
 

Chapter 3

Frequency analysis

If our ear uses a certain technique to analyze a signal, then if
you use that same mathematical technique, you will be doing
something like our ear. You might miss important things, but
you would miss things that our ear would miss too.

Ingrid Daubechies1

It is well known that human hearing responds to the frequencies of sound.
Evolution has shaped our sense of hearing into a superb frequency analyzer,
whose full characteristics we do not yet completely understand. Never-
theless, it is clear that we perceive tones of different frequency as having
different pitch, and musical notes are called higher or lower depending on
whether they have a corresponding higher or lower frequency.

The mathematical analysis of the frequency content of signals is called
Fourier analysis. In this chapter we shall sketch the basic outlines of Fourier
analysis as it applies to discrete signals and use it to analyze the frequency
content of wavelets. A deeper understanding of wavelets can be gained from
studying their frequency content, and by examining how this frequency
content relates to wavelet transforms of signals. To keep the mathematics
as simple as possible we shall focus on 1D signals, although in Section 3.5
we shall describe some 2D applications.

3.1 Discrete Fourier analysis

The frequency content of a discrete signal is revealed by its discrete
Fourier transform (DFT). The DFT of a discrete signal is usually per-

1Daubechies’ quote is from [BUR].
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formed via a computer using an algorithm called a fast Fourier transform
(FFT). No attempt will be made in this primer to prove any of the results
about the DFT that we shall be using. The emphasis instead will be on
how the DFT is applied in signal analysis, especially in wavelet analysis.
There are many excellent treatments of the DFT and the FFT available for
the reader who desires further discussion and proofs; we list a few of these
references at the end of this chapter. In any case, the results we shall be
using are all standard ones that are quite well known. Our approach will
be to illustrate some fundamental ideas via a few examples rather than via
a theoretical derivation.

The DFT reveals the frequency content of a discrete signal; so we shall
begin by reviewing the notion of frequency. The analog signals cos 2πνx
and sin 2πνx, where x denotes time, both have a fundamental time period
of 1/ν. Consequently, these signals repeat their basic form ν times in a
unit-length time interval, i.e., they have a frequency of ν cycles/unit-time.
The notion of frequency of a discrete signal is closely related to frequency
of analog signals, as the following examples show. In the next section we
shall make this connection more precise, but it may help to first examine
some illustrative examples.

As a first example of a DFT, consider the discrete signal, Signal I, shown
in Figure 3.1(a). Signal I consists of 1024 samples of the analog signal

g1(x) = 2 cos 4πx+ 0.5 sin 24πx. (3.1)

It has frequencies of 2 and 12 for its two terms. In Figure 3.1(b) we show the
DFT of Signal I. The two inner spikes are located at ±2, corresponding to
the frequency 2 of the cosine term of Signal I, and the two outer spikes are
located at ±12, corresponding to the frequency 12 of the sine term of Signal
I. Because of the way in which the DFT is defined (see the next section),
the spikes appear at ±ν instead of just at ν when the signal contains a sine
or cosine term of frequency ν. Notice that the lengths of the spikes in the
DFT of Signal I that correspond to the cosine term in Signal I appear to be
about 4 times greater than the lengths of the spikes that correspond to the
sine term, and 4 is also the ratio of the amplitude of the cosine term to the
amplitude of the sine term in Signal I. This example shows how the DFT
can identify the frequencies—and the relative sizes of their contributions in
terms of amplitude—that make up the frequency content of a signal.

As a second example of a DFT, consider the discrete signal, Signal II,
shown in Figure 3.1(c). Signal II consists of 1024 samples of the analog
signal

g2(x) =
1 + cos 24πx

1 + 4x2
. (3.2)

Its DFT is shown in Figure 3.1(d). The significant values in the DFT are
clustered around 0 and ±12. These values of ±12 clearly correspond to
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FIGURE 3.1
(a) Signal I. (b) DFT of Signal I. (c) Signal II. (d) DFT of Signal II.

the frequency 12 in the cosine term in Formula (3.2), but the cause of
the cluster of significant DFT values around 0 is less clear. We shall see
what these very low frequency values have to do with Signal II in Section
3.3, when we examine the frequency content of averaged signals in wavelet
multiresolution analysis.

Frequency content of wavelets

As a third example of DFTs, we consider the frequency content of scaling
signals and wavelets. This will enable us to comprehend the effects of
wavelet MRAs on the frequency content of a signal, which we shall examine
in Section 3.3.

As a typical case of scaling signals and wavelets, consider the Coif12
scaling signal V 11 and wavelet W 11. In Figure 3.2(a) we show the squares of
the magnitudes of the DFT of the Coif12 scaling signal V1

1, which is called
the spectrum of this signal. Notice that the significant, non-zero values of
this spectrum are concentrated in the central half of the graph near the
origin, which are the lower frequencies. The higher frequencies lie in the
left and right quarters of the graph, and for these higher frequencies the
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FIGURE 3.2
(a) Squares of magnitudes of DFT of Coif12 scaling signal V 11 , its sp ec-
trum. (b) Sp ectrum of Coif12 wavelet W 11 .

values of the spectrum are approximately zero. In contrast, consider the
spectrum of the wavelet W 11, shown in Figure 3.2(b). Its significant, non-
zero values are concentrated in the higher frequencies, while for the lower
frequencies its values are approximately zero.

Notice that the graphs in Figure 3.2 seem complementary to one another.
In fact, it is the case that the sum of their values equals the constant 2.
This is one of the fundamental properties of the spectrums of first-level
scaling signals and wavelets.

3.2 Definition of the DFT and its properties

In this section, we shall state the definition of the DFT and some of its
principal properties. We shall be fairly brief; more thorough discussions
can be found in many references, some of which are listed at the end of this
chapter.

To state the definition of the DFT in a succinct form, we shall make use
of the Σ-notation for summation. A sum g1 + g2 + · · · + gM can be more
compactly expressed as

M∑
m=1

gm.

For instance, the following sum

a+ ar + ar2 + · · ·+ arM−1 =
M∑

m=1

arm−1

should be familiar from algebra.
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Using this summation notation, we can state the definition of the DFT
of a signal f of length N . We shall denote this DFT by Ff , and its values
(Ff)n are defined by

(Ff)n =
N∑

m=1

fme
−i2π(n−1)(m−1)/N . (3.3)

Although the variable n in (3.3) can be any integer, we shall see that
the periodicity property stated below implies that the values (Ff)n for
n = −N/2 to n = N/2− 1 are sufficient for describing Ff .

In Formula (3.3) we use the complex exponentials e−i2π(n−1)(m−1)/N ,
which are defined via Euler’s formulas:

eiθ = cos θ + i sin θ (3.4)

and
e−iθ = cos θ − i sin θ. (3.5)

One consequence of (3.5) is that the modulus (or magnitude),
∣∣e−iθ

∣∣, of the
complex number e−iθ is equal to 1. That is, e−iθ lies on the unit-circle in
the complex plane.

Another consequence of (3.4) and (3.5) is that

cos 2πνx =
1
2
e−i2πνx +

1
2
ei2πνx. (3.6)

This equation shows that cos 2πνx can be expressed as a sum of two complex
exponentials having frequencies ±ν, which should remind the reader of the
DFT of Signal I discussed in the previous section. Similarly,

sin 2πνx =
i

2
e−i2πνx − i

2
ei2πνx (3.7)

which shows that sin 2πνx can also be expressed as a sum of complex ex-
ponentials having frequencies of ±ν.

The following four properties are the principal ones satisfied by the DFT.
We use the notation f F�−→ Ff to symbolize the DFT operation.

Properties of the DFT

1. Linearity. For all constants α and β, and all signals f and g of
length N ,

αf + βg F�−→ αFf + βFg.

2. Periodicity. If f is a signal of length N , then Ff has period N ;
that is,

(Ff)n+N = (Ff)n (3.8)

holds for all integers n.
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3. Inversion. The signal f can be obtained from Ff by

fm =
1
N

N/2−1∑
n=−N/2

(Ff)nei2π(n−1)(m−1)/N (3.9)

for m = 1, 2, . . . , N .

4. Parseval’s Equality. The signal f and its DFT Ff satisfy

N∑
m=1

|fm|2 =
1
N

N/2−1∑
n=−N/2

|(Ff)n|2 . (3.10)

Because of periodicity, the N values (Ff)n for n = −N/2 to n = N/2−1
are sufficient for uniquely determining a DFT Ff . It is for this reason that
all of our figures of DFTs have the same number of values as the signal
being transformed; and all software packages that compute DFTs follow
this same convention.

The Inversion Formula (3.9) is particularly important. For one thing,
it ensures that distinct signals must have distinct DFTs. For another, it
allows for a useful interpretation of DFT values. Each DFT value (Ff)n is
an amplitude for a discrete complex exponential signal

ei2π(n−1)(m−1)/N , m = 1, 2, . . . , N, (3.11)

which is a sampled version of ei2π(n−1)x, a complex exponential analog
signal of frequency n − 1. The sample points are xm = (m − 1)/N . Or,
since

(n− 1)(m− 1)
N

=
n− 1
Ω

· (m− 1)Ω
N

,

one can also view (3.11) as sample values of ei2π(n−1)x/Ω, a complex ex-
ponential of frequency (n − 1)/Ω. In this latter case, the sample points
are xm = (m − 1)Ω/N . This latter case is important when signals are
obtained from measured samples of analog signals over a time interval of
length Ω. In any case, the Inversion Formula (3.9) shows that the signal
f can be realized by summing these discrete complex exponential signals
with amplitudes given by the DFT values (Ff)n, and multiplying by the
scale factor 1/N .

Parseval’s Equality (3.10) can be regarded as a Conservation of Energy
property, provided we include a scale factor of 1/N again. This Conserva-
tion of Energy, as with wavelet transforms, is useful for understanding how
to make applications of the DFT operation. In fact, in some instances, the
DFT, or transforms closely related to it, can be used for compression and
noise removal. While these are fascinating topics, there is insufficient space
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in this primer for discussing it any further. We do give some references,
however, in the last section of this chapter.

Another way of interpreting Parseval’s Equality is to observe that the
left side of (3.10) is equal to the energy Ef of the signal  f , and that the
right side of (3.10) is equal to the average, or mean, value of the spectrum
|F  f |2 of f . That is, Parseval’s Equality states that the energy of a signal f
is equal to the mean value of its spectrum |F  f |2.

One final remark needs to be made about periodicity and inversion. They
imply, since the right side of (3.9) also has period N in the integer variable
m, that the finite signal f should be assumed to be a subsignal of a periodic
signal having period N . That is,

fm+N = fm (3.12)

for all integers m. Notice that (3.12) is the wrap-around property of signals
that we made use of for scaling signals and wavelets in Chapter 2.

z-transforms ∗

The z-transform provides a more flexible way of expressing the values of
the DFT, which is especially helpful in wavelet theory. Since some readers
may find the theory of z-transforms to be difficult, we shall treat it as
optional material. This material will be used later only in optional sections.

The z-transform of f will be denoted by f [z] and is defined by

f [z] =
N∑

m=1

fmz
m−1. (3.13)

The variable z takes its values on the unit-circle of the complex plane.2

If we set z equal to e−i2π(n−1)/N , then

f [e−i2π(n−1)/N ] = (Ff)n. (3.14)

Formula (3.14) shows that the DFT, Ff , consists of the values of f [z] at the
points z = e−i2π(n−1)/N which lie uniformly spaced around the unit-circle
in the complex plane.

One application of the z-transform is to the computation of DFTs of
scaling signals and wavelets. To do this, we must first define the cyclic
translation of a signal f . The cyclic translation forward by 1 unit is denoted
by T1f and is defined by

T1f = (fN , f1, f2, . . . , fN−1). (3.15)

2There is another definition of z-transform that is also used in signal processing. The

one we are working with is most useful for finite length signals.
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Notice the wrap-around at the end of T1f ; because of this wrap-around we
use the adjective cyclic in describing this translation. The cyclic translation
backward by 1 unit is denoted by T−1f and is defined by

T−1f = (f2, f3, . . . , fN , f1). (3.16)

All other cyclic translations are defined via compositions, e.g., T2 = T1 ◦T1,
T3 = T1 ◦ T1 ◦ T1, and so on. The most important property of these cyclic
translations is that Tk ◦ Tm = Tk+m for all integers k and m.

The key property of the z-transform is that

Tkf [z] = f [z]zk (3.17)

which holds provided z is equal to e−i2π(n−1)/N for some integer n. To see
why (3.17) holds, we demonstrate it for k = 1, and higher powers of k follow
by repeating the argument for k = 1. If k = 1, then

T1f [z] = fN + f1z + · · ·+ fN−1z
N−1.

But, if z = e−i2π(n−1)/N , then zN = 1. Consequently

T1f [z] = f1z + · · ·+ fN−1z
N−1 + fNz

N

= (f1 + f2z + · · ·+ fNz
N−1)z

= f [z]z

which proves (3.17) for k = 1.
One application of (3.17) is to the relationship between the frequency

content of V1
1 and all the other first-level scaling signals. Since V1

m =
T2m−2V1

1, it follows from (3.17) that

V1
m[z] = V1

1[z]z
2m−2. (3.18)

Similarly, we have
W1

m[z] = W1
1[z]z

2m−2 (3.19)

for the first-level wavelets. These last two formulas elucidate the relation-
ship between the frequency contents of scaling signals and wavelets because
of Formula (3.14), which relates z-transforms to DFTs. For example, be-
cause |z| = 1, it follows that∣∣FV1

m

∣∣2 =
∣∣FV1

1

∣∣2 , ∣∣FW1
m

∣∣2 =
∣∣FW1

1

∣∣2
which shows that the spectrum of each first-level scaling signal is equal to
the spectrum of V1

1 and the spectrum of each first-level wavelet is equal
to the spectrum of W1

1. We shall make further use of Formulas (3.18) and
(3.19) in the next section.
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3.3 Frequency description of wavelet analysis

In this section we shall examine how the frequency content of a signal is
changed when the signal undergoes a wavelet analysis. To be more precise,
we shall compare the frequency contents of the averaged signals Ak and
the detail signals Dk created in a k-level MRA with the frequency content
of the original signal f .

Let’s examine a 1-level Coif12 MRA of Signal II, shown in Figure 3.1(c).
This example illustrates the fundamental aspects of the effect on frequency
content of an MRA using a Daubechies wavelet. At the end of this sec-
tion we shall discuss the mathematical details for those readers who are
interested in them.

When a first averaged signal A1 is created, it consists of a sum of multi-
ples of the first level scaling signals [see Formula (2.13b)]. In Figure 3.3(a)
we show the first averaged signal, using Coif12 scaling signals, for Signal
II. The DFT of this first averaged signal is shown in Figure 3.3(b). It is
interesting to compare this DFT with the DFT of Signal II in Figure 3.1(d)
and the spectrum of the Coif12 scaling signal V 11 in Figure 3.2(a). In order
to make this comparison, the values of the spectrum must be graphed over
[−16, 16] instead of [−0.5, 0.5], but this can be easily done by a change of
scale of the horizontal (frequency) axis. The values of this spectrum are
approximately equal to the constant 2 near the origin (for the lower fre-
quencies), and are approximately equal to the constant 0 at the left and
right (for the higher frequencies).

The relation between the DFT of A1 and the spectrum
∣∣F V 11

∣∣2 of V 11 is

F A1 ≈ 1
2

∣∣F V 11
∣∣2 F f . (3.20)

On the right side of (3.20) is the product of the two signals
∣∣F V 11

∣∣2 and
F f ; hence this approximation says that each value (F A1)n of the DFT of
A1 is approximately equal to 1/2 times

∣∣(F V 11)n
∣∣2 (F f)n. Thus 1/2 times

the spectrum of V 11 acts as a low-pass filter on the values of the DFT of f ,
allowing through only the low frequency values (since

∣∣F V 11
∣∣2 ≈ 0 for high

frequency values).
It is interesting to examine the way in which this low-pass filtering affects

the averaged signal. By comparing the averaged signal A1 in Figure 3.3(a)
with the original signal f in Figure 3.1(c) we can see that there is much
less rapid oscillation in the averaged signal; this is due to the suppression
of the high frequencies by the low-pass filtering.

In contrast to the scaling signal, 1/2 times the spectrum of the Coif12
wavelet W1

1 acts as a high-pass filter, allowing through only the high fre-
quency portions of the DFT of f . In fact, the following approximation
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FIGURE 3.3
Frequency decomp osition of 1-level Coif12 MRA. (a) First averaged
signal for Signal I I. (b) DFT of first averaged signal [c.f., Figures 3.1(d)
and 3.2(a)]. (c) First detail signal for Signal I I. (d) DFT of first detail
signal [c.f., Figures 3.1(d) and 3.2(b)].

holds

F D1 ≈ 1
2

∣∣F W 11
∣∣2 F f . (3.21)

As can be seen from Figure 3.2(a), the factor
∣∣F W 11

∣∣2 is approximately zero
for the low frequency values, and is approximately 2 for the high frequency
values. It then follows from (3.21)—and we can check it by examining
Figure 3.3(d)—that the DFT of the first detail signal mostly consists of the
higher frequency values of the DFT of the signal f . The effect that this has
on the detail signal D1 is that it contains the most rapid, high frequency
oscillations from the original signal.

This example of a 1-level Coif12 MRA of Signal II is typical of all wavelet
MRAs. The frequency content of the first averaged signal A1 consists of
low frequency values resulting from a low-pass filtering of the frequency
content of the signal by 1/2 times the spectrum of the 1-level scaling signal
V1

1. And the first-level detail signal D1 has a frequency content obtained
from a high-pass filtering of the frequency content of the signal by 1/2 times

©1999 CRC Press LLC



 

FIGURE 3.4
(a) Sp ectra of Coif12 scaling signals, from k = 1  at top to k = 4  at
b ottom. (b) Sp ectra of Coif12 wavelets from k = 1  at top to k = 4  at
b ottom. The sp ectra have b een multiplied by constants 2−k  for each k
in order to make their graphs of similar size.

the spectrum of the 1-level wavelet  W 11.
As with the first level, the DFTs of higher level averaged signals and

fluctuation signals can be obtained by multiplying the signal’s DFT by the
spectra of higher level scaling signals and wavelets. For example, the DFT
of the second averaged signal A2 satisfies

F A2 ≈ 1
4

∣∣F V 21
∣∣2 F f (3.22)

and the DFT of the second detail signal  D2 satisfies

F D2 ≈ 1
4

∣∣F W 21
∣∣2 F f . (3.23)

In Formula (3.22), 1/4 times the spectrum
∣∣F V 21

∣∣2 of the 2-level scaling
signal V 21 acts as a low-pass filter. This low-pass filter is graphed in Figure
3.4(a) as the second graph from the top. Notice that this low-pass filter
allows through only much lower frequencies than the first-level filtering due
to

∣∣F V 11
∣∣2. The spectrum

∣∣F W 21
∣∣2 in Formula (3.23), however, does not

act as a high-pass filter. As can be seen from the second graph at the top
of Figure 3.4(b), 1/4 times

∣∣F W 21
∣∣2 acts as a band-pass filter, in the sense

that only two small isolated bands of frequency values are non-zero for this
spectrum.

Higher level MRAs follow this same pattern. The k-level averaged signal
Ak has a DFT which satisfies

F Ak ≈ 1
2k

∣∣F V k1
∣∣2 F f . (3.24)

And the signal Lk = 2−k
∣∣F V k1

∣∣2 acts as a low-pass filter. In Figure 3.4(a)
we show these low-pass filters Lk for k = 3 and k = 4. Notice that only
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a very small interval of values around the origin are non-zero for L4. The
k-level detail signal’s DFT satisfies

F Dk ≈ 1
2k

∣∣F W k1
∣∣2 F f . (3.25)

As can be seen from Figure 3.4(b), for k > 1, the signal 2−k
∣∣F W k1

∣∣2 acts
as a band-pass filter. The bands of non-zero values for this filter consist of
the values lying between the downward sloping left and right sides of the
central portions of the graphs of the low-pass filters Lk and Lk−1.

Low-pass and high-pass filtering ∗

In this optional subsection we shall discuss the mathematical formulation
of the low-pass and high-pass filtering interpretation of wavelet MRAs. Our
tool will be the z-transform described at the end of Section 3.2.

From Formula (2.13b), we have

A1 = a1V1
1 + a2V1

2 + · · ·+ aN/2V1
N/2 (3.26)

where (a1, a2, . . . , aN/2) is the first trend subsignal a1. Formula (3.14) tells
us that to obtain the DFT, FA1, of A1 it suffices to obtain its z-transform
A1[z]. By Formulas (3.26) and (3.18) we have

A1[z] = a1V1
1[z] + a2V1

2[z] + · · ·+ aN/2V1
N/2[z]

= a1V1
1[z] + a2V1

1[z]z
2 + · · ·+ aN/2V1

1[z]z
N−2.

Thus A1[z] satisfies

A1[z] = V1
1[z]

(
a1 + a2z

2 + · · ·+ aN/2z
N−2

)
. (3.27)

Because of Formula (3.27) we see that the DFT of A1 is obtained as a
product of the DFT of V1

1 with the DFT obtained from the polynomial

a1 + a2z
2 + · · ·+ aN/2z

N−2 = a1[z2].

It now remains to examine the connection between the polynomial a1[z2]
and the z-transform of the signal f .

The polynomial a1[z2] satisfies

a1[z2] = a1 + a2z
2 + · · ·+ aN/2z

N−2

= (f · V1
1) + (f · V1

2)z
2 + · · ·+ (f · V1

N/2)z
N−2

=
N/2∑
m=1

(f · V1
m)z2m−2

=
N/2∑
m=1

(f · T2m−2V1
1)z

2m−2. (3.28)
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This last polynomial in z consists of the even powered terms from the
polynomial on the left side of the following identity:

N∑
k=1

(f · Tk−1V1
1)z

k−1 = f [z]V1
1[z

−1]. (3.29)

The fact that (3.29) holds is a consequence of the definition of multiplication
of polynomials; we leave its proof as an exercise for the reader.

The sum of even powered terms can be extracted from the polynomial
on the right side of (3.29) by the following identity:

f [z]V1
1[z

−1] + f [−z]V1
1[−z−1] = 2

N/2∑
m=1

(f · T2m−2V1
1)z

2m−2. (3.30)

Combining (3.30) with (3.28) yields

a1[z2] =
1
2
f [z]V1

1[z
−1] +

1
2
f [−z]V1

1[−z−1]. (3.31)

Formula (3.31) is the desired relation between the polynomial a1[z2] and
the z-transform of f . Combining it with (3.27) yields

A1[z] =
1
2
f [z]V1

1[z]V
1
1[z

−1] +
1
2
f [−z]V1

1[z]V
1
1[−z−1]. (3.32)

In order to interpret Equation (3.32) correctly, we need to understand
the effects of substituting z−1 and −z into z-transforms. Substituting z−1

into the z-transform f [z] yields

f [z−1] =
N∑

m=1

fm(z−1)m−1.

We shall use the overbar notation, , to denote the conjugation of complex
numbers. Since z is on the unit-circle, we have z−1 = z. And, because each
value fm of f is a real number, we have fm = fm. Therefore

f [z−1] =
N∑

m=1

fm zm−1

= f [z].

Thus, for example, V1
1[z]V

1
1[z

−1] =
∣∣V1

1[z]
∣∣2.

To interpret the substitution of −z, we observe that −z is the reflection
of z through the origin of the complex plane. Consequently, the low fre-
quency values that lie near ei0 = 1 are reflected into high frequency values
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that lie near e±iπ = −1, and vice versa. For example, in Figure 3.2, the
spectrum

∣∣V 11[−z]
∣∣2 has a graph that is similar to the graph of the spectrum∣∣W 11[z]

∣∣2 shown in Figure 3.2(b). The graph of
∣∣V1

1[−z−1]
∣∣2 is identical to

the graph of
∣∣V1

1[−z]
∣∣2, because the substitution of z−1 produces a com-

plex conjugate which is then eliminated by the modulus-square operation.
These considerations show that for the Coif12 scaling function, we have∣∣V1

1[z]
∣∣ ∣∣V1[−z−1]

∣∣ ≈ 0 (3.33)

except for two small intervals of values of z centered on e±iπ/2. The ap-
proximation in (3.33) is true for all of the Daubechies scaling functions.

Based on (3.32) and (3.33) we have the following approximation:

A1[z] ≈ 1
2

∣∣V1
1[z]

∣∣2 f [z]. (3.34)

Using the connection between DFTs and z-transforms, the approximation
(3.20) follows from the approximation (3.34).

Similar calculations for the first-level detail signal D1 and fluctuation
subsignal d1 yield

D1[z] =
1
2
f [z]W1

1[z]W
1
1[z

−1] +
1
2
f [−z]W1

1[z]W
1
1[−z−1] (3.35)

and
d1[z] =

1
2
f [z]W1

1[z
−1] +

1
2
f [−z]W1

1[−z−1]. (3.36)

And we also have the approximation

D1[z] ≈ 1
2

∣∣W1
1[z]

∣∣2 f [z], (3.37)

which implies the approximation (3.21).
The other approximations, (3.22) through (3.25), can be proved in the

same way as (3.20) and (3.21).

3.4 Correlation and feature detection

In this section we shall describe a standard method for detecting a short-
lived feature within a more complicated signal. This method, known as
correlation, is a fundamental part of Fourier analysis. We shall also describe
some of the ways in which wavelet analysis can be used to enhance the basic
correlation method for feature detection.
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Let’s begin by examining feature detection for 1D signals. Feature detec-
tion is important in seismology, where there is a need to identify character-
istic features that indicate, say, earthquake tremors within a long seismo-
logical signal. Or, in an electrocardiogram (ECG), it might be necessary to
identify portions of the ECG that indicate an abnormal heartbeat.

At the top of Figure 3.5(a) we show a simulated ECG, which we shall
refer to as Signal C. The feature that we wish to locate within Signal C
is shown in the middle of Figure 3.5(a); this feature is meant to simulate
an abnormal heartbeat. It is, of course, easy for us to visually locate the
abnormal heartbeat within Signal C, but that is a far cry from an algorithm
that a computer could use for automatic detection.

As noted above, the standard method used for feature detection is cor-
relation. The correlation of a signal f with a signal g, both having lengths
of N values, will be denoted by ( f : g). It is also a signal of length N , and
its kth value ( f : g)k is defined by

(f : g)k = f1gk + f2gk+1 + · · ·+ fNgk+N−1. (3.38)

In order for the sum in (3.38) to make sense, the signal g needs to be
periodically extended, i.e., we assume that gk+N = gk for each k. When
computing the correlation (f : g), the signal f is the feature that we wish to
detect within the signal g. Usually the signal f is similar to the abnormal
heartbeat signal shown in the middle of Figure 3.5(a), in the sense that
the values of f are 0 except near the central portion of the signal. This
reduces the distortion that results from assuming that g is periodic. We
will show later how correlations are related to Fourier analysis, but first we
shall describe their use in feature detection.

The rationale behind using the correlation (f : g) to detect the location of
f within g is the following. If a portion of  g matches the form of the central
portion of  f—where the significant, non-zero values are concentrated—then,
for a certain value of k, the terms in (3.38) will all be squares. This produces
a positive sum which is generally larger than the sums for the other values
of (f : g). In order to normalize this largest value so that it equals 1, we
shall divide the values of (f : g) by the energy of f . That is, we denote the
normalized correlation of f with g by 〈f : g〉, and the kth value of 〈f : g〉 is

〈f : g〉k =
f1gk + f2gk+1 + · · ·+ fNgk+N−1

Ef
. (3.39)

At the end of this section we shall discuss why, under the right conditions,
the maximum value for 〈f : g〉 is approximately 1.

As an example of these ideas, we show at the bottom of Figure 3.5(a)
the graph of the squares of the positive values of the normalized correlation
〈f :g〉 for the abnormal heartbeat and Signal C. Notice how the maximum
for this graph clearly locates the position of the heartbeat within Signal C.
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FIGURE 3.5
(a) Top: Signal C. Middle: Abnormal heartb eat. Bottom: Squares of
p ositive values of normalized correlation. (b) Top: Signal C minus its
fourth Coif30 averaged signal. Middle: Abnormal heartb eat minus its
fourth Coif30 averaged signal. Bottom: Squares of p ositive values of
normalized correlation.

The value of this maximum is 1, thus providing the following simple crite-
rion for locating an abnormal heartbeat: if a normalized correlation value is
near 1, then an abnormal heartbeat is probably present at the location of this
value. We have ignored the negative values of the normalized correlation
because a negative value of 〈f : g〉 indicates a preponderance of oppositely
signed values, which is a clear indication that the values of f and g are not
matched. The squaring serves to emphasize the maximum value near 1. It
is not necessary, but produces a more easily interpretable graph—a graph
for which the maximum value near 1 more clearly stands out from smaller
values.

Notice that there are smaller peaks in the bottom graph of Figure 3.5(a)
that mark the locations of the normal heartbeats in Signal C. These smaller
peaks are present because the abnormal heartbeat was created by forming
a sum of a normal heartbeat plus a high frequency “noise” term. Conse-
quently, these peaks reflect a partial correspondence between the normal
heartbeat term and each of the normal heartbeats in Signal C.

We shall now describe a wavelet based method for suppressing these
peaks in the detection signal resulting from the normal heartbeats. While
this may not be necessary for the case of Signal C, it might be desired for
other signals. Furthermore, the method is a simpler 1D version of the 2D
method that we shall describe in the next section.

Each normal heartbeat in Signal C has a spectrum that has significant
values only for very low frequencies in comparison to the high frequency
oscillations that are clearly visible in the abnormal heartbeat. Our method
consists, therefore, of subtracting away an averaged signal from Signal C. As
we saw in the previous section, the higher the level k of the averaged signal
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Ak, the nearer to zero are the low frequencies which make up the non-zero
values of the averaged signal’s spectrum

∣∣F Ak
∣∣2. Hence, by subtracting

away from Signal C an averaged signal Ak for high enough k, we can
remove the low frequency values from the spectrum of f that arise from the
normal heartbeats.

For example, at the top of Figure 3.5(b) we show the signal that is the
difference between Signal C and its fourth averaged signal A4. Compar-
ing this signal with Signal C we can see that the normal heartbeats have
been removed, but there is still a residue corresponding to the abnormal
heartbeat. In the middle of Figure 3.5(b) we show the signal equal to the
difference between the abnormal heartbeat and its fourth averaged signal,
which is a match to the residue of the abnormal heartbeat in the signal at
the top of the figure. Finally, at the bottom of Figure 3.5(b) we show the
graph of all the squares of the positive values of the normalized correlation
of the middle signal with the top signal. This signal clearly locates the
position of the abnormal heartbeat, at the same location as before, but
without the secondary peaks for the normal heartbeats.

This wavelet method may strike some readers as contrived; but, in the
next section we shall use this same method on 2D images of real scenes
and achieve the same successful results. We introduced the method here
because it is easier to understand its frequency interpretation in the 1D
case.

DFT method of computing correlations

There is a simple relationship between correlations and the DFTs of
signals. We shall now give a brief sketch of this relationship. Since the
normalized correlation 〈f :g〉 simply consists of dividing (f :g) by the energy
of f , we shall concentrate on the problem of computing (f :g).

The following formula, which we shall prove later, describes the relation-
ship between the DFT of (f :g) and the DFTs of f and g:

(f :g) F�−→ Ff Fg (3.40)

where Ff Fg is the product signal with values
(
Ff Fg

)
n
= (Ff)n (Fg)n.

This formula shows that the frequency content of (f :g) simply consists of
the product of the DFT of f with the complex conjugate of the DFT of g.
Formula (3.40) also gives us the following three-step method for computing
the correlation (f :g).

DFT calculation of correlation (f :g)

Step 1. Compute DFTs of f and g.

Step 2. Multiply the values of Ff and Fg to produce Ff Fg.
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Step 3. Compute the DFT inverse of F f F g to produce (f : g).

Although this method may appear convoluted at first sight, it is actually
much more efficient than a direct calculation of ( f : g) based on Formula
(3.38).

The reason that the DFT calculation of correlations is more efficient than
Formula (3.38) is because an FFT algorithm is employed for performing the
DFTs. Formula (3.38) requires N multiplications and N − 1 additions in
order to calculate each of the N values of ( f : g). That amounts to 2N2−N
operations in total to compute (f : g). Computing the correlation (f : g)
by this direct method is said to require O(N2) operations; meaning that a
bounded multiple of N2 operations is needed. An FFT algorithm requires
only O(N log2 N) operations, hence the DFT calculation of correlation also
requires only O(N log2 N) operations. When N is large, say N ≥ 1024,
then N log2 N is significantly smaller than N2.

The DFT calculation of correlation is even more efficient when 2D images
are involved, as in the next section. For 2D images, say both N by N , the
correlation defined in (3.48) in the next section requires O(N4) operations
if a direct calculation is performed. A DFT calculation, however, requires
only O(N2 log2 N) operations. The value of N need not be very large at
all in order for N2 log2 N to be significantly smaller than N4.

Pro of of (3.40) ∗

Formula (3.40) can be proved easily using z-transforms. Making use of
cyclic translation [see Section 3.2], we can rewrite (3.38) in the form

(f :g)k = f · Tk−1g. (3.41)

Consequently, the z-transform of (f :g) is

(f :g)[z] =
N∑

k=1

(f · Tk−1g) zk−1

= f [z]g[z−1]. (3.42)

The second equality in (3.42) holds for the same reason that Equality (3.29)
holds. Since g is a real-valued signal, we have g[z−1] = g[z]; so (3.42)
becomes

(f :g)[z] = f [z]g[z]. (3.43)

From (3.43) and the relation between z-transforms and DFTs, we obtain
Formula (3.40).

©1999 CRC Press LLC



 

Normalized correlations and feature detection ∗

In this subsection we shall briefly examine the mathematical justifica-
tion for using normalized correlations to detect the presence of one signal
within another, more complicated, signal. This discussion will make use of
concepts from linear algebra—in particular, Cauchy’s inequality for scalar
products. Those readers who are not conversant with linear algebra should
feel free to skip this subsection; we shall not be referring to it in the sequel.

Let f be a signal of positive energy, Ef > 0. We assume a positive energy
in order to force f �= (0, 0, . . . , 0), because it is clearly pointless to try to
detect the signal (0, 0, . . . , 0) within any signal. Suppose that the signal g
contains the signal f in the sense that, for some integer m between 1 and
N ,

g = Tm−1f + n (3.44)

where Tm−1f is a cyclic translate of f and n is a noise term. By noise term
we mean an undesired portion of the signal. The signal n is certainly un-
desired because we want to detect the presence of f ; however, the detection
method based on normalized correlation works best when n is, in fact, ran-
dom noise that is completely uncorrelated to f . By completely uncorrelated
to f we mean that

〈f :n〉j =
f · Tj−1n

Ef
≈ 0 (3.45)

holds for each integer j. Of course, as we saw with the example of Signal C,
it is not absolutely necessary that (3.45) holds; but it makes a more general
derivation easier, and this derivation provides some insight into the case of
Signal C as well.

In any case, assuming that (3.45) holds, we now let k = N −m+ 2 and
note that Tk−1 ◦ Tm−1 = TN = T0. Since T0 is the identity mapping, we
then have

〈f :g〉k =
f · (Tk−1 ◦ Tm−1f)

Ef
+

f · Tk−1n
Ef

=
f · f
Ef

+
f · Tk−1n

Ef
.

Because f · f = Ef and (3.45) holds, we then have

〈f :g〉k = 1 (3.46)

except for a small error that (3.45) allows us to ignore.
On the other hand, if n is any of the integers between 1 and N , then

letting j = n+m− 2 yields

〈f :g〉n =
f · Tjf
Ef

+
f · Tn−1n

Ef

≈ f · Tjf
Ef

.
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By the Cauchy inequality, we obtain

|f · Tj f | ≤
√
Ef

√
ETj f = Ef

and equality holds if and only if Tj f = f or Tj f = −f . Therefore, except
for a small error which (3.45) allows us to ignore, we have

−1 ≤ 〈f : g〉n ≤ 1. (3.47)

Equality holds on the right side of (3.47) only when f = Tj f .
This discussion shows that we can detect the presence of cyclic translates

of f within the signal g by the location of maximum value(s) of 1 among the
positive values of 〈f : g〉. The method works best when those translates of f
which are not equal to f produce scalar products that are much smaller than
the energy of f ; this is the case, for instance, with the abnormal heartbeat
considered above. Furthermore, although (3.45) does not hold for Signal C,
the value of f · Tk−1  n is 0; hence (3.46) still holds. And, for the other index
values j, the values of (f · Tj f)/Ef and (f · Tn−1  n)/Ef are small enough that
they add up to less than 1.

The discussion in this subsection can be extended to 2D images and will
apply to the wavelet based method of object detection in images that we
shall describe in the next section.

3.5 Ob ject detection in 2D images

In the previous section we described a basic method of feature detection,
and a wavelet based enhancement of it, for 1D signals. In this section we
shall describe how objects can be detected within 2D images. We shall
discuss some examples related to character detection and the more difficult
problem of locating small objects within complicated scenes.

Our first example shows how to identify the image of the character, P,
shown in Gr 1 of Figure 3.6, within the sequence of three characters, PQW,
shown in Gr 2 of Figure 3.6. One method for doing this is to compute a
normalized correlation. For 2D images f and g, a normalized correlation of
f with g is defined as a correlation divided by the energy of f , as we did
for 1D signals in the previous section. To understand the 2D definition of
correlation, we rewrite the 1D definition in (3.38) in the following form:

(f :g)k =
N∑

n=1

fngn+k−1.

©1999 CRC Press LLC



 

FIGURE 3.6
Gr 1: Image of P. Gr 2: Image of PQW. Gr 3: Squares of p ositive
values of normalized correlation of Gr 1 with itself. Gr 4: Squares of
p ositive values of normalized correlation of Gr 1 with Gr 2.

The 2D definition of the correlation (f : g) of two M by N images f and  g
is defined by

(f : g)k,j =
N∑

n=1

M∑
m=1

fn,mgn+k−1,m+j−1. (3.48)

Formula (3.48) requires a periodic extension of g, i.e., gn+N,m+M = gn,m

is assumed to hold for all integers m and n. Based on (3.48), we define the
normalized correlation 〈f : g〉 of two M by N images f and  g by

〈f : g〉k,j =
(f : g)k,j

Ef
. (3.49)

As with 1D signals, the identification of an object f within an image
g is achieved by locating maximum values that are approximately 1 from
among the positive values of 〈f : g〉. For example, if the image of P in Gr 1
of Figure 3.6 is the object f and the image of PQW in Gr 2 is the image
g, then we show the squares of the positive values of 〈f :g〉 in Gr 4. The
maximum value of 1 is clearly visible and locates the position of P within
the image of PQW.

Our second example involves locating a small object within a complicated
scene. This problem reveals the limitations of the correlation method; nev-
ertheless, with some assistance from wavelet analysis, we shall outline an
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FIGURE 3.7
(a) Four images, Gr 1 is the ob ject that we wish to lo cate within
the other three images. (b) Squares of p ositive values of normalized
correlations of Gr 1 from (a) with each of the images in (a).

effective solution. In Gr 1 of Figure 3.7(a), we show a small image. We
wish to identify the location, or the absence, of this object within the other
three images in Gr 2 through Gr 4 of Figure 3.7(a). In Figure 3.7(b) we
show the squares of the positive values of the normalized correlations of
the desired object with each of the images in Figure 3.7(a). It is clear from
these Figures that the method fails; it successfully locates Gr 1 within Gr 1,
but does not correctly locate Gr 1 within Gr 3. Furthermore, for Gr 2 and
Gr 3, the maximum values of the normalized correlations are 1.14 and 1.13.
The fact that these maximum values are slightly greater than 1 indicates a
partial breakdown of the method, but the worst result is the fact that Gr 1
is not present at all within Gr 2.

We shall now describe a wavelet based approach to identifying the loca-
tion of this object. This approach rests on the fact that objects can often
be identified via their edges; for example, there is some evidence that our
visual system works on this basis. We saw at the end of the last chapter
that the first-level detail signal D1 can provide us with an image consisting
of edges. Based on these observations, we shall use the following three-step
method for locating the object.

Edge Correlation Method of Object Location

Step 1. Compute a first-level detail image D1 for the object.
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FIGURE 3.8
(a) Squares of p ositive values of the normalized correlations pro duced
by the Edge Correlation Metho d applied to the images in Figure 3.7(a).
(b) Similarly pro duced images resulting from the third trends of the
images in Figure 3.7(a).

Step 2. Eliminate from this detail image any extraneous edge ef-
fects resulting from the outer edges in the object. This is not always
necessary, but is needed with the object in Gr 1 in Figure 3.7(a).
Removing its outer edge effects can be done by only retaining values
that lie within a small enough radius.

Step 3. Compute normalized correlations of the image from Step 2
with first-level detail signals for each of the other images. Determine
if there are any values near 1 and where they are located.

In Figure 3.8(a) we show the results of this Edge Correlation Method, using
Coif12 wavelets to produce the detail images. We have graphed the squares
of the positive values of the normalized correlations, which emphasizes a
maximum value of 1. The location of the object within Gr 3 in Figure
3.7(a) is clearly indicated. The value of the normalized correlation at this
point is 1. For Gr 2 and Gr 4 in Figure 3.8(a), there are no clear indications
that the object is located within the corresponding images in Figure 3.7(a).
In fact, the maximum values of the normalized correlations are 0.267 and
0.179, respectively, which are significantly less than 1.

We close this section with another example. In the last example, the
object was in the same orientation within the image where we located it.
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Clearly this would not often be the case. For example, the object might be
rotated through some angle, or it might be reflected about some line through
the origin, or some combination of these last two operations. Let’s refer to
these operations as symmetry operations on the object. One solution to the
problem of locating the object when it is in a different orientation is to per-
form the Edge Correlation Method on a finite set of objects obtained from
performing a large number of symmetry operations on the initial object.
The problem with this approach is that it is prohibitively time consuming.

We shall now outline a less time consuming solution to the problem just
described. The gist of this solution is to perform the Edge Correlation
Method on trend subimages for some specific level of wavelet transforms
of the images. For example, in Figure 3.8(b), we show the squares of the
positive values of the normalized correlation images produced by the Edge
Correlation Method applied to the third trend subimages a3 of each of the
images in Figure 3.7(a). The location of the object within Gr 3 in Figure
3.7(a) is clearly indicated. The value of the normalized correlation at this
point is 0.852, which is not 1 but is close to it. For Gr 2 and Gr 4 in Figure
3.8(b), there are no clear indications that the object is located within the
corresponding images in Figure 3.7(a). In fact, the maximum values of
the normalized correlations are 0.431 and 0.402, respectively, which are
significantly less than 1.

The advantage of the method just described is that, by working with third
level trend subimages, the sizes of the images are reduced by a factor of 64.
This makes it feasible to perform a large number of symmetry operations
on the object in order to search for rotated, or reflected, versions of it.

In illustrating the Edge Correlation Method, we ignored one important
point. In order for the method to work effectively, the location of the
object within an image must be centered on even index values. This is
because when the first level subimages are computed, the scaling signals
and wavelets are all shifts of V1

1 and W1
1 by even integers. Therefore, in

general, it is necessary to perform the Edge Correlation Method on three
other objects obtained by shifting the initial object by one index value in
the horizontal direction, by one index value in the vertical direction, and
by one index value in both directions.

3.6 Creating scaling signals and wavelets ∗

We conclude this chapter with an outline of the way in which scaling
signals and wavelets are created from properties of their z-transforms. This
material is more difficult than the other material in this chapter, and makes
use of some earlier optional material; so those readers who wish to skip over
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it may certainly do so. No use will be made subsequently of this material.
The heart of wavelet theory is MRA, and so we begin by expressing the

1-level MRA equation f = A1 + D1 in terms of z-transforms:

f [z] = A1[z] + D1[z]. (3.50)

Using Formulas (3.32) and (3.35) in the right side of (3.50), we obtain

f [z] = f [z]
{
1
2 
V 11[z]V 11[z

−1] +
1
2 
W 11[z]W 11[z

−1]
}

+ f [−z]
{
1
2 
V 11[z]V 11[−z−1] +

1
2 
W 11[z]W 11[−z−1]

}
. (3.51)

By comparing the two sides of (3.51) we see that the following two equations
must hold:

V 11[z]V 11[z
−1] + W 11[z]W 11[z

−1] = 2 (3.52a)

V 11[z]V 11[−z−1] + W 11[z]W 11[−z−1] = 0. (3.52b)

In order to make (3.52b) hold, we define W 11[z] by

W 11[z] = −z2k+1 V 11[−z−1] (3.53)

where the exponent 2k + 1 is an odd integer that we shall specify later.
Before we go further, it is interesting to observe that (3.53) implies that∣∣W 11[z]

∣∣ = ∣∣V 11[−z−1]
∣∣ (3.54)

because z is on the unit-circle (so |z| = 1). Formula (3.54) implies the
approximation (3.33) for the Coif12 case that we considered in Section 3.3,
given the graphs of

∣∣V 11
∣∣2 and

∣∣W 11
∣∣2 shown in Figure 3.2(a).

We now return to our derivation of the z-transforms of scaling functions
and wavelets. Combining (3.53) and (3.52a), and the identity

V1
1[z]V

1
1[z

−1] =
∣∣V1

1[z]
∣∣2 ,

we conclude that ∣∣V1
1[z]

∣∣2 + ∣∣V1
1[−z]

∣∣2 = 2. (3.55)

In order to satisfy (3.55) it is easier to work with the function P (θ) defined
by

P (θ) =
1√
2

V1
1[e

i2πθ], (3.56)

where θ is a real variable. Using this function P (θ), Equation (3.55) be-
comes

|P (θ)|2 + |P (θ + 1/2)|2 = 1. (3.57)

©1999 CRC Press LLC



 

We will now show how the Daub4 scaling numbers in Equation (2.3) can
be obtained by solving Equation (3.57). We begin by observing that the
following trigonometric identity

|cosπθ|2 + |cosπ(θ + 1/2)|2 = 1 (3.58)

resembles the form of (3.57). In fact, if we were to set P (θ) = eiπθ cosπθ,
then we would be led to the two scaling numbers α1 = α2 = 1/

√
2 for the

Haar scaling function V1
1. We leave the details to the reader; the reasoning

involved is a simplified version of the argument that we shall now use to
obtain the Daub4 scaling numbers.

The first step is to cube both sides of (3.58) obtaining

1 =
(
cos2 πθ + sin2 πθ

)3
= cos6 πθ + 3 cos4 πθ sin2 πθ + 3 cos2 πθ sin4 πθ + sin6 πθ. (3.59)

We now require that |P (θ)|2 satisfies

|P (θ)|2 = cos6 πθ + 3 cos4 πθ sin2 πθ, (3.60)

which are the first two terms on the right side of (3.59). The remaining two
terms on the right side of (3.59) are equal to |P (θ + 1/2)|2; so (3.57) holds.

Our final task is to obtain a function P (θ) which satisfies (3.60). In
general, this is done via a result known as the Riesz lemma. This approach
is described in the references on wavelets given at the end of the chapter.
For the case of the Daub4 scaling functions, however, we can find P (θ) by
a more direct, though still somewhat tricky, argument. We observe that

|P (θ)|2 = cos4 πθ
[
cos2 πθ + 3 sin2 πθ

]
; (3.61)

so we could set P (θ) = [cosπθ]2
[
cosπθ − i

√
3 sinπθ

]
. For reasons that will

be clear at the end, however, we instead define P (θ) by

P (θ) = ei3πθ [cosπθ]2
[
cosπθ − i

√
3 sinπθ

]
. (3.62)

Notice that this formula for P (θ) implies that P (θ) satisfies (3.61), because∣∣ei3πθ
∣∣2 = 1. Since (3.61) holds, it follows that (3.60) does as well.

Our final task is to convert (3.62) into a form that allows us to read off
the z-transform of V1

1[z]. To do this, we observe that

P (θ) = ei6πθ
[
e−iπθ cosπθ

]2 [
e−iπθ cosπθ − i

√
3e−iπθ sinπθ

]
= ei6πθ 1

4
[
1 + e−i2πθ

]2 [1 + e−i2πθ

2
+

√
3
2

(
e−i2πθ − 1

)]
.
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Multiplying out the last expression and simplifying yields the formula we
need:

P (θ) =
1 +

√
3

8
+

3 +
√
3

8
ei2πθ +

3−
√
3

8
ei4πθ +

1−
√
3

8
ei6πθ. (3.63)

Since V1
1[e

i2πθ] =
√
2P (θ), we obtain the z-transform V1

1[z] from Formula
(3.63) by setting z = ei2πθ:

V1
1[z] =

1 +
√
3

4
√
2

+
3 +

√
3

4
√
2

z +
3−

√
3

4
√
2

z2 +
1−

√
3

4
√
2

z3. (3.64)

Formula (3.64) tells us that V1
1 is defined by

V1
1 = (α1, α2, α3, α4, 0, 0, . . . , 0)

where α1, α2, α3, α4 are the Daub4 scaling numbers defined in Formula
(2.3). We have thus shown how those scaling numbers can be obtained via
z-transform theory.

The definition of the Daub4 wavelet numbers now follows easily. If we
set k = 1 in Formula (3.53), then W1

1[z] = −z3V1
1[−z−1]. This equation

combined with (3.64) yields

W1
1[z] =

1−
√
3

4
√
2

+
√
3− 3
4
√
2

z +
3 +

√
3

4
√
2

z2 +
−1−

√
3

4
√
2

z3. (3.65)

Formula (3.65) implies that

W1
1 = (β1, β2, β3, β4, 0, 0, . . . , 0)

where β1, β2, β3, β4 are the Daub4 wavelet numbers defined in Formula
(2.8).

We end this section by noting that other properties of wavelets can be
obtained by requiring that the function P (θ) satisfies certain identities. For
instance, the condition that the Daub4 scaling numbers satisfy

α1 + α2 + α3 + α4 =
√
2

is equivalent to the requirement that

P (0) = 1. (3.66)

Notice that the function P (θ) defined above does satisfy this requirement.
Furthermore, the conditions on the Daub4 wavelet numbers, stated in Equa-
tions (2.11) and (2.12), can be easily seen to be equivalent to the two equa-
tions

W1
1[1] = 0,

d

dz
W1

1[1] = 0. (3.67)
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Tracing back through the definitions, it is not hard to show that these last
two equations are equivalent to

P (1/2) = 0,
dP

dθ
(1/2) = 0. (3.68)

These equations are, indeed, satisfied by the function P (θ) defined above.
Equations (3.66) and (3.68) are important because they show how crucial

identities involving the scaling numbers and wavelets can be expressed in
terms of values of P (θ) and its derivatives at θ = 0 and θ = 1/2. For
example, the function P (θ) for the Coif6 case is required to satisfy

P (0) = 1,
dP

dθ
(0) = 0,

d2P

dθ2
(0) = 0 (3.69)

and
P (1/2) = 0,

dP

dθ
(1/2) = 0. (3.70)

The equations in (3.69) correspond to Equations (2.33a) through (2.33c),
while the equations in (3.70) correspond to Equations (2.32a) and (2.32b).

3.7 Notes and references

The DFT and the FFT are described in [BRH], [BRI], [WA1], and [WA2].
Using the DFT for noise removal is described in [WA2] and [WA3], and the
use of related transforms for compression is discussed in [WAN].

The detection of abnormal heart signals in ECGs is considerably more
complicated than our discussion indicates. Further details on wavelet based
methods can be found in the papers [STC] and [AKA].

The construction of the Daub4 scaling numbers and wavelet numbers
described in Section 3.6 is adapted from a discussion in [STR], where the
Daub6 case is examined. The construction of scaling numbers and wavelet
numbers in general, based on the Riesz lemma, is described in [DAU] and
[VEK]. Newer methods are described in [SW1] and [SW2]. There is also an
excellent discussion of the construction of the CoifI scaling numbers and
wavelet numbers in [BGG].

A rather complete characterization of wavelets from the standpoint of
their frequency content is given in [HEW].
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