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Chapter 7 Pulse Compression 

Range resolution for a given radar can be significantly improved by using
very short pulses. Unfortunately, utilizing short pulses decreases the average
transmitted power, which can hinder the radar’s normal modes of operation,
particularly for multi-function and surveillance radars. Since the average trans-
mitted power is directly linked to the receiver SNR, it is often desirable to
increase the pulse width (i.e., increase the average transmitted power) while
simultaneously maintaining adequate range resolution. This can be made pos-
sible by using pulse compression techniques. Pulse compression allows us to
achieve the average transmitted power of a relatively long pulse, while obtain-
ing the range resolution corresponding to a short pulse. In this chapter, we will
analyze analog and digital pulse compression techniques.

Two analog pulse compression techniques are discussed in this chapter. The
first technique is known as “correlation processing” which is dominantly used
for narrow band and some medium band radar operations. The second tech-
nique is called “stretch processing” and is normally used for extremely wide
band radar operations. Digital pulse compression will also be briefly pre-
sented.

7.1. Time-Bandwidth Product

Consider a radar system that employs a matched filter receiver. Let the
matched filter receiver bandwidth be denoted as . Then, the noise power
available within the matched filter bandwidth is given by

(7.1)
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where the factor of two is used to account for both negative and positive fre-
quency bands, as illustrated in Fig. 7.1. The average input signal power over a
pulse duration  is

(7.2)

 is the signal energy. Consequently, the matched filter input SNR is given by

(7.3)

Using Eqs. (6.18) (from Chapter 6) and (7.3), one may compute the output
peak instantaneous SNR to the input SNR ratio as

(7.4)

The quantity  is referred to as the “time-bandwidth product” for a given
waveform, or its corresponding matched filter. The factor  by which the
output SNR is increased over that at the input is called the matched filter gain,
or simply the compression gain. 

In general, the time-bandwidth product of an unmodulated pulse approaches
unity. The time-bandwidth product of a pulse can be made much greater than
unity by using frequency or phase modulation. If the radar receiver transfer
function is perfectly matched to that of the input waveform, then the compres-
sion gain is equal to . Clearly, the compression gain becomes smaller than

 as the spectrum of the matched filter deviates from that of the input signal. 
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Figure 7.1. Input noise power.
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7.2. Radar Equation with Pulse Compression

The radar equation for a pulsed radar can be written as

(7.5)

where  is peak power,  is pulse width,  is antenna gain,  is target
RCS,  is range,  is Boltzman’s constant,  is effective noise temperature,

 is noise figure, and  is total radar losses.

Pulse compression radars transmit relatively long pulses (with modulation)
and process the radar echo into very short pulses (compressed). One can view
the transmitted pulse to be composed of a series of very short subpulses (duty
is 100%), where the width of each subpulse is equal to the desired compressed
pulse width. Denote the compressed pulse width as . Thus, for an individual
subpulse, Eq. (7.5) can be written as

(7.6)

The SNR for the uncompressed pulse is then derived from Eq. (7.6) as

(7.7)

where  is the number of subpulses. Equation (7.7) is denoted as the radar
equation with pulse compression.

Observation of Eqs. (7.5) and (7.7) indicates the following (note that both
equations have the same form): For a given set of radar parameters, and as long
as the transmitted pulse remains unchanged, then the SNR is also unchanged
regardless of the signal bandwidth. More precisely, when pulse compression is
used, the detection range is maintained while the range resolution is drastically
improved by keeping the pulse width unchanged and by increasing the band-
width. Remember that range resolution is proportional to the inverse of the sig-
nal bandwidth,

(7.8)

7.3.  Analog Pulse Compression

 Correlation and stretch pulse compression techniques are discussed in this
section. Two MATLAB programs which execute digital implementation of
both techniques (using the FFT) are also presented. 
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7.3.1.  Correlation Processor

In this case, pulse compression is accomplished by adding frequency modu-
lation to a long pulse at transmission, and by using a matched filter receiver in
order to compress the received signal. As an example, we saw in Chapter 6 that
using LFM within a rectangular pulse compresses the matched filter output by
a factor , which is directly proportional to the pulse width and band-
width. Thus, by using long pulses and wideband LFM modulation we can
achieve large compression ratios. This form of pulse compression is known as
“correlation processing.” 

Fig. 7.2 illustrates the advantage of pulse compression. In this example, an
LFM waveform is used. Two targets with RCS  and 
are detected. The two targets are not separated enough in time to be resolved.
Fig. 7.2a shows the composite echo signal from those targets. Clearly, the tar-
get returns overlap and, thus, they are not resolved. However, after pulse com-
pression the two pulses are completely separated and are resolved as two
targets. In fact, when using LFM, returns from neighboring targets are resolved
as long as they are separated, in time, by , the compressed pulse width.

ξ Bτ'=

σ1 1m
2= σ2 0.5m

2=

τn1

time

amplitude

 Figure 7.2a. Composite echo signal for two unresolved targets.
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Radar operations (search, track, etc.) are usually carried out over a specified
range window, referred to as the receive window and defined by the difference
between the radar maximum and minimum range. Returns from all targets
within the receive window are collected and passed through a matched filter
circuitry to perform pulse compression. One implementation of such analog
processors is the Surface Acoustic Wave (SAW) devices. Because of the recent
advances in digital computer development, the correlation processor is often
performed digitally using the FFT. This digital implementation is called Fast
Convolution Processing (FCP) and can be implemented at base-band. The fast
convolution process is illustrated in Fig. 7.3

Since the matched filter is a linear time invariant system, its output can be
described mathematically by the convolution between its input and its impulse
response, 

(7.9)

where  is the input signal,  is the matched filter impulse response
(replica), and the  operator symbolically represents convolution. From the
Fourier transform properties, 

(7.10)

And when both signals are sampled properly, the compressed signal  can
be computed from

 Figure 7.2b. Composite echo signal corresponding to Fig. 7.2a, after 
pulse compression. 
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(7.11)

where  is the inverse FFT. When using pulse compression, it is desirable
to use modulation schemes that can accomplish a maximum pulse compression
ratio, and can significantly reduce the side lobe levels of the compressed wave-
form. For the LFM case the first side lobe is approximately  below the
main peak, and for most radar applications this may not be sufficient. In prac-
tice, high side lobe levels are not preferable because noise and/or jammers
located at the side lobes may interfere with target returns in the main lobe. 

Weighting functions (windows) can be used on the compressed pulse spec-
trum in order to reduce the side lobe levels. The cost associated with such an
approach is a loss in the main lobe resolution, and a reduction in the peak value
(i.e., loss in the SNR), as illustrated in Fig. 7.4. Weighting the time domain
transmitted or received signal instead of the compressed pulse spectrum will
theoretically achieve the same goal. However, this approach is rarely used,
since amplitude modulating the transmitted waveform introduces extra bur-
dens on the transmitter.

Consider a radar system that utilizes a correlation processor receiver (i.e.,
matched filter). The receive window in meters is defined by 

(7.12)

where  and , respectively, define the maximum and minimum range
over which the radar performs detection. Typically  is limited to the extent
of the target complex. The normalized complex transmitted signal has the form 

(7.13)

 is the pulse width, , and  is the bandwidth. Note that this defi-
nition of the LFM pulse is different from that in Chapter 6. Earlier,  denoted
the chirp center frequency and in Eq. (7.13) it denotes the chirp start frequency. 
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Figure 7.3. Computing the matched filter output using an FFT.
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The radar echo signal is similar to the transmitted one with the exception of a
time delay and an amplitude change that correspond to the target RCS. Con-
sider a target at range . The echo received by the radar from this target is 

(7.14)

where  is proportional to target RCS, antenna gain, and range attenuation.
The time delay  is given by 

 (7.15)

The first step of the processing consists of removing the frequency . This
is accomplished by mixing  with a reference signal whose phase is .
The phase of the resultant signal, after low pass filtering, is then given by 

(7.16)

and the instantaneous frequency is

(7.17)

The quadrature components are
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 Figure 7.4. Reducing the first sidelobe to -42 dB doubles the main lobe width.
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(7.18)

Sampling the quadrature components is performed next. The number of sam-
ples, , must be chosen so that foldover (ambiguity) in the spectrum is
avoided. For this purpose, the sampling frequency,  (based on the Nyquist
sampling rate), must be

(7.19)

and the sampling interval is 

(7.20)

Using Eq. (7.17) it can be shown that (the proof is left as an exercise) the fre-
quency resolution of the FFT is

(7.21)

The minimum required number of samples is

(7.22)

Equating Eqs. (7.20) and (7.22) yields

(7.23)

Consequently, a total of  real samples, or  complex samples, is suf-
ficient to completely describe an LFM waveform of duration  and bandwidth

. For example, an LFM signal of duration  and bandwidth
 requires 200 real samples to determine the input signal (100

samples for the I-channel and 100 samples for the Q-channel). 

For better implementation of the FFT  is extended by zero padding, to the
next power of two. Thus, the total number of samples, for some positive inte-
ger , is 

(7.24)

The final steps of the FCP processing include: (1) taking the FFT of the sam-
pled sequence; (2) multiplying the frequency domain sequence of the signal
with the FFT of the matched filter impulse response; and (3) performing the
inverse FFT of the composite frequency domain sequence in order to generate
the time domain compressed pulse (HRR profile). Of course, weighting,
antenna gain, and range attenuation compensation must also be performed. 
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Assume that  targets at ranges , , and so forth are within the receive
window. From superposition, the phase of the down converted signal is 

(7.25)

The times  represent the two-way time delays,
where  coincides with the start of the receive window. 

 MATLAB Function “matched_filter.m”

The function “matched_filter.m” performs fast convolution processing. It is
given in Listing 7.1 in Section 7.5. The syntax is as follows:

[y] = matched_filter(nscat, taup, f0, b, rmin, rrec, scat_range, scat_rcs, win)

where

The user can access this function either by a MATLAB function call, or by exe-
cuting the MATLAB program “matched_filter_driver.m” which utilizes MAT-
LAB based GUI. The outputs of this function are the complex array  and
plots of the uncompressed and compressed signal versus relative. This function
utilizes the function “power_integer_2.m” which implements Eq. (7.24): 

Symbol Description Units Status

nscat number of point scatterers within the 
received window

none input

rmin minimum range of receive window Km input

rrec  receive window size m input

taup uncompressed pulse width seconds input

f0 chirp start frequency Hz input

b chirp bandwidth Hz input

scat_range vector of scatterers range Km input

scat_rsc vector of scatterers RCS m2 input

win 0 = no window

 1 = Hamming 

2 = Kaiser with parameter pi

3 = Chebychev - sidelobes at -60dB

none input

y compressed output volts output
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function n = power_integer_2 (x)
m = 0.;
for j = 1:30
   m = m + 1.;
   delta = x - 2.^m;
   if(delta < 0.)
      n = m;
      return
   else
   end
end

As an example, consider the case where

Note that the compressed pulsed range resolution, without using a window,
is . Figs. 7.5 and 7.6, respectively, show the uncompressed and
compressed echo signal corresponding to this example. 

nscat 2 b 16 MHz

rmin 150 Km scat_range rmin in Km + {0, 50} meters

rrec 200 m scat_rsc {1, 1} m2

taup 0.005 ms win 2 (Kaiser)

f0 14 MHz

∆R 9.3m=

 Figure 7.5. Uncompressed echo signal. Scatterers are unresolved. 
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7.3.2.  Stretch Processor

Stretch processing, also known as “active correlation,” is normally used to
process extremely high bandwidth LFM waveforms. This processing technique
consists of the following steps: First, the radar returns are mixed with a replica
(reference signal) of the transmitted waveform. This is followed by Low Pass
Filtering (LPF) and coherent detection. Next, Analog to Digital (A/D) conver-
sion is performed; and finally, a bank of Narrow Band Filters (NBFs) is used in
order to extract the tones that are proportional to target range, since stretch pro-
cessing effectively converts time delay into frequency. All returns from the
same range bin produce the same constant frequency. Fig. 7.7 shows a block
diagram for a stretch processing receiver. The reference signal is an LFM
waveform that has the same LFM slope as the transmitted LFM signal. It exists
over the duration of the radar “receive-window,” which is computed from the
difference between the radar maximum and minimum range. Denote the start
frequency of the reference chirp as .

Consider the case when the radar receives returns from a few close (in time
or range) targets, as illustrated in Fig. 7.7. Mixing with the reference signal and
performing low pass filtering are effectively equivalent to subtracting the
return frequency chirp from the reference signal. Thus, the LPF output consists
of constant tones corresponding to the targets’ positions. The normalized trans-
mitted signal can be expressed by 

 Figure 7.6. Compressed echo signal. Scatterers are resolved. 
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Figure 7.7. Stretch processing block diagram.
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(7.26)

where  is the LFM coefficient and  is the chirp start frequency.
Assume a point scatterer at range . The received signal by the radar is

(7.27)

where  is proportional to target RCS, antenna gain, and range attenuation.
The time delay  is 

(7.28)

The reference signal is 

(7.29)

The received window in seconds is 

(7.30)

It is customary to let . The output of the mixer is made of the product of
the received and reference signals. After low pass filtering the signal is 

(7.31)

Substituting Eq. (7.28) into (7.31) and collecting terms yield

(7.32)

and since , Eq. (7.32) is approximated by

(7.33)

The instantaneous frequency is

(7.34)

which clearly indicates that target range is proportional to the instantaneous
frequency. Therefore, proper sampling of the LPF output and taking the FFT of
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the sampled sequence lead to the following conclusion: a peak at some fre-
quency  indicates presence of a target at range 

(7.35)

Assume  close targets at ranges , , and so forth ( ).
From superposition, the total signal is

(7.36)

where  are proportional to the targets’ cross sections,
antenna gain, and range. The times  represent
the two-way time delays, where  coincides with the start of the receive win-
dow. Using Eq. (7.32) the overall signal at the output of the LPF can then be
described by 

(7.37)

And hence, target returns appear at constant frequency tones that can be
resolved using the FFT. Consequently, determining the proper sampling rate
and FFT size is very critical. The rest of this section presents a methodology
for computing the proper FFT parameters required for stretch processing.

Assume a radar system using a stretch processor receiver. The pulse width is
 and the chirp bandwidth is . Since stretch processing is normally used in

extreme bandwidth cases (i.e., very large ), the receive window over which
radar returns will be processed is typically limited to few meters to possibly
less than 100 meters. The compressed pulse range resolution is computed from
Eq. (7.8). Declare the FFT size by  and its frequency resolution by . The
frequency resolution can be computed using the following procedure: consider
two adjacent point scatterers at range  and . The minimum frequency
separation, , between those scatterers so that they are resolved can be com-
puted from Eq. (7.34). More precisely,

 (7.38)

Substituting Eq. (7.8) into Eq. (7.38) yields

(7.39)
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The maximum resolvable frequency by the FFT is limited to the region
. Thus, the maximum resolvable frequency is 

 (7.40)

Using Eqs. (7.30) and (7.39) into Eq. (7.40) and collecting terms yield

(7.41)

For better implementation of the FFT, choose an FFT of size 

(7.42)

 is a nonzero positive integer. The sampling interval is then given by

(7.43)

MATLAB Function “stretch.m”

The function “stretch.m” presents a digital implementation of stretch pro-
cessing. It is given in Listing 7.2 in Section 7.5. The syntax is as follows:

[y] = stretch (nscat, taup, f0, b, rmin, rrec, scat_range, scat_rcs, win)

where

Symbol Description Units Status

nscat number of point scatterers within the 
received window

none input

rmin minimum range of receive window Km input

rrec range receive window m input

taup uncompressed pulse width seconds input

f0 chirp start frequency Hz input

b chirp bandwidth Hz input

scat_range vector of scatterers range Km input

scat_rsc vector of scatterers RCS m2 input

win 0 = no window

 1 = Hamming 

2 = Kaiser with parameter pi

3 = Chebychev - sidelobes at -60dB

none input

y compressed output volts output
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N∆f
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∆fNFFT
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The user can access this function either by a MATLAB function call or by exe-
cuting the MATLAB program “stretch_driver.m” which utilizes MATLAB
based GUI. The outputs of this function are the complex array  and plots of
the uncompressed and compressed echo signal versus time. As an example,
consider the case where

Note that the compressed pulse range resolution, without using a window, is
. Figs. 7.8 and 7.9, respectively, show the uncompressed and

compressed echo signals corresponding to this example. 

nscat 3

rmin 150 Km

rrec 30 m

taup 10 ms

f0 5.6 GHz

b 1 GHz

scat_range rmin in Km+ {1.5, 7.5, 15.5} m

scat_rsc {1, 1, 2} m2

win 2 (Kaiser)

y

∆R 0.15cm=

 Figure 7.8. Uncompressed echo signal. Three targets are unresolved. 
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7.3.3. Distortion Due to Target Velocity 

Up to this point, we have analyzed pulse compression with no regards to tar-
get velocity. In fact, all analyses provided assumed stationary targets. Uncom-
pensated target radial velocity, or equivalently Doppler shift, degrades the
quality of the HRR profile generated by pulse compression. In Chapter 5, the
effects of radial velocity on SFW were analyzed; similar distortion in the HRR
profile is also present with LFM waveforms when target radial velocity is not
compensated for. 

The two effects of target radial velocity (Doppler frequency) on the radar
received pulse were developed in Chapter 1. When the target radial velocity is
not zero, the received pulse width is expanded (or compressed) by the time
dilation factor. Additionally, the received pulse center frequency is shifted by
the amount of Doppler frequency. When these effects are not compensated for,
the pulse compression processor output is distorted. This is illustrated in Fig.
7.10. Fig. 7.10a shows a typical output of the pulse compression processor
with no distortion. Alternatively, Figs. 7.10b, 7.10c, and 7.10d show the output
of the pulse compression processor when 5% shift of the chirp center fre-
quency and 10% time dilation are present. 

 Figure 7.9. Compressed echo signal. Three targets are resolved. 
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 Figure 7.10a. Compressed pulse output of a pulse compression processor. No 
distortion is present. This figure can be reproduced using 
MATLAB program “fig7_10” given in Listing 7.3 in Section 7.5.
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 Figure 7.10b. Mismatched compressed pulse; 5% Doppler shift.
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 Figure 7.10c. Mismatched compressed pulse; 10% time dilation.
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 Figure 7.10d. Mismatched compressed pulse; 10% time dilation and 5% 
Doppler shift.
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Correction for the distortion caused by the target radial velocity can be over-
come by using the following approach. Over a period of few pulses, the radar
data processor estimates the radial velocity of the target under track. Then, the
chirp slope and pulse width of the next transmitted pulse are changed to
account for the estimated Doppler frequency and time dilation. 

7.3.4. Range Doppler Coupling

 Plots and characteristics of the ambiguity function for an LFM waveform
were presented in Chapter 6. However, the distinctive property of range Dop-
pler coupling associated with LFM was not presented. Range Doppler coupling
is a phrase used to describe the shift in the delay/range response of an LFM
ambiguity function due to the presence of a Doppler shift. The nature of range
Doppler coupling can be better understood by analyzing the LFM ambiguity
function. An expression for an LFM ambiguity function was developed in
Chapter 6, and is repeated here as Eq. (7.44):

(7.44)

For this purpose, consider the sketch of an LFM ambiguity function shown in
Fig. 7.11.

χ τ fd;( ) 2 1 τ
τ'
-----– 

 
πτ' µτ fd+( ) 1 τ

τ'
-----– 

 
 
 sin

πτ' µτ fd+( ) 1 τ
τ'
-----– 

 
---------------------------------------------------------------

2

= τ τ'≤

fD µτ′–=

τ

fD

am b igu ity

τ′

 Figure 7.11. Illustration of range Doppler coupling for an LFM pulse.
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The ambiguity surface extends from  to  in range and from  to 
in Doppler. The response has a maximum at the point . Pro-
files parallel to the Doppler axis have maxima above the line  which
passes through the origin. The presence of radial velocity forces the peak of the
ambiguity surface to a point that has a peak value smaller than the maximum
that occurs at the origin. However, as long as the shift is less than the line

, the ambiguity function response exerts acceptable reduction in
peak values, as illustrated in Fig. 7.11. This is the reason why some times LFM
waveforms are called Doppler invariant. 

7.4. Digital Pulse Compression

In this section we will briefly discuss three digital pulse compression tech-
niques. They are frequency codes, binary phase codes, and poly-phase codes.
Costas codes, Barker Codes, and Frank codes will be presented to illustrate,
respectively, frequency, binary phase, and poly-phase coding. We will deter-
mine the pulse compression goodness of a code, based on its autocorrelation
function since in the absence of noise, the output of the matched filter is pro-
portional to the code autocorrelation. Given the autocorrelation function of a
certain code, the main lobe width (compressed pulse width) and the side lobe
levels are the two factors that need to be considered in order to evaluate the
code’s pulse compression characteristics. 

7.4.1.  Frequency Coding (Costas Codes)

Construction of Costas codes can be understood from the construction pro-
cess of Stepped Frequency Waveforms (SFW) described in Chapter 5. In SFW,
a relatively long pulse of length  is divided into  subpulses, each of width

 ( ). Each group of  subpulses is called a burst. Within each burst
the frequency is increased by  from one subpulse to the next. The overall
burst bandwidth is . More precisely,

(7.45)

and the frequency for the  subpulse is

(7.46)

where  is a constant frequency and . It follows that the time-band-
width product of this waveform is

(7.47)

τ′– τ′ ∞– ∞
τ fD,( ) 0 0,( )=

fD µτ–=

fD 1 τ′⁄=

τ′ N
τ1 τ′ Nτ1= N

∆f
N∆f

τ1 τ′ N⁄=

ith

fi f0 i∆f+= i; 1 N,=

f0 f0 ∆f»

∆fτ′ N
2=
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Costas signals (or codes) are similar to SFW, except that the frequencies for
the subpulses are selected in a random fashion, according to some predeter-
mined rule or logic. For this purpose, consider the  matrix shown in Fig.
7.12. In this case, the rows are indexed from  and the columns
are indexed from . The rows are used to denote the
subpulses and the columns are used to denote the frequency. A “dot” indicates
the frequency value assigned to the associated subpulse. In this fashion, Fig.
7.12a shows the frequency assignment associated with a SFW. Alternatively,
the frequency assignments in Fig. 7.12b are chosen randomly. For a matrix of
size , there are a total of  possible ways of assigning the “dots” (i.e.,

 possible codes). 

The sequences of “dots” assignment for which the corresponding ambiguity
function approaches an ideal or a “thumbtack” response are called Costas
codes. A near thumbtack response was obtained by Costas1 by using the fol-
lowing logic: only one frequency per time slot (row) and per frequency slot
(column). Therefore, for an  matrix the number of possible Costas codes
is drastically less than .   For example, there are  possible Costas
codes for , and  possible codes for . It can be shown
that the code density, defined as the ratio , significantly gets smaller as

 becomes larger. 

1. Costas, J. P., A study of a Class of Detection Waveforms Having Nearly Ideal 
Range-Doppler Ambiguity Properties, Proc. IEEE 72, 1984, pp. 996-1009.

N N×
i 1 2 … N, , ,=

j 0 1 2 … N 1–( ), , , ,=

N N× N!
N!

N N×
N! Nc 4=

N 3= Nc 40= N 5=
Nc N!⁄

N

 Figure 7.12. Frequency assignment for a burst of N subpulses. (a) SFW (stepped 
LFM); (b) Costas code of length Nc = 10. 
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There are numerous analytical ways to generate Costas codes. In this section
we will describe two of these methods. First, let  be an odd prime number,
and choose the number of subpulses as

 (7.48)

Define  as the primitive root of . A primitive root of  (an odd prime num-
ber) is defined as  such that the powers  modulo  generate
every integer from  to . 

In the first method, for an  matrix, label the rows and columns, respec-
tively, as

(7.49)

Place a dot in the location  corresponding to the frequency  (from Eq.
(7.46)) if and only if

 (7.50)

In the next method, Costas code is first obtained from the logic described
above; then by deleting the first row and first column from the matrix a new
code is generated. This method produces a Costas code of length .

Define the normalized complex envelope of the Costas signal as

(7.51)

(7.52)

Costas showed that the output of the matched filter is 

(7.53)

(7.54)
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(7.55)

(7.56)

Three-dimensional plots for the ambiguity function of Costas signals show
the near thumbtack response of the ambiguity function. All sidelobes, except
for few around the origin, have amplitude . Few sidelobes close to the ori-
gin have amplitude , which is typical of Costas codes. The compression
ratio of a Costas code is approximately . 

7.4.2. Binary Phase Codes

In this case, a relatively long pulse of width  is divided into  smaller
pulses; each is of width . Then, the phase of each sub-pulse is ran-
domly chosen as either  or  radians relative to some CW reference signal. It
is customary to characterize a sub-pulse that has  phase (amplitude of +1
Volt) as either “1” or “+.” Alternatively, a sub-pulse with phase equal to 
(amplitude of -1 Volt) is characterized by either “0” or “-.” The compression
ratio associated with binary phase codes is equal to , and the peak
value is  times larger than that of the long pulse. The goodness of a com-
pressed binary phase code waveform depends heavily on the random sequence
of the phase for the individual sub-pulses. 

One family of binary phase codes that produce compressed waveforms with
constant side lobe levels equal to unity is the Barker code. Fig. 7.13 illustrates
this concept for a Barker code of length seven. A Barker code of length  is
denoted as . There are only seven known Barker codes that share this
unique property; they are listed in Table 7.1. Note that  and  have com-
plementary forms that have the same characteristics. Since there are only seven
Barker codes, they are not used when radar security is an issue.

α π fl fq– fD–( ) τ1 τ–( )=

β π fl fq– fD–( ) τ1 τ+( )=

1 N⁄
2 N⁄

N

τ' N
∆τ τ' N⁄=

0 π
0

π

ξ τ' ∆τ⁄=
N

n
Bn

B2 B4

 +        +       +       -        -        +       +   

Figure 7.13. Binary phase code of length 7. 
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In general, the autocorrelation function (which is an approximation for the
matched filter output) for a  Barker code will be  wide. The main
lobe is  wide; the peak value is equal to . There are  side
lobes on either side of the main lobe; this is illustrated in Fig. 7.14 for a .
Notice that the main lobe is equal to 13, while all side lobes are unity.

The most side lobe reduction offered by a Barker code is , which
may not be sufficient for the desired radar application. However, Barker codes
can be combined to generate much longer codes. In this case, a  code can be
used within a  code (  within ) to generate a code of length . The
compression ratio for the combined  code is equal to . As an example,
a combined  is given by 

(7.57)

and is illustrated in Fig. 7.15. Unfortunately, the side lobes of a combined
Barker code autocorrelation function are no longer equal to unity. 

Some side lobes of a Barker code autocorrelation function can be reduced to
zero if the matched filter is followed by a linear transversal filter with impulse
response given by

(7.58)

TABLE 7.1. Barker codes.

Code 
symbol

Code 
length Code elements

Side lode 
reduction (dB)

2 +- 

++

6.0

3 ++- 9.5

4 ++-+ 

+++-

12.0

5 +++-+ 14.0

7 +++--+- 16.9

11 +++---+--+- 20.8

13 +++++--++-+-+ 22.3

B2

B3

B4

B5

B7

B11

B13

BN 2N∆τ
2∆τ N N 1–( ) 2⁄

B13

22.3dB–

Bm
Bn m n mn

Bmn mn
B54

B54 11101 11101 00010 11101, , ,{ }=

h t( ) βkδ t 2k∆τ–( )

k N–=

N

∑=
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 + + + + + - - + + - + - +

13∆τ τ'=

∆τ

1

13

∆τ∆τ– 13∆τ13– ∆τ

 Figure 7.14. Barker code of length 13, and its corresponding 
autocorrelation function.
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Figure 7.15. A combined  Barker code.B54
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where  is the filter’s order, the coefficients  ( ) are to be deter-
mined,  is the delta function, and  is the Barker code sub-pulse
width. A filter of order  produces  zero side lobes on either side of the
main lobe. The main lobe amplitude and width do not change. This is illus-
trated in Fig. 7.16.

In order to illustrate this approach further, consider the case where the input
to the matched filter is , and assume . The autocorrelation for a 
code is 

(7.59)

The output of the transversal filter is the discrete convolution between its
impulse response and the sequence . At this point we need to compute the
coefficients  that guarantee the desired filter output (i.e., unchanged main
lobe and four zero side lobe levels). Performing the discrete convolution as
defined in Eq. (7.58), and collecting equal terms ( ) yield the follow-
ing set of five linearly independent equations:

(7.60)

The solution of Eq. (7.60) is left as an exercise. Note that by setting the first
equation equal to  and all other equations to  and then solving for 
guarantees that the main peak remains unchanged, and that the next four side
lobes are zeros. So far we have assumed that coded pulses have rectangular
shapes. Using other pulses of other shapes, such as Gaussian, may produce bet-
ter side lobe reduction and a larger compression ratio.

N βk βk β k–=
δ ⋅( ) ∆τ

N N
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=
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1– 2– 1– 11 1–
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0
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11 0 βk

m atch ed  
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    f ilte r; o rd e r N
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 Figure 7.16. A linear transversal filter of order N can be used to 
produce N zero side lobes in the autocorrelation 
function. In this figure, N = 4.
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7.4.3.  Frank Codes

Codes that use any harmonically related phases based on a certain funda-
mental phase increment are called poly-phase codes. We will demonstrate this
coding technique using Frank codes. In this case, a single pulse of width  is
divided into  equal groups; each group is subsequently divided into other 
sub-pulses each of width . Therefore, the total number of sub-pulses within
each pulse is , and the compression ratio is . As before, the phase
within each sub-pulse is held constant with respect to some CW reference sig-
nal. 

A Frank code of  sub-pulses is referred to as an N-phase Frank code. The
first step in computing a Frank code is to divide  by , and define the
result as the fundamental phase increment . More precisely,

(7.61)

Note that the size of the fundamental phase increment decreases as the number
of groups is increased, and because of phase stability, this may degrade the per-
formance of very long Frank codes. For N-phase Frank code the phase of each
sub-pulse is computed from

(7.62)

where each row represents a group, and a column represents the sub-pulses for
that group. For example, a 4-phase Frank code has , and the fundamen-
tal phase increment is . It follows that

(7.63)

Therefore, a Frank code of  elements is given by

(7.64)
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The phase increments within each row represent a stepwise approximation
of an up-chirp LFM waveform. The phase increments for subsequent rows
increase linearly versus time. Thus, the corresponding LFM chirp slopes also
increase linearly for subsequent rows. This is illustrated in Fig. 7.17, for . 

7.4.4. Pseudo-Random (PRN) Codes

Pseudo-random (PRN) codes are also known as Maximal Length Sequences
(MLS) codes. These codes are called pseudo-random because the statistics
associated with their occurrence is similar to that associated with the coin-toss
sequences. Maximum length sequences are periodic with period  and the
code values take on two binary values (+1 and -1). The MLS correlation func-
tion is 

(7.65)

Fig. 7.18 shows a typical sketch for an MLS autocorrelation function. Clearly
these codes have the advantage that the compression ratio becomes very large
as the period is increased. Additionally, adjacent peaks (grating lobes) become
farther apart.

Maximum length sequences exist for all integer values , with a period
equal to . They can be generated using shift register circuits with the
proper feedback connections, where the sum is a modulo-2 operation. This is
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 Figure 7.17. Stepwise approximation of an up-chirp waveform, 
using a Frank code of 16 elements. 
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illustrated in Fig. 7.19 for  (i.e., ). Note that the circuit shown
in Fig. 7.19 is not the only one that can produce this code.

In radar applications, long codes are very desirable. However, having very
long codes presents many possibilities for the feedback connections through
the modulo-2 adder. For example, for , the period is ,
which is very huge and may take years to produce the corresponding code.
Therefore, there is a need for a more systematic method for producing MLS
codes. 

In practice, typical MLS codes are produced by using the primitive polyno-
mials with the proper degree that corresponds to the code, and the feedback
connections are made according to the chosen polynomial, as illustrated in Fig.
7.19 for . In this example the primitive polynomial is . Of
course the initial loading for the registers must be different from all zeros.
More details on primitive polynomials can be found in many sited references.

m 4= L 15=

m 80= L 280 1–=

m 4= x
4

x 1+ +

L-L 0-1

L

 Figure 7.18. Typical autocorrelation of an MLS code of length L.

delay delaydelaydelay
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1 x x
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 Figure 7.19. Circuit for generating an MLS sequence of length . 

The primitive polynomial is .
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7.5. MATLAB Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is advised to rerun these programs with different input
parameters.

Listing 7.1. MATLAB Function “matched_filter.m”
function [y] = matched_filter(nscat, taup, f0, b, rmin, rrec, scat_range, 
scat_rcs, winid)
%
eps = 1.0e-16;
htau = taup / 2.;
c = 3.e8;
n = fix(2. * taup * b);
m = power_integer_2(n);
nfft = 2.^m;
x(nscat,1:nfft) = 0.;
y(1:nfft) = 0.;
replica(1:nfft) = 0.;
if( winid == 0.)
   win(1:nfft) = 1.;
   win =win';
else
   if(winid == 1.)
      win = hamming(nfft);
   else
      if( winid == 2.)
         win = kaiser(nfft,pi);
      else
         if(winid == 3.)
            win = chebwin(nfft,60);
         end
      end
   end
end
deltar = c / 2. / b;
max_rrec = deltar * nfft / 2.;
maxr = max(scat_range) - rmin;
if(rrec > max_rrec | maxr >= rrec )
   'Error. Receive window is too large; or scatterers fall outside window'
   break
end
trec = 2. * rrec / c;
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deltat = taup / nfft;
t = 0: deltat:taup-eps;
uplimit = max(size(t));
replica(1:uplimit) = exp(i * 2.* pi * (.5 * (b/taup) .* t.^2));
figure(3)
subplot(2,1,1)
plot(real(replica))
title('Matched filter time domain response')
subplot(2,1,2)
plot(fftshift(abs(fft(replica))));
title('Matched filter frequency domain response')
for j = 1:1:nscat
   t_tgt = 2. * (scat_range(j) - rmin) / c +htau;
   x(j,1:uplimit) = scat_rcs(j) .* exp(i *  2.* pi * ...
      (.5 * (b/taup) .* (t+t_tgt).^2));
   y = y + x(j,:);
end
figure(1)
plot(t,real(y),'k')
xlabel ('Relative delay - seconds')
ylabel ('Uncompressed echo')
title ('Zero delay coincide with minimum range')
rfft = fft(replica,nfft);
yfft = fft(y,nfft);
out= abs(ifft((rfft .* conj(yfft)) .* win' )) ./ (nfft);
figure(2)
time = -htau:deltat:htau-eps;
plot(time,out,'k')
xlabel ('Relative delay - seconds')
ylabel ('Compressed echo')
title ('Zero delay coincide with minimum range')
grid

Listing 7.2. MATLAB Function “stretch.m”
function [y] = stretch(nscat,taup,f0,b,rmin,rrec,scat_range,scat_rcs,winid)
eps = 1.0e-16;
htau = taup / 2.;
c = 3.e8;
trec = 2. * rrec / c;
n = fix(2. * trec * b);
m = power_integer_2(n);
nfft = 2.^m;
x(nscat,1:nfft) = 0.;
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y(1:nfft) = 0.;
if( winid == 0.)
   win(1:nfft) = 1.;
   win =win';
else
   if(winid == 1.)
      win = hamming(nfft);
   else
      if( winid == 2.)
         win = kaiser(nfft,pi);
      else
         if(winid == 3.)
            win = chebwin(nfft,60);
         end
      end
   end
end
deltar = c / 2. / b;
max_rrec = deltar * nfft / 2.;
maxr = max(scat_range) - rmin;
if(rrec > max_rrec | maxr >= rrec )
   'Error. Receive window is too large; or scatterers fall outside window'
   break
end
deltat = taup / nfft;
t = 0: deltat:taup-eps;
uplimit = max(size(t));
for j = 1:1:nscat
   psi1 = 4. * pi * scat_range(j) * f0 / c - ...
      4. * pi * b * scat_range(j) * scat_range(j) / c / c/ taup;
   psi2 = (4. * pi * b * scat_range(j) / c / taup) .* t;
   x(j,1:uplimit) = scat_rcs(j) .* exp(i * psi1 + i .* psi2);
   y = y + x(j,:);
end
figure(1)
plot(t,real(y),'k')
xlabel ('Relative delay - seconds')
ylabel ('Uncompressed echo')
title ('Zero delay coincide with minimum range')
ywin = y .* win';
yfft = fft(y,nfft) ./ nfft;
out= fftshift(abs(yfft));
figure(2)
time = -htau:deltat:htau-eps;
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plot(time,out,'k')
xlabel ('Relative delay - seconds')
ylabel ('Compressed echo')
title ('Zero delay coincide with minimum range')
grid

Listing 7.3. MATLAB Program “fig7_10.m’
clear all
eps = 1.5e-5;
t = 0:0.001:.5;                 
y = chirp(t,0,.25,20);
figure(1)
plot(t,y);
yfft = fft(y,512) ;
ycomp = fftshift(abs(ifft(yfft .* conj(yfft))));
maxval = max (ycomp);
ycomp = eps + ycomp ./ maxval; 
figure(1)
del = .5 /512.;
tt = 0:del:.5-eps;
plot (tt,ycomp,'k')
xlabel ('Relative delay - seconds');
ylabel('Normalized compressed pulse')
grid
%change center frequency
y1 = chirp (t,0,.25,21);
y1fft = fft(y1,512);
y1comp = fftshift(abs(ifft(y1fft .* conj(yfft))));
maxval = max (y1comp);
y1comp = eps + y1comp ./ maxval; 
figure(2)
plot (tt,y1comp,'k')
xlabel ('Relative delay - seconds');
ylabel('Normalized compressed pulse')
grid
%change pulse width
t = 0:0.001:.45;                 
y2 = chirp (t,0,.225,20);
y2fft = fft(y2,512);
y2comp = fftshift(abs(ifft(y2fft .* conj(yfft))));
maxval = max (y2comp);
y2comp = eps + y2comp ./ maxval; 
figure(3)

© 2000 by Chapman & Hall/CRC



plot (tt,y2comp,'k')
xlabel ('Relative delay - seconds');
ylabel('Normalized compressed pulse')
grid

 Problems

7.1. Starting with Eq. (7.17), prove Eq. (7.21).

7.2. The smallest positive primitive root of  is ; for 
generate the corresponding Costas matrix.
7.3. Develop a MATLAB program to plot the ambiguity function associ-
ated with Costas codes. Use Eqs. (7.53) through (7.56). Your program should
generate 3-D plots, contour plots, and zero delay/Doppler cuts. Verify the side
lobe behaviour and the compression ratio of Costas codes. 

7.4. Consider the 7-bit Barker code, designated by the sequence . (a)
Compute and plot the autocorrelation of this code. (b) A radar uses binary
phase coded pulses of the form , where

, , and

. Assume . (a) Give an expression for the

autocorrelation of the signal , and for the output of the matched filter when

the input is ; (b) compute the time bandwidth product, the increase
in the peak SNR, and the compression ratio.

7.5. (a) Perform the discrete convolution between the sequence 

defined in Eq. (7.59), and the transversal filter impulse response (i.e., derive
Eq. (7.60). (b) Solve Eq. (7.60), and sketch the corresponding transversal filter
output.

7.6. Repeat the previous problem for  and . Use Barker
code of length 13.

7.7. Develop a Barker code of length 35. Consider both  and . 

7.8. Write a computer program to calculate the discrete correlation between
any two finite length sequences. Verify your code by comparing your results to
the output of the MATLAB function “xcorr”.

7.9. Compute the discrete autocorrelation for an  Frank code.

7.10. Generate a Frank code of length 8, .

q 11= γ 2= N 10=

x n( )

s t( ) r t( ) 2πf0t( )cos=

r t( ) x 0( )= , for 0 t ∆t< < r t( ) x n( )= for n∆t t n 1+( )∆t< <,

r t( ) 0 for t 7∆t>,= ∆t 0.5µs=

s t( )
s t 10∆t–( )

φ11

N 13= k 6=

B75 B57

F16

F8
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