
 

Chapter 1

Haar Wavelets

The purpose of computing is insight, not numbers.

Richard W. Hamming

The purpose of computing is insight, not pictures.

Lloyd N. Trefethen1

A Haar wavelet is the simplest type of wavelet. In discrete form, Haar
wavelets are related to a mathematical operation called the Haar transform.
The Haar transform serves as a prototype for all other wavelet transforms.
Studying the Haar transform in detail will provide a good foundation for
understanding the more sophisticated wavelet transforms which we shall
describe in the next chapter. In this chapter we shall describe how the Haar
transform can be used for compressing audio signals and for removing noise.
Our discussion of these applications will set the stage for the more powerful
wavelet transforms to come and their applications to these same problems.
One distinctive feature that the Haar transform enjoys is that it lends itself
easily to simple hand calculations. We shall illustrate many concepts by
both simple hand calculations and more involved computer computations.

1.1 The Haar transform

In this section we shall introduce the basic notions connected with the
Haar transform, which we shall examine in more detail in later sections.

1Hamming’s quote is from [HAM]. Trefethen’s quote is from [TRE].
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First, we need to define the type of signals that we shall be analyzing with
the Haar transform.

Throughout this book we shall be working extensively with discrete sig-
nals. A discrete signal is a function of time with values occurring at dis-
crete instants. Generally we shall express a discrete signal in the form
f = (f1, f2, . . . , fN ), where N is a positive even integer which we shall refer
to as the length of f . The values of f are the N real numbers f1, f2, . . . , fN .
These values are typically measured values of an analog signal g, measured
at the time values t = t1, t2, . . . , tN . That is, the values of f are

f1 = g(t1), f2 = g(t2), . . . , fN = g (tN ) . (1.1)

For simplicity, we shall assume that the increment of time that separates
each pair of successive time values is always the same. We shall use the
phrase equally spaced sample values, or just sample values, when the discrete
signal has its values defined in this way. An important example of sample
values is the set of data values stored in a computer audio file, such as
a .wav file. Another example is the sound intensity values recorded on a
compact disc. A non-audio example, where the analog signal g is not a
sound signal, is a digitized electrocardiogram.

Like all wavelet transforms, the Haar transform decomposes a discrete
signal into two subsignals of half its length. One subsignal is a running
average or trend; the other subsignal is a running difference or fluctuation.

Let’s begin by examining the trend subsignal. The first trend subsignal,
a1 = (a1, a2, . . . , aN/2), for the signal f is computed by taking a running
average in the following way. Its first value, a1, is computed by taking the
average of the first pair of values of f : (f1 + f2)/2, and then multiplying it
by

√
2. That is, a1 = (f1+f2)/

√
2. Similarly, its next value a2 is computed

by taking the average of the next pair of values of f : (f3 + f4)/2, and then
multiplying it by

√
2. That is, a2 = (f3 + f4)/

√
2. Continuing in this way,

all of the values of a1 are produced by taking averages of successive pairs of
values of f , and then multiplying these averages by

√
2. A precise formula

for the values of a1 is

am =
f2m−1 + f2m√

2
, (1.2)

for m = 1, 2, 3, . . . , N/2.
For example, suppose f is defined by eight values, say

f = (4, 6, 10, 12, 8, 6, 5, 5);

then its first trend subsignal is a1 = (5
√
2, 11

√
2, 7

√
2, 5

√
2). This result

can be obtained using Formula (1.2). Or it can be calculated as indicated
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in the following diagram:

f : 4 6 10 12 8 6 5 5
↘ ↙ ↘ ↙ ↘ ↙ ↘ ↙

5 11 7 5
↓ ↓ ↓ ↓

a1: 5
√
2 11

√
2 7

√
2 5

√
2 .

You might ask: Why perform the extra step of multiplying by
√
2 ? Why

not just take averages? These questions will be answered in the next section,
when we show that multiplication by

√
2 is needed in order to ensure that

the Haar transform preserves the energy of a signal.
The other subsignal is called the first fluctuation. The first fluctuation

of the signal f , which is denoted by d1 = (d1, d2, . . . , dN/2), is computed
by taking a running difference in the following way. Its first value, d1,
is calculated by taking half the difference of the first pair of values of f :
(f1−f2)/2, and multiplying it by

√
2. That is, d1 = (f1−f2)/

√
2. Likewise,

its next value d2 is calculated by taking half the difference of the next pair
of values of f : (f3 − f4)/2, and multiplying it by

√
2. In other words,

d2 = (f3 − f4)/
√
2. Continuing in this way, all of the values of d1 are

produced according to the following formula:

dm =
f2m−1 − f2m√

2
, (1.3)

for m = 1, 2, 3, . . . , N/2.
For example, for the signal f = (4, 6, 10, 12, 8, 6, 5, 5) considered above,

its first fluctuation d1 is (−
√
2,−

√
2,
√
2, 0). This result can be obtained

using Formula (1.3), or it can be calculated as indicated in the following
diagram:

f : 4 6 10 12 8 6 5 5
↘ ↙ ↘ ↙ ↘ ↙ ↘ ↙
−1 −1 1 0
↓ ↓ ↓ ↓

d1: −
√
2 −

√
2

√
2 0.

Haar transform, 1-level

The Haar transform is performed in several stages, or levels. The first
level is the mapping H1 defined by

f H1�−→ (a1 |d1) (1.4)

from a discrete signal f to its first trend a1 and first fluctuation d1. For
example, we showed above that

(4, 6, 10, 12, 8, 6, 5, 5) H1�−→ (5
√
2, 11

√
2, 7

√
2, 5

√
2 | −

√
2,−

√
2,
√
2, 0). (1.5)
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The mapping H1 in (1.4) has an inverse. Its inverse maps the transform
signal (a1 | d1) back to the signal f , via the following formula:

f =
(
a1 + d1√

2
,
a1 − d1√

2
, . . . ,

aN/2 + dN/2√
2

,
aN/2 − dN/2√

2

)
. (1.6)

In other words, f1 = (a1 + d1)/
√
2, f2 = (a1 − d1)/

√
2, f3 = (a2 + d2)/

√
2,

f4 = (a2 − d2)/
√
2, and so on. For instance, the following diagram shows

how to invert the transformation in (1.5):

a1: 5
√
2 11

√
2 7

√
2 5

√
2

d1: −
√
2 −

√
2

√
2 0

↙↘ ↙↘ ↙↘ ↙↘
f : 4 6 10 12 8 6 5 5.

Let’s now consider what advantages accrue from performing the Haar
transformation. These advantages will be described in more detail later in
this chapter, but some basic notions can be introduced now. All of these
advantages stem from the following cardinal feature of the Haar transform
(a feature that will be even more prominent for the Daubechies transforms
described in the next chapter):

Small Fluctuations Feature. The magnitudes of the values of the fluc-
tuation subsignal are often significantly smaller than the magnitudes of the
values of the original signal.

For instance, for the signal f = (4, 6, 10, 12, 8, 6, 5, 5) considered above, its
eight values have an average magnitude of 7. On the other hand, for its first
fluctuation d1 = (−

√
2,−

√
2,
√
2, 0), the average of its four magnitudes is

0.75
√
2. In this case, the magnitudes of the fluctuation’s values are an

average of 6.6 times smaller than the magnitudes of the original signal’s
values. For a second example, consider the signal shown in Figure 1.1(a).
This signal was generated from 1024 sample values of the function

g(x) = 20x2(1− x)4 cos 12πx

over the interval [0, 1). In Figure 1.1(b) we show a graph of the 1-level
Haar transform of this signal. The trend subsignal is graphed on the left
half, over the interval [0, 0.5), and the fluctuation subsignal is graphed on
the right half, over the interval [0.5, 1). It is clear that a large percentage
of the fluctuation’s values are close to 0 in magnitude, another instance of
the Small Fluctuations Feature. Notice also that the trend subsignal looks
like the original signal, although shrunk by half in length and expanded by
a factor of

√
2 vertically.

The reason that the Small Fluctuations Feature is generally true is that
typically we are dealing with signals whose values are samples of a continu-
ous analog signal g with a very short time increment between the samples.
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FIGURE 1.1
(a) Signal, (b) Haar transform, 1-level.

In other words, the equations in (1.1) hold with a small value of the time
increment h = tk+1−tk for each k = 1, 2, . . . , N−1. If the time increment is
small enough, then successive values f2m−1 = g (t2m−1) and f2m = g (t2m)
of the signal f will be close to each other due to the continuity of g. Con-
sequently, the fluctuation values for the Haar transform satisfy

dm =
g (t2m−1)− g (t2m)√

2
≈ 0.

This explains why the Small Fluctuations Feature is generally true for
the Haar transform. A similar analysis shows why the trend subsignal has
a graph that is similar in appearance to the first trend. If g is continuous
and the time increment is very small, then g(t2m−1) and g(t2m) will be
close to each other. Expressing this fact as an approximation, g(t2m−1) ≈
g(t2m), we obtain the following approximation for each value am of the
trend subsignal

am ≈
√
2 g(t2m).

This equation shows that a1 is approximately the same as sample values
of

√
2 g(x) for x = t2, t4, . . . , tN . In other words, it shows that the graph

of the first trend subsignal is similar in appearance to the graph of g, as
we pointed out above in regard to the signal in Figure 1.1(a). We shall
examine these points in more detail in the next chapter when we discuss
other wavelet transforms.

One of the reasons that the Small Fluctuations Feature is important is
that it has applications to signal compression. By compressing a signal we
mean transmitting its values, or approximations of its values, by using a
smaller number of bits. For example, if we were only to transmit the trend
subsignal for the signal shown in Figure 1.1(a) and then perform Haar
transform inversion (treating the fluctuation’s values as all zeros), then we
would obtain an approximation of the original signal. Since the length
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of the trend subsignal is half the length of the original signal, this would
achieve 50% compression. We shall discuss compression in more detail in
Section 1.5.

Once we have performed a 1-level Haar transform, then it is easy to
repeat the process and perform multiple-level Haar transforms. We shall
discuss this in the next section.

1.2 Conservation and compaction of energy

In the previous section we defined the 1-level Haar transform. In this
section we shall discuss its two most important properties: (1) It conserves
the energies of signals; (2) It performs a compaction of the energy of signals.
We shall also complete our definition of the Haar transform by showing how
to extend its definition to multiple levels.

Conservation of energy

An important property of the Haar transform is that it conserves the
energies of signals. By the energy of a signal f we mean the sum of the
squares of its values. That is, the energy Ef of a signal f is defined by

Ef = f2
1 + f2

2 + · · ·+ f2
N . (1.7)

We shall provide some explanation for why we give the name Energy to this
quantity Ef in a moment. First, however, let’s look at an example of calcu-
lating energy. Suppose f = (4, 6, 10, 12, 8, 6, 5, 5) is the signal considered in
Section 1.1. Then Ef is calculated as follows:

Ef = 42 + 62 + · · ·+ 52 = 446.

So the energy of f is 446. Furthermore, using the values for its 1-level
Haar transform (a1 |d1) = (5

√
2, 11

√
2, 7

√
2, 5

√
2 | −

√
2,−

√
2,
√
2, 0), we

find that
E(a1 |d1) = 25 · 2 + 121 · 2 + · · ·+ 2 + 0 = 446

as well. Thus the 1-level Haar transform has kept the energy constant. In
fact, this is true in general:

Conservation of Energy. The 1-level Haar transform conserves energy,
i.e., E(a1 |d1) = Ef for every signal f .

We will explain why this Conservation of Energy property is true for all
signals at the end of this section.
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Before we go any further, we should say something about why we have
given the name Energy to the quantity Ef . The reason is that sums of
squares frequently appear in physics when various types of energy are calcu-
lated. For instance, if a particle of mass m has a velocity of v = (v1, v2, v3),
then its kinetic energy is (m/2)(v2

1 + v2
2 + v2

3). Hence its kinetic energy is
proportional to v2

1 +v2
2 +v2

3 = Ev. Ignoring the constant of proportionality,
m/2, we obtain the quantity Ev which we call the energy of v.

While Conservation of Energy is certainly an important property, it is
even more important to consider how the Haar transform redistributes the
energy in a signal by compressing most of the energy into the trend sub-
signal. For example, for the signal f = (4, 6, 10, 12, 8, 6, 5, 5) we found in
Section 1.1 that its trend a1 equals (5

√
2, 11

√
2, 7

√
2, 5

√
2). Therefore, the

energy of a1 is

Ea1 = 25 · 2 + 121 · 2 + 49 · 2 + 25 · 2 = 440.

On the other hand, the fluctuation d1 is (−
√
2,−

√
2,
√
2, 0), which has

energy
Ed1 = 2 + 2 + 2 + 0 = 6.

Thus the energy of the trend a1 accounts for 440/446 = 98.7% of the
total energy of the signal. In other words, the 1-level Haar transform has
redistributed the energy of f so that over 98% is concentrated into the
subsignal a1 which is half the length of f . For obvious reasons, this is
called compaction of energy. As another example, consider the signal f
graphed in Figure 1.1(a) and its 1-level Haar transform shown in Figure
1.1(b). In this case, we find that the energy of the signal f is 127.308 while
the energy of its first trend a1 is 127.305. Thus 99.998% of the total energy
is compacted into the half-length subsignal a1. By examining the graph in
Figure 1.1(b) it is easy to see why such a phenomenal energy compaction
has occurred; the values of the fluctuation d1 are so small, relative to the
much larger values of the trend a1, that its energy Ed1 contributes only a
small fraction of the total energy Ea1 + Ed1 .

These two examples illustrate the following general principle:

Compaction of Energy. The energy of the trend subsignal a1 accounts
for a large percentage of the energy of the transformed signal (a1 | d1).

Compaction of Energy will occur whenever the magnitudes of the fluctu-
ation’s values are significantly smaller than the trend’s values (recall the
Small Fluctuations Feature from the last section).

In Section 1.5, we shall describe how compaction of energy provides a
framework for applying the Haar transform to compress signals. We now
turn to a discussion of how the Haar transform can be extended to multiple
levels, thereby increasing the energy compaction of signals.
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Haar transform, multiple levels

Once we have performed a 1-level Haar transform, then it is easy to repeat
the process and perform multiple level Haar transforms. After performing
a 1-level Haar transform of a signal f we obtain a first trend a1 and a first
fluctuation d1. The second level of a Haar transform is then performed by
computing a second trend a2 and a second fluctuation d2 for the first trend
a1 only.

For example, if f = (4, 6, 10, 12, 8, 6, 5, 5) is the signal considered above,
then we found that its first trend is a1 = (5

√
2, 11

√
2, 7

√
2, 5

√
2). To get

the second trend a2 we apply Formula (1.2) to the values of a1. That is,
we add successive pairs of values of a1 and divide by

√
2 as indicated in the

following diagram:

a1: 5
√
2 11

√
2 7

√
2 5

√
2

↘ ↙ ↘ ↙
a2: 16 12

And to get the second fluctuation d2 we subtract successive pairs of values
of a1 and divide by

√
2 as indicated in this diagram:

a1: 5
√
2 11

√
2 7

√
2 5

√
2

↘ ↙ ↘ ↙
d2: −6 2

Thus the 2-level Haar transform of f is the signal

(a2 |d2 |d1) = (16, 12 | −6, 2 | −
√
2,−

√
2,
√
2, 0).

For this signal f , a 3-level Haar transform can also be done, and the result
is

(a3 |d3 |d2 |d1) = (14
√
2 | 2

√
2 | −6, 2 | −

√
2,−

√
2,
√
2, 0).

It is interesting to calculate the energy compaction that has occurred with
the 2-level and 3-level Haar transforms that we just computed. First, we
know that E(a2 |d2 |d1) = 446 because of Conservation of Energy. Second,
we compute that Ea2 = 400. Thus the 2-level Haar transformed signal
(a2 |d2 |d1) has almost 90% of the total energy of f contained in the second
trend a2 which is 1/4 of the length of f . This is a further compaction, or
localization, of the energy of f . Furthermore, Ea3 = 392; thus a3 contains
87.89% of the total energy of f . This is even further compaction; the 3-
level Haar transform (a3 |d3 |d2 |d1) has almost 88% of the total energy of
f contained in the third trend a3 which is 1/8 the length of f .

For those readers who are familiar with Quantum Theory, there is an
interesting phenomenon here that is worth noting. By Heisenberg’s Uncer-
tainty Principle, it is impossible to localize a fixed amount of energy into
an arbitrarily small time interval. This provides an explanation for why the
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energy percentage dropped from 98% to 90% when the second-level Haar
transform was computed, and from 90% to 88% when the third-level Haar
transform was computed. When we attempt to squeeze the energy into ever
smaller time intervals, it is inevitable that some energy leaks out.

As another example of how the Haar transform redistributes and localizes
the energy in a signal, consider the graphs shown in Figure 1.2. In Figure
1.2(a) we show a signal, and in Figure 1.2(b) we show the 2-level Haar
transform of this signal. In Figures 1.2(c) and (d) we show the respective
cumulative energy profiles of these two signals. By the cumulative energy
profile of a signal f we mean the signal defined by

(
f2
1

Ef
,
f2
1 + f2

2

Ef
,
f2
1 + f2

2 + f2
3

Ef
, . . . , 1

)
.

The cumulative energy profile of f thus provides a summary of the accu-
mulation of energy in the signal as time proceeds. As can be seen from
comparing the two profiles in Figure 1.2, the 2-level Haar transform has
redistributed and localized the energy of the original signal.

Justification of Energy Conservation

We close this section with a brief justification of the Conservation of
Energy property of the Haar transform. First, we observe that the terms
a2
1 and d2

1 in the formula E(a1 |d1) = a2
1 + · · ·+ a2

N/2 + d2
1 + · · ·+ d2

N/2 add
up as follows:

a2
1 + d2

1 =
[
f1 + f2√

2

]2

+
[
f1 − f2√

2

]2

=
f2
1 + 2f1f2 + f2

2

2
+
f2
1 − 2f1f2 + f2

2

2
= f2

1 + f2
2 .

Similarly, a2
m + d2

m = f2
2m−1 + f2

2m for all other values of m. Therefore, by
adding a2

m and d2
m successively for each m, we find that

a2
1 + · · ·+ a2

N/2 + d2
1 + · · ·+ d2

N/2 = f2
1 + · · ·+ f2

N .

In other words, E(a1 |d1) = Ef , which justifies the Conservation of Energy
property.
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FIGURE 1.2
(a) Signal. (b) 2-level Haar transform of signal. (c) Cumulative en-
ergy profile of Signal. (d) Cumulative energy profile of 2-level Haar
transform.

1.3 Haar wavelets

In this section we discuss the simplest wavelets, the Haar wavelets. This
material will set the stage for the more sophisticated Daubechies wavelets
described in the next chapter.

We begin by discussing the 1-level Haar wavelets. These wavelets are
defined as

W1
1 =

(
1√
2
,
−1√
2
, 0, 0, . . . , 0

)
W1

2 =
(
0, 0,

1√
2
,
−1√
2
, 0, 0, . . . , 0

)
...

W1
N/2 =

(
0, 0, . . . , 0,

1√
2
,
−1√
2

)
. (1.8)
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These 1-level Haar wavelets have a number of interesting properties. First,
they each have an energy of 1. Second, they each consist of a rapid fluctua-
tion between just two non-zero values, ±1/

√
2, with an average value of 0.

Hence the name wavelet. Finally, they all are very similar to each other in
that they are each a translation in time by an even number of time-units of
the first Haar wavelet W 11. The second Haar wavelet W 12 is a translation
forward in time by two units of W 11, and W 13 is a translation forward in
time by four units of W 11, and so on.

The reason for introducing the 1-level Haar wavelets is that we can ex-
press the 1-level fluctuation subsignal in a simpler form by making use of
scalar products with these wavelets. The scalar product is a fundamental
operation on two signals, and is defined as follows.

Scalar pro duct: The scalar product  f · g of the signals f = (f1, f2, . . . , fN )
and g = (g1, g2, . . . , gN ) is defined by

f · g = f1g1 + f2g2 + · · ·+ fNgN . (1.9)

Using the 1-level Haar wavelets, we can express the values for the first
fluctuation subsignal d1 as scalar products. For example,

d1 =
f1 − f2√

2
= f · W 11.

Similarly, d2 = f · W 12, and so on. We can summarize Formula (1.3) in
terms of scalar products with the 1-level Haar wavelets:

dm = f · W 1m (1.10)

for m = 1, 2, . . . , N/2.
We can also use the idea of scalar products to restate the Small Fluc-

tuations Feature from Section 1.1 in a more precise form. If we say that
the support of each Haar wavelet is the set of two time-indices where the
wavelet is non-zero, then we have the following more precise version of the
Small Fluctuations Feature:

Property 1. If a signal f is (approximately) constant over the support
of a 1-level Haar wavelet W1

k, then the fluctuation value dk = f · W1
k is

(approximately) zero.

This property will be considerably strengthened in the next chapter.

Note: From now on, we shall refer to the set of time-indices m where
fm �= 0 as the support of a signal f .

We can also express the 1-level trend values as scalar products with
certain elementary signals. These elementary signals are called 1-level Haar
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scaling signals, and they are defined as

V1
1 =

(
1√
2
,
1√
2
, 0, 0, . . . , 0

)
V1

2 =
(
0, 0,

1√
2
,
1√
2
, 0, 0, . . . , 0

)
...

V1
N/2 =

(
0, 0, . . . , 0,

1√
2
,
1√
2

)
. (1.11)

Using these Haar scaling signals, the values a1, . . . , aN/2 for the first trend
are expressed as scalar products:

am = f · V1
m (1.12)

for m = 1, 2, . . . , N/2.
The Haar scaling signals are quite similar to the Haar wavelets. They all

have energy 1 and have a support consisting of just two consecutive time-
indices. In fact, they are all translates by an even multiple of time-units of
the first scaling signal V1

1. Unlike the Haar wavelets, however, the average
values of the Haar scaling signals are not zero. In fact, they each have an
average value of 1/

√
2.

The ideas discussed above extend to every level. For simplicity, we re-
strict our discussion to the second level. The 2-level Haar scaling signals
are defined by

V2
1 =

(
1
2
,
1
2
,
1
2
,
1
2
, 0, 0 . . . , 0

)
V2

2 =
(
0, 0, 0, 0,

1
2
,
1
2
,
1
2
,
1
2
, 0, 0, . . . , 0

)
...

V2
N/4 =

(
0, 0, . . . , 0,

1
2
,
1
2
,
1
2
,
1
2

)
. (1.13)

These scaling signals are all translations by multiples of four time-units of
the first scaling signal V2

1, and they all have energy 1 and average value
1/2. Furthermore, the values of the 2-level trend a2 are scalar products of
these scaling signals with the signal f . That is, a2 satisfies

a2 =
(
f · V2

1, f · V2
2, . . . , f · V2

N/4

)
. (1.14)

Likewise, the 2-level Haar wavelets are defined by

W2
1 =

(
1
2
,
1
2
,
−1
2
,
−1
2
, 0, 0 . . . , 0

)
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W2
2 =

(
0, 0, 0, 0,

1
2
,
1
2
,
−1
2
,
−1
2
, 0, 0, . . . , 0

)
...

W2
N/4 =

(
0, 0, . . . , 0,

1
2
,
1
2
,
−1
2
,
−1
2

)
. (1.15)

These wavelets all have supports of length 4, since they are all translations
by multiples of four time-units of the first wavelet W2

1. They also all have
energy 1 and average value 0. Using scalar products, the 2-level fluctuation
d2 satisfies

d2 =
(
f · W2

1, f · W2
2, . . . , f · W2

N/4

)
. (1.16)

1.4 Multiresolution analysis

In the previous section we discussed how the Haar transform can be de-
scribed using scalar products with scaling signals and wavelets. In this
section we discuss how the inverse Haar transform can also be described
in terms of these same elementary signals. This discussion will show how
discrete signals are synthesized by beginning with a very low resolution sig-
nal and successively adding on details to create higher resolution versions,
ending with a complete synthesis of the signal at the finest resolution. This
is known as multiresolution analysis (MRA). MRA is the heart of wavelet
analysis.

In order to make these ideas precise, we must first discuss some ele-
mentary operations that can be performed on signals. Given two signals
f = (f1, f2, . . . , fN ) and g = (g1, g2, . . . , gN ), we can perform the following
elementary algebraic operations:

Addition and Subtraction: The sum f + g of the signals f and g
is defined by adding their values:

f + g = (f1 + g1, f2 + g2, . . . , fN + gN ). (1.17)

Their difference f − g is defined by subtracting their values:

f − g = (f1 − g1, f2 − g2, . . . , fN − gN ). (1.18)

Constant multiple: A signal f is multiplied by a constant c by
multiplying each of its values by c. That is,

c f = (cf1, cf2, . . . , cfN ). (1.19)
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For example, by repeatedly applying the addition operation, we can express
a signal f = (f1, f2, . . . , fN ) as follows:

f = (f1, 0, 0, . . . , 0) + (0, f2, 0, 0, . . . , 0) + · · ·+ (0, 0, . . . , 0, fN ).

Then, by applying the constant multiple operation to each of the signals
on the right side of this last equation, we obtain

f = f1(1, 0, 0, . . . , 0) + f2(0, 1, 0, 0, . . . , 0) + · · ·+ fN (0, 0, . . . , 0, 1).

This formula is a very natural one; it amounts to expressing f as a sum of
its individual values at each discrete instant of time.

If we define the elementary signals V0
1,V

0
2, . . . ,V

0
N as

V0
1 = (1, 0, 0, . . . , 0)

V0
2 = (0, 1, 0, 0, . . . , 0)

...
V0

N = (0, 0, . . . , 0, 1) (1.20)

then the last formula for f can be rewritten as

f = f1V0
1 + f2V0

2 + · · ·+ fNV0
N . (1.21)

Formula (1.21) is called the natural expansion of a signal f in terms of the
natural basis of signals V0

1,V
0
2, . . . ,V

0
N . We shall now show that the Haar

MRA involves expressing f as a sum of constant multiples of a different basis
set of elementary signals, the Haar wavelets and scaling signals defined in
the previous section.

In the previous section, we showed how to express the 1-level Haar trans-
form in terms of wavelets and scaling signals. It is also possible to express
the inverse of the 1-level Haar transform in terms of these same elementary
signals. This leads to the first level of the Haar MRA. To define this first
level Haar MRA we make use of (1.6) to express a signal f as

f =
(
a1√
2
,
a1√
2
,
a2√
2
,
a2√
2
, . . . ,

aN/2√
2
,
aN/2√

2

)
+
(
d1√
2
,
−d1√

2
,
d2√
2
,
−d2√

2
, . . . ,

dN/2√
2
,
−dN/2√

2

)
.

This formula shows that the signal f can be expressed as the sum of two
signals that we shall call the first averaged signal and the first detail signal.
That is, we have

f = A1 + D1 (1.22)
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where the signal A1 is called the first averaged signal and is defined by

A1 =
(
a1√
2
,
a1√
2
,
a2√
2
,
a2√
2
, . . . ,

aN/2√
2
,
aN/2√

2

)
(1.23)

and the signal D1 is called the first detail signal and is defined by

D1 =
(
d1√
2
,
−d1√

2
,
d2√
2
,
−d2√

2
, . . . ,

dN/2√
2
,
−dN/2√

2

)
. (1.24)

Using Haar scaling signals and wavelets, and using the basic elementary
algebraic operations with signals, the averaged and detail signals are ex-
pressible as

A1 = a1 V 11 + a2 V 12 + · · ·+ aN/2  V 1N/2, (1.25a)

D1 = d1 W 11 + d2 W 12 + · · ·+ dN/2  W 1N/2. (1.25b)

Applying the scalar product formulas for the coefficients in Equations (1.10)
and (1.12), we can rewrite these last two formulas as follows

A1 = (f · V 11)V 11 + (f · V 12)V 12 + · · ·+ (f · V 1N/2)V 1N/2,

D1 = (f · W 11)W 11 + (f · W 12)W 12 + · · ·+ (f · W 1N/2)W 1N/2.

These formulas show that the averaged signal is a combination of Haar
scaling signals, with the values of the first trend subsignal as coefficients;
and that the detail signal is a combination of Haar wavelets, with the values
of the first fluctuation subsignal as coefficients.

As an example of these ideas, consider the signal

f = (4, 6, 10, 12, 8, 6, 5, 5).

In Section 1.1 we found that its first trend subsignal was

a1 = (5
√
2, 11

√
2, 7

√
2, 5

√
2).

Applying Formula (1.23), the averaged signal is

A1 = (5, 5, 11, 11, 7, 7, 5, 5). (1.26)

Notice how the first averaged signal consists of the repeated average values
5, 5, and 11, 11, and 7, 7, and 5, 5 about which the values of f fluctuate.
Using Formula (1.25a), the first averaged signal can also be expressed in
terms of Haar scaling signals as

A1 = 5
√
2V1

1 + 11
√
2V1

2 + 7
√
2V1

3 + 5
√
2V1

4.
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Comparing these last two equations we can see that the positions of the re-
peated averages correspond precisely with the supports of the scaling signals.

We also found in Section 1.1 that the first fluctuation signal for f was
d1 = (−

√
2,−

√
2,
√
2, 0). Formula (1.24) then yields

D1 = (−1, 1,−1, 1, 1,−1, 0, 0).

Thus, using the result for A1 computed above, we have

f = (5, 5, 11, 11, 7, 7, 5, 5) + (−1, 1,−1, 1, 1,−1, 0, 0).

This equation illustrates the basic idea of MRA. The signal f is expressed as
a sum of a lower resolution, or averaged, signal (5, 5, 11, 11, 7, 7, 5, 5) added
with a signal (−1, 1,−1, 1, 1,−1, 0, 0) made up of fluctuations or details.
These fluctuations provide the added details necessary to produce the full
resolution signal f .

For this example, using Formula (1.25b), the first detail signal can also
be expressed in terms of Haar wavelets as

D1 = −
√
2W1

1 −
√
2W1

2 +
√
2W1

3 + 0W1
4.

This formula shows that the values of D1 occur in successive pairs of rapidly
fluctuating values positioned at the supports of the Haar wavelets.

Multiresolution analysis, multiple levels

In the discussion above, we described the first level of the Haar MRA of
a signal. This idea can be extended to further levels, as many levels as the
number of times that the signal length can be divided by 2.

The second level of a MRA of a signal f involves expressing f as

f = A2 + D2 + D1. (1.27)

Here A2 is the second averaged signal and D2 is the second detail signal.
Comparing Formulas (1.22) and (1.27) we see that

A1 = A2 + D2. (1.28)

This formula expresses the fact that computing the second averaged signal
A2 and second detail signal D2 simply consists of performing a first level
MRA of the signal A1. Because of this, it follows that the second level
averaged signal A2 satisfies

A2 = (f · V2
1)V

2
1 + (f · V2

2)V
2
2 + · · ·+ (f · V2

N/4)V
2
N/4

and the second level detail signal D2 satisfies

D2 = (f · W2
1)W

2
1 + (f · W2

2)W
2
2 + · · ·+ (f · W2

N/4)W
2
N/4.
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For example, if f = (4, 6, 10, 12, 8, 6, 5, 5), then we found in Section 1.2
that a2 = (16, 12). Therefore

A2 = 16
(
1
2
,
1
2
,
1
2
,
1
2
, 0, 0, 0, 0

)
+ 12

(
0, 0, 0, 0,

1
2
,
1
2
,
1
2
,
1
2

)
= (8, 8, 8, 8, 6, 6, 6, 6). (1.29)

It is interesting to compare the equations in (1.26) and (1.29). The second
averaged signal  A2 has values created from averages that involve twice
as many values as the averages that created A1. Therefore, the second
averaged signal reflects more long term trends than those reflected in the
first averaged signal. Consequently, these averages are repeated for twice
as many time-units.

We also found in Section 1.2 that this signal f = (4, 6, 10, 12, 8, 6, 5, 5)
has the second fluctuation d2 = (−6, 2). Consequently

D2 = −6
(
1
2
,
1
2
,
−1
2
,
−1
2
, 0, 0, 0, 0

)
+ 2

(
0, 0, 0, 0,

1
2
,
1
2
,
−1
2
,
−1
2

)
= (−3,−3, 3, 3, 1, 1,−1,−1).

We found above that D1 = (−1, 1,−1, 1, 1,−1, 0, 0). Hence

f = A2 + D2 + D1

= (8, 8, 8, 8, 6, 6, 6, 6) + (−3,−3, 3, 3, 1, 1,−1,−1)
+ (−1, 1,−1, 1, 1,−1, 0, 0).

This formula further illustrates the idea of MRA. The full resolution signal
f is produced from a very low resolution, averaged signal A 2 consisting
of repetitions of the two averaged values, 8 and 6, to which are added
two detail signals. The first addition supplements this averaged signal
with enough details to produce the next higher resolution averaged signal
(5, 5, 11, 11, 7, 7, 5, 5), and the second addition then supplies enough further
details to produce the full resolution signal f .

In general, if the number N of signal values is divisible k times by 2, then
a k-level MRA:

f = Ak + Dk + · · ·+ D2 + D1

can be performed on the signal f . Rather than subjecting the reader to
the gory details, we conclude by describing a computer example generated
using FAWAV. In Figure 1.3 we show a 10-level Haar MRA of the signal
f shown in Figure 1.1(a). This signal has 210 values so 10 levels of MRA
are possible. On the top of Figure 1.3(a), the graph of A10 is shown; it
consists of a single value repeated 210 times. This value is the average of
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FIGURE 1.3
Haar MRA of the signal in Figure 1.1(a). The graphs are of the ten
averaged signals A10 through A 1 . Beginning with the signal A 10 on the
top left down to A6 on the b ottom left, then A5 on the top right down
to A1 on the b ottom right.

all 210 values of the signal f . The graph directly below it is of the signal A9

which equals A10 plus the details in D10. Each successive averaged signal
is shown, from A10 through A1. By successively adding on details, the full
signal in Figure 1.1(a) is systematically constructed in all its complexity.

1.5 Compression of audio signals

In Section 1.2 we saw that the Haar transform can be used to localize
the energy of a signal into a shorter subsignal. In this section we show
how this redistribution of energy can be used to compress audio signals.
By compressing an audio signal we mean converting the signal data into
a new format that requires less bits to transmit. When we use the term,
audio signal, we are speaking somewhat loosely. Many of the signals we
have in mind are indeed the result of taking discrete samples of a sound
signal—as in the data in a computer audio file, or on a compact disc—but
the techniques developed here also apply to digital data transmissions and
to other digital signals, such as digitized electrocardiograms or digitized
electroencephalograms.

There are two basic categories of compression techniques. The first cat-
egory is lossless compression. Lossless compression methods achieve com-
pletely error free decompression of the original signal. Typical lossless meth-
ods are Huffman compression, LZW compression, arithmetic compression,
or run-length compression. Combinations of these techniques are used in
popular lossless compression programs, such as the kind that produce .zip
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files. Unfortunately, the compression ratios that can be obtained with loss-
less methods are rarely more than 2:1 for audio files consisting of music or
speech.

The second category is lossy compression. A lossy compression method
is one which produces inaccuracies in the decompressed signal. Lossy tech-
niques are used when these inaccuracies are so small as to be imperceptible.
The advantage of lossy techniques over lossless ones is that much higher
compression ratios can be attained. With wavelet compression methods,
which are lossy, if we are willing to accept the slight inaccuracies in the de-
compressed signal, then we can obtain compression ratios of 10:1, or 20:1,
or as high as 50:1 or even 100:1.

In order to illustrate the general principles of wavelet compression of
signals, we shall examine, in a somewhat simplified way, how the Haar
wavelet transform can be used to compress some test signals. For example,
Signal 1 in Figure 1.4(a) can be very effectively compressed using the Haar
transform. Although Signal 1 is not a very representative audio signal, it
is representative of a portion of a digital data transmission. This signal
has 1024 values equally spaced over the time interval [0, 20). Most of these
values are constant over long stretches, and that is the principal reason that
Signal 1 can be compressed effectively with the Haar transform. Signal 2 in
Figure 1.5(a), however, will not compress nearly so well; this signal requires
the more sophisticated wavelet transforms described in the next chapter.

The basic steps for wavelet compression are as follows:

Method of Wavelet Transform Compression

Step 1. Perform a wavelet transform of the signal.

Step 2. Set equal to 0 all values of the wavelet transform which are
insignificant, i.e., which lie below some threshold value.

Step 3. Transmit only the significant, non-zero values of the trans-
form obtained from Step 2. This should be a much smaller data set
than the original signal.

Step 4. At the receiving end, perform the inverse wavelet transform
of the data transmitted in Step 3, assigning zero values to the in-
significant values which were not transmitted. This decompression
step produces an approximation of the original signal.

In this chapter we shall illustrate this method using the Haar wavelet trans-
form. This initial discussion will be significantly deepened and generalized
in the next chapter when we discuss this method of compression in terms
of various Daubechies wavelet transforms.

Let’s now examine a Haar wavelet transform compression of Signal 1.
We begin with Step 1. Since Signal 1 consists of 1024 = 210 values, we
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FIGURE 1.4
(a) Signal 1, (b) 10-level Haar transform of Signal 1, (c) energy map
of Haar transform, (d) 20:1 compression of Signal 1, 100% of energy.

can perform 10 levels of the Haar transform. This 10-level Haar transform
is shown in Figure 1.4(b). Notice how a large portion of the Haar trans-
form’s values are 0, or very near 0, in magnitude. This fact provides the
fundamental basis for performing an effective compression.

In order to choose a threshold value for Step 2, we proceed as follows.
First, we arrange the magnitudes of the values of the Haar transform so
that they are in decreasing order:

L1 ≥ L2 ≥ L3 ≥ . . . ≥ LN

where L1 is the largest absolute value of the Haar transform, L2 is the next
largest, etc. (In the event of a tie, we just leave those magnitudes in their
original order.) We then compute the cumulative energy profile of this new
signal: (

L2
1

Ef
,
L2

1 + L2
2

Ef
,
L2

1 + L2
2 + L2

3

Ef
, . . . , 1

)
.

For Signal 1, we show a graph of this energy profile—which we refer to as
the energy map of the Haar transform—in Figure 1.4(c). Notice that the
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energy map very quickly reaches its maximum value of 1. In fact, using
FAWAV we find that

L2
1 + L2

2 + . . .+ L2
51

Ef
= .999996.

Consequently, if we choose a threshold T that is less than L51 = .3536,
then the values of the transform that survive this threshold will account for
essentially 100% of the energy of Signal 1.

We now turn to Step 3. In order to perform Step 3—transmitting only
the significant transform values—an additional amount of information must
be sent which indicates the positions of these significant transform values
in the thresholded transform. This information is called the significance
map. The values of this significance map are either 1 or 0: a value of 1 if
the corresponding transform value survived the thresholding, a value of 0
if it did not. The significance map is therefore a string of N bits, where
N is the length of the signal. For the case of Signal 1, with a threshold of
.35, there are only 51 non-zero bits in the significance map out of a total
of 1024 bits. Therefore, since most of this significance map consists of long
stretches of zeros, it can be very effectively compressed using one of the
lossless compression algorithms mentioned above. This compressed string
of bits is then transmitted along with the non-zero values of the thresholded
transform.

Finally, we arrive at Step 4. At the receiving end, the significance map is
used to insert zeros in their proper locations in between the non-zero values
in the thresholded transform, and then an inverse transform is computed to
produce an approximation of the signal. For Signal 1 we show the approx-
imation that results from using a threshold of .35 in Figure 1.4(d). This
approximation used only 51 transform values; so it represents a compression
of Signal 1 by a factor of 1024:51, i.e., a compression factor of 20:1. Since
the compressed signal contains nearly 100% of the energy of the original
signal, it is a very good approximation. In fact, the maximum error over
all values is no more than 3.91× 10−3.

Life would be simpler if the Haar transform could be used so effectively
for all signals. Unfortunately, if we try to use the Haar transform for
threshold compression of Signal 2 in Figure 1.5(a), we get poor results.
This signal, when played over a computer sound system, produces a sound
similar to two low notes played on a clarinet. It has 4096 = 212 values;
so we can perform 12 levels of the Haar transform. In Figure 1.5(b) we
show a plot of the 12-level Haar transform of Signal 2. It is clear from
this plot that a large fraction of the Haar transform values have significant
magnitude, significant enough that they are visible in the graph. In fact, the
energy map for the transform of Signal 2, shown in Figure 1.5(c), exhibits a
much slower increase towards 1 in comparison with the energy map for the
transform of Signal 1. Therefore, many more transform values are needed
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FIGURE 1.5
(a) Signal 2, (b) 12-level Haar transform of Signal 2, (c) energy map
of Haar transform, (d) 10:1 compression of Signal 2, 99.6% of energy
of Signal 2.

in order to capture a high percentage of the energy of Signal 2. In Figure
1.5(d), we show a 10:1 compression of Signal 2 which captures 99.6% of the
energy of Signal 2. Comparing this compression with the original signal
we see that it is a fairly poor approximation. Many of the signal values
are clumped together in the compressed signal, producing a very ragged or
jumpy approximation of the original signal. When this compressed version
is played on a computer sound system, it produces a screechy “metallic”
version of the two clarinet notes, which is not a very satisfying result. As a
rule of thumb, we must capture at least 99.99% of the energy of the signal in
order to produce an acceptable approximation, i.e., an approximation that
is not perceptually different from the original. Achieving this accurate an
approximation for Signal 2 requires at least 1782 transform values. Because
Signal 2 itself has 4096 values, this is a compression ratio of only about 2.3:1,
which is not very high. We shall see in the next chapter that Signal 2 can be
compressed very effectively, but we shall need more high powered wavelet
transforms to do it.
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A note on quantization

The most serious oversimplification that we made in the discussion above
is that we ignored the issue known as quantization. The term quantization
is used whenever it is necessary to take into account the finite precision
of numerical data handled by digital methods. For example, the numerical
data used to generate the graphs of Signals 1 and 2 above were IEEE double
precision numbers that use 8 bytes = 64 bits for each number. In order
to compress this data even further, we can represent the wavelet transform
coefficients using less bits. We shall address this issue of quantization in
the next chapter when we look again at the problem of compression.

1.6 Removing noise from audio signals

In this section we shall begin our treatment of one of the most impor-
tant aspects of signal processing, the removal of noise from signals. Our
discussion in this section will introduce the fundamental ideas involved in
the context of the Haar transform. In the next chapter we shall consider-
ably deepen and generalize these ideas, in the context of the more powerful
Daubechies wavelet transforms.

When a signal is received after transmission over some distance, it is
frequently contaminated by noise. The term noise refers to any undesired
change that has altered the values of the original signal. The simplest model
for acquisition of noise by a signal is additive noise, which has the form

(contaminated signal ) = (original signal ) + (noise). (1.30)

We shall represent this equation in a more compact way as

f = s + n (1.31)

where f is the contaminated signal, s is the original signal, and n is the
noise signal.

There are several kinds of noise. A few of the commonly encountered
types are the following:

1. Random noise. The noise signal is highly oscillatory, its values alter-
nating rapidly between values above and below an average, or mean,
value. For simplicity, we shall examine random noise with a mean
value of 0.

2. Pop noise. This type of noise is heard on old analog recordings ob-
tained from phonograph records. The noise is perceived as randomly
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occurring, isolated “pops.” As a model for this type of noise we add
a few non-zero values to the original signal at isolated locations.

3. Localized random noise. Sometimes the noise appears as in type 1, but
only over a short segment or segments of the signal. This can occur
when there is a short-lived disturbance in the environment during
transmission of the signal.

Of course, there can also be noise signals which combine aspects of each of
these types. In this section we shall examine only the first type of noise,
random noise. The other types will be considered later.

Our approach will be similar to how we treated compression in the last
section; we shall examine how noise removal is performed on two test sig-
nals using the Haar transform. For the first test signal, the Haar transform
is used very effectively for removing the noise. For the second signal, how-
ever, the Haar transform performs poorly, and we shall need to use more
sophisticated wavelet transforms to remove the noise from this signal. The
essential principles, however, underlying these more sophisticated wavelet
methods are the same principles we describe here for the Haar transform.

We begin by stating a basic method for removing random noise. Then
we examine how this method performs on the two test signals.

Threshold Metho d of Wavelet Denoising

Suppose that the contaminated signal f equals the transmitted sig-
nal s plus the noise signal n. Also suppose that the following two
conditions hold:

1. The energy of the original signal s is effectively captured, to a high
percentage, by transform values whose magnitudes are all greater than
a threshold Ts > 0.

2. The noise signal’s transform values all have magnitudes which lie
below a noise threshold Tn satisfying Tn < Ts.

Then the noise in f can be removed by thresholding its transform: All
values of its transform whose magnitudes lie below the noise threshold
Tn are set equal to 0 and an inverse transform is performed, providing
a good approximation of f .

Let’s see how this method applies to Signal A shown in Figure 1.6(a). This
signal was obtained by adding random noise, whose values oscillate between
±0.1 with a mean of zero, to Signal 1 shown in Figure 1.6(a). In this case,
Signal 1 is the original signal and Signal A is the contaminated signal. As we
saw in the last section, the energy of Signal 1 is captured very effectively by
the relatively few transform values whose magnitudes lie above a threshold
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of .35. So we set Ts equal to .35, and condition 1 in the Denoising Method
is satisfied.

Now as for condition 2, look at the 10-level Haar transform of Signal
A shown in Figure 1.6(b). Comparing this Haar transform with the Haar
transform of Signal 1 in Figure 1.4(b), it is clear that the added noise has
contributed a large number of small magnitude values to the transform of
Signal A, while the high-energy transform values of Signal 1 are plainly
visible (although slightly altered by the addition of noise). Therefore, we
can satisfy condition 2 and eliminate the noise if we choose a noise threshold
of, say, Tn = .25. This is indicated by the two horizontal lines shown in
Figure 1.6(b); all transform values lying between ±.25 are set equal to 0,
producing the thresholded transform shown in Figure 1.6(c). Comparing
Figure 1.6(c) with Figure 1.4(b) we see that the thresholded Haar transform
of the contaminated signal is a close match to the Haar transform of the
original signal. Consequently, after performing an inverse transform on this
thresholded signal, we obtain a denoised signal that is a close match to the
original signal. This denoised signal is shown in Figure 1.6(d), and it is
clearly a good approximation to Signal 1, especially considering how much
noise was originally present in Signal A.

The effectiveness of noise removal can be quantitatively measured in the
following way. The Root Mean Square Error (RMS Error) of the contami-
nated signal f compared with the original signal s is defined to be

RMS Error =

√
(f1 − s1)2 + (f2 − s2)2 + · · ·+ (fN − sN )2

N
. (1.32)

Since f = s + n, then n = f − s. Consequently, the values of n are formed
from the differences of the values of f and s; so we can rewrite (1.32) as

RMS Error =

√
n2

1 + n2
2 + · · ·+ n2

N

N
=

√
En√
N

. (1.33)

Equation (1.33) says that the RMS Error equals the square root of the noise
energy divided by

√
N , where N is the number of values of the signals. For

example, for Signal A the RMS Error between it and Signal 1 is .057. After
denoising, the RMS Error between the denoised signal and Signal 1 is .011,
which shows that there is a five-fold reduction in the amount of noise. This
gives quantitative evidence for the effectiveness of the denoising of Signal
A.

Summarizing this example, we can say that the denoising was effective
for two reasons: (1) the transform was able to compress the energy of the
original signal into a few high-energy values, and (2) the added noise was
transformed into low-energy values. Consequently, the high-energy trans-
form values from the original signal stood out clearly from the low-energy
noise transform values which could then be eliminated by thresholding.
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FIGURE 1.6
(a) Signal A, 210 values. (b) 10-level Haar transform of Signal A.
The two horizontal lines are at values of ±.25 where .25 is a denoising
threshold. (c) Thresholded transform. (d) Denoised signal.

Unfortunately, denoising with the Haar transform is not always so effec-
tive. Consider, for example, Signal B shown in Figure 1.7(a). This signal
consists of Signal 2, shown in Figure 1.5(a), with random noise added. We
view Signal 2 as the original signal and Signal B as the contaminated signal.
As with the first case considered above, the random noise has values that
oscillate between ±0.1 with a mean of zero. In this case, however, we saw in
the last section that it takes a relatively large number of transform values
to capture the energy in Signal 2. Most of these transform values are of
low energy, and it takes many of them to produce a good approximation of
Signal 2. When the random noise is added to Signal 2, then the Haar trans-
form, just like in the previous case, produces many small transform values
which lie below a noise threshold. This is illustrated in Figure 1.7(b) where
we show the 12-level Haar transform of Signal B. As can be seen by compar-
ing Figure 1.7(b) with Figure 1.5(b), the small transform values that come
from the noise obscure most of the small magnitude values that result from
the original signal. Consequently, when a thresholding is done to remove
the noise, as indicated by the horizontal lines in Figure 1.7(b), this removes
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FIGURE 1.7
(a) Signal B, 212 values. (b) 12-level Haar transform of Signal B. The
two horizontal lines are at values of ±.2 where .2 is the denoising thresh-
old. (c) Thresholded transform. (d) Denoised signal.

many of the transform values of the original signal which are needed for
an accurate approximation. This can be verified by comparing the thresh-
olded signal shown in Figure 1.7(c) with the original signal’s transform in
Figure 1.5(b). In Figure 1.7(d) we show the denoised signal obtained by
inverse transforming the thresholded signal. This denoised signal is clearly
an unsatisfactory approximation of the original signal. By computing RMS
Errors, we can quantify this judgment. The RMS Error between Signal
B and Signal 2 is .057, while the RMS Error between the denoised signal
and Signal 2 is .035. This shows that the error after denoising is almost
two-thirds as great as the original error.

Summarizing this second test case, we can say that the denoising was not
effective because the transform could not compress the energy of the original
signal into a few high-energy values lying above the noise threshold. We
shall see in the next chapter that more sophisticated wavelet transforms
can achieve the desired compression and will perform nearly as well at
denoising Signal B as the Haar transform did for Signal A.

We have tried to emphasize the close connection between the degree of
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effectiveness of the threshold denoising method and the degree of effective-
ness of the wavelet transform compression method. In the next chapter we
shall describe how, with more powerful wavelet transforms, a very robust
and nearly optimal method of noise removal can be realized.

1.7 Notes and references

More material on the Haar transform and its applications can be found
in [RAO]. Besides the lossy compression method described in this chapter,
the Haar transform has also played a role in lossless image compression; see
[RAJ] or [HER].

For those readers interested in the history of wavelet analysis, a good
place to start is the article by Burke [BUR], which has been expanded
into a book [HUB]. There is also some history, of a more sophisticated
mathematical nature, in the books by Meyer [ME2] and Daubechies [DAU].
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