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Chapter 9 Clutter and Moving Target 
Indicator (MTI) 

9.1. Clutter Definition

Clutter is a term used to describe any object that may generate unwanted
radar returns that may interfere with normal radar operations. Parasitic returns
that enter the radar through the antenna’s main lobe are called main lobe clut-
ter; otherwise they are called side lobe clutter. Clutter can be classified in two
main categories: surface clutter and airborne or volume clutter. Surface clutter
includes trees, vegetation, ground terrain, man-made structures, and sea sur-
face (sea clutter). Volume clutter normally has large extent (size) and includes
chaff, rain, birds, and insects. Chaff consists of a large number of small dipole
reflectors that have large RCS values. It is released by hostile aircaft or mis-
siles as a means of ECM in an attempt to confuse the defense. Surface clutter
changes from one area to another, while volume clutter may be more predict-
able.

Clutter echoes are random and have thermal noise-like characteristics
because the individual clutter components (scatterers) have random phases and
amplitudes. In many cases, the clutter signal level is much higher than the
receiver noise level. Thus, the radar’s ability to detect targets embedded in
high clutter background depends on the Signal-to-Clutter Ratio (SCR) rather
than the SNR. 

White noise normally introduces the same amount of noise power across all
radar range bins, while clutter power may vary within a single range bin. And
since clutter returns are target-like echoes, the only way a radar can distinguish
target returns from clutter echoes is based on the target RCS , and the antic-
ipated clutter RCS  (via clutter map). Clutter RCS can be defined as the
equivalent radar cross section attributed to reflections from a clutter area, .
The average clutter RCS is given by 

σt
σc

Ac
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(9.1)

where  is the clutter scattering coefficient, a dimensionless quan-
tity that is often expressed in dB. Some radar engineers express  in terms of
squared centimeters per squared meter. In these cases,  is  higher than
normal.

The term that describes the constructive/destructive interference of the elec-
tromagnetic waves diffracted from an object (target or clutter) is called the
propagation factor (see Chapter 8 for more details). Since target and clutter
returns have different angles of arrival (different propagation factors), we can
define the SCR as

(9.2)

where  is the clutter propagation factor,  and  are, respectively, the
transmit and receive propagation factors for the target. In many cases

. 

9.2. Surface Clutter

Surface clutter includes both land and sea clutter, and is often called area
clutter. Area clutter manifests itself in airborne radars in the look-down mode.
It is also a major concern for ground-based radars when searching for targets at
low grazing angles. The grazing angle  is the angle from the surface of the
earth to the main axis of the illuminating beam, as illustrated in Fig. 9.1.

Three factors affect the amount of clutter in the radar beam. They are the
grazing angle, surface roughness, and the radar wavelength. Typically, the clut-
ter scattering coefficient  is larger for smaller wavelengths. Fig. 9.2 shows a
sketch describing the dependency of  on the grazing angle. Three regions
are identified; they are the low grazing angle region, flat or plateau region, and
the high grazing angle region.

The low grazing angle region extends from zero to about the critical angle.
The critical angle is defined by Rayleigh as the angle below which a surface is
considered to be smooth, and above which a surface is considered to be rough.
Denote the root mean square (rms) of a surface height irregularity as ,
then according to the Rayleigh critera the surface is considered to be smooth if

(9.3)
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Consider a wave incident on a rough surface, as shown in Fig. 9.3. Due to
surface height irregularity (surface roughness), the “rough path” is longer than
the “smooth path” by a distance . This path difference translates
into a phase differential :

(9.4)

The critical angle  is then computed when  (first null), thus 

(9.5)
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Figure 9.1. Definition of grazing angle.
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 Figure 9.2. Clutter regions.
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or equivalently,

(9.6)

In the case of sea clutter, for example, the rms surface height irregularity is

(9.7)

where  is the sea state, which is tabulated in several cited references. The
sea state is characterized by the wave height, period, length, particle velocity,
and wind velocity. For example,  refers to a moderate sea state,
where in this case the wave height is approximately equal to between

, the wave period 3.5 to 4.5 seconds, wave length
, wave velocity , and wind

velocity . 

Clutter at low grazing angles is often referred to as diffused clutter, where
there are a large number of clutter returns in the radar beam (non-coherent
reflections). In the flat region the dependency of  on the grazing angle is
minimal. Clutter in the high grazing angle region is more specular (coherent
reflections) and the diffuse clutter components disappear. In this region the
smooth surfaces have larger  than rough surfaces, opposite of the low graz-
ing angle region.
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 Figure 9.3. Rough surface definition.
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9.2.1.  Radar Equation for Area Clutter

Consider an airborne radar in the look-down mode shown in Fig. 9.4. The
intersection of the antenna beam with ground defines an elliptically shaped
footprint. The size of the footprint is a function of the grazing angle and the
antenna 3dB beam width , as illustrated in Fig. 9.5. The footprint is
divided into many ground range bins each of size , where  is
the pulse width.

From Fig. 9.5, the clutter area  is 

(9.8)

The power received by the radar from a scatterer within  is given by the
radar equation as

(9.9)

where as usual,  is the peak transmitted power,  is the antenna gain,  is
the wavelength, and  is the target RCS. Similarly, the received power from
clutter is

(9.10)

where the subscript  is used for area clutter. Substituting Eq. (9.1) for 
into Eq. (9.10), we can then obtain the SCR for area clutter by dividing Eq.
(9.9) by Eq. (9.10). More precisely,
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Figure 9.4. Airborne radar in the look-down mode.
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(9.11)

Example 9.1: Consider an airborne radar shown in Fig. 9.4. Let the antenna
3dB beam width be , the pulse width , range

, and grazing angle . Assume target RCS ,
and clutter reflection coefficient . Compute the SCR.

Solution: The SCR is given by Eq. (9.11) as

It follows that

Thus, for reliable detection the radar must somehow increase its SCR by at
least , where  is on the order of  or better.
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Figure 9.5. Footprint definition.
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9.3. Volume Clutter

Volume clutter has large extents and includes rain (weather), chaff, birds,
and insects. The volume clutter coefficient is normally expressed in squared
meters (RCS per resolution volume). Birds, insects, and other flying particles
are often referred to as angel clutter or biological clutter. The average RCS for
individual birds or insects as a function of the weight of the bird or insect is
reported in the literature1 as

(9.12)

where  is the individual bird or insect weight in grams. Bird and insect
RCSs are also a function of frequency; for example, a pigeon’s average RCS is

 at S-band, and is equal to  at X-band.

As mentioned earlier, chaff is used as an ECM technique by hostile forces. It
consists of a large number of dipole reflectors with large RCS values. Histori-
cally, chaff was made of aluminum foil; however, in recent years most chaff is
made of the more rigid fiber glass with conductive coating. The maximum
chaff RCS occurs when the dipole length  is one half the radar wavelength.
The average RCS for a single dipole when viewed broadside is

(9.13)

and for an average aspect angle, it drops to 

(9.14)

where the subscript  is used to indicate a single dipole, and  is the
radar wavelength. The total chaff RCS within a radar resolution volume is

 (9.15)

where  is the total number of dipoles in the resolution volume. 

Weather or rain clutter is easier to suppress than chaff, since rain droplets
can be viewed as perfect small spheres. We can use the Rayleigh approxima-
tion of perfect sphere to estimate the rain droplets’ RCS. The Rayleigh approx-
imation, without regard to the propagation medium index of refraction, is
given in Eq. (2.30) and is repeated here as Eq. (9.16):

(9.16)

where , and  is radius of a rain droplet.

1. Edde, B., Radar - Principles, Technology, Applications, Prentice-Hall, 1993.
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Electromagnetic waves when reflected from a perfect sphere become
strongly co-polarized (have the same polarization as the incident waves). Con-
sequently, if the radar transmits, say, a right-hand-circularly (RHC) polarized
wave, then the received waves are left-hand-circularly (LHC) polarized,
because it is propagating in the opposite direction. Therefore, the back-scat-
tered energy from rain droplets retains the same wave rotation (polarization) as
the incident wave, but has a reversed direction of propagation. It follows that
radars can suppress rain clutter by co-polarizing the radar transmit and receive
antennas. 

Defining  as RCS per unit resolution volume , it is computed as the
sum of all individual scatterers RCS within the volume,

(9.17)

where  is the total number of scatterers within the resolution volume. Thus,
the total RCS of a single resolution volume is 

(9.18)

A resolution volume is shown in Fig. 9.6, and is approximated by

(9.19)

where ,  are, respectively, the antenna beam width in azimuth and eleva-
tion,  is the pulse width in seconds,  is speed of light, and  is range.
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 Figure 9.6. Definition of a resolution volume.
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Consider a propagation medium with an index of refraction . The  rain
droplet RCS approximation in this medium is

 (9.20)

where 

(9.21)

and  is the  droplet diameter. For example, temperatures between 
and  yield

(9.22)

and for ice Eq. (9.20) can be approximated by

(9.23)

Substituting Eq. (9.20) into Eq. (9.17) yields

(9.24)

where the weather clutter coefficient  is defined as 

(9.25)

In general, a rain droplet diameter is given in millimeters and the radar reso-
lution volume in expressed in cubic meters, thus the units of  are often
expressed in .

9.3.1. Radar Equation for Volume Clutter

The radar equation gives the total power received by the radar from a  tar-
get at range  as

 (9.26)
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where all parameters in Eq. (9.26) have been defined earlier. The weather clut-
ter power received by the radar is

(9.27)

Using Eq. (9.18) and Eq. (9.19) into Eq. (9.27) and collecting terms yield

(9.28)

The SCR for weather clutter is then computed by dividing Eq. (9.26) by Eq.
(9.28). More precisely, 

(9.29)

where the subscript  is used to denote volume clutter.

Example 9.2: A certain radar has target RCS , pulse width
, antenna beam width . Assume the detec-

tion range to be , and compute the SCR if
.

Solution: From Eq. (9.29) we have

substituting the proper values we get
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9.4. Clutter Statistical Models

Since clutter within a resolution cell (or volume) is composed of a large
number of scatterers with random phases and amplitudes, it is statistically
described by a probability distribution function. The type of distribution
depends on the nature of clutter itself (sea, land, volume), the radar operating
frequency, and the grazing angle. 

If sea or land clutter is composed of many small scatterers when the proba-
bility of receiving an echo from one scatterer is statistically independent of the
echo received from another scatterer, then the clutter may be modeled using a
Rayleigh distribution,

(9.30)

where  is the mean squared value of . 

The log-normal distribution best describes land clutter at low grazing angles.
It also fits sea clutter in the plateau region. It is given by

(9.31)

where  is the median of the random variable , and  is the standard devi-
ation of the random variable .

The Weibull distribution is used to model clutter at low grazing angles (less
than five degrees) for frequencies between  and . The Weibull proba-
bility density function is determined by the Weibull slope parameter  (often
tabulated) and a median scatter coefficient , and is given by

(9.32)

where  is known as the shape parameter. Note that when  the
Weibull distribution becomes a Rayleigh distribution.

9.5. Clutter Spectrum

The power spectrum of stationary clutter (zero Doppler) can be represented
by a delta function. However, clutter is not always stationary; it actually exhib-
its some Doppler frequency spread because of wind speed and motion of the
radar scanning antenna. In general, the clutter spectrum is concentrated around
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 and integer multiples of the radar PRF , and may exhibit some small
spreading. 

The clutter power spectrum can be written as the sum of fixed (stationary)
and random (due to frequency spreading) components. For most cases, the ran-
dom component is Gaussian. If we denote the fixed to the random power ratio
by , then we can write the clutter spectrum as

(9.33)

where  is the radar operating frequency in radians per second, 
is the rms frequency spread component (determines the Doppler frequency
spread), and  is the Weibull parameter. 

The first term of the right-hand side of Eq. (9.33) represents the PSD for sta-
tionary clutter, while the second term accounts for the frequency spreading.
Nevertheless, since most of the clutter power is concentrated around zero Dop-
pler with some spreading (typically less than 100 Hz), it is customary to model
clutter using a Gaussian-shaped power spectrum (which is easier to analyze
than Eq. (9.33)). More precisely,

(9.34)

where  is the total clutter power;  and  were defined earlier. Fig. 9.7
shows a typical PSD sketch of radar returns when both target and clutter are
present. Note that the clutter power is concentrated around DC and integer
multiples of the PRF.
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 Figure 9.7. Typical radar return PSD when clutter and target are present.
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9.6. Moving Target Indicator (MTI)

Clutter spectrum is normally concentrated around DC ( ) and multiple
integers of the radar PRF , as illustrated in Fig. 9.8a. In CW radars, clutter is
avoided or suppressed by ignoring the receiver output around DC, since most
of the clutter power is concentrated about the zero frequency band. Pulsed
radar systems may utilize special filters that can distinguish between slowly
moving or stationary targets and fast moving ones. This class of filters is
known as the Moving Target Indicator (MTI). In simple words, the purpose of
an MTI filter is to suppress target-like returns produced by clutter, and allow
returns from moving targets to pass through with little or no degradation. In
order to effectively suppress clutter returns, an MTI filter needs to have a deep
stop-band at DC and at integer multiples of the PRF. Fig. 9.8b shows a typical
sketch of an MTI filter response, while Fig. 9.8c shows its output when the
PSD shown in Fig. 9.8a is the input. 
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frequencyfrf 0=fr–

input to 
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 Figure 9.8. (a) Typical radar return PSD when clutter and target are 
present. (b) MTI filter frequency response. (c) Output from an 
MTI filter.
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MTI filters can be implemented using delay line cancelers. As we will show
later in this chapter, the frequency response of this class of MTI filters is peri-
odic, with nulls at integer multiples of the PRF. Thus, targets with Doppler fre-
quencies equal to  are severely attenuated. And since Doppler is
proportional to target velocity ( ), target speeds that produce Dop-
pler frequencies equal to integer multiples of  are known as blind speeds.
More precisely,

(9.35)

Radar systems can minimize the occurrence of blind speeds by either
employing multiple PRF schemes (PRF staggering) or by using high PRFs
where in this case the radar may become range ambiguous. The main differ-
ence between PRF staggering and PRF agility is that the pulse repetition inter-
val (within an integration interval) can be changed between consecutive pulses
for the case of PRF staggering.

Fig. 9.9 shows a block diagram of a coherent MTI radar. Coherent transmis-
sion is controlled by the STAble Local Oscillator (STALO). The outputs of the
STALO, , and the COHerent Oscillator (COHO), , are mixed to produce
the transmission frequency, . The Intermediate Frequency (IF), ,
is produced by mixing the received signal with . After the IF amplifier, the
signal is passed through a phase detector and is converted into a base band.
Finally, the video signal is inputted into an MTI filter.
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Figure 9.9. Coherent MTI radar block diagram.
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9.7. Single Delay Line Canceler

A single delay line canceler can be implemented as shown in Fig. 9.10. The
canceler’s impulse response is denoted as . The output  is equal to the
convolution between the impulse response  and the input . The single
delay canceler is often called a “two-pulse canceler” since it requires two dis-
tinct input pulses before an output can be read.

The delay  is equal to the PRI of the radar ( ). The output signal  is 

(9.36)

The impulse response of the canceler is given by 

(9.37)

where  is the delta function. It follows that the Fourier transform (FT)
of  is 

(9.38)

where .

In the z-domain, the single delay line canceler response is 

(9.39)

The power gain for the single delay line canceler is given by

(9.40)

It follows that

(9.41)

and using the trigonometric identity  yields
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(9.42)

MATLAB Function “single_canceler.m”

The function “single_canceler.m” computes and plots (as a function of )
the amplitude response for a single delay line canceler. It is given in Listing 9.1
in Section 9.14. The syntax is as follows:

[resp] = single_canceler (fofr)

where fofr is the number of periods desired. Typical output of the function
“single_canceler.m” is shown in Fig. 9.11. Clearly, the frequency response of a
single canceler is periodic with a period equal to . The peaks occur at

, and the nulls are at , where .
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Figure 9.11. Single canceler frequency response.
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In most radar applications the response of a single canceler is not acceptable
since it does not have a wide notch in the stop-band. A double delay line can-
celer has better response in both the stop- and pass-bands, and thus it is more
frequently used than a single canceler. In this book, we will use the names “sin-
gle delay line canceler” and “single canceler” interchangeably.

9.8. Double Delay Line Canceler

Two basic configurations of a double delay line canceler are shown in Fig.
9.12. Double cancelers are often called “three-pulse cancelers” since they
require three distinct input pulses before an output can be read. The double line
canceler impulse response is given by

(9.43)

Again, the names “double delay line” canceler and “double canceler” will be
used interchangeably. The power gain for the double delay line canceler is

(9.44)

where  is the single line canceler power gain given in Eq. (9.42). It
follows that

 (9.45)
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Figure 9.12. Two configurations for a double delay line canceler.
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And in the z-domain, we have 

(9.46)

MATLAB Function “double_canceler.m”

The function “single_canceler.m” computes and plots (as a function of )
the amplitude response for a single delay line canceler. It is given in Listing 9.2
in Section 9.14. The syntax is as follows:

[resp] = double_canceler (fofr)

where fofr is the number of periods desired.

Fig. 9.13 shows typical output from this function. Note that the double can-
celer has a better response than the single canceler (deeper notch and flatter
pass-band response).
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 Figure 9.13. Normalized frequency responses for single and double cancelers.
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9.9. Delay Lines with Feedback (Recursive Filters)

Delay line cancelers with feedback loops are known as recursive filters. The
advantage of a recursive filter is that through a feedback loop we will be able
to shape the frequency response of the filter. As an example, consider the sin-
gle canceler shown in Fig. 9.14. From the figure we can write

(9.47)

(9.48)

(9.49)

Applying the z-transform to the above three equations yields

(9.50)

(9.51)

(9.52)

Solving for the transfer function  yields

(9.53)

The modulus square of  is then equal to 

(9.54)

Using the transformation  yields 
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Figure 9.14. MTI recursive filter.
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(9.55)

Thus, Eq. (54) can now be rewritten as 

(9.56)

Note that when , Eq. (9.56) collapses to Eq. (9.42) (single line can-
celer). Fig. 9.15 shows a plot of Eq. (9.56) for . Clearly, by
changing the gain factor  one can control of the filter response. 

In order to avoid oscillation due to the positive feedback, the value of 
should be less than unity. The value  is normally equal to the number
of pulses received from the target. For example,  corresponds to ten
pulses, while  corresponds to about fifty pulses.

9.10. PRF Staggering

Blind speeds can pose serious limitations on the performance of MTI radars
and their ability to perform adequate target detection. Using PRF agility by
changing the pulse repetition interval between consecutive pulses can extend
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 Figure 9.15. Frequency response corresponding to Eq. (9.56). This 
plot can be reproduced using MATLAB program 
“fig9_15.m” given in Listing 9.3 in Section 9.14.
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the first blind speed to tolerable values. In order to show how PRF staggering
can alleviate the problem of blind speeds, let us first assume that two radars
with distinct PRFs are utilized for detection. Since blind speeds are propor-
tional to the PRF, the blind speeds of the two radars would be different. How-
ever, using two radars to alleviate the problem of blind speeds is a very costly
option. A more practical solution is to use a single radar with two or more dif-
ferent PRFs. 

For example, consider a radar system with two interpulse periods  and
, such that

(9.57)

where  and  are integers. The first true blind speed occurs when

 (9.58)

This is illustrated in Fig. 9.16 for  and . Note that if
, then the process of PRF staggering is similar to that discussed in

Chapter 3. 

The ratio 

(9.59)

is known as the stagger ratio. Using staggering ratios closer to unity pushes the
first true blind speed farther out. However, the dip in the vicinity of 
becomes deeper, as illustrated in Fig. 9.17 for stagger ratio . In
general, if there are  PRFs related by

(9.60)

and if the first blind speed to occur for any of the individual PRFs is ,
then the first true blind speed for the staggered waveform is

(9.61)
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 Figure 9.16. Frequency responses of a single canceler. Top plot 
corresponds to T1, middle plot corresponds to T2, 
bottom plot corresponds to stagger ratio T1/T2 = 4/3.  
This plot can be reproduced using MATLAB program 
“fig9_16.m” given in Listing 9.4 in Section 9.14.
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9.11. MTI Improvement Factor

In this section two quantities that are normally used to define the perfor-
mance of MTI systems are introduced. They are “Clutter Attenuation (CA)”
and the MTI “Improvement Factor.” The MTI CA is defined as the ratio
between the MTI filter input clutter power  to the output clutter power ,

 (9.62)
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 Figure 9.17. MTI responses, staggering ratio 63/64. This plot can be 
reproduced using MATLAB program “fig9_17.m” given 
in Listing 9.5 in Section 9.14.
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The MTI improvement factor is defined as the ratio of the Signal to Clutter
(SCR) at the output to the SCR at the input, 

(9.63)

which can be rewritten as

(9.64)

The ratio  is the average power gain of the MTI filter, and it is equal to
. In this section, a closed form expression for the improvement factor

using a Gaussian-shaped power spectrum is developed. A Gaussian-shaped
clutter power spectrum is given by

(9.65)

where  is the clutter power (constant), and  is the clutter rms frequency
and is given by

(9.66)

where  is the wavelength, and  is the rms wind velocity, since wind is the
main reason for clutter frequency spreading. Substituting Eq. (9.66) into Eq.
(9.65) yields 

(9.67)

The clutter power at the input of an MTI filter is

 (9.68)

Factoring out the constant  yields

(9.69)

It follows that (Why?)

(9.70)
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The clutter power at the output of an MTI is

(9.71)

We will continue the analysis using a single delay line canceler. The fre-
quency response for a single delay line canceler is given by Eq. (9.38). The sin-
gle canceler power gain is given in Eq. (9.42), which will be repeated here, in
terms of  rather than , as Eq. (9.72),

(9.72)

It follows that

(9.73)

Now, since clutter power will only be significant for small , then the ratio
 is very small (i.e., ). Consequently, by using the small angle

approximation Eq. (9.73) is approximated by

(9.74)

which can be rewritten as

(9.75)

The integral part in Eq. (9.75) is the second moment of a zero mean Gaussian
distribution with variance . Replacing the integral in Eq. (9.75) by  yields

(9.76)

Substituting Eqs. (9.76) and (9.70) into Eq. (9.62) produces

(9.77)
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It follows that the improvement factor for a single canceler is

(9.78)

The power gain ratio for a single canceler is (remember that  is periodic
with period )

(9.79)

Using the trigonometric identity  yields

(9.80)

It follows that

(9.81)

The expression given in Eq. (9.81) is an approximation valid only for
. When the condition  is not true, then the autocorrelation func-

tion needs to be used in order to develop an exact expression for the improve-
ment factor. 

Example 9.3: A certain radar has . If the clutter rms is
 (wooded hills with ), find the improvement

factor when a single delay line canceler is used.

Solution: The clutter attenuation CA is

and since  we get

.

9.12. Subclutter Visibiliy (SCV)

The phrase Subclutter Visibility (SCV) describes the radar’s ability to detect
non-stationary targets embedded in a strong clutter background, for some
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probabilities of detection and false alarm. It is often used as a measure of MTI
performance. For example, a radar with  subclutter visibility will be able
to detect moving targets whose returns are ten times smaller than those of clut-
ter. A sketch illustrating the concept of SCV is shown in Fig. 9.18.

If a radar system can resolve the areas of strong and weak clutter within its
field of view, then the phrase Interclutter Visibility (ICV) describes the radar’s
ability to detect non-stationary targets between strong clutter points. The sub-
clutter visibility is expressed as the ratio of the improvement factor to the min-
imum MTI output SCR required for proper detection for a given probability of
detection. More precisely,

(9.82)

When comparing different radar systems’ performances on the basis of SCV,
one should use caution since the amount of clutter power is dependent on the
radar resolution cell (or volume), which may be different from one radar to
another. Thus, only if the different radars have the same beam widths and the
same pulse widths can SCV be used as a basis of performance comparison.

9.13. Delay Line Cancelers with Optimal Weights

The delay line cancelers discussed in this chapter belong to a family of trans-
versal Finite Impulse Response (FIR) filters widely known as the “tapped
delay line” filters. Fig. 9.19 shows an N-stage tapped delay line implementa-
tion. 
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 Figure 9.18. Illustration of SCV. (a) MTI input.  
(b) MTI output.
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When the weights are chosen such that they are the binomial coefficients (coef-
ficients of the expansion ) with alternating signs, then the resultant
MTI filter is equivalent to N-stage cascaded single line cancelers. This is illus-
trated in Fig. 9.20 for . In general, the binomial coefficients are given by

(9.83)

Using the binomial coefficients with alternating signs produces an MTI filter
that closely approximates the optimal filter in the sense that it maximizes the
improvement factor, as well as the probability of detection. In fact, the differ-
ence between an optimal filter and one with binomial coefficients is so small
that the latter one is considered to be optimal by most radar designers. How-
ever, being optimal in the sense of the improvement factor does not guarantee a
deep notch, nor a flat pass-band in the MTI filter response. Consequently,
many researchers have been investigating other weights that can produce a
deeper notch around DC, as well as a better pass-band response.

In general, the average power gain for an N-stage delay line canceler is

(9.84)

where  is given in Eq. (9.72). For example,  (double delay line
canceler) gives
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 Figure 9.19. N-stage tapped delay line filter.
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(9.85)

Equation (9.84) can be rewritten as

(9.86)

As indicated by Eq. (9.86), blind speeds for an N-stage delay canceler are iden-
tical to those of a single canceler. It follows that blind speeds are independent
from the number of cancelers used. It is possible to show that Eq. (9.86) can be
written as

(9.87)

A general expression for the improvement factor of an N-stage tapped delay
line canceler is reported by Nathanson1 to be

1. Nathanson, F. E., Radar Design Principles, second edition, McGraw-Hill, Inc., 
1991.
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(9.88)

where the weights  and  are those of a tapped delay line canceler, and
 is the correlation coefficient between the  and  samples.

For example,  produces

(9.89)

9.14. MATLAB Program/Function Listings

This section contains listings of all MATLAB programs and functions used
in this chapter. Users are encouraged to rerun these codes with different inputs
in order to enhance their understanding of the theory.

Listing 9.1. MATLAB Function “single_canceler.m”
function [resp] = single_canceler (fofr1)
eps = 0.00001;
fofr = 0:0.01:fofr1;
arg1 = pi .* fofr;
resp = 4.0 .*((sin(arg1)).^2);
max1 = max(resp);
resp = resp ./ max1;
subplot(2,1,1)
plot(fofr,resp,'k')
xlabel ('Normalized frequency - f/fr')
ylabel( 'Amplitude response - Volts')
grid
subplot(2,1,2)
resp=10.*log10(resp+eps);
plot(fofr,resp,'k');
axis tight
grid
xlabel ('Normalized frequency - f/fr')
ylabel( 'Amplitude response - dB')
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Listing 9.2. MATLAB Function “double_canceler.m”
function [resp] = double_canceler(fofr1)
eps = 0.00001;
fofr = 0:0.01:fofr1;
arg1 = pi .* fofr;
resp = 4.0 .* ((sin(arg1)).^2);
max1 = max(resp);
resp = resp ./ max1;
resp2 = resp .* resp;
subplot(2,1,1);
plot(fofr,resp,'k--',fofr, resp2,'k');
ylabel ('Amplitude response - Volts')
resp2 = 20. .* log10(resp2+eps);
resp1 = 20. .* log10(resp+eps);
subplot(2,1,2)
plot(fofr,resp1,'k--',fofr,resp2,'k');
legend ('single canceler','double canceler')
xlabel ('Normalized frequency f/fr')
ylabel ('Amplitude response - Volts')

Listing 9.3. MATLAB Program “fig9_15.m”
clear all
fofr = 0:0.001:1;
arg = 2.*pi.*fofr;
nume = 2.*(1.-cos(arg));
den11 = (1. + 0.25 * 0.25);
den12 = (2. * 0.25) .* cos(arg);
den1 = den11 - den12;
den21 = 1.0 + 0.7 * 0.7;
den22 = (2. * 0.7) .* cos(arg);
den2 = den21 - den22;
den31 = (1.0 + 0.9 * 0.9);
den32 = ((2. * 0.9) .* cos(arg));
den3 = den31 - den32;
resp1 = nume ./ den1;
resp2 = nume ./ den2;
resp3 = nume ./ den3;
plot(fofr,resp1,'k',fofr,resp2,'k-.',fofr,resp3,'k--');
xlabel('Normalized frequency')
ylabel('Amplitude response')
legend('K=0.25','K=0.7','K=0.9')
grid
axis tight
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Listing 9.4. MATLAB Program “fig9_16.m”
clear all
fofr = 0:0.001:1;
f1 = 4.0 .* fofr;
f2 = 5.0 .* fofr;
arg1 = pi .* f1;
arg2 = pi .* f2;
resp1 = abs(sin(arg1));
resp2 = abs(sin(arg2));
resp = resp1+resp2;
max1 = max(resp);
resp = resp./max1;
plot(fofr,resp1,fofr,resp2,fofr,resp);
xlabel('Normalized frequency f/fr')
ylabel('Filter response')

Listing 9.5. MATLAB Program “fig9_17.m”
clear all
fofr = 0.01:0.001:32;
a = 63.0 / 64.0;
term1 = (1. - 2.0 .* cos(a*2*pi*fofr) + cos(4*pi*fofr)).^2;
term2 = (-2. .* sin(a*2*pi*fofr) + sin(4*pi*fofr)).^2;
resp = 0.25 .* sqrt(term1 + term2);
resp = 10. .* log(resp);
plot(fofr,resp);
axis([0 32 -40 0]);
grid

 Problems

9.1. Compute the signal-to-clutter ratio (SCR) for the radar described in

Example 9.1. In this case, assume antenna 3dB beam width ,

pulse width , range , grazing angle , target

RCS , and clutter reflection coefficient .

9.2. Repeat Example 9.2 for target RCS , pulse width

, antenna beam width ; the detection

range is , and .
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σt 0.1m
2= σ0 0.02 m

2
m

2⁄( )=
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2
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9.3. The quadrature components of the clutter power spectrum are, respec-
tively, given by

Compute the D.C. and A.C. power of the clutter. Let .

9.4. A certain radar has the following specifications: pulse width

, antenna beam width , and wavelength . The

radar antenna is  high. A certain target is simulated by two point targets

(scatterers). The first scatterer is  high and has RCS . The sec-

ond scatterer is  high and has RCS . If the target is detected at

, compute (a) SCR when both scatterers are observed by the radar; (b)
the SCR when only the first scatterer is observed by the radar. Assume a reflec-

tion coefficient of , and .

9.5. A certain radar has range resolution of  and is observing a target

somewhere in a line of high towers each having RCS . If the

target has RCS , (a) How much signal-to-clutter ratio should the

radar have? (b) Repeat part a for range resolution of .

9.6. (a) Derive an expression for the impulse response of a single delay line
canceler. (b) Repeat for a double delay line canceler.
9.7. One implementation of a single delay line canceler with feedback is
shown below:

(a) What is the transfer function, ? (b) If the clutter power spectrum is
, find an exact expression for the filter power gain.

(c) Repeat part b for small values of frequency, . (d) Compute the clutter
attenuation and the improvement factor in terms of  and . 
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9.8. Plot the frequency response for the filter described in the previous

problem for .

9.9. An implementation of a double delay line canceler with feedback is
shown below:

(a) What is the transfer function, ? (b) Plot the frequency response for
, and .

9.10. Consider a single delay line canceler. Calculate the clutter attenua-

tion and the improvement factor. Assume that  and a PRF

.

9.11. Develop an expression for the improvement factor of a double delay
line canceler.
9.12. Repeat Problem 9.10 for a double delay line canceler.

9.13. An experimental expression for the clutter power spectrum density is

, where  is a constant. Show that using this

expression leads to the same result obtained for the improvement factor as
developed in Section 9.11. 
9.14. Repeat Problem 9.13 for a double delay line canceler.

9.15. A certain radar uses two PRFs with stagger ratio 63/64. If the first

PRF is , compute the blind speeds for both PRFs and for the

resultant composite PRF. Assume . 

9.16. A certain filter used for clutter rejection has an impulse response

. (a) Show an implementation
of this filter using delay lines and adders. (b) What is the transfer function?
(c) Plot the frequency response of this filter. (d) Calculate the output when the
input is the unit step sequence.
9.17. The quadrature components of the clutter power spectrum are given

in Problem 9.3. Let  and . Compute the improvement

of the signal-to-clutter ratio when a double delay line canceler is utilized.

K 0.5 0 and 0.5, ,–=

-

+
Σx(t) y (t)

d e lay, TΣ
++

K 2

+

-
d elay, TΣ+

K 1

H z( )
K1 0 K2= = K1 0.2 K2, 0.5= =

σc 4Hz=

fr 450Hz=

W f( ) w0 f
2 2σc

2⁄–( )exp= w0

fr1 500Hz=

λ 3cm=

h n( ) δ n( ) 3δ n 1–( )– 3δ n 2–( ) δ n 3–( )–+=

σc 10Hz= fr 500Hz=
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9.18. Develop an expression for the clutter improvement factor for  single
and double line cancelers using the clutter autocorrelation function. Assume
that the clutter power spectrum is as defined in Eq. (9.65).
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