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Chapter 2 Radar Cross Section 
(RCS) 

In Chapter 1, the term Radar Cross Section (RCS) was used to describe the
amount of scattered power from a target towards the radar, when the target is
illuminated by RF energy. At that time, RCS was referred to as a target-spe-
cific constant. This was only a simplification and, in practice, it is rarely the
case. In this chapter, the phenomenon of target scattering and methods of RCS
calculation are examined. Target RCS fluctuations due to aspect angle, fre-
quency, and polarization are presented. Radar cross section characteristics of
some simple and complex targets are also introduced. The analysis of extended
RCS due to volume and surface clutter will be explored in a later chapter.

2.1. RCS Definition

Electromagnetic waves, with any specified polarization, are normally dif-
fracted or scattered in all directions when incident on a target. These scattered
waves are broken down into two parts. The first part is made of waves that
have the same polarization as the receiving antenna. The other portion of the
scattered waves will have a different polarization to which the receiving
antenna does not respond. The two polarizations are orthogonal and are
referred to as the Principle Polarization (PP) and Orthogonal Polarization
(OP), respectively. The intensity of the backscattered energy that has the same
polarization as the radar’s receiving antenna is used to define the target RCS.
When a target is illuminated by RF energy, it acts like an antenna, and will
have near and far fields. Waves reflected and measured in the near field are, in
general, spherical. Alternatively, in the far field the wavefronts are decom-
posed into a linear combination of plane waves. 
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Assume the power density of a wave incident on a target located at range 
away from the radar is . The amount of reflected power from the target is 

(2.1)

 denotes the target cross section. Define  as the power density of the
scattered waves at the receiving antenna. It follows that

(2.2)

Equating Eqs. (2.1) and (2.2) yields

(2.3)

and in order to ensure that the radar receiving antenna is in the far field (i.e.,
scattered waves received by the antenna are planar), Eq. (2.3) is modified

(2.4)

The RCS defined by Eq. (2.4) is often referred to as either the monostatic RCS,
the backscattered RCS, or simply target RCS. 

The backscattered RCS is measured from all waves scattered in the direction
of the radar and has the same polarization as the receiving antenna. It repre-
sents a portion of the total scattered target RCS , where . Assuming
spherical coordinate system defined by ( ), then at range  the target
scattered cross section is a function of ( ). Let the angles ( ) define the
direction of propagation of the incident waves. Also, let the angles ( )
define the direction of propagation of the scattered waves. The special case,
when  and , defines the monostatic RCS. The RCS measured
by the radar at angles  and  is called the bistatic RCS. 

The total target scattered RCS is given by

(2.5)

The amount of backscattered waves from a target is proportional to the ratio
of the target extent (size) to the wavelength, , of the incident waves. In fact, a
radar will not be able to detect targets much smaller than its operating wave-
length. For example, if weather radars use L-band frequency, rain drops
become nearly invisible to the radar since they are much smaller than the
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wavelength. RCS measurements in the frequency region, where the target
extent and the wavelength are comparable, are referred to as the Rayleigh
region. Alternatively, the frequency region where the target extent is much
larger than the radar operating wavelength is referred to as the optical region.
In practice, the majority of radar applications falls within the optical region. 

The analysis presented in this book assumes far field monostatic RCS mea-
surements in the optical region. Near field RCS, bistatic RCS, and RCS mea-
surements in the Rayleigh region will not be considered since their treatment
falls beyond this book’s intended scope. Additionally, RCS treatment in this
chapter is mainly concerned with Narrow Band (NB) cases. In other words, the
extent of the target under consideration falls within a single range bin of the
radar. Wide Band (WB) RCS measurements will be briefly addressed in a later
section. Wide band radar range bins are small (typically 10 - 50 cm), hence, the
target under consideration may cover many range bins. The RCS value in an
individual range bin corresponds to the portion of the target falling within that
bin. 

2.2. RCS Prediction Methods

Before presenting the different RCS calculation methods, it is important to
understand the significance of RCS prediction. Most radar systems use RCS as
a means of discrimination. Therefore, accurate prediction of target RCS is crit-
ical in order to design and develop robust discrimination algorithms. Addition-
ally, measuring and identifying the scattering centers (sources) for a given
target aid in developing RCS reduction techniques. Another reason of lesser
importance is that RCS calculations require broad and extensive technical
knowledge, thus many scientists and scholars find the subject challenging and
intellectually motivating. Two categories of RCS prediction methods are avail-
able: exact and approximate. 

Exact methods of RCS prediction are very complex even for simple shape
objects. This is because they require solving either differential or integral equa-
tions that describe the scattered waves from an object under the proper set of
boundary conditions. Such boundary conditions are governed by Maxwell’s
equations. Even when exact solutions are achievable, they are often difficult to
interpret and to program using digital computers. 

Due to the difficulties associated with the exact RCS prediction, approxi-
mate methods become the viable alternative. The majority of the approximate
methods are valid in the optical region, and each has its own strengths and lim-
itations. Most approximate methods can predict RCS within few dBs of the
truth. In general, such a variation is quite acceptable by radar engineers and
designers. Approximate methods are usually the main source for predicting
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RCS of complex and extended targets such as aircrafts, ships, and missiles.
When experimental results are available, they can be used to validate and ver-
ify the approximations. 

Some of the most commonly used approximate methods are Geometrical
Optics (GO), Physical Optics (PO), Geometrical Theory of Diffraction (GTD),
Physical Theory of Diffraction (PTD), and Method of Equivalent Currents
(MEC). Interested readers may consult Knott or Ruck (see bibliography) for
more details on these and other approximate methods. 

2.3. RCS Dependency on Aspect Angle and Frequency

Radar cross section fluctuates as a function of radar aspect angle and fre-
quency. For the purpose of illustration, isotropic point scatterers are consid-
ered. An isotropic scatterer is one that scatters incident waves equally in all
directions. Consider the geometry shown in Fig. 2.1. In this case, two unity
( ) isotropic scatterers are aligned and placed along the radar line of sight
(zero aspect angle) at a far field range . The spacing between the two scatter-
ers is 1 meter. The radar aspect angle is then changed from zero to 180 degrees,
and the composite RCS of the two scatterers measured by the radar is com-
puted. 

This composite RCS consists of the superposition of the two individual radar
cross sections. At zero aspect angle, the composite RCS is . Taking scat-
terer-1 as a phase reference, when the aspect angle is varied, the composite
RCS is modified by the phase that corresponds to the electrical spacing
between the two scatterers. For example, at aspect angle , the electrical
spacing between the two scatterers is
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 Figure 2.1. RCS dependency on aspect angle. (a) Zero aspect   angle, zero 
electrical spacing. (b)  aspect angle,  electrical 
spacing.
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(2.6)

 is the radar operating wavelength.

Fig. 2.2 shows the composite RCS corresponding to this experiment. This
plot can be reproduced using MATLAB function “rcs_aspect.m” given in List-
ing 2.1 in Section 2.8. As indicated by Fig. 2.1, RCS is   dependent on the radar
aspect angle. Knowledge of this constructive and destructive interference
between the individual scatterers can be very critical when a radar tries to
extract RCS of complex or maneuvering targets. This is true because of two
reasons. First, the aspect angle may be continuously changing. Second, com-
plex target RCS can be viewed to be made up from contributions of many indi-
vidual scattering points distributed on the target surface. These scattering
points are often called scattering centers. Many approximate RCS prediction
methods generate a set of scattering centers that define the back-scattering
characteristics of such complex targets.

MATLAB Function “rcs_aspect.m”

The function “rcs_aspect.m” computes and plots the RCS dependency on
aspect angle. Its syntax is as follows:

[rcs] = rcs_aspect (scat_spacing, freq)
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2 1.0 10( )cos×( )×

λ
-----------------------------------------------=

λ

 Figure 2.2. llustration of RCS dependency on aspect angle.
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Next, to demonstrate RCS dependency on frequency, consider the experi-
ment shown in Fig. 2.3. In this case, two far field unity isotropic scatterers are
aligned with radar line of sight, and the composite RCS is measured by the
radar as the frequency is varied from 8 GHz to 12.5 GHz (X-band). Figs. 2.4
and 2.5 show the composite RCS versus frequency for scatterer spacing of 0.1
and 0.7 meters. 

Symbol Description Units Status

scat_spacing scatterer spacing meters input

freq radar frequency Hz input

rcs array of RCS versus 
aspect angle

dBsm output

rad ar

radar line of sight

dist

scat1 scat2

 Figure 2.3. Experiment setup which demonstrates RCS 
dependency on frequency; dist = 0.1, or 0.7 m.

 Figure 2.4. Illustration of RCS dependency on frequency.
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The plots shown in Figs. 2.4 and 2.5 can be reproduced using MATLAB
function “rcs_frequency.m” given in Listing 2.2 in Section 2.8. From those
two figures, RCS fluctuation as a function of frequency is evident. Little fre-
quency change can cause serious RCS fluctuation when the scatterer spacing is
large. Alternatively, when scattering centers are relatively close, it requires
more frequency variation to produce significant RCS fluctuation. 

MATLAB Function “rcs_frequency.m”

The function “rcs_frequency.m” computes and plots the RCS dependency
on frequency. Its syntax is as follows:

[rcs] = rcs_frequency (scat_spacing, frequ, freql)

where

Symbol Description Units Status

scat_spacing scatterer spacing meters input

freql start of frequency band Hz input

frequ end of frequency band Hz input

rcs array of RCS versus 
aspect angle

dBsm output

 Figure 2.5. Illustration of RCS dependency on frequency.
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2.4. RCS Dependency on Polarization

The material in this section covers two topics. First, a review of polarization
fundamentals is presented. Second, the concept of target scattering matrix is
introduced.

2.4.1.  Polarization

The x and y electric field components for a wave traveling along the positive
z direction are given by

(2.7)

(2.8)

where ,  is the wave frequency, the angle  is the time phase
angle which  leads , and finally,  and  are, respectively, the wave
amplitudes along the x and y directions. When two or more electromagnetic
waves combine, their electric fields are integrated vectorially at each point in
space for any specified time. In general, the combined vector traces an ellipse
when observed in the x-y plane. This is illustrated in Fig. 2.6.

Ex E1 ωt kz–( )sin=

Ey E2 ωt kz– δ+( )sin=
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 Figure 2.6. Electric field components along the x and y directions. 
The positive z direction is out of the page.
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The ratio of the major to the minor axes of the polarization ellipse is called
the Axial Ratio (AR). When AR is unity, the polarization ellipse becomes a cir-
cle, and the resultant wave is then called circularly polarized. Alternatively,
when  and  the wave becomes linearly polarized. 

Eqs. (2.7) and (2.8) can be combined to give the instantaneous total electric
field,

(2.9)

where  and  are unit vectors along the x and y directions, respectively. At
,  and , then by replacing

 by the ratio  and by using trigonometry properties Eq. (2.9)
can be rewritten as

 (2.10)

Note that Eq. (2.10) has no dependency on .

In the most general case, the polarization ellipse may have any orientation,
as illustrated in Fig. 2.7. The angle  is called the tilt angle of the ellipse. In
this case, AR is given by 

    (2.11)
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 Figure 2.7. Polarization ellipse in the general case.
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When , the wave is said to be linearly polarized in the y direction,
while if  the wave is said to be linearly polarized in the x direction.
Polarization can also be linear at an angle of  when  and

. When  and , the wave is said to be Left Circu-
larly Polarized (LCP), while if  the wave is said to Right Circularly
Polarized (RCP). It is a common notation to call the linear polarizations along
the x and y directions by the names horizontal and vertical polarizations,
respectively. 

In general, an arbitrarily polarized electric field may be written as the sum of
two circularly polarized fields. More precisely,

(2.12)

where  and  are the RCP and LCP fields, respectively. Similarly, the
RCP and LCP waves can be written as

(2.13)

(2.14)

where  and  are the fields with vertical and horizontal polarizations,
respectively. Combining Eqs. (2.13) and (2.14) yields

(2.15)

(2.16)

Using matrix notation Eqs. (2.15) and (2.16) can be rewritten as

(2.17)

(2.18)

For many targets the scattered waves will have different polarization than the
incident waves. This phenomenon is known as depolarization or cross-polar-
ization. However, perfect reflectors reflect waves in such a fashion that an inci-
dent wave with horizontal polarization remains horizontal, and an incident
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wave with vertical polarization remains vertical but is phase shifted .
Additionally, an incident wave which is RCP becomes LCP when reflected,
and a wave which is LCP becomes RCP after reflection from a perfect reflec-
tor. Therefore, when a radar uses LCP waves for transmission, the receiving
antenna needs to be RCP polarized in order to capture the PP RCS, and LCR to
measure the OP RCS. 

2.4.2. Target Scattering Matrix

Target backscattered RCS is commonly described by a matrix known as the
scattering matrix, and is denoted by . When an arbitrarily linearly polarized
wave is incident on a target, the backscattered field is then given by

(2.19)

The superscripts  and  denote incident and scattered fields. The quantities
 are in general complex and the subscripts 1 and 2 represent any combina-

tion of orthogonal polarizations. More precisely, , and .
From Eq. (2.3), the backscattered RCS is related to the scattering matrix com-
ponents by the following relation:

(2.20)

It follows that once a scattering matrix is specified, the target backscattered
RCS can be computed for any combination of transmitting and receiving polar-
izations. The reader is advised to see Ruck for ways to calculate the scattering
matrix .

Rewriting Eq. (2.20) in terms of the different possible orthogonal polariza-
tions yields
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By using the transformation matrix  in Eq. (2.17), the circular scattering
elements can be computed from the linear scattering elements

(2.23)

and the individual components are 

(2.24)

Similarly, the linear scattering elements are given by

(2.25)

and the individual components are 

(2.26)

2.5. RCS of Simple Objects 

This section presents examples of backscattered radar cross section for a
number of simple shape objects. In all cases, except for the perfectly conduct-
ing sphere, only optical region approximations are presented. Radar designers
and RCS engineers consider the perfectly conducting sphere to be the simplest
target to examine. Even in this case, the complexity of the exact solution, when
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compared to the optical region approximation, is overwhelming. Most formu-
las presented are Physical Optics (PO) approximation for the backscattered
RCS measured by a far field radar in the direction ( ), as illustrated in Fig.
2.8.

2.5.1.  Sphere

Due to symmetry, waves scattered from a perfectly conducting sphere are
co-polarized (have the same polarization) with the incident waves. This means
that the cross-polarized backscattered waves are practically zero. For example,
if the incident waves were Left Circularly Polarized (LCP), then the backscat-
tered waves will also be LCP. However, because of the opposite direction of
propagation of the backscattered waves, they are considered to be Right Circu-
larly Polarized (RCP) by the receiving antenna. Therefore, the PP backscat-
tered waves from a sphere are LCP, while the OP backscattered waves are
negligible. 

The normalized exact backscattered RCS for a perfectly conducting sphere
is a Mie series given by 

(2.27)
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 Figure 2.8. Direction of antenna receiving backscattered waves.
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where  is the radius of the sphere, ,  is the wavelength,  is the
spherical Bessel of the first kind of order n, and  is the Hankel function of
order n, and is given by 

(2.28)

 is the spherical Bessel function of the second kind of order n. Plots of the
normalized perfectly conducting sphere RCS as a function of its circumference
in wavelength units are shown in Figs. 2.9a and 2.9b. These plots can be repro-
duced using the function “rcs_sphere.m” given in Listing 2.3 in Section 2.8.

In Fig. 2.9, three regions are identified. First is the optical region (corre-
sponds to a large sphere). In this case, 

(2.29)

Second is the Rayleigh region (small sphere). In this case,

(2.30)

The region between the optical and Rayleigh regions is oscillatory in nature
and is called the Mie or resonance region.
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 Figure 2.9a. Normalized backscattered RCS for a perfectly conducting sphere. 
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The backscattered RCS for a perfectly conducting sphere is constant in the
optical region. For this reason, radar designers typically use spheres of known
cross sections to experimentally calibrate radar systems. For this purpose,
spheres are flown attached to balloons. In order to obtain Doppler shift,
spheres of known RCS are dropped out of an airplane and towed behind the
airplane whose velocity is known to the radar. 

2.5.2. Ellipsoid

An ellipsoid centered at (0,0,0) is shown in Fig. 2.10. It is defined by the fol-
lowing equation:

(2.31)

One widely accepted approximation for the ellipsoid backscattered RCS is
given by

(2.32)
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 Figure 2.9b. Normalized backscattered RCS for a perfectly 
conducting sphere using semi-log scale.
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When , the ellipsoid becomes roll symmetric. Thus, the RCS is inde-
pendent of , and Eq. (2.32) is reduced to 

(2.33)

and for the case when ,

(2.34)

Note that Eq. (2.34) defines the backscattered RCS of a sphere. This should be
expected, since under the condition  the ellipsoid becomes a
sphere. Fig. 2.11 shows the backscattered RCS for an ellipsoid versus  for

. This plot can be generated using MATLAB function
“rcs_ellipsoid.m” given in Listing 2.4 in Section 2.8. Note that at normal inci-
dence ( ) the RCS corresponds to that of a sphere of radius , and is
often referred to as the broadside specular RCS value.

MATLAB Function “rcs_ellipsoid.m”

The function “rcs_ellipsoid.m” computes and plots the RCS of an ellipsoid
versus aspect angle. It utilizes Eq. (2.32) and its syntax is as follows:

[rcs] = rcs_ellipsoid (a, b, c, phi) 
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 Figure 2.10. Ellipsoid.
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2.5.3. Circular Flat Plate

Fig. 2.12 shows a circular flat plate of radius , centered at the origin. Due to
the circular symmetry, the backscattered RCS of a circular flat plate has no
dependency on . The RCS is only aspect angle dependent. For normal inci-
dence (i.e., zero aspect angle) the backscattered RCS for a circular flat plate is 

(2.35)

Symbol Description Units Status

a ellipsoid a-radius meters input

b ellipsoid b-radius meters input

c ellipsoid c-radius meters input

phi ellipsoid roll angle degrees input

rcs array of RCS versus 
aspect angle

dBsm output

 Figure 2.11. Ellipsoid backscattered RCS versus aspect angle, .ϕ 45°=
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For non-normal incidence, two approximations for the circular flat plate
backscattered RCS for any linearly polarized incident wave are

(2.36)

 (2.37)

where , and  is the first order spherical Bessel function evalu-
ated at . The RCS corresponding to Eqs. (2.35) through (2.37) is shown in
Fig. 2.13. These plots can be reproduced using MATLAB function
“rcs_circ_plate.m” given in Listing 2.5 in Section 2.8.

MATLAB Function “rcs_circ_plate.m”

The function “rcs_circ_plate.m” calculates and plots the backscattered RCS
from a circular plate. Its syntax is as follows: 

 [rcs] = rcs_circ_plate (r, freq)

where

Symbol Description Units Status

r radius of circular plate meters input

freq frequency Hz input

rcs array of RCS versus aspect angle dBsm output

θ

ϕ

Z

Y

X

D irection  to
receiv ing radar

 Figure 2.12. Circular flat plate.
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2.5.4.  Truncated Cone (Frustum) 

Figs. 2.14 and 2.15 show the geometry associated with a frustum. The half
cone angle  is given by 

   (2.38)

Define the aspect angle at normal incidence (broadside) as . Thus, when a
frustum is illuminated by a radar located at the same side as the cone’s small
end, the angle  is 

(2.39)

Alternatively, normal incidence occurs at

(2.40)

At normal incidence, one approximation for the backscattered RCS of a trun-
cated cone due to a linearly polarized incident wave is

(2.41)

 Figure 2.13. Backscattered RCS for a circular flat plate. Solid line 
corresponds to Eq. (2.37). Dashed line corresponds to Eq. (2.36). 
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 Figure 2.14. Truncated cone (frustum).
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where  is the wavelength, and ,  are defined in Fig. 2.14. Using trigono-
metric identities, Eq. (2.41) can be reduced to 

(2.42)

For non-normal incidence, the backscattered RCS due to a linearly polarized
incident wave is

(2.43)

where  is equal to either  or  depending on whether the RCS contribu-
tion is from the small or the large end of the cone. Again, using trigonometric
identities Eq. (2.43) (assuming the radar illuminates the frustum starting from
the large end) is reduced to

(2.44)

When the radar illuminates the frustum starting from the small end (i.e., the
radar is in the negative z direction in Fig. (2.14)), Eq. (2.44) should be modi-
fied to 

(2.45)

For example, consider a frustum defined by ,
, . It follows that the half cone angle is .

Fig. 2.16 (top) shows a plot of its RCS when illuminated by a radar in the pos-
itive z direction. Fig. 2.16 (bottom) shows the same thing, except in this case,
the radar is in the negative z direction. Note that for the first case, normal inci-
dence occur at , while for the second case it occurs at . These plots
can be reproduced using MATLAB function “rcs_frustum.m” given in Listing
2.6 in Section 2.8. 

MATLAB Function “rcs_frustum.m”

The function “rcs_frustum.m” computes and plots the backscattered RCS of
a truncated conic section. The syntax is as follows:

[rcs] = rcs_frustum (r1, r2, freq, indicator)

where

λ z1 z2

σθn

8π z2
3 2⁄

z1
3 2⁄–( )

2

9λ
--------------------------------------- αsin

αcos( )4
-------------------=

σ λz αtan
8π θsin
------------------ θsin θ αtancos–

θ αtansin θcos+
------------------------------------------ 
  2

=

z z1 z2

σ λz αtan
8π θsin
------------------ θ α–( )tan( )2=

σ λz αtan
8π θsin
------------------ θ α+( )tan( )2=

H 20.945cm=
r1 2.057cm= r2 5.753cm= 10°

100° 80°
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2.5.5. Cylinder

Fig. 2.17 shows the geometry associated with a cylinder. Two cases are pre-
sented: first, the general case of an elliptical cylinder; second, the case of a cir-
cular cylinder. The normal and non-normal incidence backscattered RCS for an

Symbol Description Units Status

r1 small end radius meters input

r2 large end radius meters input

freq frequency Hz input

indicator indicator = 1 when viewing from 
large end

indicator = 0 when viewing from 
small end

none input

rcs array of RCS versus aspect angle dBsm output

 Figure 2.16. Backscattered RCS for a frustum.
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elliptical cylinder due a linearly polarized incident wave are, respectively,
given by

(2.46)

(2.47)

For a circular cylinder of radius , then due to roll symmetry, Eqs. (2.46)
and (2.47), respectively, reduce to

(2.48)

(2.49)

σθn

2πH
2
r2

2
r1

2

λ r1
2 ϕcos( )2

r2
2 ϕsin( )2+( )

1.5
--------------------------------------------------------------------=

σ
λr2

2
r1

2 θsin

8π θcos( )2
r1

2 ϕcos( )2
r2

2 ϕsin( )2+( )
1.5

-------------------------------------------------------------------------------------------=

r

σθn

2πH
2
r

λ
----------------=

σ λr θsin

8π θcos( )2
--------------------------=

 Figure 2.17. (a) Elliptical cylinder; (b) circular cylinder.
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Fig. 2.18 shows a plot of the cylinder backscattered RCS using Eqs. (2.48)
and (2.49). This plot can be reproduced using MATLAB function
“rcs_cylinder.m” given in Listing 2.7 in Section 2.8. Note that the broadside
specular occurs at aspect angle of . 

MATLAB Function “rcs_cylinder.m”

The function “rcs_cylinder.m” computes and plots the backscattered RCS of
a cylinder. The syntax is as follows:

[rcs] = rcs_cylinder (r, h, freq)

where

Symbol Description Units Status

r radius meters input

h length of cylinder meters input

freq frequency Hz input

rcs array of RCS versus aspect angle dBsm output

90°

 Figure 2.18. Backscattered RCS for a cylinder,  and .r 0.125m= H 1m=
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2.5.6. Rectangular Flat Plate

Consider a perfectly conducting rectangular thin flat plate in the x-y plane as
shown in Fig. 2.19. The two sides of the plate are denoted by  and . For
a linearly polarized incident wave in the x-z plane, the horizontal and vertical
backscattered RCS are, respectively, given by

(2.50)

(2.51)

where  and

(2.52)

(2.53)

(2.54)

(2.55)

2a 2b

σV
b

2

π
----- σ1V σ2V

1
θcos

------------
σ2V

4
-------- σ3V σ4V+( )+ σ5V

1––
2

=

σH
b

2

π
----- σ1H σ2H

1
θcos

------------
σ2H

4
---------– σ3H σ4H+( ) σ5H

1––
2

=

k 2π λ⁄=

σ1V k θasin( )cos j
k θasin( )sin

θsin
-----------------------------– σ1H( )∗= =

σ2V
e

j ka π 4⁄–( )

2π ka( )3 2⁄
-----------------------------=

σ3V
1 θsin+( )e jk θasin–

1 θsin–( )2
--------------------------------------------=

σ4V
1 θsin–( )ejk θasin

1 θsin+( )2
-----------------------------------------=

 Figure 2.19. Rectangular flat plate.
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(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

Eqs. (2.50) and (2.51) are valid and quite accurate for aspect angles
. For aspect angles near , Ross1 obtained by extensive fitting

of measured data an empirical expression for the RCS. It is given by

(2.61)

 The backscattered RCS for a perfectly conducting thin rectangular plate for
incident waves at any  can be approximated by

(2.62)

Eq. (2.62) is independent of the polarization, and is only valid for aspect angles
. Fig. 2.20, shows an example for the backscattered RCS of a rectangu-

lar flat plate, for both vertical (Fig. 2.20a) and horizontal (Fig. 2.20b) polariza-
tions, using Eqs. (2.50), (2.51) and (2.62). In this example, 
and wavelength . This plot can be reproduced using MATLAB
function  “rcs_rect_plate” given in Listing 2.8 in Section 2.8.

MATLAB Function “rcs_rect_plate.m”

The function “rcs_rect_plate.m” calculates and plots the backscattered RCS
of a rectangular flat plate. Its syntax is as follows:

1. Ross, R. A. Radar Cross Section of Rectangular Flat Plate as a Function of Aspect 
Angle, IEEE Trans. AP-14:320, 1966.

σ5V 1 ej 2ka π 2⁄–( )

8π ka( )3
-------------------------–=

σ2H
4e

j ka π 4⁄+( )

2π ka( )1 2⁄
-----------------------------=

σ3H
e jk θasin–

1 θsin–
--------------------=

σ4H
e

jk θasin

1 θsin+
--------------------=

σ5H 1 e
j 2ka π 2⁄( )+( )

2π ka( )
-----------------------------–=

0° θ 80≤ ≤ 90°

σH 0→

σV
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2

λ
-------- 1

π
2 2a λ⁄( )2
------------------------+ 1

π
2 2a λ⁄( )2
------------------------– 2ka

3π
5
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 cos+

 
 
 

=

θ ϕ,

σ 4πa
2
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------------------ ak θsin ϕcos( )sin

ak θsin ϕcos
------------------------------------------- bk θsin ϕsin( )sin
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------------------------------------------ 

  2

θcos( )2=

θ 20°≤

a b 10.16cm= =
λ 3.25cm=
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[rcs] = rcs_rect_plate (a, b, freq)

where

2.5.7. Triangular Flat Plate

Consider the triangular flat plate defined by the isosceles triangle as oriented
in Fig. 2.21. The backscattered RCS can be approximated for small aspect
angles (less than ) by

(2.63)

Symbol Description Units Status

a short side of plate meters input

b long side of plate meters input

freq frequency Hz input

rcs array of RCS versus aspect angle dBsm output

 Figure 2.20a. Backscattered RCS for a rectangular flat plate.

10 20 30 40 50 60 70 80
-60

-50

-40

-30

-20

-10

0

10
V ert ic al polariz at ion

R
C

S
 -

d
B

s
m

as pec t  angle - deg

E q.(2.50)
E q.(2.62)

30°

σ 4πA
2

λ2
------------- θcos( )2σ0=

© 2000 by Chapman & Hall/CRC



(2.64)

(2.65)

σ0

αsin( )2 β 2⁄( )sin( )2–[ ]
2

σ01+

α2 β 2⁄( )2–
----------------------------------------------------------------------------=

σ01 0.25 ϕsin( )2 2a b⁄( ) ϕ βsincos ϕ 2αsinsin–[ ]2=

 Figure 2.20b. Backscattered RCS for a rectangular flat plate.
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 Figure 2.21. Coordinates for a perfectly conducting isosceles triangular plate.
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where , , and . For waves inci-
dent in the plane , the RCS reduces to

(2.66)

and for incidence in the plane 

(2.67)

Fig. 2.22 shows a plot for the normalized backscattered RCS from a per-
fectly conducting isosceles triangular flat plate. In this example ,

, and . This plot can be reproduced using MATLAB
function “rcs_isosceles.m” given in Listing 2.9 in Section 2.8. 

MATLAB Function “rcs_isosceles.m”

The function “rcs_isosceles.m” calculates and plots the backscattered RCS
of a triangular flat plate. Its syntax is as follows:

[rcs] = rcs_isosceles (a, b, freq, phi)

α k θ ϕcosasin= β kb θ ϕsinsin= A ab 2⁄=
ϕ 0=

σ 4πA
2

λ2
------------- θcos( )2 αsin( )4

α4
------------------ 2αsin 2α–( )2

4α4
-----------------------------------+=

ϕ π 2⁄=

σ 4πA
2

λ2
------------- θcos( )2 β 2⁄( )sin( )4

β 2⁄( )4
------------------------------=

a 0.2m=
b 0.75m= ϕ 0 π 2⁄,=

 Figure 2.22. Backscattered RCS for a perfectly conducting triangular 
flat plate,  and .a 20cm= b 75cm=
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where

2.6. RCS of Complex Objects 

A complex target RCS is normally computed by coherently combining the
cross sections of the simple shapes that make that target. In general, a complex
target RCS can be modeled as a group of individual scattering centers distrib-
uted over the target. The scattering centers can be modeled as isotropic point
scatterers (N-point model) or as simple shape scatterers (N-shape model). In
any case, knowledge of the scattering centers’ locations and strengths is critical
in determining complex target RCS. This is true, because as seen in Section
2.3, relative spacing and aspect angles of the individual scattering centers dras-
tically influence the overall target RCS. Complex targets that can be modeled
by many equal scattering centers are often called Swerling 1 or 2 targets. Alter-
natively, targets that have one dominant scattering center and many other
smaller scattering centers are known as Swerling 3 or 4 targets.

In NB radar applications, contributions from all scattering centers combine
coherently to produce a single value for the target RCS at every aspect angle.
However, in WB applications, a target may straddle over many range bins. For
each range bin, the average RCS extracted by the radar represents the contribu-
tions from all scattering centers that fall within that bin. 

As an example, consider a circular cylinder with two perfectly conducting
circular flat plates on both ends. Assume linear polarization and let 
and . The backscattered RCS for this object versus aspect angle is
shown in Fig. 2.23. Note that at aspect angles close to  and  the RCS is
mainly dominated by the circular plate, while at aspect angles close to normal
incidence, the RCS is dominated by the cylinder broadside specular return.
This plot can be reproduced using MATLAB program
“rcs_cyliner_complex.m” given in Listing 2.10 in Section 2.8.

Symbol Description Units Status

a height of plate meters input

b base of plate meters input

freq frequency Hz input

phi roll angle degrees input

rcs array of RCS versus aspect angle dBsm output

H 1m=
r 0.125m=

0° 180°
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2.7. RCS Fluctuations and Statistical Models

 In most practical radar systems there is relative motion between the radar
and an observed target. Therefore, the RCS measured by the radar fluctuates
over a period of time as a function of frequency and the target aspect angle.
This observed RCS is referred to as the radar dynamic cross section. Up to this
point, all RCS formulas discussed in this chapter assumed stationary target,
where in this case, the backscattered RCS is often called static RCS. 

Dynamic RCS may fluctuate in amplitude and/or in phase. Phase fluctuation
is called glint, while amplitude fluctuation is called scintillation. Glint causes
the far field backscattered wavefronts from a target to be non-planar. For most
radar applications, glint introduces linear errors in the radar measurements, and
thus it is not of a major concern. However, cases where high precision and
accuracy are required, glint can be detrimental. Examples include precision
instrumentation tracking radar systems, missile seekers, and automated aircraft
landing systems. For more details on glint, the reader is advised to visit cited
references listed in the bibliography. 

Radar cross-section scintillation can vary slowly or rapidly depending on the
target size, shape, dynamics, and its relative motion with respect to the radar.

 Figure 2.23. Backscattered RCS for a cylinder with flat plates.
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Thus, due to the wide variety of RCS scintillation sources changes in the radar
cross section are modeled statistically as random processes. The value of an
RCS random process at any given time defines a random variable at that time.
Many of the RCS scintillation models were developed and verified by experi-
mental measurements. 

2.7.1. RCS Statistical Models - Scintillation Models

This section presents the most commonly used RCS statistical models. Sta-
tistical models that apply to sea, land, and volume clutter, such as the Weibull
and Log-normal distributions, will be discussed in a later chapter. The choice
of a particular model depends heavily on the nature of the target under exami-
nation. 

Chi-Square of Degree 

The Chi-square distribution applies to a wide range of targets; its pdf is given
by

(2.68)

where  is the gamma function with argument , and  is the average
value. As the degree gets larger the distribution corresponds to constrained
RCS values (narrow range of values). The limit  corresponds to a con-
stant RCS target (steady-target case).

Swerling I and II (Chi-Square of Degree 2)

In Swerling I, the RCS samples measured by the radar are correlated
throughout an entire scan, but are uncorrelated from scan to scan (slow fluctu-
ation). In this case, the pdf is

(2.69)

where  denotes the average RCS overall target fluctuation. Swerling II tar-
get fluctuation is more rapid than Swerling I, but the measurements are pulse to
pulse uncorrelated. This is illustrated in Fig. 2.24. Swerling II RCS distribution
is also defined by Eq. (2.69). Swerlings I and II apply to targets consisting of
many independent fluctuating point scatterers of approximately equal physical
dimensions. 

Swerling III and IV (Chi-Square of Degree 4)

Swerlings III and IV have the same pdf, and it is given by

2m

f σ( ) m
Γ m( )σav

--------------------- mσ
σav

-------- 
 m 1–

e
mσ σav⁄–

= σ 0≥

Γ m( ) m σav

m ∞→

f σ( ) 1
σav

-------- –
σ
σav

-------- 
 exp= σ 0≥

σav

chapter2.fm  Page 102  Monday, April 10, 2000  9:30 PM
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(2.70)

The fluctuations in Swerling III are similar to Swerling I; while in Swerling
IV they are similar to Swerling II fluctuations (see Fig. 2.24). Swerlings III and
IV are more applicable to targets that can be represented by one dominant scat-
terer and many other small reflectors. Fig. 2.25 shows a typical plot of the pdfs
for Swerling cases. This plot can be reproduced using MATLAB program
“Swerling_models.m” given in Listing 2.11 in Section 2.8.

2.8. MATLAB Program/Function Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is advised to rerun these programs with different input
parameters. All functions have companion MATLAB “filename_driver.m”
files that utilize MATLAB Graphical User Interface (GUI). Figure 2.26 shows
a typical GUI screen capture associated with the cylinder case.

f σ( ) 4σ
σav

2
-------- –

2σ
σav

-------- 
 exp= σ 0≥

Swerling I Swerling II

Swerling V

Swerling IVSwerling III

 Figure 2.24. Radar returns from targets with different Swerling fluctuations. 
Swerling V corresponds to a steady RCS target case.
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Figure 2.25. Probability densities for Swerling targets.

0 1 2 3 4 5 6
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

x

p
ro

b
a

b
il

it
y

 d
e

n
s

it
y

R a y le ig h
G a u s s ia n

 Figure 2.26. GUI work space associated with the function “rcs_cylinder.m”.
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Listing 2.1. MATLAB Function “rcs_aspect.m”
function [rcs] = rcs_aspect (scat_spacing, freq)
% This function demonstrates the effect of aspect angle on RCS.
% Poit scatterers separated by scat_spacing meter. Initially the two scatterers
% are aligned with radar line of sight. The aspect angle is changed from
% 0 degrees to 180 degrees and the equivalent RCS is computed.
% Plot of RCS versus aspect is generated.
eps = 0.00001;
wavelength = 3.0e+8 / freq;
% Compute aspect angle vector
aspect_degrees = 0.:.05:180.;
aspect_radians = (pi/180) .* aspect_degrees;
% Compute electrical scatterer spacing vector in wavelength units
elec_spacing = (2.0 * scat_spacing / wavelength) .* cos(aspect_radians);
% Compute RCS (rcs = RCS_scat1 + RCS_scat2)
% Scat1 is taken as phase reference point
rcs = abs(1.0 + cos((2.0 * pi) .* elec_spacing) ... 
            + i * sin((2.0 * pi) .* elec_spacing));
rcs = rcs + eps;
rcs = 20.0*log10(rcs); % RCS in dBsm 
% Plot RCS versus aspect angle
figure (1);
plot (aspect_degrees,rcs,'k');
grid;
xlabel ('aspect angle - degrees');
ylabel ('RCS in dBsm');
%title (' Frequency is 3GHz; scatterer spacing is 0.5m');

Listing 2.2. MATLAB Function “rcs_frequency.m”
function [rcs] = rcs_frequency (scat_spacing, frequ, freql)
% This program demonstrates the dependency of RCS on wavelength 
eps = 0.0001;
freq_band = frequ - freql;
delfreq = freq_band / 500.;
index = 0;
for freq = freql: delfreq: frequ
   index = index +1;
   wavelength(index) = 3.0e+8 / freq;
end
elec_spacing = 2.0 * scat_spacing ./ wavelength;
rcs = abs (  1 + cos((2.0 * pi) .* elec_spacing) ... 
            + i * sin((2.0 * pi) .* elec_spacing));
rcs = rcs + eps;
rcs = 20.0*log10(rcs); % RCS ins dBsm
% Plot RCS versus frequency
freq = freql:delfreq:frequ;
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plot(freq,rcs);
grid;
xlabel('Frequency');
ylabel('RCS in dBsm');

Listing 2.3. MATLAB Program “rcs_sphere.m”.
% This program calculates the back-scattered RCS for a perfectly
% conducting sphere using Eq.(2.7), and produce plots similar to Fig.2.9 
% Spherical Bessel functions are computed using series approximation and recursion.
clear all
eps   = 0.00001;
index = 0;
% kr limits are [0.05 - 15] ===> 300 points
for kr = 0.05:0.05:15
   index = index + 1;
   sphere_rcs   = 0. + 0.*i;
   f1    = 0. + 1.*i;
   f2    = 1. + 0.*i;
   m     = 1.;
   n     = 0.;
   q     = -1.;
   % initially set del to huge value
   del =100000+100000*i;
   while(abs(del) > eps)
      q   = -q;
      n   = n + 1;
      m   = m + 2;
      del = (2.*n-1) * f2 / kr-f1;
      f1  = f2;
      f2  = del;
      del = q * m /(f2 * (kr * f1 - n * f2));
      sphere_rcs = sphere_rcs + del;
   end
   rcs(index)   = abs(sphere_rcs);
   sphere_rcsdb(index) = 10. * log10(rcs(index));
   end
figure(1);
n=0.05:.05:15;
plot (n,rcs,'k');
set (gca,'xtick',[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]);
%xlabel ('Sphere circumference in wavelengths');
%ylabel ('Normalized sphere RCS');
grid;
figure (2);
plot (n,sphere_rcsdb,'k');
set (gca,'xtick',[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]);
xlabel ('Sphere circumference in wavelengths');
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ylabel ('Normalized sphere RCS - dB');
grid;
figure (3);
semilogx (n,sphere_rcsdb,'k');
xlabel ('Sphere circumference in wavelengths');
ylabel ('Normalized sphere RCS - dB');

Listing 2.4. MATLAB Function “rcs_ellipsoid.m” 
function [rcs] = rcs_ellipsoid (a, b, c, phi)
% This function computes and plots the ellipsoid RCS versus aspect angle.
% The roll angle angle phi is fixed,
eps = 0.00001;
sin_phi_s = sin(phi)^2;
cos_phi_s = cos(phi)^2;
% Generate aspect angle vector
theta = 0.:.05:180.0;
theta = (theta .* pi) ./ 180.;
if(a ~= b & a ~= c)
   rcs = (pi * a^2 * b^2 * c^2) ./ (a^2 * cos_phi_s .* (sin(theta).^2) + ...
   b^2 * sin_phi_s .* (sin(theta).^2) + ...
   c^2 .* (cos(theta).^2)).^2 ;
else
   if(a == b & a ~= c)
      rcs = (pi * b^4 * c^2) ./ ( b^2 .* (sin(theta).^2) + ...
         c^2 .* (cos(theta).^2)).^2 ;
   else
      if (a == b & a ==c)
         rcs = pi * c^2;
      end
   end
end
rcs_db = 10.0 * log10(rcs);
figure (1);
plot ((theta * 180.0 / pi),rcs_db,'k');
xlabel ('Aspect angle - degrees');
ylabel ('RCS - dBsm');
%title ('phi = 45 deg, (a,b,c) = (.15,.20,.95) meter')
grid;

Listing 2.5. MATLAB Function “rcs_circ_plate.m” 
function [rcs] = rcs_circ_plate (r, freq)
% This function calculates and plots the RCS of a circular flat plate of radius r.
eps = 0.000001;
% Compute wavelength
lambda = 3.e+8 / freq; % X-Band
index = 0;
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for aspect_deg = 0.:.1:180
   index = index +1;
   aspect = (pi /180.) * aspect_deg; 
% Compute RCS using Eq. (2.35)
   if (aspect == 0 | aspect == pi)
       rcs_po(index) = (4.0 * pi^3 * r^4 / lambda^2) + eps;
       rcs_mu(index) = rcs_po(1);
    else
% Compute RCS using Eq. (2.36)
       x = (4. * pi * r / lambda) * sin(aspect);
       val1 = 4. * pi^3 * r^4 / lambda^2;
       val2 = 2. * besselj(1,x) / x;
       rcs_po(index) = val1 * (val2 * cos(aspect))^2 + eps;
% Compute RCS using Eq. (2.36)
       val1m = lambda * r;
       val2m = 8. * pi * sin(aspect) * (tan(aspect)^2);
       rcs_mu(index) = val1m / val2m + eps;
    end
 end
rcsdb_po = 10. * log10(rcs_po);
rcsdb_mu = 10 * log10(rcs_mu);
angle = 0:.1:180;
plot(angle,rcsdb_po,'k',angle,rcsdb_mu,'k--')
grid;
xlabel ('Aspect angle - degrees');
ylabel ('RCS - dBsm');
%title  ('Frequency = X-Band, radius = 0.25 m');

Listing 2.6. MATLAB Function “rcs_frustum.m”
function [rcs] = rcs_frustum (r1, r2, h, freq, indicator) 
% This program computes the monostatic RCS for a frustum.
% Incident linear Polarization is assumed. To compute RCP or LCP RCS
% one must use Eq. (2.24)
% Normal incidence is according to Eq.s (2.39) and (2.40)
index = 0;
eps = 0.000001;
lambda = 3.0e+8 / freq;
% Comput half cone angle, alpha
alpha = atan(( r2 - r1)/h);
% Compute z1 and z2
z2 = r2 / tan(alpha);
z1 = r1 / tan(alpha);
delta = (z2^1.5 - z1^1.5)^2;
factor = (8. * pi * delta) / (9. * lambda);
large_small_end = indicator;
if (large_small_end == 1)
   % Compute normal incidence, large end
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   normal_incidence = (180./pi) * ((pi /2) + alpha)
   % Compute RCS from zero aspect to normal incidence
   for theta = 0.001:.1:normal_incidence-.5
      index = index +1;
      theta = theta * pi /180.;
      rcs(index) = (lambda * z1 * tan(alpha) *(tan(theta - alpha))^2) / ...
         (8. * pi *sin(theta)) + eps;
   end
   %Compute broadside RCS
   index = index +1;
   rcs_normal = factor * sin(alpha) / ((cos(alpha))^4) + eps;
   rcs(index) = rcs_normal;
   % Compute RCS from broad side to 180 degrees 
   for theta = normal_incidence+.5:.1:180
      index = index + 1;
      theta =  theta * pi / 180. ;
      rcs(index) = (lambda * z2 * tan(alpha) *(tan(theta - alpha))^2) / ...
         (8. * pi *sin(theta)) + eps;
   end
else
   % Compute normal incidence, small end
   normal_incidence = (180./pi) * ((pi /2) - alpha)
   % Compute RCS from zero aspect to normal incidence (large end)
   for theta = 0.001:.1:normal_incidence-.5
      index = index +1;
      theta = theta * pi /180.;
      rcs(index) = (lambda * z1 * tan(alpha) *(tan(theta + alpha))^2) / ...
         (8. * pi *sin(theta)) + eps;
   end
   %Compute broadside RCS
   index = index +1;
   rcs_normal = factor * sin(alpha) / ((cos(alpha))^4) + eps;
   rcs(index) = rcs_normal;
   % Compute RCS from broad side to 180 degrees (small end of frustum)
   for theta = normal_incidence+.5:.1:180
      index = index + 1;
      theta =  theta * pi / 180. ;
      rcs(index) = (lambda * z2 * tan(alpha) *(tan(theta + alpha))^2) / ...
         (8. * pi *sin(theta)) + eps;
   end
end
% Plot RCS versus aspect angle
delta = 180 /index;
angle = 0.001:delta:180;
plot (angle,10*log10(rcs),'k');
grid;
xlabel ('Apsect angle - degrees');
ylabel ('RCS - dBsm');
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%title  ('Wavelength = .861 cm');

Listing 2.7. MATLAB Function “rcs_cylinder.m”
function [rcs] = rcs_cylinder (r, h, freq)
% This program computes RCS for a cylinder. Circular symmetry is assumed.
% Plot of RCS versus aspect angle is produced
index = 0;
eps =0.00001;
% Compute wavelength
lambda = 3.0e+8 / freq;
% Compute RCS from zero aspect to broadside
for theta = 0.0:.1:90-.5
   index = index +1;
   theta = theta * pi /180.;
   rcs(index) = (lambda * r * sin(theta) / ...
      (8. * pi * (cos(theta))^2)) + eps;
end
% Compute RCS for broadside specular
theta = pi/2;
index = index +1;
rcs(index) = (2. * pi * h^2 * r / lambda )+ eps;
% Compute RCS from 90 to 180 degrees
for theta = 90+.5:.1:180.
   index = index + 1;
   theta = theta * pi / 180.;
   rcs(index) = ( lambda * r * sin(theta) / ...
      (8. * pi * (cos(theta))^2)) + eps;
end
% Plot results
delta= 180/(index-1)
angle = 0:delta:180;
plot(angle,10*log10(rcs),'k');
grid;
xlabel ('Aspect angle - degrees');
ylabel ('RCS - dBsm');
%title  ('Frequency = 9.5 GHz');

Listing 2.8. MATLAB Function “rcs_rect_plate.m”
function [rcs] = rcs_rect_plate (a, b, freq)
% This function computes the backscattered RCS for a rectangular flat plate. 
% The RCS is computed for vertical and horizontal polarization based on
% Eq.s(2.50)through (2.60). Also Physical Optics approximation Eq.(2.62) 
% is computed. 
eps = 0.000001;
lambda = 3.0e+8 / freq;
ka = 2. * pi * a / lambda;

© 2000 by Chapman & Hall/CRC



% Compute aspect angle vector
theta_deg = 0.05:0.1:85;
theta = (pi/180.) .* theta_deg;
sigma1v = cos(ka .*sin(theta)) - i .* sin(ka .*sin(theta)) ./ sin(theta);
sigma2v = exp(i * ka - (pi /4)) / (sqrt(2 * pi) *(ka)^1.5);
sigma3v = (1. + sin(theta)) .* exp(-i * ka .* sin(theta)) ./ ...
   (1. - sin(theta)).^2;
sigma4v = (1. - sin(theta)) .* exp(i * ka .* sin(theta)) ./ ...
   (1. + sin(theta)).^2;
sigma5v = 1. - (exp(i * 2. * ka - (pi / 2)) / (8. * pi * (ka)^3));
sigma1h = cos(ka .*sin(theta)) + i .* sin(ka .*sin(theta)) ./ sin(theta);
sigma2h = 4. * exp(i * ka * (pi / 4.)) / (sqrt(2 * pi * ka));
sigma3h =  exp(-i * ka .* sin(theta)) ./ (1. - sin(theta));
sigma4h = exp(i * ka * sin(theta)) ./ (1. + sin(theta));
sigma5h = 1. - (exp(j * 2. * ka + (pi / 4.)) / 2. * pi * ka);
% Compute vertical polarization RCS
rcs_v = (b^2 / pi) .* (abs(sigma1v - sigma2v .*((1. ./ cos(theta)) ...
   + .25 .* sigma2v .* (sigma3v + sigma4v)) .* (sigma5v).^-1)).^2 + eps;
% compute horizontal polarization RCS
rcs_h = (b^2 / pi) .* (abs(sigma1h - sigma2h .*((1. ./ cos(theta)) ...
   - .25 .* sigma2h .* (sigma3h + sigma4h)) .* (sigma5h).^-1)).^2 + eps;
% Compute RCS from Physical Optics, Eq.(2.62)
angle = ka .* sin(theta);
rcs_po = (4. * pi* a^2 * b^2 / lambda^2 ).*  (cos(theta)).^2 .* ...
   ((sin(angle) ./ angle).^2) + eps;
rcsdb_v = 10. .*log10(rcs_v);
rcsdb_h = 10. .*log10(rcs_h);
rcsdb_po = 10. .*log10(rcs_po);
subplot(1,2,1)
plot (theta_deg, rcsdb_v,'k',theta_deg,rcsdb_po,'k --');
set(gca,'xtick',[10:10:85]);
title ('Vertical polarization');
ylabel ('RCS -dBsm');
xlabel ('aspect angle - deg');
legend('Solid Eq.(2.51)','Dashed Eq.(2.62)');
subplot(1,2,2)
plot (theta_deg, rcsdb_h,'k',theta_deg,rcsdb_po,'k --');
set(gca,'xtick',[10:10:85]);
title ('Horizontal polarization');
ylabel ('RCS -dBsm');
xlabel ('aspect angle - deg');
xlabel ('aspect angle - deg');
legend('Solid eq.(2.50)','Dashed eq.(2.62)');

Listing 2.9. MATLAB Function “rcs_isosceles.m”
function [rcs] = rcs_isosceles (a, b, freq, phi)
% This program calculates the backscattered RCS for a perfectly
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% conducting triangular flat plate, using Eq.s (2.63) through (2.65)
% The default case is to assume phi = pi/2. These equations are
% valid for aspect angles less than 30 degrees
% compute area of plate
A = a * b / 2.;
lambda = 3.e+8 / 9.5e+8;
phi = pi / 2.;
ka = 2. * pi / lambda;
kb = 2. *pi / lambda;
% Compute theta vector
theta_deg = 0.01:.05:89;
theta = (pi /180.) .* theta_deg;
alpha = ka * cos(phi) .* sin(theta);
beta =  kb * sin(phi) .* sin(theta);
if (phi == pi / 2)
  rcs = (4. * pi * A^2 / lambda^2) .* cos(theta).^2 .* (sin(beta ./ 2)).^4 ...
     ./ (beta./2).^4 + eps;
end
if (phi == 0)
   rcs = (4. * pi * A^2 / lambda^2) .* cos(theta).^2 .* ...
      ((sin(alpha).^4 ./ alpha.^4) + (sin(2 .* alpha) - 2.*alpha).^2 ...
      ./ (4 .* alpha.^4)) + eps;
end
if (phi ~= 0 & phi ~= pi/2)
   sigmao1 = 0.25 *sin(phi)^2 .* ((2. * a / b) * cos(phi) .* ...
      sin(beta) - sin(phi) .* sin(2. .* alpha)).^2;
   fact1 = (alpha).^2 - (.5 .* beta).^2;
   fact2 = (sin(alpha).^2 - sin(.5 .* beta).^2).^2;
   sigmao = (fact2 + sigmao1) ./ fact1;
   rcs = (4. * pi * A^2 / lambda^2) .* cos(theta).^2 .* sigmao + eps;
end
rcsdb = 10. *log10(rcs);
plot(theta_deg,rcsdb,'k')
xlabel ('Aspect angle - degrees');
ylabel ('RCS - dBsm')
%title ('freq = 9.5GHz, phi = pi/2');
grid;

Listing 2.10. MATLAB Program “rcs_cylinder_complex.m”
% This program computes the backscattered RCS for a cylinder
% with flat plates.

clear all
index = 0;
eps =0.00001;
a1 =.125;
h = 1.;
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lambda = 3.0e+8 /9.5e+9;
lambda = 0.00861;
index = 0;
for theta = 0.0:.1:90-.1
   index = index +1;
   theta = theta * pi /180.;
   rcs(index) = (lambda * a1 * sin(theta) / ...
      (8 * pi * (cos(theta))^2)) + eps;
end
theta*180/pi;
theta = pi/2;
index = index +1;
rcs(index) = (2 * pi * h^2 * a1 / lambda )+ eps;
for theta = 90+.1:.1:180.
   index = index + 1;
   theta = theta * pi / 180.;
   rcs(index) = ( lambda * a1 * sin(theta) / ...
      (8 * pi * (cos(theta))^2)) + eps;
end
r = a1;
index = 0;
for aspect_deg = 0.:.1:180
   index = index +1;
   aspect = (pi /180.) * aspect_deg; 
% Compute RCS using Eq. (2.37)
   if (aspect == 0 | aspect == pi)
       rcs_po(index) = (4.0 * pi^3 * r^4 / lambda^2) + eps;
       rcs_mu(index) = rcs_po(1);
    else
       x = (4. * pi * r / lambda) * sin(aspect);
       val1 = 4. * pi^3 * r^4 / lambda^2;
       val2 = 2. * besselj(1,x) / x;
       rcs_po(index) = val1 * (val2 * cos(aspect))^2 + eps;
    end
 end
rcs_t =(rcs_po + rcs);
angle = 0:.1:180;
plot(angle,10*log10(rcs_t(1:1801)),'k');
grid;
xlabel ('Aspect angle -degrees');
ylabel ('RCS -dBsm');

Listing 2.11. MATLAB Program “Swerling_models.m”
% This program computes and plots Swerling statistical models
% sigma_bar = 1.5; 
clear all
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sigma = 0:0.001:6;
sigma_bar = 1.5;
swer_3_4 = (4. / sigma_bar^2) .* sigma .* ...
   exp(-2. * (sigma ./ sigma_bar));
%t.*exp(-(t.^2)./2.
swer_1_2 = (1. /sigma_bar) .* exp( -sigma ./ sigma_bar);
plot(sigma,swer_1_2,'k',sigma,swer_3_4,'k');
grid;
gtext ('Swerling I,II');
gtext ('Swerling III,IV');
xlabel ('sigma');
ylabel ('Probability density');
title ('sigma-bar = 1.5');

 Problems

2.1. Design a cylindrical RCS calibration target such that its broadside RCS

(cylinder) and end (flat plate) RCS are equal to  at . The

RCS for a flat plate of area  is .

2.2.  The following table is constructed from a radar cross-section measure-
ment experiment. Calculate the mean and standard deviation of the radar cross
section.

Number of samples RCS, m2

2 55

6 67

12 73

16 90

20 98

24 110

26 117

19 126

13 133

8 139

5 144

3 150

10m
2

f 9.5GHz=

A σfp 4πf
2
A

2
c

2⁄=
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2.3. Develop a MATLAB simulation to compute and plot the backscattered
RCS for the following objects. Utilize the simple shape MATLAB functions
developed in this chapter. Assume that the radar is located on the left side of
the page and that its line of sight is aligned with the target body axis. Assume
an X-band radar.

90cm

70cm
15cm

30cm

flat plate cylinder
frustum

flat plate

side view
top view

90cm

70cm

half ellipsoid
cylinder

frustum
flat plate

side view

10cm
30cm

15cm

flat plate

frustum flat plate

15cm 45cm

50cm
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2.4. The backscattered RCS for a corner reflector is given by

This RCS is symmetric about the angle . Develop a MATLAB pro-
gram to compute and plot the RCS for a corner reflector. The RCS at the

 is

σ 16πa
4
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