
 

Chapter 4

Beyond wavelets

When you have only one way of expressing yourself, you have
limits that you don’t appreciate. When you get a new way to
express yourself, it teaches you that there could be a third or a
fourth way. It opens up your eyes to a much broader universe.

David Donoho1

In this chapter we shall explore some additional topics that extend the
basic ideas of wavelet analysis introduced previously. We first describe the
theory of wavelet packet transforms, which sometimes provide superior per-
formance beyond that provided by wavelet transforms. Then we discuss
continuous wavelet transforms which are particularly useful for tackling
problems in signal recognition, and for performing finely detailed examina-
tions of the structure of signals.

4.1 Wavelet packet transforms

A wavelet packet transform is a simple generalization of a wavelet trans-
form. In this section we briefly discuss the definition of wavelet packet
transforms, and in the next section examine some examples illustrating
their applications.

All wavelet packet transforms are calculated in a similar way. Therefore
we shall concentrate initially on the Haar wavelet packet transform, which
is the easiest to describe. The Haar wavelet packet transform is usually
referred to as the Walsh transform. A Walsh transform is calculated by

1Donoho’s quote is from [BUR].
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performing a 1-level Haar transform on all subsignals, both trends and
fluctuations.

For example, consider the signal f defined by

f = (2, 4, 6, 8, 10, 12, 14, 16). (4.1)

A 1-level Haar transform and a 1-level Walsh transform of f are identical,
producing the following signal:
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A 2-level Walsh transform is calculated by performing 1-level Haar trans-
forms on both the trend and the fluctuation subsignals, as follows:
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Hence the 2-level Walsh transform of the signal f is the following signal:

(10, 26 | − 4,−4 | −2,−2 | 0, 0). [2-level Walsh] (4.3)

It is interesting to compare this 2-level Walsh transform with the 2-level
Haar transform of the signal f . The 2-level Haar transform of f is the
following signal:
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Comparing this Haar transform with the Walsh transform in (4.3), we see
that the Walsh transform is slightly more compressed in terms of energy,
since the last two values of the Walsh transform are zeros. We could, for
example, achieve 25% compression of signal f by discarding the two zeros
from its 2-level Walsh transform, but we could not discard any zeros from its
2-level Haar transform. Another advantage of the 2-level Walsh transform
is that it is more likely that all of its non-zero values would stand out from
a random noise background, because these values have larger magnitudes
than the values of the 2-level Haar transform.

A 3-level Walsh transform is performed by calculating 1-level Haar trans-
forms on each of the four subsignals that make up the 2-level Walsh trans-
form. For example, applying 1-level Haar transforms to each of the four
subsignals of the 2-level Walsh transform in (4.3), we obtain
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Hence the 3-level Walsh transform of the signal f in (4.1) is
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Here, at the third level, the contrast between the Haar and Walsh trans-
forms is even sharper than at the second level. The 3-level Haar transform
of this signal is
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Comparing the transforms in (4.5) and (4.6) we can see, at least for this par-
ticular signal f , that the 3-level Walsh transform achieves a more compact
redistribution of the energy of the signal than the Haar transform.

In general, a wavelet packet transform is performed by calculating a par-
ticular 1-level wavelet transform for each of the subsignals of the preceding
level. For instance, a 3-level Daub4 wavelet packet transform would be
calculated in the same way as a 3-level Walsh transform, but with 1-level
Daub4 wavelet transforms being used instead of 1-level Haar transforms.
Because all of the 1-level wavelet transforms that we have discussed enjoy
the Conservation of Energy property and have inverses, it follows that all
of their wavelet packet transforms also enjoy the Conservation of Energy
property and have inverses. What this implies is that our discussions of
compression and denoising of signals in Chapters 1 and 2 apply, essentially
without change, to wavelet packet transforms. In particular, the threshold
method is still the basic method for compression and noise removal with
wavelet packet transforms.

In two dimensions, a wavelet packet transform is performed by adopting
the same approach that we used in one dimension. First, a 1-level wavelet
transform is performed on the 2D image. Then, to compute a 2-level wavelet
packet transform, this 1-level wavelet transform is applied to each of the
four subimages—a1, d1, h1, and v1—from the first level. This produces
16 subimages that constitute the 2-level wavelet packet transform of the
image. To compute a 3-level wavelet packet transform, the 1-level wavelet
transform is applied to each of these 16 subimages, producing 64 subimages.
This process continues in an obvious manner for higher level wavelet packet
transforms.

Because of the great similarity between wavelet transforms and wavelet
packet transforms, we shall now end our discussion of the mathematics of
these transforms, and turn to a discussion of a few examples of how they
can be applied.
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4.2 Applications of wavelet packet transforms

In this section we shall discuss a few examples of applying wavelet packet
transforms to audio and image compression. While wavelet packet trans-
forms can be used for other purposes, such as noise removal, because of
space limitations we shall limit our discussion to the arena of compression.

For our first example, we shall use a Coif30 wavelet packet transform to
compress the audio signal greasy, considered previously in Section 2.5. In
that section we found that a 4-level Coif30 wavelet transform—with trend
values quantized at 8 bpp and fluctuations quantized at 6 bpp, and with
separate entropies computed for all subsignals—achieved a compression of
greasy requiring an estimated 11, 305 bits. That is, this compression re-
quired an estimated 0.69 bpp (instead of 8 bpp in the original). However,
if we use a 4-level Coif18 wavelet packet transform and quantize in the
same way, then the estimated number of bits is 10, 158, i.e., 0.62 bpp. This
represents a slight improvement over the wavelet transform.

In several respects—in bpp, in RMS Error, and in total number of sig-
nificant values—the wavelet packet compression of greasy is nearly as good
as or slightly better than the wavelet transform compression. See Table
4.1. Whether these slight improvements are worth the extra computations
needed to calculate with the wavelet packet transform is certainly open to
question. Our next example, from the field of image compression, is more
definitive.

Table 4.1 Wavelet and wavelet packet compressions of greasy
Transform Sig. values Bpp RMS Error

wave l e t 3685 0.69 0.839
w. packet 3072 0.62 0.868

Our second example deals with an image compression. In Figure 4.1(a)
we show an image of a woman, which we shall refer to as Barb. If a 4-level
Coif12 wavelet transform is applied to this image—with the trend quan-
tized at 8 bpp, the fluctuations quantized at 6 bpp, and separate entropies
computed for each subimage—then an estimated 0.67 bpp are needed to
encode the compressed image. The compressed image is virtually indistin-
guishable from the original image; so we will not display it. There are some
noticeable differences in details at sufficiently high magnification, as can be
seen by comparing Figures 4.1(b) and 4.1(c).

If we compute a 4-level Coif12 wavelet packet transform, using the same
quantizations as for the wavelet transform, then the compressed image re-
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FIGURE 4.1
(a) Barb image. (b) Detail of original. (c) Detail of wavelet com-
pressed image. (d) Detail of wavelet packet compressed image.

quires an estimated 0.51 bpp for encoding. This represents a 24% im-
provement over the wavelet transform compression. The wavelet packet
transform performs significantly better in several respects, as summarized
in Table 4.2.

Table 4.2 Wavelet and wavelet packet compressions of Barb
Transform Sig. values Bpp Rel. 2-norm error

wave l e t 28370 0.67 .0486
w. packet 21755 0.51 .0462

There is also improved accuracy of detail in the wavelet packet compres-
sion, as shown in Figure 4.1(d). In particular, the two sets of diagonal
stripes aligned along the two vertical folds of Barb’s scarf are better pre-
served in Figure 4.1(d) than in Figure 4.1(c).

There is insufficient space to pursue a thorough explanation of why the
wavelet packet transform performs better in this example. Nevertheless,
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FIGURE 4.2
(a) 2-level Coif12 wavelet transform of Barb. (b) 2-level Coif12 wavelet
packet transform of Barb.

we can gain some understanding of the situation by comparing a Coif12
wavelet transform of Barb with a Coif12 wavelet packet transform. In Fig-
ure 4.2(a) we show a 2-level Coif12 wavelet transform of Barb. Notice that
the 1-level fluctuations—h1, d1, and v 1—all reveal considerable structure.
It is easy to discern ghostly versions of the original Barb image within each
of these fluctuations. The presence of these ghostly subimages, along with
the trend subimage, suggests the possibility of performing wavelet trans-
form compression on all of these subimages. In other words, we compute
another 1-level wavelet transform on each of the four subimages, which pro-
duces the 2-level wavelet packet transform shown in Figure 4.2(b). Notice
that, in the regions corresponding to the horizontal fluctuation h1 and the
diagonal fluctuation d1 in the wavelet transform, there is a considerable re-
duction in the number of significant values in the wavelet packet transform.
This reduction enables a greater compression of the Barb image. For sim-
ilar reasons, the 4-level wavelet packet transform exhibits a more compact
distribution of significant coefficients, hence a greater compression, than
the 4-level wavelet transform.

For our last example, we consider a compression of a fingerprint image. In
the previous example, we saw that a 4-level wavelet packet transform per-
formed better on the Barb image than a 4-level wavelet transform. Conse-
quently, we are led to try a similar compression of Fingerprint 1 [see Figure
2.18(a)]. Instead of the 4-level Coif18 wavelet transform used on Finger-
print 1 in Section 2.9, here we shall try a 4-level Coif18 wavelet packet
transform. Using the same quantizations as before—9 bpp for the trend
and 6 bpp for the fluctuations—we obtain an estimated 0.49 bpp. That
represents a 36% improvement over the 0.77 bpp estimated for the wavelet
compression discussed in Section 2.9. In Table 4.3 we show a comparison
of these two compressions of Fingerprint 1. Although the wavelet packet
transform compression does not produce as small a relative 2-norm error
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as the wavelet transform compression, nevertheless, a value of 0.043 is still
better than the 0.05 rule of thumb value for an acceptable approximation.
In fact, the compressed version of Fingerprint 1 produced by the wavelet
packet transform is virtually indistinguishable from the original (hence we
do not include a figure of it).2 Taking into account the other data from
Table 4.3—the number of significant transform values and the number of
bpps—it is clear that the wavelet packet compression of Fingerprint 1 is
superior to the wavelet compression.

Table 4.3 Two compressions of Fingerprint 1
Transform Sig. values Bpp Rel. 2-norm error

wave l e t 33330 0.77 0.035
w. packet 20796 0.49 0.043

This last example gives us some further insight into the standard method
adopted by the FBI for fingerprint compression, the WSQ method. The
WSQ method achieves at least 15:1 compression, without noticeable loss
of detail, on all fingerprint images. It achieves such a remarkable result by
applying a hybrid wavelet transform compression that combines features
of both wavelet and wavelet packet transforms. In this hybrid transform,
not every subimage is subjected to a further 1-level wavelet transform, but
a large percentage of subimages are further transformed. For an example
illustrating why this might be advantageous, consider the two transforms of
the Barb image in Figure 4.2. Notice that the vertical fluctuation v 1 in the
lower right quadrant of Figure 4.2(a) does not seem to be significantly com-
pressed by applying another 1-level wavelet transform. Therefore, some ad-
vantage in compression might be obtained by not applying a 1-level wavelet
transform to this subimage, while applying it to the other subimages. An
exact description of the hybrid approach used by the WSQ method can
be found in the articles listed in the Notes and references section for this
chapter.

4.3 Continuous wavelet transforms

In this section and the next we shall describe the concept of a continuous
wavelet transform (CWT), and how it can be approximated in a discrete

2You can, however, find the compressed image at the FAWAV website.
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form using a computer. We begin our discussion by describing one type of
CWT, known as the Mexican hat CWT, which has been used extensively
in seismic analysis. In the next section we turn to a second type of CWT,
the Gabor CWT, which has many applications to analyzing audio signals.
Although we do not have space for a thorough treatment of CWTs, we can
nevertheless introduce some of the essential ideas.

The notion of a CWT is founded upon many of the concepts that we intro-
duced in our discussion of discrete wavelet analysis in Chapters 1 through
3, especially the ideas connected with discrete correlations and frequency
analysis. A CWT provides a very redundant, but also very finely detailed,
description of a signal in terms of both time and frequency. CWTs are
particularly helpful in tackling problems involving signal identification and
detection of hidden transients (hard to detect, short-lived elements of a
signal).

To define a CWT we begin with a given function Ψ(x), which is called
the analyzing wavelet. For instance, if we define Ψ(x) by

Ψ(x) = 2πw−1/2
[
1− 2π(x/w)2

]
e−π(x/w)2 , w = 1/16, (4.7)

then this analyzing wavelet is called a Mexican hat wavelet, with width
parameter w = 1/16. See Figure 4.3(a).

It is possible to choose other values for w besides 1/16, but this one
example should suffice. By graphing the Mexican hat wavelet using different
values of w, it is easy to see why w is called a width parameter. The larger
the value of w, the more the energy of Ψ(x) is spread out over a larger
region of the x-axis.

The Mexican hat wavelet is not the only kind of analyzing wavelet. In the
next section, we shall consider the Gabor wavelet, which is very advanta-
geous for analyzing recordings of speech or music. We begin in this section
with the Mexican hat wavelet because it is somewhat easier to explain the
concept of a CWT using this wavelet.

Given an analyzing wavelet Ψ(x), then a CWT of a discrete signal f
is defined by computing several correlations of this signal with discrete
samplings of the functions Ψs(x) defined by

Ψs(x) =
1√
s
Ψ
(x
s

)
, s > 0. (4.8)

The parameter s is called a scale parameter. If we sample each signal Ψs(x)
at discrete time values t1, t2, . . . , tN , where N is the length of f , then we
generate the discrete signals gs defined by

gs = (Ψs(t1),Ψs(t2), . . . ,Ψs(tN ) ) .

A CWT of f then consists of a collection of discrete correlations (f :gs) over
a finite collection of values of s. A common choice for these values is

s = 2−k/M , k = 0, 1, 2, . . . , I ·M
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FIGURE 4.3
(a) The Mexican hat wavelet, w = 1/16. (b) DFTs of discrete samplings
of this wavelet for scales s = 2−k/6 , from k = 0  at the top, then k = 2,
then k = 4, then k = 6, down to k = 8  at the b ottom.

where the positive integer I is called the number of octaves and the positive
integer M is called the number of voices per octave. For example, 8 octaves
and 16 voices per octave is the default choice in FAWAV. Another popular
choice is 6 octaves and 12 voices per octave. This latter choice of scales
corresponds—based on the relationship between scales and frequencies that
we describe below—to the scale of notes on a piano (also known as the well-
tempered scale).

At this point the reader may well be wondering what the point of all this
is. One purpose of computing all these correlations that make up a CWT
is that a very finely detailed frequency analysis of a signal can be carried
out by making a judicious choice of the width parameter w and the number
of octaves and voices. To see this, we observe that Formula (3.40) tells us
that the DFTs of the correlations (f : g

(f : gs)
F�−→ F f F gs. (4.9)

For a Mexican hat wavelet, F gs is real-valued; hence F gs = F gs. Therefore
Equation (4.9) becomes

(f : gs)
F�−→ F f F gs. (4.10)

Formula (4.10) is the basis for a very finely detailed frequency decomposi-
tion of a discrete signal f . For example, in Figure 4.3(b) we show graphs
of the DFTs Fgs for the scale values s = 2−k/6, with k = 0, 2, 4, 6, and 8.
These graphs show that when these DFTs are multiplied with the DFT of
f , they provide a decomposition of Ff into a succession of finely resolved
frequency bands. It should be noted that these successive bands overlap
each other, and thus provide a very redundant decomposition of the DFT
of f . Notice also that the bands containing higher frequencies correspond to

©1999 CRC  Press LLC



 

smaller scale values; there is a reciprocal relationship between scale values
and frequency values.

A couple of examples should help to clarify these points. The first ex-
ample we shall consider is a test case designed to illustrate the connection
between a CWT and the frequencies in a signal. The second example is an
illustration of how a CWT can be used for analyzing an ECG signal.

For our first example, we shall analyze a discrete signal f , obtained from
2048 equally spaced samples of the following analog signal:

sin(40πx)e−100π(x−.2) 2

+ [sin(40πx) + 2 cos(160πx)] e−50π(x−.5) 2

+2 sin(160πx)e−100π(x−.8) 2 (4.11)

over the interval 0 ≤ x ≤ 2. See the top of Figure 4.4(a).
The signal in (4.11) consists of three terms. The first term contains a sine

factor, sin(40πx), of frequency 20. Its other factor, e−100π(x−.2) 2 , serves as
a damping factor which limits the energy of this term to a small interval
centered on x = 0.2. This first term appears most prominently on the
left-third of the graph at the top of Figure 4.4(a). Likewise, the third term
contains a sine factor, 2 sin(160πx), of frequency 80, and this term appears
most prominently on the right-third of the signal’s graph. Notice that this
frequency of 80 is four times as large as the first frequency of 20. Finally,
the middle term

[sin(40πx) + 2 cos(160πx)] e−50π(x−.5) 2

has a factor containing both of these two frequencies, and can be observed
most prominently within the middle of the signal’s graph.

The CWT, also known as a scalogram, for this signal is shown at the
bottom of Figure 4.4(a). The analyzing wavelet used to produce this CWT
was a Mexican hat wavelet of width 1/16, with scales ranging over 8 octaves
and 16 voices. The labels on the right side of the figure indicate reciprocals
of the scales used. Because of the reciprocal relationship between scale
and frequency noted above, this reciprocal-scale axis can also be viewed
as a frequency axis. Notice that the four most prominent portions of this
scalogram are aligned directly below the three most prominent parts of
the signal. Of equal importance is the fact that these four portions of the
scalogram are centered on two reciprocal-scales, 1/s ≈ 22.2 and 1/s ≈ 24.2.
The second reciprocal scale is four times larger than the first reciprocal
scale, just as the frequency 80 is four times larger than the frequency 20.
Bearing this fact in mind, and recalling the alignment of the prominent
regions of the scalogram with the three parts of the signal, we can see that
the CWT provides us with a time-frequency portrait of the signal.

Although we have shown that it is possible to correctly interpret the
meaning of this scalogram; nevertheless, we can produce a much simpler
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FIGURE 4.4
(a) Mexican hat CWT (scalogram) of a test signal with two main fre-
quencies. (b) Mexican hat scalogram of simulated ECG signal. Whiter
colors represent p ositive values, blacker values represent negative val-
ues, and the grey background represents zero values.

and more easily interpretable scalogram for this test signal using a Gabor
analyzing wavelet. See Figure 4.5(a). We shall discuss this Gabor scalogram
in the next section.

Our second example makes use of a Mexican hat CWT for analyzing a
signal containing several transient bursts, a simulated ECG signal that we
first considered in Section 3.4. See the top of Figure 4.4(b). The bottom
of Figure 4.4(b) is a scalogram of this signal using a Mexican hat wavelet
of width 2, over a range of 8 octaves and 16 voices. This scalogram shows
how a Mexican hat wavelet can be used for detecting the onset and demise
of each heartbeat. In particular, the aberrant, fourth heartbeat is singled
out from the others by the longer vertical ridges extending upwards to the
highest frequencies (at the eighth octave). Although this example is only
a simulation, it does show the ease with which the Mexican hat CWT
detects the presence of short-lived parts of a signal. Similar identifications
of transient bursts are needed in seismology for the detection of earthquake
tremors. Consequently, Mexican hat wavelets are widely used in seismology.
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4.4 Gab or wavelets and sp eech analysis

In this section we describe Gabor wavelets, which are similar to the Mex-
ican hat wavelets examined in the previous section, but provide a more
powerful tool for analyzing speech and music. We shall first go over their
definition, and then illustrate their use by examining a couple of examples.

A Gabor wavelet, with width parameter w and frequency parameter ν, is
the following analyzing wavelet:

Ψ(x) = w−1/2e−π(x/w)2 ei2πνx/w. (4.12)

This wavelet is complex valued. Its real part ΨR(x) and imaginary part
ΨI(x) are

ΨR(x) = w−1/2e−π(x/w)2 cos(2πνx/w), (4.13a)

ΨI(x) = w−1/2e−π(x/w)2 sin(2πνx/w). (4.13b)

The width parameter w plays the same role as for the Mexican hat wavelet;
it controls the width of the region over which most of the energy of Ψ(x) is
concentrated. The frequency parameter ν provides the Gabor wavelet with
an extra parameter for analysis.

One advantage that Gabor wavelets have when analyzing sound signals
is that they contain factors of cosines and sines [see (4.13a) and (4.13b)].
These cosine and sine factors allow the Gabor wavelets to create easily
interpretable scalograms of those signals which are combinations of cosines
and sines—the most common instances of such signals are recorded music
and speech. We shall see this in a moment, but first we need to say a little
more about the CWT defined by a Gabor analyzing wavelet.

Because a Gabor wavelet is complex valued, it produces a complex-
valued CWT. For many signals, it is often sufficient to just examine the
magnitudes3 of the Gabor CWT values. In particular, this is the case with
the signals analyzed in the following two examples.

For our first example, we use a Gabor wavelet with width 1 and frequency
2 for analyzing the signal in (4.11). The graph of this signal is shown at
the top of Figure 4.5(a). As we discussed in the previous section, this
signal consists of three portions with associated frequencies of 20 and 80.
The magnitudes for a Gabor scalogram of this signal, using 8 octaves and
16 voices, are graphed at the bottom of Figure 4.5(a). We see that this
magnitude-scalogram consists of essentially just four prominent, and clearly

3Recall that a complex number z has a magnitude |z| equal to its distance from the

origin in the complex plane.
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FIGURE 4.5
(a) Magnitudes of Gab or scalogram of test signal. (b) Magnitudes of
Gab or scalogram of call sound. Darker regions denote larger magni-
tudes; lighter regions denote smaller magnitudes.

separated, spots aligned directly below the three most prominent portions
of the signal. These four spots are centered on the two reciprocal-scale
values of 23.38 and 25.38, which are in the same ratio as the two frequencies
20 and 80.

It is interesting to compare Figures 4.4(a) and 4.5(a). The simplicity of
Figure 4.5(a) makes it much easier to interpret. The reason that the Gabor
CWT is so clean and simple is because, for the proper choices of width w
and frequency ν, the test signal in (4.11) consists of terms that are identical
in form to one of the functions in (4.13a) or (4.13b). Therefore, when a
scale value s produces a function ΦR(x/s)/

√
s, or a function ΦI(x/s)/

√
s,

having a form similar to one of the terms in (4.11), then the correlation
(f : gs) in the CWT will have some high-magnitude values.

This first example might appear to be rather limited in scope. After all,
how many signals encountered in the real world are so nicely put together
as this test signal? Our next example, however, shows that a Gabor CWT
performs equally well in analyzing a real signal: a speech signal.

In Figure 4.5(b) we show a Gabor magnitude-scalogram of a recording
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of the author saying the word call. The recorded signal, which is shown
at the top of the figure, consist of two main portions. These two portions
correspond to the two sounds, ca and ll, that form the word call. The ca
portion occupies a narrow area on the far left side of the call signal’s graph,
while the ll portion occupies a much larger area consisting of the middle
half of the call signal’s graph.

To analyze the call signal, we used a Gabor wavelet of width 1/8 and fre-
quency 16, with scales ranging over 4 octaves and 16 voices. The resulting
magnitude-scalogram is composed of two main regions lying directly under-
neath the two portions of the call signal. The largest region is a collection
of several horizontal bands lying below the ll portion. The smaller region is
a narrow, vertical segment consisting of several dark spots aligned directly
underneath the ca portion. We shall now examine these two regions of the
magnitude-scalogram, and relate their structure to the two portions of the
call signal.

Let’s begin with the larger region consisting of seven horizontal bands
lying directly below the ll portion. These horizontal bands are centered on
the following approximate reciprocal-scale values:

20.17, 21.17, 21.7, 22.17, 22.5, 22.97, 23.17. (4.14)

If we divide each of these values by the smallest one, 20.17, we get the
following approximate ratios:

1, 2, 3, 4, 5, 7, 8. (4.15)

Since reciprocal-scale values correspond to frequencies, we can see that
these bands correspond to frequencies on a harmonic (musical) scale. In
fact, in Figure 4.6(b) we show a graph of the spectrum4 of a sound clip of
the ll portion of the call signal. This spectrum shows that the frequencies
of peak energy in the ll portion have the following approximate values:

140, 280, 420, 560, 700, 980, 1120. (4.16)

Notice that these frequencies have the same ratios to the lowest frequency
of 140 as the ratios in (4.15). There is even a missing frequency of 6 ×
140 = 840, corresponding to a missing horizontal band in the magnitude-
scalogram that appears to be centered along the reciprocal-scale 22.7 (a
small part of this missing band is visible below the right edge of the ll
portion). In fact, the reciprocal-scale 22.7 is about 6 times the lowest value
of 20.17.

This region illustrates an important property of many portions of speech
signals, the property of frequency banding. These frequency bands are called

4The sp ectrum of a signal was discussed in Section 3.2.
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FIGURE 4.6
(a) A portion of the ll sound in the call signal; the horizontal axis is
the time axis. (b) Spectrum of the signal in (a); the horizontal axis is
the frequency axis.

formants in linguistics. All speakers, whether they are native speakers of
English or not, produce a sequence of such frequency bands for the ll portion
of call. For some speakers, the bands are horizontal, while for other speakers
the bands are curved. The ll sound is a fundamental unit of English speech,
called a phoneme.

The second region of the magnitude-scalogram lies below the ca portion.
The ca sound is distinguished clearly from the ll portion by its lack of
formants. From the magnitude-scalogram, we see that the ca portion is
composed of a much more widely dispersed, almost continuous, range of
frequencies without any significant banding.

This last example shows what a powerful tool the Gabor CWT provides
for analyzing a speech signal. We were able to use it to clearly distinguish
the two portions in the call sound, to understand the formant structure
of the ll portion, and to determine that the ca portion lacks a formant
structure.

Another application of these Gabor scalograms is that, when applied
to recordings of different people saying call, they produce visibly different
scalograms. These scalograms function as a kind of “fingerprint” for iden-
tifying different speakers. Furthermore, the ribboned structure of formants
for the ll portion is displayed for all speakers, although they trace out dif-
ferent curves for different speakers. For the reader who wishes to verify
these statements, we have included several recordings of different speakers
saying the word call at the FAWAV website.
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4.5 Notes and references

The best introductory material on wavelet packet transforms can be
found in [WI1] and [CW1]. There is also a good discussion in [CW2].
A very thorough treatment of the subject is given in [WI2]. The relation
between wavelet packet transforms and the WSQ method is described in
[BBH].

Rigorous expositions of the complete theory of CWTs can be found in
[DAU] and [LMR]. A more complete treatment of the discrete version de-
scribed in this primer is given in [MAL]. For a discussion of the uses of the
CWT for analysis of ECGs, see [STC]. Applying Gabor CWTs to the detec-
tion of engine malfunctions in Japanese automobiles is described in [KOB].
An interesting relationship between CWTs and human hearing, with appli-
cations to speech analysis, is described in [DAM]. Background on formants
and phonemes in linguistics can be found in [ODA].
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