of
both numerator and denominator portions, which allow an equiripple response in
both the passband and stopband.

The Chebyshev rational function Rn and much of elliptic approximation
theory is based on the elliptic integral and the Jacobian elliptic functions. These
functions can be evaluated via advanced mathematical packages available for most
computers and are discussed in Appendix D. The incomplete elliptic integral of
the first kind is shown in (2.57), where k is referred to as the modulus and φ is the
amplitude of the integral. The modulus k must be less than or equal to 1 for the
elliptic integral to be real. The elliptic sine, cosine, tangent, and difference
functions based on the elliptic integral are given in (2.58)–(2.61), respectively.

44 Practical Analog and Digital Filter Design

These functions are used in the calculation of the pole-zero locations in the next
section.

)/(1

1)]/([
22,

ωωε
ωω

on
onE

R
jH

⋅+
= (2.55)

where ε is as defined previously.

 110 pass1.0 −= ⋅− aε (2.56)

 (2.57) ∫ −−=
φ

φ
0

2/122)sin1(),(dxxkku

)sin(),(φ=kusn (2.58)

)cos(),(φ=kucn (2.59)

)tan(),(φ=kusc (2.60)

du
dkudn φ

=),((2.61)

The complete elliptic integral of the first kind will be used more often than the

incomplete integral and it is defined in (2.62). It should be noted at this point that
there are various ways to define the elliptic integrals and elliptic functions. Some
authors use the modulus k as we have in this text, while others use other
parameters related to k.

 (2.62) ∫ −−==
2/

0

2/122)sin1(),2/()(
π

π dxxkkukCEI

 Analog Filter Approximation Functions 45

2.5.2 Elliptic Order

The order of the elliptic approximation function required to meet the
specifications for a filter is given in (2.63):

)()1(

)1()(
2

2

knCEIrtCEI

knCEIrtCEI
nE

⋅−

−⋅
= (2.63)

where CEI refers to the complete elliptic integral, and the ratio rt and the kernel kn
are defined as

 stoppass /ωω=rt (2.64)

)110/()110(stoppass 1.01.0 −−= −− aakn (2.65)

Example 2.8 Elliptic Order Calculation

Problem: Determine the order of an elliptic filter required to satisfy the
following specifications:

 apass = −1 dB, astop = −34 dB, ωpass = 1 rad/sec, and ωstop = 2 rad/sec

Solution: In order to determine the order of the elliptic approximation, we
first determine that rt = 0.5 and kn = 0.0101548. Then, using any appropriate math
package, we can determine that

 97.2
571.1157.2
976.5686.1

=
⋅
⋅

=En

which indicates that a third-order filter will be required. Notice that the standard
and inverse Chebyshev approximations require a fourth-order function to provide
astop = −33 dB and a Butterworth approximation would require a seventh-order
function to meet this specification.

2.5.3 Elliptic Pole-Zero Locations

The pole and zero locations for the elliptic approximation function are also
dependent on the elliptic integral and the elliptic functions defined in the previous
section. We’ll start by defining a variable vo, which is used in the calculation of
the pole and zero locations.

46 Practical Analog and Digital Filter Design

)(

),()(11

knCEIn
knscrtCEIvo ⋅

⋅
=

−− ε (2.66)

Next, the pole’s real and imaginary components are determined as

[] []

[] ⎟
⎠
⎞⎜

⎝
⎛ −⋅−

⎟
⎠
⎞⎜

⎝
⎛ −⋅⎟

⎠
⎞⎜

⎝
⎛ −⋅⋅

−=
222

22

1,),(1

1,1,),(),(

rtvsnrtmfdn

rtvcnrtvsnrtmfdnrtmfcn

o

oo

mσ (2.67)

[]

[] ⎟
⎠
⎞⎜

⎝
⎛ −⋅−

⎟
⎠
⎞⎜

⎝
⎛ −⋅

=
222

2

1,),(1

1,),(

rtvsnrtmfdn

rtvdnrtmfsn

o

o

mω (2.68)

where

 even) (1)2/(, ,1 ,0= ,)12()()(nnm
n

mrtCEImf −
+⋅⋅

= … (2.69a)

 odd) (1]2)/1[(, ,1 ,0= ,)22()()(nnm
n

mrtCEImf −−
+⋅⋅

= … (2.69b)

Note the negative sign for σm, which effectively moves the pole location from the
first quadrant to the second quadrant.

In the case of odd-order approximations, the first-order denominator pole will

be located on the negative real axis at

⎟
⎠
⎞⎜

⎝
⎛ −−

⎟
⎠
⎞⎜

⎝
⎛ −⋅⎟

⎠
⎞⎜

⎝
⎛ −

−=
22

22

1,1

1,1,

rtvsn

rtvcnrtvsn

o

oo

Rσ (2.70)

And finally, the location of the zeros that will be purely imaginary on the jω

axis are given by

 0.0=zmσ (2.71)

 Analog Filter Approximation Functions 47

 []rtmfsnrtzm),(
1

⋅
=ω (2.72)

Although the elliptic approximation requires a number of mathematical
functions which aren’t in everyday usage, we have most of the hard work done in
determining the transfer function we need. Our primary objective in this section is
to develop an orderly manner to calculate the pole and zero locations.

2.5.4 Elliptic Transfer Functions

Now we are able to define the first-order and quadratic factors that will make up
the elliptic approximation function. The first-order factor for the elliptic
approximation is indicated in (2.73), where σR is as indicated in (2.70). Again,
there is no matching finite zero for the first-order pole factor; it is located at
infinity.

R

R
o S

SH
σ

σ
+

=)((2.73)

The form of the quadratic components of the transfer function will also be
identical to the inverse Chebyshev case, as indicated below:

)(
)(

)(
21

2
2

21
2

2

mmm

mmm
m

BSBSA
ASASB

SH
+⋅+⋅

+⋅+⋅
= (2.74)

where

 mmB σ⋅−= 21 (2.75)

 (2.76) 22
2 mmmB ωσ +=

 0.021 =⋅−= zmmA σ (2.77)

 (2.78) 222
2 zmzmzmmA ωωσ =+=

We are now ready to define a generalized transfer function for the elliptic
approximation function that is almost identical to the inverse Chebyshev case. The
difference lies in the ripple in the passband as in the standard Chebyshev case.

48 Practical Analog and Digital Filter Design

Consequently, the even-order ripple adjustment factor is included in (2.79). The
ratio of product factors is combined with this value to determine the total gain
adjustment:

even) (1)2/(, ,1 ,0=

 ,
)()(

)()()10(
)(

21
2

2

21
2

2
05.0

,

pass

nnm

BSBSA

ASASB
SH

m
mm

m
m

m
mm

m
m

a

nE

−

+⋅+⋅

+⋅+⋅⋅

=
∏∏

∏∏⋅

…

 (2.79a)

odd) (1]2)/1[(, ,1 ,0=

 ,
)()()(

)()(
)(

21
2

2

21
2

2

,

nnm

BSBSAS

ASASB
SH

m
mm

m
mR

m
mm

m
mR

nE

−−

+⋅+⋅⋅+

+⋅+⋅⋅

=
∏∏

∏∏

…

σ

σ

 (2.79b)

Example 2.9 Elliptic Third-Order Normalized Transfer Function

Problem: Determine the order, pole and zero locations, and transfer function
coefficients for an elliptic filter to satisfy the following specifications:

 apass = −1 dB, astop = −34 dB, ωpass = 1 rad/sec, and ωstop = 2 rad/sec

Solution: First, we determine the fundamental constants needed from (2.56)
and (2.63)–(2.66):

ε = 0.508847 n = 2.97 (3rd order)
rt = 0.50 kn = 0.0101549
CEI(rt) = 1.685750 CEI(kn) = 1.570837
CEI[sqrt(1 − rt2)] = 2.156516 CEI[sqrt(1 − kn2)] = 5.976226
vo = 0.510786

Next, we find the locations of the first-order pole, the complex pole in the
second quadrant, and the second-order zeros on the jω axis from (2.67)–(2.72). A
pole-zero plot is shown in Figure 2.21.

(1st order) σR = −0.539953 ωR = 0.0
f(0) = 1.123834 σ0 = −0.217032 ω0 = +0.981574
(Zeros) σz0 = +0.0 ωz0 = +2.270068

Finally, we generate the transfer function from (2.73)–(2.79). The WFilter
coefficients are given in Figure 2.22.

 Analog Filter Approximation Functions 49

)0106.143406.0()53995.0(1532.5

)1532.5(0106.153995.0)(2

2

3,
+⋅+⋅+⋅

+⋅⋅
=

SSS
SsH E

Figure 2.21 Pole and zero locations for third-order elliptic normalized filter.

Elliptic 3rd-Order Normalized Lowpass

Selectivity: Lowpass
Approximation: Elliptic
Implementation: Analog
Passband gain (dB): -1.0
Stopband gain (dB): -34.0
Passband freq (Hz): 0.1591549431
Stopband freq (Hz): 0.3183098862

Filter Length/Order: 03
Overall Filter Gain: 1.96108842659E-01

 Numerator Coefficients
QD [S^2 + S + 1]
== ===
01 0.0 0.00000000000E+00 5.39953773543E-01
02 1.0 0.00000000000E+00 5.15320911642E+00

 Denominator Coefficients
QD [S^2 + S + 1]
== ===
01 0.0 1.00000000000E+00 5.39953773543E-01
02 1.0 4.34064063925E-01 1.01058987580E+00

Figure 2.22 Elliptic normalized third-order coefficients from WFilter.

50 Practical Analog and Digital Filter Design

Example 2.10 Elliptic Fourth-Order Normalized Transfer Function

Problem: Determine the order, pole and zero locations, and transfer function
coefficients for an elliptic filter to satisfy the following specifications:

 apass = −1 dB, astop = −51 dB, ωpass = 1 rad/sec, and ωstop = 2 rad/sec

Solution: First, we determine the fundamental constants needed:

ε = 0.508847 n = 3.95 (4th order)
rt = 0.50 kn = 0.00143413
CEI(rt) = 1.685750 CEI(kn) = 1.570797
CEI[sqrt(1 − rt2)] = 2.156516 CEI[sqrt(1 − kn2)] = 7.933494
vo = 0.383119

Next, we find the locations of the two complex poles in the second quadrant
and the second-order zeros on the jω axis from (2.67)–(2.72). A pole-zero plot is
shown in Figure 2.23.

f(0) = 0.421438 σ0 = −0.351273 ω0 = +0.442498
f(1) = 1.264313 σ1 = −0.121478 ω1 = +0.989176
(Zeros) σz0 = +0.0 ωz0 = +4.922113
(Zeros) σz0 = +0.0 ωz0 = +2.143189

Finally, we generate the transfer function from (2.73)–(2.79). Note that in this
even-order case, the gain constant of 0.891251 is included. The WFilter
coefficients are given in Figure 2.24.

)99323.024296.0()31920.070255.0(

)5933.4()227.24(0025391.0)(
22

22

4,
+⋅+⋅+⋅+

+⋅+⋅
=

SSSS
SSSH E

Figure 2.23 Pole and zero locations for fourth-order elliptic normalized filter.

 Analog Filter Approximation Functions 51

Elliptic 4th-Order Normalized Lowpass

Selectivity: Lowpass
Approximation: Elliptic
Implementation: Analog
Passband gain (dB): -1.0
Stopband gain (dB): -51.0
Passband freq (Hz): 0.1591549431
Stopband freq (Hz): 0.3183098862

Filter Length/Order: 04
Overall Filter Gain: 2.53911536581E-03

 Numerator Coefficients
QD [S^2 + S + 1]
== ===
01 1.0 0.00000000000E+00 2.42272011683E+01
02 1.0 0.00000000000E+00 4.59326052578E+00

 Denominator Coefficients
QD [S^2 + S + 1]
== ===
01 1.0 7.02545661306E-01 3.19196825769E-01
02 1.0 2.42956737746E-01 9.93226261783E-01

Figure 2.24 Elliptic normalized fourth-order coefficients from WFilter.

The magnitude and phase responses for the elliptic filters are presented in

Figures 2.25 and 2.26.

Figure 2.25 Elliptic third-order and fourth-order magnitude responses.

52 Practical Analog and Digital Filter Design

Figure 2.26 Elliptic third-order and fourth-order phase responses.

2.6 COMPARISON OF APPROXIMATION METHODS

Now that we have discussed the four approximation methods and displayed third-
order and fourth-order magnitude and phase plots, we are in a position to compare
the results. First, we look at the magnitude plots of Figures 2.7, 2.13, 2.19, and
2.25. Table 2.1 shows the gains achieved at the stopband edge frequency of 2
rad/sec for each normalized filter type and order. (Each filter was designed with a
passband gain of −1 dB.) Obviously, if attenuation characteristics in the stopband
are the primary concern, an elliptic filter would have to be the choice.

It provides 12 dB more attenuation than the Chebyshev types and 22 dB more
attenuation than the Butterworth filter for the third-order case. In the fourth-order
case, the differences increase to over 18 and 33 dB compared to the Chebyshev
and Butterworth filters. The Chebyshev filter types themselves afford better
stopband characteristics when compared to the Butterworth filter. They provide 10
and 15 dB more attenuation for the third-order and fourth-order cases. Although
the table only lists the gains for third-order and fourth-order filters, the same trend
continues for higher-order filters.

Although the Chebyshev and inverse Chebyshev filters provide the same
gains at the passband and stopband edge frequencies, their responses are not
identical. If we were to take a close look at the frequency response in the
passband, we would find that the inverse Chebyshev provides a better
approximation to the ideal response except at frequencies very near to 1 (the
normalized passband edge frequency). In that case, the standard Chebyshev
produces a tighter fit. In the transition band, the standard Chebyshev response
provides a more rapid transition. And in the stopband, the standard Chebyshev’s
response continues to increase the attenuation as the frequency increases, while
the inverse Chebyshev’s response alternates between small gains and astop. In

 Analog Filter Approximation Functions 53

some cases, the filter designer might trade the faster transition for the
nondecreasing attenuation.

Table 2.1
Comparison of Filter Gains at 2 rad/sec

Filter Type 3rd Order 4th Order

Butterworth −12.5 dB −18.3 dB

Chebyshev −22.5 dB −33.8 dB

Inverse Chebyshev −22.5 dB −33.8 dB

Elliptic −34.5 dB −51.9 dB

Although the magnitude characteristics of a filter are very important, the

phase characteristics of a filter are also crucial in many projects. Whether in audio
networks or data transmission systems, designers are looking for filters with linear
phase response. Nonlinear phase response in an audio network will cause
noticeable phase distortion for the listener that cannot be tolerated, especially in
high-quality systems. In data transmission systems nonlinear phase response
produces group delays that are functions of frequency. This produces distortion in
the pulses sent over the system and can distort edges and levels to the point of
causing errors in the received signal. We can compare the phase responses of
Figures 2.8, 2.14, 2.20, and 2.26 to see the level of phase distortion for each
approximation type. Remember that the transitions from −180 to +180 degrees are
not discontinuities, but rather a function of the display method. (The phase
response is written to a data file in its true form.) Table 2.2 shows the phase angles
for the third-order and fourth-order filters at the passband and stopband edge
frequencies.

Table 2.2

Comparison of Filter Phase at 1 and 2 rad/sec

Filter Type 3rd @ 1 r/s 3rd @ 2 r/s 4th @ 1 r/s 4th @ 2 r/s

Butterworth −104° −192° −146° −266°

Chebyshev −154° −238° −230° −330°

Inverse Chebyshev −94° −192° −133° −264°

Elliptic −150° −238° −226° −330°

As Table 2.2 and the phase plots indicate, the filters with the maximally flat

response in the passband (Butterworth and inverse Chebyshev) provide the most
linear response, although the inverse Chebyshev does have phase discontinuities
in the stopband caused by the complex zeros. These are usually not critical
because the filter’s magnitude response is very small at these frequencies and the
distortion should be minimal. The phase responses of the standard Chebyshev and

54 Practical Analog and Digital Filter Design

elliptic are also matched very closely and can be judged equivalent except for the
discontinuities in the stopband caused by the zeros for the elliptic case.

A filter designer’s task is not always clear cut. It seems that every project
requires as much stopband attenuation as possible while providing a phase
response as linear as possible. The task becomes one of weighing the importance
of each characteristic. If phase response is more critical than magnitude response,
then the Butterworth filter is a better choice. If the opposite is true, the elliptic
filter is a better choice. If magnitude and phase responses are nearly equal in
importance, then one of the Chebyshev filters may be the best choice. Other
alternatives are also possible. Elliptic filters can be used for their selectivity, with
phase compensation filters added to make the phase more linear. (These filter
types are not covered in this text, but references in the analog filter design section
of Appendix A provide further information.) A designer must be careful when
pursuing these alternatives, since in some cases the result may be no better than
the equivalent Butterworth or Chebyshev filter.

2.7 CONCLUSION

In this chapter, we studied the core of analog filter design, the normalized
approximation functions. By developing these functions, we have laid the
foundation for the remainder of the chapters on analog filter design as well as a
good bit of digital IIR filter design. By approaching each approximation function
in the same manner, and developing methods for determining exact pole and zero
placement, we have simplified the job of generating the C code necessary to
implement these algorithms in a clean, efficient manner. (Those who are interested
in seeing more on the development of the C code can turn to Appendix D.) In the
next chapter, we will finish up the analog filter design calculations by determining
a technique to unnormalize the transfer functions we have just developed.

Chapter 3

Analog Lowpass, Highpass, Bandpass, and
Bandstop Filters

In the last chapter, we were able to determine the normalized approximation
functions for the most common types of analog filters. Our task in this chapter is
to unnormalize those approximation functions in a manner to produce lowpass,
highpass, bandpass, and bandstop filters at the desired frequencies. This
unnormalization will be carried out in such a way that the design of the
normalized approximation functions will be central to the development. Figure 3.1
shows the three-step procedure used in the unnormalization. The simplicity of this
procedure is the fact that the second step is the same for all filter design methods.

Figure 3.1 Procedure for unnormalization.

3.1 UNNORMALIZED LOWPASS APPROXIMATION FUNCTIONS

Even though the normalized approximation functions determined in the previous
chapter are lowpass functions, they still need to be unnormalized to the proper
operational frequency. The first step in the unnormalization procedure, as
indicated in Figure 3.1, is to determine the order of the approximation function
from the unnormalized specifications. The order of approximation function
depends only on the passband and stopband gains and frequencies. The gains for
both the normalized and unnormalized approximation functions will be the same,
the only specifications that change are the passband and stopband edge
frequencies. However, as indicated in Chapter 2, it is not the individual

55

56 Practical Analog and Digital Filter Design

frequencies that determine the order of the approximation function, but rather the
ratio of the frequencies. Therefore, we can define a frequency ratio variable in
(3.1) that will be used for the lowpass filter type as indicated by the additional
subscript L.

pass

stop

pass

stop

f
f

rL ==Ω
ω
ω

 (3.1)

Each of the equations from Chapter 2 that were used to determine the order of

a particular filter type can now be redefined in terms of Ωr, as indicated in (3.2)–
(3.6).

)log(2

)]110/()110log[(passstop 1.01.0

r

aa

Bn
Ω⋅

−−
=

⋅−⋅−

 (3.2)

)(cosh

)110/()110(cosh

1

1.01.01 passstop

r

aa

IC nn
Ω

⎥⎦
⎤

⎢⎣
⎡ −−

== −

⋅−⋅−−

 (3.3)

)(1

1)(

2

2

knCEIrtCEI

knCEIrtCEI
nE

⋅⎟
⎠
⎞⎜

⎝
⎛ −

⎟
⎠
⎞⎜

⎝
⎛ −⋅

= (3.4)

where

 rrt Ω= /1 (3.5)

)110/()110(stoppass 1.01.0 −−= −− aakn (3.6)

It may appear that we are doing a lot of work just to change a variable name,
but Ωr will be defined differently for each of the other types of filter selectivities
as we will see in the next sections. For that reason (3.2)–(3.6) do not include the
additional subscript L; however, in each section we will define Ωr with a subscript
as in (3.1) for clarity.

 Analog Lowpass, Highpass, Bandpass, and Bandstop Filters 57

So in this lowpass case, the first step in the unnormalization procedure
doesn’t require any work at all. We simply determine the order of the filter as we
have in the past. The second step of the unnormalization procedure, determination
of the normalized approximation function, has already been developed in the
previous chapter. It appears that we are ready to determine the third and final step
of the procedure, which is to unnormalize the normalized approximation function.
In the lowpass case, this simply requires a scaling of the frequency characteristic
from 1 rad/sec to a more usable frequency. A simple substitution for the
normalized variable S is all that is necessary, as shown in (3.7). (A subscript of L
is used to indicate that this substitution is for lowpass filters only.) The frequency
constant ωo will be ωstop for the inverse Chebyshev approximation, as discussed in
Chapter 2, and ωpass for all other approximations.

o

L
sS
ω

= (3.7)

3.1.1 Handling a First-Order Factor

We will be developing code to implement the unnormalization process, so it is
important to carefully describe the substitution process. For the first-order factor,
the process begins with (3.8), where the B1 coefficient is typically 1:

21

21

21

21

)(
)(

)(
BsB
AsA

BSB
ASA

sH
o

o

sS o
+⋅
+⋅

=
+⋅
+⋅

=
=

ω
ω

ω

 (3.8)

In this equation, uppercase A and B represent the coefficients of the
normalized approximation function. After simplification, (3.9) results in a new set
of coefficients. In this equation, lowercase a and b represent the unnormalized
coefficients that will be used in our final approximation function:

21

21

21

21)(
bsb
asa

BsB
AsA

sH
o

o

+⋅
+⋅

=
⋅+⋅
⋅+⋅

=
ω
ω

 (3.9)

We can generalize these results for the first-order factor below:
• The gain constant is unchanged.
• The s-term coefficients become
 a1 = A1, b1 = B1
• The constant term coefficients become
 a2 = A2 ωo, b2 = B2 ωo

58 Practical Analog and Digital Filter Design

3.1.2 Handling a Second-Order Factor

In the case of the quadratic terms that are used to describe our coefficients, the
unnormalization process is shown in (3.10) and (3.11):

21

2
0

21
2

0

21
2

0

21
2

0

)()(
)()(

)(
BsBsB
AsAsA

BSBSB
ASASA

sH
oo

oo

sS o
+⋅+⋅

+⋅+⋅
=

+⋅+⋅

+⋅+⋅
=

=
ωω
ωω

ω

 (3.10)

21

2
0

21
2

0
2

21
2

0

2
21

2
0)(

bsbsb
asasa

BsBsB
AsAsA

sH
oo

oo

+⋅+⋅

+⋅+⋅
=

⋅+⋅⋅+⋅

⋅+⋅⋅+⋅
=

ωω
ωω

 (3.11)

The coefficient A0 will be 1 or 0. A value of 1 will be present only if an

inverse Chebyshev or elliptic approximation is being unnormalized, while a 0 will
be used for Chebyshev and Butterworth. A1 will normally be 0 for all
approximations, but is included for completeness of the derivation in the event we
want to use any of our work at a later time when complex conjugate zeros will
occur off the jω axis. B0 will typically be 1 for all cases, but is retained for
generality. By observation, we can determine the following relationships that can
be used in our C code:

• The gain constant is unchanged.
• The s2-term coefficients become
 a0 = A0, b0 = B0
• The s-term coefficients become
 a1 = A1 ωo, b1 = B1 ωo
• The constant term coefficients become
 a A b Bo o2 2

2
2 2

2= =ω ω,

Complete numerical examples of the lowpass unnormalization process are

now in order.

Example 3.1 Unnormalized Inverse Chebyshev Lowpass Filter

Problem: Determine the transfer function for an inverse Chebyshev lowpass
filter to satisfy the specifications:

 apass = −0.25 dB, astop = −38.0 dB,
 ωpass = 600 rad/sec, ωstop = 1,000 rad/sec

 Analog Lowpass, Highpass, Bandpass, and Bandstop Filters 59

Solution: Using the material of Section 2.4, the important values for this
example and the normalized transfer function are listed below. The unnormalized
transfer function is then determined by making the substitution S = s / ωo and
using the relationships just developed:

 Ωr = 1.667 n = 5.90 (6th order) ωo = 1000.0 rad/sec

)034.1895.1()7142.09583.0()5455.02679.0(

)93.14()000.2()072.1(0.01259)(222

222

6,
+⋅+⋅+⋅+⋅+⋅+

+⋅+⋅+⋅
=

SSSSSS
SSSSH I

)10034.1895,1()102.7143.958()105.545679,2(
)1093.14()10000.2()10072.1(0.01259

)(

623232

626262

6,

⋅+⋅+⋅⋅+⋅+⋅⋅+⋅+
⋅+⋅⋅+⋅⋅+⋅

=

ssssss
sss

sH I

Example 3.2 Unnormalized Butterworth Lowpass Filter

Problem: Determine the transfer function for a Butterworth lowpass filter to
satisfy the following specifications:

apass = −0.5 dB, astop = −21 dB,
 fpass = 1,000 Hz, fstop = 2,000 Hz

Solution: Using the material of Section 2.2, the important values for this
example and the normalized transfer function are listed below:

 Ωr = 2.0 n = 5.00 (5th order) ωo = 6,283.19 rad/sec

)523.17627.0()523.1997.1()234.1(

523.1523.1234.1)(
225,

+⋅+⋅+⋅+⋅+

⋅⋅
=

SSSSS
SH B

The unnormalized transfer function is then determined by making the
substitution S = s / ωo and using the relationships just developed:

)10013.6792,4()10013.61055.12()754,7(

10013.610013.67754)(72732

77

5,
⋅+⋅+⋅⋅+⋅⋅+⋅+

⋅⋅⋅⋅
=

sssss
sH B

We can also use WFilter to design either of the lowpass filters just described,
but in this case we’ll pick the Butterworth filter. The coefficients and response of
this filter are shown in Figures 3.2 and 3.3.

60 Practical Analog and Digital Filter Design

Butterworth Lowpass Filter

Selectivity: Lowpass
Approximation: Butterworth
Implementation: Analog
Passband gain (dB): -0.5
Stopband gain (dB): -21.0
Passband freq (Hz): 1000.0
Stopband freq (Hz): 2000.0

Filter Length/Order: 05
Overall Filter Gain: 1.00000000000E+00

 Numerator Coefficients
QD [S^2 + S + 1]
== ===
01 0.0 0.00000000000E+00 7.75420567954E+03
02 0.0 0.00000000000E+00 6.01277057205E+07
03 0.0 0.00000000000E+00 6.01277057205E+07

 Denominator Coefficients
QD [S^2 + S + 1]
== ===
01 0.0 1.00000000000E+00 7.75420567954E+03
02 1.0 4.79236266571E+03 6.01277057205E+07
03 1.0 1.25465683452E+04 6.01277057205E+07

Figure 3.2 Filter coefficients for Example 3.2 from WFilter.

Figure 3.3 Filter magnitude response for Example 3.2.

3.2 UNNORMALIZED HIGHPASS APPROXIMATION FUNCTIONS

The normalized lowpass approximation can also be used to generate the
approximation function for a highpass filter. The calculation for the ratio
frequency Ωr is based on the ratio of passband to stopband frequencies, as shown

 Analog Lowpass, Highpass, Bandpass, and Bandstop Filters 61

in (3.12). This is the reciprocal of the lowpass case, but since ωpass > ωstop , the
result still produces a value greater than 1. The Ωr ratio always produces a value
greater than 1 (as we will see in later sections as well) and as the value gets larger
and larger, the order of the filter will reduce as long as other characteristics remain
the same.

stop

pass

stop

pass

f
f

rH ==Ω
ω
ω

 (3.12)

Once the normalized lowpass approximation is determined based on the
order, we can unnormalize the lowpass transfer function using an appropriate
unnormalization substitution. In the case of the highpass filter, the
unnormalization substitution is given in (3.13). As in the lowpass case, ωo will
take on the value of ωpass except for the inverse Chebyshev approximation where
it will have the value of ωstop.

s

S o
H

ω
= (3.13)

3.2.1 Handling a First-Order Factor

For the first-order case, we start with (3.14) and make the substitution of (3.13).
The final result is then shown in (3.15). In this unnormalization case, we see that
there is a gain adjustment (A2 / B2) that must be considered.

21

21

21

21

)(
)(

)(
BsB
AsA

BSB
ASA

sH
o

o

sS o
+⋅
+⋅

=
+⋅
+⋅

=
=

ω
ω

ω

 (3.14)

21

21

2

2

21

21

2

2

)/(
)/(

)(
bsb
asa

B
A

BBs
AAs

B
A

sH
o

o

+⋅
+⋅

⋅=
⋅+
⋅+

⋅=
ω
ω

 (3.15)

From careful observation we can draw the following information from these
equations:

• The gain constant is multiplied by A2 / B2.
• The s-term coefficients become
 a1 = 1, b1 = 1
• The constant term coefficients become
 a2 = (A1 / A2) ωo, b2 = (B1 / B2) ωo

62 Practical Analog and Digital Filter Design

3.2.2 Handling a Second-Order Factor

In the case of this highpass unnormalization process, the second-order factors will
be unnormalized in the manner shown in (3.16):

21

2
0

21
2

0

21
2

0

21
2

0

)()(
)()(

)(
BsBsB
AsAsA

BSBSB
ASASA

sH
oo

oo

sS o
+⋅+⋅

+⋅+⋅
=

+⋅+⋅

+⋅+⋅
=

=
ωω
ωω

ω

 (3.16)

that can be simplified to produce

21

2
0

21
2

0

2

2
2

2021
2

2
2021

2

2

2

)/()/(
)/()/()(

bsbsb
asasa

B
A

BBsBBs
AAsAAs

B
AsH

oo

oo

+⋅+⋅
+⋅+⋅

⋅=
⋅+⋅⋅+
⋅+⋅⋅+

⋅=
ωω
ωω (3.17)

Notice that if A0 and A1 are both zero (which will be the case for Butterworth
and Chebyshev approximations), then a1 and a2 will be zero, leaving only an
s2-term in the numerator. A2 will never be zero in a normalized approximation
function. We can summarize the results of the unnormalization below:

• The gain constant is multiplied by A2 / B2.
• The s2-term coefficients become
 a0 = 1, b0 = 1
• The s-term coefficients become
 a1 = (A1 / A2) ωo, b1 = (B1 / B2) ωo
• The constant term coefficients become
 a A A b B Bo o2 0 2

2
2 0 2

2= =(/) , (/)ω ω

Numerical examples of the highpass unnormalization process can now be

used to better illustrate the process.

Example 3.3 Unnormalized Elliptic Highpass Filter

Problem: Determine the transfer function for an elliptic highpass filter to
satisfy the following specifications:

apass = −0.5 dB, astop = −45.0 dB,
 ωpass = 3,000 rad/sec, ωstop = 2,000 rad/sec

 Analog Lowpass, Highpass, Bandpass, and Bandstop Filters 63

Solution: Using the material of Section 2.5, the important values for this
example and the normalized transfer function are listed below:

 Ωr = 1.5 n = 4.61 (5th order) ωo = 3,000.0 rad/sec

)032.11635.0()5760.05702.0()4260.0(

)426.2()438.5(4260.004507.0)(
22

22

5,
+⋅+⋅+⋅+⋅+

+⋅+⋅⋅
=

SSSSS
SSSH E

The unnormalized transfer function is then determined by making the

substitution S = ωo / s and using the relationships just developed:

)10722.82.475()10562.1970,2()043,7(

)10711.3()10655.1()(6272

6262

5,
⋅+⋅+⋅⋅+⋅+⋅+

⋅+⋅⋅+⋅
=

sssss
ssssH E

Example 3.4 Unnormalized Chebyshev Highpass Filter

Problem: Determine the transfer function for a Chebyshev highpass filter to
satisfy the following specifications:

apass = −1.5 dB, astop = −40 dB,
fpass = 2,000 Hz, fstop = 800 Hz

Solution: Using the material of Section 2.3, the important values for this

example and the normalized transfer function are listed below:

 Ωr = 2.5 n = 3.66 (4th order) ωo = 12,566.4 rad/sec

)2434.05752.0()9505.02383.0(

2434.09505.08414.0)(
224,

+⋅+⋅+⋅+

⋅⋅
=

SSSS
SH C

The unnormalized transfer function is then determined by making the
substitution S = ωo / s and using the relationships just developed:

)10489.6703,29()10661.1150,3(

8414.0)(8282

22

4,
⋅+⋅+⋅⋅+⋅+

⋅⋅
=

ssss
sssHC

The results of using WFilter to design the filter of Example 3.4 are illustrated

in Figures 3.4 and 3.5, which show the coefficients and magnitude response.

64 Practical Analog and Digital Filter Design

3.3 UNNORMALIZED BANDPASS APPROXIMATION FUNCTIONS

In the case of a bandpass unnormalization, Ωr will be defined in (3.18). Note that
for this case, Ωr will be greater than 1, as has been the case for the lowpass and
highpass unnormalization.

Chebyshev Highpass Filter

Selectivity: Highpass
Approximation: Chebyshev
Implementation: Analog
Passband gain (dB): -1.5
Stopband gain (dB): -40.0
Passband freq (Hz): 2000.0
Stopband freq (Hz): 800.0

Filter Length/Order: 04
Overall Filter Gain: 8.41395141645E-01

 Numerator Coefficients
QD [S^2 + S + 1]
== ===
01 1.0 0.00000000000E+00 0.00000000000E+00
02 1.0 0.00000000000E+00 0.00000000000E+00

 Denominator Coefficients
QD [S^2 + S + 1]
== ===
01 1.0 3.15012807725E+03 1.66143895400E+08
02 1.0 2.97027255443E+04 6.48898535622E+08

Figure 3.4 Filter coefficients for Example 3.4 from WFilter.

Figure 3.5 Filter magnitude response for Example 3.4.

 Analog Lowpass, Highpass, Bandpass, and Bandstop Filters 65

pass1pass2

stop1stop2

pass1pass2

stop1stop2

ff
ff

rP −

−
=

−

−
=Ω

ωω
ωω

 (3.18)

After determining the normalized lowpass approximation using the order we

determined from the bandpass specifications, we can unnormalize the lowpass
function into a bandpass function. To accomplish this we use the substitution
given in (3.19):

sBW

s
S o

P ⋅
+

=
22 ω

 (3.19)

where for all approximations except the inverse Chebyshev,

 pass2pass1 ωωω ⋅=o (3.20)

 pass1pass2 ωω −=BW (3.21)

For the inverse Chebyshev case these values are defined as (another example
of the opposite nature of this approximation)

 stop2stop1 ωωω ⋅=o (3.22)

 stop1stop2 ωω −=BW (3.23)

In order to provide an accurate value of Ωr in (3.18), the stopband and
passband edge frequencies must be symmetrically spaced on either side of ωo. The
simplest way to test for this is to check to see that the relationship of (3.24) is
satisfied. If this equation is not satisfied, the larger side must be reduced to form
an equality by increasing ωstop1 or decreasing ωstop2. This will tighten the
restrictions, so the original specifications will still be met, and an accurate order
can be calculated. (If there is an extreme inequality, other measures can be used to
implement the filter. For example, an additional lowpass or highpass filter can be
added to provide the required selectivity.)

pass2

stop2

stop1

pass1

ω
ω

ω
ω

= (3.24)

66 Practical Analog and Digital Filter Design

As indicated by (3.19), the unnormalization process will result in a bandpass
approximation function that has twice the order of the lowpass function used to
generate it. This seems reasonable when we consider that a bandpass filter must
provide a transition from a stopband to a passband (like a highpass filter) and
another transition from a passband to a stopband (like a lowpass filter). The
resulting function must therefore be twice the order of the original lowpass
function on which it is based.

3.3.1 Handling a First-Order Factor

For a first-order factor in the lowpass approximation function, (3.25) shows how
the substitution of (3.19) is made:

2

22
1

2
22

1

)()(21

21

])()([
])()([

)(
22 BsBWsB

AsBWsA
BSB
ASA

sH
o

o

sBWsS o
+⋅+⋅

+⋅+⋅
=

+⋅
+⋅

=
⋅+= ω

ω

ω

 (3.25)

And after some simplification we have the result in (3.26). The relationships
between the coefficients are shown. Note that if A1 = 0, as will normally be the
case, the numerator will only have an s-term present.

21

2
0

21
2

0
2

12
2

1

2
12

2
1)(

bsbsb
asasa

BsBWBsB
AsBWAsA

sH
o

o

+⋅+⋅

+⋅+⋅
=

⋅+⋅⋅+⋅

⋅+⋅⋅+⋅
=

ω
ω

 (3.26)

• The gain constant is unchanged.
• The s2-term bandpass coefficients become
 a0 = A1, b0 = B1
• The s-term bandpass coefficients become
 a1 = A2 BW, b1 = B2 BW
• The constant term bandpass coefficients become
 a A b Bo o2 1

2
2 1

2= =ω ω,

3.3.2 Handling a Second-Order Factor

Unnormalizing a second-order factor is a bit more of a challenge. When the
substitution variable SP of (3.19) is inserted into a second-order lowpass
approximation, a fourth-order factor results. What do we do with a fourth-order
factor? All of our development to this point is based on quadratic factors and with
good reason. They represent a complex conjugate pair and they will be used to
efficiently implement the filters in later chapters. We could factor the fourth-order,
but this would require a numerical algorithm that is time-consuming and not
always accurate. There is another directed procedure that can be used.

 Analog Lowpass, Highpass, Bandpass, and Bandstop Filters 67

If we factor the lowpass approximation quadratic into two complex conjugate
factors before making the substitution of (3.19), the result after the substitution
and simplification is two quadratic equations. However, each of these quadratics
would have a complex coefficient that would mean they could not be implemented
directly. However, if these two quadratics are again factored, we will find two sets
of complex conjugate pairs within the set of four factors. These complex
conjugate pairs could then be combined to produce two quadratics that have all
real coefficients.

Perhaps an easy example is in order. Consider the transfer function shown in
(3.27) that has already been factored:

)11()11(

2
22

2)(2 jSjSSS
SH

−+⋅++
=

+⋅+
= (3.27)

Now if we assume that ωo = 1 and BW = 1, we can substitute S = (s2 + 1) / s
and simplify to produce the following:

]1)11([]1)11([

2)(22

2

+⋅−+⋅+⋅++
⋅

=
sjssjs

ssH (3.28)

The roots of the first quadratic can be determined to be

)53.1743.0(),529.0257.0(
2

)058.2486.0()11(
2,1 jjjjs −−+−=

+±+−
= (3.29a)

and the two roots of the second quadratic pair up with the first.

)53.1743.0(),529.0257.0(4,3 jjs +−−−= (3.29b)

The resulting transfer function can then be written as (3.30) by combining the

complex conjugate roots from each quadratic:

)890.2486.1()346.0514.0(

2)(22

2

+⋅+⋅+⋅+

⋅
=

ssss
ssH (3.30)

This algorithm for finding the two quadratics in the bandpass approximation

from the single quadratic in the lowpass function will be used as the standard
method in this section. Unfortunately, it is very difficult to define the final
bandpass coefficients in terms of only the initial lowpass coefficients because of

68 Practical Analog and Digital Filter Design

the complexity of expressions. However, if we use a few intermediate variables,
the process should be able to be demonstrated without too much confusion.

We start with the general expression for the normalized lowpass second-order
factor shown in (3.31) in normal and factored form. The A0 and B0 coefficients
have been omitted for clarity since they will be assumed to be 1 in this case, and p
and z represent the complex poles and zeros, respectively. (An asterisk indicates
the complex conjugate value.)

)()(

*
11

*
11

21
2

21
2

22))((
))((

)(
sBWsS o

pSpS
zSzS

BSBS
ASAS

sH
⋅+=++

++
=

+⋅+

+⋅+
=

ω

 (3.31)

After making the indicated substitution and simplifying, we have

)()(
)()(

)(2*
1

22
1

2

2*
1

22
1

2

oo

oo

spBWsspBWs
szBWsszBWs

sH
ωω
ωω
+⋅⋅+⋅+⋅⋅+

+⋅⋅+⋅+⋅⋅+
= (3.32)

Each one of the quadratic factors in (3.32) can now be factored into first-
order factors, as indicated in (3.33). Note that the constants from the z1 quadratic
are labeled with an a and b, while the complex conjugates use c and d. The
denominator uses the same designations.

)()()()(

)()()()(
)(

1111

1111

dcba

dcba

pspspsps
zszszszs

sH
+⋅+⋅+⋅+
+⋅+⋅+⋅+

= (3.33)

Now, by matching the complex conjugate pairs, we can reconstruct two

quadratics with real coefficients in both the numerator and denominator:

))((
))((

)(
54

2
21

2
54

2
21

2

bsbsbsbs
asasasas

sH
+⋅++⋅+

+⋅++⋅+
= (3.34)

The results shown in (3.34) are valid for the inverse Chebyshev and elliptic

approximation functions that use zeros on the jω axis. However, for the
Butterworth and Chebyshev approximation functions, the result will be somewhat
different. Equation (3.35) shows the starting point for this development. After
substitution and simplification, (3.36) results. Then following the same basic steps
as in the previous derivation, (3.37) eventually emerges.

 Analog Lowpass, Highpass, Bandpass, and Bandstop Filters 69

)()(

*
11

2

21
2

2

22))((
)(

sBWsS o
pSpS

A
BSBS

A
sH

⋅+=++
=

+⋅+
=

ω

 (3.35)

)()(

)(2*
1

22
1

2

22
2

oo spBWsspBWs
sBWA

sH
ωω +⋅⋅+⋅+⋅⋅+

⋅⋅
= (3.36)

))((

)(
54

2
21

2

22
2

bsbsbsbs
sBWA

sH
+⋅++⋅+

⋅⋅
= (3.37)

Now, some examples illustrating the bandpass design process are in order.

Example 3.5 Unnormalized Butterworth Bandpass Filter

Problem: Determine the transfer function for a Butterworth bandpass filter to
satisfy the following specifications:

apass = −1.0 dB, astop = −21 dB, fpass1 = 300 Hz,
 fpass2 = 3,000 Hz, fstop1 = 50 Hz, fstop2 = 9,000 Hz

Solution: Using the material of Section 2.2, the important values for this
example and the normalized transfer function are listed below. In this case, fstop1
must be changed to 100 Hz to provide symmetry. The function is shown with
quadratics in factored form, as indicated by the (2) superscript.

 Ωr = 3.3 n = 2.59 (3rd order)

 ωo = 5,960.8 rad/sec BW = 16,965 rad/sec

)2(3,)0848.162629.0()2526.1(

5690.12526.1)(
jSS

SH B
±+⋅+

⋅
=

After making the substitution of (3.19) and factoring again, the following

equation emerges:

)2()2(72

3

6,)836,199909()14341.716()10553.3249,21(
)965,16(569.1253.1)(

jsjsss
ssH B

±+⋅±+⋅⋅+⋅+
⋅⋅⋅

=

After simplification, the following transfer function results:

70 Practical Analog and Digital Filter Design

)10917.4817,19()10568.2432,1()10553.3249,21(
)10125.2(

)(

826272

334

6,

⋅++⋅⋅++⋅⋅++
⋅⋅

=

ssssss
s

sHB

Example 3.6 Unnormalized Inverse Chebyshev Bandpass Filter

Problem: Determine the transfer function for an inverse Chebyshev bandpass
filter to satisfy the following specifications:

apass = −0.5 dB, astop = −33 dB, fpass1 = 100 Hz,
fpass2 = 200 Hz, fstop1 = 50 Hz, fstop2 = 400 Hz

Solution: Using the material of Section 2.4, the important values for this
example and the normalized transfer function are listed below. The transfer
function is shown with quadratics in factored form, as indicated by the (2)
superscript.

 Ωr = 3.5 n = 2.88 (3rd order)

 ωo = 888.58 rad/sec BW = 2,199.1 rad/sec

)2(

)2(

3,)38655.020190.0()47098.0(
)15470.1(47098.00.14264)(

jSS
jSSH I
±+⋅+

±⋅⋅
=

After making the substitution of (3.19) and factoring again, the following
equation emerges:

)2()2(52

)2()2(

6,)390,18.319()6.5392.124()10896.7036,1(
)819,2()1.280()036,1(14264.0)(

jsjsss
jsjsssH I

±+⋅±+⋅⋅+⋅+
±⋅±⋅⋅⋅

=

After simplification, the following transfer function results:

)10033.26.639()10066.34.248()10896.7036,1(
)10949.7()10843.7()036,1(14264.0

)(

625252

6242

6,

⋅+⋅+⋅⋅+⋅+⋅⋅+⋅+
⋅+⋅⋅+⋅⋅⋅

=

ssssss
sss

sH I

We can use WFilter to design the inverse Chebyshev bandpass filter of
Example 3.6. The coefficients for this design are shown in Figure 3.6 with the
magnitude response shown in Figure 3.7. Notice that two of the numerator
coefficients are quite small (approximately 10−16 or smaller) and should be
interpreted as zero since these quadratics represent complex zeros located on the
jω-axis.

 Analog Lowpass, Highpass, Bandpass, and Bandstop Filters 71

Inverse Chebyshev Bandpass Filter

Selectivity: Bandpass
Approximation: Inv. Chebyshev
Implementation: Analog
Passband gain (dB): -0.5
Stopband gain (dB): -33.0
PB freq-lower (Hz): 100.0
PB freq-upper (Hz): 200.0
SB freq-lower (Hz): 50.0
SB freq-upper (Hz): 400.0

Filter Length/Order: 06
Overall Filter Gain: 1.42635925362E-01

 Numerator Coefficients
QD [S^2 + S + 1]
== ===
01 0.0 1.03573607270E+03 0.00000000000E+00
02 1.0 1.52838376237E-16 7.84287312832E+04
03 1.0 -1.51816114564E-17 7.94884951494E+06

 Denominator Coefficients
QD [S^2 + S + 1]
== ===
01 1.0 1.03573607270E+03 7.89568352087E+05
02 1.0 2.48367370656E+02 3.06585558034E+05
03 1.0 6.39635528883E+02 2.03342318737E+06

Figure 3.6 Filter coefficients for Example 3.6 from WFilter.

Figure 3.7 Filter magnitude response for Example 3.6.

72 Practical Analog and Digital Filter Design

3.4 UNNORMALIZED BANDSTOP APPROXIMATION FUNCTIONS

We will find that the unnormalization of the lowpass normalized function into a
bandstop approximation is very similar to the bandpass case. The first step in the
procedure is to determine the order required from the lowpass approximation
based on the bandstop specifications. The value of Ωr to use in the bandstop case
is shown in (3.38), which is the reciprocal of the bandpass case. We notice again
that Ωr will be greater than 1:

 stop1stop2

pass1pass2

stop1stop2

pass1pass2

ff
ff

r −

−
=

−

−
=Ω

ωω
ωω

 (3.38)

As in the bandpass case, (3.24) must be satisfied in order to get an accurate
value of Ωr, except in this case either ωpass1 must be increased or ωpass2 must be
decreased to achieve equality. After finding the order, we can unnormalize the
lowpass function into a bandstop function using the substitution given in (3.39):

 22
o

S
s

sBWS
ω+
⋅

= (3.39)

As before, all approximations except the inverse Chebyshev will define

 pass2pass1 ωωω ⋅=o (3.40)

 pass1pass2 ωω −=BW (3.41)

while for the inverse Chebyshev case

 stop2stop1 ωωω ⋅=o (3.42)

 stop1stop2 ωω −=BW (3.43)

The resultant bandstop approximation function will be twice the order of the

normalized lowpass function just as in the bandpass case. The bandstop filter is in
effect implementing both a lowpass and highpass filter and therefore requires
twice the order.

 Analog Lowpass, Highpass, Bandpass, and Bandstop Filters 73

3.4.1 Handling a First-Order Factor

Equation (3.44) shows how a first-order factor is unnormalized into a second-
order factor using the substitution of (3.39):

2

22
1

2
22

1

)()(21

21

])()([
])()([)(

22 BssBWB
AssBWA

BSB
ASASH

o

o

ssBWS o
++⋅⋅
++⋅⋅

=
+⋅
+⋅

=
+⋅= ω

ω

ω

 (3.44)

Equation (3.45) shows the result after simplification followed by the
observations that can be made for this case:

21

2
0

21
2

0
2

21
2

2
21

2

2

2

)/(
)/(

)(
bsbsb
asasa

sBWBBs
sBWAAs

B
A

sH
o

o

+⋅+⋅

+⋅+⋅
=

+⋅⋅+

+⋅⋅+
⋅=

ω
ω

 (3.45)

• The gain constant is multiplied by A2 / B2.
• The s2-term bandstop coefficients become
 a0 = 1, b0 = 1
• The s-term bandstop coefficients become
 a1 = (A1 / A2) BW, b1 = (B1 / B2) BW
• Constant term bandstop coefficients become
 a bo o2

2
2

2= =ω ω,

3.4.2 Handling a Second-Order Factor

In order to unnormalize a second-order factor we experience the same problems as
in the bandpass case. A direct substitution would give us a fourth-order transfer
function, which is not what we want. However, the methodology used in the
bandpass case does work in this case as well. The procedure is outlined below for
the bandstop case that has a few differences due to a different substitution factor.

Starting at the same point as with the bandpass case, (3.46) shows the result
of the factoring of the initial quadratics:

)()(

*
11

*
11

21
2

21
2

22))((
))(()(

ossBWSpSpS
zSzS

BSBS
ASASsH

ω+⋅=++

++
=

+⋅+

+⋅+
= (3.46)

Equation (3.47) results after the substitution and simplification:

])/([])/([
])/([])/([)(2*

1
22

1
2

2*
1

22
1

2

*
11

*
11

oo

oo

spBWsspBWs
szBWsszBWs

pp
zzsH

ωω
ωω
+⋅+⋅+⋅+
+⋅+⋅+⋅+

⋅
⋅
⋅

= (3.47)

74 Practical Analog and Digital Filter Design

The initial gain factor of (3.47) can be shown to be A2 / B2. The quadratic
factors can be factored into first-order factors, as indicated in (3.48):

)()()()(

)()()()(
)(

1111

1111

2

2

dcba

dcba

pspspsps
zszszszs

B
A

sH
+⋅+⋅+⋅+
+⋅+⋅+⋅+

⋅= (3.48)

We then reconstruct two quadratics in the numerator and denominator by

matching the complex conjugate pairs:

))((
))((

)(
54

2
21

2
54

2
21

2

2

2

bsbsbsbs
asasasas

B
A

sH
+⋅++⋅+

+⋅++⋅+
⋅= (3.49)

This result is valid for the rational approximation functions (inverse

Chebyshev and elliptic), but for the all-pole approximations (Butterworth and
Chebyshev), we must develop a slightly different version. Equations (3.50) and
(3.51) show the factoring and substitution of (3.39). After the quadratics of (3.51)
are factored and the matching complex conjugate terms are combined, the final
form is (3.52) .

)()(

*
11

2

21
2

2

22))((
)(

ω+⋅=++
=

+⋅+
=

ssBWSpSpS
A

BSBS
AsH (3.50)

])/([])/([

)()(2*
1

22
1

2

222

*
11

2

oo

o

spBWsspBWs
s

pp
AsH

ωω
ω

+⋅+⋅+⋅+
+

⋅
⋅

= (3.51)

))((

)(
)(

54
2

21
2

222

2

2

bsbsbsbs
s

B
A

sH o

+⋅++⋅+

+
⋅=

ω
 (3.52)

Complete numerical examples of the bandstop unnormalization process are

given next.

 Analog Lowpass, Highpass, Bandpass, and Bandstop Filters 75

Example 3.7 Unnormalized Chebyshev Bandstop Filter

Problem: Determine the transfer function for a Chebyshev bandstop filter to
satisfy the following specifications:

ωpass1 = 3,000 rad/sec, ωpass2 = 24,000 rad/sec, ωstop1 = 6,000 rad/sec,
ωstop2 = 12,000 rad/sec, apass = −1.0 dB, astop = −35 dB

Solution: Using the material of Section 2.3, the important values for this

example and the normalized transfer function are listed below. The transfer
function is shown with quadratics in factored form as shown by the (2)
superscript.

 Ωr = 3.5 n = 2.80 (3rd order)

 ωo = 8485.3 rad/sec BW = 21,000 rad/sec

)2(3,)96600.024709.0()49417.0(

99421.049417.0)(
jSS

SH C
±+⋅+

⋅
=

After making the substitution of (3.39) and factoring again, the following
equation emerges, which can be simplified into the final result:

)2()2(72

372

6,)370,23632,4()965,26.587()10200.7500,42(
)10200.7()(

jsjsss
ssHC

±+⋅±+⋅⋅+⋅+
⋅+

=

)10676.5263,9)(10134.9175,1)(10200.7495,42(
)10200.7(

)(

826272

372

6,

⋅+⋅+⋅+⋅+⋅+⋅+
⋅+

=

ssssss
s

sHC

Example 3.8 Unnormalized Elliptic Bandstop Filter

Problem: Determine the transfer function for an elliptic bandstop filter to
satisfy the following specifications:

apass = −0.3 dB, astop = −50 dB, fpass1 = 50 Hz,
 fpass2 = 72 Hz, fstop1 = 58 Hz, fstop2 = 62 Hz

Solution: Using the material of Section 2.5, the important values for this

example and the normalized transfer function are listed below. In this case, fpass2

76 Practical Analog and Digital Filter Design

must be changed to 71.92 Hz to provide symmetry. The transfer function is shown
with quadratics in factored form as shown by the (2) superscript.

 Ωr = 3.3 n = 2.75 (3rd order)

 ωo = 376.78 rad/sec BW = 137.73 rad/sec

)93390.035753.0()73880.0(
)31445.6(73880.0)(3, jSS

jSSH E ±+⋅+
±⋅

=

After making the substitution of (3.39) and factoring again, the following
equation emerges:

)2()2(2

)2()2(2

6,)4.43813.22()0.32330.16()960,1414.186(
)0.366()9.387()960,141()(

jsjsss
jsjsssH I

±+⋅±+⋅+⋅+
±⋅±⋅+

=

After simplification, the following transfer function results:

)704,19225.44()585,10460.32()964,1414.186(

)981,133()424,150()964,141()(222

222

6,
+⋅+⋅+⋅+⋅+⋅+

+⋅+⋅+
=

ssssss
ssssH E

We can also use WFilter to design the bandstop elliptic filter of Example 3.8.
The results of this filter design are shown in Figures 3.8 and 3.9 that show the
coefficients and magnitude response, respectively. Again, as in the bandpass case,
a couple of the numerator coefficients are very small and can be considered zero.

3.5 ANALOG FREQUENCY RESPONSE

Up to this point we have developed the necessary foundation to design a variety of
analog filters. We have calculated the coefficients and are ready to implement the
filter in hardware. But before we address the implementation issues in the next
chapter, we need to check our design by determining the frequency response of
the filter and comparing it to our design specifications. We will discuss the
calculation of the frequency response of our filters and also view the C code for
the frequency response calculation.

3.5.1 Mathematics for Frequency Response Calculation

The filter approximation function, which we have just determined by the
calculation of the unnormalized coefficients, represents a transfer function of a
linear system in the s-domain. In order to determine the frequency response of the
transfer function, we must substitute jω for each of the s-variables in that transfer

 Analog Lowpass, Highpass, Bandpass, and Bandstop Filters 77

function. For example, (3.53) shows a transfer function with one quadratic factor,
while (3.54) shows the frequency response for that transfer function:

Elliptic Bandstop Filter

Selectivity: Bandstop
Approximation: Elliptic
Implementation: Analog
Passband gain (dB): -0.3
Stopband gain (dB): -50.0
PB freq-lower (Hz): 50.0
PB freq-upper (Hz): 71.92
SB freq-lower (Hz): 58.0
SB freq-upper (Hz): 62.0

Filter Length/Order: 06
Overall Filter Gain: 1.00000000000E+00

 Numerator Coefficients
QD [S^2 + S + 1]
== ===
01 1.0 0.00000000000E+00 1.41964389705E+05
02 1.0 2.10251277992E-17 1.33980657885E+05
03 1.0 -1.98427257744E-17 1.50423861642E+05

 Denominator Coefficients
QD [S^2 + S + 1]
== ===
01 1.0 1.86421021332E+02 1.41964389705E+05
02 1.0 3.26004384421E+01 1.04584515861E+05
03 1.0 4.42522615272E+01 1.92704319359E+05

Figure 3.8 Filter coefficients for Example 3.8 from WFilter.

Figure 3.9 Filter magnitude response for Example 3.8.

78 Practical Analog and Digital Filter Design

21

2
21

2
)(

bsbsb
asasa

sH
o

o

+⋅+⋅

+⋅+⋅
= (3.53)

21

2
21

2

)()(
)()(

)()(
bjbjb
ajaja

jHsH
o

o
js +⋅+⋅

+⋅+⋅
==

= ωω
ωω

ωω (3.54)

After simplification, the frequency response H(jω) is shown as a frequency
dependent complex number in (3.55). This complex number can be represented in
either rectangular form or polar form. However, when we deal with a frequency
response, the polar form is the more natural form because the standard frequency
response is composed of both a magnitude and phase response portion. Equation
(3.56) shows the result of converting (3.55) into polar form:

)()(
)()(

)(
1

2
2

1
2

2

ωω
ωω

ω
⋅+⋅−

⋅+⋅−
=

bjbb
ajaa

jH
o

o (3.55)

)(tan
)(tan

)(1

1

bb

aa

PM
PM

jH
−

−

∠

∠
=ω (3.56)

where

 2
1

22
2)()(ωω aaaM oa +−=

 2
1

22
2)()(ωω bbbM ob +−=

)/()(2
21 ωω oa aaaP −=

)/()(2
21 ωω ob bbbP −=

Of course, if the original transfer function has multiple quadratic terms, as our
approximation functions do, the total frequency response is dependent on all of the
quadratics. The total magnitude result will be the product of the individual
magnitudes and the total phase result will be the sum of the individual phases as
shown in (3.57), where q represents the number of quadratic factors:

 Analog Lowpass, Highpass, Bandpass, and Bandstop Filters 79

∑∏

∑∏

=

−

=

=

−

=

∠

∠

= q

b
b

q

b
b

q

a
a

q

a
a

t

PM

PM
jH

1

1

1

1

1

1

)(tan

)(tan
)(ω (3.57)

The total frequency response Ht(jω) can then be described as shown in (3.58),
where the total magnitude is the numerator magnitude divided by the denominator
magnitude, and the total phase angle is the denominator phase subtracted from the
numerator phase:

 ttt MjH Φ∠=)(ω (3.58)

where

 ∏∏
==

=
q

b
b

q

a
at MMM

11

 ∑∑
=

−

=

− −=Φ
q

b
b

q

a
at PP

1

1

1

1)(tan)(tan

Example 3.9 Frequency Response of a Highpass Filter

Problem: Determine the frequency response (both magnitude and phase) at
the passband edge frequency of 2,000 Hz and the stopband edge frequency of 800
Hz for the Chebyshev highpass filter designed in Example 3.4. Determine if the
gain specifications of apass = −1.5 dB and astop = −40 dB are met. The transfer
function is shown below:

)104890.6703,29()106614.11.150,3(

84140.0)(8282

22

4, ⋅+⋅+⋅⋅+⋅+
⋅⋅

=
ssss

sssHC

Solution: We first make the substitution of s = jω into the transfer function to
obtain the frequency response H(jω). Then after collecting the real and imaginary
terms and arranging them, the following equation for the frequency response
results:

]703,29)104890.6[(]1.150,3)106614.1[(

8414.0)(2828

4

4, ωωωω
ωω

⋅+−⋅⋅⋅+−⋅
⋅

=
jj

jHC

80 Practical Analog and Digital Filter Design

This frequency response equation can first be used to determine the frequency
response at the stopband frequency of 800 Hz.

)104930.1102363.6()105834.1104087.1(

103713.5)600,1(8878

14

4,
⋅+⋅⋅⋅+⋅

⋅
=

jj
jHC π

)5.13104126.6()4.6104176.1(

103713.5)600,1(88

14

4,
°∠⋅⋅°∠⋅

⋅
=πjHC

 °−∠⋅= − 9.19109087.5)600,1(3
4, πjHC

This indicates a gain of −44.57 dB at the stopband frequency, which exceeds
the specification, and a phase shift of −19.9° or 340.1°. In the case of the passband
frequency of 2,000 Hz, similar calculations can be made as shown below:

)107326.3109099.4()109585.3102263.8(

100982.2)000,4(8876

16

4,
⋅+⋅⋅⋅+⋅

⋅
=

jj
jHC π

)2.37101676.6()3.78100431.4(

100982.2)000,4(87

16

4,
°∠⋅⋅°∠⋅

⋅
=πjHC

 °−∠= 5.1158414.0)000,4(4, πjHC

This indicates a gain of −1.50 dB at the stopband frequency, which meets the
specification, and a phase shift of −115.5° or 244.50°.

3.5.2 C Code for Frequency Response Calculation

We are now ready to develop the C code for determining the frequency response
of an analog filter. In order to properly determine the frequency response, we need
to know the starting and stopping frequencies for our calculations. We also need
to know whether to space the frequencies in a linear or logarithmic fashion, and
whether to calculate the magnitude in decibels or not. This, as well as other,
information is stored in a frequency response structure called Resp_Params.
All of the functions that actually perform the frequency response calculations are
contained in the F_RESPON.C module that has a header file of F_RESPON.H in
which Resp_Params is defined.

 Analog Lowpass, Highpass, Bandpass, and Bandstop Filters 81

The primary function for the calculation of the analog frequency response is
Calc_Analog_Resp, which is shown in Listing 3.1. (The set of frequencies
used to evaluate the filter have already been calculated and stored in RP->freq.)

/*==
 Calc_Analog_Resp() - calcs response for analog filts
 Prototype: int Calc_Analog_Resp(Filt_Params *FP,
 Resp_Params *RP);
 Return: error value
 Arguments: FP - ptr to struct holding filter params
 RP - ptr to struct holding respon params
==*/
int Calc_Analog_Resp(Filt_Params *FP,Resp_Params *RP)
{ int c,f,q; /* loop counters */
 double rad2deg, /* rad to deg conversion */
 omega,omega2, /* radian freq and square */
 rea,img; /* real and imag part */

 rad2deg = 180.0 / PI; /* set rad2deg */
 /* Loop through each of the frequencies */
 for(f = 0 ;f < RP->tot_pts; f++)
 { /* Initialize magna and angle */
 RP->magna[f] = FP->gain;
 RP->angle[f] = 0.0;
 /* Pre calc omega and omega squared */
 omega = PI2 * RP->freq[f];
 omega2 = omega * omega;
 /* Loop through coefs for each quadratic */
 for(q = 0 ;q < (FP->order+1)/2; q++)
 { /* c is coef index = 3 * quad index */
 c = q * 3;
 /* Numerator values */
 rea = FP->acoefs[c+2] - FP->acoefs[c] * omega2;
 img = FP->acoefs[c+1] * omega;
 RP->magna[f] *= sqrt(rea*rea + img*img);
 RP->angle[f] += atan2(img,rea);
 /* Denominator values */
 rea = FP->bcoefs[c+2] - FP->bcoefs[c] * omega2;
 img = FP->bcoefs[c+1] * omega;
 RP->magna[f] /= sqrt(rea*rea + img*img);
 RP->angle[f] -= atan2(img,rea);
 }
 /* Convert to degrees */
 RP->angle[f] *= rad2deg;
 }
 /* Convert magnitude response to dB if indicated */
 if(RP->mag_axis == LOG)
 { for(f = 0 ;f < RP->tot_pts; f++)
 { /* Handle very small numbers */
 if(RP->magna[f] < ZERO)
 { RP->magna[f] = ZERO;}
 RP->magna[f] = 20 * log10(RP->magna[f]);
 }
 }
 return ERR_NONE;
}

Listing 3.1 Calc_Analog_Resp function.

82 Practical Analog and Digital Filter Design

After calculating the constant rad2deg for converting radians to degrees,
the primary work of the function is performed within two nested for loops. The
outer loop controls the frequency at which the response is being calculated, while
the inner loop steps through the number of quadratics in the approximation
function. As we start the calculation for a new frequency, the magnitude value
(RP->magna[f]) is initialized to the overall gain value of the filter, while the
phase value (RP->angle[f]) is set to 0. We then convert to radian frequencies
and make the calculation of the radian frequency squared outside the quadratic
loop. That saves time by not repeatedly making those calculations inside the loop
where there is no change in their value.

Once we reach the inner quadratic loop, which is controlled by the variable q,
we define a value c that is based on q to help access the individual coefficients of
each quadratic. We first handle the numerator portion of the quadratic by
determining the real and imaginary parts of the complex number. Then the total
magnitude is multiplied by the magnitude of the complex number, and the total
angle is incremented by the angle of the complex number.

A similar process is performed for the denominator portion of the quadratic
except that the total magnitude is divided by the denominator’s magnitude, and the
denominator’s phase is subtracted from the total phase. This inner loop process is
repeated for all of the quadratic terms, and then the phase value is converted to
degrees outside the quadratic loop.

If the magnitude of the response was specified to be in decibels, each of the
magnitude values is converted to decibels before leaving the function. Since the
logarithm of zero is undefined, an artificial value ZERO is defined in
F_RESPON.H so that no math error will be produced by the compiler if values
become too small. Since we are using type double to describe the magnitude
values, a value of 1E-30 was chosen for ZERO that is still within the limits of
expression for doubles. This value will produce a gain value of −600 dB, which is
well beyond the normal levels of gain we expect in filter design, so our definition
of ZERO should have no effect on the normal operation of the program.

3.6 SAVING THE FILTER PARAMETERS

Once a filter has been designed, WFilter can save it. The saved file can then be
used by other software programs to identify the values of the filter gain,
coefficients, and other characteristics of the filter, or the filter can be reloaded into
WFilter for continued work. The structure of this WFilter binary data file is
therefore included below.

A binary file has a number of advantages over a text file in this situation.
First, the binary file will be easier to read if the data is needed by another program.
There is a very good chance that the filter designer will want to transfer the filter
coefficients that have been determined by WFilter to another program for testing

 Analog Lowpass, Highpass, Bandpass, and Bandstop Filters 83

or implementation. Second, the coefficients and data can be stored with more
accuracy than they can be displayed.

In order to better understand the binary file structure, the format of the file is
shown below. The first 4 bytes in the file will be an acronym for Analog and
Digital Filter Design. The next byte is a w to indicate that the file was created by
WFilter. The next 3 bytes are characters indicating the implementation,
approximation, and selectivity types. The next 40 bytes are dedicated to the text
description for the filter. The next 8 bytes are separated into 6 bytes of reserved
space to allow for future indicators, and 2 bytes used to store the order of the
filter. The filter order is placed into the binary buffer in such a manner that it
could be read as an integer if desired. (The PC format for disk storage dictates that
the low-order byte is written before the high-order byte for an integer. Other
machines may use other methods, but will be consistent between read and write
operations.) Next, 10 variables of size double are stored, which includes the
sampling frequency, the gains and frequencies in the order indicated in the listing,
and the gain of the filter. Finally, the acoefs and bcoefs variables are written
as type double in the order that they were stored by the program.

Header (8 bytes) — Contains the identification “ADFDw” followed by three

characters indicating the implementation, approximation, and selectivity types,
respectively.

The implementation options and values are:

0 - analog, 1 - digital FIR and 2 - digital IIR.

The approximation options and values for analog and digital IIR filters are:

0 - Butterworth, 1 - Chebyshev, 2 - inverse Chebyshev, and
3 - elliptic.

The approximation (or window) options and values for digital FIR filters are:

4 - rectangular, 5 - Barlett, 6 - Blackman, 7 - Hamming, 8 - von Hann,
9 - Kaiser, and 10 - Parks-McClellan. (Discussion of the digital
approximations will be given later in the text.)

The selectivity options and values are: 0 - lowpass, 1 - highpass, 2 - bandpass,

and 3 - bandstop.

Description (40 bytes) — Contains the text description of the filter and is

filled by nulls at the end of the description to make exactly 40 characters.

Reserved (6 bytes) — Reserved for future use.

Order (2 bytes) — The order can be read as an integer.

84 Practical Analog and Digital Filter Design

Specifications (10 doubles) — Contains the sampling frequency in hertz,
followed by the gains and frequencies from the specifications, and finally the
overall filter gain. The gains are specified in decibels and are in the order of apass1,
apass2, astop1, and astop2. The frequencies are specified in hertz and are in the order
of fpass1, fpass2, fstop1, and fstop2.

A coefficients (variable) — The acoefs written as doubles.

B coefficients (variable) — The bcoefs written as doubles.

3.7 CONCLUSION

We have now completed the design of a number of analog approximation types
and are able to calculate the frequency response and save the filter parameters for
future use. In the next chapter we’ll see how to implement these functions as
active filters. For those interested in the C code used to unnormalize the filter
transfer functions, please turn to Appendix E.

85

Chapter 4

Analog Filter Implementation Using
Active Filters

In this chapter, we will discuss the implementation of the analog approximation
functions that we developed and verified in previous chapters. There are several
methods that could be used to allow the successful implementation of an analog
filter. Unfortunately, an entire book could be devoted to this topic (and several
have), so we will concentrate on active filters. Using active filters to implement
the transfer functions is a very popular method today because of the natural
correspondence between the analog circuit and the mathematical function. We will
not discuss the derivation of the transfer functions for active filters because the
development of such circuit analysis techniques is beyond the scope of this text.
However, a number of suitable references are given in the analog active filter texts
of Appendix A for those who are interested in the derivations. Instead, the circuit
topology and transfer function for several common active filters will be presented
before determining the component values for each circuit. We will develop
implementation procedures for each of the filter selectivities discussed in previous
chapters as well as discuss other options for implementation and some of the
important implementation issues.

4.1 IMPLEMENTATION PROCEDURES FOR ANALOG FILTERS

There are many choices when it comes to implementing our continuous-time
analog filters. For example, we could describe our single-input and single-output
system by means of state variables and use a state-space approach to the problem.
This method has the advantage of being very general and it puts the problem in a
convenient mathematical form that allows manipulation in terms of matrix
algebra. However, the development of this theory is beyond the scope of this text,
but several references in Appendix A provide insight to this method.

When considering the method of implementation, two key factors of
frequency range and the power handling capability of the filter also come into

86 Practical Analog and Digital Filter Design

question. Generally speaking, high power and high frequency dictates that passive
filters be used. Active filters (with op-amps) have a maximum frequency range
and power range where they can be used successfully. (Section 4.7 discusses the
frequency issue in more detail.) Passive filters are also a bit more of a challenge to
design because they do not exhibit the near ideal qualities of input and output
impedances that op-amps have.

Another choice for filter implementation is the transconductance-C (Gm-C)
filter that extends the effective frequency range beyond that of the typical active
filter. Finally, switched-capacitor (SC) filters, like the Gm-C filters, use MOSFET
technology and switching signals to implement analog filters. In that way the SC
filter uses technology that bridges the gap between continuous-time and discrete-
time systems.

However, it is not possible to treat the complete field of analog filter design in
one chapter. Instead, we will concentrate on a more traditional approach to
implementing our transfer functions using a single form of active filter. The
Sallen-Key filter, which will be discussed in more detail in the following sections,
has the advantage of implementing a second-order factor with a single op-amp
stage. There are many other topologies (circuit configurations) that could be
chosen, but the Sallen-Key is a tried and true configuration. It is important to see
one method of implementing our continuous-time transfer function before
beginning the discussion of discrete-time systems.

Each of the active filters discussed will be composed of several stages of
electronic circuitry consisting of a single operational amplifier (op-amp) and a
number of electronic components called resistors (Rs) and capacitors (Cs). The
fact that active filters can implement complex poles without the use of inductors
(Ls) is a key point in their favor. Inductors have the disadvantages of being large,
heavy, costly, and generators of spurious magnetic fields. Therefore, being able to
implement an active filter with components that can be miniaturized is a big
advantage.

Each of these stages of electronic filtering will have a transfer function that
characterizes the relationship of the output voltage to the input voltage, as
indicated in (4.1). More specifically, each quadratic factor of the transfer function
will have the form as shown in (4.2), where each A and B in the transfer function
will be a function of the R and C used in the circuit. (The subscript c is used to
indicate that these transfer functions are describing the circuit response.)

)()()(sVsVsH ioc = (4.1)

 21
2

21
2

)(
BsBsB
AsAsA

sH
o

o
c

+⋅+⋅

+⋅+⋅
=

 (4.2)

 Analog Filter Implementation Using Active Filters 87

We also have the approximation function that we derived to meet a specific
set of frequency and attenuation characteristics. The general form of each
quadratic factor in the approximation function is shown in (4.3), where the
subscript a is used to designate this quadratic factor as an approximation function.
The as and bs used as coefficients have already been determined and are
numerical constants.

 21
2

21
2

)(
bsbsb
asasa

sH
o

o
a

+⋅+⋅

+⋅+⋅
=

 (4.3)

The implementation process then becomes a matter of equating the two
transfer function factors as shown below. Each A and B of the circuit transfer
function are equated to the respective a and b of the approximation function and
results in several equations which must be solved for appropriate R and C values.

)()(sHsH ac = (4.4)

We will see this common procedure used throughout the next four sections as
we determine the component values needed to implement each of the active filters.

4.2 LOWPASS ACTIVE FILTERS USING OP-AMPS

There are a number of active filter topologies (circuit configurations) that could be
used to implement a lowpass filter. We will limit ourselves to the popular Sallen-
Key filter (shown in Figure 4.1) with a transfer function as described in (4.5). As
indicated by the transfer function, this active filter stage can implement one
second-order factor of a lowpass filter function. This form is very convenient
since it naturally implements the quadratic factor that we have been using for the
description of the approximation function. Of course, several of these circuit
stages in cascade can be used to implement higher-order functions, and with the
addition of a single first-order stage, odd-order filters can be implemented as well.

Figure 4.1 Sallen-Key lowpass active filter stage.

88 Practical Analog and Digital Filter Design

 [] 2121221211
2

2121
, /1/)1(/1/1

/
)(

CCRRsCRKCRCRs
CCRRK

sH Lc
+⋅−+++

=
 (4.5)

where

)/(1 AB RRK += (4.6)

In comparison to the transfer function of (4.5), (4.7) shows the general form
of an all-pole lowpass approximation function such as the Butterworth and
Chebyshev functions. (Inverse Chebyshev and elliptic filter approximations will
use a different active filter to implement them since they require zeros in the
complex plane.) The numerator value a2 in (4.7) will always be equal to b2, and G
will have a value of unity except for the even-order Chebyshev case.

 21
2

2
,)(

bsbs
aG

sH La
+⋅+

⋅
=

 (4.7)

If we equate (4.5) and (4.7) as indicated in the previous section, we would
generate one equation for b1 and one equation for b2 (or a2). However, we have
five unknowns (R1, R2, C1, C2, and K) in our circuit. Since there are more
unknowns than equations, we cannot uniquely determine the values of the
components required for the active filter. This allows us to select values for three
of the components. For example, we could select the values of R1, R2, and C2 if
we wanted or the values of C1, C2, and K. Another method that we will use is to
let R1 = R2 and C1 = C2, which effectively eliminates two of the unknowns. In
addition, we will pick a common value for the capacitors since they have far fewer
available values than resistors. This method of picking the R and C values has the
advantage of reducing the number of different component values needed to
implement the active filter. The disadvantage of this method is that the value of K,
which represents the gain for the active filter, will not be unity. However, we will
find that this problem can be easily solved.

 If we select common values for the primary resistors and capacitors, the
transfer function for the active filter then becomes

[] 222

22

,
/1/)3(

/1)(
CRsRCKs

CRKsH Lc
+⋅−+

⋅= (4.8)

By considering the denominators of (4.7) and (4.8), we can determine the two
relationships as shown below:

22

2 1 CRb = (4.9)

 Analog Filter Implementation Using Active Filters 89

 RCKb)3(1 −= (4.10)

Since we have already picked the value of C, we can solve for the resistor
values needed to implement the filter. The results are

2

2/1 CbR = (4.11)

 ()21 /3 bbK −= (4.12)

and then using (4.6)

 ()21 /2/ bbRR AB −= (4.13)

Usually, RA will be picked as some convenient value and RB will then be
calculated.

The only adjustment remaining is to equate the numerator terms of the two
transfer functions. Notice that in this case, there exists a gain of K at ω = 0, while
the approximation function has a gain of G. The value of G will always be less
than or equal to one, while the value K will always be greater than or equal to one.
Thus, it is always necessary to reduce the gain of the active filter to match the gain
of the approximation function. The amount of this gain adjustment factor is

 tottot / GKGA = (4.14)

where Ktot and Gtot represent the products of all the Ks and Gs in the total circuit
and approximation functions, respectively. This gain adjustment factor can be
implemented by a simple voltage divider at the output of the active filter stage.
There are two conditions placed on this voltage divider. The inverse of the voltage
divider ratio must match the gain adjustment factor, and the equivalent resistance
of the voltage divider as seen by the output load must equal the required filter
output resistance. Therefore, assuming an output resistance Rout, and a voltage
divider network made up of Rx and Ry,

)/(out yxyx RRRRR +⋅=

 (4.15)

 yyx RRRGA /)(+=
 (4.16)

90 Practical Analog and Digital Filter Design

which means that

 outRGARx ⋅= (4.17)

)1/(out −⋅= GARGARy (4.18)

The circuit of Figure 4.2 shows one stage of the new configuration with the
voltage divider output. If the input signal level is very high, we might choose to
use the voltage divider on the first stage of the filter in order to reduce distortion
in the filter.

Figure 4.2 Active filter with voltage divider output.

Before we consider how to implement an odd-order approximation function,

we need to consider whether the gain adjustment technique is appropriate for all
applications. In many cases, amplification is a required part of the filtering system,
and therefore the differences in gain can be factored into the overall gain
requirement. For example, if the overall system gain required is 60 dB, and the
filter is producing a gain of 20 dB in the passband, a more efficient solution would
be to design the remaining amplifiers to provide 40 dB of gain. This design would
be more power efficient, use fewer components, and have better dynamic range.
However, the preceding technique can be used if an exact gain is required from
the filter.

If an odd-order approximation factor is to be implemented, an odd-order stage
as shown in Figure 4.3 can be used as the first stage of the active filter. This
simple RC filter is followed by a buffer amp so that the output impedance of
the RC combination will not affect the input to the next active filter stage.
However, if an op-amp is going to be required to implement this first-order factor,
we might consider adding a few more components and implementing a second-
order stage instead. In many cases, additional attenuation in the stopband would
be welcome, and the additional cost is slight.

 Analog Filter Implementation Using Active Filters 91

Figure 4.3 First-order lowpass filter with buffer amp.

The transfer function for the first-order stage is given in (4.19). This transfer
function must match a first-order approximation function as given in (4.20):

RCs

RCsH c /1
/1)(
+

= (4.19)

 2

2)(
bs
aG

sH a +
⋅

=
 (4.20)

Again, the values of a2 and b2 will be identical and G will have a value of 1.
Then using the value of C that has already been picked,

 CbR 2/1= (4.21)

Example 4.1 illustrates how to use the information presented in this section to
design an active lowpass filter.

Example 4.1 Butterworth Lowpass Active Filter Design

Problem: Determine the resistor and capacitor values to implement a
Butterworth lowpass active filter to meet the following specifications:

 apass = −1 dB, astop = −50 dB, fpass = 1000 Hz, and fstop = 4000 Hz

Solution: First, we find that a fifth-order filter is required. The resulting
unnormalized approximation function can then be determined to be

)10728.51637,11()10728.510.445,4()2.192,7(

)10728.51(2.192,7)(6262

26

⋅+⋅+⋅⋅+⋅+⋅+
⋅⋅

=
sssss

sHa

The three factors in the denominator can now be matched to three active filter
stages. By picking C = 0.01 µF and RA = 10 kΩ, the remaining values for each
stage can be calculated from (4.11)–(4.13) and (4.21). The first-order stage does
not require an RB value.

92 Practical Analog and Digital Filter Design

m Rm Km RBm
0 13.90 kΩ — —
1 13.90 kΩ 2.3820 13.82 kΩ
2 13.90 kΩ 1.3820 3.820 kΩ

In order to achieve a gain of exactly 1 at ω = 0, we can use a voltage divider

at the output. First, we determine Ktot

2919.3tot ==∏

m
mKK

This value along with the fact that Gtot has a value of 1 allows us to determine
that GA = 3.2919. The following resistor divider values can then be determined
assuming a required output impedance of 10 kΩ. (The gain adjustment could be
factored into the overall gain of the system instead of using the voltage divider.)

 Ω=Ω= k 36.14 ,k 92.32 yx RR

The resulting active filter is shown in Figure 4.4. We will generate the C code
for the determination of these component values in a later section of this chapter.

Figure 4.4 Butterworth lowpass active filter for Example 4.1.

4.3 HIGHPASS ACTIVE FILTERS USING OP-AMPS

We will also use a Sallen-Key circuit configuration for implementing a highpass
filter. The circuit for implementing a second-order factor is shown in Figure 4.5,
with the transfer function for the stage shown in (4.22). We can see that this
highpass configuration is the same as the lowpass case except that the primary Rs
and Cs have changed positions, although RA and RB remain in their original
positions.

 Analog Filter Implementation Using Active Filters 93

Figure 4.5 Sallen-Key highpass active filter stage.

 [] 2121111222
2

2

,
/1/)1(/1/1

)(
CCRRsCRKCRCRs

sKsH Hc
+⋅−+++

⋅
=

 (4.22)

where again

)/(1 AB RRK += (4.23)

We can use the same procedure in selecting the component values as we used
in the lowpass case by letting R1 = R2 and C1 = C2. The result is shown in (4.24),
where we see that the denominator is identical to the lowpass case in (4.8):

 [] 222

2

,
/1/)3(

)(
CRsRCKs

sKsH Hc
+⋅−+

⋅
=

 (4.24)

This equation can then be matched to the quadratic factors from the
approximation functions that have the form shown in (4.25)

 21
2

2

,)(
bsbs

sGsH Ha
+⋅+

⋅
=

 (4.25)

When the equation for the approximation function is compared to the
equation for the active filter stage, we see that the relationships between terms are
identical to those of the lowpass case. Therefore, if we pick the same value of
capacitor, the resistor values will be identical to those of the lowpass case, as
shown below:

2

2/1 CbR = (4.26)

94 Practical Analog and Digital Filter Design

 ()21 /2/ bbRR AB −= (4.27)

The adjustment of gain for the highpass case is handled in a similar manner to
the lowpass case. As (4.24) indicates, the K value of each stage can be determined
by allowing the frequency to approach infinity, as opposed to zero in the lowpass
case. Ktot can then be easily determined, and with the approximation function
gain, the gain adjustment factor GA can be determined as shown previously in
(4.14). A resistive voltage divider is used at the output of the last stage of the
active filter. If necessary, a buffer amplifier can be used after this voltage divider
if the impedance of the network being driven by the filter is too small.

If an odd-order highpass approximation factor is to be implemented, an active
filter stage as shown in Figure 4.6 can be used as the first stage of the active filter.
The only difference between this stage and the lowpass first-order stage is the
interchange of R and C values.

Figure 4.6 First-order highpass filter with buffer amp.

The transfer function for this stage is given in (4.28), while the approximation
function for a first-order highpass factor is shown in (4.29):

 RCs
ssH c /1

)(
+

=
 (4.28)

 2
)(

bs
sGsH a +
⋅

=
 (4.29)

As in the second-order case, the resistor value will be the same as the lowpass
value assuming that the same value of capacitor is picked.

 CbR 2/1= (4.30)

Example 4.2 Chebyshev Highpass Active Filter Design

Problem: Determine the resistor and capacitor values to implement a
Chebyshev highpass active filter to meet the following specifications:

 Analog Filter Implementation Using Active Filters 95

 apass = −0.5 dB, astop = −30 dB, fpass = 1000 Hz, and fstop = 400 Hz

Solution: A fourth-order transfer function as shown below is required. Since
this is an even-order Chebyshev, there is an adjustment factor of 0.94406 included
in the numerator.

)1077.110926,14()10121.379.071,2(

94406.)(
6262

4

⋅+⋅+⋅⋅+⋅+

⋅
=

ssss
ssH a

The two quadratic terms can be matched to two active filter stages by again
picking C = 0.01 µF and RA = 10 kΩ. The other circuit values can be calculated as
shown below:

m Rm Km RBm
0 16.41 kΩ 2.6599 16.6 kΩ
1 9.502 kΩ 1.5818 5.82 kΩ

In order to achieve a gain of exactly 1 at ω = ∞, we can use a voltage divider

at the output. First, we determine the gain adjustment factor for the filter that in
this case includes not only the Km factors for each quadratic, but also the
approximation function’s gain of 0.94406:

4567.494406.0/)(== ∏

m
mKGA

Figure 4.7 Chebyshev highpass active filter for Example 4.2.

Assuming an equivalent resistance of 10 kΩ, the resistor divider values can be
determined with the resulting filter shown in Figure 4.7. (The gain adjustment
could be factored into the overall gain of the system instead of using the voltage
divider.)

 R Rx y= =44 57 12 89. . k , kΩ Ω

96 Practical Analog and Digital Filter Design

4.4 BANDPASS ACTIVE FILTERS USING OP-AMPS

Figure 4.8 shows a Sallen-Key active filter stage that implements a second-order
bandpass transfer function. The transfer function for this bandpass stage is given
in (4.31).

Figure 4.8 Sallen-Key bandpass active filter stage.

 21321

21

12231311

2

11
,

)1(111
/

)(

CCRRR
RR

s
CR
K

CRCRCR
s

CRsK
sH Pc

+
+⋅⎥

⎦

⎤
⎢
⎣

⎡ −
++++

⋅
=

 (4.31)

where again

)/(1 AB RRK += (4.32)

We can simplify this function by letting R1 = R2 = R3 and C1 = C2. This
simplified function is given in (4.33):

 [] 222,
/2/)4(

/)(
CRsRCKs

RCsKsH Lc
+⋅−+

⋅
=

 (4.33)

This bandpass transfer function can now be matched to the general form of
the approximation factor, as shown in (4.34):

 21
2

1
,)(

bsbs
sa

sH Ha
+⋅+

⋅
=

 (4.34)

After matching equivalent denominator terms, the following equations emerge,

 Analog Filter Implementation Using Active Filters 97

 RCKb)4(1 −= (4.35)

22

2 2 CRb = (4.36)

which leads to

2

22 CbR = (4.37)

 2
2
124 bbK −= (4.38)

 2
2
123 bbRR AB −= (4.39)

After these calculations are made, the overall gain of the active filter must be

determined. This is a more difficult task than for the lowpass and highpass cases
since the gain adjustment must be determined at the center frequency of the
passband ωo. If we refer again to (4.33) and (4.34), we see that they will have
identical denominator coefficients since we have just derived the equations to
guarantee that. However, the numerators differ by the constants that are present.
The gain adjustment factor for each stage is then the ratio of the two numerator
constants, as shown in (4.40). The total gain adjustment is then the product of
these stage gain adjustments:

∏=

m
mmmm CRaKGA)/(1

 (4.40)

Once the total gain adjustment has been determined, a voltage divider stage at
the output of the active filter can be used for compensation.

Example 4.3 Butterworth Bandpass Active Filter Design

Problem: Determine the resistor and capacitor values to implement a
Butterworth bandpass active filter to meet the following specifications:

apass = −1.5 dB, astop = −28 dB, fpass1 = 1,000 Hz,
fpass2 = 2,000 Hz, fstop1 = 500 Hz, and fstop2 = 4,000 Hz

98 Practical Analog and Digital Filter Design

Solution: A third-order equivalent lowpass filter is needed, which indicates
that a sixth-order bandpass function will result as shown below:

)103.160880,4()1088.38402,2()1096.78282,7(
)7282(

)(

626262

3

⋅+⋅+⋅⋅+⋅+⋅⋅+⋅+
⋅

=

ssssss
s

sHa

By picking C = 0.01 µF and RA = 10 kΩ, the remaining values can be
determined by matching the three quadratic terms:

m Rm Km RBm GAm
0 15.92 kΩ 2.8410 18.41 kΩ 2.4512
1 22.68 kΩ 3.4550 24.55 kΩ 2.0919
2 11.17 kΩ 3.4550 24.55 kΩ 4.2481

The combined gain produced by the active filter stages at ω = ωo is

determined to be 21.783, which can be compensated by a voltage divider at the
output of the filter. If the output resistance is to be 10 kΩ, the voltage divider
resistor values are given below. (Note that in this case, if a voltage divider were
used, a gain of over 21 (over 40 dB) would be sacrificed. It would be better to
include this in the system gain.)

 Ω=Ω= k 10.5 ,k 218 yx RR

The resulting bandpass filter is shown in Figure 4.9.

Figure 4.9 Butterworth bandpass active filter for Example 4.3.

4.5 BANDSTOP ACTIVE FILTERS USING OP-AMPS

Figure 4.10 shows a twin-tee bandstop active filter stage that can implement a
variety of second-order functions. The admittance labeled Y can represent a
conductance G, or a susceptance sC, or can have zero value (not be present at all).

 Analog Filter Implementation Using Active Filters 99

Figure 4.10 Twin-tee bandstop active filter stage.

The general form of the transfer function for this filter is given in (4.41):

22

2

22
2

, 21224

1

)(

CR
RYs

RC
RYKs

CR
sK

sH Sc +
+⋅⎥⎦

⎤
⎢⎣
⎡ +−

+

⎥⎦

⎤
⎢⎣

⎡ +⋅
=

 (4.41)

where again

)/(1 AB RRK += (4.42)

Equation (4.43) rewrites this equation in terms of the pole frequency ωp and the
zero frequency ωz:

22

22

,)/(
)(

)(
pp

z
Sc sQs

sK
sH

ωω
ω

+⋅+

+⋅
=

 (4.43)

The transfer function of (4.43) must be matched to the general form of a
bandstop approximation function, as shown in (4.44):

 21
2

2
2

,
)(

)(
bsbs

asG
sH Sa

+⋅+

+⋅
=

 (4.44)

Depending on the value of Y selected, ωz may be greater than, equal to, or less
than ωp. This will affect the matching of the respective terms in (4.43) and (4.44).
The responses for the transfer function will also change, as indicated in Figure
4.11. Let’s look at how the transfer function changes for the three cases.

100 Practical Analog and Digital Filter Design

Figure 4.11 Bandstop filter responses.

First, we consider the case where no Y element is present (Y = 0), in which
case the transfer function can be simplified as shown in (4.45). Note that this
function has the condition that ωz = ωp (a2 = b2), which will produce a bandstop
response as shown in Figure 4.11(a). Notice that the response has the condition
that the upper and lower passbands have equal gain.

22

2

22
2

0, 124

1

)(

CR
s

RC
Ks

CR
sK

sH Sc

+⋅⎥⎦
⎤

⎢⎣
⎡ −

+

⎥⎦

⎤
⎢⎣

⎡ +⋅
=

 (4.45)

The selection of components to implement this type of response is relatively

easy as we match the terms of (4.44) and (4.45). By first picking a value of C, the
results are

2

21 CaR = (4.46)

 2
2
1 42 bbK −= (4.47)

 2
2
1 41 bbRR AB −= (4.48)

 Analog Filter Implementation Using Active Filters 101

Next, in the case where Y = Go = 1/Ro, the resulting transfer function is given
in (4.49). Note that this function has ωz < ωp (a2 < b2), which will produce a
bandstop response as shown in Figure 4.11(b). This is sometimes referred to as a
“highpass notch” filter because the gain of the upper passband is larger than that
of the lower passband.

22

2

22
2

1, /)2()/224(

1

)(

CR
RRR

s
RC

RRK
s

CR
sK

sH
ooo

Sc +
+⋅⎥

⎦

⎤
⎢
⎣

⎡ +−
+

⎥⎦
⎤

⎢⎣
⎡ +⋅

=

 (4.49)

The selection of components to implement this type of response is again
determined by matching terms and by first picking a value of C; the results are

 2
21 CaR = (4.50)

 ()[]1/2 22 −= abRRo (4.51)

)2()(2 22122 aababK −−+= (4.52)

)2()(1 22122 aababRR AB −−+= (4.53)

Finally, in the case where Y = sCo, the resulting transfer function is given in

(4.54). Note that this function has ωz > ωp (a2 > b2), which will produce a
bandstop response as shown in Figure 4.11(c). This is sometimes referred to as a
“lowpass notch” filter.

)2()2(
2)24(

1
)2(

)(

22
2

22
2

2,

oo

o

o
Sc

CCCR
Cs

CCRC
CCK

s

CR
s

CC
CK

sH

+⋅
+⋅⎥

⎦

⎤
⎢
⎣

⎡
+⋅
+⋅−

+

⎥
⎦

⎤
⎢
⎣

⎡
+⋅

+
⋅

= (4.54)

The selection of components to implement this type of response is again
determined by matching terms and by first picking a value of C; the results are

102 Practical Analog and Digital Filter Design

2

21 CaR = (4.55)

 [] 2 1)/(22 −⋅= baCCo (4.56)

)2()(2 22122 babbaK −−+= (4.57)

)2()(1 22122 babbaRR AB −−+= (4.58)

After these calculations are made, the overall gain of the active filter can be
determined by evaluating the transfer function at ω = 0 or ω = ∞. If the gain of the
circuit is to be determined at ω = 0, then the value of K for that stage is used
except for the highpass notch stage. In that case, an additional multiplication
factor of Ro / (Ro + 2R) should be included as seen from (4.49). If the gain is to
be determined at an infinite frequency, then the lowpass notch stage will have a
gain that must be increased by a value of C / (C + 2Co), as indicated by (4.54).
These values will be the same and can be included in the circuit using a voltage
divider.

Example 4.4 Chebyshev Bandstop Active Filter Design

Problem: Determine the resistor and capacitor values to implement a
Chebyshev bandstop active filter to meet the following specifications:

apass = −1 dB, astop = −40 dB, fpass1 = 666.67 Hz,
fpass2 = 1,500 Hz, fstop1 = 909.09 Hz, and fstop2 = 1,100 Hz

Solution: A third-order lowpass equivalent function is required, which
indicates that a sixth-order unnormalized bandstop approximation function will be
necessary, as shown below:

)1021.87792,1)(1087.170.811)(1048.39600,10(

)1048.39()(626262

362

⋅+⋅+⋅+⋅+⋅+⋅+
⋅+

=
ssssss

ssHa

By picking C = 0.01 µF and RA = 10 kΩ, the remaining values can be
calculated by matching terms. Note that there are three denominator quadratics
with three different values of constant terms. One of these values is larger than the
numerator constant term, one is equal to the numerator constant term, and one is
smaller than the numerator constant term. This indicates that one of the stages will

 Analog Filter Implementation Using Active Filters 103

have an Ro value, one will have no Y element, and one will have a Co value,
respectively.

m Rm Km RBm Ym
0 15.92 kΩ 1.1569 1.569 kΩ —
1 15.92 kΩ 2.4619 14.62 kΩ Co = 6.045 nF
2 15.92 kΩ 2.4619 14.62 kΩ Ro = 26.33 kΩ

The combined gain produced by the active filter stages at ω = 0 or at infinity

is 3.17422, which includes the product of the three K values and either the
capacitor or resistor ratio of 0.45269. The voltage divider resistor values can be
calculated accordingly. The resulting bandstop filter is shown in Figure 4.12.

 R Rx y= =3174. k , 14.60 kΩ Ω

Figure 4.12 Chebyshev bandstop active filter for Example 4.4.

4.6 IMPLEMENTING COMPLEX ZEROS WITH ACTIVE FILTERS

Up to this point in the chapter, we have not discussed the implementation of
rational functions such as the inverse Chebyshev and elliptic approximations. In
previous chapters, we discovered that the primary difference between all-pole and
rational approximation functions was that the rational functions required complex
zeros on the jω axis in the s-plane. The general form of a rational function
quadratic factor is shown below. If the a1 coefficient is zero (as it is for zeros on
the jω axis), the quadratic factor is identical to the form of a bandstop function
derived for the all-pole response in the last section.

21

2
21

2

,
)(

)(
bsbs

asasG
sH Sa

+⋅+

+⋅+⋅
= (4.59)

104 Practical Analog and Digital Filter Design

Therefore, we have already developed an active filter form to implement the
inverse Chebyshev and elliptic approximations. It is the twin-tee filter presented in
the previous section. We can use that form for any of the selectivities (lowpass,
highpass, bandpass, or bandstop) when designing inverse Chebyshev or elliptic
filters.

However, there are a few special concerns that must be considered when
implementing filter approximation functions with complex zeros. If a lowpass or
highpass approximation function has an odd-order, the first-order factor should
still be implemented by the appropriate first-order stage discussed previously. In
addition, for the case of a bandpass approximation, if the function was derived
from an odd-order lowpass function, then the quadratic factor associated with the
first-order factor should be implemented by a Sallen-Key bandpass active filter
section. The other quadratic factors of the bandpass function and the quadratic
factors of the lowpass and highpass functions are then implemented by the twin-
tee notch filter. Of course, all stages of a bandstop filter of any approximation use
the twin-tee configuration. Two examples will now be used to demonstrate the
procedure of implementing inverse Chebyshev and elliptic approximations.

Example 4.5 Inverse Chebyshev Lowpass Active Filter Design

Problem: Determine the resistor and capacitor values to implement an
inverse Chebyshev lowpass active filter to meet the following specifications:

 apass = −1 dB, astop = −60 dB , fpass = 100 Hz, and fstop = 300 Hz

Solution: In this case, a fifth-order filter will be used. We can determine the
required approximation function to be

)1064.6987.305,1()1045.62934.449()77.865(

)10284.10()109282.3()77.865(10886.10)(3232

62623

⋅+⋅+⋅⋅+⋅+⋅+
⋅+⋅⋅+⋅⋅

=
−

sssss
sssHa

The two quadratic terms must be matched to two twin-tee active filter stages
while the first-order factor can be implemented by a simple RC stage. By again
picking C = 0.01 µF and RA = 10 kΩ, the remaining values can be calculated. Note
that in this lowpass case, both twin-tee sections employ a capacitor as the
additional admittance element.

m Rm Km RBm Ym
0 115.5 kΩ — — —
1 50.46 kΩ 3.9129 29.13 kΩ Co = 26.20 nF
2 31.18 kΩ 5.8634 48.63 kΩ Co = 68.60 nF

We determine the gain adjustment factor by finding Ktot, as shown below.

 Analog Filter Implementation Using Active Filters 105

K Km

m
tot = =∏ 22 943.

If the desired output resistance is 10 kΩ, the following values result for the
voltage divider with the final filter shown in Figure 4.13.

 R Rx y= =229 4 10 46. . k , kΩ Ω

Figure 4.13 Inverse Chebyshev active lowpass filter for Example 4.5.

Example 4.6 Elliptic Bandpass Active Filter Design

Problem: Determine the resistor and capacitor values to implement an elliptic
bandpass active filter to meet the following specifications:

apass = −1 dB, astop = −60 dB, fpass1 = 250 Hz,
fpass2 = 400 Hz, fstop1 = 100 Hz, and fstop2 = 1,000 Hz

Solution: The order of the equivalent lowpass filter is 3, which indicates that

a sixth-order bandpass approximation function will be necessary. The transfer
function is shown below:

)10227.66.281)(10503.25.178)(10948.38.469(
)103.311()1007.50(8.4691082.20)(626262

32623

⋅++⋅++⋅+⋅+
⋅+⋅⋅+⋅⋅⋅

=
−

ssssss
sssHa

These three quadratic terms must be matched to three active filter stages. The
stage related to the first-order factor in the normalized LP filter is implemented by
the standard Sallen-Key bandpass filter. The other two stages are implemented
using the twin-tee filters. By picking C = 0.01 µF and RA = 10 kΩ, the remaining
values can be calculated as shown below. One of the twin-tee stages will have a
Ro = 18.86 kΩ and the other will have Co = 95.04 nF.

106 Practical Analog and Digital Filter Design

m Rm Km RBm Ym
0 71.18 kΩ 3.6656 26.66 kΩ —
1 14.13 kΩ 11.251 102.5 kΩ Co=95.04 nF
2 179.2 kΩ 11.251 102.5 kΩ Ro=18.86 kΩ

The combined gain produced by the active filter stages at ω = 0 is 4.4406 and

that can be compensated by a voltage divider after the last stage. The voltage
divider resistor values are shown below and are calculated to provide an output
impedance of 10 kΩ. The resulting bandstop filter is shown in Figure 4.14.

 R Rx y= =44 4. k , 12.9 kΩ Ω

Figure 4.14 Elliptic bandpass active filter for Example 4.6.

4.7 ANALOG FILTER IMPLEMENTATION ISSUES

In the previous sections, we determined component values necessary to implement
our analog filter designs in the form of active filters. These active filters make use
of electronic components that can be manufactured only to a finite accuracy. The
components are not perfect when they are first manufactured and can change
value because of aging or exposure to heat, chemicals, or humidity. Therefore, it is
important to select the best type of component for our purpose (active filter
implementation). Although we can buy precision components that resist changes,
the cost of such components can be expensive. It is most cost effective to specify
precision components only for those positions that actually require it. We can
determine which components are in critical positions by performing a sensitivity
analysis.

4.7.1 Component Selection

Each active filter stage is made up of a combination of resistors, capacitors, and
op-amps. There are important issues in the selection of each of these components.

 Analog Filter Implementation Using Active Filters 107

We start with a discussion of the active device in our design and then discuss
capacitors and resistors in turn.

The op-amp is the amplifying device in our design and the response of the
filter is based on the assumption that the op-amp is ideal. We assume that the input
impedance is infinite (actually 1 M–100 MΩ depending on device), the output
impedance is zero (actually 100–1,000 Ω), and that the op-amp can amplify
frequencies up to infinity (actually the bandlimit is usually 1 M–10 MHz). This
later characteristic is specified by the op-amp’s gain-bandwidth product (GBP).
This number provides a reference that can be used to determine the open loop gain
of the op-amp at any frequency (or vice versa). For example, the GBP of a 741 op-
amp is 106, which indicates that this amplifier has an open loop gain of 1,000 at a
frequency of 1,000 Hz. Alternatively, we could use this GBP to predict that an
upper frequency limit of 20,000 Hz was available with an open loop gain of 50.
The important point to remember, however, is that the transfer functions of the
active filters were derived assuming that the gains of the op-amps used were very
large for all frequencies of interest in the design. Therefore, whether or not the
active filter is a lowpass, highpass, bandpass, or bandstop filter, the open loop
gain of the op-amp must be large for all frequencies of interest. These frequencies
of interest include not only the passbands, but also the stopbands. Luckily, there
are many options (other than 741s) when it comes to specifying the active device
to be used.

Capacitors represent the reactive elements in our active filter because they
have a reactance that changes with frequency (unlike resistors). There are many
types of capacitors manufactured today including electrolytic, ceramic, poly, film,
and others. Each capacitor type has a place and is manufactured to serve a specific
purpose in the electronics world. For example, electrolytic capacitors are generally
used in power applications where large values (up to 10,000 uF) are important and
variations in value are not the most important criterion for selection. They are the
farthest from ideal of any of the capacitor types and should not be used in active
filter design. Ceramic capacitors generally have very small values (in the pF
range) and are used most often in applications operating in the megahertz range.
Generally, active filters will not be operating at that frequency because of the
limitation of the op-amp. The most commonly used capacitors for active filters are
referred to as “poly” capacitors. There are a number of types that fall into this
category (polystyrene, polypropylene, polycarbonate, and polyester), where the
different names indicate the dielectric used in their construction. There are trade-
offs with regard to tolerance, cost, and characteristics, but in general you will find
these types effective in active filter design.

In the case of resistors, there are a variety of types, including carbon
composition, carbon film, metal film, wire-wound, and others. Wire-wound
resistors are rarely used except in power applications, and carbon composition
resistors generate excessive amounts of noise. Therefore, in our application, either
metal film or carbon film resistors are usually used. You will find carbon film
devices used for 5% tolerance values (meaning that the value of the resistor could
be ±5% of its nominal value). The metal film device will have a lower temperature

108 Practical Analog and Digital Filter Design

coefficient (meaning that it will display less variation with changes in
temperature) and is generally manufactured to 1% tolerance. Values are typically
available from 10 Ω to 10 MΩ. Because of the nature of the active devices used
(op-amps) it is best to keep the resistor values used in a filter between 1 kΩ and
100 kΩ, if possible, and certainly between 100 Ω and 1 MΩ. Otherwise, the
assumptions about the impedances of the op-amp being ideal are no longer valid
and the response of the filter may not be as expected.

Hopefully, this brief discussion will get you started in the implementation of
your active filter. For further information, consult the references given in the
analog filter design section of Appendix A.

4.7.2 Sensitivity Analysis

After selecting the best components for the active filter, it is important to identify
which of these components has the most effect on the overall performance of the
filter. Since no component is perfect, and they all will change with age,
temperature, and other influences, these effects on the filter response can be
minimized by selecting the most critical components to have the lowest tolerances
to change. We can determine the most critical components in a design by
performing a sensitivity analysis. A sensitivity analysis is the process of finding
out how any or all of the characteristics of a filter are affected by each and every
component that makes up the filter.

For example, the sensitivity of a function F with respect to x is defined in
(4.60). Note that sensitivity not only considers the change in F as a function of x,
but also the nominal values of F and x. Therefore, the sensitivity considers the per
unit change of the function with respect to the per unit change of the parameter.
Using the definition of (4.60), other common sensitivity relationships can be
determined as shown in (4.61)–(4.66). (The value c is considered a constant and G
is another function of x.)

 []
[])ln(

)ln(
x
F

x
F

F
xS F

x ∂
∂

∂
∂

=⋅= (4.60)

 (4.61) 1=cx
xS

 (4.62)
F
x

F
x SS −=/1

 (4.63)
G
x

F
x

FG
x SSS +=

 Analog Filter Implementation Using Active Filters 109

 (4.64)
G
x

F
x

GF
x SSS −=/

 (4.65)
F
x

F
x ScS

c
⋅=

F
x

F
x S

c
S c ⋅=

1
 (4.66)

In each of the preceding sections, a transfer function for an active filter was

given in terms of the resistor and capacitor values used to make up the circuit. In
general, those functions can be specified in terms of the pole and zero frequencies
and quality factors (Qs) as shown in (4.67):

()
() 22

22
)(

ppp

zzz

sQs
sQs

KsH
ωω
ωω

+⋅+

+⋅+
⋅= (4.67)

If we consider the lowpass active filter of Section 4.2, which has a transfer

function as indicated in (4.68), we can easily match terms to identify the pole
frequency and Q in terms of the component values as shown in (4.69) and (4.70):

 [] 2121221211
2

2121
,

/1/)1(/1/1
/

)(
CCRRsCRKCRCRs

CCRRK
sH Lc

+⋅−+++
=

 (4.68)

 2121/1 CCRRp =ω
 (4.69)

 221211

2121

111
/1

CR
K

CRCR

CCRR
Q p −

++
=

 (4.70)

The sensitivity of either one of the parameters listed above to any one of the
resistor or capacitor values can now be determined. For example,

 (4.71)
5.0

1
−=p

RSω

110 Practical Analog and Digital Filter Design

which indicates that for every 1.0% increase in R1 there is a 0.5% decrease in ωp.
Likewise, we find that

 11

225.0
1 CR

CR
QS p

Q
R

p +−=
 (4.72)

which for equal resistor and capacitor values becomes

 (4.73) p
Q
R QS p +−= 5.0

1

Equation (4.73) indicates that the sensitivity of Qp with respect to R1 can be
quite high since Q values can reach 50 to 100. Therefore, the selection of R and C
values for the active filters plays an important part in the overall sensitivity of the
circuit. We do not have space for a full treatment of sensitivity analysis in this
text. However, references in Appendix A provide further details on sensitivity and
on methods of selecting component values that yield low sensitivities. The text by
Daryanani provides a particularly good presentation. In fact, that text presents a
different choice for the component values for a Sallen-Key active filter as listed
below. By making those selections, it can be shown by substitution into (4.70) that
Qp is no longer a function of R at all and therefore would have a sensitivity of zero
with respect to changes in resistance value:

 RRK === 21R ,1

 ppp

p

QRR
Q

C
ωω ⋅⋅⋅

=
⋅

⋅
=

2
1C ,

2
21

A sensitivity analysis provides us with valuable information about the

component values used in the circuit. With that information, we can determine
which components are critical in controlling variation in key filter parameters.
However, it is also very important to perform a worst-case analysis on the circuit.
This analysis of the circuit would use the sensitivities that have already been
determined to set each component to the extreme limit of its tolerance in order to
see the effect on the overall circuit performance. For example, all components
with negative sensitivities would be set to their lower tolerance limit while all
components with positive sensitivities would be set to their upper limits. The
circuit would then be analyzed to see if it still met the specifications. Next, all
component values would be set to the opposite limit and the test would be
repeated. If a circuit passed this test, it should perform up to specifications with

 Analog Filter Implementation Using Active Filters 111

the randomly chosen values used when it is assembled. An example of a worst-
case analysis using PSpice is given in Section 4.8.

Another type of statistical test that is less rigorous than a worst-case test, but
probably more typical of what will happen in real life, is the Monte Carlo
simulation. In this test, component values are selected randomly within their
tolerance range and the circuit is tested to see if it meets the required
specifications. In most software packages, the values can be characterized as
having a Gaussian or uniform distribution. A number of Monte Carlo tests are
usually run to simulate the variation of component values that will be seen in the
normal assembly process.

4.8 USING WFILTER IN ANALOG FILTER IMPLEMENTATION

In order to see how WFilter helps in analog filter implementation, we generate the
component values and PSpice data file for the problem given in Example 4.5.
After we enter the filter specifications and design the filter, we can specify the
common component values and frequency specification in the Circuit
Specification dialog box shown in Figure 4.15. This dialog box is displayed by
selecting Options and then Generate Spice File from the menu bar.

Figure 4.15 Circuit specification dialog box.

We have entered a common capacitor value of 0.1 µF and common resistor
value of 10 kΩ. In addition, we have specified the frequency analysis range to be
from 10 Hz to 1 kHz. After pressing the Show File button, the PSpice text file
shown in Listing 4.1 is displayed. Notice that the first stage is first-order with an
RB value of one ohm (most circuit analysis tools do not accept zero ohms), while
the other two stages describe twin-tee notch filters. The original calculated values
are shown in the listing and should be used in a test analysis of the circuit to
determine if the specifications have been met. If the specifications are not met
with these “ideal” values, either the op-amp model is not adequate or an error has
been encountered in the design steps.

112 Practical Analog and Digital Filter Design

Example 4.5 and PSpice Example
* Specify input source:
Vs 11 0 AC 1 0
* Stage Number 1 (Practical Values)
R11 11 12 1.155E+04 (1.15E+04)
C11 12 0 1.000E-07 (1.00E-07)
Rb1 13 21 1.000E+00 (1.00E+00)
X1 12 13 21 OPAMP
* Stage Number 2
C21 21 22 1.000E-07 (1.00E-07)
C22 22 24 1.000E-07 (1.00E-07)
C23 23 0 2.000E-07 (2.00E-07)
R21 21 23 5.046E+03 (4.99E+03)
R22 23 24 5.046E+03 (4.99E+03)
R23 22 31 2.523E+03 (2.49E+03)
Ra2 25 0 1.000E+04 (1.00E+04)
Rb2 25 31 2.913E+04 (2.94E+04)
Co2 24 0 2.620E-07 (2.70E-07)
X2 24 25 31 OPAMP
* Stage Number 3
C31 31 32 1.000E-07 (1.00E-07)
C32 32 34 1.000E-07 (1.00E-07)
C33 33 0 2.000E-07 (2.00E-07)
R31 31 33 3.118E+03 (3.09E+03)
R32 33 34 3.118E+03 (3.09E+03)
R33 32 41 1.559E+03 (1.54E+03)
Ra3 35 0 1.000E+04 (1.00E+04)
Rb3 35 41 4.863E+04 (4.87E+04)
Co3 34 0 6.860E-07 (6.80E-07)
X3 34 35 41 OPAMP
* Voltage divider section
Rx 41 42 2.294E+05 (2.32E+05)
Ry 42 0 1.046E+04 (1.05E+04)
* Sub-circuit model for op-amp
.SUBCKT OPAMP 1 2 6
Ri 1 2 1.000E+08
E1 3 0 1 2 1.000E+03
Rx 3 4 1.000E+03
Cx 4 0 1.000E-09
E2 5 0 4 0 1.000E+03
Ro 5 6 1.000E+00
.ENDS
* Analysis modes
.AC DEC 100 1.000E+01 1.000E+03
.PROBE
.END

Listing 4.1 Circuit analysis data file for Example 4.5.

The next step in the testing of the active filter is to replace the ideal
components with practical values. For this exercise, we will use 1% resistor and
2% capacitor values. (The selected values are shown in italics and parentheses in
the listing.) A worst-case analysis can then be run on the circuit that involves
adding tolerance information for the component values. (You need access to the
PSpice program to make this run.) During the worst-case analysis, sensitivities for
each component are determined, and as the final step, each component is set to its
worst-case extreme. Figure 4.16 shows both the worst-case and nominal response.

 Analog Filter Implementation Using Active Filters 113

If the two frequency responses were carefully compared, we would see that there
is a +2.5 dB “bump” in the passband, and we lose over 2 dB in the stopband
attenuation. These changes should represent the “worst” that can happen due to
the unfortunate selection of the worst possible combination of components. (A
worst-case analysis was also run with 5% resistor values and 10% capacitor values
and the “bump” increased to 15 dB.) A Monte Carlo analysis can also be run on
the circuit to indicate the more typical extremes that might be encountered.

Depending on the nature of the application, we can live with the resulting
variations, select even more precise (expensive) components, or redesign the filter
to more stringent specifications than actually desired. This redesigned filter would
then be able to vary to some degree while still satisfying the real specifications.
However, this filter may also require a higher order, which will add cost to the
project.

Figure 4.16 Frequency responses for Example 4.5.

4.9 CONCLUSION

We have reached the end of the first part of this text. We were able to design a
variety of analog filters, view their frequency responses, and implement them in
an active filter form. Of course, we have left a good deal of material uncovered.
There are other filter types that could have been discussed. There are other
features that could have been included in the frequency response calculation and
display. Moreover, there are other implementation techniques available for analog
filters. However, it is now time to move into the realm of digital filters. We will

114 Practical Analog and Digital Filter Design

see that our work in the area of analog filters will prove valuable, since one form
of a digital filter uses much of what we have learned so far. For those who are
interested in seeing the code used to generate the PSpice circuit file, please turn to
Appendix F.

115

Chapter 5

Introduction to Discrete-Time Systems

Although most naturally occurring signals are of the analog variety (continuous-
amplitude and continuous-time variation), we are finding that conversion of these
signals to a digital form (discrete-time and discrete-amplitude variations) provides
many advantages. For example, digital signals can be stored on computer floppy
or hard disks. They can be compressed to save space, converted to other formats,
or transmitted in combination with other signals. Digital forms of signals are truly
becoming the standard in everyday use as compact discs (CDs) for audio and
multimedia applications can attest. Therefore, the remainder of this text is devoted
to the application of filtering techniques to digital signals.

The material in this chapter should provide a review of the basic principles of
discrete-time systems that are necessary to understand the material presented in
the remainder of the text. In the first section of this chapter we will discuss the
process of converting analog signals into a digital form. Next, we will develop
methods of dealing with discrete-time signals in both the time domain and
frequency domain. We will also learn how to find the frequency response of a
discrete-time system as well as how to play digitized waveforms on a computer
equipped with a sound card.

5.1 ANALOG-TO-DIGITAL CONVERSION

As indicated in the introduction, most of the signals that we deal with every day
are known as analog signals. This type of signal has a continuous variation in both
time and amplitude, as shown in Figure 5.1(a). In order to convert this analog
signal to a digital signal with discrete-time and discrete-amplitude, as shown in
Figure 5.1(b), several steps must be performed.

First, the frequency spectrum of the analog signal must be strictly band-
limited. Second, the signal must be sampled at the proper sampling rate. Third, the
sampled value must be quantized to an acceptable level of accuracy. When it is
time to convert the digital signal back to analog form, there are a number of
methods that can be used, but one simple method requires only two steps. The first

116 Practical Analog and Digital Filter Design

step is to output the digital value of the signal and hold it for the duration of the
sample period. The second step is to pass that signal through a lowpass filter. In
order to understand the reasons why these steps are necessary for analog and
digital conversion, we need to study the frequency spectrum of a sampled signal
and the requirements placed on the sampling rate.

Figure 5.1 Comparison of analog and digital signals.

5.1.1 Frequency Spectrum and Sampling Rate

When an analog signal x(t) is sampled, as shown in Figure 5.1, the samples are
usually taken at equal intervals of time. This sampling period Ts is the inverse of
the sampling frequency fs. The resulting digitized waveform xs(nT) can be
specified with an argument indicating the sampling period Ts, as shown in (5.1):

snTts txnTx

=
=)()((5.1)

For example, if we had an analog signal x(t) as specified in (5.2), the sampled
version of the signal xs(nTs) as shown in (5.3) would result:

 (5.2))200cos(50)(100 tetx t ⋅⋅⋅= ⋅−

 (5.3))200cos(50)(100
s

nT nTenTx s ⋅⋅⋅= ⋅−

If we assume that the analog signal is sampled at a frequency of 1,000
samples per second, then we can calculate the values of xs(nTs) with Ts = 0.001
second. The values that result can be stored as a sequence of numbers, as shown

 Introduction to Discrete-Time Systems 117

below. This is an important point: once an analog signal has been digitized, it is
nothing more than a sequence of numbers that can be stored, manipulated,
transmitted, or processed in any way we see fit.

 … ,1 ,0 },... 16.4, 23.4, 30.6, 37.7, 44.3, 50.0,{)(== nnTx s (5.4)

Since the sampling period seldom changes, discrete-time equations usually
drop the sampling period Ts from the expressions to produce an expression such as
(5.5). The sampling period will not be needed again until the digitized waveform
is converted back to analog form.

 (5.5))100cos(25)(10 nenx n ⋅⋅⋅= ⋅−

Although it doesn’t appear that much has changed in the representation of the
signal in the time domain, a great deal has changed in the frequency domain. The
frequency spectrum of a signal is shown in Figure 5.2(a) before sampling. If this
signal were sampled at a frequency of fs, the spectrum of the sampled signal would
be as shown in Figure 5.2(b). The original analog spectrum is replicated
throughout the spectrum at intervals of fs (although only one instance of that is
shown). Because of this replication, it is feasible that there will be corruption of
the frequency components of the original signal by components of the replicated
signals. This corruption is referred to as aliasing, and the offending frequencies
are alias frequencies. (Further details of aliasing and the upcoming Nyquist
criteria can be found in most of the digital filter design references in Appendix A.)

Figure 5.2 Spectrum of signal (a) before and (b) after sampling.

118 Practical Analog and Digital Filter Design

When digitizing a signal, it is very important to capture most, if not all, of the
information present in the original analog signal without generating alias
frequencies. For this reason, a good deal of study has gone into the conditions
necessary to faithfully convert an analog signal into a digital form. We can see by
closely observing Figure 5.2(b) that if we are to eliminate the effect of aliasing,
the sampling frequency must be at least twice as high as the highest frequency in
the original signal. This relationship, as shown in (5.6), is known as the Nyquist
criteria, and is a well-known requirement in sampling theory:

 hs ff ⋅> 2 (5.6)

In order to guarantee that this requirement is met at all times, it is normal
procedure to band-limit the input signal to one-half of the sampling frequency
once the sampling frequency has been set. This is a prudent measure, since
frequencies beyond those which are normally expected can occasionally occur in
all systems. The band-limiting process can be implemented by sending the analog
signal through an analog lowpass filter prior to sampling. (What an excellent use
of our analog filter theory!)

5.1.2 Quantization of Samples

Once the analog signal has been sampled, it is a discrete-time signal since values
of the signal exist only at particular moments of time, but the amplitude of the
signal is still continuous. Then, the next step in the analog-to-digital conversion
(ADC) is to quantize the continuous-amplitude signal to one of many discrete
values of amplitude. The number of possible values allowed for the amplitude is
determined by the size of the variable chosen to store the values. For example, if a
single byte of memory (8 bits) is chosen to store the information, then the
amplitude can take on one of 28 or 256 different values. If the original signal had a
range of amplitudes from +1 volt to −1 volt, then the difference between adjacent
amplitudes would be approximately 7.8 ⋅ 10−3 volts. On the other hand, if two
bytes of memory (16 bits) were used to store each sample, there would be 216 or
65,536 different values to represent the signal. With this many values, the ±1 volt
signal would have adjacent amplitudes separated by only 3.05 ⋅ 10−5 volts.
Obviously, the larger the variable used to store the sampled data, the more closely
we can approximate the analog signal with the digital representation. (In the
previous discussion it is assumed that uniform sampling was used where all levels
would be equally spaced. There are also techniques that use nonuniform spacing
to place more levels at lower levels and wider spacing for larger signals.)

However, the drawback of using larger and larger variables is twofold. First,
the storage requirements to store the digitized waveform are proportional to the
number of bits used to quantize the samples. For example, suppose we decide to

 Introduction to Discrete-Time Systems 119

sample a speech signal that contains signal frequencies from 300 to 3,000 Hz at a
frequency of 8,000 Hz (which satisfies Nyquist’s criteria). The waveform would
need a file size of 480,000 bytes (480 kilobytes) to store one minute’s worth of
data using only 1 byte per sample. On the other hand, if we stored one minute of
stereo music using 2 bytes of data for each channel (left and right), the file size
would need to be over 10 million bytes (10 megabytes). This large file size is
necessary to accommodate a sampling rate of 44 kHz, which is the normal rate
used for high-fidelity audio signal with frequencies up to 20 kHz.

The second drawback is the speed of conversion from analog-to-digital form.
Although ADC chips are very fast these days, obtaining more accuracy requires
more time for conversion. Eventually, a limit on accuracy will be reached because
the conversion cannot be made in the allotted sample interval. This limitation is
more common when processing video signals that have bandwidths in the millions
of hertz (MHz).

It is important to note at this point that theoretically the sampling of an analog
waveform does not normally produce any error. (This assumes that the sample
clock does not introduce error because of timing jitter.) It is the quantization of the
sample that produces the error in a digital system. If the samples could be stored in
their original continuous-amplitude form, they could be used to regenerate the
original signal with no error (assuming the Nyquist criteria is met). The maximum
amount of error introduced into the system by this quantization is equal to one-
half of the difference between amplitude levels. As we can see, selecting a method
for the digitization of an analog signal is a compromise between conversion speed,
waveform accuracy, and storage or transmission size.

5.1.3 A Complete Analog-to-Digital-to-Analog System

Figure 5.3 shows a block diagram of a complete system that first converts an
analog signal to digital form for processing, transmission, or storage. Then the
conversion is undone by converting the digital signal back to analog form at
another time and/or place using a digital-to-analog converter (DAC). As shown in
Figure 5.2(b), the process of sampling a signal produces replicas of the original
analog spectrum at intervals of the sampling frequency. In order to recover the
original analog signal we simply have to eliminate the frequencies higher than fs/2.
This filtering is accomplished by a high-order lowpass filter.

A good example of such a complete procedure is the processing of audio
signals for a music CD. The original sounds of the music are supplied by
instruments or voices and are then recorded on tape in analog form. At some later
time, these analog signals are digitized and encoded on the compact disc. We can
then buy this CD and take it home and play it on our stereo system where the
musical data is first converted from digital to analog form and then reproduced for
us. In this example, the data is processed, stored, and reproduced at a later time
and different place.

120 Practical Analog and Digital Filter Design

Figure 5.3 Complete analog-to-digital-to-analog system.

5.2 LINEAR DIFFERENCE EQUATIONS AND CONVOLUTION

In our study of discrete-time systems, we need to be able to describe them in a
number of different ways. In this section we will learn how to describe a discrete-
time system by using a difference equation and the system’s impulse response.
The impulse response of a system is simply its response to the discrete impulse
function δ(n), as defined in (5.7). This function is the discrete-time equivalent to
the Dirac delta function δ(t) used in continuous-time system theory. The impulse
function is a very useful function because any input signal sequence can be
described by summing weighed and delayed versions of the impulse function.
Likewise, a discrete-time system’s response can be described by combining the
responses to the input sequence.

 (5.7) ⎩
⎨
⎧

≠
=

=
0for ,0
0for ,1

)(
n
n

nδ

In addition, we will use the unit step function u(n) in many of our
expressions, so its definition is shown in (5.8). This function is the equivalent of
the continuous-time step function u(t):

 (5.8) ⎩
⎨
⎧

<
≥

=
0for ,0
0for ,1

)(
n
n

nu

Just as u(t) can be defined as the integral of δ(t), u(n) and δ(n) have a
relationship built on the infinite summation as described in (5.9):

 Introduction to Discrete-Time Systems 121

 (5.9) ∑
∞

=

=
0

)()(
n

nnu δ

5.2.1 Linear Difference Equations

Continuous-time systems often require the solution of one or more linear
differential equations. In this case, values of the input and output signals and their
derivatives are used. The discrete-time equivalent to this analysis uses linear
difference equations that make use of past and present values of the input and past
values of the output. Note that instead of using derivatives, we are using past
values of the signals.

One classic example of a discrete-time system that can be easily described by
a difference equation is the bank account balance. Let y(n) reflect the balance in a
savings account where x(n) dollars are deposited at the beginning of each month.
We can assume that the account earns interest at a monthly percentage rate of I. If
we let Ts, the sample period of the system, be one month, then the difference
equation shown in (5.10) reflects the balance in the account at the beginning of
each month:

)()1()100/()1()(nxnyInyny +−⋅+−= (5.10)

If we assume that we deposit $100 each month and the interest is 1% per
month, we can replace x(n) with 100⋅u(n) in (5.10) to produce the following result:

)(100)1()01.1()(nunyny ⋅+−⋅= (5.11)

Table 5.1 shows the balance of the account for six months, assuming that we
just opened the account and the balance was zero.

Table 5.1
Balance in Savings Account

Month Balance

0 $100.00
1 $201.00
2 $303.01
3 $406.04
4 $510.10
5 $615.20

Although manual techniques for the solution of this difference equation are

acceptable for six months’ time, other methods will need to be employed for

122 Practical Analog and Digital Filter Design

longer periods of time. Let’s see if we can determine a general formula for the
balance of this account. Starting with the first month we find that

 100)0(=y (5.12)

)01.11(100100)0(01.1)1(+⋅=+⋅= yy (5.13)

 (5.14))01.101.11(100100)1(01.1)2(2++⋅=+⋅= yy

or in general

 (5.15)
∑
=

⋅=
n

k

kny
0

01.1100)(

Although this expression is compact, it still would require the calculation of
the sum of n + 1 terms in order to determine the value. What we really need is a
closed form solution. (Of course I wouldn’t have mentioned such a thing if one
didn’t exist.) We can define what is referred to as a finite geometric sum, as
shown below:

 (5.16)
∑
=

=
n

k

ka
0

FGS

Then, with some ingenious mathematics, we can define a difference that
cancels most of the terms:

 (5.17)

1

00
1FGSFGS +

==

−=⋅−=⋅− ∑∑ n
n

k

k
n

k

k aaaaa

Finally, we can determine the value of the FGS, as shown below. (The value
of FGS when a = 1 is determined directly from (5.16):

⎪⎩

⎪
⎨
⎧

=+

≠
−

−
=

+

1for ,1

1for ,
1

1
FGS

1

an

a
a

an

 (5.18)

 Introduction to Discrete-Time Systems 123

We can now write the equation for the balance of our savings account in a
closed form, as shown below. This expression does not need the calculation of
n + 1 terms in order for us to evaluate it.

 01.11
01.11100)(

1

−
−

⋅=
+n

ny
 (5.19)

We can also define the value of the infinite geometric sum, as shown below:

 (5.20)
∑
∞

=

=
0

IGS
k

ka

By simply allowing n in (5.18) to approach infinity, we can see that IGS can
be specified as

⎪⎩

⎪
⎨
⎧ <

−=
otherwise undefined

1for ,
1

1
IGS a

a
 (5.21)

One way to completely define a discrete-time system is by using its difference
equation. In general, the difference equation describing the output for a discrete-
time system can be written as

 (5.22)
)()()(

10
knybknxany

N

k
k

M

k
k −⋅−−⋅= ∑∑

==

We would have complete knowledge of the system if we know the

coefficients ak and bk. As indicated in (5.22), the output y(n) is a function of past
and present values of the input x(n) and past values of the output. A system such
as this is a recursive system. A system that has its output described only by past
and present values of the input is a nonrecursive system. We will see in the
chapters to come that these definitions effectively divide the types of digital filters
to be designed into two groups as well.

Notice that we have defined the output of our system in terms of only past and
present values of the input. Such a system is referred to as a causal system. Any
real-time system, of course, must be causal since we cannot determine the output
of a system based on input or output values we have not yet seen. However,
systems that are not real-time can be noncausal. For example, any system that can
draw its input from stored data can determine the output of the system at time n by

124 Practical Analog and Digital Filter Design

using input values at n + m. These “future” values are known since they already
have been stored.

5.2.2 Impulse Response and Convolution

Another way to completely describe a discrete system is to specify the impulse
response h(n) of the system. The impulse response of a system can be determined
from the difference equation by substituting the impulse function δ(n) for the
input x(n) and determining the output y(n).

Example 5.1 Determination of Impulse Response

Problem: Assume that a discrete-time system is described by the difference
equation shown below. Determine the first five values of the impulse response,
and then formulate an analytic expression for the impulse response.

)()1()(1 nxnybny +−⋅=

Solution: First, the equation is modified to reflect the fact that the output will
be the impulse response h(n) if the input is δ(n).

)()1()(1 nnhbnh δ+−⋅=

Next, the set of the first five values of the impulse response are determined
using Table 5.2.

Table 5.2
Results of Impulse Response

n δ(n) h(n − 1) h(n)

0 1 0 1

1 0 1 b1

2 0 b1 b1
2

3 0 b1
2 b1

3

4 0 b1
3 b1

4

From these results we can see that there is a general form to the impulse

response, as shown below:

)()(1 nubnh n ⋅=

When the impulse response of a system is known, the complete characteristics
of the system are known. The reaction of the system to any other input can then be

 Introduction to Discrete-Time Systems 125

determined by using convolution (similar to the operation in continuous systems).
The output of the system can be defined as in (5.23) where the ∗ indicates
convolution, not multiplication. In that expression, we see that the output of the
system y(n) is determined by computing a sum of products of the impulse
response coefficients h(n) and past values of the input x(n − k). Convolution has
the commutative property so the order of the functions in the convolution
definition is not important. From a practical standpoint however, the simpler
function is typically specified in the time-shifted format. This is the predominant
method used to implement an FIR filter, which is discussed in detail in Section
8.3. In addition, a number of the texts listed in the digital filter design section of
Appendix A cover discrete-time convolution.

 (5.23)
∑
∞

−∞=

−⋅=∗=
k

knxkhnxnhny)()()()()(

Example 5.2 System Response by Convolution

Problem: Determine the output of the system described in Example 5.1 if the
input is the signal shown below:

)()(1 nuanx n ⋅=

Solution: Since we already have the impulse response of the system, we can
use convolution to determine the output of the system. The equation for the output
of the system is

∑
∞

−∞=

−⋅=∗=
k

knhkxnhnxny)()()()()(

or

∑ ∑
∞

−∞= =

− ⋅⋅=−⋅⋅⋅=
k

n

k

knknk nubabknubkuany)()()()()(
0

111
)(

11

Note that the limits on the convolution summation are adjusted by the

functions u(k) and u(n − k). The step function u(k) has zero value for negative
values of k and therefore the lower limit of the summation is set to zero. The step
function u(n − k) will have zero value for all k values greater than n, and therefore
the upper limit of the summation is set to n. We can use the form of a finite
geometric sum to simplify the result into a closed form solution, as shown below:

126 Practical Analog and Digital Filter Design

⎪
⎩

⎪
⎨

⎧

=⋅+

≠
−
−

=

++

111

11
11

1
1

1
1

for ,)1(

for ,)(
abbn

ab
ab
ab

ny
n

nn

5.3 DISCRETE-TIME SYSTEMS AND Z-TRANSFORMS

It is also important to be able to understand a discrete-time system’s
characteristics in the frequency domain as well as the time domain. For linear
systems, the Laplace transform can be used to transform time domain
characteristics to the frequency domain. For discrete-time systems, we will use the
z-transform as defined in (5.24):

 (5.24)
∑
∞

−∞=

−⋅==
n

nznxzXnxz)()()}({

The z-transform of a weighted impulse function, for example, results in a
single term because the impulse function has only one nonzero value.

 (5.25)
AzAznAnAz

n

n =⋅⋅=⋅=⋅ ∑
∞

−∞=

− 01)()}({ δδ

The z-transform of a weighted step function can also be determined using the

definition. In this case, the result can be simplified by using the definition of the
infinite geometric sum. Some of the more common z-transform pairs are shown in
Table 5.3.

11

)()()}({ 1
0

1

−
⋅

=
−

=⋅⋅=⋅=⋅
−

∞

=

−
∞

−∞=

− ∑∑ z
zA

z
AzAznuAnuAz

n

n

n

n (5.26)

The z-transform also has a set of useful properties, as shown in Table 5.4.

First and foremost is the property that the z-transform of the impulse response is
the system’s transfer function in the z-domain. We’ll use that property in the next
example. The second property in Table 5.4 shows that convolution in the time
domain can be represented as simple multiplication in the z-domain. The third

 Introduction to Discrete-Time Systems 127

property listed shows that time delay of k units of time can be represented by
multiplication by z-k in the z-domain. And finally, multiplication by n in the time
domain can be represented by differentiation in the z-domain. For further
discussion of these and other properties of the z-transform or for a more
comprehensive list of z-transform pairs, please refer to one of the reference texts
listed in Appendix A.

Table 5.3
Common z-Transform Pairs

Time Domain Function Frequency Domain Function

)(nA δ⋅ A

)(nuA ⋅
)1(−

⋅
z

zA

)(nunA ⋅⋅ 2)1(−
⋅

z
zA

)(nuaA n ⋅⋅
)(az

zA
−
⋅

)()cos(nunA ⋅⋅Ω⋅ []
1)cos(2

)cos(
2 +⋅Ω⋅−

Ω−⋅⋅

zz
zzA

)()sin(nunA ⋅⋅Ω⋅
1)cos(2

)sin(
2 +⋅Ω⋅−

Ω⋅⋅

zz
zA

)()cos(nunaA n ⋅+⋅Ω⋅⋅ φ []
22)cos(2

)cos()cos(
azaz

azzA
+⋅Ω⋅⋅−

Ω−⋅−⋅⋅⋅ φφ

Table 5.4
Common z-Transform Properties

Time Domain Function Frequency Domain Function

)(nh)(zH

∑
∞

−∞=

−⋅
k

knxkx)()(21)()(21 zXzX ⋅

)(knx −)(zXz k ⋅−

)(nxn ⋅
dz

zdFz)(
⋅−

128 Practical Analog and Digital Filter Design

Example 5.3 Determining the Transfer Function

Problem: Determine the transfer function of the system described in Example
5.1, which has an impulse response of

)()(1 nubnh n ⋅=

Find the location of the poles and zeros of the transfer function as well as the
difference equation of the system from the transfer function.

Solution: Using the fourth entry in the table of z-transform pairs, we can
determine that the transfer function of the system described is

)(
)(

)1(
1

)(
)(1

11 zX
zY

zbbz
zzH =

⋅−
=

−
=

−

We see that there is a single pole (denominator root) at z = b1 and a single
zero (numerator root) at z = 0. By cross-multiplication, the following equation
results:

)()()(1
1 zXzYzbzY =⋅⋅− −

By taking the inverse z-transform of this equation and applying the time shift
property of the z-transform, we can determine the same difference equation, as in
Example 5.1:

)()1()(1 nxnybny +−⋅=

Another way that a discrete-time system can be described is by drawing a
system diagram to represent a general difference equation. Figure 5.4 shows the
system diagram for (5.21). In the figure, delays are represented by z-1 and
multiplication by triangular symbols. Of course, if a nonrecursive filter was being
represented, the lower half of the system diagram would be eliminated since the
output of such a system does not depend on past values of the output.

In this system diagram, we see that each time the signal moves through a
delay element the output is delayed by one sample interval. Although the system
diagram is correct and will produce the correct output relationship, there is a more
efficient description of the system. First, if we transform the general difference
equation of (5.22), we have

 (5.27)
∑∑
=

−

=

− ⋅⋅=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅−⋅

M

k

k
k

N

k

k
k zazXzbzY

01
)(1)(

 Introduction to Discrete-Time Systems 129

Figure 5.4 System diagram of general discrete-time system.

From this description, we can determine the transfer function H(z) to be

∑

∑

=

−

=

−

⋅−

⋅

== N

k

k
k

M

k

k
k

zb

za

zX
zYzH

1

0

1
)(
)()(

 (5.28)

We can represent (5.28) in a slightly different way to allow for further
development:

∑

∑

=

−

=

−

⋅−

⋅

⋅

=⋅ N

k

k
k

M

k

k
k

zb

za

zX
zW

zW
zY

1

0

1

1
1)(

)(
)(
)(

 (5.29)

This representation leads to two separate relationships, as shown below:

 (5.30)
∑
=

−⋅⋅=
M

k

k
k zazWzY

0
)()(

 (5.31)
∑
=

−⋅⋅+=
N

k

k
k zbzWzXzW

1
)()()(

130 Practical Analog and Digital Filter Design

These two equations in the z-domain can be written in their equivalent form in
the time domain by recognizing that z−k in the z-domain represents a delay of k
sample periods in the time domain.

 (5.32) ∑
=

−⋅=
M

k
k knwany

0
)()(

 (5.33)
∑
=

−⋅+=
M

k
k knwbnxnw

1
)()()(

The result of this derivation is that the general form of a discrete-time system
diagram can be drawn with more efficient use of the delay units by defining w(n)
in the diagram. Since these delay units must be implemented in hardware or
software, the fewer used the better. Figure 5.5 shows the preferred method of
drawing the system diagram with fewer delays.

Figure 5.5 System diagram with fewer delay units.

5.4 FREQUENCY RESPONSE OF DISCRETE-TIME SYSTEMS

The frequency response is one of the most important characteristics of a discrete-
time system. Although it does not completely describe the system as the difference
equation, impulse response, or transfer function does (it does not convey the
transient behavior of the system), the frequency response does provide important
information about the steady-state behavior of the system. We can begin by
considering an analog sinusoidal signal and the sampled signal using a sampling
period of Ts.

 Introduction to Discrete-Time Systems 131

)cos()(tAtx ⋅⋅= ω (5.34)

)cos()cos()(nAnTAnTx s ⋅Ω⋅=⋅⋅= ω (5.35)

where we have defined

 sss ffTfT / 2 2 ππω =⋅=⋅=Ω (5.36)

Equation (5.36) provides us with a method of comparing the analog frequency
f to the digital frequency Ω. The range of analog frequencies acceptable for a
discrete-time system does not extend from zero to infinity as would be the case in
a normal analog system. We must remember that the upper limit of acceptable
analog frequencies in discrete-time systems is governed by the Nyquist criteria,
and therefore the range is defined as shown below. Note that a subscript of d is
appended to the frequency variable to indicate we are talking about an equivalent
analog frequency within a discrete-time system.

 2/0 sd ff <≤ (5.37)

Combining this condition with (5.36) results in the following range of digital
frequencies

 π<Ω≤0 (5.38)

Although a sine or cosine function is usually used to determine the frequency
response of a hardware system, both of these functions can be described by
complex exponentials, as shown below:

 2
)cos(

njnj een
Ω−Ω +

=⋅Ω
 (5.39)

 j
een

njnj

2
)sin(

Ω−Ω −
=⋅Ω

 (5.40)

In fact, all periodic functions can be represented by these exponentials and
even constants can be represented as exponentials with zero frequency. Therefore,
when determining the frequency response of a discrete system, it is common to
consider the driving function as the complex exponential, as shown below:

132 Practical Analog and Digital Filter Design

 (5.41)
njenx Ω=)(

The output of a discrete-time system can then be determined by convolving
this input signal with the system’s impulse response. The output is then

 (5.42)
∑∑
∞

−∞=

Ω−Ω
∞

−∞=

−Ω ⋅=⋅=
k

kjnj

k

knj ekheekhny)()()()(

Or, we can rewrite the result as

 (5.43)
)()()()()(Ω

∞

−∞=

Ω− ⋅=⋅= ∑ j

k

kj eHnxekhnxny

where H(e jΩ) is defined as the frequency response of the system.
If we compare the definition of the frequency response, as shown in (5.44),

and the definition of the transfer function for a system, as shown in (5.45), we see
a striking similarity:

 (5.44)
∑
∞

−∞=

Ω−Ω ⋅=
k

kjj ekheH)()(

 (5.45)
∑
∞

−∞=

−⋅=
k

kzkhzH)()(

We can take advantage of this convenient similarity by defining the frequency
response of a system in terms of the transfer function by simply allowing z to be
replaced by e jΩ. That is,

 Ω=
Ω = jez

j zHeH)()(
 (5.46)

Example 5.4 Determining the Frequency Response

Problem: Determine the frequency response of the system described in
Example 5.3, which has a transfer function of

 Introduction to Discrete-Time Systems 133

)(
)(

1bz
zzH
−

=

Assume that b1 has a value of 0.8 for this system.

Solution: The frequency response can be found from the transfer function by

simply making the substitution of z = e jΩ:

)sin(8.0)cos(
)sin()cos(

)8.0(
)()(

Ω⋅+−Ω
Ω⋅+Ω

=
−

==
Ω

Ω

=
Ω

Ω
j

j
e

ezHeH j

j

ez
j

j

22))(sin()8.0)(cos(

0.1)(
Ω+−Ω

Ω∠
=ΩjeH

The values for the frequency response can then be calculated by allowing the
frequency Ω to range from 0 to π, as shown in Table 5.5. Note that the complex
exponential e jΩ can be converted to a complex number in the rectangular form of
cos(Ω) + j sin(Ω) using Euler’s relationship or converted to polar form as 1∠ Ω.

Table 5.5
Frequency Response

Frequency Magnitude Phase (deg)

0 5.00 0.00
π/4 1.42 −52.5
π/2 0.78 −38.7
3π/4 0.60 −19.9
π 0.56 0.00

Example 5.4 shows that the frequency response of a system is nothing more

than a complex valued function of frequency. At any particular frequency, the
complex value of the function can be determined and converted to polar form, as
shown below:

 (5.47))()()(ΩΦ∠Ω=Ω MeH j

In this expression, M(Ω) represents the adjustment in magnitude that a signal
will experience as it passes through the system, and Φ(Ω) represents the
adjustment in phase that the input signal will experience. For instance, if a digital
signal

134 Practical Analog and Digital Filter Design

⎟
⎠
⎞

⎜
⎝
⎛ °+

⋅
= 30

2
cos20)(nnx π

 (5.48)

was applied to the system of Example 5.4, the output signal could be determined
by multiplying the magnitude of the input by the magnitude of the frequency
response at Ω = π/2, and by shifting the phase of the input by the phase of the
frequency response at Ω = π/2. The result could be written as

 []°−°+⋅⋅⋅= 38.730)2(cos78.020)(nny π (5.49)

or

 []°−⋅⋅= 7.8)2(cos62.15)(nny π (5.50)

Using a digital frequency of Ω = π/2 may not be comfortable for analog filter
designers who are used to working with much larger frequencies. Therefore it is
important to note that this digital frequency does relate to some analog frequency
through the formula expressed in (5.36). That equation is restated here in terms of
the equivalent analog frequency fd. We see that this frequency is a function of
both the digital frequency and the sampling frequency for the system, as discussed
earlier:

sd ff ⋅

Ω
=

π2 (5.51)

Therefore, if we are dealing with a system with a sampling frequency of
10,000 samples/second, it may be more natural to think of the input signal above
as being an analog signal of 2,500 Hz that has been converted to a digital
frequency:

 Hz 500,2000,10
2

2/
=⋅=

π
π

df (5.52)

Working with discrete-time systems will require us to be able to use all the
material discussed thus far in this chapter. Some problems will be better expressed
in the time domain, while others will be easier to work with in the frequency
domain. Some system analysis or design will be easier using the system’s impulse
response, while others will require the use of the system’s transfer function. As
filter designers, we will definitely need to determine the frequency response of our
system, and if we are to implement these filters, a system diagram will be handy.
So before we leave this section, let’s work an example that uses all the facets of
discrete systems discussed so far.

 Introduction to Discrete-Time Systems 135

Example 5.5 Complete Discrete-Time System Example

Problem: Consider the difference equation for a discrete-time system shown
below. Determine the impulse response, transfer function, and frequency response
of the system.

)3(0.1)2(0.3)1(0.3)(0.1+
)3(68.0)2(81.1)1(0.2)(

−⋅+−⋅+−⋅+⋅
−⋅+−⋅−−⋅=

nxnxnxnx
nynynyny

Also, find the location of the poles and zeros for the system as well as draw the
system diagram. Finally, determine the output of the system if the input is the
analog signal x(t) shown below. Assume that the sampling frequency is 20,000
samples per second.

)30000,82sin(20)60000,22cos(510)(°+⋅⋅+°−⋅⋅+= tttx ππ

Solution: We begin the solution of the problem by transforming the
difference equation to determine the transfer function for the system such that

)(0.1)(0.3)(0.3

)(0.1)(68.0)(81.1)(0.2)(
321

321

zXzzXzzXz

zXzYzzYzzYzzY

⋅⋅+⋅⋅+⋅⋅+

⋅+⋅⋅+⋅⋅−⋅⋅=
−−−

−−−

or

)(
68.081.10.20.1
0.10.30.30.1

)(
)(

321

321
zH

zzz
zzz

zX
zY

=
⋅+⋅−⋅+

⋅+⋅+⋅+
=

−−−

−−−

After we convert H(z) to positive powers of z, we factor the transfer function
in order to determine the pole and zero locations. From the expression, we see that
there are three zeros at z = −1.0 and three poles at z = 0.8 and 0.6 ± j0.7:

)85.02.1()8.0(
)0.1()(2

3

+⋅−⋅−

+
=

zzz
zzH

The frequency response can now be easily determined from the transfer
function, as indicated below:

)85.02.1()8.0(
)0.1()(2

3

+⋅−⋅−

+
=

ΩΩΩ

Ω
Ω

jjj

j
j

eee
eeH

136 Practical Analog and Digital Filter Design

If we are to determine the response of our system to the sampled analog
signal, we need to convert the critical analog frequencies to digital frequencies.
The DC term is zero frequency in either case, while the analog frequency of 2,000
Hz converts to a digital frequency of π/5, and the analog frequency of 8,000 Hz
converts to a digital frequency of 4π/5. The magnitude and phase responses for
this H(e jΩ) are shown in Table 5.6.

Table 5.6
Frequency Response

Frequency Magnitude Phase (deg)

0.0 61.54 0
π/5 37.82 −88
2π/5 6.14 −249
3π/5 0.63 −261
4π/5 0.05 −266
π 0.00 −270

By applying the magnitude and phase adjustments indicated in Table 5.6 for

frequencies of 0, π/5, and 4π/5, we can determine the output of the system as:

)236000,82sin(00.1)148000,22cos(189615)(°−⋅⋅⋅+°−⋅⋅⋅+= ttty ππ

The impulse response of the system can be determined by finding the inverse z-
transform of the transfer function. The most commonly used method for finding
the inverse transform is by using partial fraction expansion of H(z)/z and then
matching the resulting terms to ones in the transform table.

)85.02.1()8.0(
)1()(

2

3

+⋅−⋅−⋅

+
=

zzzz
z

z
zH

After using the standard methods for evaluation of coefficients, we find

)85.02.1(
5372.7284.11

)8.0(
755.134706.1)(

2 +⋅−

−⋅
−

−
+

−
=

zz
z

zzz
zH

then we write H(z) as the sum of three terms

)85.02.1(
5372.7284.11

)8.0(
755.134706.1)(

2

2

+⋅−

⋅−⋅
−

−
⋅

+−=
zz

zz
z

zzH

 Introduction to Discrete-Time Systems 137

The first two terms can be easily inverse transformed by matching terms in
the z-transform table. However, the third term relates to a damped sinusoid and
requires some manipulation before it can be inverse transformed.

22

2

2

2

)cos(2
)cos()cos(

)85.02.1(
5372.7284.11

azaz
zaAzA

zz
zz

+⋅Ω⋅⋅−

⋅Ω−⋅⋅−⋅⋅
=

+⋅−

⋅−⋅ φφ

By comparing denominator terms, we find that a = 0.92195 and Ω = 0.86217,
while the numerator terms provide A = 11.337 and φ = 0.09677. With these values,
the transfer function can be inverse transformed to

)()09677.086217.0cos()92195.0(337.11

)()8.0(755.13)(4706.1)(

nun

nunnh
n

n

⋅+⋅⋅⋅−

⋅⋅+⋅−= δ

There was a good deal of algebra and trigonometry required to find the
impulse response. If we need only a few of the first terms of the impulse response,
or if we want to verify the correctness of our work, there is a useful method that
can be applied. If we return to the original H(z) function and perform long
division on the fraction, we will obtain a series of terms as shown:

 68.081.10.2
0.10.30.3)(23

23

−⋅+⋅−

+⋅+⋅+
=

zzz
zzzzH

 ⋅⋅⋅+⋅+⋅+⋅+= −−− 321 01.1519.1100.50.1)(zzzzH

By inverse transforming this sequence, we have h(n) represented as a series of
delayed impulse functions. This will tell us explicitly what the value of the
impulse response is for the first few values of the sequence. These values indeed
check with those given by the general expression above for h(n):

 ⋅⋅⋅+−⋅+−⋅+−⋅+=)3(01.15)2(19.11)1(00.5)()(nnnnnh δδδδ

5.5 PLAYING DIGITIZED WAVEFORMS ON A COMPUTER SYSTEM

In order to get the full benefit of the work we will be doing in the remainder of
this text, a computer sound card should be available. Certainly, the C code in this
text for the design and implementation of analog and digital filters is the primary
incentive for obtaining a copy of this text, but without a sound card to play the
sound files that we will process in the next few chapters, an important experience

138 Practical Analog and Digital Filter Design

will be missed. We will be using several sound files to illustrate the effects
produced by the digital filters which we will be designing. These sound files have
been included on the software disc with this text in the \C_CODE\SOUND
directory.

In addition to sound file formats, there are other variations that must be
considered when playing sound files. First, the sampling frequency must be
considered. The standard sampling frequency for studio-quality audio signals is
44,100 Hz. This frequency is high enough to allow audio frequencies in the
20,000 Hz range to be included in the signal information. These frequencies
represent the upper limit in the human hearing range. However, not all
applications require this level of frequency response. Therefore, sampling rates of
22,050 and 11,025 Hz are also common. These lower frequencies provide
attractive alternatives for signals without high frequency components or signals
including only speech. The sound cards automatically include an antialiasing filter
set to the correct frequency based on the sampling rate. Most sound cards also
include the option of selecting the quantization to be used when the signal is
sampled. Either 8-bit (1 byte) or 16-bit (2 bytes) resolution can be selected. (Other
options are common for industrial applications.) Table 5.7 provides a look at the
size of sound files as a function of sampling rate, number of channels, and
quantization method.

Table 5.7
Comparison of Sound File Size for 1 Minute of Recording

Quantization Channels Sample Rate File Size

8 bits Mono (1) 11,025 Hz 0.662 MB
8 bits Mono (1) 22,050 Hz 1.323 MB
8 bits Mono (1) 44,100 Hz 2.646 MB
8 bits Stereo (2) 11,025 Hz 1.313 MB
8 bits Stereo (2) 22,050 Hz 2.646 MB
8 bits Stereo (2) 44,100 Hz 5.292 MB
16 bits Mono (1) 11,025 Hz 1.323 MB
16 bits Mono (1) 22,050 Hz 2.646 MB
16 bits Mono (1) 44,100 Hz 5.646 MB
16 bits Stereo (2) 11,025 Hz 2.646 MB
16 bits Stereo (2) 22,050 Hz 5.646 MB
16 bits Stereo (2) 44,100 Hz 10.58 MB

Obviously, the size of audio files can grow very large! That is why it is

important to select the sampling rate, number of channels, and quantization
method carefully to provide the level of accuracy appropriate to the project. Of
course today there are many options for the compression of this data, but there is
still a direct correlation between file size and sampling options. There are two
different files included with the software disc. The first file, SPEECH, is a
monaural file that uses a sampling rate of 11,025 samples per second with 8 bits
per sample. The second selection, MUSIC, is also a monaural signal recorded by

 Introduction to Discrete-Time Systems 139

sampling at 22,050 samples per second with 16 bits per sample. Since most sound
cards will also record signals, other test signals can be captured and tested on the
computer system as desired.

At this point, it is time to check out the sound card on the computer by
playing the sound files mentioned above. It is recommended that the sound files be
copied to the hard disk for faster access. We’ll be using them as input samples to
be designed in the next two chapters.

5.6 CONCLUSION

We have reached the end of our review of discrete-time systems. In this chapter,
we found that the complete characteristics of a discrete-time system could be
determined by knowing the system’s difference equation, impulse response,
transfer function, or system diagram. We learned ways to determine any one of
these descriptions from any of the others. In addition, we learned how to find the
frequency response of a system by direct substitution into the system’s transfer
function. We will use the material presented in this chapter to design and
implement digital filters in the next two chapters. The remainder of this text will
be presented in a manner emphasizing application rather than theory, but if the
need arises, we can use the material in this chapter to better understand any
problems that we might encounter.

140 Practical Analog and Digital Filter Design

141

Chapter 6

Infinite Impulse Response Digital Filter
Design

There are a variety of methods that can be used to design digital filters as we will
see in this chapter and the next. One commonly used method is to use the analog
filter approximation functions that have already been developed and simply
translate them in a way that will make them usable for discrete-time systems. This
method, which will be studied in this chapter, makes use of the large backlog of
filter design theory and tables of transfer functions that are readily available. Most
of the filters designed using this method will be recursive in nature. That is, the
output of the filter will depend on previous values of the output (as well as past
and current values of the input). These types of filters can theoretically have
impulse responses that continue forever and therefore are commonly referred to as
infinite impulse response (IIR) filters.

Another method of designing discrete-time filters will be discussed in the next
chapter. That method does not depend on analog filter theory, but rather uses the
frequency response of the desired filter to directly determine the digital filter
coefficients. The method generally yields nonrecursive filters that have outputs
depending only on past and current values of the input. These types of filters
generally have an impulse response containing only a finite number of values and
thus are commonly called finite impulse response (FIR) filters. As we are about to
see, both the IIR and FIR design methods will differ from the analog filter design
techniques studied in the first part of the text. (A more complete comparison of
IIR and FIR filters will be given in Section 8.1.)

In the first three sections of this chapter, we will investigate different methods
of translating an analog filter’s characteristics into those of a digital filter. As we
will see, there is no perfect digital equivalent to an analog filter at all frequencies;
however, we can develop filters that closely match the important filter
characteristics. In the final section of this chapter, we will develop the C code
necessary to evaluate the frequency response characteristics of IIR digital filters.

142 Practical Analog and Digital Filter Design

6.1 IMPULSE RESPONSE INVARIANT DESIGN

The impulse response invariant design method (or impulse invariant
transformation) is based on creating a digital filter with an impulse response that is
a sampled version of the impulse response of the analog filter. We first start with
an analog filter’s transfer function H(s), and by using the inverse Laplace
transform, we determine the system’s continuous impulse response h(t). We next
sample that response to determine the system’s discrete-time impulse response
h(nT). We then take the z-transform of this sampled impulse response to find the
discrete-time transfer function H(z). As an illustration, consider the following
example.

Example 6.1 Impulse Response Invariant Transformation

Problem: Assume that we wish to convert the following continuous-time
transfer function to a discrete-time transfer function using the impulse invariant
transformation method:

)5()2(

12)(
+⋅+

=
ss

sH

Solution: We first use basic partial fraction expansion techniques to write the
transfer function in a form suitable for inverse transformation:

)5(
4

)2(
4)(

+
−

+
=

ss
sH

Then recognizing the Laplace transform pair

)()(

)(
)(1 thtueA

as
AsHL at =⋅⋅=

⎭
⎬
⎫

⎩
⎨
⎧

+
= −−

we can easily find the impulse response as

)()44()(52 tueeth tt ⋅⋅−⋅= −−

If we then sample this impulse response at intervals of T, we will have the
discrete-time impulse response. Effectively, we simply replace every t with nT to
denote the nth sample at intervals of T:

)()44()(52 nTueenTh nTnT ⋅⋅−⋅= −−

 Infinite Impulse Response Digital Filter Design 143

This expression can be rewritten in a form that more clearly indicates the
exponential relationship of n:

)(])(4)(4[)(52 nTueenTh nTnT ⋅⋅−⋅= −−

Now we use the z-transform table as developed in Chapter 6 to find the
transfer function in the z-domain:

1512 1

4
1

4)(−−−− −
−

−
=

zeze
zH TT

And, finally, we can combine the terms over a common denominator to
produce the final result, which can be simplified once a value of the sampling
period T is chosen:

)1()1(

)(4)(1512

152

−−−−

−−−

−⋅−
⋅−⋅

=
zeze

zeezH TT

TT

Although Example 6.1 clearly indicates the steps required to translate an

analog transfer function to a digital transfer function, we can skip some of the
steps by recognizing the common relationship between H(s) and H(z). As can be
verified in the example, for every term in the analog transfer function of the form
shown in (6.1), there is a term created in the digital transfer function of the form
shown in (6.2):

 as
sH

+
=

1)(
 (6.1)

11

1)(−− ⋅−
=

ze
zH aT

 (6.2)

This matching technique can also be applied to quadratic terms that have
complex roots, where each factor is simply treated individually. For example, if
we have a quadratic of the form (6.3), the resulting discrete-time equivalent could
then be written and simplified as shown in (6.3) to (6.6):

βαβαβαβα

β
js

j
js

j
jsjs

sH
−+

−
++

=
−+⋅++

=
2/2/

)()(
)((6.3)

144 Practical Analog and Digital Filter Design

1)(1)(1

2/
1

2/)(−−−−+− ⋅−
−

⋅−
=

ze
j

ze
jzH TjTj βαβα

 (6.4)

 ()
)1()1(

)(2/)(1)(1)(

1)()(

−−−−+−

−−−+−

⋅−⋅⋅−
⋅−⋅

=
zeze

zeejzH TjTj

TjTj

βαβα

βαβα
 (6.5)

221

1

)cos(21
)sin()(−−−−

−−

⋅+⋅⋅⋅−
⋅⋅

=
zezTe

zTezH TT

T

αα

α

β
β

 (6.6)

Example 6.2 Butterworth Impulse Invariant Filter Design

Problem: Determine the impulse invariant digital filter for a second-order
Butterworth approximation function, as shown below. Notice that H(s) is
normalized and therefore has a passband edge frequency of 1 rad/sec or (1/2π Hz).
Determine the differences that result from choosing sampling periods of T = 1.0
sec and T = 0.1 sec.

 14142.1
1)(2 +⋅+

=
ss

sH

Solution: We can first factor the analog transfer function and use partial
fraction expansion to determine

 7071.07071.0
7071.0

7071.07071.0
7071.0)(

js
j

js
jsH

−+
−

++
=

The digital transfer function can then be determined by using the results indicated
in (6.3) to (6.6):

24142.117071.0

17071.0

)7071.0cos(21
)7071.0sin(4142.1)(−⋅−−⋅−

−⋅−

⋅+⋅⋅⋅⋅−
⋅⋅⋅⋅

=
zezTe

zTezH TT

T

We can now make the substitution of the different sampling periods in the
general form to find the two distinct transfer functions:

 21

1

0.1 24312.074971.01
45300.)(−−

−

= ⋅+⋅−
⋅

=
zz

zzH T

 Infinite Impulse Response Digital Filter Design 145

 21

1

1.0 86812.085881.11
093096.0)(−−

−

= ⋅+⋅−
⋅

=
zz

zzH T

It is interesting to compare the two transfer functions of Example 6.2. We
notice first that the gains and pole positions are different solely from the selection
of the sampling period (or frequency). We can also get a quick indication of the
magnitudes of these transfer functions by determining the response at zero
frequency. We can do that easily letting z = ej0 = 1:

91808.0

49341.0
45300.0)(

0.1
0 ==

=T
jeH

9917.9

103174.9
103096.9)(3

2

1.0
0 =

⋅
⋅

= −

−

=T
jeH

With this quick check, we see that the response at zero frequency seems to be
proportional to 1/T. Although using only two values of sampling frequency hardly
makes a case, it is true in general that the magnitude is proportional to 1/T. For
this reason, most impulse invariant designs scale the transfer function by an
amount equal to the sampling period. As we can see, if that scaling were used in
the previous example, the responses at zero frequency would be very close to
unity.

The complete frequency responses for both transformations are shown in
Figure 6.1 (with the T scaling factor applied). The responses are notably different
as we would expect since the two transfer functions have different gains and pole
locations. It is important to notice how this variation in transfer function form and
frequency response is due solely to the value of sampling period (or sampling
frequency) that has been selected.

In order to see why this selection produces the variations, we must remind
ourselves of the relationship between the digital and equivalent analog
frequencies. As described in Section 6.4, the digital frequency Ω extends from 0
to π where π is analogous to the analog frequency of fs/2 as dictated by the
Nyquist criteria. Each point on the frequency axis can be referenced in terms of Ω,
which extends from 0 to π, or in terms of fd, which extends from 0 to fs/2. This
relationship can be written in either of the two forms shown in (6.7) and (6.8):

 sd ff /2 ⋅=Ω π (6.7)

 π2
Ω

= sd ff
 (6.8)

146 Practical Analog and Digital Filter Design

1.4

0.0

0.0 , 0.5, 5.0πFrequency

Mag. = 1.0 (frequency range 0 - 0.5 Hz)

 = 0.1 (frequency range 0 - 5.0 Hz)T

T

Figure 6.1 Frequency responses for Example 6.2.

Now we are able to see more clearly why the responses are so different.

Although the frequency axis extends from 0 to π, it represents different analog
frequencies for the two responses. In the case of the T = 1 sec response (fs = 1 Hz),
the digital frequency range extends from 0 to 0.5 Hz, and the passband edge
frequency of 0.159 Hz is clearly visible at a point approximately one-third of the
way along the frequency axis. However, in the case of the T = 0.1 second response
(fs = 10 Hz), the digital frequency range is actually from 0 to 5 Hz. Therefore, the
break frequency of 0.159 Hz occurs at a point much closer to the zero frequency
point.

Clearly then from this example it is important to pick the sampling frequency
for an impulse invariant design carefully. The frequency range of the input signal
must be considered as well as the desired overall response. In general, the impulse
invariant design method is best for matching low-frequency system responses.

6.2 STEP RESPONSE INVARIANT DESIGN

Another common method of converting an analog transfer function to the digital
domain is to match the step response of both systems. The step response invariant
design procedure is much the same as the impulse invariant design, except that we
must determine the step response of the analog transfer function before it is
sampled and z-transformed. We can determine the analog system’s step response
simply by multiplying H(s) by the transform of the step input, which is 1/s. In
(6.9) we defined the system’s step response as G(s):

 Infinite Impulse Response Digital Filter Design 147

 s
sHsG 1)()(⋅=

 (6.9)

Once we have determined G(s), we can find the time domain response to the
step input g(t) by using the inverse Laplace transform:

 { })()(1 sGLtg −= (6.10)

Then, the discrete-time step response can be determined by sampling the
continuous-time version:

 nTttgnTg
=

=)()(
 (6.11)

Next, the discrete-time system response to the step input can be determined
by using the z-transform:

{ } 11

1)()()(−−
⋅==

z
zHnTgZzG

 (6.12)

As shown in (6.12), G(z) is the product of the discrete-time transfer function
H(z) and the z-transform of the step input. Therefore, in order to find H(z), we
simply multiply G(z) by (1 − z−1), as shown:

 ()11)()(−−⋅= zzGzH (6.13)

As we review this procedure, we can see that the primary steps are the same

as for the impulse invariant transformation, except that we have added one step at
the beginning and one step at the end. The new initial step requires that we divide
the analog transfer function by s, and the new final step requires that we multiply
the digital transfer function by (1 − z−1).

Example 6.3 Step Response Invariant Transformation

Problem: Assume that we wish to convert the continuous-time transfer
function of Example 6.1 to a discrete-time transfer function, but this time we want
to use the step response invariant transformation method.

)5)(2(
12)(

++
=

ss
sH

148 Practical Analog and Digital Filter Design

Solution: We need to determine the system’s response to a step input by
multiplying H(s) by the Laplace transform of the step input 1/s.

5

8.0
2

0.22.1
)5()2(

12)(
+

+
+

−=
+⋅+⋅

=
ssssss

sG

We can then easily find the time domain response to the step input by finding
the inverse Laplace transform of G(s) as

)()8.00.22.1()(52 tueetg tt ⋅⋅+⋅−= −−

If we sample this response at intervals of T, we will have the discrete-time
response, as shown below:

)(])(8.0)(0.22.1[)(52 nTueenTg nTnT ⋅⋅+⋅−= −−

Then, using the z-transform table in Chapter 5, we can find the z-transform of
g(nT) as

15121 1

8.0
1

0.2
1

2.1)(−−−−− −
+

−
−

−
=

zezez
zG TT

And by combining the terms over a common denominator, we find that

)1()1()1(

)2.10.28.0()8.00.22.1()(15121

2752152

−−−−−

−−−−−−−

−⋅−⋅−
⋅⋅+⋅−⋅+⋅⋅+⋅−

=
zezez

zeeezeezG TT

TTTTT

where G(z) represents the output of the system to a step input. In order to
determine the transfer function of the system, we must remove the effects of the
step input 1 / (1 − z−1).

)1()1(

)2.10.28.0()8.00.22.1()(1512

2752152

−−−−

−−−−−−−

−⋅−
⋅⋅+⋅−⋅+⋅⋅+⋅−

=
zeze

zeeezeezH TT

TTTTT

Although the result of the previous example looks quite involved, all of the

exponential terms will become constants once the sampling period for the system
is selected. We can also use the step invariant design method on the Butterworth
filter of Example 6.2.

 Infinite Impulse Response Digital Filter Design 149

Example 6.4 Butterworth Step Invariant Filter Design

Problem: Determine the step invariant digital filter for a second-order
normalized Butterworth approximation function, as shown below. Determine the
differences that result for sampling periods of T = 1.0 sec and T = 0.1 sec.

 14142.1
1)(2 +⋅+

=
ss

sH

Solution: Again, we first determine the output of the analog system to an
input step function and then use partial fraction expansion to determine the
individual terms.

 7071.07071.0
5.05.0

7071.07071.0
5.05.01)(

js
j

js
j

s
sG

−+
−

−
++

+
−=

The step response can then be determined by finding the inverse Laplace
transform of G(s), as indicated below:

tjtj ejejtg)7071.07071.0()7071.07071.0()5.05.0()5.05.0(0.1)(−−+− ⋅−−⋅+−=

Then, after sampling at intervals of T, the discrete-time step response is
determined to be

nTjnTj ejejnTg)7071.07071.0()7071.07071.0()5.05.0()5.05.0(0.1)(−−+− ⋅−−⋅+−=

The discrete-time response to the step input can then be determined by using
the z-transform.

 1)7071.07071.0(1)7071.07071.0(1 1
5.05.0

1
5.05.0

1
1)(

−−−+− −
−

−
−

+
−

−
=

ze
j

ze
j

z
zG TjTj

Now, by combining these terms over a common denominator (and performing
a considerable amount of complex algebra), we have the system response to a step
input:

])707.0cos(21[)1(
)]707.0cos()707.0[sin(

])707.0cos(21[)1(
)]707.0cos()707.0[(sin()(

2414.11707.01

2707.02414.1

2414.11707.01

1707.01

−⋅−−⋅−−

−−−−

−⋅−−⋅−−

−−−

+⋅⋅⋅−⋅−
⋅⋅+⋅−

+

+⋅⋅−⋅−
⋅⋅−⋅+

=

zezTez
zTTeze

zezTez
zTTezzG

TT

TT

TT

T

150 Practical Analog and Digital Filter Design

The discrete-time transfer function H(z) can now be determined by removing
the (1 − z−1) factor relating to the step input, and we can make the substitution of
the different sampling periods in the general form to find the two distinct transfer
functions:

])707.0cos(21[
)]707.0cos()707.0[sin(

])707.0cos(21[
)]707.0cos()707.0[(sin()(

2414.11707.0

2707.02414.1

2414.11707.0

1707.01

−⋅−−⋅−

−⋅−−⋅−

−⋅−−⋅−

−⋅−−

+⋅⋅⋅−
⋅⋅+⋅−

+

+⋅⋅⋅−
⋅⋅−⋅+

=

zezTe
zTTeze

zezTe
zTTezzH

TT

TT

TT

T

 21

21

0.1 24312.074971.01
45205.094546.0)(−−

−−

= ⋅+⋅−
⋅−⋅

=
zz

zzzH T

 21

21

1.0 86812.08588.11
12711.013643.0)(−−

−−

= ⋅+⋅−
⋅−⋅

=
zz

zzzH T

Note that the pole locations are the same as for the impulse invariant design
but that the zero locations have changed. We can compare the frequency responses
of these two discrete-time filters as shown in Figure 6.2.

Mag.

1.4

0.0

0.0

Frequency , 0.5, 5.0π

 = 0.1 (frequency range 0 - 5.0 Hz)

 = 1.0 (frequency range 0 - 0.5 Hz)T

T

Figure 6.2 Frequency responses for Example 6.4.

As we can see, there is significant difference between the two

implementations, but the differences are again a result of the frequency axis
having two different scales. In the step invariant design method, there is no need

 Infinite Impulse Response Digital Filter Design 151

to scale the magnitude as was the case for the impulse invariant design method. By
comparing this frequency response to that of Figure 6.1, we see a significant
difference. The reason for the difference is the different criteria placed on the
design. In the previous section, the emphasis was placed on matching an impulse
like input signal, while in this section the aim was to match a step like input
signal. As indicated in the figures, the different criteria produce filters with quite
different frequency responses. As in the previous section, this method of IIR filter
design is best suited to match low-frequency system responses.

6.3 BILINEAR TRANSFORM DESIGN

Both the impulse invariant and step invariant design methods provide good
approximations for lowpass and some bandpass analog filter responses. However,
they cannot provide good matching of high-frequency responses, which makes it
impossible to use them for highpass or bandstop filter design. In fact, they do not
provide the best methods for matching analog filter responses when a good match
is required throughout a wide range of frequencies. In addition, without careful
selection of the sampling frequency and strict band-limiting of the input signal,
distortion from aliasing can occur. Therefore, in this section we will discuss the
bilinear transformation that endeavors to make a reasonable match over the entire
filter frequency range. Of course, that provides a challenge since the analog
frequency range extends from zero to infinity and the digital frequency range
extends only from zero to π. However, a transformation from the analog s-domain
to the digital z-domain has been developed (as described in more detail in the
technical references provided at the end of the text). In this method, the
relationship between the s and z complex variables can be described by the
following equation, where T is the sampling period:

1
12

+
−

⋅=
z
z

T
s (6.14)

To better understand this relationship, we can represent the complex variable
z in the exponential form R⋅ e jΩ

 1sincos
1sincos2

1
12

+Ω⋅⋅+Ω⋅
−Ω⋅⋅+Ω⋅

⋅=
+⋅
−⋅

⋅= Ω

Ω

RjR
RjR

TeR
eR

T
s j

j

 (6.15)

This representation can be written in rectangular form as

]sin)1cos[(]sin)1cos[(
]sin)1cos[(]sin)1cos[(2

Ω⋅⋅−+Ω⋅⋅Ω⋅⋅++Ω⋅
Ω⋅⋅−+Ω⋅⋅Ω⋅⋅+−Ω⋅

⋅=
RjRRjR
RjRRjR

T
s (6.16)

152 Practical Analog and Digital Filter Design

and finally simplified to

()

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+Ω⋅⋅+
Ω⋅⋅

+
+Ω⋅⋅+

−
⋅=+⋅=

1cos2
sin2

1cos2
122

22

2

RR
Rj

RR
R

T
j

T
s ωσ

 (6.17)

By referring to (6.17) and observing the s-plane and z-plane in Figure 6.3, we
can see that there are three distinct regions in the s-domain that relate to three
distinct regions in the z-domain. In the first case, any point in the z-domain that
lies outside of the unit circle (R > 1) is associated with a point in the right-half
plane (RHP) of the s-plane (σ > 0). In the second case, a point in the z-domain
located inside the unit circle (R < 1) is associated with a point in the left-half plane
(LHP) of the s-domain (σ < 0). Finally, a point on the unit circle (R = 1) is
associated with a point in the s-plane that lies on the jω axis (σ = 0). In fact, in this
last case, the positive jω axis relates to the top half of the unit circle as the angle
travels from 0 to π, while the negative jω axis relates to the bottom half of the unit
circle with angles from 0 to −π.

LHP

-plane -plane

RHP

= 1

Outside

Insideσ

ωj

R

zs

Figure 6.3 Comparison of s-plane and z-plane using bilinear transform.

Although there does exist a one-to-one relationship between the positive jω
axis and the upper part of the unit circle, it is a nonlinear one. If we look more
closely at the imaginary portion of (6.17) when R = 1 (and therefore σ = 0), we
see that

()
() ⎟

⎠
⎞

⎜
⎝
⎛ Ω⋅=

Ω+
Ω

⋅=
2

tan2
cos1

sin2
TT

ω
 (6.18)

or, in terms of the z-domain frequency variable,

 Infinite Impulse Response Digital Filter Design 153

⎟
⎠
⎞

⎜
⎝
⎛⋅=Ω −

2
tan2 1 Tω

 (6.19)

Equations (6.18) and (6.19) are important to the bilinear transformation
process because they are necessary to determine the proper mapping between the
analog and digital domains. This mapping of analog frequencies to digital
frequencies is fairly linear for low frequencies, but becomes very nonlinear as
higher frequencies are mapped. This mapping of frequencies is often referred to as
“warping” to describe how the higher frequencies are warped into their proper
place on the unit circle. The reason that this warping is so important is that
although we will specify the frequency characteristics of the digital filter by digital
frequencies, the filter will be derived from an analog filter transfer function.
Therefore, it is necessary to properly determine the analog frequencies to use in
the analog design by warping the specified digital frequencies as shown in
Example 6.5.

After determining the frequencies necessary for the analog filter design, the
filter can be designed using the process described earlier in this text. Once the
analog transfer function has been determined, we can use the bilinear transform
substitution given in (6.14). Since we will be developing code to implement this
transformation process, it is important to carefully describe this substitution. In the
case of a first-order factor, the transformation process begins with (6.20).

Example 6.5 Determining Analog and Digital Critical Frequencies

Problem: Assume we wish to design a lowpass digital filter (with sampling
frequency of 20 kHz) based upon a Butterworth analog filter. The required
characteristics of the digital filter are

 apass = −1 dB, astop = −20 dB, fpass = 1 kHz, and fstop = 5 kHz

What parameters should we use to design the analog filter upon which our digital
filter will be based?

Solution: We first recognize that the digital frequency axis can be labeled in

two different ways, as discussed earlier. Then using (6.7), we can determine

 ππ
⋅=

⋅⋅
=Ω 1.0

000,20
000,12

p

 ππ
⋅=

⋅⋅
=Ω 5.0

000,20
000,52

s

154 Practical Analog and Digital Filter Design

Once these frequencies have been determined they can be warped using
(6.18) to produce the equivalent analog frequencies necessary for the analog filter
design.

 sec/rad 4.335,63.008,12
2

tan2
=⋅⋅=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Ω
⋅= πω p

p T

 sec/rad 000,402.366,62
2

tan2
=⋅⋅=⎟

⎠
⎞

⎜
⎝
⎛ Ω⋅= πω s

s T

Note the slight warping of the lower passband edge frequency (from 1,000 to
1,008 Hz) and the more significant warping of the higher stopband edge frequency
(from 5,000 to 6,366 Hz). The attenuations of the filter do not change; therefore,
we have enough information to proceed with the design of the analog filter, which
will be the subject of the next example.

21

21

1
1221

21

1
12
1
12

)(
B

z
z

T
B

A
z
z

T
A

BsB
AsAzH

z
z

T
s +⎟

⎠
⎞

⎜
⎝
⎛

+
−

⋅⋅

+⎟
⎠
⎞

⎜
⎝
⎛

+
−

⋅⋅
=

+⋅
+⋅

=

+
−

⋅=

 (6.20)

In this equation, uppercase A and B represent the coefficients of the analog
filter function. After simplification, (6.21) and (6.22) result with a new set of
coefficients where 2/T has been replaced with 2·fs. In these equations, lowercase a
and b represent the digital filter coefficients that will be used, and G represents the
gain adjustment for this first-order term:

 1
10

1
10

1

0

1

1

0

1

0

0

1

1
)(−

−

−

−

⋅+
⋅+

⋅=
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅=
zbb
zaaG

z
D
D

z
N
N

D
NzH (6.21)

where

 (6.22) 121

120

121

120

2
2
2
2

BfBD
BfBD
AfAN
AfAN

s

s

s

s

−=
+=
−=
+=

 Infinite Impulse Response Digital Filter Design 155

In the case of the quadratic terms that are used to describe our coefficients,
the transformation process is shown in (6.23) to (6.25). Again, G represents the
gain adjustment necessary for each of the quadratic factors for the filter.

21

2

0

21

2

0

1
12

1
12

1
12

1
12

)(
B

z
z

T
B

z
z

T
B

A
z
z

T
A

z
z

T
A

zH
+⎟

⎠
⎞

⎜
⎝
⎛

+
−

⋅⋅+⎟
⎠
⎞

⎜
⎝
⎛

+
−

⋅⋅

+⎟
⎠
⎞

⎜
⎝
⎛

+
−

⋅⋅+⎟
⎠
⎞

⎜
⎝
⎛

+
−

⋅⋅
=

 (6.23)

 2
2

1
10

2
2

1
10

2

0

21

0

1

2

0

21

0

1

0

0

1

1
)(−−

−−

−−

−−

⋅+⋅+
⋅+⋅+

⋅=
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

⋅=
zbzbb
zazaaG

z
D
Dz

D
D

z
N
Nz

N
N

D
NzH (6.24)

where

 (6.25)

0
2

122

0
2

21

0
2

120

0
2

122

0
2

21

0
2

120

42

)4(2

42

42

)4(2

42

BfBfBD

BfBD

BfBfBD

AfAfAN

AfAN

AfAfAN

ss

ss

ss

ss

s

s

+−=

−⋅=

++=

+−=

−⋅=

++=

Example 6.6 Butterworth Bilinear Transform Filter Design

Problem: Determine the digital filter to meet the specifications given in
Example 6.5 using the bilinear transformation.

Solution: By entering the attenuations and the prewarped analog frequencies
in WFilter for analog filter design, we determine the following analog transfer
function:

 742

7

108877.7102560.1
108877.7)(

⋅+⋅+
⋅

=
ss

sH

156 Practical Analog and Digital Filter Design

Then, by using the bilinear substitution for s, we can determine the transfer
function in the digital domain.

74

2

7

108877.7
1
12102560.1

1
12

108877.7)(

⋅+⎟
⎠
⎞

⎜
⎝
⎛

+
−

⋅⋅⋅+⎟
⎠
⎞

⎜
⎝
⎛

+
−

⋅

⋅
=

z
z

Tz
z

T

zH

The transfer function can be simplified by using (6.23) to (6.25) to produce

)53935.03947.11(

)21(036161.0)(21

21

−−

−−

⋅+⋅−
+⋅+⋅

=
zz

zzzH

The frequency response of the digital filter designed in Example 6.6 can be
determined in the manner discussed in the previous chapter (and is shown in
Figure 6.4).

Mag.

1.0

0.0

0.0

Frequency , 10 kHzπ

Figure 6.4 Frequency response for Example 6.6.

For a general quadratic factor of the form shown below:

2

2
1

10

2
2

1
10)(−−

−−

⋅+⋅+
⋅+⋅+

=
zbzbb
zazaazH

 (6.26)

the frequency response can be determined by letting z = ejΩ as shown:

Ω−Ω−

Ω−Ω−
Ω

⋅+⋅+
⋅+⋅+

= 2
210

2
210)(jj

jj
j

ebebb
eaeaaeH

 (6.27)

 Infinite Impulse Response Digital Filter Design 157

The numerator and denominator factors can then be converted.

 ()
())]2sin()sin([)]2cos(cos[

)]2sin()sin([)]2cos(cos[)(
21210

21210

Ω+Ω⋅+Ω+Ω+
Ω+Ω⋅+Ω+Ω+

=Ω

bbjbbb
aajaaaeH j (6.28)

We see in Figure 6.4 that the specifications have been met (at 1,000 Hz
the −1 dB gain = 0.89125, and at 5,000 Hz the −20 dB gain = 0.1).

Example 6.7 Chebyshev Bilinear Transform Filter Design

Problem: Use WFilter to completely design a Chebyshev digital IIR filter
and display the magnitude response. The specifications for this filter are

apass = −1 dB, astop = −60 dB,
fpass = 10 kHz, fstop = 20 kHz, and fsamp = 50 kHz

Solution: We can supply these values to WFilter and WFilter will calculate

the magnitude response of the filter, as shown in Figure 6.5. The digital IIR
coefficients and the pole and zero locations are shown in Figure 6.6.

In Figure 6.5 we see the effect of sampling on the frequency response. In
particular, we see the lowpass response replicated in mirror image form at the
sampling frequency of 50 kHz. In addition, we see the lower half of the reflection
at twice the sampling frequency of 100 kHz. If we had chosen a larger-frequency
scale, we would see these replications reproduced at all multiples of the sampling
frequency. Of course, in the typical discrete-time system, the antialiasing filter
will be set to one-half of the sampling frequency (25 kHz in this case), and the
user would not see the effects of the higher-frequency components.

Figure 6.5 Magnitude response from WFilter.

158 Practical Analog and Digital Filter Design

Example 6.7 - Chebyshev Lowpass Filter

Selectivity: Lowpass
Approximation: Chebyshev
Implementation: IIR (digital)
Passband gain (dB): -2.0
Stopband gain (dB): -60.0
Passband freq (Hz): 10000.0
Stopband freq (Hz): 20000.0
Sampling freq (Hz): 50000.0

Filter Length/Order: 04
Overall Filter Gain: 1.86714451145E-02

 Numerator Coefficients
QD [1 + z^-1 + z^-2]
== ===
01 1.0 2.00000000000E+00 1.00000000000E+00
02 1.0 2.00000000000E+00 1.00000000000E+00

 Denominator Coefficients
QD [1 + z^-1 + z^-2]
== ===
01 1.0 -6.20696688131E-01 8.14430976062E-01
02 1.0 -1.18935540161E+00 5.04413209263E-01

 Zeros
QD [Real] [Imag]
== ===
01 -1.00000000000E+00 0.00000000000E+00
02 -1.00000000000E+00 0.00000000000E+00
03 -1.00000000000E+00 0.00000000000E+00
04 -1.00000000000E+00 0.00000000000E+00

 Poles
QD [Real] [Imag]
== ===
01 3.10348344066E-01 8.47416592590E-01
02 3.10348344066E-01 -8.47416592590E-01
03 5.94677700806E-01 3.88293241542E-01
04 5.94677700806E-01 -3.88293241542E-01

Figure 6.6 Design values from WFilter.

6.4 C CODE FOR IIR FREQUENCY RESPONSE CALCULATION

To verify that all requirements have been met, we must calculate the frequency
response of our filter. In this case, the Calc_DigIIR_Resp function shown in
Listing 6.1 would be called to perform the frequency response calculations.
Computations are made in the same manner as in Calc_Analog_Resp except
the real and imaginary values are calculated using (6.28).

 Infinite Impulse Response Digital Filter Design 159

/*==
 Calc_DigIIR_Resp() - calcs response for IIR filters
 Prototype: int Calc_DigIIR_Resp(Filt_Params *FP,
 Resp_Params *RP);
 Return: error value
 Arguments: FP - ptr to struct holding filter params
 RP - ptr to struct holding respon params
==*/
int Calc_DigIIR_Resp(Filt_Params *FP,Resp_Params *RP)
{ int c,f,q; /* loop counters */
 double rad2deg, /* rad to deg conversion */
 omega,omega2, /* radian freq and square */
 rea,img; /* real and imag part */

 rad2deg = 180.0 / PI; /* set rad2deg */
 /* Loop through each of the frequencies */
 for(f = 0 ;f < RP->tot_pts; f++)
 { /* Initialize magna and angle */
 RP->magna[f] = FP->gain;
 RP->angle[f] = 0.0;
 /* Pre calc omega and omega squared */
 omega = PI2 * RP->freq[f] / FP->fsamp;
 omega2 = 2 * omega;
 /* Loop through coefs for each quadratic */
 for(q = 0 ;q < (FP->order+1)/2; q++)
 { /* c is coef index = 3 * quad index */
 c = q * 3;
 /* Numerator values */
 rea = FP->acoefs[c] + FP->acoefs[c+1]*cos(omega)
 + FP->acoefs[c+2]*cos(omega2);
 img = -FP->acoefs[c+1]*sin(omega)
 - FP->acoefs[c+2]*sin(omega2);
 RP->magna[f] *= sqrt(rea*rea + img*img);
 RP->angle[f] += atan2(img,rea);
 /* Denominator values */
 rea = FP->bcoefs[c] + FP->bcoefs[c+1]*cos(omega)
 + FP->bcoefs[c+2]*cos(omega2);
 img = -FP->bcoefs[c+1]*sin(omega)
 - FP->bcoefs[c+2]*sin(omega2);
 RP->magna[f] /= sqrt(rea*rea + img*img);
 RP->angle[f] -= atan2(img,rea);
 }
 /* Convert to degrees */
 RP->angle[f] *= rad2deg;
 }
 /* Convert magnitude response to dB if indicated */
 if(RP->mag_axis == LOG)
 { for(f = 0 ;f < RP->tot_pts; f++)
 { /* Handle very small numbers */
 if(RP->magna[f] < ZERO)
 { RP->magna[f] = ZERO;}
 RP->magna[f] = 20 * log10(RP->magna[f]);
 }
 }
 return ERR_NONE;
}

Listing 6.1 Calc_DigIIR_Resp function.

160 Practical Analog and Digital Filter Design

6.5 CONCLUSION

In this chapter we investigated three different methods of generating digital IIR
filters from analog transfer functions. In each case we found that there is no
perfect match to the original analog function, primarily because there is a strict
limit on the frequency range of a digital filter. However, the bilinear transform
method does provide good overall response characteristics, and for that reason it
was chosen to be implemented in C code. (Details of this code are provided in
Appendix G.) The frequency response characteristics of the IIR filter were also
considered, and the calculation of the response was implemented in C code.
Finally, we used WFilter to design an IIR filter and display the complete
magnitude response including the multiple replications of the original response.
The implementation of IIR filters is discussed in Chapter 8.

161

Chapter 7

Finite Impulse Response Digital Filter
Design

In the last chapter, we considered the design of digital filters based on the
approximation methods for analog filters. We investigated a number of ways that
the transfer functions in the analog domain could be converted to transfer
functions in the digital domain. In this chapter, we will develop methods that deal
with the digital filter as a unique filter type, not based on analog filter
approximation methods. The focus of this chapter will be on finite impulse
response (FIR) filters that have only a finite number of terms in their impulse
response. These filters have a number of advantages over the IIR filter types. An
FIR filter is always stable, realizable, and provides a linear phase response under
specific conditions. These characteristics make FIR filters attractive to many filter
designers. However, the major disadvantage of FIR filters is that the number of
coefficients needed to implement a specific filter is often much larger than for IIR
designs. A more complete comparison of IIR and FIR filters is given in Section
8.1.

We will begin this chapter with a standard method of designing FIR digital
filters using the Fourier series description of the desired frequency response. This
method will then be modified and improved by using a windowing technique to
improve the shape of the responses. In addition, the Parks-McClellan optimization
technique will be discussed as a technique of reducing the length of the resultant
FIR filters. Finally, the C code for determining the frequency response of FIR
filters will be developed.

7.1 USING FOURIER SERIES IN FILTER DESIGN

There are a number of methods that could be used to design FIR filters. We will
investigate one of the most popular in this section. Other methods are described in
the references listed in Appendix A for digital filter design.

162 Practical Analog and Digital Filter Design

7.1.1 Frequency Response and Impulse Response Coefficients

In the process of filter design, the designer begins with the frequency response
characteristics. The critical band edge frequencies and the gains within each band
are determined to meet certain specifications. We have found that the frequency
response for digital filters is actually periodic in the frequency domain with a
period of the sampling frequency. For example, a typical lowpass filter
specification is shown in Figure 7.1, which clearly indicates the periodic nature of
the frequency response. Since this response is periodic, it can be described by a
Fourier series of the form shown in (7.1). In this formulation, the complex
frequency exponential is allowed to take on all possible frequency values.

 (7.1) ∑
∞

−∞=

Ω−Ω ⋅=
k

jkj ekheH)()(

Figure 7.1 Periodic digital frequency response.

The coefficients within the summation are the impulse response coefficients
that describe the digital FIR filter. The procedure for determining the impulse
response coefficients from the frequency response is straightforward and provided
in the digital filter design reference texts listed in Appendix A. The final result of
the derivation is shown in (7.2). As indicated by the limits of the integral, the
integration must include only one full period of the frequency response.

… ,2 ,1 ,0 ,)(
2
1)(±±=Ω⋅⋅= ∫

+Ω

−Ω

ΩΩ ndeeHnh
o

o

jnj
π

π
π

 (7.2)

We will not be able to implement an infinite number of coefficients as (7.2)
indicates. The number of coefficients we retain is a compromise between how
well we want our design to approximate the ideal, and how many coefficients can
be retained because of time delay, implementation cost, or other constraints. We
can assume that the indices are limited to the range −M ≤ n ≤ +M, which limits the
number of coefficients retained to N = 2 M + 1. By making this selection, we are
in effect setting all other coefficients to zero. Figure 7.2 shows the effect of

 Finite Impulse Response Digital Filter Design 163

limiting the number of coefficients by graphing the frequency response using a
finite number of coefficients. The frequency response can be determined by using
a modified form of (7.1), as shown in (7.3):

 (7.3)
∑
−=

Ω−Ω ⋅=
M

Mn

jnj enheH)()(

As we increase the number of coefficients in the FIR filter approximation, we
can see that a ripple concentrates near the passband edge frequency. This ripple
cannot be eliminated, even by increasing the number of impulse response
coefficients; it simply concentrates at the transition. This effect is known as
Gibbs’s phenomenon and results whenever a discontinuity is modeled with a
series. However, as we will see in the next section, there are methods we can use
to reduce this effect.

Figure 7.2 Approximated responses to lowpass filter.

Figure 7.2 also shows a more common method of specifying passband and
stopband gain for FIR filters. The errors within the passband and stopband are
specified as δp and δs, respectively. As we can see, the frequency response is
allowed to fluctuate both positively and negatively within these error limits. We
can translate these specifications into the decibel gain specifications with which
we are familiar by using (7.4) and (7.5). Alternatively, we can convert our decibel
gains into these error values using (7.6) and (7.7).

)1log(20pass pa δ−=

 (7.4)

)log(20stop sa δ=

 (7.5)

164 Practical Analog and Digital Filter Design

 (7.6)
pass05.0101 a

p
⋅−=δ

 (7.7)
stop05.010 a

s
⋅=δ

As indicated earlier, the phase response of an FIR filter can be a linear function of
frequency under certain conditions. For example, if we assume that frequency
response within the passband of an FIR filter is as shown in (7.8), we are
specifying that the gain must be unity, while the phase angle changes linearly with
frequency:

 (7.8)
Ω−∠=⋅= Ω−Ω ττ 11)(passband

jj eeH

The necessary conditions that allow for this linear phase shift (or constant group
delay) are that the impulse response coefficients be either symmetric or
antisymmetric and that τ take on the value in (7.9) where N is the number of
coefficients or the length of the filter. The filter coefficients are symmetric if they
satisfy (7.10) and antisymmetric if they satisfy (7.11).

 2
1−

=
Nτ

 (7.9)

)()(nhnh −= (7.10)

)()(nhnh −−= (7.11)

Perhaps it is time to say a few words about the difference between filter

length and filter order. Analog and digital IIR filters use the order of the filter as a
measure of the filter’s “size.” The order refers to the highest-order term in the
polynomial equation used to describe the filter. On the other hand, digital FIR
filters typically use the number of impulse response coefficients required to
describe it as its “size.” This is probably because most FIR filters are implemented
using convolution where the number of coefficients directly affects the length of
the processing. Once the FIR coefficients are substituted into a difference equation
(a little later in this section), we will see that the length of an FIR filter will simply
be one larger than its order.

 Finite Impulse Response Digital Filter Design 165

7.1.2 Characteristics of FIR Filters

When we consider symmetric and antisymmetric coefficients combined with even
and odd filter lengths, four different types of FIR filters can be designed. Each of
the four types has unique characteristics that can be described briefly as follows.

Type 1 FIR filters. The type 1 FIR filters, which have symmetric coefficients
and odd length, also have a frequency response that has even symmetry about both
Ω = 0 and Ω = π. This even symmetry allows the frequency response to take on
any value at these two critical frequencies, and thus lowpass, highpass, bandpass,
and bandstop filters can be implemented using this FIR type.

Type 2 FIR filters. The type 2 FIR filters, which have symmetric coefficients
and even length, have a frequency response that is even about Ω = 0 and odd
about Ω = π. This condition dictates that the response at Ω = π be zero and thus
type 2 FIR filters are not recommended for highpass or bandstop filters.

Type 3 FIR filters. The type 3 FIR filters, which have antisymmetric
coefficients and odd length, have a frequency response that has odd symmetry at
both Ω = 0 and Ω = π. Because of the odd symmetry, the frequency response of
this filter type must be zero at both of these two critical frequencies. Thus, this
filter type is not recommended for lowpass, highpass, or bandstop filters.
However, this type of filter does provide a 90° phase shift of the output signal
with respect to the input and therefore can be used to implement a differentiator or
Hilbert transformer. This type of filter has other characteristics that make it the
best choice for Hilbert transformation, while the differentiator is usually
implemented using a type 4 filter.

Type 4 FIR filters. The type 4 FIR filters, which have antisymmetric
coefficients and even length, have a frequency response that has odd symmetry
about Ω = 0 and even symmetry about Ω = π. The odd symmetry condition makes
this type of filter a poor choice to implement either lowpass or bandstop filters.
But, just as in the type 3 case, this filter provides a 90° phase shift that makes it
able to implement differentiators and Hilbert transformers. This type of filter has
better characteristics (in most cases) for implementing a differentiator than type 3,
but the type 3 filter has some advantages over this filter type for implementing the
Hilbert transform.

Since the type 1 FIR filter can be used to implement any of the filters we need
to design, we will discuss only that type of filter from this point forward in this
text. Further information concerning the other filter types can be found in a
number of the digital filter design references listed in Appendix A.

The filter coefficients derived from (7.2) will not produce a causal filter. This
means that the system could not be implemented in real time. We can verify this if
we consider the output of a discrete-time system produced by the convolution of
the input signal with the impulse response coefficients as shown in (7.12). Notice
that the output y(n) becomes only a function of the input x(n) and does not include
any past values of the output as in the IIR filter case.

166 Practical Analog and Digital Filter Design

 (7.12)
∑
−=

−⋅=
M

Mk
knxkhny)()()(

As we see, using the impulse response coefficients directly will result in y(n)
being determined by future values of the input. For example, when k = −M, the
summation includes a term x(n + M) that refers to an input value M sampling
periods ahead of y(n)’s reference time. The problem can be handled by shifting all
coefficient values to the right on the time axis so that only positive values of n
produce coefficients, as shown in Figure 7.3. The disadvantage of this action is to
increase the time delay between system input and output by M sampling periods.

Figure 7.3 (a) Noncausal and (b) causal coefficients.

The causal coefficients can be determined from the noncausal coefficients by

making the following index adjustments. As the noncausal coefficients indices
take on values from −M to +M, the causal coefficient indices will take on values
from 0 to 2 M, as shown in (7.13):

 MnnhMnh ±±=+ , ,1 ,0 = ,)()(noncausalcausal … (7.13)

7.1.3 Ideal FIR Impulse Response Coefficients

We can now determine the ideal coefficients for various filter types by using the
integral formula of (7.2). In each case, figures depicting ideal lowpass, highpass,

 Finite Impulse Response Digital Filter Design 167

bandpass, and bandstop filters along with equations for determining the
coefficients based on the parameters of the particular filter are given. The
frequency response in the passband of each filter is as defined in (7.8) and allows
us to determine causal coefficients directly. We will be assuming that the desired
passband magnitude response is 1, while the stopband response is 0. We will be
using δp and δs (or apass and astop) later to help determine the required length of
the filter.

In the first case, Figure 7.4 illustrates the lowpass filter specification with the
resulting derivation of the lowpass filter coefficients shown in (7.14) and (7.15).
The highpass, bandpass, and bandstop filter cases are portrayed respectively in
Figures 7.5 to 7.7 with the appropriate derivations in (7.16) to (7.21). In each
case, τ = M as determined from (7.9).

Example 7.1 Determining Ideal Coefficients for an FIR Filter

Problem: Determine the ideal impulse response coefficients for a lowpass
filter of length 21 to satisfy the following specifications:

 ωpass = 2π⋅3,000 rad/sec, ωstop = 2π⋅4,000 rad/sec, and fs = 20 kHz

Solution: We first need to determine Ωc, the cutoff frequency for the ideal
filter. This frequency can be set in the middle of the transition band and converted
to a digital frequency:

sec/rad 0996.1)2/()(passstop =⋅+=Ω sc fωω

Using this value along with τ = 10 in (7.15), we can determine the following ideal
causal coefficients:

03183.0)20()0(
01606.0)19()1(

02339.0)18()2(
04491.0)17()3(
01639.0)16()4(
04502.0)15()5(
07568.0)14()6(
01660.0)13()7(

12876.0)12()8(
28362.0)11()9(

35000.0)10(

−==
−==

==
==
==
−==
−==
−==

==
==

=

hh
hh
hh
hh
hh
hh
hh
hh
hh
hh

h

168 Practical Analog and Digital Filter Design

Figure 7.4 Lowpass filter specification.

Mn

denh
c

c

nj
LP

2 , ,1 ,0

,
2
1)()(

…=

Ω⋅= ∫
Ω+

Ω−

Ω−τ

π (7.14)

[]

Mn

n

n
n
n

nh

c

c

LP

2 , ,1 ,0

=for ,/

for ,
)(
)(sin

)(

…=

⎪
⎪

⎩

⎪
⎪

⎨

⎧

Ω

≠
−

Ω−

=
τπ

τ
πτ

τ

 (7.15)

Figure 7.5 Highpass filter specification.

 Mn

dedenh
c

c
njnj

HP

2 , ,1 ,0

+
2
1)()()(

…=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
Ω⋅Ω⋅= ∫∫

+

Ω

Ω−
Ω−

−

Ω−
π

τ

π

τ

π

 (7.16)

[] []

Mn

n

n
n

nn

nh

c

c

HP

2 , ,1 ,0

=for ,/)-(

for ,
)(

)(sin)(sin

)(

…=

⎪
⎪

⎩

⎪
⎪

⎨

⎧

Ω

≠
−

Ω−−−

=
τππ

τ
πτ

τπτ

 (7.17)

 Finite Impulse Response Digital Filter Design 169

Figure 7.6 Bandpass filter specification.

 Mn

dedenh
c

c

c

c

njnj
BP

2 , ,1 ,0

+
2
1)(

2

1

1

2

)()(

…=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
Ω⋅Ω⋅= ∫∫

Ω+

Ω+

Ω−
Ω−

Ω−

Ω− ττ

π

 (7.18)

[] []

Mn

n

n
n

nn

nh

c

cc

BP

2 , ,1 ,0

for ,/)(

for ,
)(

)(sin)(sin

)(

1c2

12

…=

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=Ω−Ω

≠
−

Ω−−Ω−

=
τπ

τ
πτ

ττ

 (7.19)

Figure 7.7 Bandstop filter specification.

 Mn

dededenh
c

c

c

c
njnjnj

BS

2 , ,1 ,0

++
2
1)(

2

1

1

2
)()()(

…=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
Ω⋅Ω⋅Ω⋅= ∫∫∫

+

Ω+

Ω−
Ω+

Ω−

Ω−
Ω−

−

Ω−
π

ττ

π

τ

π

 (7.20)

[] [] []

Mn

n

n
n

nnn

nh

c

cc

BS

2 , ,1 ,0

=for ,/)+(

for ,
)(

)(sin)(sin)(sin

)(

1c2

12

…=

⎪
⎪

⎩

⎪
⎪

⎨

⎧

ΩΩ−

≠
−

Ω−+Ω−−−

=
τππ

τ
πτ

ττπτ

 (7.21)

170 Practical Analog and Digital Filter Design

7.2 WINDOWING TECHNIQUES TO IMPROVE DESIGN

As indicated in the previous section, we are not able to include the infinite number
of coefficients necessary to implement an ideal filter. We will have to reduce the
number of coefficients used based on the constraints of our design. In the previous
section, we simply truncated all noncausal coefficients beyond the indices ±M and
kept the rest. (We will use the noncausal description of the filter coefficients for
mathematical simplicity at this point. After the windowing process has been
completed, we can shift the resulting coefficients to produce a causal filter.) This
procedure can be compared to placing a window of width N = 2 M + 1 over all of
the ideal coefficients, as shown in Figure 7.8. All of the coefficients within the
window are retained and all coefficients outside of the window are discarded. In
effect we have produced a rectangular “window” function in which all window
coefficients with indices within the range of the window have a value of 1 and all
other coefficients have a value of 0. The retained values of the filter coefficients
would then be determined by performing a coefficient-by-coefficient
multiplication of the ideal coefficients and the window coefficients, as indicated in
(7.22):

 Mnnwnhnh ±±⋅= , ,1 ,0= ,)()()(ideal … (7.22)

The rectangular window coefficients can be formally defined in (7.23).
However, the abrupt truncation of the filter coefficients has an adverse effect on
the resulting filter’s frequency response. Therefore, a number of other window
functions have been proposed which smoothly reduce the coefficients to zero. For
example, a simple triangular window (also called the Bartlett window) as shown
in Figure 7.9 would smooth the truncation process. An expression for these
window coefficients is given in (7.24), where M = (N − 1) / 2.

Figure 7.8 Window selection of coefficients.

 Mnnwnw , ,1 ,0= ,1)()(rectrect …=−= (7.23)

 Finite Impulse Response Digital Filter Design 171

Mn

M
nMnwnw , ,1 ,0= ,)()()(bartbart …−

=−=
 (7.24)

Many window functions have been based on the raised cosine function
including the von Hann, Hamming, and Blackman windows. Graphs of those
windows are also shown in Figure 7.9 with the method of coefficient calculation
for each window function provided in (7.25) to (7.27).

Figure 7.9 Bartlett, Blackman, Hamming, and von Hann windows.

 Mn
M

nMnwnw

 , ,1 ,0=

,)(cos15.0)()(hannhann

…
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −⋅

−=−=
π

 (7.25)

 Mn
M

nMnwnw

 , ,1 ,0=

,)(cos46.054.0)()(hammhamm

…

⎥⎦
⎤

⎢⎣
⎡ −⋅

⋅−=−=
π

 (7.26)

 Mnnwnw
M

nM
M

nMnw

 , ,1 ,0=),()(and

)(2cos08.0)(cos5.042.0)(

blckblck

blck

…−=

⎥⎦
⎤

⎢⎣
⎡ −⋅

⋅+⎥⎦
⎤

⎢⎣
⎡ −⋅

⋅−=
ππ

 (7.27)

As more time was spent trying to improve the window functions used in FIR
filter design, it became apparent for a fixed length of filter that there was a trade-

172 Practical Analog and Digital Filter Design

off between transition band roll-off and attenuation in the stopband. One of the
window functions that developed because of this fact was the Kaiser window
function, as shown in Figure 7.10. The expression for the window coefficients as
given in (7.28) is based on the modified Bessel function of the first kind Io. The
value β generally ranges from 3 to 9 and can be used to control the trade-off
between the transition band and stopband characteristics.

Figure 7.10 Kaiser windows with various β values.

()
Mn

I

M
nI

nwnw
o

o

 , ,1 ,0=

,

21

)()(

2

kaiskais

…
β

β
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ⋅

−⋅

=−=

 (7.28)

A reasonable estimate of β in the equation above has been determined
empirically by Kaiser, as shown in (7.29):

 (7.29)
⎪
⎩

⎪
⎨

⎧

<
≤≤−⋅+−⋅
>−⋅

=
21for ,0.0
5021for),21(078860)21(58420
50for)78(11020

40

A
AA.A.

 A, .A.
.β

In (7.29), the variable A represents the larger of the band errors (δp or δs)
expressed as attenuation, as shown in (7.30):

 Finite Impulse Response Digital Filter Design 173

)],log[min(20 spA δδ⋅−= (7.30)

In addition, Kaiser developed empirical estimates of the filter length required
to satisfy a given set of filter specifications, as indicated in (7.31). It should be
emphasized here that FIR filter design is not as precise as IIR design. The
truncation/modification of coefficients results in responses that may or may not
meet the requirements. Therefore, the N value of (7.31) is just an estimate and the
filter responses must be checked carefully to determine if all requirements are met.
If they are not, the value on N should be adjusted (usually up, but sometimes
decreasing N can result in a better filter).

⎪
⎩

⎪
⎨

⎧

∆Ω

∆Ω⋅
−

=
21<for ,794.5

21>for ,
285.2

95.7

A

AA

N

 (7.31)

In (7.31), ∆Ω represents the normalized radian transition band for lowpass
and highpass filters and the smaller of the two normalized transition bands in the
case of bandpass and bandstop filters.

 sf/passstop ωω −=∆Ω (7.32)

Once the desired window function has been selected and the adjustments
made to the ideal coefficients, the causal coefficients can be determined as
indicated in the previous section.

Example 7.2 Determining Hamming Coefficients for an FIR Filter

Problem: Determine the coefficients for a lowpass filter using a Hamming
window of length 21 to satisfy the specifications shown below:

ωpass = 2π⋅3,000 rad/sec, ωstop = 2π⋅4,000 rad/sec, and fs = 20 kHz

Solution: The ideal coefficients have been determined in Example 7.1. We
can use (7.24) to determine the noncausal Hamming window coefficients as
shown. After multiplication and shifting the coefficients by 10 sampling periods,
the causal windowed coefficients result.

Figure 7.11 shows the frequency response for both Examples 7.1 and 7.2. The
rectangular window produces a filter that emphasizes transition band roll-off over
ripple in the stopband. On the other hand, the filter produced by using Hamming
coefficients has no noticeable ripple, but does not have a rapid roll-off in the
transition band.

174 Practical Analog and Digital Filter Design

 0800.0)10()10(
10251.0)9()9(
16785.0)8()8(
26962.0)7()7(
39785.0)6()6(
54000.0)5()5(
68215.0)4()4(
81038.0)3()3(
91215.0)2()2(

97749.0)1()1(
0000.1)0(

=−=
=−=
=−=
=−=
=−=
=−=
=−=
=−=
=−=
=−=

=

ww
ww
ww
ww
ww
ww
ww
ww
ww
ww

w

00255.0)20()0(
00165.0)19()1(

00393.0)18()2(
01211.0)17()3(
00652.0)16()4(

02431.0)15()5(
05163.0)14()6(
01345.0)13()7(

11745.0)12()8(
27723.0)11()9(

35000.0)10(

−==
−==

==
==
==
−==
−==
−==

==
==

=

hh
hh
hh
hh
hh
hh
hh
hh
hh
hh

h

Figure 7.11 Magnitude responses for Examples 7.1 and 7.2.

Example 7.3 Determining Kaiser Coefficients for an FIR Filter

Problem: Determine the impulse response coefficients for a bandpass filter
using a Kaiser window to satisfy the following specifications:

fpass1 = 4 kHz, fpass2 = 5 kHz, fstop1 = 2 kHz, fstop2 = 8 kHz,
apass1 = −0.5 dB, astop1 = astop2 = −50 dB, and fsamp = 20 kHz

Solution: The solution to this problem begins with the determination of the
passband and stopband errors δp and δs by using (7.6) and (7.7).

 Finite Impulse Response Digital Filter Design 175

 055939.0101 025.0 =−= −
pδ

 0031623.010 5.2 == −
sδ

We can then use (7.29), (7.30), and (7.32) to find A = 50, β = 4.53351, and ∆Ω,
where

sec/rad 6263185.0

000,20
)000,2000,4(2

lower =
−⋅⋅

=∆Ω
π

 sec/rad 9424778.0
000,20

)000,5000,8(2
upper =

−⋅⋅
=∆Ω

π

Equation (7.31) can then be used to estimate the smallest odd filter length as

N = 31. Equation (7.17) can be used to determine the ideal filter coefficients after
finding the values of τ = 15 and calculating Ωc1 and Ωc2, as shown below.

 sec/rad 942478.0
000,202

)000,4000,2(2
1 =

⋅
+⋅⋅

=Ω
π

c

 sec/rad 042035.2
000,202

)000,8000,5(2
2 =

⋅
+⋅⋅

=Ω
π

c

The Kaiser window coefficients can be determined by using (7.28). The final

coefficients can be calculated by multiplying the ideal coefficients by the
respective window coefficients and shifting all coefficient indices by a value of
M = 15.

Rather than perform all of the numerical calculations by hand, we can use
WFilter to finish the design of this filter. One addition to the design process for
FIR filters is the indication of the filter length and an option to change the length
if desired. Since the determination of filter length is not an exact calculation, this
option allows the user to increase or decrease the length as necessary to satisfy the
design. Figure 7.12 shows the FIR Estimated Length dialog box, which includes
an estimate of the filter length and the value of β.

176 Practical Analog and Digital Filter Design

Figure 7.12 FIR Estimated Length dialog box.

Figure 7.13 shows the coefficient screen with the final filter coefficients
displayed. They are displayed in causal form, and are symmetric about the center
value. The magnitude response of the filter is shown in Figure 7.14 and verifies
that the specifications have been satisfied.

FIR Bandpass with Kaiser Window

Selectivity: Bandpass
Approximation: Kaiser
Implementation: FIR (digital)
Passband gain (dB): -0.5
Stopband gain (dB): -50.0
PB freq-lower (Hz): 4000.0
PB freq-upper (Hz): 5000.0
SB freq-lower (Hz): 2000.0
SB freq-upper (Hz): 8000.0
Sampling freq (Hz): 20000.0

Filter Length/Order: 31
Overall Filter Gain: 1.00000000000E+00

 Coefficients
 N [N + 0 N + 1]
=== =====================================
000 -2.01201050092E-03 -2.01616077587E-03
002 4.85062961990E-03 2.08877721763E-03
004 2.97741355116E-03 1.17872058678E-02
006 -2.03738740194E-02 -3.33459478620E-02
008 1.95330807169E-02 1.06179366366E-02
010 1.48522876861E-02 1.06004616317E-01
012 -4.55615841929E-02 -2.70313807850E-01
014 2.58671686944E-02 3.50000000000E-01
016 2.58671686944E-02 -2.70313807850E-01
018 -4.55615841929E-02 1.06004616317E-01
020 1.48522876861E-02 1.06179366366E-02
022 1.95330807169E-02 -3.33459478620E-02
024 -2.03738740194E-02 1.17872058678E-02
026 2.97741355116E-03 2.08877721763E-03
028 4.85062961990E-03 -2.01616077587E-03
030 -2.01201050092E-03

Figure 7.13 Coefficient values for Example 7.3.

 Finite Impulse Response Digital Filter Design 177

7.3 PARKS-MCCLELLAN OPTIMIZATION PROCEDURE

As we can see in Figure 7.14 for the filter using the Kaiser window, the stopband
has ripple that generally decreases. In fact, if the passband characteristic were
magnified, we would see ripple there as well. Both the passband and stopband
ripple (error) tend to be larger near the transition bands and then taper off as the
response moves away from the band edge. This type of response is not optimum.
An optimum filter would have ripple in the passband and stopband with a constant
maximum magnitude. The error would still be present but would be distributed
equally throughout the bands.

Figure 7.14 Magnitude response for Example 7.3.

In this section, we discuss a method for designing FIR filters with this

characteristic. The Parks-McClellan algorithm, as it is generally known, was first
presented over 20 years ago. Although the basic procedure has remained the same,
a number of implementation techniques have changed. A detailed description of
the Parks-McClellan (PM) algorithm is beyond the scope of this text, but a general
overview of the procedure is appropriate. In addition, a review of the commented
filter design code (as introduced in the next section) provides further
implementation details. (Several of the texts listed in the digital filter design
section of Appendix A provide more detailed descriptions of the PM algorithm,
with the text by Antoniou providing a particularly detailed description.)

7.3.1 Description of the Problem

A primary component of the PM algorithm is a technique called the Remez
exchange algorithm. But before we can use the power of the Remez algorithm to
optimize our FIR filter coefficients, we must redefine our problem in such a way

178 Practical Analog and Digital Filter Design

that the solution requires the minimization of an error function. To that end, we
first define the frequency response of an odd-order FIR filter with symmetrical
coefficients h(n), as shown in (7.33):

 (7.33)
∑∑
=

−
−

=

− ⋅=⋅=
M

m

Mj
N

n

njj mmceenheH
0

1

0
)cos()()()(ωωωω

where M = (N − 1) / 2 and

 (7.34)
⎩
⎨
⎧

⋅
=

MmmMh
mMh

mc
 , ,2 ,1=for),-(2

 ,0=for ,)(
)(

…

We can then define the summation component of (7.33) as

 (7.35)
∑
=

⋅=
M

m
mmcC

0
)cos()()(ωω

which is used to formulate the error function that will be the object of the
minimization. As shown in (7.36), the error function can be described in terms of
the desired frequency response e−jωM D(ω), the actual frequency response
e−jωM C(ω), and a weighting function W(ω) that can be used to adjust the amount
of error in each filter band:

 [])()()()(ωωωω CDWE −⋅= (7.36)

The desired frequency response function D(ω) is usually defined as being 1

within the passband of the filter and 0 within the stopband, although other values
can be assigned. The weighting function W(ω) can be defined equivalently
throughout the filter band, or it can be assigned a value of 1 within the passband
and 10 within the stopband if a smaller error value δ is desired in the stopband.
This result occurs because the minimization algorithm will produce equal amounts
of error throughout the defined frequency range, and since the stopband error has
been artificially increased by 10, the actual error will be 10 times smaller.

The optimum error function will produce variations within the passband and
stopband similar to those shown in Figure 7.2 (except that all ripple will be of the
same magnitude). The actual error function will alternate between positive and
negative δ values because of the summation of cosine functions. If we pick a set of
frequencies (x = M + 1) at which the extremes of the error occur, (7.36) can be
written as

 Finite Impulse Response Digital Filter Design 179

[]
 , ,1 ,0=for

,)1()()()()(
xi

CDWE i
iiii

…
δωωωω −=−⋅=

 (7.37)

Equation (7.37) can be expanded into a matrix equation by considering these
x+1 frequencies, which are typically called extremals and play a crucial role in the
optimization process.

()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

)(

)(
)(

)(

)1(
)0(

)(
1coscos1

)(
1coscos1

)(
1coscos1

1

0

1
11

0
00

x

x

x

xx

D

D
D

Mc

c
c

W
M

W
M

W
M

ω

ω
ω

δ

ω
ωω

ω
ωω

ω
ωω

#
#

"

##%##

"

"

 (7.38)

In (7.38), ω0 – ωx represents the extremal frequencies and δ is the error. With
this expression the filter design problem has been set into a form that can be
manipulated by the Remez exchange algorithm.

7.3.2 The Remez Exchange Algorithm

The Remez exchange algorithm is a powerful procedure that uses iteration
techniques to solve a variety of minimax problems. (A minimax problem is one in
which the best solution is the one that minimizes the maximum error that can
occur.) Before initiating the process, a set of discrete frequency points is defined
for the passband and stopband of the filter. (Transition bands are excluded.) This
dense grid of frequencies is used to represent the continuous frequency spectrum.
Extremal frequencies will then be located at particular grid frequencies as
determined by the algorithm. The basic steps of the method as it is applied to our
filter design problem are shown below.

Remez Exchange Algorithm

 I. Make an initial guess as to the location of x + 1 extremal
 frequencies, including an extremal at each band edge.
 II. Using the extremal frequencies, estimate the actual frequency
 response by using the Lagrange interpolation formula.
 III. Locate the points in the frequency response where maximums
 occur and determine the error at those points.
 IV. Ignore all new extremals beyond the number initially set in I.

180 Practical Analog and Digital Filter Design

 V. If the difference between the maximum and minimum error
 at the remaining extremal is small enough, continue to VI.
 Otherwise return to II using the retained extremals.
 VI. Estimate the final frequency response and determine the c(m)

values from it. Then determine the impulse response
coefficients.

Each step in the procedure can be implemented in a variety of ways. These

variations can produce differences in the speed of executing the algorithm, but
usually little difference in accuracy is noticed. The simplest method of
implementing step I is to assign the x + 1 extremal frequencies such that they are
equally spaced throughout the bands of interest. Extremals are usually placed at all
band edges that are adjacent to transition bands. The initial band and final band
may not have extremals located at their terminal edges. The barycentric form of
the Lagrange interpolation formula (as described in the mathematical references in
Appendix A) is then used to determine the frequency response on the dense grid
of frequencies. This method is much more efficient and accurate than the
alternative method of finding the c(m) values in (7.37) by matrix inversion. Once
the frequency response has been determined, the true extrema can be located and
the error at these locations calculated. (Various methods can be used to locate the
extrema, usually differing in speed and complexity.) These new frequency points
will be used as the new extrema in the next iteration.

It is not unusual to find more extrema in the frequency response than will be
needed to characterize the final frequency response. Therefore, some means is
necessary to reduce the number of retained frequencies to x + 1. Again, there are
variations on this procedure, but the general consensus is to retain the extremals
that produce the largest error. In step V, we check the difference between the
largest and smallest error produced at the retained extremals. By using this value
as a progress indicator, we can set some threshold to indicate when the procedure
has produced the required level of optimization. If the differences between the
minimum and maximum errors have not been reduced enough, the algorithm
continues from step II. When the optimization procedure has reached the desired
threshold, the extremal frequencies can be used to determine the c(m) values in
(7.37) and therefore the impulse response coefficients h(n) from (7.34).

7.3.3 Using the Parks-McClellan Algorithm

The general algorithm has great flexibility in designing any of the four types of
FIR filters discussed earlier. The code that is included with this text will design
lowpass, highpass, bandpass, and bandstop type 1 filters (with an odd number of
symmetrical coefficients). The code is written so that other filter types can be
implemented by adding to the program structure. In order to use the general
algorithm, we must first convert our filter specifications into those needed by the
algorithm. This amounts to converting gain requirements for decibels to absolute
error and some redefinition of frequencies.

 Finite Impulse Response Digital Filter Design 181

As in the Kaiser window case, an empirical formulation of the required length
of an FIR filter designed using the PM algorithm has been developed, as shown in
(7.39). Although somewhat extensive in its presentation, it does provide an
accurate estimate of the required length.

1

2
21 +

∆
∆⋅−

=
f

fKKN
 (7.39)

where

 (7.40)
]42781.0log5941.0)(log00266.0[

log]4761.0log07114.0)(log005309.0[
2

2
1

+⋅+⋅−

⋅−⋅+⋅=

pp

sppK

δδ

δδδ

012.11)log(log51244.02 +−⋅= spK δδ

 (7.41)

 sffff /)(passstop −=∆
 (7.42)

Example 7.4 Determining Parks-McClellan Coefficients for FIR Filter

Problem: Determine the impulse response coefficients for a bandpass filter
using the same specifications as in Example 7.3 (as indicated below), except use
the Parks-McClellan algorithm for coefficient determination.

fpass1 = 4 kHz, fpass2 = 5 kHz, fstop1 = 2 kHz, fstop2 = 8 kHz,
apass = −0.5 dB, astop1 = astop2 = −50 dB, and fsamp = 20 kHz

Solution: We will use the WFilter program for this example. The same input
parameters as in the previous example are specified, except the approximation
type has been changed to Parks-McClellan. Using the specified parameters, the
first design attempt resulted in an estimated length of 19, which produced a filter
with passband edge gains of −0.54 dB and stopband edge gains of −49.38 dB.
These values are certainly very close to the design specifications and might be
acceptable in many designs. However, for comparison purposes, the filter was
redesigned using a filter length of 21 and produced passband gains of −0.23 dB
and stopband gains of −56.70 dB. The resulting coefficients and frequency
response curve are shown in Figures 7.15 and 7.16.

We should notice the equal ripple in the stopbands for the PM filter and the
fact that it is implemented in one-third fewer coefficients than the Kaiser filter. As
a comparison to IIR filters, a sixth-order elliptic or an eighth-order Butterworth

182 Practical Analog and Digital Filter Design

filter would be required to satisfy the same specifications, but without linear
phase.

FIR Bandpass using Parks-McClellan Procedure

Selectivity: Bandpass
Approximation: Parks-McClellan
Implementation: FIR (digital)
Passband gain (dB): -0.5
Stopband gain (dB): -50.0
PB freq-lower (Hz): 4000.0
PB freq-upper (Hz): 5000.0
SB freq-lower (Hz): 2000.0
SB freq-upper (Hz): 8000.0
Sampling freq (Hz): 20000.0

Filter Length/Order: 21
Overall Filter Gain: 1.00000000000E+00

 Coefficients
 N [N + 0 N + 1]
=== =====================================
000 1.25270567042E-02 1.19473087473E-03
002 -3.33680410407E-02 -4.33317885804E-03
004 1.22816612467E-02 8.32245424391E-03
006 1.02738836518E-01 -8.97234696493E-03
008 -2.68080507538E-01 4.01012968419E-03
010 3.48822141957E-01 4.01012968419E-03
012 -2.68080507538E-01 -8.97234696493E-03
014 1.02738836518E-01 8.32245424391E-03
016 1.22816612467E-02 -4.33317885804E-03
018 -3.33680410407E-02 1.19473087473E-03
020 1.25270567042E-02

Figure 7.15 Coefficient values for Example 7.4.

Figure 7.16 Magnitude response for Example 7.4.

 Finite Impulse Response Digital Filter Design 183

7.3.4 Limitations of the Parks-McClellan Algorithm

The Parks-McClellan algorithm is certainly an attractive FIR filter design method,
but it does have certain limitations in comparison to window-based design
methods. The Kaiser window design is basically a one-pass system, although
some variation of filter length may be necessary to attain the desired specification
(as is also the case for the Parks-McClellan procedure). The computational
intensity of the PM method is far greater than for any of the window methods, but
computational power is also more readily available than it was 10 years ago.
Probably the biggest problem with the PM algorithm is that it does not always lead
to a solution. In some cases, the iteration sequence will not converge, which
makes it necessary to place an upper limit on the number of iterations allowed.
The algorithm can be modified to allow the frequency grid to be made more dense
and to initiate the algorithm again if this happens. Nonetheless, there will be
occurrences when the problem statement will need to be redefined in order to
attain convergence. For example, if the two stopbands of a bandpass filter are not
of approximately equal size, one can be artificially reduced to help the
convergence process. Occasionally, the error constraints on the filter must be
adjusted to allow more freedom in the optimization process. Even if the process
converges, the frequency response of the resulting filter must be checked
carefully. Since no requirements are placed on the frequency within the transition
bands, strange results can sometimes occur.

7.4 C CODE FOR FIR FREQUENCY RESPONSE CALCULATION

Our last task is to determine the frequency response of the filter. As determined in
Chapter 5, the frequency response of a digital filter can be determined from the
transfer function, as shown in (7.43):

 Ω=
Ω = jez

j zHeH)()(
 (7.43)

For a causal FIR filter, the transfer function can be described in (7.44), which
then leads to the description for the frequency response shown in (7.45):

 (7.44)
∑
−

=

−⋅=
1

0
)()(

N

k

kzkhzH

 (7.45)
∑
−

=

Ω−Ω ⋅=
1

0
)()(

N

k

jkj ekheH

184 Practical Analog and Digital Filter Design

Equation (7.45) can also be expressed as a sum of the real and imaginary
portions of the exponential as in (7.46). The Calc_DigFIR_Resp function
implements (7.46) directly, as shown in Listing 7.1.

 (7.46)
∑∑
−

=

−

=

Ω Ω⋅+Ω⋅=
1

0

1

0
)sin()()cos()()(

N

k

N

k

j kkhjkkheH

/*==
 Calc_DigFIR_Resp() - calcs response for FIR filters
 Prototype: int Calc_DigFIR_Resp(Filt_Params *FP,
 Resp_Params *RP);
 Return: error value
 Arguments: FP - ptr to struct holding filter params
 RP - ptr to struct holding respon params
==*/
int Calc_DigFIR_Resp(Filt_Params *FP,Resp_Params *RP)
{ int f,i; /* loop counters */
 double rad2deg, /* rad to deg conversion */
 omega,i_omega,/* radian freq and incrmnt */
 mag, /* magnitude of freq resp */
 rea,img; /* real and imag part */
 rad2deg = 180.0 / PI; /* set rad2deg */
 /* Loop through each of the frequencies */
 for(f = 0 ;f < RP->tot_pts; f++)
 { /* Initialize magna and angle */
 RP->magna[f] = FP->gain;
 RP->angle[f] = 0.0;
 /* Pre calc adjusted omega, rea and img */
 omega = PI2 * RP->freq[f] / FP->fsamp;
 rea = 0.0; img = 0.0;
 /* Loop through all the coefs */
 for(i = 0 ;i < FP->order; i++)
 { i_omega = i * omega;
 rea += FP->acoefs[i] * cos(i_omega);
 img += FP->acoefs[i] * sin(i_omega);
 }
 /* Calc final result and conv to degrees */
 mag = sqrt(rea*rea + img*img);
 RP->magna[f] *= mag;
 /* Guard against atan(0,0) */
 if(mag > 0)
 { RP->angle[f] += atan2(img,rea);}
 RP->angle[f] *= rad2deg;
 }
 /* Convert magnitude response to dB if indicated */
 if(RP->mag_axis == LOG)
 { for(f = 0 ;f < RP->tot_pts; f++)
 { /* Handle very small numbers */
 if(RP->magna[f] < ZERO)
 { RP->magna[f] = ZERO;}
 RP->magna[f] = 20 * log10(RP->magna[f]);
 }
 }
 return ERR_NONE;
}

Listing 7.1 Calc_DigFIR_Resp function.

 Finite Impulse Response Digital Filter Design 185

The magnitude variable is initialized to the value of the gain constant, and the
angle variable is set to zero. Then, the response at each frequency is determined by
evaluating the effect of each filter coefficient. The angle is converted to degrees,
and after all calculations have been made, the magnitude is converted to decibels
if the user requested that format.

7.5 CONCLUSION

By completing this chapter, we have completed the material on digital filter
design. We investigated two of the most popular methods of FIR filter design: the
Fourier series method using window functions and the Parks-McClellan
optimization method. We can also determine and display the magnitude and phase
response of the FIR filters we design. In the next chapter we will investigate the
implementation of both the FIR and IIR digital filters we have designed. For those
interested in the C code for FIR filter design, please refer to Appendix H.

186 Practical Analog and Digital Filter Design

187

Chapter 8

Digital Filter Implementation Using C

In the previous three chapters we discussed the nature of digital filter design. We
are now ready to discuss the implementation of these digital filters. We begin this
chapter with a discussion of several important issues in digital filter selection and
implementation. These issues include the differences between real-time and
nonreal-time implementation, as well as the effects of finite precision
representation of input signals and filter coefficients. Then, we discuss the C code
for implementing IIR and FIR filters. Efficient algorithms will be developed to
increase the speed of execution. Each filter type will use a different technique
appropriate to the specific filter’s representation. Finally, we conclude with a
discussion of the format for a popular sound file on the PC. We will consider how
we can use sound files to investigate the characteristics of the filters we have
designed.

8.1 DIGITAL FILTER IMPLEMENTATION ISSUES

The first decision to make when designing a system with a digital filter is whether
an IIR or FIR filter should be used. Some of the advantages and disadvantages of
each type have been discussed in the previous two chapters, so we will summarize
those points here. First, and foremost, the correct filter type must be determined by
the requirements of the application. IIR (recursive) filters have the advantages of
providing higher selectivity for a particular order and a closed form design
technique that doesn’t require iteration. The design technique also provides for the
rather precise solution to the specifications of gain and edge frequencies.
However, IIR filters also have the disadvantages of nonlinear phase characteristics
and possible instability due to poor implementation. FIR (nonrecursive) filters, on
the other hand, can provide a linear phase response (constant group delay) that is
important for data transmission and high-quality audio systems. Also, they are
always stable because they are implemented using an all-zero transfer function.
Since no poles can fall outside the unit circle, the filter will always be stable. But

188 Practical Analog and Digital Filter Design

because of this, the order of the filter is much higher than the IIR filter, which has
a comparable magnitude response. This higher order leads to longer processing
times and larger memory requirements. In addition, FIR filters must be designed
using an iterative method since the required filter length to satisfy a given filter
specification can only be estimated.

Therefore, the filter designer must weigh the requirements placed on the
digital filter. If great importance is placed on magnitude response with much less
importance on phase response, then an IIR filter would seem the better choice. If
phase response is far more important than magnitude response, then an FIR filter
is in order. If both magnitude and phase response seem to be of equal concern,
then the processing time constraints and memory requirements must be
considered. The FIR filter, even when designed using the Parks-McClellan
method, will require more processing time and more memory to implement, but
always will be stable. If all else fails, both an FIR and IIR filter (with some phase
correction) can be designed to meet the specifications and they both can be tested
to evaluate the results.

Once the choice of filter type has been made, there are still a number of
decisions to make. For example, is the system to operate in real-time or can it be a
nonreal-time system? A real-time system is one in which input samples are
provided to the digital filter and must be processed to provide an output sample
before the next input sample arrives. Obviously, this puts a very precise time
constraint on the amount of processing available to the system. The higher the
sampling frequency, the less time is available for processing. On the other hand,
some systems are afforded the luxury of being able to operate in nonreal time. For
example, signals can be recorded on tape or other media and processed at a later
time. In this type of system, extensive processing can take place because there is
no fixed time interval that marks the end of the processing time. In nonreal-time
applications, high-precision floating-point representation for the coefficients and
signal can usually be used since speed is not the critical factor. However, the
majority of digital filter applications will be real-time applications. In these
applications there will inevitably be a battle to obtain the highest accuracy, the
fastest speed, and the lowest-cost system. One of the first decisions to make is
whether the system will be a fixed-point or a floating-point system. This deals not
only with the input and output signal streams, but also the representation of the
coefficients and intermediate results within the processing unit.

8.1.1 Input and Output Signal Representation

Fixed point systems represent a large market in today’s digital signal processing
arena. Many analog-to-digital (A/D) converters are available to provide output in
a fixed-point representation. Although many input and output digital signals use
fixed-point representation, there are several ways in which the same signals can be
interpreted. Most people are familiar with the base 10 system that humans use, but
the digital computers of the world use a binary or base 2 system. In that system,

 Digital Filter Implementation Using C 189

each digit represents a multiplier of a power of 2 just as each digit in the decimal
or base 10 system represents a multiplier of a power of 10. Let’s start with an 8-bit
binary number shown below:

 (8.1) 10
347

2 15221212110011000 =⋅+⋅+⋅=

This binary number is equivalent to 15210 only when we assume that the

number is unsigned (represents only positive numbers). If we had considered the
binary number as signed, the leftmost 1 would have indicated a negative sign, and
the value would have been interpreted differently. Using two’s complement
arithmetic, we can determine the value of the number in (8.1) by first negating
every digit in the number and then adding one to the result. That value is then
considered a negative value, as shown in (8.2):

 10222 10401101000)101100111(10011000 −=−=+−= (8.2)

We can even interpret the original binary number in a different way if we
assume that the placement of the binary point (equivalent to the decimal point) is
located at a position other than to the right of the right-most digit. For example, if
we place the binary point in the middle of the eight binary digits, the number takes
on another value entirely. (In the representation shown below, it is considered an
unsigned number, but it could just as well be considered a signed number as
described before.)

 (8.3) 10
103

2 5.92121211000.1001 =⋅+⋅+⋅= −

There are advantages and disadvantages to each of the binary representations.
The use of signed numbers is required in most digital filters, and the two’s
complement representation provides easier methods for addition and subtraction,
but multiplication requires special consideration. The signed fractional arithmetic
illustrated in (8.3) provides great efficiency in multiplication even though addition
and subtraction do require some special steps. By using fractional notation, as
most commercial digital signal processing (DSP) chips do, we can guarantee that
the result of a multiplication will still be less than one and therefore cause no
overflow. However, the addition of two fractional numbers can provide a result
larger than one and therefore must be handled carefully. Techniques for dealing
with potential errors in calculations are considered further in Section 8.1.3.

Before we leave the area of input and output data representation completely,
we must consider the effect of the number of bits per sample on the signal-to-noise
ratio (SNR) of a digital system. It is shown in a number of the digital filter design
references listed in Appendix A that the SNR for a digital signal processing

190 Practical Analog and Digital Filter Design

system will be directly proportional to the number of quantization bits used. To be
specific, the equation is

 8.10)/log(2002.6SNR maxdB +⋅+⋅= AB xσ (8.4)

In (8.4), B represents the number of bits used to represent the magnitude of
the digitized signal, while σx and Amax represent the input signal’s standard
deviation and the quantizer’s maximum input signal. Usually, the input signal’s
amplitude is adjusted such that σx/Amax is approximately 1/4. If this condition is
met, and we assume that the input signal has a Gaussian distribution (which is a
valid assumption for many signals), then the quantizer’s limits will be exceeded
only 0.064% of the time. (If a smaller number is chosen for the ratio, the dynamic
range of the system would be sacrificed. If a larger number is chosen, the
frequency of overflow would increase.) Using the value of 1/4 gives

 2.102.6SNR dB −⋅= B (8.5)

An important realization drawn from this expression is that the SNR can be
improved by 6 dB for every bit added to the quantized representation. For
example, if a particular filtering application requires a signal-to-noise ratio of 80
dB, then a D/A converter with at least 14 bits of magnitude quantization must be
available.

8.1.2 Coefficient Representation

When it comes to the internal processing of data for a digital filter system, there is
more of an even mix between fixed-point and floating-point systems. The market
has a variety of DSP microprocessor chips from a number of manufacturers. These
DSP systems include a wide selection of fixed-point and floating-point systems.
The fixed-point systems generally provide higher processing speed at lower cost
than do the floating-point systems. However, the floating-point systems provide
accuracy that many fixed-point systems cannot achieve. The representation for the
coefficients does not have to be the same as the representation selected for the
input signal. Even if both are fixed-point numbers, the coefficient representation
can use a higher precision representation (more bits). It is up to the digital filter
designer to determine the system characteristics such that sufficient accuracy is
achieved with adequate processing speed at the lowest possible cost.

The representation of the filter coefficients within the DSP system is of prime
concern. Enough accuracy is required in the representation of the filter
coefficients (which determine the pole and zero locations) to guarantee that the
specifications of the filter are met by the implementation. If the accuracy of the
coefficients is compromised, the response of the filter may be severely distorted,
and in some cases, the stability of IIR filters can be jeopardized. FIR filters will
always be stable because they are represented by transfer functions with all zeros.

 Digital Filter Implementation Using C 191

However, their frequency response can still be affected by the lack of accuracy of
their coefficients. As an example, we consider the case of the Parks-McClellan
filter designed in Example 7.4. The coefficients for that example have been
truncated to signed 16-bit, 12-bit, and 8-bit numbers as shown in Table 8.1.

Table 8.1
Comparison of Original and Truncated Coefficients

Coefs Original 16-bit 12-bit 8-bit

h(10) 0.348822 0.348822 0.348822 0.348822
h(9), h(11) 0.004010 0.004013 0.004090 0.002747
h(8), h(12) -0.268081 -0.268076 -0.268049 -0.269170
h(7), h(13) -0.008972 -0.008974 -0.009032 -0.008240
h(6), h(14) 0.102739 0.102740 0.102755 0.101625
h(5), h(15) 0.008322 0.008325 0.008350 0.008240
h(4), h(16) 0.012282 0.012285 0.012269 0.010987
h(3), h(17) -0.004333 -0.004333 -0.004260 -0.005493
h(2), h(18) -0.033368 -0.033363 -0.033400 -0.032960
h(1), h(19) 0.001195 0.001192 0.001193 0.000000
h(0), h(20) 0.012527 0.012530 0.012610 0.013733

Equation (8.6) shows the procedure for determining the truncated values. The
calculation within the Round function actually indicates the procedure of
converting the floating-point coefficient to a signed fraction representation for use
in fixed-point processors. The multiplication outside of the Round function
converts the signed fraction back to a truncated decimal:

)12(

)10(
)10(

)12()()(1

1

trunc
−

⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −⋅
=

−

−

B

B h
h

nhRoundnh (8.6)

As we would expect, as the number of bits is reduced, the error in the

coefficients increases. The frequency response generated from the 16-bit
coefficients was virtually identical to the original response. However, the
responses due to the 12-bit and 8-bit coefficients were noticeably degraded, as
shown in Figure 8.1. In that figure, the passband response was virtually
unchanged in all cases, but the stopband characteristics did not match those of the
original coefficients (shown as −56.7 dB). The 12-bit coefficients did produce a
response that satisfied the original design specifications of −50 dB. The 8-bit
coefficients, however, caused the frequency response to degenerate completely,
providing as little as 32 dB of attenuation. The reason for this degradation, of
course, is that the truncation has moved the pole and zero locations from their
original positions.

192 Practical Analog and Digital Filter Design

Figure 8.1 FIR filter frequency response using truncated coefficients.

8.1.3 Retaining Accuracy and Stability

There is no effective way to directly relate the accuracy of the coefficients to the
degree of degradation of the frequency response. At this time, trial and error
techniques are all that can be offered when determining the necessary accuracy of
coefficients. However, there are some helpful practices that can be observed when
dealing with the implementation of these coefficients to reduce the effects of
truncation. The following suggestions relate to IIR filters unless stated otherwise
since they have some unique problems due to their recursive nature. The fact that
IIR filters are implemented using feedback leads to special problems that the FIR
filter does not experience.

Probably the most important implementation rule when dealing with IIR
filters is that it is much better to implement the filter as a cascade of quadratic
factors (as we have done) than to combine the transfer function into a quotient of
high-order polynomials. (Even some experimentation has been done with this idea
for FIR filters.) This technique provides better control of the stability of the filter.
By quantizing the coefficients that represent the filter, we are actually specifying a
fixed number of positions within the unit circle where the poles can be located.
The fewer bits used for quantization, the fewer the positions for the poles. In
addition, these pole locations are not uniformly distributed within the unit circle.
However, by choosing different topologies for the implementation (such as a
coupled form of quadratic), more uniformly distributed pole locations can be
achieved. Also, it has been shown that those poles which either lie close to the unit
circle or to each other are the most critical to represent properly, and therefore
may need some special implementation method. Another technique that can be
used to reduce errors caused by computations using finite accumulators is to pair
poles and zeros located near each other in the same quadratic factor to reduce
large fluctuations. In addition, sections with poles closest to the unit circle can be

 Digital Filter Implementation Using C 193

moved to the end of the evaluation process to help eliminate overflows. The
digital filter design references in Appendix A provide further information on other
structures than the quadratic form, including those for representing poles located
extremely close to the unit circle. Antoniou’s, Oppenheim/Shafer’s (1975), and
Proakis/Manolakis’s texts provide valuable and detailed material.

Several other points can be made when discussing the coefficients and
internal processing of the filter calculations. In both FIR and IIR filter
implementation, the final output values are stored in a register that gradually
accumulates the value of the final output. This accumulator should normally be
allocated as many bits of representation as possible because it controls the ultimate
accuracy of the processor. Overflow and underflow are potential problems for the
accumulator since it is hard to predict the exact nature of incoming signals. Most
present dedicated DSP chips provide some form of scaling that can be applied to
the input so that temporary large variations can be accommodated without
incurring a great deal of error. This scaling bit can effectively be used as a
temporary additional bit of accuracy for accumulated values to prevent overflow.
However, if overflow is inevitable, it is better to have a processor that will simply
saturate at its maximum level than to allow an overflow that can be interpreted as
a swing from positive to negative value.

In recursive systems that use finite precision representations, a troublesome
problem called limit cycle oscillation can occur. There are actually two types of
limit cycles: overflow and quantization. Overflow limit cycles (also called large-
signal limit cycles) are due to the unmanaged overflow of the accumulator during
processing. Most overflow limit cycles can be effectively eliminated by the proper
use of signal scaling at the input of the system and saturation arithmetic in the
accumulator. Many DSP processors include some scaling feature within the
processor unit that allows the input signal to be reduced in size. However, a
reduction in the size of the input signal also reduces the SNR of the system,
although this is usually better than the distortion produced by an overflow.
Another useful feature on many DSP systems today is the use of saturation
arithmetic within the processing unit. This feature will saturate the value to its
positive or negative limit rather than overflow the accumulator. Again, this will
result in distortion, but usually less than the overflow would produce. Of course,
another way to help control overflow limit cycles is to increase the size of the
accumulator, if the processing system allows the accumulator to be larger than the
standard coefficient storage size.

The quantization limit cycles (also called small-signal limit cycles) generally
result from the handling of quantization within the system and are noticeable when
the output should be constant or zero. This problem is the result of the input signal
changes being less than the quantization level. Two methods have been developed
to combat this type of limit cycle. The first, which may not be a practical
alternative, is to increase the number of bits assigned to the representation of the
signal values in order to reduce the quantization error. By reducing the
quantization error, the limit cycles can either be eliminated altogether, or reduced
to a tolerable level. The second method suggests that the products produced by

194 Practical Analog and Digital Filter Design

finite precision multiplication be truncated, rather than rounded, as they are
accumulated. Other, more detailed, analysis of limit cycles is included in the
references.

8.2 C CODE FOR IIR FILTER IMPLEMENTATION

When discussing the implementation of IIR filters, we assume that the filter is
described by a set of quadratic coefficients of the form determined in Chapter 7.
As we have seen in the previous section, a cascaded sequence of quadratic
structures is the recommended method of implementation. The basic quadratic
building block is shown in the system diagram of Figure 8.2.

Figure 8.2 System diagram for a single quadratic factor.

We can generate the transfer function for this section by determining the
expressions for the intermediate signal w(n) and the output signal y(n).

)2()1()()(21 −⋅+−⋅+= nwbnwbnxnw (8.7)

)2()1()()(21 −⋅+−⋅+= nwanwanwny (8.8)

These equations can be z-transformed to give

 (8.9))()()()(2
2

1
1 zWzbzWzbzXzW ⋅⋅+⋅⋅+= −−

 (8.10))()()()(2
2

1
1 zWzazWzazWzY ⋅⋅+⋅⋅+= −−

Equations (8.9) and (8.10) can be rewritten and combined to determine the
transfer function for this section of the filter, as shown in (8.11). This formulation
matches the quadratic terms we developed for IIR filters. We will be able to match

 Digital Filter Implementation Using C 195

equivalent terms if we recognize two characteristics. First, the ao coefficient is
always one, and second, the b coefficients in the system diagram will be the
negative of their value in the transfer function equation.

)1(
)1(

)(
)(

)(
2

2
1

1

2
2

1
1

−−

−−

⋅−⋅−

⋅+⋅+
==

zbzb
zaza

zX
zY

zH (8.11)

As an example, consider the fourth-order transfer function for a Chebyshev
highpass filter shown in (8.12). This filter can be implemented by using the
system diagram shown in Figure 8.3. As we see in the diagram, the input signal is
first multiplied by the gain constant and is then processed through two quadratic
factors. The multiplication by the gain constant could occur at the end of the
process or be distributed throughout the diagram as well. Notice the sign
difference on the b coefficients between the transfer function of (8.12) and the
system diagram of Figure 8.3. (Of course, the coefficients will be represented with
higher precision than indicated here.)

)222.00448.01()795.0047.11(

)121()121(201.0
)(

2121

2121

4 −−−−

−−−−

⋅+⋅−⋅⋅+⋅−

⋅+⋅−⋅⋅+⋅−⋅
=

zzzz
zzzz

zH C (8.12)

Figure 8.3 System diagram for fourth-order IIR filter.

196 Practical Analog and Digital Filter Design

After determining the system diagram for a filter, we can use the diagram as a
guide to implementing the filter. For every quadratic factor, we can calculate an
intermediate signal w(n) and an output signal y(n). Besides x(n), w(n), and y(n),
every quadratic section also requires the values w(n − 1) and w(n − 2) (as shown
in Figure 8.2) to be retained. We can rewrite (8.7) and (8.8) as

 2211 mbmbxw ⋅+⋅+= (8.13)

 2211 mamawy ⋅+⋅+= (8.14)

where we have defined

)1(1 −= nwm (8.15)

)2(2 −= nwm (8.16)

The names m1 and m2 are picked to reflect the fact that these values are the
memory states of the quadratic factor. Each quadratic structure must keep track of
the previous values that have been present in the structure.

The IIR filtering process can be implemented by first multiplying the input
signal by the gain and then implementing (8.13) to (8.16) for each of the
quadratics. Then, before progressing to the evaluation of the next quadratic factor,
the values of m1 and m2 are updated. A section of code that will implement this
process is shown in Listing 8.1. In the listing, it is assumed that there are m1 and
m2 arrays with sizes equal to the number of quadratics, and that the a and b
coefficients for the filter are stored in the usual manner. (That is, the three
coefficients a0, a1, and a2 for the first quadratic are followed by the three
coefficients for the second quadratic, and so on. The same organization is assumed
for the b coefficients.) Note that the a0 and b0 coefficients are not used since they
are assumed to be one. We have also substituted the output variable o for the input
variable x to let the output value accumulate through several quadratic sections.

o = x * gain;
for(j = 0; j < numb_quads ;j++)
{ jj = j*3;
 w = o - m1[j] * b[jj+1] - m2[j] * b[jj+2];
 o = w + m1[j] * a[jj+1] + m2[j] * a[jj+2];
 m2[j] = m1[j];
 m1[j] = w;
}

Listing 8.1 Segment of code for IIR filter implementation.

 Digital Filter Implementation Using C 197

Although the algorithm in Listing 8.1 will make the correct computations, it
could be slow because of all of the index calculations that must be made.
(Actually, compilers will differ in terms of how much optimization can be made
with speed-critical code such as we are discussing.) The speed of this loop can
usually be increased by using pointers to the coefficients and memory values. In
order to take advantage of this pointer efficiency we must store the filter
coefficients in an orderly manner, which will allow them to be accessed
sequentially in the exact order that they are needed. We can define a new array C
that will store all of the needed coefficients as well as the filter gain constant. The
first element in the array will be the gain constant followed by the coefficients b1,
b2, a1, and a2 for each quadratic factor. The structure of the C array then has the
following form:

 C[0] = gain C[5] = b1 (quad 2)
 C[1] = b1 (quad 1) C[6] = b2 (quad 2)
 C[2] = b2 (quad 1) C[7] = a1 (quad 2)
 C[3] = a1 (quad 1) C[8] = a2 (quad 2)

C[4] = a2 (quad 1) ...

In addition, an M array must be created to store the memory states of the IIR
filter. The size of the array is equal to twice the number of quadratic factors with
the m1 states stored in the first half of the array and the m2 states in the last half.
Initially, all of the memory states are set to zero (unless we know some predefined
state exists for the filter). Thus, the M array has the following structure where N is
the number of quadratics:

 M[0] = m1 (quad 1) M[N] = m (quad 1) 2
 M[1] = m1 (quad 2) M[N + 1] = m2 (quad 2)
 M[2] = m (quad 3) M[N + 2] = m (quad 3) 1 2

Listing 8.2 shows the Dig_IIR_Filter function used in the DIGITAL

program discussed later in this chapter. (All of the functions discussed in this
chapter can be found in the \DIGITAL\DIGITAL.C module on the software disc
that accompanies this text.) The function takes as arguments pointers to arrays of
input values (X), output values (Y), memory states (M), and coefficient values (C),
as well as the number of quadratic factors and number of values in the input and
output arrays. Notice that since we will be progressing through the X, Y, C, and M
arrays, we have defined indexing pointers x, y, c, and m, which can take on
changing values. (Never use the array name itself as an index or the address of the
array will be lost.) The notation may look a little foreign so let’s take a look at the
code on a line-by-line basis. (The line numbers shown are to help with this
discussion and are not part of the normal code.) The process of using pointers is
very efficient for computational purposes because it fits the nature of the
computer. However, it can be a bit confusing to follow. Therefore, in order to
provide a more descriptive analysis of the IIR filter code, the code has been
annotated with the status of primary arrays and variables. For this illustration, it is

198 Practical Analog and Digital Filter Design

assumed that there are two quadratic factors and sample values have been entered
for the C and M arrays. At each step of the process, the particular values to which
c, m1, or m2 are pointing within the arrays are shown in bold. Only the first time
through the inner loop is illustrated, but we can see from this how the pointers
progress through the arrays, and how the memory state array is changed.

In lines 1 and 2 of Listing 8.2, the addresses of the input and output arrays are
transferred to temporary variables x and y that can change without affecting the
addresses stored in X and Y. Then, line 4 begins a for loop to process every value
in the input array. Lines 6 to 8 set up pointers to the memory states and coefficient
arrays. The m1 pointer is set to start at the beginning of the M array where the m1
states are stored, while the m2 pointer is set midway through the M array since the
m2 states are stored in the second half of the array. The initial value of the output,
indicated by o, is calculated by multiplying the input value by the first value in the
coefficient array, which is the gain constant.

/*==
 Dig_IIR_Filter() - filters input array using IIR
 coefs and mem values to generate output
 Prototype: void Dig_IIR_Filter(int *X,int *Y,
 double *M,double *C,int numb_quads,int N);
 Return: error value.
 Arguments: X - ptr to input array
 Y - ptr to output array
 M - ptr to memory array
 C - ptr to coefs array
 numb_quads - number of quadratics
 N - number of values in array
==*/
void Dig_IIR_Filter(int *X,int *Y,double *M,double *C,
 int numb_quads,int N)
{ int *x,*y, /* ptrs to in/out arrays */
 i,j; /* loop counters */
 double *c,*m1,*m2, /* ptrs to coef/memory arrays*/
 w,o; /* intermed & output values */
 /* Make copies of input and output pointers */
01 x = X;
02 y = Y;
 x: 3,4,5,6,7,...
 y: 0,0,0,0,0,...
03 /* Start loop for number of data values */
04 for(i = 0; i < N ;i++)
05 { /* Make copies of pointers and start calcs */
06 m1 = M;
07 m2 = M + numb_quads;
08 c = C;
 C: 0.20,1.0,-0.80,-2.0,-1.0,0.05,-0.20,-2.0,-1.0
 M: 1.0,3.0,2.0,4.0
09 o = *x++ * *c++;
 C: 0.20,1.0,-0.80,-2.0,-1.0,0.05,-0.20,-2.0,-1.0
 x: 3,4,5,6,7,...
 o: 0.60

Listing 8.2 Dig_IIR_Filter function.

 Digital Filter Implementation Using C 199

10 /* Start loop for number of quad factors */
11 for(j = 0; j < numb_quads ;j++)
12 { w = o - *m1 * *c++;
 C: 0.20,1.0,-0.80,-2.0,-1.0,0.05,-0.20,-2.0,-1.0
 M: 1.0,3.0,2.0,4.0
 w: -0.40
13 w -= *m2 * *c++;
 C: 0.20,1.0,-0.80,-2.0,-1.0,0.05,-0.20,-2.0,-1.0
 M: 1.0,3.0,2.0,4.0
 w: 1.20
14 o = w + *m1 * *c++;
 C: 0.20,1.0,-0.80,-2.0,-1.0,0.05,-0.20,-2.0,-1.0
 M: 1.0,3.0,2.0,4.0
 o: -0.80
15 o += *m2 * *c++;
 C: 0.20,1.0,-0.80,-2.0,-1.0,0.05,-0.20,-2.0,-1.0
 M: 1.0,3.0,2.0,4.0
 o: -2.8
16 *m2++ = *m1;
 M: 1.0,3.0,1.0,4.0
17 *m1++ = w;
 M: 1.2,3.0,1.0,4.0
18 }
19 /* Convert output to int and store */
20 *y++ = (int)ceil(o-0.5);
 y: -3,0,0,0,0,...
21 }
}

Listing 8.2 Continued.

Notice that the method used to access the gain constant is by using the *c
notation, which can be read as “the value at which c is pointing.” Since c has just
been initialized to the start of the C array, and since the first element in C is the
gain constant, then c is pointing at the gain constant. The “++” notation after c
instructs the computer to increment the value of c by one after the equation has
been evaluated. (This is referred to as post-incrementing as opposed to ++c,
which is called preincrementing.) At this point, we are performing pointer
arithmetic, which is a special type of arithmetic. Remember that the variable c
(and C) contains a number that is an address of where coefficients are stored in
memory. When we increment a pointer we are incrementing an address and
therefore must do so in a meaningful way. In this case, the coefficients are stored
as doubles, which take up 8 bytes of memory on a PC. It would be meaningless
to increment the address of an array containing doubles by 1 byte, or 2, or
anything but 8 bytes. Therefore, when we tell the machine to increment c, it
increments the number stored in c by 8. (This is what is meant by special
arithmetic.) The compiler keeps track of how to increment pointer variables based

200 Practical Analog and Digital Filter Design

on how the variables are initially declared. For example, if the variables are
double, the increment is 8; if they are int, the increment is 2.

Now, returning to our discussion of Listing 8.2, we next enter a for loop
(line 11) used to calculate the effects of each quadratic factor on the ultimate
output value. Lines 12–13 compute the value of w and increment the pointer in the
C array as each value is used. Lines 14–15 then make the calculations representing
the right half of Figure 8.2 to determine the output value. The pointer c is now
pointing to the b coefficients for the next quadratic section. Lines 16–17 update
the values of the memory states and increment m1 and m2 to point to the memory
states of the next quadratic section. The final step in the determination of the
output value is the conversion of the floating-point value of o to the fixed point
value of *y. The method used in converting the floating point value to an integer
value insures that both positive and negative values will be rounded correctly. The
pointer y is then incremented and the process repeats for the next value in the
input array. We should note that by the end of the outer for loop, the c, m1, and
m2 pointers will be pointing to values that do not belong to them. That’s all right
as long as we don’t try to access them. The next time an input value is filtered,
lines 6–8 will reset the pointers to the correct positions.

One advantage of the algorithm we have just developed is that it can be used
effectively for either real-time or nonreal-time applications. The value x can be
taken from either an input port of a DSP system, or from an array of values to be
processed (as illustrated). Likewise, the value y can be fed to an output port of a
DSP system or placed in an output array (as we have done). We will see a
program for a complete filtering system in Section 8.4.

8.3 C CODE FOR FIR FILTER IMPLEMENTATION

An FIR filter has no feedback and thus its system diagram can be displayed as
shown in Figure 8.4. This configuration represents a convolution involving N
coefficients, as described by (8.17).

Figure 8.4 System diagram for general FIR filter implementation.

 (8.17) ∑
−

=

⋅−⋅=
1

0
)()()(

N

k
kaknxgny

 Digital Filter Implementation Using C 201

8.3.1 Real-Time Implementation of FIR Filters

Although the algorithm would appear to be very simple for such an
implementation, the fact that we require N − 1 values to store the memory states
(past values of the input) of the filter complicates the procedure somewhat. We
will begin by discussing the real-time implementation problem, and then later we
will see that significant time savings can be made with nonreal-time
implementations. First, we can generate C code to implement (8.17). We will need
to update each memory state after each convolutional sum, which we can do
within the same loop if we perform the convolution in reverse order. The simplest
way to handle this reverse order is to reverse the coefficients and memory states in
their respective arrays, as shown in (8.18) (the coefficient array) and (8.19) (the
memory state array). Note that the gain constant is stored as the last entry in the C
array:

 (8.18) } , , , . . . , ,{ :array 012-1 gainaaaaC NN−

 (8.19) } , , . . . , ,{ :array 01-)2-(-)1(- xxxxM NN−

The segment of code given in Listing 8.3 shows the basic implementation.
We start the process by placing the current value of input x[0] into the last
position of the memory array M. The initial value of the output o is calculated
using the initial values of the memory state and the coefficient arrays. Then we
enter the for loop to compute the rest of the convolution sum. Each time through
the loop, the memory states are updated so that by the end of the loop all of the
memory states occupy the correct position for the next input value. The final step
in the process is to multiply the output value by the gain constant of the filter.

m[N-1] = x;
o = a[0] * m[0];
for(k = 1; k <= N ;k++)
{ m[k-1] = m[k];
 o += a[k] * m[k];
}
o *= gain;

Listing 8.3 Segment of code for FIR filter implementation.

The code of Listing 8.3 will correctly compute the output value but the
execution will be slow because of the need for so many index calculations. Listing
8.4 shows the Dig_FIR_Filt_RT function for implementing a real-time (RT)
digital FIR filter that makes use of pointers to speed the process. In this case, we
will need an M array of a size equal to the length of the filter (N) and a C array that
is one larger (N + 1) to accommodate the gain constant. Initially, the M array is

202 Practical Analog and Digital Filter Design

filled with zeros (unless we know the state of the filter), and the C array is filled
with the FIR coefficients in reverse order. The final value of the C array is the
filter’s gain constant. We will use movable pointers within the M and C arrays. The
m1 and m2 pointers are initially set to the start of the array and then incremented
toward the end. By using two movable pointers, we can transfer memory states
without any need for address computation. The final step in the process (before
converting the output variable back to an integer) is to multiply the accumulated
value in o by the gain constant of the filter. Although for this code, we obtain the
value of input from an array, it could just as well be coming from an input port on
a DSP system. Likewise, the output value could be written to an output port
instead of an array.

/*==
 Dig_FIR_Filt_RT() - filters input array using FIR
 coefs (uses real-time code)
 Prototype: void Dig_FIR_Filt_RT(int *X,int *Y,
 double *M,double *C,int numb_coefs,int N);
 Return: error value.
 Arguments: X - ptr to input array
 Y - ptr to output array
 M - ptr to memory array
 C - ptr to coefs array
 numb_coefs - number of coefficients
 N - number of values in array
==*/
void Dig_FIR_Filt_RT(int *X,int *Y,double *M,double *C
 ,int numb_coefs,int N)
{ int *x,*y, /* ptrs to in/out arrays */
 i,j; /* loop counters */
 double *c,*m1,*m2, /* ptrs to coef/memory array */
 o; /* output value */

 /* Make copies of input and output pointers */
 x = X;
 y = Y;
 /* Start loop for number of data values */
 for(i = 0; i < N ;i++)
 { /* Make copy of pointers and start loop */
 M[numb_coefs-1] = *x++;
 c = C;
 m1 = m2 = M;
 o = *m1++ * *c++;
 /* Use convolution method for computation */
 for(j = 1; j < numb_coefs ;j++)
 { *m2++ = *m1;
 o += *m1++ * *c++;
 }
 /* Multiply by gain, convert to int and store */
 o *= *c;
 *y++ = (int)ceil(o-0.5);
 }
}

Listing 8.4 Dig_FIR_Filt_RT function.

 Digital Filter Implementation Using C 203

This implementation of the FIR filter is slow because of the constant memory
state shuffle. Note that most sophisticated DSP processors have handled this
shuffle by implementing what is referred to as a circular buffer. A circular buffer
is one in which the last entry is magically connected to the first entry. In other
words, if a pointer that is pointing to the last entry in the buffer is incremented, the
processor automatically adjusts the pointer to point to the first entry of the buffer.
This helps tremendously, because with a circular buffer, no memory states need to
be moved. The newest input value is simply written into the circular buffer over
the oldest memory state. The starting point of the convolution is then adjusted to
the proper value and the process continues in the normal manner. Although a
circular buffer can be simulated on a PC, it requires special coding beyond the
scope of this text. In the next section we will discuss a much faster nonreal-time
method that we can use instead. We will leave the real-time circular buffer
implementation to the DSP chip programmers since DSP systems are usually used
for this type of work.

8.3.2 Nonreal-Time Implementation of FIR Filters

The implementation of the FIR filter under nonreal-time conditions can be made
much more efficient because we will have available as many of the input values as
we would like (and that memory will hold). The input values not only represent
the input for the system, but also the memory states of the system. The need for
the constant shuffle of past memory states will be removed (to a great degree) as
we will see. To understand the efficiency of the nonreal-time process, it may be
helpful to view the convolution process graphically. Figure 8.5 shows an array of
input values and an array of coefficient values. We can visualize the convolution
process as the generation of the sum of products as the coefficients slide past the
input values.

In part (a) of Figure 8.5, we see the initial position of the convolution process
where x0 is the first input value to be processed. If previous values of the input are
not available then x−1 through x−(N−1) would be set to zero. After the convolution
sum of products is calculated, the value of y0 can be determined. The array of
coefficients can then be effectively moved one position to the right and the
convolution performed again for y1. This procedure will continue until we reach
the end of the input array, processing the last value of the array xL−1, as shown in
part (b). Note that since we have a very large array of input values, we can
perform many convolution sums without shuffling the past values of input.
However, there is usually a limit to how large an input array can be brought into
memory. Therefore, we will eventually need to bring in a new array of L input
values and start the convolution again from the start of the new array. But in order
for the initial convolution sums on this new array to be correct, the values
immediately preceding the xL value must be available at the beginning of the input
array, as shown in part (c) of the figure. Consequently, we will need to move the
last N − 1 values of the initial input array to the beginning on the array. This

204 Practical Analog and Digital Filter Design

movement process will have to be accomplished at the end of processing each
segment of the input array. If we make the input array buffer much larger than the
length of the FIR filter, this amount of processing should be insignificant.

Figure 8.5 Graphical interpretation of convolution.

Listing 8.5 shows the Dig_FIR_Filt_NRT function for implementing the
nonreal-time (NRT) form of the FIR filter. In this function, the pointers to the
input, output, and coefficient arrays are passed as arguments as well as the number
of coefficients and number of values to be processed in the input array. Notice that
a separate array of memory states is not necessary since the input array also
represents the memory states. The function starts by assigning the address of the
first input value to the pointer variable x, which will march through the array
keeping track of the starting point of the convolution. A temporary pointer to the
proper output array value is also initialized. The pointer to the coefficient array c
is initialized within the first for loop, which controls the processing of all input
values. The convolution sum is then calculated moving the x and c pointers
progressively through the respective arrays accumulating products. After the
summation is complete, the next step is to multiply the accumulation by the filter’s
gain constant, which has been stored at the last entry in the C array. The process is
completed by converting the output floating-point value to a fixed-point value and
resetting the starting point in the x array to the correct position for the calculation
of the next output value. After all values in the input array have been processed,

 Digital Filter Implementation Using C 205

the last N − 1 values in the array are copied to the beginning of the X array for the
processing of the next input segment. As we will see in the next section, when
input values are stored in the X array, they are not placed at the beginning of the
array (which would overwrite the memory states of the filter), but rather placed at
an advanced position in the array based on the length of the filter.

/*==
 Dig_FIR_Filt_NRT() - filters input array using FIR
 coefs (uses nonreal-time code)
 Prototype: void Dig_FIR_Filt_NRT(int *X,int *Y,
 double *C,int numb_coefs,int N);
 Return: error value.
 Arguments: X - ptr to input array
 Y - ptr to output array
 C - ptr to coefs array
 numb_coefs - number of coefficients
 N - number of values in array
==*/
void Dig_FIR_Filt_NRT(int *X,int *Y,double *C,
 int numb_coefs,int N)
{ int *x,*y, /* ptrs to in/out arrays */
 i,j; /* loop counters */
 double *c, /* ptrs to coefficient array */
 o; /* output value */

 /* Make copies of input and output pointers */
 x = X;
 y = Y;
 /* Start loop for number of data values */
 for(i = 0; i < N ;i++)
 { /* Make copy of coefs pointer and start loop */
 c = C;
 o = *x++ * *c++;
 /* Use convolution method for computation */
 for(j = 1; j < numb_coefs ;j++)
 { o += *x++ * *c++;}
 /* Multiply by gain, convert to int and store */
 o *= *c;
 *y++ = (int)ceil(o-0.5);
 /* Reset the pointer in input data */
 x -= (numb_coefs - 1);
 }
 /* Copy last values to front of buffer */
 memcpy(X,&X[CHUNK_SIZE],2*(numb_coefs-1));
}

Listing 8.5 Dig_FIR_Filt_NRT function.

8.4 FILTERING SOUND FILES

We have now developed several ways to implement the digital filters that we
designed in the previous chapters. It is now time to actually implement them and
listen to the results. Dedicated DSP processors may not be available to us, but
many of us do have sound cards in our computers, so we can at least implement

206 Practical Analog and Digital Filter Design

the nonreal-time versions of the filters. The manner in which this will be
accomplished is the following. Two sound files have been included on the
software disc included with this text, and we can record other sound files using
our sound cards. These sound files can be filtered using WFilter, which has been
included with this text. After filtering the sound files, we can compare the results
using the sound card to play the original and filtered versions of the sound files.
(Please read the documentation for your sound card to determine how to record
and play sound files.) To get further information on sound file formats and the C
code used in filtering the files, please refer to Appendix I.

To demonstrate the ease of filtering waveforms, we’ll design a digital filter
and use it to filter one of the waveforms on the software disc in our next example.

Example 8.1 IIR Digital Filtering of Waveform

Problem: Determine the effects on music.wav (available on the CD) when it
is filtered by a digital Butterworth IIR filter with the following characteristics:

apass = −0.5 dB, astop = −60 dB, fpass = 800 Hz, and fstop = 1,600 Hz

Solution: First, we design the filter using WFilter. Since we will be filtering a
file sampled at 22,050 Hz, we use that value as the sampling frequency. After
designing the filter, we can select Filter Wave File from the Options menu. The
following dialog box will be shown.

Figure 8.6 Filter Wave File dialog box.

We can identify the file to be filtered by typing directly into the dialog box or
by using the browse button to locate the file. After specifying the input and output
file names, simply press the Filter button and the filtering action will take place.
You will be able to tell when the filtering has finished by the play buttons being
enabled. Now we can compare the two sound files by playing each file
individually. Notice that the lowpass filter was successful in eliminating the
chimes from the original version.

 Digital Filter Implementation Using C 207

Other filters can be created and other sound files can be filtered. If you use
the speech.wav file on the accompanying disc be aware that it has a sampling
frequency of 11,025 Hz. It is also captured as an 8-bit file.

8.5 CONCLUSION

We have reached the end of this chapter where the implementation of FIR and IIR
filters has been developed. We have developed a fully functional program to filter
sound files, which can be mono or stereo, and 8-bit or 16-bit files. Other file
formats can be added to the program with minimum effort by writing functions to
read and write the file headers and passing the required information to our
functions. Compressed files can be handled by implementing a decompression
function between the reading of the data and its filtering. Further information on
sound file formats and C code for filtering can be found in Appendix I.

208 Practical Analog and Digital Filter Design

Chapter 9

Digital Filtering Using the FFT

At this point we have discussed the design and implementation of digital filters. In
the process we have investigated the characteristics of the input and output signals
in both the time and frequency domains. It is time now to investigate a more direct
relationship between the time domain and frequency domain for discrete time
systems. We will begin by discussing the discrete time version of the Fourier
transform. After the discrete Fourier transform (DFT) discussion, we will learn
about the more computational efficient version called the fast Fourier transform
(FFT). The C code for the FFT will be developed, and finally, we will take a look
at one method of using the FFT in linear filtering.

9.1 THE DISCRETE FOURIER TRANSFORM (DFT)

The Discrete Fourier Transform (DFT) can be used to compute the frequency
content of any discrete time signal. Consider first (9.1), where ω is periodic with a
period of 2π. (Remember that a radian frequency of 2π in the z-plane is equivalent
to the sampling frequency (Fs) in the s-plane.) In (9.1), x(n) represents the time
domain signal, which has an infinite number of samples. The spectrum that will
result from sampling an analog signal will actually be many replicas of the analog
spectrum spaced at multiples of the sampling frequency, as shown in Figure 5.2 in
Chapter 5. We will be able to select just one of these spectrums by using a filter at
the output of our discrete time system.

 (9.1) ∑
∞

−∞=

−⋅=
n

njenxX ωω)()(

We see that although (9.1) correctly defines the Fourier transform for a
discrete time signal, it is impossible to implement for two reasons. First, we will
never be able to obtain all of the time domain samples, and second, we will never
be able to evaluate the equation at all values of the frequency variable ω.

209

210 Practical Analog and Digital Filter Design

Therefore, the first adjustment we make to our strict definition is to modify (9.1)
to reflect the fact that we will have only a finite number of samples of x(n) with
which to work. Equation (9.2) shows the definition when we assume that we have
only N samples of the signal data:

 (9.2) ∑
−

=

−⋅=
1

0
)()(

N

n

njenxX ωω

Truncating the signal sequence as in (9.2) is effectively applying a rectangular
window to the time domain sequence. This causes problems in the resulting
frequency domain description which can be lessened by applying a different
window such as one used in Chapter 7 dealing with FIR filter coefficients. The
impact of such a window will be discussed very soon.

If we further assume that we’ll only need to evaluate the frequency response
data at a finite number of equally spaced frequencies from 0 – 2π, we have the
definition of the K-point DFT of an N-point signal.

K
k

, K-, , kenxX

k

N

n

nj
k

k

πω

ω ω

2 where

110 ,)()(
1

0

=

=⋅= ∑
−

=

− …
 (9.3)

Example 9.1 Calculation of DFT with Rectangular Window

Problem: Determine the DFT of an audio signal containing three distinct
frequencies of F1 = 2 kHz, F2 = 3 kHz, and F3 = 4 kHz. Assume that the sampling
frequency is Fs = 20 kHz and that we make use of either 20 or 40 samples of the
waveform. Use a rectangular window (in other words, simply truncate the
sequence).

Solution: First, we generate a waveform containing the three frequencies.

)/2sin()/2sin()/2sin()(321 sss FnFFnFFnFnx πππ ++=

Then, we calculate the DFT using (9.3) letting K = 1,000 points. (This gives us a
near continuous frequency response.) The results are shown in Figure 9.1.
Although not shown, if we had used a large number of data points (N = 1,000), the
DFT graphs would have shown six very distinct spikes in the frequency domain
with far less “clutter” at other frequencies. (There are six major responses in the
spectrum because the content from 10 kHz to 20 kHz is a mirror reflection of the

 Digital Filtering Using the FFT 211

content from 0 Hz to 10 kHz. We need only to concern ourselves with the first
half of the spectrum.) As it is, we can see that the three major spikes in the first
half of the spectrum generally reflect the three frequencies of our waveform. As N
increases, the position will become more and more precise. However, we should
be concerned about the clutter at other frequencies and why it is reduced as N
increases.

Figure 9.1 DFT of three frequencies with rectangular window.

The explanation of the numerous extraneous lobes contained in the DFT
responses goes back to the time domain and our truncation of x(n). By truncating
the sequence, we effectively multiplied two time domain functions together, as
shown in (9.4). (The rectangular window function w(n) in our example will have
20 or 40 values of one and zeros for all other values.)

)()()(nwnxnxtrun ⋅= (9.4)

212 Practical Analog and Digital Filter Design

When two waveforms are multiplied in the time domain, their frequency
spectrums are convolved in the frequency domain. Although the frequency
spectrum of the signal will be three spikes, the frequency spectrum of the
rectangular window will be a sinc function shown in Figure 9.2. Notice all of the
side lobes produced. When convolved with the three spikes representing the three
signal frequencies, these side lobes will create the extraneous side lobes shown in
Figure 9.1. By contrast, when viewing the response of the transform of the
Hamming window, we see no annoying side lobes, but a smaller and wider main
lobe. The results of using a Hamming window is shown in Example 9.2.

Figure 9.2 DFT of rectangular and Hamming windows.

Example 9.2 Calculation of DFT with Hamming Window

Problem: Repeat Example 9.1, but use a Hamming window on the truncated
input sequence.

Solution: The input sequence x(n) is formed the same way as in Example 9.1,
but the window function w(n) takes on the following values:

))1/(2cos(46.054.0)(−⋅−= Nnnw π

After calculating the DFT of the product x(n)·w(n), the results are displayed in
Figure 9.3 with a number of interesting comparisons to Figure 9.1. First, we notice
that the clutter of the side lobes of Figure 9.1 has been reduced to a great degree.
However, we also notice that for the 20-point signal case, there are no longer
three, nearly equal spikes in the first half of the spectrum. Even in the 40-point
case, the three spikes are no longer as clearly distinct. These results derive from
the fact that the transform of the Hamming window is approximately twice as
wide as the main lobe of the rectangular window transform. The resulting
resolution of the transform is therefore not as crisp as in the rectangular case.

 Digital Filtering Using the FFT 213

Figure 9.3 DFT of three frequency lengths with Hamming window.

It can be shown that the frequency resolution ∆f of the DFT is improved by

increasing the number of time domain samples, as shown in (9.5). As N increases,
the ability to see smaller frequency details improves regardless of window type
used. The coefficient mw is a windowing factor that takes on a value of 1 for a
rectangular window, approximately 2 for a Hamming window, and other values
for Kaiser based on the β value chosen. (See Orfanidis’ text for further details.)

NT

m
N
f

mf
s

w
s

w ⋅
⋅=⋅=∆

1 (9.5)

Example 9.3 Determine Resolution for DFT System

Problem: Determine the number of time domain samples needed to resolve
the three frequencies of Examples 9.1 and 9.2.

214 Practical Analog and Digital Filter Design

Solution: In each case, the resolution ∆f required is 1 kHz in order to clearly
see the three frequencies. In Example 9.1, mw will be 1, and for Example 9.2, we
will use a value of 2. Equation (9.3) can then be used to determine that the number
of time samples N needed would be 20 for Example 9.1 and 40 for Example 9.2.
Figures 9.1 and 9.3 seem to support these values.

From the previous examples we see that we must choose N carefully to get the

resolution required for our system. It seems obvious that the more time domain
samples available, the clearer the picture of the frequency spectrum will be, and
that is true. But once the minimum number of data samples is determined, is there
any advantage to increasing the number of frequency points computed? It may not
be clear at this point, but providing more frequency points does not improve the
resolution, it simply provides a more continuous graph of the spectrum. This is
seen in Figure 9.4, which shows the Hamming window case with N = 20 and K =
20. Comparing this to the 20-point graph in Figure 9.3, we note that the 3-kHz
component is obscured in either case. Increasing the number of frequency data
points 50-fold did nothing to improve the resolution of the DFT.

In a similar argument, if you have available many time samples, but compute
far fewer frequency points, you are losing valuable frequency information.
Therefore, a general rule of thumb is to let N = K as a starting point in the design
of a DFT system. On occasion, it may be necessary to allow K to increase to find a
more exact value of the frequency of a maximum.

9.2 THE FAST FOURIER TRANSFORM (FFT)

While the computation of the DFT may be straightforward, it is not without
computational cost. For an N-point DFT, each frequency point will require N
multiplications of the real valued x(n) times the complex valued exp(–jωkn). (This
operation effectively requires two real multipliers.) Then, assuming there are N
different frequency points, there will be N2 complex multiplications necessary for
the computation of the DFT. This can produce large numbers very quickly.

The fast Fourier transform (FFT) had its beginnings in 1965, long before the
DSP chip was even a dream of engineers. However, it took the computational
power of computers to bring its importance to the attention of designers. It is
sometimes thought that the FFT produces a different result than the DFT, but it
does not. The FFT is simply a faster method of computing the DFT. Derivations of
the FFT algorithm can be found in the references in Appendix A, but it is
worthwhile to see a simple illustration of how computational savings can be made
using the FFT.

 Digital Filtering Using the FFT 215

Figure 9.4 DFT with Hamming window and K = 20.

9.2.1 The Derivation of the FFT

To begin, consider (9.6), which is a streamlined version of (9.2). In it we replace
ωk with the index k, and let WN replace the cumbersome exp(–j2π/N). (These WN

kn
terms are often referred to as “twiddle factors.”)

 (9.6) 110 ,)()(
1

0
, N-, , kWnxkX

N

n

kn
N …=⋅= ∑

−

=

We can now look at a simple 4-point DFT example. If we expand (9.6) into
four separate equations representing the four frequency points, we have

 (9.7)

9
4

6
4

3
4

0
4

6
4

4
4

2
4

0
4

3
4

2
4

1
4

0
4

0
4

0
4

0
4

0
4

)3()2()1()0()3(

)3()2()1()0()2(

)3()2()1()0()1(

)3()2()1()0()0(

WxWxWxWxX

WxWxWxWxX

WxWxWxWxX

WxWxWxWxX

⋅+⋅+⋅+⋅=

⋅+⋅+⋅+⋅=

⋅+⋅+⋅+⋅=

⋅+⋅+⋅+⋅=

Using the values of the twiddle factors in this special case we can represent
this process as a matrix multiplication as follows:

 (9.8) xX ⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−
=

jj

jj

11
1111

11
1111

216 Practical Analog and Digital Filter Design

Another popular method describing the mathematical process, and one that
better describes the computational efficiency we are looking for, is to use signal
flow graphs, as shown in Figure 9.5. In this description, all branches of the graph
have a weight (or multiplier) of 1 except as noted.

Figure 9.5 Four point decimation-in-time FFT.

It is clear from this illustration that few multiplications are necessary and also

that samples are combined at intermediate points along the path. For example, in
the middle of the diagram we see that combinations of x0 and x2 as well as x1 and
x3 are made. These combinations are then processed as a unit that saves individual
computations. So instead of x0 being involved in four multiplications as shown in
(9.7), it is involved only in two. This efficiency is continued for larger FFTs. For
example, if an 8-point DFT were required, two 4-point DFTs would be used with
an additional butterfly stage. (The distinctive cross-linked structure in Figure 9.5
is called a butterfly because if you rotate it 90° that is what it looks like.) As the
length of the DFT increases, the number of butterfly stages increases as well,
which produces the efficiency. The net effect is that the FFT algorithm would
require N·log2(N) complex multiplications instead of N2 as in the DFT case. The
resulting efficiency can be seen in Table 9.1.

One interesting feature of the process shown in Figure 9.5 is that the
frequency points along the right side of the graph are in sequence, while the time
points are in shuffled order. This particular ordering is described as the
decimation-in-time (DIT) transform. There is also a decimation-in-frequency
(DIF) algorithm in which the time-domain samples remain in sequence, but the
frequency components are shuffled. Although the shuffled sequence may look
arbitrary, we will see that the ordering can be exploited with a novel addressing
mode available in most DSP processors. As an example, consider an 8-point FFT
looking only at the input sequence as shown in Table 9.2. Column 1 shows the
shuffled order of x(n) as being x(0), x(4), x(2), and so forth. Column 2 shows the

 Digital Filtering Using the FFT 217

binary equivalent of the index. Column 3 shows the result of reversing the bits of
column 2. Finally, the last column shows that the indices are in order if viewed as
bit-reversed values. This feature is exploited in DSP chips and is a common
addressing mode used for FFTs, one of the many efficiencies built into DSP chips.

Table 9.1
Comparison of DFT and FFT Computations

N DFT FFT Ratio (DFT/FFT)

16 256 64 4
64 4,096 384 10.7
256 65,536 2,048 32

1,024 1.05E06 10,240 102
4,096 16.8E06 49,152 341

16,384 268.E06 229,380 1,170
65,536 4.29E09 1.05E06 4,096

Table 9.2
Bit-Reversed Addressing

DIT order Index as binary Bit-reversed index Bit-reversed order
0 000 000 0
4 100 001 1
2 010 010 2
6 110 011 3
1 001 100 4
5 101 101 5
3 011 110 6
7 111 111 7

9.2.2 The Inverse FFT

Once the FFT has been computed, we have information about the frequency
content of the signal. There are many cases when we will need to process this
frequency information in some way and then want to transform the frequency
content back to the time domain. For that we will need the inverse FFT. Because
of the symmetry of the transform, it can be shown that the inverse FFT can be
based on the FFT with simple operations both before and after the FFT, as shown
in (9.9). As indicated, the inverse FFT of a sequence can be found by finding the
FFT of the conjugate of the sequence, and then conjugating the result and dividing
by N (the length of the FFT). We will make use of this fact in Section 9.4. At this
point we are ready to discuss the C code necessary to implement the FFT
algorithm.

N
XFFTXFFT

**
1)]([)(=− (9.9)

218 Practical Analog and Digital Filter Design

9.3 C CODE FOR THE FFT

As we begin the discussion of the C code for computation of the FFT, it is
important to note the differences between programming for a general purpose
processor and a DSP chip. The DSP chip is a microprocessor designed to
implement the types of computations that are commonplace in digital signal
processing applications. These include complex arithmetic, convolution, and fast
Fourier transforms. DSP processors have multiple data and control buses and
highly efficient instructional commands. For example, most DSP processors will
be able to accomplish a multiply-add instruction in only one instruction cycle
while general purpose processors would require many more.

Another major difference is the fact that DSP chips have an addressing mode
that includes bit-reversed addressing. This eliminates the shuffling of data points
(either time-domain or frequency-domain) that we need in our general purpose
code. As well, DSP processors have dual memories to hold the real and imaginary
parts of complex numbers, while we have to implement a complex data type to
handle the FFT computations. Therefore, it is recommended that if your project
will be implemented on a DSP chip, you use the features of the software for that
chip to most efficiently implement your project. But if you have a need to
implement the FFT on a general purpose processor, we will develop that code
now.

There are a number of FFT algorithms discussed in the available references,
but we will discuss the common decimation-in-time radix-2 algorithm. A radix-2
implementation requires that the number of input data points be equal to a power
of two, as shown in (9.10), where B is an integer. Although this may first appear
to be a limitation, it is not. Any input sequence can simply be increased to the
required size by adding zeros to the end of the sequence. This operation is referred
to as “padding” the sequence and in no way affects the computation of the FFT.

 (9.10) BN 2=

Listing 9.1 shows FastFT, a function to compute the DIT implementation
of the FFT. This function has been adapted from Orfanidis’ text listed in
Appendix A and is similar to others described in the literature. The input signal
has been placed into a complex array X since this particular algorithm will perform
an “in-place” computation of the FFT. That means that after the FFT has been
completed, the resulting complex valued FFT will reside in the array X. This will
make the use of memory more efficient. In addition to the input array, the function
also receives the length of the FFT and the number of bits required to describe
each index.

The first step in the procedure is to swap the values in the input array as
required in a DIT implementation. This is accomplished in the first loop and
makes use of the RevBits function shown in Listing 9.2 (also adapted from the
Orfanidis text). After the input values have been swapped, the FFT is computed by

 Digital Filtering Using the FFT 219

means of sequential calculation of the butterfly stages with the required twiddle
factors computed first.

/*==
 FastFT() - radix-2 decimation-in-time Fast Fourier Transform
 Prototype: void FastFT(short Length, short Bits, complex *X);
 Arguments: Length - length of FFT
 Bits - Length = 2^Bits
 X - ptr to array of complex numbers
 Return: none (conversion done in place)
==*/
void FastFT(short Length, short Bits, complex *X)
{ long k, i, p, q, /* counters and indices */
 M; /* stage of FFT */
 complex A, B, V, W, Tmp; /* complex constants */
 short n, /* counter */
 RIndex; /* reversed ndex */

 /* Swap the values in x */
 for(n = 0; n < Length; n++)
 { RIndex = RevBits(n,Bits); /* get reversed index */
 if (RIndex < n) continue; /* only need to swap half */
 Tmp = *(X+n); *(X+n) = *(X+RIndex); *(X+RIndex) = Tmp;
 }

 /* Implement the butterfly in stages */
 M = 2;
 while (M <= Length) /* while loop controls stages of FFT */
 { W.re = cos(2*PI / M); /* twiddle factors */
 W.im = sin(2*PI / M);
 V.re = 1;
 V.im = 0;
 for(k = 0; k < M/2; k++) /* index through stages */
 { for(i = 0; i < Length; i += M)
 { p = k + i;
 q = p + M / 2;
 A = X[p];
 B = cmul(X[q],V);
 X[p] = cadd(A,B); /* butterfly operations */
 X[q] = csub(A,B);
 }
 V = cmul(V,W);
 }
 M = 2 * M;
 }
}

Listing 9.1 FastFT function.

These two functions can now be used to compute the FFT of any input
sequence. All that is required is that the sequence be adjusted to a length that is a
power of two by padding the end of the sequence with zeros. The function can
then be provided with the pointer to the sequence, the length of the sequence, and
the number of bits in the indices. After the function has completed its work, the
array X will hold the complex valued FFT. These values will be stored as the real
and imaginary values of the transform, but can be better interpreted as the

220 Practical Analog and Digital Filter Design

magnitude and phase angle of the transform. The conversion from one form to
another is shown in (9.11)–(9.12). When computing the phase angle you should
use the atan2 function that takes both the real and imaginary values as
arguments. This guarantees that the angle will be placed in the correct quadrant.

/*==
 RevBits() - reverses the bits in an integer
 Prototype: short RevBits(short Input, short NumBits);
 Arguments: Input - integer to reverse
 NumBits - number of bits used
 Return: integer with bits reversed
==*/
/* Adapted from Orfanidis - Intro. to Signal Processing */
short RevBits(short Input, short NumBits)
{ short i, /* loop counter */
 RevInput; /* interger with reversed bit values */
 RevInput = 0;
 /* Loop through Input, bit by bit. If bit is set, set
 appropriate bit in RevInput, and clear bit in Input.*/
 for(i = NumBits-1; i >= 0 ;i--)
 { if ((Input >> i) == 1)
 { RevInput += (1 << (NumBits-1-i));
 Input -= (1 << i);
 }
 }
 return RevInput;
}

Listing 9.2 RevBits function.

 22)Im()Re(XXMagnitude += (9.11)

))Re(/)arctan(Im(XXAngle = (9.12)

The interpretation of the resulting frequency response is easy as long as we

remember that the values of the FFT will be spread from zero frequency up to the
sampling frequency. Therefore, if we had a 1,024-point FFT computed on a
sequence that had been sampled at a frequency of 20 kHz, the values in the
transformed sequence would be spaced every 19.53 Hz (20 kHz ÷ 1024). This
would mean that the first sample was the response at 0 Hz (or the DC value), and
the last value would represent the response at 19,980.47 Hz. Remember that the
last half of the response will be a mirror image of the first half. Therefore, for this
particular case, only the first half of the FFT values would need to be analyzed.
The others will simply be duplicates.

 Digital Filtering Using the FFT 221

9.4 APPLICATION OF FFT TO FILTERING

There are many applications for the FFT. Frequency analysis, spectral densities,
and filtering are among the more popular. Since this is a text about filtering, we
discuss how the FFT can be used in filtering applications. To begin this
discussion, we review the process of FIR filtering first. Once FIR filter
coefficients have been determined, the output signal of the filter can be
determined from the input signal by convolving the filter coefficients and the input
signal, as shown in (9.13). We learned in Chapter 5 that convolution in the time
domain was equivalent to simple multiplication in the frequency domain, as
shown in (9.14).

 (9.13) 1 , ,1 ,0 ,)()()()()(
1

0
−=−⋅=∗= ∑

−

=

Nnknxkhnxnhny
M

k
…

)()()(zXzHzY ⋅= (9.14)

Since we now have a fast algorithm for determining the transform of a time-
domain signal, it may be useful to consider the alternative presented by (9.14).
Let’s consider the steps involved in using transforms to implement the filtering
process:

1. Transform the filter coeffients: H(z) = FFT [h(n)].
2. Transform the input signal: X(z) = FFT [x(n)].
3. Multiply the two complex sequences: Y(z) = H(z)·X(z).
4. Inverse transform to find the output: y(n) = FFT -1 [Y(z)].

The process outlined above may or may not prove to be faster than the

convolution of (9.13). It all depends on the number of filter coefficients and the
number of points in the FFT. The text by Proakis and Manolakis mentioned in
Appendix A offers a detailed comparison that will be discussed further at the end
of this section. Listing 9.3 shows Dig_FFT_Filt that performs steps 2 through
4 above. Note that it is assumed that the filter coefficients have already been
transformed and stored in H. The function first transforms the input signal X, then
multiplies the coefficients times the transform of X, and finally computes the
inverse FFT. Note that the results of each of these steps are stored in X.

There are many cases when the length of the input signal exceeds the size of
the FFT that can be applied. In that case, the signal must be broken into smaller,
more manageable, sections and the FFT filtering algorithm applied to each section.
Unfortunately, it is not as simple as taking each N-point group of input samples
and generating an output group. The resulting patched-together sequence would
undoubtedly have discontinuities at the combination points. This problem can be

222 Practical Analog and Digital Filter Design

alleviated by keeping some processed samples from each grouping and using them
as the initial points in the next sequence. This is exactly what was done in the FIR
filtering code described in Section 8.3.2 and represents providing initial conditions
to the filtering process. When applied in FFT filtering this process is often called
the overlap-and-save method.

/*==
 Dig_FFT_Filt() - performs FFT filtering
 Prototype: void Dig_FFT_Filt(complex *X, complex *H,
 short numb_coefs, short FFT_size, short Bits);
 Return: error value.
 Arguments: X - input data
 H - transform of filter coefs
 numb_coefs - number of filter coefs
 FFT_size - number of pts in FFT
 Bits - FFT_size = 2^Bits
==*/
void Dig_FFT_Filt(complex *X, complex *H,

 short FFT_size, short Bits)
{ short i;
 /* Perform FFT on X */
 FastFT(FFT_size,Bits,X);

 /* Multiply X and H */
 for (i = 0; i < FFT_size; i++)
 { X[i] = cmul(X[i],H[i]);}

 /* Get inverse FFT of X */
 /* Conjugate input */
 for (i = 0; i < FFT_size; i++)
 { X[i] = cconj(X[i]);}

 /* Perform FFT */
 FastFT(FFT_size,Bits,X);

 /* Conjugate again */
 for (i = 0; i < FFT_size; i++)
 { X[i] = cconj(X[i]);}

 /* X now holds the filtered data */
 return;
}

Listing 9.3 Dig_FFT_Filt function.

Figure 9.6 shows the process. The input signal is padded with M–1 initial

zeros (assuming there are M filter coefficients). Then, the remaining signal is
broken into sections containing L values where L is defined in (9.15). As pictured
in the diagram, there will be N samples transformed in each operation, but the first
M–1 will be the values saved from the last M–1 values of the previous operation
(except for the initial grouping, which will have M–1 zeros.) Once the FFT
filtering has been completed on the grouping, the last L values of the sequence are
saved, discarding the first M–1 values. This operation will result in an error-free
result when the y groupings are reassembled.

 Digital Filtering Using the FFT 223

)1(−−= MNL (9.15)

Figure 9.6 Using the overlap-and-save method for linear FFT filtering.

WFilter does have an option for FFT filtering available if an FIR filter has
been designed. Once the filter has been designed, the user can elect to filter a
WAV file by selecting Options->Filter Wave File. The Filter Wave File dialog
box will appear, as shown in Figure 9.7, and will provide the user the option of
filtering the waveform via the more traditional method of convolution as discussed
in Chapter 7, or using the FFT techniques discussed in this chapter.

Figure 9.7 Filter Wave File dialog box.

224 Practical Analog and Digital Filter Design

Unfortunately, the true speed of the FFT technique cannot be realized on a
general-purpose processor that many users will be using to filter waveforms. As
mentioned previously, the general-purpose processor will not have the option of
bit-reversed addressing or manipulation of complex numbers in two memory
locations. Therefore, the true efficiency of the FFT algorithm cannot be
demonstrated on a general-purpose processor.

However, Proakis and Manolakis have discussed the theoretical efficiencies
of this process that we can review at this point. They have determined that the
number of complex multiplications required per output point can be determined by
(9.16). Recognizing that there are four real multiplications needed for each
complex multiplication, and also recognizing that for convolution there are M real
multiplications needed for each output point, a comparison can be made in Table
9.3. In the table, the left-hand column represents the number of data points N in
the FFT. The top row gives the various numbers of filter coefficients used M.
Within the table are given the number of real multiplications per output point
necessary for the calculation of the FFT. These numbers should be compared to
the M value, which represents the number of calculations per output point for the
convolution method. Not all filter applications should consider the FFT approach
as depicted in column 2 (M = 32). In the best case, the FFT approach would
require 41 real multiplications to the convolution approach of 32. However, it is
apparent that as the number of filter coefficients increase, the FFT approach can
provide real efficiencies. A second point to recognize is that the number of points
in the FFT should also be considered when setting up the filtering system. In
general, it appears that the size of the FFT should be set to approximately 8 times
the number of coefficients used in the filter.

L

NN
c

)2(log 2 ⋅⋅
= (9.16)

Table 9.3
Number of Real Multiplications per Output Point

N=FFT size M=32 M=64 M=128 M=256 M=512

64 54 - - - -
128 43 64 - - -
256 41 48 72 - -
512 43 46 54 80 -

1,024 46 47 51 59 88
2,048 49 50 52 55 64
4,096 53 53 54 56 60
8,192 57 56 57 58 60

 Digital Filtering Using the FFT 225

9.5 CONCLUSION

This completes our chapter on the FFT and its application to linear filtering. The
FFT is a valuable function that provides a link from the time domain to the
frequency domain. We have found that FFT will find application to linear filtering
when the number of coefficients is large enough to warrant the more complex
computations.

This is also the conclusion for the text. Along the way, we have developed
some of the most time-honored methods used in analog and digital filter design.
By no means have we explored every nuance of filter design, and we see new
techniques being developed every day. However, we have developed the key
approximation techniques used today. The methods used can serve as a template
in the development of other approximations. We have been able to adjust
normalized functions for use in a variety of selectivities. We have shown one
method of implementing analog filters and discussed some of the potential pitfalls
that must be considered.

After the introduction of some principles of discrete-time theory, we learned
how to design both FIR and IIR digital filters using two entirely different
techniques. C code for the implementation of these filter types was developed and
analyzed. And finally, we finished with the discussion of the FFT in filtering
applications. I hope this text and the accompanying software disc will serve as a
starting point for your journey into the exciting field of filter design.

226 Practical Analog and Digital Filter Design

227

Appendix A

Technical References

This appendix includes a list of references appropriate for the study of analog and
digital filter design methods using C.

ADVANCED MATHEMATICS REFERENCES

Abramowitz, Milton, and Stegun, Irene, eds., Handbook of Mathematical
Functions, Dover Publications, Inc., New York, 1965.

Morris, John L., Computational Methods in Elementary Numerical Analysis,
John Wiley & Sons, New York, 1983.

Rice, John R., Numerical Methods, Software, and Analysis, 2nd ed.,
Academic Press, Inc., San Diego, CA, 1993.

Spiegel, Murray R., Mathematical Handbook of Formulas and Tables,
Schaum’s Outline in Mathematics, McGraw-Hill Book Co., New York, 1968.

ANALOG FILTER DESIGN REFERENCES

Daniels, Richard W., Approximation Methods for Electronic Filter Design,
McGraw-Hill Book Company, New York, 1974.

Daryanani, Gobind, Principles of Active Network Synthesis and Design, John
Wiley & Sons, New York, 1976.

Johnson, D. E., Johnson, J. R., and Moore, H. P., A Handbook of Active
Filters, Prentice Hall, Inc., Englewood Cliffs, NJ, 1980.

Moschytz, G. S., and Horn, P., Active Filter Design Handbook, John Wiley
& Sons, New York, 1981.

Sedra, Adel S., and Brackett, Peter O., Filter Theory and Design: Active and
Passive, Matrix Publishers, Inc., Champaign, IL, 1978.

228 Practical Analog and Digital Filter Design

Schaumann, R., Ghausi, Mohammed S., and Laker, Kenneth R., Design of
Analog Filters: Passive, Active RC and Switched Capacitor, Prentice Hall, Inc.,
Englewood Cliffs, NJ, 1990.

Schaumann, R., and Van Valkenburg, M. E., Design of Analog Filters,
Oxford University Press, New York, 2001.

C PROGRAMMING REFERENCES

Bronson, Gary, C for Engineers and Scientists, West Publishing Co., New
York, 1993.

Deitel, H. M., and Deitel, P. J., C How to Program, 2nd ed., Prentice Hall,
Inc., Englewood Cliffs, NJ, 1994.

Hanly, J. R., Koffman, E., and Friedman, F., Problem Solving and Program
Design in C, Addison-Wesley Publishing Co., Reading, MA, 1993.

Kernighan, Brian W., and Ritchie, Dennis M., The C Programming
Language, Prentice Hall, Inc., Englewood Cliffs, NJ, 1978.

Maguire, Steve, Writing Solid Code, Microsoft Press, Redmond, WA, 1993.
McConnell, Steve, Code Complete, Microsoft Press, Redmond, WA, 1993.
Waite, Mitchell, and Prata, Stephen, The Waite Group’s New C Primer Plus,

Howard W. Sams & Co., Carmel, IN, 1990.

DIGITAL FILTER DESIGN REFERENCES

Antoniou, Andreas, Digital Filters: Analysis, Design and Applications, 2nd
ed., McGraw-Hill, Inc., New York, 1993.

Embree, Paul M., and Kimble, Bruce, C Language Algorithms for Digital
Signal Processing, Prentice Hall, Inc., Englewood Cliffs, NJ, 1991.

Oppenheim, Alan V., and Schafer, Ronald W., Digital Signal Processing,
Prentice Hall, Inc., Englewood Cliffs, NJ, 1975.

Orfanidis, Sophocles J., Introduction to Signal Processing, Prentice Hall, Inc.,
Englewood Cliffs, NJ, 1996.

Parks, T. W., and Burrus, C. S., Digital Filter Design, John Wiley & Sons,
New York, 1987.

Proakis, John G., and Manolakis, Dimitris G., Digital Signal Processing:
Principles, Algorithms, and Applications, 2nd ed., Macmillan Publishing Co.,
New York, 1992.

Programs for Digital Signal Processing, edited by Digital Signal Processing
Committee of IEEE ASSP Society, IEEE Press, New York, 1979.

Roberts, Richard A., and Mullis, Clifford T., Digital Signal Processing,
Addison-Wesley Publishing Co., Reading, MA, 1987.

229

Appendix B

Filter Design Software and C Code

WFILTER FILTER DESIGN SOFTWARE

WFilter is an analog and digital filter design package for Windows. To install
WFilter on your computer, simply run the SETUP.EXE file in the \WFILTER
directory on the accompanying CD.

WFilter determines the transfer function coefficients necessary for analog
filters, and for digital FIR and IIR filters. The user is allowed to make choices of
lowpass, highpass, bandpass, or bandstop filters for frequency selectivity as well
as choices of approximation. For digital IIR and analog filters, the approximation
choices are Butterworth, Chebyshev, inverse Chebyshev, and elliptic. For digital
FIR filters, the rectangular, Barlett, Blackman, Hamming, von Hann, and Kaiser
windows are available, as well as the Parks-McClellan optimization technique.
The order of FIR filters based on design specifications cannot be predicted as
accurately as for IIR and analog filters, therefore the user is given the option of
changing the filter length during the design process.

After the filter has been designed, the user can view the pole-zero plot, as
well as the magnitude and phase frequency responses. The filter design parameters
or the frequency response parameters can also be edited for ease of use. Filter
parameters can be saved and printed, and all plots can be printed or included in
other documents by copying to the clipboard.

In addition, for analog filters, the Spice circuit file can be generated to aid in
the analysis of active filters. After WFilter generated the file, it can be saved or
printed. Digital filters may be used to filter wave files. After specifying an input
wave file, a filtered output file can be generated, and both input and output files
can be played (sound card must be present). In the case of an FIR filter, the user is
given the option of filtering the sound file using convolution or the FFT.

230 Practical Analog and Digital Filter Design

C COMPUTER CODE

All of the C code discussed in the first eight chapters of this text (and much more)
is included in the \C_Code directory on the CD that accompanies this text. The
three short FFT functions discussed in Chapter 9 are listed in the text. The C code
files originally accompanied the text Analog and Digital Filter Design Using C by
Les Thede. There are three DOS executables that have been compiled by
Microsoft Corp's Visual C++ compiler. The majority of WFilter is based on these
files but with a GUI interface added for convenience.

 FILTER.EXE - designs analog and digital filters.
 ANALOG.EXE - implements analog active filters.
 DIGITAL.EXE - implements digital IIR/FIR filters.

Three subdirectories have also been created on this disc to hold the source
(.C), header (.H), and information (.TXT) files. In addition, sample sound files
have been included to be used with the DIGITAL program.

Appendixes C through I discuss various C functions that are important parts
of the filter design software.

FEEDBACK

I would appreciate any feedback you care to share about the text and software.
Errors, problems, suggestions for improvement, and general comments can be
forwarded to me via e-mail or the more traditional means. Thank you.

Les Thede - ECCS Department
Ohio Northern University
525 S. Main Street
Ada, Ohio 45810

Email: l-thede@onu.edu

231

Appendix C

Filter Design Using C

Although learning analog and digital filter design techniques is the first objective
of this text, many readers may be interested in the use of C in the design and
implementation of analog and digital filters. Therefore, supplementary material
dealing with these programming issues is included in this and succeeding
appendixes. All of the C code discussed in the first eight chapters of this text (and
much more) is also included on the CD in the directory called \C_Code. The three
short FFT functions in Chapter 9 are provided in the text.

The C programming language (and its successor C++) is a predominant force
in engineering and computer science. In particular, C is the primary language used
in digital filter design (with the possible exception of hardware-specific assembly
language). C provides the combination of higher-level constructs while producing
fast, compact executables. Other languages are available, and could be used in
filter design, but C provides the best combination of efficiency and effectiveness.
Several C language references are listed in Appendix A.

The primary data elements describing our filter will be used by a number of
the design functions and therefore should be made available in a neat package. An
array would be nice, but arrays require that all elements are of the same data type.
Therefore the only reasonable choice is a structure.

We will store our filter data elements in a structure called Filt_Params. We
can assume that we will need all of the filter specifications discussed in the first
chapter. These will include the passband and stopband edge frequencies (wpass1,
wpass2, wstop1, and wstop2) and gains (apass1, apass2, astop1, and
astop2). We will also need indicators of the filter selectivity, the approximation
method, and the implementation type (select, approx, and implem). The
sampling frequency (fsamp) is an additional element that will be necessary for
digital filters, but will not be used by analog filters. All of these variables
represent the input specification for the filter design and are shown in the
Filt_Params structure below.

232 Practical Analog and Digital Filter Design

typedef struct
{ double apass1,apass2, /* passband gain's */
 astop1,astop2, /* stopband gain's */
 wpass1,wpass2, /* passband edge freq's */
 wstop1,wstop2, /* stopband edge freq's */
 fsamp, /* samp freq for dig filt */
 gain, /* gain multiplier */
 *acoefs,*bcoefs; /* ptr's to coefs */
 int order; /* order or length of filter */
 /* selectivity, approximation and implementation */
 char select,approx,implem;
} Filt_Params;

In addition to the input specifications, there will also be a need for another set

of filter data once the filter has been designed. The filter's order (order) indicates
the size of the filter's transfer function. The filter's gain constant (gain) and
pointers to two sets of filter coefficients (acoefs and bcoefs) will completely
describe the filter's transfer function and will be stored in the structure as type
double.

It is impossible to determine the number of coefficients necessary to describe
a filter before the filter is designed. We will design some filters with fewer than 10
coefficients, but other designs may require more than 200 coefficients. For that
reason we will use pointers to the arrays instead of simply defining acoefs and
bcoefs as large arrays. Using large arrays would make the structure
unnecessarily large, and there would still be no guarantee that these fixed arrays
would be large enough to store every filter that might be designed. It will be far
more efficient to determine the size of the array necessary for the individual
design, then allocate memory dynamically for the coefficient array, and finally
store the pointer (address) to the array in the structure. That way only a pointer
variable needs to be stored in the structure, not an entire array.

As it is, our Filt_Params structure is fairly large, and since we will be using
this structure with most of the functions that we develop, it would be much more
efficient to transfer a pointer (address) to the structure instead of the structure
itself. Actually, there is another reason for doing this. In C all arguments of
functions are “called by value,” which means that a copy of the argument is
transferred to the function. This practice does not allow the transferred variable to
be changed by the function. (Technically, we can change the variable all we want
within the function, but when we leave the function the original value of the
variable within the calling function remains unchanged.) Since our filter design
functions will need to make changes to the data values stored in the structure,
sending a copy of the structure to the function without allowing data values to
change would be unacceptable. However, if we send a pointer to the structure (or
actually a copy of the address), we will be able to access the actual memory
locations of the data stored in the structure. In this way, our filter design functions
will be able to enter values into the structure as necessary.

233

Appendix D

C Code for Normalized Approximation
Functions

In the main file of the FILTER program on the CD, we called
Calc_Filter_Coefs (as shown in Listing D.1) in order to calculate the
necessary filter coefficients for the user-specified design. That function in turn
called one of three other functions named Calc_Analog_Coefs,
Calc_DigFIR_Coefs, or Calc_DigIIR_Coefs.

/*==
 Calc_Filter_Coefs() - determines implementation and
 calls appropriate calculation function
 Prototype: int Calc_Filter_Coefs(Filt_Params *FP);
 Return: error value
 Arguments: FP - ptr to struct holding filter params
==*/
int Calc_Filter_Coefs(Filt_Params *FP)
{ int Error; /* error value */
 /* Call correct calc function for analog,
 digital FIR or IIR filters. */
 switch(FP->implem)
 { case 'A':
 Error = Calc_Analog_Coefs(FP);
 if(Error) { return 10*Error+1;}
 break;
 case 'F':
 Error = Calc_DigFIR_Coefs(FP);
 if(Error) { return 10*Error+2;}
 break;
 case 'I':
 Error = Calc_DigIIR_Coefs(FP);
 if(Error) { return 10*Error+3;}
 break;
 default:
 return ERR_FILTER;
 }
 return ERR_NONE;
}

Listing D.1 Calc_Filter_Coefs function.

234 Practical Analog and Digital Filter Design

The implementation type for the filter is stored in the FP->implem variable
and is used to select an analog, digital FIR, or digital IIR filter implementation. In
each case the user’s specifications are transferred to the next appropriate function
via FP, the pointer to the Filt_Params structure discussed in Appendix C. In
this function, as well as others we will discuss, a simple error reporting system is
used. Most of the functions used will return an integer value that will be zero if no
error occurred and nonzero if an error did occur. At each new level of the
program, the error value is multiplied by 10 and a single digit value is added. The
result of this practice will be a multidigit error value where each digit represents a
different level in the program. This can be used to trace the error to a particular
function.

The Calc_Analog_Coefs function is given in Listing D.2. It is designed
primarily to organize the calculation process, not to perform the calculations
explicitly. The first function called is Calc_Filter_Order, which determines
the filter order from the user specifications in FP. Next the normalized filter
coefficients are determined using Calc_Normal_Coefs, which stores the
coefficients in the Filt_Params structure. Finally, the coefficients are
unnormalized to lowpass, highpass, bandpass, or bandstop coefficients at the user-
specified frequencies via the Unnormalize_Coefs function.

/*==
 Calc_Analog_Coefs() - calcs normal analog coefs
 Prototype: int Calc_Analog_Coefs(Filt_Params *FP);
 Return: error value
 Arguments: FP - ptr to struct holding filter params
==*/
int Calc_Analog_Coefs(Filt_Params *FP)
{ int Error; /* error value */

 /* Determine filter order, then normal coefs,
 then unnormalize them. */
 Error = Calc_Filter_Order(FP);
 if(Error) { return 10*Error+1;}
 Error = Calc_Normal_Coefs(FP);
 if(Error) { return 10*Error+2;}
 Error = Unnormalize_Coefs(FP);
 if(Error) { return 10*Error+3;}
 return ERR_NONE;
}

Listing D.2 Calc_Analog_Coefs function.

In the case of the Calc_Normal_Coefs function, as shown in Listing D.3,

we must allow for individual functions to carry out the actual coefficient
calculation. However, before we actually make the coefficient calculations, we
allocate memory for the storage of the coefficients. By taking care of this
necessary task in Calc_Normal_Coefs, we eliminate the need to handle it in

 C Code for Normalized Approximation Functions 235

each of the four individual functions. It is important to remember that by simply
reserving a place in the Filt_Params structure for the pointers acoefs and
bcoefs, we have not reserved any memory for the coefficients themselves. The
pointers were originally set to zero or NULL by the calloc command we used to
allocate memory for the Filt_Params structure. This effectively says that there
is no memory available for coefficient storage, and if we try to access a coefficient
while in this state, we would get an error. In fact, we hope we get an error to let us
know that there is a problem in our algorithm. It would be far worse to have the
pointers hold a nonzero value that is pointing to some random address in memory.
In that case, we would get no error, but the values we would be accessing would
be random nonsense.

/*==
 Calc_Normal_Coefs() - allocates memory for coefs and
 calls proper function to calc coefs
 Prototype: int Calc_Normal_Coefs(Filt_Params *FP);
 Return: error value
 Arguments: FP - ptr to struct holding filter params
==*/
int Calc_Normal_Coefs(Filt_Params *FP)
{ int Number_Coefs, /* Number of coefs in array */
 Error; /* error value */

 /* Allocate memory for coefs. There are 3 coefs
 for each quadratic. First-order factors are
 considered as quadratics. */
 Number_Coefs = 3 * ((FP->order + 1) / 2);
 FP->acoefs = (double *)
 malloc(Number_Coefs * sizeof(double));
 if(!FP->acoefs) { return ERR_ALLOC;}
 FP->bcoefs = (double *)
 malloc(Number_Coefs * sizeof(double));
 if(!FP->bcoefs) { return ERR_ALLOC;}
 /* Calculate coefs based on approximation. */
 switch (FP->approx)
 { case 'B': Error = Calc_Butter_Coefs(FP);
 if(Error) { return 10*Error+1;}
 break;
 case 'C': Error = Calc_Cheby_Coefs(FP);
 if(Error) { return 10*Error+2;}
 break;
 case 'E': Error = Calc_Ellipt_Coefs(FP);
 if(Error) { return 10*Error+3;}
 break;
 case 'I': Error = Calc_ICheby_Coefs(FP);
 if(Error) { return 10*Error+4;}
 break;
 default: return ERR_FILTER;
 }
 return ERR_NONE;
}

Listing D.3 Calc_Normal_Coefs function.

236 Practical Analog and Digital Filter Design

Up to this point in the program, we did not have the necessary information to
determine the number of coefficients in each of the acoefs and bcoefs arrays.
But since we now have the order of the filter, we can determine the number of
coefficients exactly in the following manner. Each quadratic factor of the
approximation function will require three coefficients (the s2-term coefficient, the
s-term coefficient, and the constant term coefficient). In addition, we will treat any
odd-order approximation first-order factor as a quadratic. We can make use of the
integer math in C to simplify the calculation for the number of coefficients based
on the order of the filter.

Once the correct number of coefficients has been determined, malloc is
used to allocate memory for that number of doubles, and if an error occurs, we
leave the function. The coefficient arrays are organized in the following manner.
The acoefs array stores the coefficients for the numerator factors while the
bcoefs array will store the coefficients for the denominator factors. (acoefs
and bcoefs will take on different meanings in the digital filter design so for now
we can remember A for above the line and B for below the line.) If the
approximation function has an odd-order, the first-order coefficients are stored as
a quadratic in the first three coefficients of each array with the s2-term set to zero.
The next three coefficients are for the first true quadratic, and then all other
quadratics follow. If the approximation function has an even-order, then the first
three coefficients are for the first quadratic, the next three coefficients for the
second quadratic, and so on. Within the three coefficients, the first coefficient
always refers to the s2-term, the second refers to the s-term coefficients, and the
last coefficient is the constant term in the quadratic factor.

The Calc_Butter_Coefs function shown in Listing D.4 is an example of
the approximation calculation function. The function first checks for valid pointers
and order values, and then proceeds to make the calculations outlined in Section
D.2. If the order is odd, the first order coefficients are calculated followed by all
coefficients for quadratic factors. The other individual functions for calculating
the normalized coefficients for the four approximation methods can be found on
the software disc in the \C_CODE\FILTER\F_DESIGN.C module. They all
determine the coefficients in a manner consistent with our development earlier in
this chapter.

There are a number of advanced math functions required by our
approximation functions. These functions are not contained in F_DESIGN.C as
are the rest of the functions discussed in this appendix, but are instead a part of the
\C_CODE\FILTER\ADV_MATH.C module. These include the asinh and acosh
functions used in the Chebyshev functions as well as the elliptic integral and
Jacobian elliptic functions necessary to define the elliptic approximation. The
values of these functions are typically calculated by the arithmetic-geometric mean
method of iteration. A detailed discussion of this method and the elliptic functions
in general is beyond the scope of this text, but references have been provided in
the analog and digital filter design sections of Appendix A.

 C Code for Normalized Approximation Functions 237

/*==
 Calc_Butter_Coefs() - calcs normal Butterworth coefs
 Prototype: int Calc_Butter_Coefs(Filt_Params *FP);
 Return: error value
 Arguments: FP - ptr to struct holding filter params
==*/
int Calc_Butter_Coefs(Filt_Params *FP)
{ int m,a,b; /* Loop counter and indices*/
 double R,epsilon, /* Intermediate values */
 theta, /* Angle location of poles */
 sigma,omega; /* Real/imag pos of poles */

 /* Check for NULL ptrs and zero order. */
 if(!FP->acoefs)
 { return ERR_NULL;}
 if(!FP->bcoefs)
 { return ERR_NULL;}
 if(FP->order <= 0)
 { return ERR_VALUE;}
 /* Make calculations of necessary constants. */
 epsilon = sqrt(pow(10.0,-0.1*FP->apass1) - 1.0);
 R = pow(epsilon,-1.0/FP->order);
 /* Initialize gain to 1.0. Start indices at 0 */
 FP->gain = 1.0;
 a = 0; b = 0;
 /* Handle odd order if necessary. */
 if(FP->order % 2)
 { FP->acoefs[a++] = 0.0;
 FP->acoefs[a++] = 0.0;
 FP->acoefs[a++] = R;
 FP->bcoefs[b++] = 0.0;
 FP->bcoefs[b++] = 1.0;
 FP->bcoefs[b++] = R;
 }
 /* Handle all quadratic terms. */
 for(m = 0;m < FP->order/2;m++)
 { /* Calc angle first, then real and imag pos. */
 theta = PI*(2*m + FP->order +1) / (2 * FP->order);
 sigma = R * cos(theta);
 omega = R * sin(theta);
 /* Set the quadratic coefs. */
 FP->acoefs[a++] = 0.0;
 FP->acoefs[a++] = 0.0;
 FP->acoefs[a++] = sigma*sigma+omega*omega;
 FP->bcoefs[b++] = 1.0;
 FP->bcoefs[b++] = -2 * sigma;
 FP->bcoefs[b++] = sigma*sigma+omega*omega;
 }
 return ERR_NONE;
}

Listing D.4 Calc_Butter_Coefs function.

The Ellip_Integral function is shown in Listing D.5 and uses the

arithmetic-geometric mean method of determining the complete elliptic integral,
as defined in (2.62). It takes as an argument the modulus k and returns the value of
the complete elliptic integral. MAX_TERMS and ERR_SMALL have been defined

238 Practical Analog and Digital Filter Design

as 100 and 1E-15, respectively, in the ADV_MATH.H include file. Of course
these values could be changed as necessary.

/*==
 Ellip_Integral() - calcs complete elliptic integral
 using arithmetic-geometric mean method
 Prototype: void Ellip_Integral(double k);
 Return: complete elliptic integral value
 Arguments: k - the modulus of the integral
==*/
double Ellip_Integral(double k)
{ int i; /* Loop counter. */
 double A[MAX_TERMS],B[MAX_TERMS],
 C[MAX_TERMS]; /* Array storage values. */

 /* Square the modulus as required by this method.*/
 k = k * k;
 /* Initialize the starting values. */
 A[0] = 1;
 B[0] = sqrt(1-k);
 C[0] = sqrt(k);
 /* Iterate until error is small enough. */
 for(i = 1; i < MAX_TERMS ;i++)
 { A[i] = (A[i-1] + B[i-1])/2;
 B[i] = sqrt(A[i-1]*B[i-1]);
 C[i] = (A[i-1] - B[i-1])/2;
 if(C[i] < ERR_SMALL)
 { break;}
 }
 return PI / (2 * A[i]);
}

Listing D.5 Ellip_Integral function.

239

Appendix E

C Code for Unnormalized Approximation
Functions

The Unnormalize_Coefs, which is given in Listing E.1, first determines the
variables used for unnormalization. The unnormalization frequency freq for
lowpass and highpass, as well as the center frequency Wo and the bandwidth BW
for bandpass and bandstop cases are determined differently for the inverse
Chebyshev case as compared to the other approximation methods. After these
calculations, the appropriate unnormalization function is chosen based on the
selectivity of the filter. Each of the specific functions called uses the
Filt_Params structure pointer FP as well as the appropriate unnormalization
variables. Any errors that occur in the functions are handled in the manner
described in Appendix D to allow easy identification of the location of the
problem.

Listing E.2 contains the Unnorm_LP_Coefs, which handles the lowpass
unnormalization. The function first determines whether there is a first-order factor
by determining if the order of the approximation is odd. Remembering our
technique of always placing first-order factors in the coefficient arrays first, we
can safely refer to the constant term coefficients using the index of 2. (The
coefficients are arranged with the s2-term coefficient first, then the s-term
coefficient, and finally the constant term coefficient.) Each additional quadratic
factor then follows in the same order. The coefficients within the loop are adjusted
as we determined in Section 3.1. Proper indexing is accomplished by using cf to
index individual coefficients based on qd, the quadratic indicator. Using this
technique, any coefficient using cf as an index is referring to an s2-term
coefficient, while if the coefficient has an index of cf+1, it is an s-term
coefficient, and cf+2 will be the index for the constant term of a quadratic
expression. Note that we are using the efficient C style where a *= b; is
equivalent to a = a * b;.

240 Practical Analog and Digital Filter Design

The Unnorm_HP_Coefs function is very similar to the previous function
and therefore will not be discussed here. That function can be found in the
\C_CODE\FILTER\F_DESIGN.C module.

/*==
 Unnormalize_Coefs() - converts normal lowpass coefs
 to unnormalized LP/HP/BP/BS.
 Prototype: int Unnormalize_Coefs(Filt_Params *FP);
 Return: error value
 Arguments: FP - ptr to struct holding filter params
==*/
int Unnormalize_Coefs(Filt_Params *FP)
{ int Error; /* error value */
 double freq, /* unnormalizing freq for LP & HP */
 BW, /* unnormal. bandwidth for BP & BS */
 Wo; /* unnormal. ctr freq for BP & BS */

 /* Calc freq, Wo and BW based on approx method */
 switch(FP->approx)
 { case 'B':
 case 'C':
 case 'E':
 freq = FP->wpass1;
 Wo = sqrt(FP->wpass1 * FP->wpass2);
 BW = FP->wpass2 - FP->wpass1;
 break;
 case 'I':
 freq = FP->wstop1;
 Wo = sqrt(FP->wstop1 * FP->wstop2);
 BW = FP->wstop2 - FP->wstop1;
 break;
 default:
 return ERR_FILTER;
 }
 /* Call unnormal. function based on selectivity */
 switch(FP->select)
 { case 'L':
 Error = Unnorm_LP_Coefs(FP,freq);
 if(Error) { return 10*Error+1;}
 break;
 case 'H':
 Error = Unnorm_HP_Coefs(FP,freq);
 if(Error) { return 10*Error+2;}
 break;
 case 'P':
 Error = Unnorm_BP_Coefs(FP,BW,Wo);
 if(Error) { return 10*Error+3;}
 break;
 case 'S':
 Error = Unnorm_BS_Coefs(FP,BW,Wo);
 if(Error) { return 10*Error+4;}
 break;
 default:
 return ERR_FILTER;
 }
 return ERR_NONE;
}

Listing E.1 Unnormalize_Coefs function.

 C Code for Unnormalized Approximation Functions 241

/*==
 Unnorm_LP_Coefs() - converts normal lowpass coefs to
 unnormal LP coefs at a specific freq.
 Prototype: int Unnorm_LP_Coefs(Filt_Params *FP,
 double freq);
 Return: error value
 Arguments: FP - ptr to struct holding filter params
 freq - unnormalization frequency
==*/
int Unnorm_LP_Coefs(Filt_Params *FP,double freq)
{ int qd,cf, /* quad and coef number */
 qd_start; /* starting quad for loop */

 /* Handle first-order, if odd; set qd_start */
 if(FP->order % 2)
 { FP->acoefs[2] *= freq;
 FP->bcoefs[2] *= freq;
 qd_start = 1;
 }
 else
 { qd_start = 0;}

 /* Handle quadratic factors, qd indexes through
 quadratic factors, cf converts to coef number */
 for(qd = qd_start; qd < (FP->order + 1)/2; qd++)
 { cf = qd * 3;
 FP->acoefs[cf+1] *= freq;
 FP->acoefs[cf+2] *= (freq * freq);
 FP->bcoefs[cf+1] *= freq;
 FP->bcoefs[cf+2] *= (freq * freq);
 }
 return ERR_NONE;
}

Listing E.2 Unnorm_LP_Coefs function.

Listing E.3 shown below gives the Unnorm_BP_Coefs function. This

function and the Unnorm_BS_Coefs function are more complicated than the
lowpass and highpass functions. One of the ways that these functions are more
complicated is that the coefficient arrays must be resized to hold the larger number
of coefficients for a bandpass function. (Remember that for bandpass and
bandstop filters, the final order will be twice the original lowpass normalized
order.) Thus, early in this function, variables from the original lowpass function
are stored as well as the new order of the bandpass function. Then new pointers to
the larger arrays of bandpass coefficients are assigned while leaving the original
pointers unchanged. Throughout this function new_num, new_den, org_num
and org_den are used to identify the new and original numerator and
denominator coefficients, respectively. As in previous functions, we handle the
first-order factors before the second-order factors. The values assigned to the new
coefficients are the same as we determined in Section 3.3.

242 Practical Analog and Digital Filter Design

/*==
 Unnorm_BP_Coefs() - converts normal lowpass coefs to
 unnormal BP coefs at a specific freq.
 Prototype: int Unnorm_BP_Coefs(Filt_Params *FP,
 double BW,double Wo);
 Return: error value
 Arguments: FP - ptr to struct holding filter params
 BW - bandwidth for unnormalization
 Wo - center freq for unnormalization
==*/
int Unnorm_BP_Coefs(Filt_Params *FP,
 double BW,double Wo)
{ int qd,ocf,ncf,qd_start,/* loop cntrs, indexes*/
 numb_coefs, /* num coefs in array */
 org_quads, /* orig num of quads */
 org_order; /* original order */
 double *org_num,*org_den, /* orig num, den ptrs */
 *new_num,*new_den; /* new num, den ptrs */
 complex A,B,C,D,E; /* temp cmplx vars */

 /* Store orig number of quads and order,
 new order will be twice original. */
 org_order = FP->order;
 org_quads = (org_order + 1)/2;
 FP->order = org_order * 2;
 /* For clarity, assign ptrs to temp variables */
 org_num = FP->acoefs;
 org_den = FP->bcoefs;
 /* Three coefs for each new quad=3*(new_order+1)/2,
 but new_order will be even, so its simplified */
 numb_coefs = 3 * org_order;
 /* Allocate memory for new arrays with more coefs*/
 new_num=(double *)malloc(numb_coefs*sizeof(double));
 if(!new_num) { return ERR_ALLOC;}
 new_den=(double *)malloc(numb_coefs*sizeof(double));
 if(!new_den) { return ERR_ALLOC;}
 /* If org_order odd, convert first-order factor to
 quadratic, qd_start indic start pt for loop */
 if(org_order % 2)
 { new_num[0] = org_num[1];
 new_num[1] = BW * org_num[2];
 new_num[2] = org_num[1] * Wo * Wo;
 new_den[0] = org_den[1];
 new_den[1] = BW * org_den[2];
 new_den[2] = org_den[1] * Wo * Wo;
 qd_start = 1;
 }
 else
 { qd_start = 0;}
 /* Each orig quad term will be converted to two new
 quads via complex quadratic factoring. */
 for(qd = qd_start;qd < org_quads;qd++)
 { /* ocf indexes org coefs, 3 coefs per org quad
 ncf indexes new coefs, 6 coefs per org quad
 ncf also adjusts for first-order factor */
 ocf = qd * 3;
 ncf = qd * 6 - qd_start * 3;
 /* For numers which DON'T have s^2 or s terms. */
 if(org_num[ocf] == 0.0)
 { new_num[ncf] = 0.0;
 new_num[ncf+1] = sqrt(org_num[ocf+2]) * BW;

 C Code for Unnormalized Approximation Functions 243

 new_num[ncf+2] = 0.0;
 new_num[ncf+3] = 0.0;
 new_num[ncf+4] = sqrt(org_num[ocf+2]) * BW;
 new_num[ncf+5] = 0.0;
 }
 /* For numers which DO have s^2 and s terms. */
 else
 { /* Convert coefs to complex, then factor */
 A = cmplx(org_num[ocf],0);
 B = cmplx(org_num[ocf+1],0);
 C = cmplx(org_num[ocf+2],0);
 cQuadratic(A,B,C,&D,&E);
 /* Make required substitutions, factor again */
 A = cmplx(1,0);
 B = cmul(cneg(D),cmplx(BW,0));
 C = cmplx(Wo*Wo,0);
 cQuadratic(A,B,C,&D,&E);
 /* Determine final values for new coefs. */
 new_num[ncf] = 1.0;
 new_num[ncf+1] = -2.0 * creal(D);
 new_num[ncf+2] = creal(cmul(D,cconj(D)));
 new_num[ncf+3] = 1.0;
 new_num[ncf+4] = -2.0 * creal(E);
 new_num[ncf+5] = creal(cmul(E,cconj(E)));
 }
 /* Denoms will always have nonzero s^2 term. */
 /* Convert coefs to complex, then factor */
 A = cmplx(org_den[ocf],0);
 B = cmplx(org_den[ocf+1],0);
 C = cmplx(org_den[ocf+2],0);
 cQuadratic(A,B,C,&D,&E);
 /* Make required substitutions, factor again */
 A = cmplx(1,0);
 B = cmul(cneg(D),cmplx(BW,0));
 C = cmplx(Wo*Wo,0);
 cQuadratic(A,B,C,&D,&E);
 /* Make required substitutions, factor again */
 new_den[ncf] = 1.0;
 new_den[ncf+1] = -2.0 * creal(D);
 new_den[ncf+2] = creal(cmul(D,cconj(D)));
 new_den[ncf+3] = 1.0;
 new_den[ncf+4] = -2.0 * creal(E);
 new_den[ncf+5] = creal(cmul(E,cconj(E)));
 }
 /* Free the memory allocated to original coefs. */
 free(FP->acoefs);
 free(FP->bcoefs);
 /* Assign the new ptrs to old array ptrs. */
 FP->acoefs = new_num;
 FP->bcoefs = new_den;
 return ERR_NONE;
}

Listing E.3 Unnorm_BP_Coefs function.

Before we begin the discussion of the unnormalization of second-order

factors within the for loop, we need to make a slight excursion into the use of
complex numbers in C. The C language does not support complex numbers as a
standard data type as it does ints, floats, and doubles. Therefore, if we are

244 Practical Analog and Digital Filter Design

to use them in the solution of the unnormalization of bandpass and bandstop
coefficients, we will have to define our own complex number definition. A
complex number can easily be defined with a structure using a real and imaginary
member as shown below.

typedef struct
{ double re, /* Real part of complex number */
 im; /* Imag part of complex number */
} complex;

Using this complex struct will allow us to define any variables we like as
type complex. For example, in the variable declaration section of the function
we are studying now, the variables A, B, C, D, and E are defined as complex as
shown below.

complex A,B,C,D,E; /* temp cmplx vars */

Within the \C_CODE\FILTER\COMPLEX.C module there are a number of

complex functions defined to implement standard mathematical functions for
complex numbers. A list of the functions is shown below. We do not have space
to study them here, but the full module is contained on the software disc included
with this text.

cadd() — adds complex numbers and returns result.
cang() — returns angle (radians) of a complex number.
cconj() — returns complex conjugate of a complex number.
cdiv() — divides complex numbers and returns result.
cimag() — returns imaginary part of a complex number.
cmag() — returns the magnitude of a complex number.
cmplx() — returns complex number made from two doubles.
cmul() — multiplies complex numbers and returns result.
cneg() — returns the negative of a complex number.
cprt() — prints the value of a complex number.
cQuadratic() — factors quadratic eqn. with complex coefficients.
creal() — returns real part of a complex number.
csqr() — returns the square root of a complex number.
csub() — subtracts complex numbers and returns result.

As an example of one of these complex functions, cadd is shown in Listing

E.4. As indicated in the listing, cadd takes two complex numbers as arguments
and adds their respective real and imaginary parts. The new complex number x is
then returned to the calling function.

Another complex function is shown in Listing E.5 below. cQuadratic
takes five arguments, all of which are complex or point to complex numbers. The
first three arguments, a, b, and c, are the coefficients of a quadratic equation,
while d and e are the addresses where the factors of the quadratic equation are to
be stored. Each line of the function makes a partial calculation of the quadratic
formula, but using complex functions. The final results are then stored where the

 C Code for Unnormalized Approximation Functions 245

variables d and e point. Remember this advanced version of the quadratic
equation solver is necessary because some of the coefficients of the quadratic
equation are complex, unlike the typical situation where they all would be real.

/*==
 cadd() - adds complex numbers (a+b), returns result
==*/
complex cadd(complex a,complex b)
{ complex x;
 x.re = a.re + b.re;
 x.im = a.im + b.im;
 return x;
}

Listing E.4 cadd function.

/*==
 cQuadratic() - solves quadratic equation with cmplx
 coefficients. Equation form is a*x^2 + b*x + c,
 solutions will be placed in cmplx numbers d and e,
 whose addresses are sent to cQuadratic.
==*/
void cQuadratic(complex a,complex b,complex c,
 complex *d,complex *e)
{ complex a2,ac4,sq; /* intermediate values */

 a2 = cmul(a,cmplx(2,0)); /* 2*a */
 ac4 = cmul(cmul(a,c),cmplx(4,0)); /* 4*a*c */
 sq = csqr(csub(cmul(b,b),ac4)); /* sqrt(b*b-4*a*c)*/
 d = cdiv(cadd(cneg(b),sq),a2); / first root */
 e = cdiv(csub(cneg(b),sq),a2); / second root */
}

Listing E.5 cQuadratic function.

Now we can return to the discussion of the Unnorm_BP_Coefs.

qd_start is again used to control the starting point of the for loop, and
org_quads controls the ending point. Once we enter the loop to unnormalize the
original second-order factors we first define indexing variables to control the
location within the original coefficient array and the new coefficient array. The
variable ocf controls the position within the original coefficient array by indexing
three positions for each original quadratic factor. The variable ncf controls the
position within the new coefficient array by indexing six positions for each of the
original quadratics. The six positions are necessary because for each original
quadratic there will be two new quadratics produced. In addition ncf must adjust
for the unnormalized first-order factor if there is one. Therefore, ncf starts at 0 if
the original order was even, but starts at 3 if the order was odd. Thereafter, it
increments by a value of 6.

The numerator unnormalization can be of two different types. In the
Butterworth and Chebyshev cases, there will be no s2-term or s-term, while the
inverse Chebyshev and elliptic approximations will have an s2-term present for the
complex zeros. Therefore, an if statement is used to determine the appropriate

246 Practical Analog and Digital Filter Design

method to use for a particular case. In the first case, only s-term coefficients take
on the nonzero values we determined in Section 3.3. In the second case, all
coefficients take on nonzero values, which are dependent on a number of complex
calculations.

In this second, more complicated case, we must first convert the original
coefficients into complex numbers using the cmplx function. Then the roots of
the quadratic are determined by the cQuadratic function and stored in the
variables D and E. (We will not be dealing with the E root of this first quadratic
because we know that it is the complex conjugate of the D root.) We are then
ready to define another quadratic as we found in Section 3.3. The appropriate
values from this quadratic are loaded into A, B, and C, and then cQuadratic is
called again. The roots of this second quadratic are then stored in D and E again.
Each of these roots will define one quadratic, just as one pole location in Chapter
2 was enough to determine a quadratic. For example, if D = α + jβ and E = δ + jλ,
then the D root will produce a quadratic of the forms s2 − 2 α s + (α2 + β2) and
the E root will produce s2 − 2 δ s + (δ2 + λ2). These representations are mirrored
in the C code. Note that the sum of squares is calculated by multiplying the root
by its complex conjugate. The denominator quadratics are calculated in just the
same manner as this numerator case.

Once we leave the loop, all of the new coefficients have been calculated and
put in place. All we have left to do is to reassign the array pointers in the
Filt_Params structure. We are now finished with the original coefficients from
the lowpass normalized approximation, so we can free the memory allocated to
them by using the free command. Next, we take the pointers for the new, larger
arrays and put them into FP. Now the pointers in FP point to areas in memory that
store the larger arrays of bandpass coefficients, and the areas in memory that
stored the original coefficients have been freed for future use.

At this point, we have covered all of the necessary description for
Unnorm_BS_Coefs as well. There are really no significant differences in the
bandstop unnormalization function. It can be found in the \C_CODE\FILTER\
F_DESIGN.C module.

247

Appendix F

C Code for Active Filter Implementation

In order to aid in the implementation and evaluation of analog active filters, we
will now develop the code necessary for the calculation of component values and
the generation of PSpice text files. These text files will serve as input to PSpice
that will analyze the active filters.

We will use two structures to pass information to the various functions in this
project. The first structure is the familiar Filt_Params structure, discussed
previously. The second is a new structure used to hold the component values for
the active filters to be designed. This RC_Comps structure is shown below and
includes the voltage divider resistors Rx and Ry as well as the number of stages in
the filter. The other variables contained in the structure are pointers to arrays
because these variables will be present in each stage of the filter and we will not
know at the time of the program execution how many stages will be present. The
components included are the primary R and C values, the gain control resistors RA
and RB, and the bandstop parameters Ro and Co.

typedef struct
{ double Rx,Ry, /* Voltage divider values */
 *R,*C, /* Primary R-C values */
 *Ra,*Rb, /* Feedback resistors */
 *Ro,*Co; /* Twin-tee addl components */
 int stages; /* Number of stages */
} RC_Comps;

Once we have the common values of capacitor CO and resistor RA to use in

each of the filter’s stages, as well as the frequency information, we can calculate
the other circuit values using the Calc_Components function. (This function,
as well as others associated with analog filter implementation, can be found in
\C_CODE\ANALOG\ANALOG.C.) Calc_Components will in turn call an
appropriate function based on the selectivity of the desired filter. For example, if a
lowpass filter is being implemented, then the Calc_LP_Comps function will be
called, while if a bandpass filter is being implemented, the Calc_BP_Comps
function will be called. However, no matter which function is to be called,
memory must be allocated for the arrays of component values in the structure.

248 Practical Analog and Digital Filter Design

This memory allocation can be done prior to calling the individual functions and
thereby eliminate the requirement of memory allocation in each of the individual
functions.

The component calculation functions are very similar to one another although
the equations for component values are somewhat different. For that reason, only
the Calc_LP_Comps function shown in Listing F.1 will be discussed here. The
work within the function begins by initializing the variable K_Total, which will
store the product of all stage Ks. Then, if a first-order stage is required, the R and
C values for it are calculated and start is set to 1. Then, the component values
for the stages implementing the quadratic factors are calculated within the for
loop, which has a starting index of start. The coefficients from the
Filt_Params structure are retrieved, and the common values of C and RA are
placed in the RC_Comps structure. Then a determination has to be made within a
switch statement as to whether a filter with complex conjugate zeros will be
required. If the zeros are not required, the calculations are made and the process
continues. However, if complex conjugate zeros are required, it must be decided
whether a resistor, capacitor, or no additional value is necessary.

The loop will continue its iterations until all stage components have been
determined. Once the loop finishes, the gain adjustment factor can be determined
and the voltage divider components can be calculated. If the gain adjustment is
exactly 1, no values are calculated since a division by zero would result.

/*==
 Calc_LP_Comps() - calculates the component values
 for lowpass analog active filter.
 Prototype: int Calc_LP_Comps(Filt_Params *FP,
 RC_Comps *RC,double C,double Ra);
 Return: error value
 Arguments: FP - ptr to struct holding filter params
 RC - ptr to struct holding RC components
 C - capacitor value for all stages
 Ra - feedback resistor for all stages
==*/
int Calc_LP_Comps(Filt_Params *FP,RC_Comps *RC,
 double C,double Ra)
{ int i,start; /* Loop counter and start pt*/
 double K,K_Total, /* K value and total */
 Gain_Adj, /* Gain adjustment factor */
 a2,a2r, /* Numerator constants */
 b1,b2,b2r; /* Denominator constants */

 /* Initialize K total */
 K_Total = 1;
 /* If order is odd, determine R & C values for
 first-order stage and set start to 1 */
 start = 0;
 if(FP->order % 2)
 { RC->C[0] = C;
 RC->R[0] = 1 / (C * FP->bcoefs[2]);
 RC->Ra[0] = Ra;
 start = 1;
 }
 /* Determine values for second-order stages */

 C Code for Active Filter Implementation 249

 for(i = start; i < RC->stages ;i++)
 { /* Determine coefficients and roots */
 a2 = FP->acoefs[i*3 + 2];
 a2r = sqrt(a2);
 b1 = FP->bcoefs[i*3 + 1];
 b2 = FP->bcoefs[i*3 + 2];
 b2r = sqrt(b2);
 /* Set standard values in structure */
 RC->C[i] = C;
 RC->Ra[i] = Ra;
 /* Calculate values based on approx type
 B,C use Sallen-Key, E,I use Twin-Tee */
 switch(FP->approx)
 { case 'B':
 case 'C':
 RC->R[i] = 1 / (C * b2r);
 K = 3 - (b1/b2r);
 break;
 case 'E':
 case 'I':
 RC->R[i] = 1 / (C * a2r);
 /* Find K, Ro, Co dependent on a2,b2 */
 if(a2 > b2)
 { K = 2 + ((a2-b2-b1*a2r)/(2*b2));
 RC->Co[i] = (((a2/b2) - 1) * C) / 2;
 }
 else if(a2 < b2)
 { K = 2 + ((b2-a2-b1*a2r)/(2*a2));
 RC->Ro[i] = 2 * RC->R[i] / ((b2/a2) - 1);
 }
 else
 { K = 2 - (b1/(2*a2r));}
 break;
 default:
 return ERR_FILTER;
 }
 /* If Co = 0, K_Tot only increases by K */
 K_Total *= ((K * C) / (C + 2*RC->Co[i]));
 RC->Rb[i] = Ra * (K - 1);
 }
 /* Make final adjustment of gain and
 calculate voltage divider values */
 Gain_Adj = K_Total / FP->gain;
 if(Gain_Adj == 1.000)
 { return ERR_NONE;}
 RC->Rx = Gain_Adj * R_OUT;
 RC->Ry = Gain_Adj * R_OUT / (Gain_Adj - 1);
 return ERR_NONE;
}

Listing F.1 Calc_LP_Comps function.

After an analog active filter has been designed and the component values
have been calculated, the next logical step is to test the circuit. Testing usually
includes both computer analysis, where a circuit simulation is performed, and
laboratory analysis, where the circuit is built from components and tested with
electronic equipment. We can help in the computer evaluation of the filter circuit
by preparing the analysis data file necessary for PSpice tool.

250 Practical Analog and Digital Filter Design

The Write_Circ_File function contained in ANALOG.C is used to
coordinate the generation of the circuit analysis text file. After all of the filter
sections have been written, the final voltage divider section is appended, and an
appropriate model for the op-amp circuit is specified. Finally, the analysis modes
are specified using the starting and ending frequencies provided by the user. As an
example of one of the functions that generates circuit analysis data files, Listing
F.2 shows Write_LP_Section.

/*==
 Write_LP_Section() - writes a lowpass filter
 section to the circuit data file.
 Prototype: void Write_LP_Section(int stage,
 RC_Comps *RC,FILE *CF);
 Return: none
 Arguments: stage - section number of filter
 RC - ptr to struct holding RC components
 CF - ptr to output file
==*/
void Write_LP_Section(int stage,RC_Comps *RC,
 FILE *CF)
{ int s,t; /* Stage related variables */
 double R,C,Ra,Rb; /* Component values */

 /* Simplify some variables */
 t = stage + 1; s = 10 * t;
 R = RC->R[stage]; C = RC->C[stage];
 Ra = RC->Ra[stage]; Rb = RC->Rb[stage];
 /* Rb == 0 if first-order stage, otherwise
 generate circuit text for second-order */
 if(Rb == 0)
 { fprintf(CF,"\n* Stage Number %d",stage+1);
 fprintf(CF,"\nR%d\t%d\t%d\t%8.3E",s+1,s+1,s+2,R);
 fprintf(CF,"\nC%d\t%d\t%d\t%8.3E",s+1,s+2,0,C);
 fprintf(CF,"\nRb%d\t%d\t%d\t1",t,s+3,s+11);
 fprintf(CF,
 "\nX%d\t%d\t%d\t%d\tOPAMP",t,s+2,s+3,s+11);
 }
 /* Generate circuit text for second-order stage
 If Ro and Co != 0, then use BS stage to
 generate elliptic or inv Chebyshev approx,
 otherwise use standard BP configuration */
 else
 {if((RC->Co[stage] != 0) || (RC->Ro[stage] != 0))
 { Write_BS_Section(stage,RC,CF);}
 else
 {fprintf(CF,"\n* Stage Number %d",stage+1);
 fprintf(CF,"\nR%d\t%d\t%d\t%8.3E",s+1,s+1,s+2,R);
 fprintf(CF,"\nR%d\t%d\t%d\t%8.3E",s+2,s+2,s+3,R);
 fprintf(CF,"\nC%d\t%d\t%d\t%8.3E",s+1,s+3,0,C);
 fprintf(CF,"\nC%d\t%d\t%d\t%8.3E",s+2,s+2,s+11,C);
 fprintf(CF,"\nRa%d\t%d\t%d\t%8.3E",t,s+4,0,Ra);
 fprintf(CF,"\nRb%d\t%d\t%d\t%8.3E",t,s+4,s+11,Rb);
 fprintf(CF,"\nX%d\t%d\t%d\t%d\tOPAMP",t,s+3,s+4,s+11);
 }
 }
}

Listing F.2 Write_LP_Section function.

 C Code for Active Filter Implementation 251

This function begins by simplifying the form of the components for each
stage and then writes a section based on the order of the filter stage and the
implementation of the filter stage. If the stage is implementing a first-order factor
as indicated by RB having a value of zero, the necessary component values are
written to the file. If the stage is implementing a second-order factor, the stage
configuration could be either a Sallen-Key or a twin-tee notch form. If either the
capacitor Co or the resistor Ro is nonzero, the twin-tee notch form is indicated, and
the Write_BS_Section function is called since it implements the twin-tee
notch filter form. Otherwise, the components for a standard Sallen-Key stage are
written to the text file.

252 Practical Analog and Digital Filter Design

Appendix G

C Code for IIR Filter Design

The bilinear transform approach to IIR filter design is popular because it has wide
application. Our procedure will be the same as outlined in Chapter 6: prewarp the
critical digital frequencies to their analog counterparts, design a standard analog
filter using the new specifications, perform the bilinear transform on the analog
transfer function to produce the digital transfer function, and finally, set the
frequencies back to their original values for future use. The design of the analog
filter has already been covered in earlier chapters, so we won’t need to develop
that code. Consequently, our work involves generating only a few new functions
in order to add the IIR filter design capability to our project.

In the Calc_DigIIR_Coefs function shown in Listing G.1, we first use

Warp_Freqs to prewarp the frequencies; then, we call Calc_Filter_Order,
Calc_Normal_Coefs, and Unnormalize_Coefs in order to design the
analog filter. After the analog filter has been designed, the analog coefficients can
be converted to digital coefficients by the Bilinear_Transform function.
And, finally, the UnWarp_Freqs function converts the critical frequencies back
to their original values. Throughout this process, all critical parameters are
transferred to and from the function in the Filt_Params structure using the
pointer FP.

During the filter specification phase of our program, the user entered the

desired frequency specifications that the digital filter must satisfy. In the
Warp_Freqs function, these frequencies must be converted to analog
frequencies using the techniques discussed in Chapter 6. We can combine (6.7)
and (6.18) in order to determine the relationship that must exist between the
analog and digital radian frequencies. The UnWarp_Freqs function simply
resets the critical frequencies using the relationship of (G.2).

253

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

⋅⋅=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅
⋅⋅

⋅=
s

d
s

s

d
a f

f
f

f
T 2

tan2
2

2tan2 ωπω
 (G.1)

254 Practical Analog and Digital Filter Design

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

⋅⋅= −

s

a
sd f

f
2

tan2 1 ωω
 (G.2)

/*==
 Calc_DigIIR_Coefs() - calcs digital IIR coefs
 Prototype: int Calc_DigIIR_Coefs(Filt_Params *FP);
 Return: error value
 Arguments: FP - ptr to struct holding filter params
==*/
int Calc_DigIIR_Coefs(Filt_Params *FP)
{ int Error; /* error value */

 /* Pre-warp frequencies before making calcs */
 Error = Warp_Freqs(FP);
 if(Error) { return 10*Error+1;}
 /* Calc order and coefs, then unnormalized coefs */
 Error = Calc_Filter_Order(FP);
 if(Error) { return 10*Error+2;}
 Error = Calc_Normal_Coefs(FP);
 if(Error) { return 10*Error+3;}
 Error = Unnormalize_Coefs(FP);
 if(Error) { return 10*Error+4;}
 /* Transform from s-domain to z-domain */
 Error = Bilinear_Transform(FP);
 if(Error) { return 10*Error+5;}
 /* Put the critical freqs back to orig value */
 Error = UnWarp_Freqs(FP);
 if(Error) { return 10*Error+6;}
 return ERR_NONE;
}

Listing G.1 Calc_DigIIR_Coefs function.

The objective of the Bilinear_Transform function shown in Listing G.2
is to implement the transformation from an analog transfer function to a digital
transfer function. A check that the acoefs and bcoefs arrays actually exist is
made first in the function. Then, constants that will be used often are calculated
and stored in f2 and f4. And, finally, the number of quadratics is calculated as
well as a starting point for the quadratic loop. If the order of the filter is odd, then
a first-order term is handled, and start is set to 1. Notice that start controls
which quadratic factor will start the process. If a first-order factor (which is stored
as a quadratic) has already been processed, the for loop will start with the second
quadratic (if one is present). The actual transformation calculations are handled in
exactly the same manner as derived in (6.20) to (6.25). Also notice that the total
gain of the filter is adjusted in the first-order case as well as in the quadratic loop.
By the end of the function, all gain adjustments have been included and the analog
coefficients have been replaced by digital IIR coefficients.

 C Code for IIR Filter Design 255

/*==
 Bilinear_Transform() - use bilinear transform to
 convert transfer function from s-domain to z-domain
 Prototype: int Bilinear_Transform(Filt_Params *FP,
 double fsamp);
 Return: error value
 Arguments: FP - ptr to struct holding filter params
==*/
int Bilinear_Transform(Filt_Params *FP)
{ int i,j,start, /* loop counters and index */
 num_quads; /* number of quad factors */
 double f2,f4, /* 2 * fsamp, and 4 * fsamp^2 */
 N0,N1,N2, /* numerator temp variables */
 D0,D1,D2; /* denominator temp variables */
 if((!FP->acoefs) || (!FP->bcoefs))
 { return ERR_NULL;}
 /* determine some constants */
 f2 = 2 * FP->fsamp;
 f4 = f2 * f2;
 num_quads = (FP->order + 1)/2;
 /* handle first-order factor if present */
 start = 0;
 if(FP->order % 2)
 { N0 = FP->acoefs[2] + FP->acoefs[1] * f2;
 N1 = FP->acoefs[2] - FP->acoefs[1] * f2;
 D0 = FP->bcoefs[2] + FP->bcoefs[1] * f2;
 D1 = FP->bcoefs[2] - FP->bcoefs[1] * f2;
 FP->acoefs[0] = 1.0;
 FP->acoefs[1] = N1 / N0;
 FP->acoefs[2] = 0.0;
 FP->bcoefs[0] = 1.0;
 FP->bcoefs[1] = D1 / D0;
 FP->bcoefs[2] = 0.0;
 FP->gain *= (N0 / D0);
 start = 1;
 }
 /* Handle quadratic factors. */
 for(i = start; i < num_quads ;i++)
 { j = 3 * i;
 N0 = FP->acoefs[j]*f4 + FP->acoefs[j+1]*f2 + FP->acoefs[j+2];
 N1 = 2 * (FP->acoefs[j+2] - FP->acoefs[j]*f4);
 N2 = FP->acoefs[j]*f4 - FP->acoefs[j+1]*f2 + FP->acoefs[j+2];
 D0 = FP->bcoefs[j]*f4 + FP->bcoefs[j+1]*f2 + FP->bcoefs[j+2];
 D1 = 2 * (FP->bcoefs[j+2] - FP->bcoefs[j]*f4);
 D2 = FP->bcoefs[j]*f4 - FP->bcoefs[j+1]*f2 + FP->bcoefs[j+2];
 FP->acoefs[j] = 1.0;
 FP->acoefs[j+1] = N1 / N0;
 FP->acoefs[j+2] = N2 / N0;
 FP->bcoefs[j] = 1.0;
 FP->bcoefs[j+1] = D1 / D0;
 FP->bcoefs[j+2] = D2 / D0;
 FP->gain *= (N0 / D0);
 }
 return ERR_NONE;
}

Listing G.2 Bilinear_Transform function.

256 Practical Analog and Digital Filter Design

257

Appendix H

C Code for FIR Filter Design

The design of digital FIR filters is accomplished by Calc_DigFIR_Coefs
shown in Listing H.1. (All of the functions necessary to implement that section of
the project can be found in the \C_CODE\FILTER\F_DESIGN.C module on the
software disc.) In this function, we see that all of the necessary steps in the design
process are accomplished by the functions called from Calc_DigFIR_Coefs.
In addition, the user is given an opportunity to adjust the length of the filter after it
has been estimated. This option is necessary since the FIR filter length cannot be
calculated exactly. Once the length has been accepted or changed, memory can be
allocated for the filter coefficients.

The length of the FIR filter is estimated by the Estm_Filter_Len
function. In this function the various parameters required to estimate the length of
either a window FIR design or a Parks-McClellan design are calculated. All
window designs use the Kaiser estimate, which provides a starting point for the
filter designer. In most cases, the Kaiser will be the preferred window design with
the other methods used for comparison purposes. After the filter length has been
estimated, the calculated value is converted to the next higher odd integer and
stored in FP->order. We recognize that the variable is actually the filter’s
length, but this saves us from defining another variable in the Filt_Params
structure.

If the design method uses the window technique, the ideal filter coefficients
are calculated using Calc_Ideal_FIR_Coefs. This function implements the
appropriate equation for ideal coefficient calculation and stores them in the
FP−>bcoefs array. Next, the proper window coefficients are calculated using one
of several Calc_xxxx_Win_Coefs functions and stored in the FP−>acoefs
array. Finally, the ideal and window coefficients are multiplied by the
Multi_Win_Ideal_Coefs function with the final coefficients stored in the
FP−>acoefs.

258 Practical Analog and Digital Filter Design

/*==
 Calc_DigFIR_Coefs() - calcs the digital FIR coefs
 Prototype: int Calc_DigFIR_Coefs(Filt_Params *FP);
 Return: error value
 Arguments: FP - ptr to struct holding filter params
==*/
int Calc_DigFIR_Coefs(Filt_Params *FP)
{ char ans;
 int Error; /* error value */
 double beta; /* parameter for Kaiser window */

 /* Estimate the length (order) of filter.
 Get beta for Kaiser window, if needed. */
 beta = Estm_Filter_Len(FP);
 /* See if user wants to adjust estimated length */
 printf("\n Filter length is estimated as %d.", FP->order);
 ans = Get_YN("\n Do you wish to change it? (Y/N):");
 if(ans == 'Y')
 { FP->order = Get_Int("\n Please enter new length: ",0,500);}
 /* Allocate memory for coefficients. */
 FP->acoefs =
 (double *) malloc(FP->order * sizeof(double));
 if(!FP->acoefs) { return ERR_ALLOC;}
 FP->bcoefs = (double *) malloc(FP->order * sizeof(double));
 if(!FP->bcoefs) { return ERR_ALLOC;}
 /* Set overall gain to 1.0 */
 FP->gain = 1.0;
 /* Calculate the ideal FIR coefficients
 but not for Parks-McClellan. */
 if(FP->approx != '6')
 { Error = Calc_Ideal_FIR_Coefs(FP);
 if(Error) { return 10*Error+1;}
 }
 /* Determine the approximation method to use. */
 switch(FP->approx)
 { case '0': Error = Calc_Rect_Win_Coefs(FP);
 if(Error) { return 10*Error+2;} break;
 case '1': Error = Calc_Bart_Win_Coefs(FP);
 if(Error) { return 10*Error+3;} break;
 case '2': Error = Calc_Blck_Win_Coefs(FP);
 if(Error) { return 10*Error+4;} break;
 case '3': Error = Calc_Hamm_Win_Coefs(FP);
 if(Error) { return 10*Error+5;} break;
 case '4': Error = Calc_Hann_Win_Coefs(FP);
 if(Error) { return 10*Error+6;} break;
 case '5': Error = Calc_Kais_Win_Coefs(FP,beta);
 if(Error) { return 10*Error+7;} break;
 case '6': Error = Calc_ParkMccl_Coefs(FP);
 if(Error) { return 10*Error+8;} break;
 default: return ERR_FILTER;
 }
 /* Multiply window and ideal coefs only for
 but not for Parks-McClellan coefficients */
 if(FP->approx != '6')
 { Error = Mult_Win_Ideal_Coefs(FP);
 if(Error) { return 10*Error+9;}
 }
 return ERR_NONE;
}

Listing H.1 Calc_DigFIR_Coefs function.

259

Appendix I

Filtering Sound Files

There are a number of sound file formats in use today, but one of the most popular
is the WAVE file format (.WAV). This file format has a number of different ways
that the file information can be stored, but we will concentrate on just the basic
techniques. We discuss only the formats for monaural and stereo signals with
either 8 bits or 16 bits per sample. Compression schemes are popular today to save
space in transferring or saving music files, but we will concentrate only on
uncompressed files. We will see that handling four different options will provide
us with enough challenge for now.

Each sound file begins with a header of information that describes the
important characteristics of the file such as sampling frequency, number of
samples, number of channels (mono or stereo) and number of bits per sample. For
our work, the header information for each file is shown in Table I.1.

After the header information, the raw data for the sound file is provided in
one of the four formats. If the data file is monaural, the data is just a sequence of
bytes or integers depending on the number of bits per sample. The number of data
values can be determined from the information in the header, which specifies the
number of data bytes in the file. If the file is using 16 bits (2 bytes) per sample,
then the number of data values is one-half of the number of data bytes. In the case
of a stereo sound file, the byte or integer samples of each channel are alternated
starting with the left channel and then the right channel. Therefore, if we need to
know how many samples to process for the left channel of a 16 bits per sample
stereo sound file, we would need to divide the number of data bytes by four to
arrive at the proper value.

If the data is in the form of 16 bits per sample, then we can treat the data as a
simple signed integer that has a range of values from +32,767 to −32,768. If the
data is in the form of 8 bits per sample, then it is stored as an unsigned character
with values from 0 to 255 with 128 considered as the midpoint. This is not the
same as a signed character data type, and therefore special consideration must be
given to the conversion of 8-bit to 16-bit representation. Equation (I.1) indicates
the proper procedure to convert from 8-bit unsigned data to 16-bit signed data,
while (I.2) shows the opposite conversion. (The functions Convert2Char and

260 Practical Analog and Digital Filter Design

Convert2Int are included in the \C_CODE\DIGITAL directory of the
accompanying software disc as are all other functions associated with digital filter
implementation.)

Table I.1
File Format for .WAV Files

Bytes Description
0 – 3 “RIFF” — identification string
4 – 7 Reserved
8 – 15 “WAVEfmt∅“ — ID string (∅ = space)
16 – 19 Reserved
20 – 21 Type of format — short integer
22 – 23 Number of channels — short integer
24 – 27 Samples per second — long integer
28 – 31 Average bytes per second — long integer
32 – 33 Block alignment — short integer
34 – 35 Bits per sample — short integer
36 – 39 “data” — identification string
40 – 43 Number of data bytes — long integer

 256)128data(data 816 ⋅−= (I.1)

 128)256/data(data 168 += (I.2)

We are now ready to discuss the functions necessary to filter a sound file. We

will need to determine the parameters of the filter as well as the waveform to be
filtered. Then we will need to read in the waveform data, filter it, and write out the
processed data. Since there are four different formats that could be used, and since
we don’t want to generate four different filtering algorithms to handle each one,
we standardize each file type into a monaural 16-bit data waveform. Then, the
filtering algorithms can be optimized to operate on that type of file. Since we will
be operating in a nonreal-time mode, this conversion should not be a problem.

In the case of reading the input data and writing the output data, we must
handle the conversion of 8 bits per sample and stereo files. If the file uses 8 bits
per sample, the input data waveform is first converted to 16 bits per sample. If the
input file is stereo, we then separate it into two monaural files and process them as
two independent files. The filtering process will be relatively easy since we have
already developed the functions to accomplish this in Chapter 8. A special
structure is used to store information about the waveform to be processed. The

 Filtering Sound Files 261

Wvfrm_Params structure contains all of the important information about the
waveform.

typedef struct
{ char *header; /* ptr to header info */
 int file_type, /* type of data file */
 numb_chan, /* number of channels */
 bytes_per_samp; /* bytes per sample */
 long samp_per_sec, /* samples per second */
 numb_samples; /* number of samples */
} Wvfrm_Params;

Listing I.1 Wvfrm_Params structure.

The Digital_Filter function performs most of the work in the program
and is quite long. Therefore, only an abbreviated version is shown in Listing I.2.
Array creation, error checking, and conversions from 8 to 16 bit as well as stereo
to mono versions have been removed. (The complete function can be viewed on
the software disc.) The actual digital filtering is handled by using one of the
functions discussed in earlier sections. Based on the filter implementation type and
the status of the REAL_TIME constant (defined in DIGITAL.H), we will use
Dig_IIR_Filter, Dig_FIR_Filt_RT, or Dig_FIR_Filt_NRT to
produce the filtering.

/*==
 Digital_Filter() - determines the type of waveform
 (mono/stereo - 8bit/16bit), type of filter (FIR/IIR)
 and sets up all memory for filtering process
 Prototype: int Digital_Filter(FILE *InFile,
 FILE *OutFile,Filt_Params *FP,Wvfrm_Params *WP);
 Return: error value.
 Arguments: InFile - input data file
 OutFile - output data file
 FP - ptr to Filt_Params struct
 WP - ptr to Wvfrm_Params struct
==*/
int Digital_Filter(FILE *InFile,FILE *OutFile,
 Filt_Params *FP,Wvfrm_Params *WP)
{ /* Declaration of variables (not shown - NS) */

 /* Set all pointers to null */
 a = c = C = M1 = M2 = 0;
 X1 = X2 = Y1 = Y2 = 0; Z = 0;
 /* Set common values */
 bytes = WP->bytes_per_samp;
 chan = WP->numb_chan;
 error = ERR_NONE;

 /* Allocate memory for data (NS) */

 /* ===== ===== Handle the IIR case ===== ===== */
 if(FP->implem == 'I')
 { /* Set numb_quads and start for later use */
 numb_quads = (FP->order + 1) / 2;
 start = 0;

262 Practical Analog and Digital Filter Design

 /* Alloc memory for input, coefs and mem (NS) */
 /* Set up second set of arrays if stereo (NS) */
 /* Load the coef array with gain, b's and a's */
 c = C;
 *c++ = FP->gain;
 for(i = 0; i < numb_quads ;i++)
 { j = i * 3;
 *c++ = FP->bcoefs[j+1];
 *c++ = FP->bcoefs[j+2];
 *c++ = FP->acoefs[j+1];
 *c++ = FP->acoefs[j+2];
 }
 }
 /* ===== ===== Handle the FIR case ===== ===== */
 else if(FP->implem == 'F')
 { /* Set numb_coefs and start for later use */
 numb_coefs = FP->order;
 if(REAL_TIME)
 { start = 0;}
 else
 { start = numb_coefs - 1;}
 /* Alloc memory for input, coefs and mem (NS) */
 /* Set up second set of array if stereo (NS) */
 }
 /* Load the coef array (in reverse order)
 with a's and gain */
 c = C;
 a = FP->acoefs + numb_coefs - 1;
 for(i = 0; i < numb_coefs ;i++)
 { *c++ = *a--;}
 *c++ = FP->gain;
 }
 else
 { error = ERR_VALUE; goto TIDY_UP;}
 k = 0;
 /* Start outer loop of filtering process */
 Total = WP->numb_samples * WP->numb_chan;
 Done = 0;
 while(!Done)
 { /* Read in data */
 numb_read = fread(&X1[start],sizeof(int),
 CHUNK_SIZE * chan,InFile);
 /* Select IIR or FIR filter for ch 1 or mono */
 if(FP->implem == 'I')
 { Dig_IIR_Filter(X1,Y1,M1,C,numb_quads,numb_read/chan);}
 if(FP->implem == 'F')
 { if(REAL_TIME)
 { Dig_FIR_Filt_RT(X1,Y1,M1,C,numb_coefs,numb_read/chan);}
 else
 { Dig_FIR_Filt_NRT(X1,Y1,C,numb_coefs,numb_read/chan);}
 }
 /* Write out data */
 numb_writ = fwrite(Y1,sizeof(int),numb_read,OutFile);
 } /* End of while loop */
 TIDY_UP:
 /* Free memory, close files and return (NS) */
 return error;
}

Listing I.2 Abbreviated Digital_Filter file.

263

About the Author

Les Thede is a professor of electrical and computer engineering at Ohio Northern
University, Ada, Ohio. A former design engineer for Motorola, Inc., he holds a
B.S and M.S. in electrical engineering from the University of Iowa and a Ph.D. in
engineering science from the University of Toledo. He established the DSP lab at
Ohio Northern University in 1989 and has written several articles on filter design
and C programming. He has written a previous book on analog and digital filter
design and currently is teaching courses in filter design, digital signal processing,
and image processing. He is a member of IEEE and ASEE. His e-mail address is
l-thede@onu.edu.

264 Practical Analog and Digital Filter Design

265

Index

Analog filters
Butterworth bandpass example,

97
Butterworth lowpass example, 91
Chebyshev bandstop example,

102
Chebyshev highpass example, 94
component selection, 106
elliptic bandpass example, 105
frequency response calculation,

76–82
implementation issues, 106–11
implementation procedures, 85–

87
implementing complex zeros,

103–6
inverse Chebyshev lowpass

example, 104
Sallen-Key bandpass, 96
Sallen-Key highpass, 92
Sallen-Key lowpass, 87
sensitivity analysis, 108
twin-tee notch, 98, 103

Analog-to-digital conversion
general description, 115–20

Approximation. See also
Butterworth, Chebyshev, inverse
Chebyshev, and elliptic
approximations.
comparison of methods, 52–54

general description, 6–8
Bandpass filter

analog active implementation,
96–98

general description, 5
unnormalization, 64–71

Bandstop filter
analog active implementation,

98–103
general description, 5–6
unnormalization, 71–76

Bartlett window, 170
Bilinear transform design, 151–58
Blackman window, 171
Butterworth approximation, 19–26

analog bandpass example, 69
analog lowpass example, 59
bandpass active example, 97
bilinear transform example, 155
impulse invariant example, 144
lowpass active example, 91
normalized examples, 23–26
step invariant example, 149

Chebyshev approximation, 27–34
analog bandstop example, 75
analog highpass example, 63
bandstop active example, 102
bilinear transform example, 155
highpass active example, 94
normalized examples, 30–34

266 Practical Analog and Digital Filter Design

Digital FIR filtering
use of FFT, 221–24

Digital FIR filters
C code for implementation, 200–5
four types, 165
frequency response calculation,

183–85
Hamming window example, 173
ideal coefficient example, 167
ideal coefficient values, 168–69
implementation issues, 187–94
Kaiser window example, 174
Parks-McClellan example, 181
Parks-McClellan procedure, 177–

83
real-time vs. nonreal-time, 200–5
windowing techniques, 170–76

Digital IIR filters
bilinear transform design, 151
C code for implementation, 194–

200
frequency response calculation,

158–59
implementation issues, 187–94
impulse invariant design, 142–46
step invariant design, 146–51

Discrete Fourier transform (DFT)
determination of resolution, 212
general description, 209
with Hamming window, 212
with rectangular window, 210

Discrete-time system
analog-to-digital conversion, 118
convolution, 124
digital-to-analog conversion, 119
frequency response, 130
frequency spectrum, 116–18
impulse response, 124–26
linear difference equations, 120–

24
playing waveforms, 137–39
sampling and quantization, 118–

19
z-transforms, 126

Elliptic approximation, 43–52

analog bandstop example, 75
analog highpass example, 62
bandpass active example, 105
normalized examples, 48–52

Fast Fourier transform (FFT)
C code, 218–20
general description, 214–17
inverse FFT, 217
used in filtering, 221–24

Frequency response
analog calculation, 76–82
C code for analog calculation, 80
C code for FIR filter, 183–85
C code for IIR filter, 158–59
discrete-time, 130

Hamming window, 171
Highpass filter

analog active implementation,
92–95

general description, 4–5
unnormalization, 60–63

Implementation. See also analog,
digital FIR and digital IIR filters.
C code for FIR filters, 200
C code for IIR filters, 194
coefficient representation, 190
component selection, 106
general description, 8–9
retaining accuracy and stability,

192
sensitivity analysis, 108
signal representation, 188

Impulse response invariant design,
142–46

Inverse Chebyshev approximation,
34–43
analog bandpass example, 70
analog lowpass example, 58
lowpass active example, 104
normalized examples, 38–43

Kaiser window, 172
Linear difference equations, 120
Lowpass filter

analog active implementation,
87–92

 Index 267

general description, 3–4
unnormalization, 55–60

Nyquist criteria, 118
Parks-McClellan optimization FIR

design, 177–83
Quantization, 118
Remez Exchange Algorithm, 179–

80
Selectivity. See also lowpass,

highpass, bandpass, and bandstop
filters.
general description, 2–6

Step response invariant design, 146–
51

Transfer function
and pole-zero plots, 17–18
general description, 15–19
normalized, 18–19

von Hann window, 171
WFilter

analog filter implementation, 111
bilinear transform example, 157
filtering sound files, 205–7
general description, 9–14
IIR filtering example, 206
Kaiser window example, 174
Parks-McClellan example, 181
saving parameters, 82–84

Windows for FIR filters, 170–76
z-transforms, 125

	000001.pdf
	000002.pdf
	000003.pdf
	000004.pdf
	000005.pdf
	000006.pdf
	000007.pdf
	000008.pdf
	000009.pdf
	000010.pdf
	000011.pdf
	000012.pdf
	000013.pdf
	000014.pdf
	000015.pdf
	000016.pdf
	000017.pdf
	000018.pdf
	000019.pdf
	000020.pdf
	000021.pdf
	000022.pdf
	000023.pdf
	000024.pdf
	000025.pdf
	000026.pdf
	000027.pdf
	000028.pdf
	000029.pdf
	000030.pdf
	000031.pdf
	000032.pdf
	000033.pdf
	000034.pdf
	000035.pdf
	000036.pdf
	000037.pdf
	000038.pdf
	000039.pdf
	000040.pdf
	000041.pdf
	000042.pdf
	000043.pdf
	000044.pdf
	000045.pdf
	000046.pdf
	000047.pdf
	000048.pdf
	000049.pdf
	000050.pdf
	000051.pdf
	000052.pdf
	000053.pdf
	000054.pdf
	000055.pdf
	000056.pdf
	000057.pdf
	000058.pdf
	000059.pdf
	000060.pdf
	000061.pdf
	000062.pdf
	000063.pdf
	000064.pdf
	000065.pdf
	000066.pdf
	000067.pdf
	000068.pdf
	000069.pdf
	000070.pdf
	000071.pdf
	000072.pdf
	000073.pdf
	000074.pdf
	000075.pdf
	000076.pdf
	000077.pdf
	000078.pdf
	000079.pdf
	000080.pdf
	000081.pdf
	000082.pdf
	000083.pdf
	000084.pdf
	000085.pdf
	000086.pdf
	000087.pdf
	000088.pdf
	000089.pdf
	000090.pdf
	000091.pdf
	000092.pdf
	000093.pdf
	000094.pdf
	000095.pdf
	000096.pdf
	000097.pdf
	000098.pdf
	000099.pdf
	000100.pdf
	000101.pdf
	000102.pdf
	000103.pdf
	000104.pdf
	000105.pdf
	000106.pdf
	000107.pdf
	000108.pdf
	000109.pdf
	000110.pdf
	000111.pdf
	000112.pdf
	000113.pdf
	000114.pdf
	000115.pdf
	000116.pdf
	000117.pdf
	000118.pdf
	000119.pdf
	000120.pdf
	000121.pdf
	000122.pdf
	000123.pdf
	000124.pdf
	000125.pdf
	000126.pdf
	000127.pdf
	000128.pdf
	000129.pdf
	000130.pdf
	000131.pdf
	000132.pdf
	000133.pdf
	000134.pdf
	000135.pdf
	000136.pdf
	000137.pdf
	000138.pdf
	000139.pdf
	000140.pdf
	000141.pdf
	000142.pdf
	000143.pdf
	000144.pdf
	000145.pdf
	000146.pdf
	000147.pdf
	000148.pdf
	000149.pdf
	000150.pdf
	000151.pdf
	000152.pdf
	000153.pdf
	000154.pdf
	000155.pdf
	000156.pdf
	000157.pdf
	000158.pdf
	000159.pdf
	000160.pdf
	000161.pdf
	000162.pdf
	000163.pdf
	000164.pdf
	000165.pdf
	000166.pdf
	000167.pdf
	000168.pdf
	000169.pdf
	000170.pdf
	000171.pdf
	000172.pdf
	000173.pdf
	000174.pdf
	000175.pdf
	000176.pdf
	000177.pdf
	000178.pdf
	000179.pdf
	000180.pdf
	000181.pdf
	000182.pdf
	000183.pdf
	000184.pdf
	000185.pdf
	000186.pdf
	000187.pdf
	000188.pdf
	000189.pdf
	000190.pdf
	000191.pdf
	000192.pdf
	000193.pdf
	000194.pdf
	000195.pdf
	000196.pdf
	000197.pdf
	000198.pdf
	000199.pdf
	000200.pdf
	000201.pdf
	000202.pdf
	000203.pdf
	000204.pdf
	000205.pdf
	000206.pdf
	000207.pdf
	000208.pdf
	000209.pdf
	000210.pdf
	000211.pdf
	000212.pdf
	000213.pdf
	000214.pdf
	000215.pdf
	000216.pdf
	000217.pdf
	000218.pdf
	000219.pdf
	000220.pdf
	000221.pdf
	000222.pdf
	000223.pdf
	000224.pdf
	000225.pdf
	000226.pdf
	000227.pdf
	000228.pdf
	000229.pdf
	000230.pdf
	000231.pdf
	000232.pdf
	000233.pdf
	000234.pdf
	000235.pdf
	000236.pdf
	000237.pdf
	000238.pdf
	000239.pdf
	000240.pdf
	000241.pdf
	000242.pdf
	000243.pdf
	000244.pdf
	000245.pdf
	000246.pdf
	000247.pdf
	000248.pdf
	000249.pdf
	000250.pdf
	000251.pdf
	000252.pdf
	000253.pdf
	000254.pdf
	000255.pdf
	000256.pdf
	000257.pdf
	000258.pdf
	000259.pdf
	000260.pdf
	000261.pdf
	000262.pdf
	000263.pdf
	000264.pdf
	000265.pdf
	000266.pdf
	000267.pdf
	000268.pdf
	000269.pdf
	000270.pdf
	000271.pdf
	000272.pdf
	000273.pdf
	000274.pdf
	000275.pdf
	000276.pdf
	000277.pdf

		2005-04-11T14:43:14+0800
	TeAM YYePG
	I attest to the accuracy and integrity of this document

