

Chapter 2

Daubechies wavelets

It is hardly an exaggeration to say that we will introduce almost
as many analysis algorithms as there are signals. . . signals are so
rich and complex that a single analysis method. . . cannot serve
them all.

Yves Meyer1

In this chapter we describe a large collection of wavelet transforms dis-
covered by Daubechies. The Daubechies wavelet transforms are defined in
the same way as the Haar wavelet transform—by computing running aver-
ages and differences via scalar products with scaling signals and wavelets—
the only difference between them consists in how these scaling signals and
wavelets are defined. For the Daubechies wavelet transforms, the scaling
signals and wavelets have slightly longer supports, i.e., they produce av-
erages and differences using just a few more values from the signal. This
slight change, however, provides a tremendous improvement in the capabil-
ities of these new transforms. They provide us with a set of powerful tools
for performing basic signal processing tasks. These tasks include compres-
sion and noise removal for audio signals and for images, and include image
enhancement and signal recognition.

2.1 The Daub4 wavelets

There are many Daubechies transforms, but they are all very similar. In
this section we shall concentrate on the simplest one, the Daub4 wavelet

1Meyer’s quote is from [ME2].

©1999 CRC Press LLC

transform. The Daub4 wavelet transform is defined in essentially the same
way as the Haar wavelet transform. If a signal f has an even number N of
values, then the 1-level Daub4 transform is the mapping f D1�−→ (a1 | d1) from
the signal f to its first trend subsignal a1 and first fluctuation subsignal d1.
Each value am of a1 = (a1, . . . , aN/2) is equal to a scalar product:

am = f · V 1m (2.1)

of f with a 1-level scaling signal V 1m. Likewise, each value dm of d1 =
(d1, . . . , dN/2) is equal to a scalar product:

dm = f · W 1m (2.2)

of f with a 1-level wavelet W 1m. We shall define these Daub4 scaling signals
and wavelets in a moment, but first we shall briefly describe the higher level
Daub4 transforms.

The Daub4 wavelet transform, like the Haar transform, can be extended
to multiple levels as many times as the signal length can be divided by 2.
The extension is similar to the way the Haar transform is extended, i.e.,
by applying the 1-level Daub4 transform D1 to the first trend a1. This
produces the mapping a1 D1�−→ (a2 | d2) from the first trend subsignal a1 to a
second trend subsignal a2 and second fluctuation subsignal d2. The 2-level
Daub4 transform D2 is then defined by the mapping f D2�−→ (a2 | d2 | d1). For
example, we show in Figure 2.2(b) the 2-level Daub4 transform of the sig-
nal shown in Figure 1.2(a). As with the Haar transform, the values of the
second trend a2 and second fluctuation d2 can be obtained via scalar prod-
ucts with second-level scaling signals and wavelets. Likewise, the definition
of a k-level Daub4 transform is obtained by applying the 1-level transform
to the preceding level trend subsignal, just like in the Haar case. And, as
in the Haar case, the values of the k-level trend subsignal ak and fluctua-
tion subsignal dk are obtained as scalar products of the signal with k-level
scaling signals and wavelets.

The difference between the Haar transform and the Daub4 transform lies
in the way that the scaling signals and wavelets are defined. We shall first
discuss the scaling signals. Let the scaling numbers α1, α2, α3, α4 be defined
by

α1 =
1 +

√
3

4
√
2

, α2 =
3 +

√
3

4
√
2

, α3 =
3−

√
3

4
√
2

, α4 =
1−

√
3

4
√
2

. (2.3)

Later in this chapter and the next, we shall describe how these scaling
numbers were obtained. Using these scaling numbers, the 1-level Daub4
scaling signals are

©1999 CRC Press LLC

V1
1 = (α1, α2, α3, α4, 0, 0, . . . , 0)

V1
2 = (0, 0, α1, α2, α3, α4, 0, 0, . . . , 0)

V1
3 = (0, 0, 0, 0, α1, α2, α3, α4, 0, 0, . . . , 0)

...
V1

N/2−1 = (0, 0, . . . , 0, α1, α2, α3, α4)

V1
N/2 = (α3, α4, 0, 0, . . . , 0, α1, α2). (2.4)

These scaling signals are all very similar to each other. For example, each
scaling signal has a support of just four time-units. Notice also that the
second scaling signal V1

2 is just a translation by two time-units of the first
scaling signal V1

1. Likewise, the third scaling signal V1
3 is a translation by

four time-units of V1
1, and each subsequent scaling signal is a translation by

a multiple of two time-units of V1
1. There is one wrinkle here. For V1

N/2, we
would have to translate V1

1 by N − 2 time-units, but since (α1, α2, α3, α4)
has length 4 this would send α3 and α4 beyond the length N of the signal
f . To avoid this problem, we wrap-around to the start; hence V1

N/2 =
(α3, α4, 0, 0, . . . , 0, α1, α2). The Haar scaling signals also have this property
of being translations by multiples of two time-units of the first scaling signal.
But, since the first Haar scaling signal has a support of just two adjacent
non-zero values, there is no wrap-around effect in the Haar case.

The second level Daub4 scaling signals are produced by repeating the
operations that were used on the natural basis of signals V0

1,V
0
2, . . . ,V

0
N

to generate the first level scaling signals.2 Using this natural basis, the first
level Daub4 scaling signals satisfy

V1
m = α1V0

2m−1 + α2V0
2m + α3V0

2m+1 + α4V0
2m+2 (2.5a)

with a wrap-around defined by V0
n+N = V0

n. Similarly, the second level
Daub4 scaling signals are defined by

V2
m = α1V1

2m−1 + α2V1
2m + α3V1

2m+1 + α4V1
2m+2 (2.5b)

with a wrap-around defined by V1
n+N/2 = V1

n. Notice that this wrap-
around, or periodicity, of the first level scaling signals is implied by the
wrap-around invoked above for the natural signal basis.

By examining Formula (2.5b), we can see that each second-level Daub4
scaling signal, V2

m, lives for just 10 time-units, and is a translate by 4m
time-units of V2

1 (if we include wrap-around). The second-level trend values
are {f ·V2

m} and they measure trends over 10 successive values of f , located

2This natural basis of signals was defined in (1.20).

©1999 CRC Press LLC

FIGURE 2.1
(a) The top 3 signals are 5-level Daub4 scaling signals V 51 , V5

8 , and V5
16 .

The b ottom three signals are 6-level scaling signals V 61 , V6
4 , and V6

8 .
(b) The top 3 signals are 5-level Daub4 wavelets W 51 , W5

8 , and W5
16 .

The b ottom three signals are 6-level wavelets W 61 , W6
4 , and W6

8 .

in the same time positions as the non-zero values of V 2m. Hence these
trends are measured over short time intervals that are shifts by multiples
of 4 time-units of the interval consisting of the first 10 time-units. These
10-unit trends are slightly more than twice as long lasting as the trends
measured by the first level scaling signals.

The k-level Daub4 scaling signals are defined by formulas similar to (2.5a)
and (2.5b), but applied to the preceding level scaling signals. In Figure
2.1(a), we show some 5-level and 6-level Daub4 scaling signals. Notice that
the supports of the 6-level scaling signals are about twice as long as the
supports of the 5-level scaling signals. Figure 2.1(a) also illustrates the fact
that each of the 5-level scaling signals is a translate of V5

1, and that each
of the 6-level scaling signals is a translate of V6

1.
An important property of these scaling signals is that they all have energy

1. This is because of the following identity satisfied by the scaling numbers:

α2
1 + α2

2 + α2
3 + α2

4 = 1. (2.6)

It is clear that (2.6) implies that each 1-level scaling signal has energy 1.
To see that it also implies that each k-level scaling signal has energy 1 is
more difficult; we will sketch the proof at the end of the next section.

Another identity satisfied by the scaling numbers is

α1 + α2 + α3 + α4 =
√
2. (2.7)

This equation says that each 1-level trend value f ·V1
m is an average of four

values of f , multiplied by
√
2. It can also be shown that the sum of the ten

successive non-zero values of V2
m is 2, which shows that each 2-level trend

value f · V2
m is an average of ten successive values of f , multiplied by 2.

©1999 CRC Press LLC

Similarly, each k-level trend value f · V km is an average of values of f over
increasingly longer time intervals as k increases.

We now turn to a discussion of the Daub4 wavelets. Let the wavelet
numbers β1, β2, β3, β4 be defined by

β1 =
1−

√
3

4
√
2

, β2 =
√
3− 3
4
√
2

, β3 =
3 +

√
3

4
√
2

, β4 =
−1−

√
3

4
√
2

. (2.8)

Notice that the wavelet numbers are related to the scaling numbers by the
equations: β1 = α4, β2 = −α3, β3 = α2, and β4 = −α1. Using these
wavelet numbers, the 1-level Daub4 wavelets W 11, . . . ,W 1N/2 are defined by

W 11 = (β1, β2, β3, β4, 0, 0, . . . , 0)
W 12 = (0, 0, β1, β2, β3, β4, 0, 0, . . . , 0)
W 13 = (0, 0, 0, 0, β1, β2, β3, β4, 0, 0, . . . , 0)

...
W 1N/2−1 = (0, 0, . . . , 0, β1, β2, β3, β4)

W 1N/2 = (β3, β4, 0, 0, . . . , 0, β1, β2). (2.9)

These wavelets are all translates of W 11, with a wrap-around for the last
wavelet. Each wavelet has a support of just four time-units, corresponding
to the four non-zero wavelet numbers used to define them. The 1-level
Daub4 wavelets satisfy

W 1m = β1 V 02m−1 + β2 V 02m + β3 V 02m+1 + β4 V 02m+2.

Similarly, the 2-level Daub4 wavelets are defined by

W 2m = β1 V 12m−1 + β2 V 12m + β3 V 12m+1 + β4 V 12m+2.

All other levels of Daub4 wavelets are defined in a similar fashion. In Figure
2.1(b) we show some of the Daub4 wavelets. It is interesting to compare
them with the Daub4 scaling functions shown in Figure 2.1(a).

The Daub4 wavelets all have energy 1. This is clear for the 1-level Daub4
wavelets, since

β2
1 + β2

2 + β2
3 + β2

4 = 1. (2.10)

It can also be shown that all k-level Daub4 wavelets have energy 1 as well.
Each fluctuation value dm = f · W1

m can be viewed as a differencing
operation on the values of f because

β1 + β2 + β3 + β4 = 0. (2.11)

Equation (2.11) is a generalization of the Haar case, where we had 1/
√
2−

1/
√
2 = 0. It also implies, as with the Haar case, that a fluctuation value

©1999 CRC Press LLC

f · W 1m will be zero if the signal f is constant over the support of a Daub4
wavelet W 1m. Much more is true, however. Not only is (2.11) true, but we
also have

0β1 + 1β2 + 2β3 + 3β4 = 0. (2.12)

Equations (2.11) and (2.12), and Equation (2.7), imply the following prop-
erty for the k-level Daub4 wavelet transform.

Prop erty I. If a signal f is (approximately) linear over the support of a
k-level Daub4 wavelet W km, then the k-level fluctuation value f · W km is
(approximately) zero.

For the 1-level case, Property I follows easily from Equations (2.11) and
(2.12). It is more difficult to prove Property I for the k-level case, when
k > 1, and it is for such cases that Equation (2.7) is needed.

To see why Property I is so important, we examine how it relates to sam-
pled signals. In Figure 2.2(a) we show a signal obtained from uniformly
spaced samples over the interval [0, 1) of a function which has a continuous
second derivative. As shown in Figure 2.2(b), the 1-level and 2-level fluc-
tuations d1 and d2 have values that are all very near zero. This is because
a large proportion of the signal consists of values that are approximately
linear over a support of one of the Daub4 wavelets. For example, in Fig-
ures 2.2(c) and (d) we show magnifications of small squares centered at the
points (.296, .062) and (.534, .067). It is clear from these figures that the
signal values are approximately linear within these small squares. This is
true of a large number of points on the graph of the signal and implies that
many of the fluctuation values for this signal will be near zero. The basic
principles of Calculus tell us that this example is typical for a signal that is
sampled from a function that has a continuous second derivative. We shall
discuss this point in more detail at the end of this section.

Each level Daub4 transform has an inverse. The inverse for the 1-level
Daub4 transform, which maps the transform (a1 |d1) back to the signal f ,
is calculated explicitly as

f = A1 + D1 (2.13a)

with first averaged signal A1 defined by

A1 = a1V1
1 + a2V1

2 + · · ·+ aN/2V1
N/2

= (f · V1
1)V

1
1 + (f · V1

2)V
1
2 + · · ·+ (f · V1

N/2)V
1
N/2 (2.13b)

and first detail signal D1 defined by

D1 = d1W1
1 + d2W1

2 + · · ·+ dN/2W1
N/2

= (f · W1
1)W

1
1 + (f · W1

2)W
1
2 + · · ·+ (f · W1

N/2)W
1
N/2. (2.13c)

©1999 CRC Press LLC

Formulas (2.13a) through (2.13c) are generalizations of similar formulas
that we found for the Haar transform [see Section 1.4]. They are the first
stage in a Daub4 MRA of the signal f . We will not take the time at this
point to prove that these formulas are correct; their proof involves tech-
niques from the field of linear algebra. For those readers who are familiar
with linear algebra, we provide a proof at the end of the next section. It is
more important now to reflect on what these formulas mean.

Formula (2.13a) shows that the signal f can be expressed as a sum of an
averaged signal A1 plus a detail signal D1. Because of Formula (2.13b) we
can see that the averaged signal A1 is a combination of elementary scaling
signals. Each scaling signal V1

m is a short-lived signal, whose support con-
sists of just four consecutive time-indices; the relative contribution of each
scaling signal to A1 is measured by the trend value am = f · V1

m. Thus
A1 is a sum of short-lived components which are multiples of the scaling
signals V1

m. These scaling signals move across the time-axis in steps of just
two time-units and live for only four time-units; they measure short-lived
trends in the signal via the trend values am = f · V1

m. Likewise, the detail
signal D1 is a combination of elementary wavelets W1

m. These wavelets
W1

m march across the time-axis in steps of two time-units and live for only
four time-units. The relative contribution of each wavelet to D1 is mea-
sured by the fluctuation value dm = f · W1

m. Since D1 = f − A1, the sum
of all of these short-lived fluctuations {dmW1

m} equals the difference be-
tween the signal f and its lower resolution, averaged, version A1. Because
the 1-level wavelets {W1

m} live for only four time-units and march across
the time-axis in steps of two units, they are able to detect very short-lived,
transient, fluctuations in the signal.

The inverse of the 2-level Daub4 transform is described by the formula

f = A2 + D2 + D1 (2.14a)

where

A2 = (f · V2
1)V

2
1 + · · ·+ (f · V2

N/4)V
2
N/4

D2 = (f · W2
1)W

2
1 + · · ·+ (f · W2

N/4)W
2
N/4 (2.14b)

are the second averaged signal and second detail signal, respectively. The
signal D1 is the first detail signal which we defined above. The second
averaged signal A2 is a sum of components which are multiples of the
scaling signals V2

m; these components move across the time-axis in steps
of four time-units and live for ten time-units. The relative contribution of
each scaling signal V2

m to A2 is measured by the trend value f ·V2
m. Since

A1 = A2 + D2, the second detail signal D2 provides the details needed
to produce the first averaged signal from the second averaged signal. This
second detail signal D2 is a combination of the wavelets W2

m, which move

©1999 CRC Press LLC

FIGURE 2.2
(a) Signal. (b) 2-level Daub4 transform. The trend a2 is graphed over
[0, .25), while the fluctuations d2 and d1 are graphed over [.25, .5) and
[.5, 1), respectively. (c) and (d) Magnifications of the Signal’s graph
in two small squares; the Signal is approximately linear.

across the time-axis in steps of four time-units and live for ten time-units.
The relative contribution of each wavelet W2

m to D2 is measured by the
fluctuation value f ·W2

m. Like the 1-level wavelets, the 2-level wavelets are
also able to detect transient fluctuations in a signal, but their supports are
10 units long instead of 4 units long. Hence the scale on which the 2-level
wavelets measure fluctuations is slightly more than twice as long as the
scale on which the 1-level wavelets measure fluctuations.

Further levels of the Daub4 transform are handled in a like manner. The
k-level Daub4 transform has an inverse that produces the following MRA
of the signal f :

f = Ak + Dk + · · ·+ D2 + D1.

The formulas for Ak and Dk are (for Nk = N/2k):

Ak = (f · Vk
1)V

k
1 + · · ·+ (f · Vk

Nk
)Vk

Nk

and
Dk = (f · Wk

1)W
k
1 + · · ·+ (f · Wk

Nk
)Wk

Nk
.

©1999 CRC Press LLC

FIGURE 2.3
Daub4 MRA of the signal shown in Figure 1.1(a). The graphs are of
the 10 averaged signals A10 through A 1 . Beginning with A10 on the
top left down to A6 on the b ottom left, then A5 on the top right down
to A1 on the b ottom right. Compare with Figure 1.3.

In Figure 2.3 we show a Daub4 MRA of the same signal that we analyzed
in Chapter 1 using a Haar MRA (see Figure 1.3). It is interesting to com-
pare these two MRAs. The Daub4 MRA appears to be the superior one;
it converges more quickly towards the original signal. The Daub4 averaged
signals A3 through A1 all appear to be equally close approximations of the
original signal. This is due to the fact that the values of the first and sec-
ond Daub4 fluctuation subsignals d1 and d2 are so small [see Figure 2.2(b)]
that they can be neglected without losing much detail. Likewise, the third
Daub4 fluctuation subsignal d3 has negligible values. The corresponding
Daub4 detail signals D1, D2, and D3 contribute very little detail to the
signal; hence f ≈ A3 is a very good approximation. Another advantage
of the Daub4 MRA is that the jumpy, or clumpy, appearance of the Haar
averaged signals does not appear in the Daub4 averaged signals.

Further remarks on Property I ∗

In discussing Property I above, we showed by means of an example that it
applies to sampled signals when the analog signal has a continuous second
derivative over the support of a Daub4 wavelet. That is, we assume that the
signal f has values satisfying fn = g(tn) for n = 1, 2, . . . , N , and that the
function g has a continuous second derivative over the support of a Daub4
wavelet. For simplicity we shall assume that this is a 1-level wavelet, say
W1

m. We can then write

g(t2m−1+k) = g(t2m−1) + g′(t2m−1)(kh) + O(h2) (2.15)

where O(h2) stands for a quantity that is a bounded multiple of h2. The
number h is the constant step-size h = tn+1 − tn, which holds for each n.

©1999 CRC Press LLC

Making use of Equation (2.15), and Equations (2.11) and (2.12), we find
that

f · W 1m = g(t2m−1){β1 + β2 + β3 + β4}
+g′(t2m−1)h{0β1 + 1β2 + 2β3 + 3β4}+O(h2)

= O(h2).

Thus f · W 1m = O(h2). This illustrates Property I, since h is generally much
smaller than 1 and consequently h2 is very tiny indeed. Our discussion also
shows why the Daub4 transform generally produces much smaller fluctua-
tion values than the Haar transform does, since for the Haar transform it
is typically possible only to have f · W 1m = O(h), which is generally much
larger than O(h2).

2.2 Conservation and compaction of energy

Like the Haar transform, a Daubechies wavelet transform conserves the
energy of signals and redistributes this energy into a more compact form.
In this section we shall discuss these properties as they relate to the Daub4
transform, but the general principles apply to all of the various Daubechies
transforms.

Let’s begin with a couple of examples. First, consider the signal f
graphed in Figure 2.2(a). Using FAWAV we calculate that its energy is
509.2394777. On the other hand, the energy of its 1-level Daub4 transform
is also 509.2394777. This illustrates the conservation of energy property
of the Daub4 transform. Since the 2-level Daub4 transform consists of ap-
plying the 1-level Daub4 transform to the first trend subsignal, it follows
that the 2-level Daub4 transform also conserves the energy of the signal f .
Likewise, a k-level Daub4 transform conserves energy as well.

As with the Haar transform, the Daub4 transform also redistributes the
energy of the signal into a more compact form. For example, consider the
signals shown in Figure 2.4. In Figure 2.4(b) we show the 2-level Daub4
transform of the signal graphed in Figure 1.2(a). Its cumulative energy
profile is graphed in Figure 2.4(d). This cumulative energy profile shows
that the 2-level Daub4 transform has redistributed almost all of the energy
of the signal into the second trend subsignal, which is graphed over the
first quarter of the time-interval. For comparison, we also show in Figures
2.4(a) and (c) the 2-level Haar transform and its cumulative energy profile.
It is obvious from these graphs that the Daub4 transform achieves a more
compact redistribution of the energy of the signal.

©1999 CRC Press LLC

Justification of conservation of energy ∗

We shall now show why the Daub4 transform preserves the energy of each
signal, and provide justifications for a couple of other statements made in
the preceding section. Readers who are not familiar with linear algebra,
especially matrix algebra, should skip this discussion. It will not play a
major role in the material that follows, which will stress the applications
of the Daubechies transforms.

To begin, define the matrix DN by

DN =



α1 α2 α3 α4 0 0 0 . . . 0 0 0
β1 β2 β3 β4 0 0 0 . . . 0 0 0
0 0 α1 α2 α3 α4 0 . . . 0 0 0
0 0 β1 β2 β3 β4 0 . . . 0 0 0
...

...
...

...
...

...
... . . .

...
...

...
α3 α4 0 0 0 0 0 . . . 0 α1 α2

β3 β4 0 0 0 0 0 . . . 0 β1 β2


. (2.16)

Notice that the rows of DN are the first-level Daub4 scaling signals and
wavelets. These scaling signals and wavelets satisfy

V1
n · V1

m =
{
1 if n = m
0 if n �= m, (2.17a)

W1
n · W1

m =
{
1 if n = m
0 if n �= m, (2.17b)

V1
n · W1

m = 0 all m,n. (2.17c)

These equations show that the rows of DN form an orthonormal set of
vectors, i.e., that DN is an orthogonal matrix. Another way of expressing
these equations is

DT
N DN = IN (2.18)

where DT
N is the transpose of the matrix DN and IN is the N by N identity

matrix.
We can now show that the Daub4 transform preserves the energy of

a signal f . These arguments will only make use of Equations (2.17a) to
(2.17c), and (2.18). Therefore they will apply to all of the Daubechies
transforms described in this chapter, since all of the Daubechies scaling
signals and wavelets will satisfy these same equations. The matrix DN will,
in each case, be defined by rows consisting of the 1-level scaling signals and
wavelets.

Comparing the definition of the matrix DN and the definition of the
1-level Daub4 transform, we see that

(a1, d1, a2, d2, . . . , aN/2, dN/2)T = DN fT.

©1999 CRC Press LLC

FIGURE 2.4
(a) Graph of 2-level Haar transform of signal in Figure 1.2(a). (b)
Graph of 2-level Daub4 transform of same signal. (c) and (d) Cumu-
lative energy profiles of the transforms in (a) and (b), respectively.

Therefore,

a2
1 + d2

1 + · · ·+ a2
N/2 + d2

N/2 =
(
DN fT

)T (DN fT
)
.

Furthermore, the energy E(a1 |d1) of the 1-level Daub4 transform of f satis-
fies

a2
1 + · · ·+ a2

N/2 + d2
1 + · · ·+ d2

N/2 = E(a1 |d1).

Since the left-hand sides of these last two equations are clearly equal, we
make use of (2.18) to obtain

E(a1 |d1) = (DN fT)T (DN fT)

= f DT
N DN fT

= f fT

= Ef .

This proves that the 1-level Daub4 transform has the Conservation of En-
ergy property. As we argued above, this also shows that every level Daub4
transform conserves energy.

©1999 CRC Press LLC

Another consequence of Equations (2.17a) to (2.17c) is that the Daub4
scaling signals and wavelets all have energy 1. Since the energy Ef of a
signal equals f · f , these equations show immediately that V1

m and W1
m

each have energy 1. To indicate why all other scaling signals and wavelets
have energy 1, we will show why the wavelet W2

1 has energy 1. Similar
arguments can be used for the other wavelets and scaling signals. Since

W2
1 = β1V1

1 + β2V1
2 + β3V1

3 + β4V1
4

we find, using (2.17a), that

W2
1 · W2

1 = β2
1V

1
1 · V1

1 + β2
2V

1
2 · V1

2 + β2
3V

1
3 · V1

3 + β2
4V

1
4 · V1

4. (2.19)

Notice that terms such as βnβmV1
n · V1

m are equal to 0 when m �= n; so
they do not appear on the right-hand side of (2.19). Each scalar product
on the right-hand side of (2.19) is 1; hence

W2
1 · W2

1 = β2
1 + β2

2 + β2
3 + β2

4 = 1

and that proves that the energy of W2
1 is 1.

Similar arguments can be used to show that Equations (2.13a) through
(2.13c) are valid. We shall briefly indicate why this is so. Suppose that a
signal f is defined by

r1V1
1 + · · ·+ rN/2V1

N/2 + s1W1
1 + · · ·+ sN/2W1

N/2 = f (2.20)

where r1, . . . , rN/2, s1, . . . , sN/2 are constants. Then, by using Equations
(2.17a) through (2.17c), it follows that

rm = f · V1
m, sm = f · W1

m (2.21)

for eachm. In particular, if f = (0, 0, . . . , 0), then r1 = 0, r2 = 0, . . . , rN/2 =
0 and s1 = 0, s2 = 0, . . . , sN/2 = 0. This proves that the signals

V1
1, . . . ,V

1
N/2,W

1
1, . . . ,W

1
N/2

are linearly independent; hence they form a basis for the vector space RN

of all real-valued signals of length N . Consequently Equation (2.20) must
hold, with unique coefficients r1, . . . , rN/2, s1, . . . , sN/2, for every signal f .
And Formula (2.21) shows that these coefficients are equal to the scalar
products of f with the scaling signals and wavelets, exactly as described in
Equations (2.13a) through (2.13c).

How wavelet and scaling numbers are found ∗

In this subsection we shall briefly outline how the Daub4 scaling numbers
and wavelet numbers are determined. The essential features of this outline

©1999 CRC Press LLC

also apply to the other Daubechies wavelets that are defined in the next
section.

The constraints that determine the Daub4 scaling and wavelet numbers
are Equations (2.17a) to (2.17c), (2.6), (2.7), and (2.10) through (2.12). By
combining these last three equations with the requirement that W1

1·W1
2 = 0

from (2.17b), we obtain the following four constraining equations on the
wavelet numbers:

β2
1 + β2

2 + β2
3 + β2

4 = 1
β1 + β2 + β3 + β4 = 0

0β1 + 1β2 + 2β3 + 3β4 = 0
β1β3 + β2β4 = 0.

These equations are sufficient for uniquely determining (except for multipli-
cation by −1) the values for β1, β2, β3, and β4 for the Daub4 wavelet num-
bers. The scaling numbers are then determined by the equations α1 = −β4,
α2 = β3, α3 = −β2, and α4 = β1.

This very brief outline only partially answers the question of how scaling
numbers and wavelet numbers are found. We shall provide a more complete
discussion in the next chapter.

2.3 Other Daubechies wavelets

In this section we shall complete our introduction to the theory of the
Daubechies wavelets and wavelet transforms. In the previous two sections
we described the Daub4 wavelet transform and its associated set of scaling
signals and wavelets. We shall now complete our discussion by describing
the various DaubJ transforms for J = 6, 8, . . . , 20, and by describing the
CoifI transforms for I = 6, 12, 18, 24, 30. These wavelet transforms are all
quite similar to the Daub4 transform; our treatment here will concentrate
on the value of having more wavelet transforms at our disposal. There
are also many more wavelet transforms—such as spline wavelet transforms,
various types of biorthogonal wavelet transforms, and even more DaubJ
and CoifI transforms than the ones we describe—but we shall not try to
give an exhaustive coverage of all of these transforms. Examining a few
trees should give us a good feeling for the forest of wavelet transforms.

Let’s begin with the DaubJ transforms for J = 6, 8, . . . , 20. The easiest
way to understand these transforms is just to treat them as simple gener-
alizations of the Daub4 transform. The most obvious difference between
them is the length of the supports of their scaling signals and wavelets. For

©1999 CRC Press LLC

example, for the Daub6 wavelet transform, we define the scaling numbers
α1, . . . , α6 to be

α1 = 0.332670552950083, α2 = 0.806891509311092,
α3 = 0.459877502118491, α4 = −0.135011020010255,
α5 = −0.0854412738820267, α6 = 0.0352262918857095

and the wavelet numbers β1, . . . , β6 to be

β1 = α6, β2 = −α5, β3 = α4, β4 = −α3, β5 = α2, β6 = −α1.

We then generalize the formulas in (2.4) in the following way:

V1
1 = (α1, α2, α3 a4, α5, α6, 0, 0, . . . , 0)

V1
2 = (0, 0, α1, α2, α3 a4, α5, α6, 0, 0, . . . , 0)

V1
3 = (0, 0, 0, 0, α1, α2, α3 a4, α5, α6, 0, 0, . . . , 0)

...
V1

N/2 = (α3 a4, α5, α6, 0, 0, . . . , 0, α1, a2) (2.22)

with a wrap-around occurring for V1
N/2−1 and V1

N/2. The formulas in (2.22)
define the first level Daub6 scaling signals. The scaling numbers satisfy (to
a high degree of accuracy):

α2
1 + α2

2 + α2
3 + α2

4 + α2
5 + α2

6 = 1, (2.23a)

α1 + α2 + α3 + α4 + α5 + α6 =
√
2. (2.23b)

Equation (2.23a) says that each scaling signal V1
m has an energy of 1,

while Equation (2.23b) says that the trend values f ·V1
m are averages of six

successive values of f , multiplied by
√
2.

The 1-level Daub6 wavelets are defined via the wavelet numbers β1, . . . , β6

in the same manner. In fact, since all of the definitions and formulas given
in the last two sections generalize in obvious ways, we shall not repeat them.

Let’s consider instead what new features are exhibited by the Daub6
transform. The principal feature is that the wavelet numbers β1, . . . , β6

satisfy the following three identities (to a high degree of accuracy):

β1 + β2 + β3 + β4 + β5 + β6 = 0,
0β1 + 1β2 + 2β3 + 3β4 + 4β5 + 5β6 = 0,

02β1 + 12β2 + 22β3 + 32β4 + 42β5 + 52β6 = 0. (2.24)

These equations, along with Equation (2.23b), imply the following property.

Property II. If a signal f is (approximately) quadratic over the support
of a k-level Daub6 wavelet Wk

m, then the k-level Daub6 fluctuation value
f · Wk

m is (approximately) zero.

©1999 CRC Press LLC

FIGURE 2.5
(a) Top: Signal. Middle: 1-level Daub4 fluctuation subsignal (multi-
plied by 1000 for comparison with the signal). Bottom: 1-level Daub6
fluctuation subsignal (also multiplied by 1000). (b) Similar graphs for
3-level Daub4 and Daub6 fluctuation subsignals (multiplied by 30).

Because of this property, the Daub6 transform will often produce smaller
size fluctuation values than those produced by the Daub4 transform. The
types of signals for which this occurs are the ones that are obtained from
samples of analog signals that are at least three times continuously differ-
entiable (at least over large portions of the analog signal). These kinds
of signals are better approximated, over a large proportion of their val-
ues, by quadratic approximations rather than just linear approximations.
Quadratic functions have curved graphs and can thereby provide superior
approximations to the parts of the signal that are near to the turning points
in its graph. To illustrate these ideas, consider the signal graphed at the
top of Figure 2.5(a) and its 1-level Daub4 and Daub6 fluctuation subsignals
graphed in the middle and at the bottom of the figure, respectively. This fig-
ure makes it clear that the Daub4 fluctuation values are significantly larger
in magnitude than the Daub6 fluctuation values. It also shows that the
largest magnitude Daub4 fluctuation values occur near the turning points
in the graph of the signal. Similar graphs in Figure 2.5(b) illustrate the
same ideas for the 3-level Daub4 and Daub6 fluctuation values.

When the goal is compression of signals, such as musical tones which
often have graphs like the signal at the top of Figure 2.5(a), then the Daub6
transform can generally perform better at compressing the signal than the
Daub4 transform. This is due to the larger number of Daub6 fluctuation
values which can be ignored as insignificant. When the goal, however, is
identifying features of the signal that are related to turning points in its
graph, then the Daub4 transform can identify the location of these turning
points more clearly as shown in Figure 2.5.

The other Daubechies wavelet transforms, the DaubJ transforms for J =
8, 10, . . . , 20, are defined in essentially the same way. The scaling numbers

©1999 CRC Press LLC

α1, . . . , αJ satisfy

α2
1 + α2

2 + · · ·+ α2
J = 1, (2.25a)

α1 + α2 + · · ·+ αJ =
√
2. (2.25b)

And the wavelet numbers β1, . . . , βJ are defined by

β1 = αJ , β2 = −αJ−1, β3 = αJ−2, . . . , βJ−1 = α2, βJ = −α1. (2.26)

These wavelet numbers satisfy the following identities (we set 00 = 1 to
enable a single statement):

0Lβ1 + 1Lβ2 + . . .+ (J − 1)LβJ = 0, for L = 0, 1, . . . , J/2− 1. (2.27)

These identities, along with (2.25b), imply the following property which is
a generalization of Properties I and II above.

Property III. If f is (approximately) equal to a polynomial of degree less
than J/2 over the support of a k-level DaubJ wavelet W k

m, then the k-level
fluctuation value f · W km is (approximately) zero.

As with Property II above, this property implies that the DaubJ transform
will produce a large number of small fluctuation values for a signal that is
sampled from a smooth, many times continuously differentiable, signal. To
put it another way, we can more closely approximate (obtain a better fit
to) a wider range of signals if we can use higher degree polynomials with
degree less than J/2, and yet still expect that the DaubJ transform will
produce large numbers of small fluctuation values. As we showed in the
previous chapter, when a wavelet transform produces a large number of
small fluctuation values then we can obtain very effective compression and
good noise removal.

One advantage of using a DaubJ wavelet with a larger value for J , say
J = 20, is that there is an improvement in the resulting MRA for smoother
signals (signals sampled from analog signals having more differentiability).
For example, in Figure 2.6 we show the Daub20 MRA for the same sig-
nal analyzed previously with Haar and Daub4 wavelets. Notice that the
Daub20 MRA is superior to both of these previous multiresolution analyses,
especially for the lower resolution averaged signals.

We do not mean to suggest, however, that Daub20 wavelets are always the
best. For example, for Signal 1 shown in Figure 1.4(a), the Haar wavelets
do the best job of compression and noise removal (for reasons discussed in
the previous chapter). As a simple comparison of the Haar, Daub4, and
Daub20 wavelets, in Table 2.1 we list the minimum number of transform
values needed to capture 99.99% of the energy in Signal 1. This table shows
that the Haar transform does the best job, that the Daub4 transform is
worse by a factor of 2, and that the Daub20 transform is the worst of all.

©1999 CRC Press LLC

FIGURE 2.6
Daub20 MRA of the signal shown in Figure 1.1(a). The graphs are of
the 10 averaged signals A10 through A 1 . Beginning with A10 on the
top left down to A6 on the b ottom left, then A5 on the top right down
to A1 on the b ottom right. Compare with Figures 1.3 and 2.3.

Table 2.1 Comparison of wavelet transforms of Signal 1
Wavelet transform Values for 99.99% energy

Haar 51
Daub4 103
Daub20 205

The problem with DaubJ wavelets in terms of this signal is that these
wavelets have longer supports than the Haar wavelets, all of their supports
being at least twice as long, or longer, than the Haar wavelets. The Daub20
wavelets have the longest supports, with 1-level wavelets having supports of
20 time-units, and 2-level wavelets having supports of 58 time-units, and so
on. Consequently, the percentage of Daub20 fluctuation values of this signal
with significant energy will be high, due to the large number of Daub20
wavelets whose supports contain a point where a big jump in the signal’s
values occurs. A big jump in the signal’s values induces corresponding
jumps in the values of the scalar products that define the fluctuations, thus
producing fluctuation values with significant energy.

Coiflets

We now turn to the description of another class of wavelets, the CoifI
wavelets. These wavelets are designed for the purpose of maintaining a close
match between the trend values and the original signal values. Following a
suggestion of Coifman, these wavelets were first constructed by Daubechies,

©1999 CRC Press LLC

who called them “coiflets.” All of the CoifI wavelets are defined in a similar
way; so we shall concentrate on the simplest case of Coif6 wavelets. The
scaling numbers for the Coif6 scaling signals are listed in Table 2.2.

Table 2.2 Coif6 scaling numbers

α1 = 1−
√

7
16

√
2

, α2 = 5+
√

7
16

√
2

, α3 = 14+2
√

7
16

√
2

,

α4 = 14−2
√

7
16

√
2

, α5 = 1−
√

7
16

√
2

, α6 = −3+
√

7
16

√
2

.

Using these scaling numbers, the first-level Coif6 scaling signals are de-
fined by

V1
1 = (α3, α4, α5, α6, 0, 0, . . . , 0, α1, α2)

V1
2 = (α1, α2, α3, α4, α5, α6, 0, 0, . . . , 0)

V1
3 = (0, 0, α1, α2, α3, α4, α5, α6, 0, 0, . . . , 0)

...
V1

N/2 = (α5, α6, 0, 0, . . . , 0, α1, α2, α3, α4) (2.28)

Notice that there are wrap-arounds for V1
1 and V1

N/2.
The Coif6 wavelet numbers are defined by

β1 = α6, β2 = −α5, β3 = α4, β4 = −α3, β5 = α2, β1 = −α1 (2.29)

and these wavelet numbers determine the first-level Coif6 wavelets as fol-
lows:

W1
1 = (β3, β4, β5, β6, 0, 0, . . . , 0, β1, β2)

W1
2 = (β1, β2, β3, β4, β5, β6, 0, 0, . . . , 0)

W1
3 = (0, 0, β1, β2, β3, β4, β5, β6, 0, 0, . . . , 0)

...
W1

N/2 = (β5, β6, 0, 0, . . . , 0, β1, β2, β3, β4) (2.30)

As with the Coif6 scaling signals, there are wrap-arounds for the first and
last wavelets.

The Coif6 scaling numbers satisfy the following identity

α2
1 + α2

2 + α2
3 + α2

4 + α2
5 + α2

6 = 1 (2.31)

which implies that each Coif6 scaling signal has energy 1. Because of (2.29),
it follows that each Coif6 wavelet also has energy 1. Furthermore, the

©1999 CRC Press LLC

wavelet numbers satisfy

β1 + β2 + β3 + β4 + β5 + β6 = 0, (2.32a)
0β1 + 1β2 + 2β3 + 3β4 + 4β5 + 5β6 = 0. (2.32b)

These equations show that a Coif6 wavelet is similar to a Daub4 wavelet in
that it will produce a zero fluctuation value whenever a signal is linear over
its support. The difference between a Coif6 wavelet and a Daub4 wavelet
lies in the properties of the scaling numbers. The Coif6 scaling numbers
satisfy

α1 + α2 + α3 + α4 + α5 + α6 =
√
2, (2.33a)

−2α1 − 1α2 + 0α3 + 1α4 + 2α5 + 3α6 = 0, (2.33b)
(−2)2α1 + (−1)2α2 + 02α3 + 12α4 + 22α5 + 32α6 = 0. (2.33c)

Equation (2.33a) implies, as usual, that Coif6 trend values are averages of
successive values of a signal f (with wrap-around when f · V 11 and f · V 1N/2

are computed). The second two equations, however, are entirely new. No
DaubJ scaling numbers satisfy any equations of this type. These three
equations have an important consequence. When a signal consists of sample
values of an analog signal, then a Coif6 transform produces a much closer
match between trend subsignals and the original signal values than can be
obtained with any of the DaubJ transforms. By a close match between
trends and signal values, we mean that the following approximations hold
to a high degree of accuracy:

a1
m ≈

√
2g(t2m), a2

m ≈ 2g(t4m) (2.34)

Similar approximations will hold for higher levels, but the accuracy gener-
ally decreases as the number of levels increases.

As an example of (2.34), consider the signal graphed in Figure 2.2(a).
This signal is obtained from 214 sample values of the function

g(x) = 20x2(1− x)4 cos 12πx (2.35)

over the interval [0, 1). When a 2-level Daub4 transform is performed on
this signal then we obtain the graph shown in Figure 2.2(b). A 2-level
Coif6 transform looks much the same. Computing the maximum error
between the 2-level Daub4 trend values and samples of 2g(4x) over the
interval [0, .25), we obtain 3.76 × 10−3. The maximum error in the Coif6
case is 4.84 × 10−7, which is much smaller. For the 1-level transforms
we find that the maximum error between the first trend and samples of√
2g(2x) is 8.87 × 10−4 in the Daub4 case, and 8.59 × 10−8 in the Coif6

case. This property of trends providing close approximations of the analog
signal, which is shared by all the CoifI transforms, provides a useful means
of interpreting the trend subsignals.

©1999 CRC Press LLC

FIGURE 2.7
(a) The top 3 signals are 5-level Coif6 scaling signals, V 51 , V5

8 , and V5
16 .

The b ottom 3 signals are 6-level scaling signals V 61 , V6
4 , and V6

8 . (b)
The top 3 signals are 5-level Coif6 wavelets, W 51 , W5

8 , and W5
16 . The

b ottom 3 signals are 6-level wavelets W 61 , W6
4 , and W6

8 .

Another interesting feature of CoifI scaling signals and wavelets is that
their graphs are nearly symmetric. For example, in Figure 2.7 we graph
several Coif6 scaling signals and wavelets. Notice how these Coif6 signals
(especially if we discount the wrap-around effects) are much closer to being
symmetric than the Daub4 signals graphed in Figure 2.1.

2.4 Compression of audio signals

One of the fundamental applications of wavelet transforms is the com-
pression of signals. We outlined a basic method for wavelet transform
compression in Section 1.5. In that section we focused on the Haar wavelet
transform; in this section we shall work with the Daubechies wavelet trans-
forms. We shall also discuss the problem of quantization, which we omitted
from our first treatment of compression.

Recall that the basic method of wavelet transform compression consisted
of setting equal to zero all transform values whose magnitudes lie below
a threshold value. The compressed version of the signal consists of the
significant, non-zero, values of the transform which survived the threshold-
ing, along with a significance map indicating their indices. Decompression
consists in using the significance map and the significant transform values
to reconstruct the thresholded transform, and then performing an inverse
wavelet transform to produce an approximation of the original signal. Com-
pression works well when very few, high-energy, transform values capture
most of the energy of the signal. For instance, consider again the two Sig-

©1999 CRC Press LLC

nals 1 and 2 examined in Section 1.5. We saw that Signal 1 can be very
effectively compressed using a Haar transform. This is revealed by the En-
ergy map for its Haar transform in Figure 1.4(c), which shows that the Haar
transform effectively captures most of the energy of Signal 1 in relatively
few values.

None of the Daubechies transforms can do a better job compressing Sig-
nal 1. We have already examined why the Haar transform performs so well
on Signal 1. In fact, the Haar transform and a related transform called the
Walsh transform3 have been used for many years as tools for compressing
piecewise constant signals like Signal 1. We also saw, however, that Signal
2 does not compress particularly well using the Haar transform. This is
explained by an examination of its Energy map shown in Figure 1.5(c).
Let’s instead try compressing Signal 2 using one of the Daubechies trans-
forms. Signal 2 consists of 4096 = 212 points; so we will use a 12-level
transform, say a Coif30 transform. In Figure 2.8, we show the results of
applying a Coif30 wavelet transform compression on Signal 2. It is inter-
esting to compare this figure with Figure 1.4. It is clear that the 12-level
Coif30 transform compresses Signal 2 just as well as the Haar transform
compresses Signal 1. In fact, by using only the top 125 highest magnitude
Coif30 transform values—which can be done by choosing a threshold of
.00425—the compressed signal captures 99.99% of the energy of Signal 2.
This compressed signal is shown in Figure 2.8(d). Since 4096/125 ≈ 32, the
compressed signal achieves a 32:1 compression ratio. Here we are ignoring
issues such as quantization and compression of the significance map. We
now turn to a brief discussion of these deeper issues of compression; this
initial treatment will be expanded upon in the next section.

Quantizing signal values, compressing the significance map

A digital audio signal typically consists of integer values that specify
volume levels. The two most common ranges of volume levels are either
256 = 28 volume levels, which require 8 bits to describe, or 65536 = 216

volume levels, which require 16 bits to describe. An analog audio signal is
quantized by a mapping from the recorded volume level to one of these two
ranges of volume levels. Therefore, a discrete audio signal of length N will
be initially described by either 8N or 16N bits, depending on which range
of volume levels is used for recording. The 8-bit range is frequently used for
voices in telephone transmission, where high fidelity is sacrificed for speed
of transmission in order to accommodate the large number of signals that
must be transmitted. The 16-bit range is frequently used for music, where
high fidelity is most valued.

3The Walsh transform is describ ed in Section 4.1.

©1999 CRC Press LLC

Table 2.3 Encoding 16 volume levels using 4 bits
Volume level Encoding

−24 1111
−21 1110

...
...

−1 1000
0 0000
1 0001
...

...
18 0110
21 0111

The most commonly employed quantization method for sampled analog
signals is uniform scalar quantization. This method simply divides the
range of volume levels into a fixed number of uniform width subintervals
and rounds each volume level into the midpoint of the subinterval in which
it lies. For instance, in Figure 2.9(a), we show a simple uniform scalar
quantization map that encodes volume levels using 4 bits. The volume
interval [−24, 21] is divided into 16 = 24 equal width subintervals, with
all volumes that are below −24 being truncated to −24 and all volumes
that are greater than 21 being truncated to 21. These 16 volume levels
can be encoded as shown in Table 2.3. The asymmetry in this uniform
quantization decreases as more subintervals, i.e., more bits, are used.

In order to take into account the number of bits used per point (bpp),
which is either 8 bpp or 16 bpp in a quantized audio signal, we must also
quantize the transform coefficients. That is, we must use only a finite
number of bits to describe each transform value, and the number of bpp
must be significantly less for the compressed signal than for the original
signal.

As an initial example of handling quantization, consider again Signal
2 shown in Figure 2.8(a). This signal was generated from 4096 uniform
samples of an analog signal. If this signal is uniformly scalar quantized
with 16 bpp and played as an audio signal at a rate of 8820 samples per
second,4 multiplying its volume by a factor of 32000, then the resulting
sound resembles two low notes played on a clarinet. The 16-bit quantized
version of the signal has a graph that is almost identical to the one shown in
Figure 2.8(a). If a Coif30 transform is performed on this quantized signal,

4Volume levels are sent to the sound system at a rate of 8820 values per second.

©1999 CRC Press LLC

FIGURE 2.8
(a) Signal 2, 4096 values. (b) 12-level Coif30 transform. (c) Energy
map of the Coif30 transform. (d) 32:1 compression of Signal 2, 99.99%
of energy of Signal 2.

then a transform is produced which is virtually indistinguishable from the
graph shown in Figure 2.8(b). To quantize this transform, we proceed as
follows. The quantization map used is similar to the one shown in Figure
2.9(b). This is called uniform quantization with a dead-zone. The values
in the subinterval (−T, T) are the insignificant values whose magnitudes lie
below a threshold value of T . Since these values will not be transmitted
they are not encoded by the quantization. The remainder of the range of
transform values lies in the two intervals [−M,−T] and [T,M], where M
is the maximum for all the magnitudes of the transform values. These two
intervals are divided into uniform width subintervals and each transform
value is rounded into the midpoint of the subinterval containing it. For
Signal 2, the value of M is 9.4, and a threshold value of T = 9.4/27 results
in only 100 significant values. These significant values can then be encoded
using 8 bits, 7 bits for the levels of magnitude and 1 bit for signs. As
can be seen from Figure 2.8(b), the significant values of the transform
lie in the interval [0, .25). In fact, the significant values of the quantized
transform lie among the first 256 values. Consequently the bits of value 1

©1999 CRC Press LLC

FIGURE 2.9
(a) Uniform, scalar quantization. (b) Uniform quantization, with a
dead-zone containing the 0-level. The quantized values outside the
dead-zone can be encoded using 4 bits.

in the significance map lie only within the first 256 bits. Therefore, this
significance map can be transmitted in a very compressed form by just
transmitting the first 256 bits, letting the decompression program supply
the remaining bits, which are all 0. The result is that

256 + 8 · 100
4096

≈ 0.27 bpp

are needed to transmit the compressed signal. This represents a compres-
sion ratio of 60:1. Even more important, when the decompressed signal is
played, the resulting sound is indistinguishable from the original signal’s
sound. This is known as perceptually lossless compression.

This example was meant to illustrate the basic idea of quantization and
its relation to wavelet transform compression of audio signals. In the next
section we shall delve further into some of the fascinating complexities of
quantization and compression of signals.

2.5 Quantization, entropy, and compression

In this section we shall examine some of the deeper questions involved
with quantization and compression. One of the interesting features of quan-
tizing wavelet transforms is the connection between structural properties of
these transforms and basic ideas from information theory, such as entropy.
This connection can be exploited to improve upon the basic compression
results described in the preceding section.

Let’s begin with a specific signal to be compressed, a recording of the

©1999 CRC Press LLC

author speaking the word greasy. A graph of the intensity values of this
recording is shown in Figure 2.10(a). Notice that this graph consists of
three main sections, summarized in Table 2.4. This signal exhibits within
a short time-span a number of different linguistic effects, such as a quick
transition from a low pitch gr sound to a higher pitch e sound, and then
another quick transition to a very chaotically oscillating s sound, with a
final transition back to a high pitch y sound. These effects make greasy a
challenging test signal for any compression method.

Table 2.4 Main sections of greasy
Section Time Interval Sound

1 [0.00, 0.20] grea
2 [0.25, 0.35] s
3 [0.40, 0.60] y

The intensity values for this recording of greasy were quantized—using an
8-bit scalar quantization—as a part of the recording process. The sequences
of bits encoding these 256 intensity values look like 01000001 or 11001000,
and so on. A first bit of 1 indicates a negative intensity, while a first bit
of 0 indicates a positive intensity. These bit sequences correspond to the
integers k = 0 to k = 255, which we shall refer to as the intensity levels.
To some extent this use of equal length bit sequences for all intensity levels
is wasteful. This is indicated by the histogram of frequencies of occurrence
of each intensity level shown in Figure 2.10(b). Since the most commonly
occurring intensity level is the zero level, we can save bits if we encode this
level with a single bit, such as 0.

By using shorter length bit sequences for the most commonly occurring
intensity levels, and longer sequences for less commonly occurring intensity
levels, we can reduce the total number of bits used. The idea is similar
to Morse code where, for instance, the commonly occurring English letters
a and e are encoded by the short sequences of dots and dashes · − and ·,
respectively, while the less commonly occurring English letters q and v are
encoded by the longer sequences − − ·− and · · · −, respectively. This
procedure is made mathematically precise by fundamental results from the
field known as information theory.

It is beyond the scope of this primer to provide a rigorous treatment of in-
formation theory. We shall just outline the basic ideas, and show how they
apply to compressing greasy. Suppose that {pk} are the relative frequencies
of occurrence of the intensity levels k = 0 through k = 255; that is, each
pk is an ordinate value in the histogram in Figure 2.10(b). Thus pk ≥ 0 for
each k and p0+p1+· · ·+p255 = 1. These facts make it tempting to interpret

©1999 CRC Press LLC

each number pk as a probability for the occurrence of k. Although these
numbers pk are not probabilities, nevertheless, a deterministic law govern-
ing the production of the intensity levels in greasy is a priori unknown to
us. In fact, section 2 of greasy, as an isolated sound, is very similar to the
random static background noise considered in the next section. There are
deterministic models for producing sections 1 and 3, involving combina-
tions of sinusoidal signals, but these are a posteriori models based on the
recorded sound itself. In any case, let’s see what consequences follow from
treating the numbers pk as probabilities for the occurrence of the intensity
levels k. Let Lk be the length of each bit sequence that is used to encode
the intensity level k. Then the average length L of a lossless encoding of
the k’s is defined to be

L = p0L0 + p1L1 + · · ·+ p255L255 . (2.36)

The famous Shannon Coding Theorem tells us that L satisfies the following
inequality [if pk = 0, then pk log2(1/pk) is set equal to 0]:

L ≥ p0 log2

1
p0

+ p1 log2

1
p1

+ · · ·+ p255 log2

1
p255

. (2.37)

The quantity on the right side of (2.37) is called the entropy for the prob-
abilities pk.

Inequality (2.37) says that the average length of any lossless encoding of
the intensity levels k cannot be less than the entropy of the probabilities pk

in the histogram for these intensity levels. Or another, more accurate, way
of putting things is that a lossless encoding technique, such as Huffman
coding or arithmetic coding, which is based on the relative frequencies pk

in the histogram for the k’s, cannot achieve an average length less than the
entropy. For obvious reasons, these lossless coding techniques are called
entropy codings.

For greasy, the entropy is found to be 5.43. Therefore, it is impossible
to make an entropy coding of the intensity levels for greasy with any set
of bit sequences whose average length is less than 5.43 bits. It should
also be noted that, using either Huffman coding or arithmetic coding, it
is possible to get within 1 bit or less of the entropy. For reasons of space,
we shall not describe the methodologies of these encoding techniques; for
another matter, these techniques are very well-known and there are many
excellent descriptions of them to be found in the references for this chapter.
Huffman codes are guaranteed, by the way in which they are constructed,
to always achieve an average length that is within 1 bit of the entropy; while
arithmetic codes can get asymptotically close to the entropy as the number
of values to be encoded increases. Therefore, as a rough estimator of the
average length of a well-chosen lossless encoding of the intensity levels we
shall add 0.5 to the entropy. Using this estimator, we find that the 16, 384

©1999 CRC Press LLC

FIGURE 2.10
(a) The signal, greasy. (b) Histogram of 8-bit quantization of intensity
levels of greasy. (c) 14-level Coif30 transform of greasy. (d) Histogram
of 8-bit dead-zone quantization of the transform values.

points of greasy can be expected to be entropy encoded with a total of
16, 384× 5.93 bits, i.e., using about 97, 000 bits. This is not a particularly
effective compression, since it still represents 5.93 bpp versus 8 bpp for the
original signal.

The basis of wavelet transform encoding, as we explained in the last
section, is to allow some inaccuracy resulting from quantizing transform
values in order to achieve greater compression than by lossless methods.
For instance, in Figure 2.10(c), we show a 14-level Coif30 transform of the
greasy recording, and in Figure 2.10(d) we show a histogram of an 8-bit
dead-zone quantization of this transform. Comparing the two histograms
in Figure 2.10, we see that the histogram for the dead-zone quantization
of the transform values is more narrowly concentrated than the histogram
for the scalar quantization of the signal values. In fact, the entropy for the
histogram in Figure 2.10(d) is 4.34, which is smaller than the entropy 5.43
for the histogram in Figure 2.10(c). Using our estimator for average cod-
ing length, we estimate that a lossless encoding of the quantized transform
values will have an average length of 4.84. Consequently, the 3922 non-zero

©1999 CRC Press LLC

FIGURE 2.11
(a) Fourth trend of 4-level Coif30 transform of greasy. (b) Histogram
of 8-bit dead-zone quantization of fourth trend. (c) Fluctuations of 4-
level Coif30 transform. (d) Histogram of 6-bit dead-zone quantization
of fluctuations.

quantized transform values can be expected to be losslessly encoded with
about 3922 × 4.84 ≈ 18, 922 bits. This is a significant reduction in the
number of bits; even if absolutely no compression was done on the 16,384
bits in the significance map, there would still be a large improvement in
compression over a lossless compression of greasy. It is very important to
note that—even though there is some error introduced by the quantization
of the transform values—when an inverse transform is performed, the re-
sulting signal is extremely difficult to distinguish from the original when
played over a computer sound system.

As another example of the possibilities available with wavelet transform
compression, we shall examine a slightly different approach to compressing
greasy. In Figures 2.11(a) and 2.11(c), we show a 4-level Coif30 transform of
greasy. The fourth trend is graphed in Figure 2.11(a) and the 4 fluctuations
are graphed in Figure 2.11(c). An 8-bit dead-zone quantization of the
fourth trend has the histogram shown in Figure 2.11(b), with an entropy
of 6.19. There are 793 non-zero coefficients; so encoding requires about

©1999 CRC Press LLC

793× 6.69 ≈ 5305 bits. To quantize the fluctuation values we chose to use
only 6 bits, not 8 bits as we used for the 14-level transform. A comparison
of Figures 2.10(c) and 2.11(c) makes it apparent why we did this. More
intensity levels are needed with the 14-level transform in order to ensure
accuracy because of the many larger fluctuation values at higher levels [due
to the higher peaks on the left side of Figure 2.10(c)]. This 6-bit dead-zone
quantization of the four fluctuations has the histogram shown in Figure
2.11(d), with an entropy of 2.68. Since there are 2892 non-zero quantized
values, an encoding requires about 2892 × 3.18 ≈ 9197 bits. The total
number of bits estimated for this 4-level transform compression is about
14, 502 bits. This compares favorably with the 18, 982 bits estimated for
the 14-level transform compression. The improvement in compression for
the 4-level transform is due to the decrease in entropy from 4.34 to 2.68
for the first four fluctuations brought about by the change made in the
quantization.

This last example only begins to suggest some of the many possibilities
available for adaptation of the basic wavelet transform compression proce-
dure. For instance, one possibility is to compute an entropy for a separate
quantization of each fluctuation and separately encode these quantized fluc-
tuations. This does generally produce improvements in compression. For
example, suppose a 4-level Coif30 transform of greasy is quantized using 8
bpp for the trend and 6 bpp for the four fluctuations, and separate entropies
are calculated for the trend and for each of the four fluctuations. Then the
estimated total number of bits needed is 11, 305. This is an improvement
over the 14, 502 bits previously estimated.

2.6 Denoising audio signals

As we saw in Section 1.6, the problems of compression and noise removal
are closely related. If a wavelet transform can effectively capture the en-
ergy of a signal in a few high-energy transform values, then additive noise
can be effectively removed as well. We introduced a basic method, called
thresholding, for removing noise, and illustrated this method using the Haar
transform. Now, in this section, we shall threshold the Daubechies wavelet
transforms. Besides discussing a simple illustrative example, we also shall
give some justification for why thresholding works well for the random noise
often encountered in signal transmission, and provide an example of denois-
ing when the noise is a combination of pop noise and random noise.

Let’s quickly review the basic steps for removing additive noise using
the Threshold Method. A threshold value T is chosen for which all trans-
form values that are lesser in magnitude than T are set equal to zero. By

©1999 CRC Press LLC

performing an inverse wavelet transform on the thresholded transform, an
estimation of the original uncontaminated signal is obtained. In Chapter
1 we saw that the Haar transform was able to effectively remove the noise
from Signal A, as shown in Figure 1.6. Signal A was created by adding
random noise to Signal 1, whose graph is shown in Figure 1.4. Because of
the connection between compression and noise removal, and because the
Haar transform is the most effective transform for compressing Signal 1,
it follows that the Haar transform is also the most effective transform for
denoising Signal A.

With the other noisy signal examined in Section 1.6, Signal B, we found
that the Haar transform did a rather poor job of denoising. The explanation
for this lies again in the connection between compression and threshold
denoising. Signal B was created by adding random noise to Signal 2, but
the Haar transform is not an effective tool for compressing Signal 2; it
produces too many low magnitude transform values which are obscured by
the noise. We saw, however, in Section 2.4 that the Coif30 transform is
a very effective tool for compressing Signal 2. Therefore, let’s apply it to
denoising Signal B.

In Figure 2.12 we show the basic steps in a threshold denoising of Sig-
nal B using a 12-level Coif30 transform. Comparing the 12-level Coif30
transforms of Signal B and Signal 2, we see that the addition of the noise
has contributed a large number of small magnitude, low-energy values to
the transform of Signal 2. Nevertheless, most of the high-energy values of
the transform of Signal 2 are still plainly visible in the transform of Sig-
nal B, although their values have been altered slightly by the added noise.
Therefore, we can eliminate the noise using thresholding, as indicated by
the two horizontal lines in Figure 2.12(b). All transform values between
±0.2 are set equal to zero, and this produces the thresholded transform
shown in Figure 2.12(c). Comparing this thresholded transform with the
transform of Signal 2, shown in Figure 2.8(b), we can see that thresholding
has produced a fairly close match. The most noticeable difference is a loss
of a small number of values located near 0.25, which had such small magni-
tudes that they were obscured by the addition of the noise. Since the two
transforms are such a reasonably close match, it follows that the inverse
transform of the thresholded transform produces a denoised signal that is
a close match of Signal 2. In fact, the RMS Error between the denoised
signal and Signal 2 is 0.14, which is a four-fold decrease in the RMS Error
of 0.57 between Signal B and Signal 2.

Choosing a threshold value

One of the most attractive features of wavelet threshold denoising is that,
for the type of random noise frequently encountered in signal transmission,

©1999 CRC Press LLC

FIGURE 2.12
(a) Signal B. (b) 12-level Coif30 transform, with thresholding indi-
cated by two horizontal lines at ±0.2. (c) Thresholded transform. (d)
Denoised signal; compare with Figures 2.8(a) and 1.6(d).

it is possible to automatically choose a threshold for denoising without any
prior knowledge of the signal. In Figure 2.13(a) we show an example of this
type of random noise; it is called Gaussian noise. A technical definition of
Gaussian random noise is beyond the scope of this book; in this subsection
we shall only give an informal introduction to some of the main ideas.

If the noise shown in Figure 2.13(a) is played over a sound generator, it
produces the familiar static sound that can be heard in noisy radio trans-
missions and analog recordings. A histogram of frequencies of occurrence
of intensity levels for this noise is shown in Figure 2.13(b). The bell-shaped
curve that this histogram approximates is an indication that this noise is
Gaussian. Using elementary statistical formulas on the noise values, we
can estimate the mean µ and standard deviation σ of the probability den-
sity function (the bell-shaped curve) that this histogram approximates. We
find that the mean is approximately 0 and that the standard deviation is
approximately 0.579. One of the consequences of the Conservation of En-
ergy Property of the Daubechies wavelet transforms—more precisely, the

©1999 CRC Press LLC

Table 2.5 Comparison of three noise histograms
Threshold % below, Theory % below, 2.13(a) % below, 2.13(c)

σ 68.72 68.87 69.94
2σ 95.45 95.70 95.39
3σ 99.73 99.74 99.66
4σ 99.99 100.00 99.98

orthogonality of the matrix form for these transforms5—is that they pre-
serve the Gaussian nature of the noise. For example, in Figure 2.13(c) we
show a Coif30 wavelet transform of the random noise in Figure 2.13(a).
Its histogram in Figure 2.13(d) approximates a bell-shaped curve, and the
mean and standard deviation of the transformed noise are calculated to be
approximately 0 and 0.579, the same values that we found for the original
noise.

These facts imply that the transformed noise values will be similar in
magnitude to the original noise values and, what is more important, that a
large percentage of these values will be smaller in magnitude than a threshold
equal to a large enough multiple of the standard deviation σ. To see this last
point more clearly, consider the data shown in Table 2.5. In this table, the
first column contains four thresholds which are multiples of the standard
deviation σ = 0.579. The second column lists the percentages of values
of random numbers having magnitudes that are less than these thresholds,
assuming that these random numbers obey a Gaussian normal probability
law with mean 0 and standard deviation σ.6 The third and fourth columns
contain the percentages of the magnitudes from the noise signals in Figure
2.13(a) and 2.13(c) which lie below the thresholds.

Based on the results of this table, we shall use the following formula:

T = 4.5σ (2.38)

for setting the threshold value T . In our next example, we shall make
use of (2.38) for choosing a threshold. The standard deviation σ can be
estimated from a portion of the transform which consists largely of noise
values. Generally this is the case with the first level fluctuation because
the first level fluctuation values from the original signal are typically very
small. When Formula (2.38) is used we expect that well over 99% of the

5Orthogonality of the Daub echies wavelet transforms was discussed in Section 2.2.
6 That is, the probability of a number x having magnitude less than T is equal to the

area under the curve 1

σ
√

2π
e−x2 /2σ 2 from −T to T .

©1999 CRC Press LLC

FIGURE 2.13
(a) Gaussian noise. (b) Histogram of the noise. (c) Coif30 transform
of the noise. (d) Histogram of the transformed noise.

noise values will be removed from the transform, and this requires essen-
tially no knowledge of the original, uncontaminated signal. Preventing this
thresholding from removing too many transform values from the original
signal, however, depends on how well the transform compresses the energy
of the signal into a few high-magnitude values which stand out from the
threshold. With the Daubechies transforms this will occur with signals
that are sampled from analog signals that are smooth. This is because so
many of the fluctuation values are small, and that leaves only a few high-
magnitude transform values to account for the energy. Of course it is always
possible—by adding noise with a sufficiently high standard deviation—to
produce such a high threshold that the signal’s transform values are com-
pletely wiped out by thresholding. Wavelet thresholding is powerful, but it
cannot perform magic.

Removing p op noise and background static

We close this section by discussing another example of noise removal. In
Figure 2.14(a) we show the graph of a noisy signal. The signal consists of

©1999 CRC Press LLC

FIGURE 2.14
(a) Noisy whistle. (b) Second fluctuation of the 15-level Coif18 trans-
form. (c) Second fluctuation of the denoised transform. (d) Denoised
whistle.

Gaussian random noise and pop noise added to a recording of the author
making a whistling sound. The pop noise consists of the spike located near
0.186, which is plainly visible in the graph. When this signal is played
over a computer sound system, the whistle can be plainly heard but there
is an annoying static background and a rather loud, short, popping sound
near the beginning of the whistle. Using wavelet techniques we can remove
essentially all of the random noise and greatly reduce the volume of the
pop noise.

To remove the noise, we use a Coif18 wavelet transform of the signal.
In Figure 2.14(b) we show the second fluctuation subsignal of a Coif18
transform of the noisy signal. The other fluctuation subsignals are similar
in appearance; so by describing how to modify this particular fluctuation
we shall be describing how to handle the other fluctuations as well. The
random noise, or background static, appears as random oscillations in the
wavelet transform as we noted above. In fact, on the interval [.46, .51] the
fluctuation values appear purely random; so we make an estimate of the
standard deviation of the transform noise over this subinterval, obtaining

©1999 CRC Press LLC

σ ≈ 0.617. By Formula (2.38), we should set T equal to 2.7765. Rounding
up slightly, we set T = 2.78.

In contrast to the random noise, the pop noise produces unusually large
magnitude fluctuation values that stand out from the vast majority of the
fluctuation values. We shall refer to these unusually large fluctuation values
as outliers. For example, in Figure 2.14(b) there are two outliers that are
clearly visible in the second fluctuation. They appear as two spikes on the
left side of the figure. To remove the pop noise we must eliminate these
outliers from the transform.

Table 2.6 Acceptance bands for fluctuations of noisy signal
Fluctuation Acceptance band

1 (−∞,−T] ∪ [T,∞)
2 (−12.5,−T] ∪ [T, 9)
3 (−∞,−T] ∪ [T,∞)
4 (−67,−T] ∪ [T, 67)

5 to 15 (−∞,−T] ∪ [T,∞)

To remove both the random noise values and the outliers from the pop
noise, we set acceptance bands for each fluctuation subsignal. Values that
lie in the acceptance band for each fluctuation are retained and all other
values are set equal to zero. These acceptance bands, which were obtained
by a visual inspection of the transform, are summarized in Table 2.6. The
second fluctuation of the modified, denoised transform is shown in Figure
2.14(c). By performing an inverse transform on the denoised transform, we
produce the denoised whistle signal shown in Figure 2.14(d). When this
denoised signal is played on a computer’s sound system, the background
static is completely gone and the volume of the pop noise, although still
audible, is greatly diminished.

No claim is being made here that the method used for removing the pop
noise is in any way optimal. There are two problems with the approach
used. First, we only removed outliers from the fluctuation levels 2 and 4,
and ignored higher levels. An examination of the transform reveals outliers
for several other levels, such as 5 and 6. A more effective denoising would
remove these spikes as well. Furthermore, actually removing the spikes
completely may not be the best approach; reducing their size based on an
estimate of nearby fluctuation values might work better. In any case, this
example was described in order to indicate some of the flexibility available
in wavelet denoising. More detailed discussions of denoising methods can
be found in the references.

©1999 CRC Press LLC

2.7 Two-dimensional wavelet transforms

Up till now we have been working with one-dimensional signals, but
wavelet analysis can be done in any number of dimensions. The essential
ideas, however, are revealed in two dimensions. In this section we shall begin
our treatment of 2D wavelet analysis. Many of the basic ideas are similar
to the 1D case; so we shall not repeat similar formulas but rather focus on
the new ideas that are needed for the 2D case. In subsequent sections we
shall describe various applications of 2D wavelet analysis to compression
of images, denoising of images and other types of image enhancements and
image analysis.

Discrete images

The 2D data that we shall be working with are discrete images. A discrete
image f is an array of M rows and N columns of real numbers:

f =


f1,M f2,M . . . fN,M

...
...

. . .
...

f1,2 f2,2 . . . fN,2

f1,1 f2,1 . . . fN,1

 . (2.39)

The values of f are the MN real numbers {fj,k}. It should be noted that
the way in which the values of f are displayed in the array on the right
side of (2.39) is not the most commonly used one. We chose to display the
values of f in this way because it corresponds well with the case where f is
an array of sample values:

f =


g(x1, yM) g(x2, yM) . . . g(xN , yM)

...
...

. . .
...

g(x1, y2) g(x2, y2) . . . g(xN , y2)
g(x1, y1) g(x2, y1) . . . g(xN , y1)

 (2.40)

of a function g(x, y) at the sample points (xj , yk) in the Cartesian coordi-
nate plane. Just as with discrete 1D signals, it is frequently the case that
a discrete 2D image is obtained from samples of some function g(x, y).

It is often helpful to view a discrete image in one of two other ways.
First, as a single column consisting of M signals having length N ,

f =


fM
...
f2
f1

 (2.41)

©1999 CRC Press LLC

with the rows being the signals

fM = (f1,M , f2,M , . . . , fN,M)
...

f2 = (f1,2, f2,2, . . . , fN,2)
f1 = (f1,1, f2,1, . . . , fN,1).

Second, as a single row consisting of N signals of length M , written as
columns,

f = (f1, f2, . . . , fN) (2.42)

with the columns being the signals

f1 =


f1,M

...
f1,2

f1,1

 , f2 =


f2,M

...
f2,2

f2,1

 , . . . , fN =


fN,M

...
fN,2

fN,1

 .

Notice that, because of our somewhat peculiar notation, the row index for
each column increases from bottom to top (rather than from top to bottom,
which is more common notation in image processing).

As an example of the utility of Formulas (2.41) and (2.42), we consider
the calculation of the energy of a discrete image. The energy Ef of a discrete
image f is defined to be the sum of the squares of all of its values. Because
of (2.41) it follows that Ef is the sum of the energies of all of the row signals:

Ef = Ef1 + Ef2 + · · ·+ EfM .

Or, because of (2.42), it follows that Ef is also the sum of the energies of
all of the column signals:

Ef = Ef1 + Ef2 + · · ·+ EfN .

One consequence of these last two identities is that the 2D wavelet trans-
forms defined below have the property of conserving the energy of discrete
images.

2D wavelet transforms

A 2D wavelet transform of a discrete image can be performed whenever
the image has an even number of rows and an even number of columns.
A 1-level wavelet transform of an image f is defined, using any of the 1D
wavelet transforms that we have discussed, by performing the following two
steps:

©1999 CRC Press LLC

Step 1. Perform a 1-level, 1D wavelet transform, on each row of f ,
thereby producing a new image.

Step 2. On the new image obtained from Step 1, perform the same
1D wavelet transform on each of its columns.

It is not difficult to show that Steps 1 and 2 could be done in reverse order
and the result would be the same. A 1-level wavelet transform of an image
f can be symbolized as follows:

f �−→

h1 | d1

a1 | v 1

 (2.43)

where the subimages h1, d1, a1, and v 1 each have M/2 rows and N/2
columns. We shall now discuss the nature of each of these subimages.

The subimage a1 is created by computing trends along rows of f followed
by computing trends along columns; so it is an averaged, lower resolution
version of the image f . For example, in Figure 2.15(a) we show a simple
test image of an octagon, and in Figure 2.15(b) we show its 1-level Coif6
transform. The a1 subimage appears in the lower left quadrant of the Coif6
transform, and it is clearly a lower resolution version of the original octagon
image. Since a 1D trend computation is

√
2 times an average of successive

values in a signal, and the 2D trend subimage a1 was computed from trends
along both rows and columns, it follows that each value of a1 is equal to
2 times an average of a small square containing adjacent values from the
image f . A useful way of expressing the values of a1 is as scalar products
of the image f with scaling signals, as we did in the 1D case; we shall say
more about this later in the section.

The h1 subimage is created by computing trends along rows of the image
f followed by computing fluctuations along columns. Consequently, wher-
ever there are horizontal edges in an image, the fluctuations along columns
are able to detect these edges. This tends to emphasize the horizontal
edges, as can be seen clearly in Figure 2.15(b) where the subimage h1 ap-
pears in the upper left quadrant. Furthermore, notice that vertical edges,
where the octagon image is constant over long stretches, are removed from
the subimage h1. This discussion should make it clear why we shall refer
to this subimage as the first horizontal fluctuation.

The subimage v 1 is similar to h1, except that the roles of horizontal
and vertical are reversed. In Figure 2.15(b) the subimage v 1 is shown in
the lower right quadrant. Notice that horizontal edges of the octagon are
erased, while vertical edges are emphasized. This is typically the case with
v1, which we shall refer to as the first vertical fluctuation.

Finally, there is the first diagonal fluctuation, d1. This subimage tends to
emphasize diagonal features, because it is created from fluctuations along

©1999 CRC Press LLC

both rows and columns. These fluctuations tend to erase horizontal and
vertical edges where the image is relatively constant. For example, in Figure
2.15(b) the diagonal fluctuation appears in the upper right quadrant of the
image, and it is clear that diagonal details are emphasized while horizontal
and vertical edges are erased.

It should be noted that the basic principles discussed previously for 1D
wavelet analysis still apply here in the 2D setting. For example, the fact
that fluctuation values are generally much smaller than trend values is still
true. In the wavelet transform shown in Figure 2.15(b), for instance, the
fluctuation subimages h1, v 1, and d1 have significantly smaller values than
the values in the trend subimage a1. In fact, in order to make the values for
h1, v 1, and d1 visible, they are displayed on a logarithmic intensity scale,
while the values for the trend subimage a1 are displayed using an ordinary,
linear scale.

Furthermore, 2D wavelet transforms enjoy the Conservation of Energy
property. As noted above, the energy of an image is the sum of the energies
of each of its rows or each of its columns. Since the 1D wavelet transforms
of the rows, performed in Step 1, preserve the row energies, the image
obtained in Step 1 will have the same energy as the original image. Likewise,
since the 1D wavelet transforms of the columns preserve their energies, it
follows that the transform obtained in Step 2 has the same energy as the
image from Step 1. Thus the 1-level wavelet transform has the same energy
as the original image. For example, the energy of the octagon image in
Figure 2.15(a) is 3919.0625, while the energy of its 1-level Coif6 transform
is 3919.0622; the slight discrepancy between the two energies is attributable
to the inevitable rounding error that arises from finite precision computer
calculations.

As in 1D, multiple levels of 2D wavelet transforms are defined by re-
peating the 1-level transform of the previous trend. For example, a 2-level
wavelet transform is performed by computing a 1-level transform of the
trend subimage a1 as follows:

a1 �−→

h2 | d2

a2 | v 2

 .

The 1-level fluctuations h1, d1, and v 1 remain unchanged. In Figure 2.15(c)
we show a 2-level Coif6 transform of the octagon image. In general, a k-
level transform is defined by performing a 1-level transform on the previous
trend ak−1. In Figure 2.15(d) we show a 3-level Coif6 transform of the
octagon image.

It is interesting to compare the successive levels of the Coif6 transforms in
Figure 2.15. Notice how it appears that we are systematically decomposing
the original octagon image by peeling off edges; and these edges are retained

©1999 CRC Press LLC

within the fluctuation subimages. This aspect of wavelet transforms plays
a major role in the fields of image recognition and image enhancement. In
Section 2.11 we shall discuss a few examples from these fields.

Besides Conservation of Energy these 2D wavelet transforms also perform
a Compaction of Energy. For example, for the octagon image in Figure 2.15
most of the energy of the image is successively localized into smaller and
smaller trend subimages, as summarized in Table 2.7. Notice, for example,
that the third trend a3, which is 64 times smaller than f in terms of numbers
of values, still contains over 96% of the total energy. In accordance with
the Uncertainty Principle, however, some of the energy has leaked out into
the fluctuation subimages. Consequently, in order to obtain an accurate
approximation of f , some of the highest energy fluctuation values—such
as the ones that are visible in Figure 2.15(d)—would have to be included
along with the third trend values when performing an inverse transform.
This Compaction of Energy property, as in the 1D case, provides the foun-
dation for the methods of compression and denoising that we shall discuss
in subsequent sections.

Table 2.7 Compaction of energy of octagon image
Image Energy % Total Energy

f 3919.06 100.00
a1 3830.69 97.75
a2 3811.06 97.22
a3 3777.55 96.39

2D wavelets and scaling images

As in the 1D case, the various levels of a wavelet transform can be com-
puted via scalar products of the image f with elementary images called
scaling images and wavelets. A scalar product of two images f and g, both
having M rows and N columns, is defined by

f · g = f1,1g1,1 + f1,2g1,2 + · · ·+ fN,MgN,M . (2.44)

In other words, f · g is the sum of all the products of similarly indexed
values of f and g.

To see how this scalar product operation relates to wavelet transforms,
let’s consider the 1-level horizontal fluctuation h1. This subimage is de-
fined by separate calculations of trends along rows and fluctuations along
columns. It follows that the values of h1 are computed via scalar products
with wavelets obtained by multiplying values of 1D scaling signals along

©1999 CRC Press LLC

FIGURE 2.15
(a) Octagon image. (b) 1-level Coif6 transform. (c) 2-level Coif6 trans-
form. (d) 3-level Coif6 transform.

rows by values of 1D wavelets along columns. Each such wavelet is denoted
by V1

m ⊗W1
n, which is called a tensor product of the 1D scaling signal V1

m

and 1D wavelet W1
n. For instance, if we are computing a 2D Haar wavelet

transform, then V1
1 ⊗ W1

1 is defined as follows:

V1
1 ⊗ W1

1 =



0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0

−1/2 −1/2 0 . . . 0 0
1/2 1/2 0 . . . 0 0

 .

Since each Haar scaling signal V1
m is a translation by 2(m− 1) time-units

of V1
1, and each Haar wavelet W1

n is a translation by 2(n − 1) time-units
of W1

1, it follows that V1
m ⊗ W1

n is a translation by 2(m − 1) units along
the horizontal and 2(n − 1) units along the vertical of V1

1 ⊗ W1
1. Notice

that the Haar wavelet V1
1 ⊗ W1

1 has energy 1 and an average value of 0,
as do all the other Haar wavelets V1

m ⊗ W1
n. Furthermore, the support of

the Haar wavelet V1
1 ⊗ W1

1 is a 2 by 2 square, and so the support of each

©1999 CRC Press LLC

FIGURE 2.16
(a) Haar wavelet V2

3 ⊗ W2
5. (b) Haar wavelet W2

3 ⊗ W2
5. (c) Haar

scaling image V2
3 ⊗ V2

5. (d) Haar wavelet W2
3 ⊗ V2

5. Note: the gray
background indicates zero values, white indicates positive values, and
black indicates negative values.

Haar wavelet V1
m ⊗ W1

n is a 2 by 2 square as well. For the Daubechies
wavelets, the supports of the wavelets V1

m ⊗ W1
n are also small squares,

although not 2 by 2 ones. The Daub4 wavelets V1
m ⊗W1

n, for instance, all
have supports in some 4 by 4 square (if we allow for wrap-around at image
boundaries).

Similar definitions hold for the other subimages of the 1-level transform.
The values of the diagonal fluctuation d1 are scalar products of the image
with the wavelets W1

m ⊗W1
n, and the values of the vertical fluctuation v1

are scalar products of the image with the wavelets W1
m ⊗V1

n. All of these
wavelets have energy 1 and average value 0, and supports in small squares.
The values of the trend a1 are scalar products of the image with the scaling
images V1

m ⊗ V1
n. Each of these scaling images has energy 1 and average

value of 1/2, and support in some small square.
What is true for the first level remains true for all subsequent levels.

The values of each subimage ak, hk, dk, and vk are computed by scalar
products with the scaling images Vk

m ⊗ Vk
n, and the wavelets Vk

m ⊗ Wk
n,

©1999 CRC Press LLC

W km ⊗ W kn, and W km ⊗ V kn, respectively. In Figure 2.16 we show graphs
of a 2-level Haar scaling image and three 2-level Haar wavelets. Notice
how these images correspond with the subimages of the 2-level Haar trans-
form. For instance, the scaling image V 23 ⊗ V 25, shown in Figure 2.16(c), is
supported on a small 4 by 4 square with a constant value of 1/4, and the
average of an image over this square produces the trend value in the (3, 5)
position in the trend subimage a2. Also notice the horizontal orientation
of the Haar wavelet in Figure 2.16(a), which is used for computing a value
for the horizontal fluctuation h2. Similarly, the wavelets in Figures 2.16(b)
and 2.16(d) have a diagonal orientation and a vertical orientation, respec-
tively, which is consistent with their being used for computing values for
the diagonal fluctuation d2 and vertical fluctuation v 2.

This concludes a very brief outline of the basic features of 2D wavelets
and scaling images. Their essential features are very similar to the 1D case;
so for reasons of space we shall limit ourselves to this brief treatment. In
the next section we shall begin our discussion of applications of 2D wavelet
analysis.

2.8 Compression of images

In this section we begin our treatment of image processing applications
with a brief treatment of wavelet compression of images. The basic ideas
involved are similar to the methods described previously, in Sections 2.4
and 2.5, for compression of 1D signals. We shall concentrate on one repre-
sentative example of image compression, which should indicate many of the
exciting features of wavelet compression techniques, as well as some of the
significant challenges in this new field. In the section that follows we shall
expand on some of the ideas introduced here by describing a fascinating
subfield of image compression: the compression of fingerprint images.

The image that we shall compress is shown in Figure 2.17(a). It is a
standard test image, known as Lena, which appears frequently in the field of
image processing. While one reason for this may be the attractiveness of the
image to many of the male workers in the field, another more serious reason
is that the Lena image contains various combinations of image properties,
such as a large number of curved edges and textures in Lena’s hair and the
feathers on her hat, and combinations of light and dark regions of shading
in the background and in Lena’s face.

The Lena image is a 512 row by 512 column discrete image. Its values
are gray-scale intensity values from 0 to 255—that is, quantized values at 8
bpp—where 0 indicates pure black and 255 indicates pure white, and other
values indicate shades of gray between these two extremes. To compress

©1999 CRC Press LLC

FIGURE 2.17
(a) Lena image. (b) 4-level Coif12 transform. (c) Compressed image,
0.43 bpp. (d) Compressed image, 0.24 bpp.

the Lena image we shall use its 4-level Coif12 transform; this transform
is shown in Figure 2.17(b). It is clear from this figure that the first level
fluctuations—h1, d1, and v 1—contain very little energy. An elementary
compression could be done by simply omitting all these fluctuations from
the compressed version. This is equivalent to compressing the Lena image
f to its first level trend a1, hence compressing Lena to 2 bpp.

Much more compression can be obtained, however, if we modify the sim-
ple compression described above along the lines of the compression method
described for the 1D signal, greasy, at the end of Section 2.5. In Figure
2.17(c) we show a compression obtained by quantizing the fourth trend
subimage, a4, of the 4-level Coif12 transform at 8 bpp, and quantizing
the second, third, and fourth fluctuations at 7 bpp, and omitting the first
fluctuations entirely. Computing separate entropies for each level, we ob-
tain an estimate of 0.43 bpp needed to encode the significant values in the
transform. Since the significance map in this case consists of bits of 1’s and
0’s for only the lower left quadrant of the quantized transform, it accounts
for 0.25 bpp without compression of any kind. Examining Figure 2.17(b),
however, reveals large areas that consist only of 0’s. Therefore, the signif-

©1999 CRC Press LLC

icance map can be significantly compressed. The image in Figure 2.17(c)
is virtually indistinguishable from the original Lena image, even though it
has been compressed by roughly 16:1.

Even further compression of the Lena image is possible. For instance, if
the fourth trend is quantized at 9 bpp and the second, third, and fourth
fluctuations are quantized at 6 bpp, then the estimated average number of
bits needed to encode the significant transform values is 0.24 bpp. This
represents a much greater compression; yet, the compressed image shown
in Figure 2.17(d) is still almost indistinguishable from the original. This
last statement is certainly true for the printed image shown in the figure;
however, when the images are displayed on a computer screen, the 0.24 bpp
compressed image exhibits some defects in comparison to the original.

One quantitative measure of how accurately a compressed image g ap-
proximates the original image f is the relative 2-norm difference D(f , g)
defined by

D(f , g) =

√
(f1,1 − g1,1)2 + (f1,2 − g1,2)2 + · · ·+ (fN,M − gN,M)2√

f2
1,1 + f2

1,2 + · · ·+ f2
N,M

=
√
Ef −g/Ef . (2.45)

For example, if f is the Lena image and g is the 0.43 bpp compressed
image in Figure 2.17(c), then D(f , g) = 0.040. While if g is the 0.25 bpp
compressed image in Figure 2.17(d), then D(f , g) = 0.046. This gives quan-
titative support to the subjective impression that the compressed image in
Figure 2.17(c) is a closer approximation to the original image.

As a rule of thumb, if D(f , g) ≤ .05, then g is an acceptable approxima-
tion to f . This is certainly true for the images in Figure 2.17. The use of
D(f ,g) as a measure of acceptable approximation, however, does not always
equate with the perceptions of our visual systems. No such quantitative
measure is known, although interesting proposals based on the magnitudes
of wavelet transform values have been made in recent papers that we list
in the references.

These compressions of the Lena image are hardly state of the art. By
combining the best available techniques of entropy encoding of the signifi-
cant quantized transform values with a sophisticated method of compressing
the significance map known as zero-tree encoding, it is possible to compress
Lena at a ratio of at least 50:1 without noticeable degradation. The foun-
dation of the zero-tree method is relatively simple. It rests on the fact
that trend images are accurate reproductions, at lower resolutions, of the
original image. Consequently, in the Lena image for instance, regions such
as her shoulder which have relatively constant intensity7 will produce in-

7Or for which intensity varies along a flat, linear gradient.

©1999 CRC Press LLC

significant values in the same relative locations at several consecutive levels.
Hence, an insignificant transform value in, say h3, will often correspond to
four insignificant values in h2 in the same relative location (relative to the
original image). Likewise, each of those insignificant values in h2 will often
correspond to four more insignificant values, 16 in all, in the same relative
locations in h1. Consequently, these values can be grouped in a data struc-
ture, called a zero-tree. Encoding these zero-trees with just a single bit is
analogous to run-length encoding of zeros, but is much better correlated to
the structure of the significance map and produces phenomenal compres-
sion ratios. There are very lucid discussions of these matters in some of
the original papers which we list in the references. We shall also give some
further discussion of zero-trees at the end of the next section.

One aspect of image compression that our brief introduction has omitted
is the compression of color images. The way in which most color images
are encoded, as Red-Green-Blue (RGB) intensities, makes it possible to
consider their compression as a relatively straightforward generalization of
compression of gray-scale images. The reason for this is that the total
intensity, I, which equals the average of the R, G, and B intensities, has
much more effect on the visual perception of the color image than the two
color values of hue, H, and saturation, S. Consequently, the RGB image
is mapped to an IHS image before compression is done. (The formulas
for this mapping are described in the references for this chapter.) After
performing this mapping the I, H, and S values are compressed as separate
images, using the methods for gray-scale compression illustrated above.
Much greater compression can be done on the H and S images than on the
I image because of the much lower sensitivity that the human visual system
has for variations in hue and saturation. More details on color compression
can be found in the references for this chapter.

2.9 Fingerprint compression

Fingerprint compression is an interesting case of image compression. In
this section we shall briefly outline the essential ideas underlying wavelet
compression of fingerprints. A wavelet-based compression algorithm has
been adopted by the U.S. government, in particular by the FBI, as its
standard for transmitting and storing digitized fingerprints.

A fingerprint image is an image of a fingerprint in an 8-bit gray-scale for-
mat. A typical fingerprint record—consisting of ten fingerprints plus two
additional thumbprints and two full handprints—when digitized as images
produces about 10 megabytes of data. This magnitude of data poses sig-
nificant problems for transmission and storage. For example, to transmit

©1999 CRC Press LLC

FIGURE 2.18
(a) Fingerprint 1, 8 bpp. (b) Compressed version, 0.77 bpp. (c) Central
whorl in (a). (d) Central whorl in (b).

one fingerprint record over a modem, say at 28, 000 bits per second with
an overhead of around 20%, would require about 1 hour. This is painfully
slow when identification needs to be done quickly, as is often the case in
criminal investigations. If fingerprint images could be compressed at, say,
a 20:1 ratio without noticeable loss of detail, then the transmission of one
fingerprint record could be reduced to just 3 minutes. This would greatly
facilitate the large number of background checks (around 30, 000 each day)
that are needed.

Besides the transmission problem, there are also problems stemming from
the gargantuan magnitude of the FBI’s fingerprint archive. This archive
contains over 25 million records. Digitizing these records at 8 bpp would
produce over 250 trillion bytes of data! Compressing each image by a
factor of 20:1 would greatly ease the storage burden for an archive of these
fingerprint images.

The wavelet-based compression algorithm adopted by the U.S. govern-
ment is called the Wavelet/Scalar Quantization (WSQ) method. We will
not try to give a complete description of the WSQ method. Rather, we
shall describe enough of its essential aspects, so that the reader should be

©1999 CRC Press LLC

able to confidently read some of the excellent articles by the creators of the
WSQ method. These articles are listed in the Notes and References section
at the end of this chapter.

In this section, we illustrate the gist of the WSQ method by discussing an
example of a fingerprint compression using a wavelet transform. This initial
example will be expanded in Chapter 4, in order to give further insight into
the WSQ method.

Consider the test image, Fingerprint 1, shown in Figure 2.18(a). To
compress this image we used a 4-level Coif18 transform. The fourth trend
a4 was quantized at 9 bpp and the various fluctuations were quantized at 6
bpp. This produces an estimated 0.77 bpp needed to encode the significant
transform values. Compared with 8 bpp needed for the original image, this
represents roughly 10:1 compression. Here we are ignoring the bits needed
to encode the significance map; we shall give some justification for doing
so at the end of this section. The compressed image is shown in Figure
2.18(b). This image is virtually indistinguishable from the original image
in (a).

As a quantitative measure of the accuracy of the compressed image, we
calculate the relative 2-norm difference D(f , g) defined in the previous sec-
tion. If f is the Fingerprint 1 image and g is the compressed image, then
D(f , g) = .035. This value is significantly less than the accuracy value of
.05 proposed in the previous section.

Often portions of fingerprints need to be magnified in order to compare
certain details, such as whorls. In Figures 2.18(c) and (d) we show magni-
fications of the central whorl from Fingerprint 1 and from its compressed
version. The compressed version is still virtually indistinguishable from
the original in these magnifications. For these magnifications the relative
2-norm difference is .054, which is very near to the accuracy value of .05.
It is interesting to note that even the tiny indentations in the middle of
the fingerprint ridges, which correspond to sweat pores, are accurately pre-
served by the compressed image. The locations of these sweat pores are, in
fact, legally admissible for identification purposes.

While this example illustrates that a wavelet transform compression of
fingerprints can work reasonably well, we can do even better. In Chapter
4, we will show that a wavelet packet transform of Fingerprint 1 produces
a significantly greater compression. The WSQ method is essentially just a
slight modification of this wavelet packet method.

Remarks on the significance map

In our discussion above of a wavelet compression of Fingerprint 1, we
ignored the presence of the significance map. In this subsection we will
explain why the significance map can be greatly compressed, and conse-
quently does not contribute much to the number of bits needed to describe

©1999 CRC Press LLC

the compressed fingerprint image.
We begin by noting that only 12.7% or about one eighth of all of the

transform values for Fingerprint 1 are significant. Hence there will be a
large preponderance of zero bits in the significance map, which implies that
it should be very compressible.

More important, however, many of these zero bits are arranged in the
zero-tree data structures mentioned at the end of the previous section. To
see this, we show the significance map for the compression of Fingerprint 1
in Figure 2.19. A careful inspection of this significance map reveals many
such zero-trees just by sight alone. We start by locating the significance
bits for the fourth trend a4 as the small white square in the lower left
corner of Figure 2.19. Directly above the top right corner of this square
is a sequence of several gray blobs; these represent clusters of zero bits at
the right edge of the fourth horizontal fluctuation h4. Corresponding to
each one of these zero bits are four zero bits, in the same relative location
in the third horizontal fluctuation h3. Thinking of this as an expansion
of the area of the blobs by a factor of four, we can see that there is room
for these larger blobs lying within a gray rectangle at the edge of the third
horizontal fluctuation. Moreover, this entire gray rectangle expands by a
factor of four to produce another gray rectangle lying along the side of the
second horizontal fluctuation, and this second gray rectangle expands by a
factor of four to produce a third gray rectangle along the side of the first
horizontal fluctuation.

We have thus found that each zero bit in the original set of gray blobs lies
at the root of a four-level zero-tree composed of 85 zero bits. Each of these
zero-trees can be encoded with one symbol, say Z, which is in effect an 85:1
compression of each of these zero-trees. Furthermore, each of the extra zero
bits within the gray rectangle at the side of the third horizontal fluctuation
(the ones not contained within the four-level zero-trees) lies at the root of
a three-level zero-tree composed of 20 zero bits. Each of these zero-trees
can be collapsed to a symbol Z, producing in effect a 20:1 compression of
these trees.

The reader might find it amusing to visually locate other zero-trees. They
make up a substantial percentage of all the zero bits in the significance map,
and allow for high compressibility.

Finally, we note that the method of zero-tree compression encodes the
signs of the significant transform values as symbols (say P and N) within
the significance map. That is, instead of 1 for a significant transform value,
a symbol of P for positive or N for negative is used instead. Essentially no
extra bits are needed for this, because the sign bits can be dropped from
the encoding of the significant transform values, leaving only their absolute
values to be encoded. Often this significantly decreases the number of
bits needed for encoding the significant transform values. For example, for
Fingerprint 1, if only the absolute values of the significant 4-level Coif18

©1999 CRC Press LLC

FIGURE 2.19
Significance map for compressed fingerprint. Gray pixels are zero bits,
white zeros are one bits.

transform values are encoded, then only 0.64 bpp are needed. This is a
17% reduction from the 0.77 bpp needed when sign bits were included.

For the reasons described above, the significance map often compresses
to such a large degree that (taking into account the decrease of bits needed
when sign bits are ignored) we can safely ignore it when making a rough
estimate of the bpp needed in a wavelet compression of fingerprints.

2.10 Denoising images

In this section we shall describe some fundamental wavelet based tech-
niques for removing noise from images.8 Noise removal is an essential el-
ement of image processing. One reason for this is that many images are
acquired under less than ideal conditions and consequently are contami-
nated by significant amounts of noise. This is the case, for example, with
many medical images. Another reason is that several important image pro-
cessing operations, such as contrast enhancement, histogram equalization,

8Adopting audio terminology, undesired changes in image values are called noise.

©1999 CRC Press LLC

FIGURE 2.20
(a) Hard threshold denoising: Gr 1, noisy Lena; Gr 2, 4-level Coif12
transform; Gr 3, hard thresholded transform; Gr 4, denoised image.
(b) Soft threshold denoising; the soft thresholded transform is Gr 3.

and edge enhancement, work much better if random noise is absent.
The basic concepts of wavelet denoising of images are similar to those

described previously for 1D audio signals in Section 2.6. By choosing a
threshold that is a sufficiently large multiple of the standard deviation of
the random noise, it is possible to remove most of the noise by thresholding
of wavelet transform values. We shall examine how this procedure, which is
known as hard thresholding, works on a noisy version of the Lena image. A
simple modification of this method, known as soft thresholding, will also be
introduced and compared with hard thresholding. We shall then conclude
the section with a brief discussion of further aspects of wavelet denoising,
which should indicate some of the variety of techniques that wavelet analysis
provides for denoising images.

Our first example of image denoising is a hard threshold denoising of a
noisy version of the Lena image. This image, which we shall refer to as
noisy Lena, is shown at the top left of Figure 2.20(a). It was obtained by
adding Gaussian random noise to the Lena image, shown in Figure 2.17(a).

We saw in the previous section that the Lena image can be effectively
compressed using a 4-level Coif12 transform. This was because there were
relatively few, high-energy transform values which captured most of the
energy of the image. Therefore, a 4-level Coif12 transform should be an
effective tool for denoising the noisy Lena image. At the upper right of

©1999 CRC Press LLC

Figure 2.20(a) we show a 4-level Coif12 transform of the noisy Lena image.
An estimate was made of the standard deviation σ of the noise values, using
values in the central portion of the diagonal fluctuation d1. The threshold
value T was then set at 4.5σ as per Formula (2.38). At the lower left of
Figure 2.20(a) we show the hard thresholded transform; all transform values
whose magnitudes are less than T are set equal to 0, while the remaining
transform values are retained as significant values. An inverse transform
was performed on this thresholded transform, producing the denoised image
at the lower right in Figure 2.20(a).

The denoised Lena image is clearly an improvement over the noisy ver-
sion. The RMS Error between the denoised image and the uncontaminated
Lena image is 15.8. This shows a small reduction from the RMS Error of
17.8 for the noisy Lena image, but the amount of reduction does not seem
to be large enough to accurately reflect the perceived reduction of noise.9

Later in this section, we shall discuss an alternative measure which better
reflects the amount of noise reduction.

We shall now describe the soft thresholding method of denoising. Soft
thresholding is a simple modification of hard thresholding. Hard threshold-
ing consists of applying the following function

H(x) =
{
x if |x| ≥ T
0 if |x| < T

(2.46)

to the wavelet transform values. See Figure 2.21(a). As can be seen in this
figure, the hard threshold function H is not continuous, and thus greatly
exaggerates small differences in transform values whose magnitudes are near
the threshold value T . If a value’s magnitude is only slightly less than T ,
then this value is set equal to 0, while a value whose magnitude is only
slightly greater than T is left unchanged. Soft thresholding replaces the
discontinuous function H by a continuous function S, such as10

S(x) =


x if |x| ≥ T
2x− T if T/2 ≤ x < T
T + 2x if −T < x ≤ −T/2
0 if |x| < T/2.

(2.47)

See Figure 2.21(b). This soft threshold function S does not exaggerate the
gap between significant and insignificant transform values.

In Figure 2.20(b) we show a soft threshold denoising of the noisy Lena
image, using a 4-level Coif12 transform, and also using the same threshold
value T as for the hard thresholding in Figure 2.21(a). The soft thresh-
olded transform is shown at the lower left of Figure 2.18(b). It can be

9This may not be apparent from the printed images, in which case we urge the reader

to examine these images on a computer display using FAWAV.
10The function in (2.47) is not the only soft threshold function that is used.

©1999 CRC Press LLC

FIGURE 2.21
(a) Hard threshold function, T = 10. (b) Soft threshold function, T =
10.

clearly seen that the soft thresholding retains more transform values than
the hard thresholding. Applying the inverse transform to the soft thresh-
olded transform produces the denoised image at the lower right of Figure
2.21(b). Although it is difficult to distinguish the printed versions of the
two denoised images, the computer displayed versions—which are acces-
sible from the figure files available from the FAWAV website—are clearly
distinguishable, with the soft threshold denoising appearing to be slightly
superior. The RMS Error confirms this subjective judgment. For the soft
threshold denoising the RMS Error is 15.20, which is slightly less than the
RMS Error of 15.80 for the hard threshold denoising.

Quantitative measures of error

There are several ways of measuring the amount of error between a noisy
image and the original image. All of these measures aim to provide quan-
titative evidence for the effectiveness of noise removal.

One measure is RMS Error, which we used above. Unfortunately, it did
not seem to accurately reflect the perceived substantial decrease in noise
in either the hard threshold or soft threshold denoising of the noisy Lena
image.

Another measure is the relative 2-norm difference, D(f ,g), defined in
Formula (2.45). Here f is the original, uncontaminated image and g is a
noisy image. The errors calculated using D with the noisy Lena example
are summarized in Table 2.8. Again, as with RMS Error, this measure
of error D does not seem to accurately reflect the amount of perceived
denoising. These two measures, RMS Error and relative 2-norm difference,
provide essentially the same information. In fact, simple algebra shows
that the ratios of different errors—which are computed in order to compare
percentages of denoising—are always the same for these two measures.

©1999 CRC Press LLC

A third measure, commonly used in image processing, is Signal to Noise
Ratio (SNR). If f is the original image and g is a noisy image, then the
SNR measure of error is defined by

SNR = 20 log10 [1/D(f , g)]
= 10 log10 [Ef/Eg −f] . (2.48)

A rationale for using SNR is that human visual systems respond logarith-
mically to light energy. The results of applying the SNR measure to our
denoising of noisy Lena are summarized in Table 2.8. Unlike our other
measures, an increase in SNR represents a decrease in error. But, as with
the other measures discussed so far, the SNR also does not seem to accu-
rately quantify the amount of decrease in noise in the two denoisings of
noisy Lena.

The measures of error discussed above have been used for many years.
Their deficiencies in relation to accurate quantification of the perceptions
of our visual systems are well known. It is generally recognized that they
have remained in use, despite their deficiencies, mostly because they have
fit well into the type of mathematics used in image processing, making
theoretical predictions concerning their values relatively easy to obtain.
However, because of the recent explosion of applications of wavelet analysis,
it follows that we should also use some measure of error that fits well into
a wavelet analysis framework. One such measure, which we shall denote by
‖f− g‖w, is defined as follows. Suppose that {f̂j,k} are the wavelet transform
values for the image f using one of the Daubechies wavelet transforms, and
suppose that {ĝj,k} are transform values for the image g using the same
wavelet transform. The quantity ‖f − g‖w is then defined by

‖f − g‖w =
|f̂1,1 − ĝ1,1|+ |f̂1,2 − ĝ1,2|+ · · ·+ |f̂N,M − ĝN,M |

MN
.

For the noisy Lena image we used a 9-level11 Coif12 transform to compute
‖f − g‖w. The results are shown in Table 2.8. Notice that this new, wavelet
based measure of error finally produces results that more effectively match
our perceptions of the success of these denoisings. For example, for the soft
thresholding denoising, this new measure shows that there is almost a 50%
noise reduction. This seems a more accurate reflection of our perception
of the improved quality of the denoised image, certainly more accurate
than the reductions of around 10% for the other measures. Of course, one
example does not prove the worth of this new measure of error. It does,
however, provide a stimulus for further investigation. The reader is invited
to carry out more denoisings of the noisy images found at the FAWAV

website and compare the various error measures.

11Nine levels is the maximum number of levels possible for a 512 by 512 image.

©1999 CRC Press LLC

Table 2.8 Error measurements for Figure 2.20
Image RMS D(f ,g) SNR ‖f − g‖w

noisy image 17.4 0.131 17.8 9.10
hard thresh. denoise 15.8 0.119 18.7 5.00
soft thresh. denoise 15.2 0.115 19.0 4.62

A couple more remarks need to be made about this new wavelet based
measure of error. First, it is not the only measure that can be defined
using wavelet transform values. For instance, the terms |f̂j,k − ĝj,k| can
be raised to powers greater than 1, and/or multiplied by weighting factors
that vary depending on what level the transform values belong to. These
factors could be chosen, for example, to reflect the different sensitivities
of the human visual system to different fluctuation levels. Second, it is
worthwhile to reflect on some of the reasons why these new wavelet based
measures may provide better noise reduction estimates. Some of the deep
mathematical reasons are examined in papers that are listed in this chap-
ter’s references. Besides pure mathematical reasons, it may also be that the
multiresolution analysis and thresholding performed via wavelets is anal-
ogous to the threshold processing performed by the networks of neurons
in the human brain in order to decompose visual images into multiple res-
olutions. Some theoretical models have been proposed for understanding
human vision that rely on such analogies.12

Further aspects of noise removal

We conclude our discussion of wavelet based denoising of images by briefly
outlining some other aspects of this fascinating new field. First, it is im-
portant to point out that thresholding—of either the hard or soft kind—is
just one approach to denoising of images. Another approach is to modify
a thresholding procedure by reducing the size of the threshold to allow in
more noisy transform values and, more importantly, more image transform
values. The image transform values can often be distinguished from the
noise values by using the following principle: When significant values are
found at the same relative locations in each fluctuation subimage, then these
values are most likely image values. The rationale behind this principle is
that the values from the image are samples of a smooth function, which
will be approximated at lower resolution in each trend subimage, thus pro-

12Some of the papers that describe wavelet-like models for human vision are listed in

the Notes and references for this chapter.

©1999 CRC Press LLC

FIGURE 2.22
Removing strip noise: Gr 1, Lena with vertical strip noise; 4-level
Coif12 transform of noisy image; Gr 3, denoised transform; Gr 4, de-
noised image.

ducing a hierarchy of similar fluctuation subimages along levels. This can
be seen clearly in the octagon image transform in Figure 2.15(d) and in the
transform of the Barb image in Figure 4.2(a). An application of these ideas
to denoising medical images is described in the references.

Second, the fact that most wavelets are supported over small squares
implies that wavelet denoising can focus on specific regions of an image
where the noise is concentrated. For example, consider the noisy version
of the Lena image shown at the top left of Figure 2.22. In this image the
noise is concentrated along a vertical strip through the middle of the image.
Noise analogous to this strip noise occurs, for example, in MRI imaging.
Notice that the 4-level Coif12 transform of this noisy image has kept the
noise concentrated in vertical strips along the middle of each fluctuation
subimage. This is a consequence of the localized support of the Coif12
wavelets. By restricting the soft thresholding to just these vertical strips,
and not modifying at all the regions outside these strips, it is possible to
reduce the noise along the strip in the image while leaving the noise-free
regions outside the strip essentially unaltered. At the lower left of Figure
2.22 we show the transform modified by soft thresholding on the strips in the
first and second level fluctuations. The inverse transform of this modified
transform is at the lower right of Figure 2.22. This denoised image shows
some errors, but they are concentrated in the vertical strip where the noise

©1999 CRC Press LLC

was. Outside this vertical strip, the denoised image values are unchanged
from their original, uncontaminated values. A summary of error measures
is shown in Table 2.9. They indicate that this denoising was quite effective.
The wavelet based measure, in particular, shows that the denoising reduced
the noise by close to a factor of 3.

Table 2.9 Error measurements for Figure 2.22
Image RMS Error ‖f − g‖w

noisy image 15.54 7.66
denoised image 8.59 2.68

As a final example, we show an example of denoising of multiplicative
noise. This type of noise occurs, for example, with the speckle noise that
contaminates images produced with laser light. When there is multiplica-
tive noise, the noisy image f satisfies

f = s n, (2.49)

where s is the original uncontaminated image and n is the noise. Equation
(2.49) states that the values of f satisfy fj,k = sj,knj,k. At the left of Figure
2.23 we show a noisy version of the Lena image that has been contaminated
with multiplicative noise whose values are all positive. Since the values
of f are also positive (except for a few isolated zeros), we can turn this
multiplicative noise into additive noise using a logarithm. By applying a
base 4 logarithm to the values of the images, we obtain

log4 f = log4 s + log4 n. (2.50)

Actually, to be precise, a tiny fudge term of .0000001 was added to the
values of f to prevent any logarithms of zero values.

Equation (2.50) shows that the multiplicative noise n has become an
additive noise log4 n. Applying a threshold denoising to the image log4 f ,
followed by an application of base 4 exponentiation, we obtained the de-
noised image shown at the right of Figure 2.23. The summary of error
measures shown in Table 2.10 reveals how effective this denoising was. The
wavelet based measure, for instance, shows that the noise was reduced by
a factor of 3.

We have tried in this section to indicate several of the many features that
wavelet based denoising enjoys. Our apologies to the reader if he or she
is tired of seeing Lena. We concentrated on this particular image in order
to reduce the number of figures. At the FAWAV website, we provide many
more images on which the reader may test these ideas.

©1999 CRC Press LLC

FIGURE 2.23
Removing multiplicative noise: Gr 1, Lena with multiplicative random
noise; Gr 2, denoised image.

Table 2.10 Error measurements for Figure 2.23
Image RMS Error ‖f − g‖w

noisy image 20.21 14.73
denoised image 10.08 4.70

2.11 Some topics in image pro cessing

We conclude our introduction to 2D wavelet analysis with a brief dis-
cussion of a few examples of wavelet based techniques in image processing.
These examples are meant to provide the reader with a small sampling from
the huge variety of applications that have appeared in the last few years.
Further examples can be found in the references for this chapter.

Edge detection

One task in image processing is to produce outlines—the edges—of the
various objects that compose an image. As shown in Figure 2.15, a wavelet
transform can detect edges by producing significant values in fluctuation
subimages. One way to produce an image of these edges is to simply perform
an inverse transform of only the fluctuation values, after setting all the
trend values equal to zero. This produces an image of the first-level detail
image D1. For example, in Figure 2.24(a) we show such a modification of
the 1-level Coif6 transform of the octagon image obtained by setting all
its first trend values equal to zero. By performing an inverse transform of

©1999 CRC Press LLC

FIGURE 2.24
(a) 1-level Coif6 transform of o ctagon image with trend subimage val-
ues all replaced by zeros. (b) Inverse transform of image in (a). (c)
Image of a house. (d) Edge enhanced image.

this modified transform, we produced the detail image D1 shown in Figure
2.24(b). This figure clearly highlights the edges of the original image. Of
course, this image could be further processed to increase the highlighting of
just the outline of the octagon. For instance, only the most intense, whitest
portion of the image could be retained, using a thresholding operation.

Edge enhancement

If we can detect edges accurately, then we can also enhance their appear-
ance in an image. This will sharpen images that suffer from dull, blurry
edges. For example, in Figure 2.24(c) we show an image of a house that
suffers from blurred edges. In order to sharpen the edges of this image, we
used the following method.

Edge Enhancement Method

Step 1. Perform a wavelet transform of image.

©1999 CRC Press LLC

Step 2. Multiply fluctuation values by a constant larger than 1, and
leave trend values unchanged.

Step 3. Perform an inverse transform of modified image from Step 2.

To produce the edge enhanced image of the house, we used a 1-level Daub4
transform in Step 1, and we multiplied the first-level fluctuation values by
the constant 3 in Step 2.

Comparing the two images of the house in Figure 2.24, we can see that
the edge enhanced image is a sharper image than the original. Some details
can be seen more clearly in the enhanced image, such as the fencing in front
of the house, and the woodwork at the top of the roof. Particularly striking
is the fact that in the right central window a vertical window divider has
been rendered visible in the enhanced image. This kind of edge sharpening
and improvement in detail visibility is clearly of fundamental importance
in medical and biological imaging. The edge enhancement method just
described is only the simplest of many related procedures. For instance, if
a multiple level transform is performed in Step 1, then Step 2 can be done
differently by using different constants for each fluctuation level.

Image recognition

Teaching a machine to recognize images is a very difficult problem. For
example, we might want to program a computer to recognize images of
human faces. Image recognition is important in areas such as data retrieval,
object identification, and the science of human vision. Data retrieval refers
to finding a match to a given image from a huge archive of images and
then retrieving more data associated with that image (e.g., name, date of
birth, etc.). Object identification refers to the problem of identifying the
location, or lack thereof, of a particular object such as an aircraft within a
complicated scene. Image retrieval relates to some aspects of the science of
human vision because of our desire to know how our brains recognize images
out of the data supplied by our eyes. While programming a computer to
recognize an image is not the same as understanding how our brains do it,
nevertheless, insights gained from the one task will certainly provide ideas
for the other.

In Figure 2.25 we illustrate an elementary problem of image recognition.
Suppose that we want a machine to identify which of the four images shown
in Figure 2.25(a) is the best match to the denoised version of Lena in Figure
2.20(a). We choose to look for a match to the denoised Lena, rather than
Lena, since it is more likely that we would not receive a precise image
for matching, but rather a noisy version. It is also likely that the image
we wish to match differs in other ways (different vantage point, different
facial expression, etc.) from the image of that person in the archive. This
raises the considerably more difficult problem of matching distinct images

©1999 CRC Press LLC

FIGURE 2.25
(a) Four images. (b) 2-level Coif18 transforms of these images.

of the same person. It turns out that the wavelet based algorithm for image
matching outlined below helps with this problem, too.

A simple method for matching would be to compute an error measure, say
D(f , g), where f is the denoised Lena image and g is each of the images in
our archive. For the four images in Figure 2.25(a) this method works well;
as shown in the column labeled Full in Table 2.11, the image labeled Gr 3
produces D(f , g) = 0.066, and all other images produce D(f , g) > 0.48. So
the image in Gr 3 is clearly the best match. There is a significant problem
with this approach, however, since an actual archive will certainly contain
far more than four images—it might contain tens of thousands of images.
The images we are using are 512 by 512, hence each image contains over a
quarter of a million values. The time delay—due to the enormous number
of calculations—associated with finding D(f , g) for tens of thousands of
images is prohibitively large.

Wavelet analysis provides a flexible approach for significantly reducing
the number of computations needed for this image matching problem. The
wavelet based approach also incorporates its own compression procedure,
which allows for the archive to be stored in a compressed format. To illus-
trate this wavelet approach to image matching, consider the 2-level Coif18
transforms of the four images in our small archive shown in Figure 2.25(b).
Notice that our visual systems can easily distinguish the four images based
only on their second trend subimages, which are one-sixteenth the size of
the original image. These smaller images are called thumbnail images. If

©1999 CRC Press LLC

we simply compute the error measures for these second trends only, then
we obtain the results shown in the column labeled Second in Table 2.11.
This new computation easily matches the denoised Lena image with the
correct image of Lena in our tiny archive. Since the second trends are one-
sixteenth the size of the original images, this new computation is sixteen
times faster than the first one involving the full images.

Table 2.11 Error measures for images
Image Full Second Third Fourth Fifth
Gr 1 0.481 0.495 0.473 0.459 0.426
Gr 2 0.485 0.491 0.475 0.457 0.410
Gr 3 0.066 0.076 0.063 0.063 0.063
Gr 4 0.546 0.549 0.540 0.529 0.501

What works well for second-level trends also works well for third, fourth,
and even fifth trends. As shown in Table 2.11, computing errors for any
of these trends clearly determines the correct match. If we use fifth trends
to perform error computations, then our calculations proceed over 1000
times faster than if we were to use the full images. This improved perfor-
mance factor makes it quite practical to search through an archive of tens
of thousands of images. It is important to note that in order to achieve
this rapid performance, the images must be stored in the archive in their
wavelet transformed format. Fortunately, this also allows for the images to
be stored in a compressed format.

Another advantage of comparing these very low resolution, fifth trend
images is the following. If the given image is only a fair approximation,
rather than a perfect replica, of its version in the archive, then the low
resolution fifth trend versions should still produce smaller error measures
than the fifth trends of very different looking people. This indicates how a
wavelet based algorithm facilitates the matching of distinct images of the
same person.

Of course, if we are using fifth trends it is quite possible that several
images of different people might produce errors that are less than whatever
error threshold we have established for matching. In that case, by using
the fourth-level fluctuations, we can rapidly construct the fourth-level trend
subimages for the subset of images which survived the fifth-level matching
test. The error measures can then be computed for these fourth-level trends.
Or, better yet, we could instead bypass the reconstruction of the fourth-
level trends, and for each image add on an error term computed from the
fourth-level fluctuations to the error already computed for the fifth-level
trend. This is equivalent to computing errors for the fourth-level trends,

©1999 CRC Press LLC

and is a faster computation. Although these additional calculations require
more time, it is very likely that the subset of images that survived the
fifth trend comparison is much less numerous than the original set. The
recursive structure of wavelet transforms enables the implementation of
a recursive matching algorithm that successively winnows the subset of
possible matching images, using extremely small numbers of computations
to distinguish grossly dissimilar images, while reserving the most numerous
computations only for a very small number of quite similar images.

This brief outline of an image retrieval algorithm should indicate some of
the fundamental advantages that a wavelet based approach provides. One
of the most important features of the approach we described is its use of the
multiresolution structure (the recursive structure of the trend subimages)
to facilitate computations. This has applications to many other problems.
For instance, in object identification, a method known as correlation, which
we will describe in the next chapter, is a computationally intensive method
for locating a given object within a complicated scene. Using correlation
on third trends instead of the full images, however, can greatly speed up
the approximate location of an object.

2.12 Notes and references

Descriptions of the many other types of wavelets—biorthogonal wavelets,
spline wavelets, etc.—can be found in [BGG], [DAU], [MAL], [REW], or
[STN]. The book [CHU] is particularly good on the topic of spline wavelets.
Two good references on digital image processing are [JAH] and [RUS].
The book [ALU] contains several excellent papers on wavelets and their
applications in biology and medicine.

Further discussions of quantization can be obtained from [MAL], [VEK],
or [DVN]. Some good references on information theory are [ASH], [COT],
and [HHJ].

An excellent summary of wavelet-based image compression can be found
in [DVN]. A good site for downloading images is located at:

http://links.uwaterloo.ca/bragzone.base.html

Details on the best image compression ratios yet obtained can be viewed
at the following website:

http://www.icsl.ucla.edu/~ipl/psnr_results.html

A basic image compression software package can be downloaded from the
website:

©1999 CRC Press LLC

http://www.icsl.ucla.edu/~ipl/
http://links.uwaterloo.ca/bragzone.base.html

http://www.cs.dartmouth.edu/~gdavis/wavelet/wavelet.html

This site also has a number of useful links to other sites.
The zero-tree method of image compression is described in the papers

[SHA] and [SAP]. Software that implements the zero-tree method can be
obtained by FTP from the following address:

ftp://ipl.rpi.pub/EW_Code

or can be downloaded from the following website:

http://www.ipl.rpi.edu/SPIHT

There is an interesting analysis of tree structures in wavelet-based image
compression and their relationship with fractal image compression in [DVS].

Formulas for the RGB to IHS mapping can be found in [RUS]. The
differences in sensitivity of the human visual system to I versusH and S can
be found in [WAN]. The book [WAN] is the best elementary introduction to
the science of the human visual system. In [WAN] there is a good summary
of MRA and its relation to vision. Wavelet-like models of the human visual
system are described in [WAT], [FI1], and [FI2].

The best discussions of fingerprint compression can be found in the arti-
cles [BBH] and [BRS] by the creators of the WSQ method. The website:

http://www.c3.lanl.gov/~brislawn

may also be of interest. One of the fingerprints, Fingerprint 8, at the
FAWAV website is a cropped version of a fingerprint found at this site. It
was supplied to the author courtesy of Dr. Brislawn. The other fingerprints,
including Fingerprint 1 in Figure 2.18(a), were obtained from the NIST
database at the ftp site:

ftp://sequoyah.nist.gov

Introductory treatments of noise can be found in [BAS] and [FAN]. The
method of choosing denoising thresholds for wavelet transforms has received
a very complete analysis in the papers [DOJ] and [DJK], and is given a good
summary in [MAL]. There is also an excellent survey of various wavelet-
based noise removal techniques in [DON]. The use of different thresholds for
each fluctuation subimage is utilized in the program SURESHRINK, which
can be downloaded from the following website:

http://www.cs.scarolina.edu/ABOUT_US /Faculty/Hilton/shrink-demo.html

Another commonly used measure of errors in images is PSNR, which is
closely related to SNR; see [VEK] for the definition of PSNR. A discussion of
new wavelet-based measures of errors in images is given in [CDL]. Removing

©1999 CRC Press LLC

http://www.cs.dartmouth.edu/~gdavis/wavelet/wavelet.html
http://www.c3.lanl.gov/~brislawn
ftp://sequoyah.nist.gov/

noise in medical images, based on thresholding and based on the statistics
of significant values between levels, is described in [MLF] and [XWH].

There is an interesting discussion in [WI2] of a wavelet based solution of
the rogues gallery problem, the problem of retrieving an image from a large
archive. This discussion differs somewhat from the one given here.

©1999 CRC Press LLC

	A Primer on Wavelets and their Scientific Applications
	Table of Contents
	Chapter 2: Daubechies wavelets
	2.1 The Daub4 wavelets
	Further remarks on Property I

	2.2 Conservation and compaction of energy
	Justification of conservation of energy
	How wavelet and scaling numbers are found

	2.3 Other Daubechies wavelets
	Coiflets

	2.4 Compression of audio signals
	Quantizing signal values, compressing the significance map

	2.5 Quantization, entropy, and compression
	2.6 Denoising audio signals
	Choosing a threshold value
	Removing pop noise and background static

	2.7 Two-dimensional wavelet transforms
	Discrete images
	2D wavelet transforms
	2D wavelets and scaling images

	2.8 Compression of images
	2.9 Fingerprint compression
	Remarks on the significance map

	2.10 Denoising images
	Quantitative measures of error
	Further aspects of noise removal

	2.11 Some topics in image processing
	Edge detection
	Edge enhancement
	Image recognition

	2.12 Notes and references

