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Chapter 3 Continuous Wave and 
Pulsed Radars 

Continuous Wave (CW) radars utilize CW waveforms, which may be con-
sidered to be a pure sinewave of the form . Spectra of the radar echo
from stationary targets and clutter will be concentrated at . The center fre-
quency for the echoes from moving targets will be shifted by , the Doppler
frequency. Thus by measuring this frequency difference CW radars can very
accurately extract target radial velocity. Because of the continuous nature of
CW emission, range measurement is not possible without some modifications
to the radar operations and waveforms, which will be discussed later.

3.1.  Functional Block Diagram

In order to avoid interruption of the continuous radar energy emission, two
antennas are used in CW radars, one for transmission and one for reception.
Fig. 3.1 shows a simplified CW radar block diagram. The appropriate values
of the signal frequency at different locations are noted on the diagram. The
individual Narrow Band Filters (NBF) must be as narrow as possible in band-
width in order to allow accurate Doppler measurements and minimize the
amount of noise power. 

In theory, the operating bandwidth of a CW radar is infinitesimal (since it
corresponds to an infinite duration continuous sinewave). However, systems
with infinitesimal bandwidths cannot physically exist, and thus the bandwidth
of CW radars is assumed to correspond to that of a gated CW waveform (see
Chapter 5).
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 The NBF bank (Doppler filter bank) can be implemented using a Fast Fou-
rier Transform (FFT). If the Doppler filter bank is implemented using an FFT
of size , and if the individual NBF bandwidth (FFT bin) is , then the
effective radar Doppler bandwidth is . The reason for the one-half
factor is to account for both negative and positive Doppler shifts.

Since range is computed from the radar echoes by measuring a two-way time
delay, then single frequency CW radars cannot measure target range. In order
for CW radars to be able to measure target range, the transmit and receive
waveforms must have some sort of timing marks. By comparing the timing
marks at transmit and receive, CW radars can extract target range. 

Figure 3.1. CW radar block diagram.
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The timing mark can be implemented by modulating the transmit waveform,
and one commonly used technique is Linear Frequency Modulation (LFM).
Before we discuss LFM signals, we will first introduce the CW radar equation
and briefly address the general Frequency Modulated (FM) waveforms using
sinusoidal modulating signals.

3.2.  CW Radar Equation

As indicated by Fig. 3.1, the CW radar receiver declares detection at the out-
put of a particular Doppler bin if that output value passes the detection thresh-
old within the detector box. Since the NBF bank is inplemented by an FFT,
only finite length data sets can be processed at a time. The length of such
blocks is normally referred to as the dwell time or dwell interval. The dwell
interval determines the frequency resolution or the bandwidth of the individual
NBFs. More precisely,

(3.1)

 is the dwell interval. Therefore, once the maximum resolvable fre-
quency by the NBF bank is chosen the size of the NBF bank is computed as

(3.2)

 is the maximum resolvable frequency by the FFT. The factor  is needed to
account for both positive and negative Doppler shifts. It follows that 

(3.3)

The CW radar equation can now be derived from the high PRF radar equa-
tion given in Eq. (1.69) and repeated here as Eq. (3.4)

(3.4)

In the case of CW radars,  is replaced by the CW average transmitted
power over the dwell interval , and  must be replaced by . Thus,
the CW radar equation can be written as 

(3.5)

where  and  are the transmit and receive antenna gains, respectively. The
factor  is a loss term associated with the type of window (weighting) used
in computing the FFT. Other terms in Eq. (3.5) have been defined earlier. 
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3.3.  Frequency Modulation 

The discussion presented in this section will be restricted to sinusoidal mod-
ulating signals. In this case, the general formula for an FM waveform can be
expressed by

(3.6)

 is the radar operating frequency (carrier frequency),  is the mod-
ulating signal,  is a constant, and , where  is the peak
frequency deviation. The phase is given by 

(3.7)

where  is the FM modulation index given by

(3.8)

Let  be the received radar signal from a target at range . It follows
that

(3.9)

where the delay  is 

(3.10)

 is the speed of light. CW radar receivers utilize phase detectors in order to
extract target range from the instantaneous frequency, as illustrated in Fig. 3.2.
A good measurement of the phase detector output  implies a good mea-
surement of , and hence range.
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 Figure 3.2. Extracting range from an FM signal return. 
K1 is a constant.
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Consider the FM waveform  given by

(3.11)

which can be written as

(3.12)

where  denotes the real part. Since the signal  is
periodic with period , it can be expressed using the complex expo-
nential Fourier series as

(3.13)

where the Fourier series coefficients  are given by

(3.14)

Make the change of variable , and recognize that the Bessel func-
tion of the first kind of order  is

(3.15)

Thus, the Fourier series coefficients are , and consequently Eq.
(3.13) can now be written as 

(3.16)

which is known as the Bessel-Jacobi equation. Fig. 3.3 shows a plot of Bessel
functions of the first kind for . 

The total power in the signal  is

(3.17)

Substituting Eq. (3.16) into Eq. (3.12) yields
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(3.18)

Expanding Eq. (3.18) yields

(3.19)

Finally, since  for  odd and  for  even we
can rewrite Eq. (3.19) as

(3.20)

The spectrum of  is composed of pairs of spectral lines centered at , as
sketched in Fig. 3.4. The spacing between adjacent spectral lines is . The
central spectral line has an amplitude equal to , while the amplitude of
the  spectral line is .
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Figure 3.3. Plot of Bessel functions of order 0, 1, 2, and 3.
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As indicated by Eq. (3.20) the bandwidth of FM signals is infinite. However,
the magnitudes of spectral lines of the higher orders are small, and thus the
bandwidth can be approximated using Carson’s rule,

(3.21)

When  is small, only  and  have significant values. Thus, we
may approximate Eq. (3.20) by

(3.22)

Finally, for small , the Bessel functions can be approximated by

(3.23)

(3.24)

Thus, Eq. (3.22) may be approximated by

(3.25)

Example 3.1: If the modulation index is , give an expression for the
signal .

Solution: From Bessel function tables we get  and
; then using Eq. (3.17) we get
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.

Example 3.2: Consider an FM transmitter with output signal
. The frequency deviation is , and the

modulating waveform is . Determine the FM signal band-
width. How many spectral lines will pass through a band pass filter whose
bandwidth is  centered at ?

Solution: The peak frequency deviation is . It fol-
lows that 

Using Eq. (3.16) we get

However, only seven spectral lines pass through the band pass filter as illus-
trated in the figure shown below.

3.4.  Linear FM (LFM) CW Radar

CW radars may use LFM waveforms so that both range and Doppler infor-
mation can be measured. In practical CW radars, the LFM waveform cannot be
continually changed in one direction, and thus periodicity in the modulation is
normally utilized. Fig. 3.5 shows a sketch of a triangular LFM waveform. The
modulation does not need to be triangular; it may be sinusoidal, saw-tooth, or
some other form. The dashed line in Fig 3.5 represents the return waveform
from a stationary target at range . The beat frequency  is also sketched in
Fig. 3.5. It is defined as the difference (due to heterodyning) between the trans-
mitted and received signals. The time delay  is a measure of target range, as
defined in Eq. (3.10).
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In practice, the modulating frequency  is selected such that 

(3.26)

The rate of frequency change, , is

(3.27)

where  is the peak frequency deviation. The beat frequency  is given by 

(3.28)

Eq. (3.28) can be rewritten as

(3.29)

Equating Eqs. (3.27) and (3.29) and solving for  yield 

(3.30)

Now consider the case when Doppler is present (i.e., non-stationary target).
The corresponding triangular LFM transmitted and received waveforms are
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sketched in Fig. 3.6, along with the corresponding beat frequency. As before
the beat frequency is defined as

(3.31)

When the target is not stationary the received signal will contain a Doppler
shift term in addition to the frequency shift due to the time delay . In this
case, the Doppler shift term subtracts from the beat frequency during the posi-
tive portion of the slope. Alternatively, the two terms add up during the nega-
tive portion of the slope. Denote the beat frequency during the positive (up)
and negative (down) portions of the slope, respectively, as  and . 

It follows that

(3.32)

where  is the range rate or the target radial velocity as seen by the radar. The
first term of the right-hand side of Eq. (3.32) is due to the range delay defined
by Eq. (3.28), while the second term is due to the target Doppler. Similarly, 

(3.33)
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 Figure 3.6. Transmited and received LFM signals and beat frequency, for a 
moving target.
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Range is computed by adding Eq. (3.32) and Eq. (3.33). More precisely,

(3.34)

The range rate is computed by subtracting Eq. (3.33) from Eq. (3.32),

(3.35)

As indicated by Eq. (3.34) and Eq. (3.35), CW radars utilizing triangular
LFM can extract both range and range rate information. In practice, the maxi-
mum time delay  is normally selected as

(3.36)

Thus, the maximum range is given by

(3.37)

and the maximum unambiguous range will correspond to a shift equal to .

3.5.  Multiple Frequency CW Radar

CW radars do not have to use LFM waveforms in order to obtain good range
measurements. Multiple frequency schemes allow CW radars to compute very
adequate range measurements, without using frequency modulation. In order
to illustrate this concept, first consider a CW radar with the following wave-
form:

(3.38)

The received signal from a target at range  is 

 (3.39)

where the phase  is equal to

(3.40)

Solving for  we obtain

(3.41)

R
c

4f·
----- fbu fbd+( )=

R
· λ

4
--- fbd fbu–( )=

∆tmax

∆tmax 0.1t0=

Rmax

0.1ct0

2
-------------- 0.1c

4fm

----------= =

2t0

s t( ) A 2πf0tsin=

R

sr t( ) Ar 2πf0t ϕ–( )sin=

ϕ

ϕ 2πf0
2R
c

-------=

R

R
cϕ

4πf0

----------- λ
4π
------ϕ= =

© 2000 by Chapman & Hall/CRC



Clearly, the maximum unambiguous range occurs when  is maximum, i.e.,
. Therefore, even for relatively large radar wavelengths,  is limited

to impractical small values.

Next, consider a radar with two CW signals, denoted by  and .
More precisely,

(3.42)

 (3.43)

The received signals from a moving target are

(3.44)

and 

(3.45)

where  and . After heterodyning (mixing)
with the carrier frequency, the phase difference between the two received sig-
nals is

(3.46)

Again  is maximum when ; it follows that the maximum unambig-
uous range is now

(3.47)

and since , the range computed by Eq. (3.47) is much greater than that
computed by Eq. (3.41). 

3.6. Pulsed Radar 

Pulsed radars transmit and receive a train of modulated pulses. Range is
extracted from the two-way time delay between a transmitted and received
pulse. Doppler measurements can be made in two ways. If accurate range mea-
surements are available between consecutive pulses, then Doppler frequency
can be extracted from the range rate . This approach works fine as
long as the range is not changing drastically over the interval . Otherwise,
pulsed radars utilize a Doppler filter bank. 

Pulsed radar waveforms can be completely defined by the following: (1) car-
rier frequency which may vary depending on the design requirements and
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radar mission; (2) pulse width, which is closely related to the bandwidth and
defines the range resolution; (3) modulation; and finally (4) the pulse repetition
frequency. Different modulation techniques are usually utilized to enhance the
radar performance, or to add more capabilities to the radar that otherwise
would not have been possible. The PRF must be chosen to avoid Doppler and
range ambiguities as well as maximize the average transmitted power. 

Radar systems employ low, medium, and high PRF schemes. Low PRF
waveforms can provide accurate, long, unambiguous range measurements, but
exert severe Doppler ambiguities. Medium PRF waveforms must resolve both
range and Doppler ambiguities; however, they provide adequate average trans-
mitted power as compared to low PRFs. High PRF waveforms can provide
superior average transmitted power and excellent clutter rejection capabilities.
Alternatively, high PRF waveforms are extremely ambiguous in range. Radar
systems utilizing high PRFs are often called Pulsed Doppler Radars (PDR).
Range and Doppler ambiguities for different PRFs are summarized in Table
3.1.

Distinction of a certain PRF as low, medium, or high PRF is almost arbitrary
and depends on the radar mode of operations. For example, a  PRF is
considered low if the maximum detection range is less than . However,
the same PRF would be considered medium if the maximum detection range is
well beyond . 

Radars can utilize constant and varying (agile) PRFs. For example, Moving
Target Indicator (MTI) radars use PRF agility to avoid blind speeds. This kind
of agility is known as PRF staggering. PRF agility is also used to avoid range
and Doppler ambiguities, as will be explained in the next three sections. Addi-
tionally, PRF agility is also used to prevent jammers from locking onto the
radar’s PRF. These two latter forms of PRF agility are sometimes referred to as
PRF jitter.  

Fig. 3.7 shows a simplified pulsed radar block diagram. The range gates can
be implemented as filters that open and close at time intervals that correspond
to the detection range. The width of such an interval corresponds to the desired
range resolution. The radar receiver is often implemented as a series of contig-
uous (in time) range gates, where the width of each gate is matched to the radar
pulse width. The NBF bank is normally implemented using an FFT, where

TABLE 3.1. PRF ambiguities.

PRF Range Ambiguous Doppler Ambiguous

Low PRF No Yes

Medium PRF Yes Yes

High PRF Yes No

3KHz
30Km

30Km
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bandwidth of the individual filters corresponds to the FFT frequency resolu-
tion.

  

3.7.  Range and Doppler Ambiguities

As explained earlier, a pulsed radar can be range ambiguous if a second
pulse is transmitted prior to the return of the first pulse. In general, the radar
PRF is chosen such that the unambiguous range is large enough to meet the
radar’s operational requirements. Therefore, long-range search (surveillance)
radars would require relatively low PRFs.

The line spectrum of a train of pulses has  envelope, and the line
spectra are separated by the PRF, , as illustrated in Fig. 3.8. The Doppler fil-
ter bank is capable of resolving target Doppler as long as the anticipated Dop-
pler shift is less than one half the bandwidth of the individual filters (i.e., one
half the width of an FFT bin). Thus, pulsed radars are designed such that
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 Figure 3.7. Pulsed radar block diagram.
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 (3.48)

where  is the maximum anticipated target Doppler frequency,  is
the maximum anticipated target radial velocity, and  is the radar wavelength. 

If the Doppler frequency of the target is high enough to make an adjacent spec-
tral line move inside the Doppler band of interest, the radar can be Doppler
ambiguous. Therefore, in order to avoid Doppler ambiguities, radar systems
require high PRF rates when detecting high speed targets. When a long-range
radar is required to detect a high speed target, it may not be possible to be both
range and Doppler unambiguous. This problem can be resolved by using multi-
ple PRFs. Multiple PRF schemes can be incorporated sequentially within each
dwell interval (scan or integration frame) or the radar can use a single PRF in
one scan and resolve ambiguity in the next. The latter technique, however, may
have problems due to changing target dynamics from one scan to the next.

3.8. Resolving Range Ambiguity 

Consider a radar that uses two PRFs,  and , on transmit to resolve
range ambiguity, as shown in Fig. 3.9. Denote  and  as the unambigu-
ous ranges for the two PRFs, respectively. Normally, these unambiguous
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 Figure 3.8. Spectra of transmitted and received waveforms, and Doppler 
bank.  (a) Doppler is resolved.   (b) Spectral lines have moved 
into the next Doppler filter. This results in an ambiguous 
Doppler measurement. 
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ranges are relatively small and are short of the desired radar unambiguous
range  (where ). Denote the radar desired PRF that corre-
sponds to  as .

We choose  and  such that they are relatively prime with respect to one
another. One choice is to select  and  for some
integer . Within one period of the desired PRI ( ) the two PRFs

 and  coincide only at one location, which is the true unambiguous target
position. The time delay  establishes the desired unambiguous range. The
time delays  and  correspond to the time between the transmit of a pulse
on each PRF and receipt of a target return due to the same pulse. 

Let  be the number of PRF1 intervals between transmit of a pulse and
receipt of the true target return. The quantity  is similar to  except it is
for PRF2. It follows that, over the interval  to , the only possible results
are  or . The radar needs only to measure 
and . First, consider the case when . In this case,

(3.49)
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for which we get

(3.50)

where  and . It follows that the round trip time to the
true target location is

(3.51)

and the true target range is 

(3.52)

Now if , then

(3.53)

Solving for  we get

(3.54)

and the round-trip time to the true target location is

(3.55)

and in this case, the true target range is

(3.56)

Finally, if , then the target is in the first ambiguity. It follows that

(3.57)

and

(3.58)

Since a pulse cannot be received while the following pulse is being transmit-
ted, these times correspond to blind ranges. This problem can be resolved by
using a third PRF. In this case, once an integer  is selected, then in order to
guarantee that the three PRFs are relatively prime with respect to one another,
we may choose , , and
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3.9. Resolving Doppler Ambiguity

The Doppler ambiguity problem is analogous to that of range ambiguity.
Therefore, the same methodology can be used to resolve Doppler ambiguity. In
this case, we measure the Doppler frequencies  and  instead of  and

.

If , then we have

(3.59)

And if ,

(3.60)

and the true Doppler is 

(3.61)

Finally, if , then

(3.62)

Again, blind Dopplers can occur, which can be resolved using a third PRF.

Example 3.3: A certain radar uses two PRFs to resolve range ambiguities.
The desired unambiguous range is . Choose . Compute

, , , and . 

Solution: First let us compute the desired PRF, 

It follows that

fd1 fd2 t1
t2

fd1 fd2>

M
fd2 fd1–( ) fr2+

fr1 fr2–
-----------------------------------=

fd1 fd2<

M
fd2 fd1–

fr1 fr2–
------------------=

fd Mfr1 fd1+=

fd Mfr2 fd2+=

fd1 fd2=

fd fd1 fd2= =

Ru 100Km= N 59=
fr1 fr2 Ru1 Ru2

frd

frd
c

2Ru

--------- 3 108×
200 103×
----------------------- 1.5KHz= = =

fr1 Nfrd 59( ) 1500( ) 88.5KHz= = =

fr2 N 1+( )frd 59 1+( ) 1500( ) 90KHz= = =

Ru1
c

2fr1

--------- 3 108×
2 88.5 103××
---------------------------------- 1.695Km= = =

© 2000 by Chapman & Hall/CRC



.

Example 3.4: Consider a radar with three PRFs; ,
, and . Assume . Calculate the fre-

quency position of each PRF for a target whose velocity is . Calculate
 (Doppler frequency) for another target appearing at , , and

 for each PRF.

Solution: The Doppler frequency is

Then by using Eq. (3.61)  where , we can write

We will show here how to compute , and leave the computations of  and
 to the reader. First, if we choose , that means , which

cannot be true since  cannot be greater than . Choosing  is also
invalid since  cannot be true either. Finally, if we choose

 we get , which is an acceptable value. It follows that the
minimum  that may satisfy the above three relations are ,

, and . Thus, the apparent Doppler frequencies are
, , and .

Ru2
c

2fr2

--------- 3 108×
2 90 103××
----------------------------- 1.667Km= = =

fr1 15KHz=
fr2 18KHz= fr3 21KHz= f0 9GHz=

550m s⁄
fd 8KHz 2KHz
17KHz

fd 2
vf0

c
------- 2 550 9 109×××

3 108×
------------------------------------------ 33KHz= = =

nifri fdi+ fd= i 1 2 3, ,=

n1fr1 fd1+ 15n1 fd1+ 33= =

n2fr2 fd2+ 18n2 fd2+ 33= =

n3fr3 fd3+ 21n3 fd3+ 33= =

n1 n2
n3 n1 0= fd1 33KHz=

fd1 fr1 n1 1=
fd1 18KHz=

n1 2= fd1 3KHz=
n1 n2 n3, , n1 2=

n2 1= n3 1=
fd1 2KHz= fd2 15KHz= fd3 12KHz=

KHz

5            10          15          20           25          30          35

fr1fd1

3
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Now for the second part of the problem. Again by using Eq. (3.61) we have

We can now solve for the smallest integers  that satisfy the above
three relations. See the table below.

Thus, , and , and the true target Doppler is
. It follows that 

n 0 1 2 3 4

 from 8 23 38 53 68

 from 2 20 38 56

 from 17 38 39

KHz

5            10          15          20           25          30          35

fr2fd2

18

KHz

5            10          15          20           25          30          35

fr3fd3

12

n1fr1 fd1+ fd 15n1 8+= =

n2fr2 fd2+ fd 18n2 2+= =

n3fr3 fd3+ fd 21n3 17+= =

n1 n2 n3, ,

fd
fr1

fd fr2

fd fr3

n1 2 n2= = n3 1=
fd 38KHz=

vr 38000
0.0333

2
----------------× 632.7 m

sec
-----------= =
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3.10. MATLAB Program “range_calc.m”

The program “range_calc.m” solves the radar range equation of the form

(3.63)

where  is peak transmitted power,  is pulse width,  is PRF,  is trans-
mitting antenna gain,  receiving antenna gain,  is wavelength,  is target
cross section,  is Boltzman’s constant,  effective noise temperature,  is
system noise figure,  is total system losses, and  is the minimum
SNR required for detection. This equation applies for both CW and pulsed
radars. In the case of CW radars, the terms  must be replaced by the aver-
age CW power . Additionally, the term  refers to the dwell interval;
alternatively, in the case of pulse radars  denotes the time on target. MAT-
LAB-based GUI is utilized in inputting and editing all input parameters. The
outputs include the maximum detection range versus minimum SNR plots.
This program can be executed by typing “range_calc_driver” which is
included in this book’s companion software. This software can be downloaded
from CRC Press Web site “www.crcpress.com”. The related MATLAB GUI
workspace associated with this program is illustrated in Fig. 3.10.

 Problems

3.1. Prove that

 .

3.2. Show that . Hint: You may utilize the relation

 .

3.3. In a multiple frequency CW radar, the transmitted waveform consists of
two continuous sinewaves of frequencies  and .

Compute the maximum unambiguous detection range.
3.4. Consider a radar system using linear frequency modulation. Compute

the range that corresponds to . Assume a beat frequency

. 

R
PtτfrTiGtGrλ

2σ

4π( )3
kTeFL SNR( )o

-------------------------------------------------
 
 
 

1
4
---

=

Pt τ fr Gt
Gr λ σ

k Te F
L SNR( )o

Ptτfr
PCW Ti

Ti

Jn z( )

n ∞–=

∞

∑ 1=

J n– z( ) 1–( )n
Jn z( )=

Jn z( ) 1
π
--- z ysin ny–( )cos yd

0

π

∫=

f1 105KHz= f2 115KHz=

f· 20 10MHz,=

fb 1200Hz=
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3.5. A certain radar using linear frequency modulation has a modulation fre-
quency , and frequency sweep . Calculate the

average beat frequency differences that correspond to range increments of 

and  meters.

3.6. A CW radar uses linear frequency modulation to determine both range
and range rate. The radar wavelength is , and the frequency sweep is

. Let . (a) Calculate the mean Doppler shift; (b)

compute  and  corresponding to a target at range , which is

approaching the radar with radial velocity of .

 Figure 3.10. GUI work space associated with the program 
“range_calc.m”.

fm 300Hz= ∆f 50MHz=

10

15

λ 3cm=

∆f 200KHz= t0 20ms=

fbu fbd R 350Km=

250m s⁄
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3.7. In Chapter 1 we developed an expression for the Doppler shift associ-

ated with a CW radar (i.e., , where the plus sign is used for clos-

ing targets and the negative sign is used for receding targets). CW radars can
use the system shown below to determine whether the target is closing or
receding. Assuming that the emitted signal is  and the received signal

is , show that the direction of the target can be deter-

mined by checking the phase shift difference in the outputs  and .

3.8. Consider a medium PRF radar on board an aircraft moving at a speed of
 with PRFs , , and ; the

radar operating frequency is . Calculate the frequency position of a

nose-on target with a speed of . Also calculate the closing rate of a

target appearing at , , and  away from the center line of PRF ,

, and , respectively.

3.9. Repeat Problem 3.8 when the target is  off the radar line of sight.

3.10. A certain radar operates at two PRFs,  and , where

 and . Show that this multiple

PRF scheme will give the same range ambiguity as that of a single PRF with

PRI .

fd 2v± λ⁄=

A ω0tcos

kA ω0 ωd±( )t ϕ+( )cos

y1 t( ) y2 t( )

mixer
   A

mixer
   B

CW
transmitter

phase
shift

90°

y1 t( )

y2 t( )

transmitting
 antenna

receiving
 antenna

350 m s⁄ fr1 10KHz= fr2 15KHz= fr3 20KHz=

9.5GHz

300 m s⁄
6 5 18KHz 10

15 20KHz

15°
fr1 fr2

Tr1 1 fr1⁄( ) T 5⁄= = Tr2 1 fr2⁄( ) T 6⁄= =

T
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3.11. Consider an X-band radar with wavelength  and bandwidth

. The radar uses two PRFs,  and .

A target is detected at range bin  for  and at bin  for . Determine

the actual target range.
3.12. A certain radar uses two PRFs to resolve range ambiguities. The

desired unambiguous range is . Select a reasonable value for .

Compute the corresponding , , , and .

3.13. A certain radar uses three PRFs to resolve range ambiguities. The
desired unambiguous range is . Select . Compute the

corresponding , , , , , and . 

λ 3cm=

B 10MHz= fr1 50KHz= fr2 55.55KHz=

46 fr1 12 fr2

Ru 150Km= N

fr1 fr2 Ru1 Ru2

Ru 250Km= N 43=

fr1 fr2 fr3 Ru1 Ru2 Ru3
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