
Chapter 11 Target Tracking 

Part I: Single Target Tracking

Tracking radar systems are used to measure the target’s relative position in
range, azimuth angle, elevation angle, and velocity. Then, by using and keep-
ing track of these measured parameters the radar can predict their future val-
ues. Target tracking is important to military radars as well as to most civilian
radars. In military radars, tracking is responsible for fire control and missile
guidance; in fact, missile guidance is almost impossible without proper target
tracking. Commercial radar systems, such as civilian airport traffic control
radars, may utilize tracking as a means of controlling incoming and departing
airplanes.

Tracking techniques can be divided into range/velocity tracking and angle
tracking. It is also customary to distinguish between continuous single-target
tracking radars and multi-target track-while-scan (TWS) radars. Tracking
radars utilize pencil beam (very narrow) antenna patterns. It is for this reason
that a separate search radar is needed to facilitate target acquisition by the
tracker. Still, the tracking radar has to search the volume where the target’s
presence is suspected. For this purpose, tracking radars use special search pat-
terns, such as helical, T.V. raster, cluster, and spiral patterns, to name a few.

11.1.  Angle Tracking

Angle tracking is concerned with generating continuous measurements of
the target’s angular position in the azimuth and elevation coordinates. The
accuracy of early generation angle tracking radars depended heavily on the
size of the pencil beam employed. Most modern radar systems achieve very
fine angular measurements by utilizing monopulse tracking techniques.
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Tracking radars use the angular deviation from the antenna main axis of the
target within the beam to generate an error signal. This deviation is normally
measured from the antenna’s main axis. The resultant error signal describes
how much the target has deviated from the beam main axis. Then, the beam
position is continuously changed in an attempt to produce a zero error signal. If
the radar beam is normal to the target (maximum gain), then the target angular
position would be the same as that of the beam. In practice, this is rarely the
case. 

In order to be able to quickly achieve changing the beam position, the error
signal needs to be a linear function of the deviation angle. It can be shown that
this condition requires the beam’s axis to be squinted by some angle (squint
angle) off the antenna’s main axis. 

11.1.1. Sequential Lobing

Sequential lobing is one of the first tracking techniques that was utilized by
the early generation of radar systems. Sequential lobing is often referred to as
lobe switching or sequential switching. It has a tracking accuracy that is lim-
ited by the pencil beam width used and by the noise caused by either mechani-
cal or electronic switching mechanisms. However, it is very simple to
implement. The pencil beam used in sequential lobing must be symmetrical
(equal azimuth and elevation beam widths). 

Tracking is achieved (in one coordinate) by continuously switching the pen-
cil beam between two pre-determined symmetrical positions around the
antenna’s Line of Sight (LOS) axis. Hence, the name sequential lobing is
adopted. The LOS is called the radar tracking axis, as illustrated in Fig. 11.1. 

As the beam is switched between the two positions, the radar measures the
returned signal levels. The difference between the two measured signal levels
is used to compute the angular error signal. For example, when the target is
tracked on the tracking axis, as the case in Fig. 11.1a, the voltage difference is
zero and, hence, is also the error signal. However, when the target is off the
tracking axis, as in Fig. 11.1b, a nonzero error signal is produced. The sign of
the voltage difference determines the direction in which the antenna must be
moved. Keep in mind, the goal here is to make the voltage difference be equal
to zero.

In order to obtain the angular error in the orthogonal coordinate, two more
switching positions are required for that coordinate. Thus, tracking in two
coordinates can be accomplished by using a cluster of four antennas (two for
each coordinate) or by a cluster of five antennas. In the latter case, the middle
antenna is used to transmit, while the other four are used to receive.
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11.1.2. Conical Scan

Conical scan is a logical extension of sequential lobing where, in this case,
the antenna is continuously rotated at an offset angle, or has a feed that is
rotated about the antenna’s main axis. Fig. 11.2 shows a typical conical scan
beam. The beam scan frequency, in radians per second, is denoted as . The
angle between the antenna’s LOS and the rotation axis is the squint angle .
The antenna’s beam position is continuously changed so that the target will
always be on the tracking axis.

Fig. 11.3 shows a simplified conical scan radar system. The envelope detec-
tor is used to extract the return signal amplitude and the Automatic Gain Con-
trol (AGC) tries to hold the receiver output to a constant value. Since the AGC
operates on large time constants, it can hold the average signal level constant
and still preserve the signal rapid scan variation. It follows that the tracking
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error signals (azimuth and elevation) are functions of the target’s RCS; they are
functions of its angular position with the main beam axis.

 In order to illustrate how conical scan tracking is achieved, we will first con-
sider the case shown in Fig. 11.4. In this case, as the antenna rotates around the
tracking axis all target returns have the same amplitude (zero error signal).
Thus, no further action is required.
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Figure 11.2. Conical scan beam.
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Figure 11.3. Simplified conical scan radar system.
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Next, consider the case depicted by Fig. 11.5. Here, when the beam is at
position B, returns from the target will have maximum amplitude. And when
the antenna is at position A, returns from the target have minimum amplitude.
Between those two positions, the amplitude of the target returns will vary
between the maximum value at position B, and the minimum value at position
A. In other words, Amplitude Modulation (AM) exists on top of the returned
signal. This AM envelope corresponds to the relative position of the target
within the beam. Thus, the extracted AM envelope can be used to derive a
servo-control system in order to position the target on the tracking axis. 

Now, let us derive the error signal expression that is used to drive the servo-
control system. Consider the top view of the beam axis location shown in Fig.
11.6. Assume that  is the starting beam position. The locations for maxi-
mum and minimum target returns are also identified. The quantity  defines
the distance between the target location and the antenna’s tracking axis. It fol-
lows that the azimuth and elevation errors are, respectively, given by

(11.1)

(11.2)

These are the error signals that the radar uses to align the tracking axis on the
target.
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The AM signal  can then be written as

(11.3)

where  is a constant called the error slope,  is the scan frequency in radi-
ans per seconds, and  is the angle already defined. The scan reference is the
signal that the radar generates to keep track of the antenna’s position around a
complete path (scan). The elevation error signal is obtained by mixing the sig-
nal  with  (the reference signal) followed by low pass filtering.
More precisely,

(11.4)

and after low pass filtering we get

(11.5)

Negative elevation error drives the antenna beam downward, while positive
elevation error drives the antenna beam upward. Similarly, the azimuth error
signal is obtained by multiplying  by  followed by low pass filter-
ing. It follows that

(11.6)

The antenna scan rate is limited by the scanning mechanism (mechanical or
electronic), where electronic scanning is much faster and more accurate than
mechanical scan. In either case, the radar needs at least four target returns to be
able to determine the target azimuth and elevation coordinates (two returns per
coordinate). Therefore, the maximum conical scan rate is equal to one fourth of
the PRF. Rates as high as 30 scans per seconds are commonly used.

The conical scan squint angle needs to be large enough so that a good error
signal can be measured. However, due to the squint angle, the antenna gain in
the direction of the tracking axis is less than maximum. Thus, when the target
is in track (located on the tracking axis), the SNR suffers a loss equal to the
drop in the antenna gain. This loss is known as the squint or crossover loss.
The squint angle is normally chosen such that the two-way (transmit and
receive) crossover loss is less than a few decibels.   

11.2.  Amplitude Comparison Monopulse

Amplitude comparison monopulse tracking is similar to lobing in the sense
that four squinted beams are required to measure the target’s angular position.
The difference is that the four beams are generated simultaneously rather than
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sequentially. For this purpose, a special antenna feed is utilized such that the
four beams are produced using a single pulse, hence the name “monopulse.”
Additionally, monopulse tracking is more accurate and is not susceptible to
lobing anomalies, such as AM jamming and gain inversion ECM. Finally, in
sequential and conical lobing variations in the radar echoes degrade the track-
ing accuracy; however, this is not a problem for monopulse techniques since a
single pulse is used to produce the error signals. Monopulse tracking radars can
employ both antenna reflectors as well as phased array antennas. 

Fig. 11.7 show a typical monopulse antenna pattern. The four beams A, B, C,
and D represent the four conical scan beam positions. Four feeds, mainly
horns, are used to produce the monopulse antenna pattern. Amplitude
monopulse processing requires that the four signals have the same phase and
different amplitudes.

A good way to explain the concept of amplitude monopulse technique is to
represent the target echo signal by a circle centered at the antenna’s tracking
axis, as illustrated by Fig. 11.8a, where the four quadrants represent the four
beams. In this case, the four horns receive an equal amount of energy, which
indicates that the target is located on the antenna’s tracking axis. However,
when the target is off the tracking axis (Figs. 11.8b-d), an unbalance of energy
occurs in the different beams. This unbalance of energy is used to generate an
error signal that drives the servo-control system. Monopulse processing con-
sists of computing a sum  and two difference  (azimuth and elevation)
antenna patterns. Then by dividing a  channel voltage by the  channel volt-
age, the angle of the signal can be determined.

The radar continuously compares the amplitudes and phases of all beam
returns to sense the amount of target displacement off the tracking axis. It is
critical that the phases of the four signals be constant in both transmit and
receive modes. For this purpose, either digital networks or microwave compar-
ator circuitry are utilized. Fig. 11.9 shows a block diagram for a typical micro-
wave comparator, where the three receiver channels are declared as the sum
channel, elevation angle difference channel, and azimuth angle difference
channel.
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Figure 11.7. Monopulse antenna pattern.
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To generate the elevation difference beam, one can use the beam difference
(A-D) or (B-C). However, by first forming the sum patterns (A+B) and (D+C)
and then computing the difference (A+B)-(D+C), we achieve a stronger eleva-
tion difference signal, . Similarly, by first forming the sum patterns (A+D)
and (B+C) and then computing the difference (A+D)-(B+C), a stronger azi-
muth difference signal, , is produced.

A simplified monopulse radar block diagram is shown in Fig. 11.10. The
sum channel is used for both transmit and receive. In the receiving mode the
sum channel provides the phase reference for the other two difference chan-
nels. Range measurements can also be obtained from the sum channel. In order
to illustrate how the sum and difference antenna patterns are formed, we will
assume a  single element antenna pattern and squint angle . The
sum signal in one coordinate (azimuth or elevation) is then given by

(11.7)
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 Figure 11.8. Illustration of monopulse concept. (a) Target is on the 

tracking axis.  (b) - (d) Target is off the tracking axis.
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and a difference signal in the same coordinate is

(11.8)

MATLAB Function “mono_pulse.m”

The function “mono_pulse.m” implements Eqs. (11.7) and (11.8). Its output
includes plots of the sum and difference antenna patterns as well as the differ-
ence-to-sum ratio. It is given in Listing 11.1 in Section 11.10. The syntax is as
follows:

mono_pulse (phi0)

where phi0 is the squint angle in radians. 

Fig. 11.11 (a-c) shows the corresponding plots for the sum and difference
patterns for  radians. Fig. 11.12 (a-c) is similar to Fig. 11.11, except
in this case  radians. Clearly, the sum and difference patterns
depend heavily on the squint angle. Using a relatively small squint angle pro-
duces a better sum pattern than that resulting from a larger angle. Additionally,
the difference pattern slope is steeper for the small squint angle.
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 Figure 11.11a. Two squinted patterns. Squint angle is  radians.ϕ0 0.15=
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 Figure 11.11b. Sum pattern corresponding to Fig. 11.11a.
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 Figure 11.11c. Difference pattern corresponding to Fig. 11.11a.

-4 -3 -2 -1 0 1 2 3 4
-0 .5

-0 .4

-0 .3

-0 .2

-0 .1

0

0 .1

0 .2

0 .3

0 .4

0 .5

A ng le  - rad ia ns

D
iff

e
re

n
c

e
 p

a
tt

e
rn

© 2000 by Chapman & Hall/CRC



 Figure 11.12a. Two squinted patterns. Squint angle is  radians.ϕ0 0.75=
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 Figure 11.12b. Sum pattern corresponding to Fig. 11.12a.
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The difference channels give us an indication of whether the target is on or
off the tracking axis. However, this signal amplitude depends not only on the
target angular position, but also on the target’s range and RCS. For this reason
the ratio  (delta over sum) can be used to accurately estimate the error
angle that only depends on the target’s angular position.

Let us now address how the error signals are computed. First, consider the
azimuth error signal. Define the signals  and  as

(11.9)

(11.10)

The sum signal is , and the azimuth difference signal is
. If , then both channels have the same phase  (since

the sum channel is used for phase reference). Alternatively, if , then the
two channels are  out of phase. Similar analysis can be done for the ele-
vation channel, where in this case  and . Thus, the
error signal output is

(11.11)

 Figure 11.12c. Difference pattern corresponding to Fig. 11.12a.
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where  is the phase angle between the sum and difference channels and it is
equal to  or . More precisely, if , then the target is on the track-
ing axis; otherwise it is off the tracking axis. Fig. 11.13 (a,b) shows a plot for
the ratio  for the monopulse radar whose sum and difference patterns are
in Figs. 11.11 and 11.12.
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 Figure 11.13a. Difference-to-sum ratio corresponding to Fig. 11.11a.
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 Figure 11.13b. Difference-to-sum ratio corresponding to Fig. 11.12a.
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11.3.  Phase Comparison Monopulse

Phase comparison monopulse is similar to amplitude comparison monopulse
in the sense that the target angular coordinates are extracted from one sum and
two difference channels. The main difference is that the four signals produced
in amplitude comparison monopulse will have similar phases but different
amplitudes; however, in phase comparison monopulse the signals have the
same amplitude and different phases. Phase comparison monopulse tracking
radars use a minimum of a two-element array antenna for each coordinate (azi-
muth and elevation), as illustrated in Fig. 11.14. A phase error signal (for each
coordinate) is computed from the phase difference between the signals gener-
ated in the antenna elements. 

 

Consider Fig. 11.14; since the angle  is equal to , it follows that

(11.12)

and since  we can use the binomial series expansion to get
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(11.13)

Similarly, 

(11.14)

The phase difference between the two elements is then given by

(11.15)

where  is the wavelength. The phase difference  is used to determine the
angular target location. Note that if , then the target would be on the
antenna’s main axis. The problem with this phase comparison monopulse tech-
nique is that it is quite difficult to maintain a stable measurement of the off
boresight angle , which causes serious performance degradation. This prob-
lem can be overcome by implementing a phase comparison monopulse system
as illustrated in Fig. 11.15. 

The (single coordinate) sum and difference signals are, respectively, given
by

(11.16)

(11.17)

where the  and  are the signals in the two elements. Now, since  and
 have similar amplitude and are different in phase by , we can write

(11.18)
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It follows that

(11.19)

(11.20)

The phase error signal is computed from the ratio . More precisely,

(11.21)

which is purely imaginary. The modulus of the error signal is then given by

(11.22)

This kind of phase comparison monopulse tracker is often called the half-angle
tracker.

11.4. Range Tracking

Target range is measured by estimating the round-trip delay of the transmit-
ted pulses. The process of continuously estimating the range of a moving target
is known as range tracking. Since the range to a moving target is changing with
time, the range tracker must be constantly adjusted to keep the target locked in
range. This can be accomplished using a split gate system, where two range
gates (early and late) are utilized. The concept of split gate tracking is illus-
trated in Fig. 11.16, where a sketch of a typical pulsed radar echo is shown in
the figure. The early gate opens at the anticipated starting time of the radar
echo and lasts for half its duration. The late gate opens at the center and closes
at the end of the echo signal. For this purpose, good estimates of the echo dura-
tion and the pulse centertime must be reported to the range tracker so that the
early and late gates can be placed properly at the start and center times of the
expected echo. This reporting process is widely known as the “designation pro-
cess.”

The early gate produces positive voltage output while the late gate produces
negative voltage output. The outputs of the early and late gates are subtracted,
and the difference signal is fed into an integrator to generate an error signal. If
both gates are placed properly in time, the integrator output will be equal to
zero. Alternatively, when the gates are not timed properly, the integrator output
is not zero, which gives an indication that the gates must be moved in time, left
or right depending on the sign of the integrator output.
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Figure 11.16. Illustration of split-range gate. 
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Part II: Multiple Target Tracking

Track-while-scan radar systems sample each target once per scan interval,
and use sophisticated smoothing and prediction filters to estimate the target
parameters between scans. To this end, the Kalman filter and the Alpha-Beta-
Gamma ( ) filter are commonly used. Once a particular target is detected,
the radar may transmit up to a few pulses to verify the target parameters, before
it establishes a track file for that target. Target position, velocity, and accelera-
tion comprise the major components of the data maintained by a track file.

The principles of recursive tracking and prediction filters are presented in
this part. First, an overview of state representation for Linear Time Invariant
(LTI) systems is discussed. Then, second and third order one-dimensional
fixed gain polynomial filter trackers are developed. These filters are, respec-
tively, known as the  and  filters (also known as the g-h and g-h-k fil-
ters). Finally, the equations for an n-dimensional multi-state Kalman filter is
introduced and analyzed. As a matter of notation, small case letters, with an
underneath bar, are used.

11.5. Track-While-Scan (TWS)

Modern radar systems are designed to perform multi-function operations,
such as detection, tracking, and discrimination. With the aid of sophisticated
computer systems, multi-function radars are capable of simultaneously track-
ing many targets. In this case, each target is sampled once (mainly range and
angular position) during a dwell interval (scan). Then, by using smoothing and
prediction techniques future samples can be estimated. Radar systems that can
perform multi-tasking and multi-target tracking are known as Track-While-
Scan (TWS) radars.

Once a TWS radar detects a new target it initiates a separate track file for
that detection; this ensures that sequential detections from that target are pro-
cessed together to estimate the target’s future parameters. Position, velocity,
and acceleration comprise the main components of the track file. Typically, at
least one other confirmation detection (verify detection) is required before the
track file is established. 

Unlike single target tracking systems, TWS radars must decide whether each
detection (observation) belongs to a new target or belongs to a target that has
been detected in earlier scans. And in order to accomplish this task, TWS radar
systems utilize correlation and association algorithms. In the correlation pro-
cess each new detection is correlated with all previous detections in order to
avoid establishing redundant tracks. If a certain detection correlates with more
than one track, then a pre-determined set of association rules are exercised so

αβγ

αβ αβγ
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that the detection is assigned to the proper track. A simplified TWS data pro-
cessing block diagram is shown in Fig. 11.17. 

Choosing a suitable tracking coordinate system is the first problem a TWS
radar has to confront. It is desirable that a fixed reference of an inertial coordi-
nate system be adopted. The radar measurements consist of target range, veloc-
ity, azimuth angle, and elevation angle. The TWS system places a gate around
the target position and attempts to track the signal within this gate. The gate
dimensions are normally azimuth, elevation, and range. Because of the uncer-
tainty associated with the exact target position during the initial detections, a
gate has to be large enough so that targets do not move appreciably from scan
to scan; more precisely, targets must stay within the gate boundary during suc-
cessive scans. After the target has been observed for several scans the size of
the gate is reduced considerably.

Gating is used to decide whether an observation is assigned to an existing
track file, or to a new track file (new detection). Gating algorithms are nor-
mally based on computing a statistical error distance between a measured and
an estimated radar observation. For each track file, an upper bound for this
error distance is normally set. If the computed difference for a certain radar
observation is less than the maximum error distance of a given track file, then
the observation is assigned to that track.

All observations that have an error distance less than the maximum distance
of a given track are said to correlate with that track. For each observation that
does not correlate with any existing tracks, a new track file is established
accordingly. Since new detections (measurements) are compared to all existing
track files, a track file may then correlate with no observations or with one or
more observations. The correlation between observations and all existing track
files is identified using a correlation matrix. Rows of the correlation matrix
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Figure. 11.17. Simplified block diagram of TWS data processing. 
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represent radar observations, while columns represent track files. In cases
where several observations correlate with more than one track file, a set of pre-
determined association rules can be utilized so that a single observation is
assigned to a single track file. 

11.6.  State Variable Representation of an LTI System 

Linear time invariant system (continuous or discrete) can be describe mathe-
matically using three variables. They are the input, output, and the state vari-
ables. In this representation, any LTI system has observable or measurable
objects (abstracts). For example, in the case of a radar system, range may be an
object measured or observed by the radar tracking filter. States can be derived
in many different ways. For the scope of this book, states of an object or an
abstract are the components of the vector that contains the object and its time
derivatives. For example, a third-order one-dimensional (in this case range)
state vector representing range can be given by 

(11.23)

where , , and  are, respectively, the range measurement, range rate
(velocity), and acceleration. The state vector defined in Eq. (11.23) can be rep-
resentative of continuous or discrete states. In this book, the emphasis is on
discrete time representation, since most radar signal processing is executed
using digital computers. For this purpose, an n-dimensional state vector has the
following form:

(11.24)

where the superscript indicates the transpose operation. 

The LTI system of interest can be represented using the following state equa-
tions:

(11.25)

(11.26)

where:  is the value of the  state vector;  is the value of the  out-
put vector;  is the value of the  input vector;  is an  matrix; 
is an  matrix;  is  matrix; and  is an  matrix. The

x
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y t( ) C x t( ) Dw t( )+=
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homogeneous solution (i.e., ) to this linear system, assuming known
initial condition  at time , has the form

 (11.27)

The matrix  is known as the state transition matrix, or fundamental matrix,
and is equal to

(11.28)

Eq. (11.28) can be expressed in series format as

(11.29)

Example 11.1: Compute the state transition matrix for an LTI system when

 

Solution:

The state transition matrix can be computed using Eq. (11.29). For this pur-
pose, compute  and . It follows

 

Therefore,

 

The state transition matrix has the following properties (the proof is left as
an exercise):
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(11.30)

2. Identity property

(11.31)

3. Initial value property

(11.32)

4. Transition property

(11.33)

5. Inverse property

(11.34)

6. Separation property

(11.35)

The general solution to the system defined in Eq. (11.25) can be written as

(11.36)

The first term of the right-hand side of Eq. (11.36) represents the contribution
from the system response to the initial condition. The second term is the contri-
bution due to the driving force . By combining Eqs. (11.26) and (11.36) an
expression for the output is computed as

(11.37)

Note that the system impulse response is equal to . 

The difference equations describing a discrete time system, equivalent to
Eqs. (11.25) and (11.26), are 

t∂
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(11.38)

(11.39)

where  defines the discrete time  and  is the sampling interval. All other
vectors and matrices were defined earlier. The homogeneous solution to the
system defined in Eq. (11.38), with initial condition , is

 (11.40)

In this case the state transition matrix is an  matrix given by

 (11.41)

The following is the list of properties associated with the discrete transition
matrix

(11.42)

(11.43)

(11.44)

(11.45)

(11.46)

(11.47)

The solution to the general case (i.e., non-homogeneous system) is given by

(11.48)

It follows that the output is given by

(11.49)

where the system impulse response is given by
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(11.50)

Taking the Z-transform for Eqs. (11.38) and (11.39) yields

(11.51)

 (11.52)

Manipulating Eqs. (11.51) and (11.52) yields

(11.53)

(11.54)

It follows that the state transition matrix is 

(11.55)

and the system impulse response in the z-domain is

(11.56)

11.7.  The LTI System of Interest 

For the purpose of establishing the framework necessary for the Kalman fil-
ter development, consider the LTI system shown in Fig. 11.18. This system
(which is a special case of the system described in the previous section) can be
described by the following first order differential vector equations

(11.57)

(11.58)

where  is the observable part of the system (i.e., output),  is a driving force,
and  is the measurement noise. The matrices  and  vary depending on the
system. The noise observation  is assumed to be uncorrelated. If the initial
condition vector is , then from Eq. (11.36) we get

(11.59)
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The object (abstract) is observed only at discrete times determined by the
system. These observation times are declared by discrete time  where  is
the sampling interval. Using the same notation adopted in the previous section,
the discrete time representations of Eqs. (11.57) and (11.58) are

(11.60)

(11.61)

The homogeneous solution to this system is given in Eq. (11.27) for continuous
time, and in Eq. (11.40) for discrete time. 

The state transition matrix corresponding to this system can be obtained
using Taylor series expansion of the vector . More precisely,

(11.62)

It follows that the elements of the state transition matrix are defined by

(11.63)

Using matrix notation, the state transition matrix is then given by 

Σ Σ
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∫ G
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v

 Figure 11.18. An LTI system.
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(11.64)

The matrix given in Eq. (11.64) is often called the Newtonian matrix.

11.8.  Fixed-Gain Tracking Filters 

This class of filters (or estimators) is also known as “Fixed-Coefficient” fil-
ters. The most common examples of this class of filters are the  and 
filters and their variations. The  and  trackers are one-dimensional sec-
ond and third order filters, respectively. They are equivalent to special cases of
the one-dimensional Kalman filter. The general structure of this class of esti-
mators is similar to that of the Kalman filter.

The standard  filter provides smoothed and predicted data for target
position, velocity (Doppler), and acceleration. It is a polynomial predictor/cor-
rector linear recursive filter. This filter can reconstruct position, velocity, and
constant acceleration based on position measurements. The  filter can also
provide a smoothed (corrected) estimate of the present position which can be
used in guidance and fire control operations. 

Notation: 

For the purpose of the discussion presented in the remainder of this chapter,
the following notation is adopted:  represents the estimate during the

 sampling interval, using all data up to and including the  sampling
interval;  is the  measured value; and  is the  residual (error).

The fixed-gain filter equation is given by 

 (11.65)

Since the transition matrix assists in predicting the next state, 

(11.66)

Substituting Eq. (11.66) into Eq. (11.65) yields

(11.67)
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The term enclosed within the brackets on the right hand side of Eq. (11.67) is
often called the residual (error) which is the difference between the measured
input and predicted output. Eq. (11.67) means that the estimate of  is the
sum of the prediction and the weighted residual. The term  repre-
sents the prediction state. In the case of the  estimator,  is row vector
given by

(11.68)

and the gain matrix  is given by 

(11.69)

One of the main objectives of a tracking filter is to decrease the effect of the
noise observation on the measurement. For this purpose the noise covariance
matrix is calculated. More precisely, the noise covariance matrix is 

(11.70)

where  indicates the expected value operator. Noise is assumed to be a zero
mean random process with variance equal to . Additionally, noise measure-
ments are also assumed to be uncorrelated,

(11.71)

Eq. (11.65) can be written as 

(11.72)

where 

(11.73)

Substituting Eqs. (11.72) and (11.73) into Eq. (11.70) yields

(11.74)

Expanding the right hand side of Eq. (11.74) and using Eq. (11.71) give
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(11.75)

Under the steady state condition, Eq. (11.75) collapses to

(11.76)

where  is the steady state noise covariance matrix. In the steady state, 

(11.77)

Several criteria can be used to establish the performance of fixed-gain track-
ing filter. The most commonly used technique is to compute the Variance
Reduction Ratio (VRR). The VRR is defined only when the input to the tracker
is noise measurements. It follows that in the steady state case, the VRR is the
steady state ratio of the output variance (auto-covariance) to the input measure-
ment variance. 

In order to determine the stability of the tracker under consideration, con-
sider the Z-transform for Eq. (11.72),

 (11.78)

Rearranging Eq. (11.78) yields the following system transfer functions:

(11.79)

where  is called the characteristic matrix. Note that the system trans-
fer functions can exist only when the characteristic matrix is a non-singular
matrix. Additionally, the system is stable if and only if the roots of the charac-
teristic equation are within the unit circle in the z-plane,

(11.80)

The filter’s steady state errors can be determined with the help of Fig. 11.19.
The error transfer function is 

(11.81)

and by using Abel’s theorem, the steady state error is

(11.82)
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Substituting Eq. (11.82) into (11.81) yields

(11.83)

11.8.1. The  Filter

The  tracker produces, on the  observation, smoothed estimates for
position and velocity, and a predicted position for the  observation.
Fig. 11.20 shows an implementation of this filter. Note that the subscripts “p”
and “s” are used to indicate, respectively, the predicated and smoothed values.
The  tracker can follow an input ramp (constant velocity) with no steady
state errors. However, a steady state error will accumulate when constant
acceleration is present in the input. Smoothing is done to reduce errors in the
predicted position through adding a weighted difference between the measured
and predicted values to the predicted position, as follows:

(11.84)

(11.85)

 is the position input samples. The predicted position is given by

(11.86)

The initialization process is defined by
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 Figure 11.19. Steady state errors computation.
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A general form for the covariance matrix was developed in the previous sec-
tion, and is given in Eq. (11.75). In general, a second order one-dimensional
covariance matrix (in the context of the  filter) can be written as

(11.87)

where, in general,  is

(11.88)

By inspection, the  filter has
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 Figure 11.20. An implementation for an  tracker.αβ
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Finally, by using Eqs. (11.89) through (11.92) in Eq. (11.72) yields the steady
state noise covariance matrix,

(11.93)

It follows that the position and velocity VRR ratios are, respectively, given by

(11.94)

(11.95)

The stability of the  filter is determined from its system transfer func-
tions. For this purpose, compute the roots for Eq. (11.80) with  from Eq.
(11.89),

(11.96)

Solving Eq. (11.96) for  yields

(11.97)

and in order to guarantee stability

 (11.98)

Two cases are analyzed. First,  are real. In this case (the details are left as
an exercise),

(11.99)

The second case is when the roots are complex; in this case we find

 (11.100)

The system transfer functions can be derived by using Eqs. (11.79), (11.89),
and (11.90), 
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Up to this point all relevant relations concerning the  filter were made
with no regard to how to choose the gain coefficients (  and ). Before con-
sidering the methodology of selecting these coefficients, consider the main
objective behind using this filter. The purpose of the  tracker can be
described twofold:

1. The tracker must reduce the measurement noise as much as possible.

2. The filter must be able to track maneuvering targets, with as little residual 
(tracking error) as possible.

The reduction of measurement noise reduction is normally determined by the
VRR ratios. However, the maneuverability performance of the filter depends
heavily on the choice of the parameters  and . 

A special variation of the  filter was developed by Benedict and Bord-
ner1, and is often referred to as the Benedict-Bordner filter. The main advan-
tage of the Benedict-Bordner is reducing the transient errors associated with
the  tracker. This filter uses both the position and velocity VRR ratios as
measure of performance. It computes the sum of the squared differences
between the input (position) and the output when the input has a unit step
velocity at time zero. Additionally, it computes the squared differences
between the real velocity and the velocity output when the input is as described
earlier. Both error differences are minimized when

(11.102)

In this case, the position and velocity VRR ratios are, respectively, given by

(11.103)

(11.104)

Another important sub-class of the  tracker is the critically damped filter,
often called the fading memory filter. In this case, the filter coefficients are
chosen on the basis of a smoothing factor , where . The gain coeffi-
cients are given by

(11.105)

1. Benedict, T. R. and Bordner, G. W., Synthesis of an Optimal Set of Radar Track-
While-Scan Smoothing Equations. IRE Transaction on Automatic Control, AC-7. 
July 1962, pp. 27-32.
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(11.106)

Heavy smoothing means  and little smoothing means . The ele-
ments of the covariance matrix for a fading memory filter are

(11.107)

(11.108)

(11.109)

11.8.2. The  Filter

The  tracker produces, for the  observation, smoothed estimates of
position, velocity, and acceleration. It also produces predicted position and
velocity for the  observation. An implementation of the  tracker
is shown in Fig. 11.21.

The  tracker will follow an input whose acceleration is constant with no
steady state errors. Again, in order to reduce the error at the output of the
tracker, a weighted difference between the measured and predicted values is
used in estimating the smoothed position, velocity, and acceleration as follows:
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(11.110)

(11.111)

(11.112)

(11.113)

and the initialization process is 

 

 

 

 

Using Eq. (11.63) the state transition matrix for the  filter is 

(11.114)

The covariance matrix (which is symmetric) can be computed from Eq.
(11.76). For this purpose, note that 
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Substituting Eq. (11.117) into (11.76) and collecting terms the VRR ratios
are computed as

(11.118)

(11.119)

(11.120)

As in the case of any discrete time system, this filter will be stable if and only if
all of its poles fall within the unit circle in the z-plane. 

The  characteristic equation is computed by setting 

(11.121)

Substituting Eq. (11.117) into (11.121) and collecting terms yield the following
characteristic function:

(11.122)

The  becomes a Benedict-Bordner filter when 

(11.123)

Note that for  Eq. (11.123) reduces to Eq. (11.102). For a critically
damped filter the gain coefficients are 

(11.124)

(11.125)

(11.126)

Note that heavy smoothing takes place when , while  means that
no smoothing is present.
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MATLAB Function “ghk_tracker.m”

The function “ghk_tracker.m”1 implements the steady state  filter. It is
given in Listing 11.2 in Section 11.10. The syntax is as follows:

[residual, estimate] = ghk_tracker (X0, smoocof, inp, npts, T, nvar)

where

Note that “ghk_tracker.m” uses MATLAB’s function “normrnd.m” to gener-
ate zero mean Gaussian noise, which is part of MATLAB’s Statistics Toolbox.
If this toolbox is not available to the user, then “ghk_tracker.m” function-call
must be modified to

[residual, estimate] = ghk_tracker1 (X0, smoocof, inp, npts, T)

which is also part of Listing 11.2. In this case, noise measurements are either to
be considered unavailable or are part of the position input array.

To illustrate how to use the functions ghk_tracker.m and ghk_tracker.m1,
consider the inputs shown in Figs. 11.22 and 11.23. Fig. 11.22 assumes an
input with lazy maneuvering, while Fig. 11.23 assumes an aggressive maneu-
vering case. For this purpose, the program called “fig11_21.m” was written. It
is given in Listing 11.3 in Section 11.10. 

Figs. 11.24 and 11.25 show the residual error and predicted position corre-
sponding (generated using the program “fig11_21.m”) to Fig. 11.22 for two
cases: heavy smoothing and little smoothing with and without noise. The noise
is white Gaussian with zero mean and variance of . Figs. 11. 26 and
11.27 show the residual error and predicted position corresponding (generated
using the program “fig11_20.m”) to Fig. 11.23 with and without noise.

1. This function was written by Mr. Edward Shamsi of COLSA Corporation in Hunts-
ville, AL.

Symbol Description Status

X0 initial state vector input

smoocof desired smoothing coefficient input

inp array of position measurements input

npts number of points in input position input

T sampling interval input

nvar desired noise variance input

residual array of position error (residual) output

estimate array of predicted position output

αβγ

σv
2 0.05=
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 Figure 11.22. Position (truth-data); lazy maneuvering. 
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 Figure 11.23. Position (truth-data); aggresive maneuvering. 
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 Figure 11.24a-1. Predicted and true position.  (i.e., large gain 
coefficients). No noise present.
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 Figure 11.24a-2. Position residual (error). Large gain coefficients. 
No noise. The error settles to zero fairly quickly.
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 Figure 11.24b-1. Predicted and true position.  (i.e., small 
gain coefficients). No noise present.
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 Figure 11.24b-2. Position residual (error). Small gain coefficients. No noise. 
It takes the filter longer time for the error to settle down.
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 Figure 11.25a-1. Predicted and true position.  (i.e., large 
gain coefficients). Noise is present.
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 Figure 11.25a-2. Position residual (error). Large gain coefficients. Noise present. 
The error settles down quickly. The variation is due to noise.
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 Figure 11.25b-1. Predicted and true position.  (i.e., small gain 
coefficients). Noise is present.
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 Figure 11.25b-2. Position residual (error). Small gain coefficients. Noise present. 
The error requires more time before settling down. The 
variation is due to noise.
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 Figure 11.26a. Predicted and true position.  (i.e., large gain 
coefficients). Noise is present.
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 Figure 11.26b. Position residual (error). Large gain coefficients. No noise. 
The error settles down quickly.
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 Figure 11.27a. Predicted and true position.  (i.e., small gain coefficients). 
Noise is present.
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 Figure 11.27b. Position residual (error). Small gain coefficients. Noise present. 
The error stays fairly large; however, its average is around zero.  
The variation is due to noise.
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11.9. The Kalman Filter

The Kalman filter is a linear estimator that minimizes the mean squared error
as long as the target dynamics are modeled accurately. All other recursive fil-
ters, such as the  and the Benedict-Bordner filters, are special cases of the
general solution provided by the Kalman filter for the mean squared estimation
problem. Additionally, the Kalman filter has the following advantages:

1. The gain coefficients are computed dynamically. This means that the same 
filter can be used for a variety of maneuvering target environments. 

2.  The Kalman filter gain computation adapts to varying detection histories, 
including missed detections.

3. The Kalman filter provides an accurate measure of the covariance matrix. 
This allows for better implementation of the gating and association pro-
cesses. 

4. The Kalman filter makes it possible to partially compensate for the effects 
of miss-correlation and miss-association. 

Many derivations of the Kalman filter exist in the literature; only results are
provided in this chapter. Fig. 11.28 shows a block diagram for the Kalman fil-
ter. The Kalman filter equations can be deduced from Fig. 11.28. The filtering
equation is

(11.127)

The measurement vector is

(11.128)

where  is zero mean, white Gaussian noise with covariance ,

(11.129)

The gain (weights) vector is dynamically computed as

(11.130)

where the measurement noise matrix  represents the predictor covariance
matrix, and is equal to

(11.131)

where  is the covariance matrix for the input ,

αβγ
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y n( ) Gx n( ) v n( )+=

v n( ) ℜc

ℜc E y n( ) yt n( ){ }=

K n( ) P n n 1–( )Gt
GP n n 1–( )Gt ℜc+[ ]

1–
=

P
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Q u
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(11.132)

The corrector equation (covariance of the smoothed estimate) is

(11.133)

Finally, the predictor equation is 

(11.134)

 

11.9.1. The Singer -Kalman Filter

 The Singer1 filter is a special case of the Kalman where the filter is gov-
erned by a specified target dynamic model whose acceleration is a random pro-
cess with autocorrelation function given by

 (11.135)

1. Singer, R. A., Estimating Optimal Tracking Filter Performance for Manned Maneu-
vering Targets, IEEE Transaction on aerospace and Electronics, AES-5, July, 1970. 
pp. 473-483.
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 Figure 11.28. Structure of the Kalman filter.
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where  is the correlation time of the acceleration due to target maneuver or
atmospheric turbulence. The correlation time  may vary from as low as 10
seconds for aggressive maneuvering to as large as 60 seconds for lazy maneu-
ver cases. 

Singer defined the random target acceleration model by a first order Markov
process given by

(11.136)

where  is a zero mean, Gaussian random variable with unity variance,
 is the maneuver standard deviation, and the maneuvering correlation coef-

ficient  is given by 

(11.137)

The continuous time domain system that corresponds to these conditions is as
the Wiener-Kolmogorov whitening filter which is defined by the differential
equation 

(11.138)

where  is equal to . The maneuvering variance using Singer’s model
is given by

(11.139)

 is the maximum target acceleration with probability  and the term
 defines the probability that the target has no acceleration. 

The transition matrix that corresponds to the Singer filter is given by

(11.140)

Note that when  is small (the target has constant acceleration),
then Eq. (11.140) reduces to Eq. (11.114). Typically, the sampling interval  is
much less than the maneuver time constant ; hence, Eq. (11.140) can be
accurately replaced by its second order approximation. More precisely,
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 (11.141)

The covariance matrix was derived by Singer, and it is equal to

(11.142)

where

(11.143)

(11.144)

(11.145)

(11.146)

(11.147)

(11.148)

Two limiting cases are of interest:

1. The short sampling interval case ( ),

(11.149)
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and the state transition matrix is computed from Eq. (11.141) as

(11.150)

which is the same as the case for the  filter (constant acceleration).

2. The long sampling interval ( ). This condition represents the case 

when acceleration is a white noise process. The corresponding covariance 
and transition matrices are, respectively, given by

(11.151)

 (11.152)

Note that under the condition that , the cross correlation terms  and
 become very small. It follows that estimates of acceleration are no longer

available, and thus a two state filter model can be used to replace the three state
model. In this case,

(11.153)

(11.154)

11.9.2. Relationship between Kalman and  Filters

The relationship between the Kalman filter and the  filters can be easily
obtained by using the appropriate state transition matrix , and gain vector 
corresponding to the  in Eq. (11.127). Thus,
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(11.155)

with (see Fig. 11.21) 

(11.156)

(11.157)

(11.158)

Comparing the previous three equations with the  filter equations
yields,

(11.159)

Additionally, the covariance matrix elements are related to the gain coeffi-
cients by

(11.160)

Eq. (11.160) indicates that the first gain coefficient depends on the estimation
error variance to the total residual variance, while the other two gain coeffi-
cients are calculated through the covariances between the second and third
states and the first observed state.

MATLAB Function “kalman_filter.m”

The function “kalman_filter.m”1 implements the Singer-  Kalman filter.
It is given in Listing 11.4 in Section 11.10. The syntax is as follows:

[residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar)

1. This function was written by Mr. Edward Shamsi of COLSA Corporation in Hunts-
ville, AL.
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where

Note that “kalman_filter.m” uses MATLAB’s function “normrnd.m” to gener-
ate zero mean Gaussian noise, which is part of MATLAB’s Statistics Toolbox. 

To illustrate how to use the functions “kalman_filter.m”, consider the inputs
shown in Figs. 11.22 and 11.23. Figs. 11.29 and 11.30 show the residual error
and predicted position corresponding to Figs. 11.22 and 11.23. These plots can
be reproduced using the program “fig11_28.m” given in Listing 11.5 in Sec-
tion 11.10.

Symbol Description Status

npts number of points in input position input

T sampling interval input

X0 initial state vector input

inp input array input

R noise variance see Eq. (11-129) input

nvar desired state noise variance input

residual array of position error (residual) output

estimate array of predicted position output
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 Figure 11.29a. True and predicted positions. Lazy maneuvering. Plot produced 
using the function “kalman_filter.m”.
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 Figure 11.29b. Residual corresponding to Fig. 11.29a.
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 Figure 11.30a. True and predicted positions. Aggressive maneuvering. Plot 
produced using the function “kalman_filter.m”.
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11.10. MATLAB Programs and Functions

This section contains listings of all MATLAB programs and functions used
in this chapter. Users are encouraged to rerun these codes with different inputs
in order to enhance their understanding of the theory.

Listing 11.1. MATLAB Function “mono_pulse.m”
function mono_pulse(phi0)
eps = 0.0000001;
angle = -pi:0.01:pi;
y1 = sinc(angle + phi0);
y2 = sinc((angle - phi0));
ysum = y1 + y2;
ydif = -y1 + y2;
figure (1)
plot (angle,y1,'k',angle,y2,'k');
grid;
xlabel ('Angle - radians')
ylabel ('Squinted patterns')
figure (2)
plot(angle,ysum,'k');
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 Figure 11.30b. Residual corresponding to Fig. 11.30a.
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grid;
xlabel ('Angle - radians')
ylabel ('Sum pattern')
figure (3)
plot (angle,ydif,'k');
grid;
xlabel ('Angle - radians')
ylabel ('Difference pattern')
angle = -pi/4:0.01:pi/4;
y1 = sinc(angle + phi0);
y2 = sinc((angle - phi0));
ydif = -y1 + y2;
ysum = y1 + y2;
dovrs = ydif ./ ysum;
figure(4)
plot (angle,dovrs,'k');
grid;
xlabel ('Angle - radians')
ylabel ('voltage gain')

Listing 11.2. MATLAB Function “ghk_tracker.m”
function [residual, estimate] = ghk_tracker (X0, smoocof, inp, npts, T, nvar)
rn = 1.;
% read the initial estimate for the state vector
X = X0; 
theta = smoocof;
%compute values for alpha, beta, gamma
w1 = 1. - (theta^3);
w2 = 1.5 * (1. + theta) * ((1. - theta)^2) / T;
w3 = ((1. - theta)^3) / (T^2);
% setup the transition matrix PHI
PHI = [1. T (T^2)/2.;0. 1. T;0. 0. 1.];
while rn < npts ;
   %use the transition matrix to predict the next state
   XN = PHI * X;
   error = (inp(rn) + normrnd(0,nvar)) - XN(1);
   residual(rn) = error;
   tmp1 = w1 * error;
   tmp2 = w2 * error;
   tmp3 = w3 * error;
   % compute the next state
   X(1) = XN(1) + tmp1;
   X(2) = XN(2) + tmp2;
   X(3) = XN(3) + tmp3;
   estimate(rn) = X(1);
   rn = rn + 1.;
end
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return

MATLAB Function “ghk_traker1.m”

function [residual, estimate] = ghk_tracker1 (X0, smoocof, inp, npts, T)
rn = 1.;
% read the initial estimate for the state vector
X = X0; 
theta = smoocof;
%compute values for alpha, beta, gamma
w1 = 1. - (theta^3);
w2 = 1.5 * (1. + theta) * ((1. - theta)^2) / T;
w3 = ((1. - theta)^3) / (T^2);
% setup the transition matrix PHI
PHI = [1. T (T^2)/2.;0. 1. T;0. 0. 1.];
while rn < npts ;
   %use the transition matrix to predict the next state
   XN = PHI * X;
   error = inp(rn)  - XN(1);
   residual(rn) = error;
   tmp1 = w1 * error;
   tmp2 = w2 * error;
   tmp3 = w3 * error;
   % compute the next state
   X(1) = XN(1) + tmp1;
   X(2) = XN(2) + tmp2;
   X(3) = XN(3) + tmp3;
   estimate(rn) = X(1);
   rn = rn + 1.;
end
return

Listing 11.3. MATLAB Program “fig11_21.m”
clear all
eps = 0.0000001;
npts = 5000;
del = 1./ 5000.;
t = 0. : del : 1.;
% generate input sequence
inp = 1.+ t.^3 + .5 .*t.^2 + cos(2.*pi*10 .* t) ;
% read the initial estimate for the state vector
X0 = [2,.1,.01]';
% this is the update interval in seconds
T = 100. * del;
% this is the value of the smoothing coefficient
xi = .91;
[residual, estimate] = ghk_tracker (X0, xi, inp, npts, T, .01);
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figure(1)
plot (residual(1:500))
xlabel ('Sample number')
ylabel ('Residual error')
grid
figure(2)
NN = 4999.;
n = 1:NN;
plot (n,estimate(1:NN),'b',n,inp(1:NN),'r')
xlabel ('Sample number')
ylabel ('Position')
legend ('Estimated','Input')

Listing 11.4. MATLAB Function “kalman_filter.m”
function [residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar)
N = npts;
rn=1;
% read the initial estimate for the state vector
X = X0;
% it is assumed that the measurmeny vector H=[1,0,0]
% this is the state noise variance
VAR = nvar;
% setup the initial value for the predication covariance.
S = [1. 1. 1.; 1. 1. 1.; 1. 1. 1.];
% setup the transition matrix PHI
PHI = [1. T (T^2)/2.; 0. 1. T; 0. 0. 1.];
% setup the state noise covariance matrix
Q(1,1) = (VAR * (T^5)) / 20.;
Q(1,2) = (VAR * (T^4)) / 8.;
Q(1,3) = (VAR * (T^3)) / 6.;
Q(2,1) = Q(1,2);
Q(2,2) = (VAR * (T^3)) / 3.;
Q(2,3) = (VAR * (T^2)) / 2.;
Q(3,1) = Q(1,3);
Q(3,2) = Q(2,3);
Q(3,3) = VAR * T;
while rn < N ;
   %use the transition matrix to predict the next state
   XN = PHI * X;
   % Perform error covariance extrapolation
   S = PHI * S * PHI' + Q;
   % compute the Kalman gains
   ak(1) = S(1,1) / (S(1,1) + R);
   ak(2) = S(1,2) / (S(1,1) + R);
   ak(3) = S(1,3) / (S(1,1) + R);
   %perform state estimate update:
   error = inp(rn) + normrnd(0,R) - XN(1);
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   residual(rn) = error;
   tmp1 = ak(1) * error;
   tmp2 = ak(2) * error;
   tmp3 = ak(3) * error;
   X(1) = XN(1) + tmp1;
   X(2) = XN(2) + tmp2;
   X(3) = XN(3) + tmp3;
   estimate(rn) = X(1);
   % update the error covariance
   S(1,1) = S(1,1) * (1. -ak(1));
   S(1,2) = S(1,2) * (1. -ak(1));
   S(1,3) = S(1,3) * (1. -ak(1));
   S(2,1) = S(1,2);
   S(2,2) = -ak(2) * S(1,2) + S(2,2);
   S(2,3) = -ak(2) * S(1,3) + S(2,3);
   S(3,1) = S(1,3);
   S(3,3) = -ak(3) * S(1,3) + S(3,3);
   rn = rn + 1.;
end

Listing 11.5. MATLAB Program “fig11_28.m”
clear all
npts = 2000;
del = 1/2000;
t = 0:del:1;
inp = (1+.2 .* t + .1 .*t.^2) + cos(2. * pi * 2.5 .* t);
X0 = [1,.1,.01]';
% it is assumed that the measurmeny vector H=[1,0,0]
% this is the update interval in seconds
T = 1.;
% enter the measurement noise variance
R = .035;
% this is the state noise variance
nvar = .5;
[residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar);
figure(1)
plot(residual)
xlabel ('Sample number')
ylabel ('Residual')
figure(2)
subplot(2,1,1)
plot(inp)
axis tight
ylabel ('position - truth')
subplot(2,1,2)
plot(estimate)
axis tight
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xlabel ('Sample number')
ylabel ('Predicted position')

 Problems

11.1. Show that in order to be able to quickly achieve changing the beam
position the error signal needs to be a linear function of the deviation angle. 
11.2. Prepare a short report on the vulnerability of conical scan to amplitude
modulation jamming. In particular consider the self-protecting technique
called “Gain Inversion.”

11.3. Consider a conical scan radar. The pulse repetition interval is .
Calculate the scan rate so that at least ten pulses are emitted within one scan.
11.4. Consider a conical scan antenna whose rotation around the tracking
axis is completed in 4 seconds. If during this time 20 pulses are emitted and
received, calculate the radar PRF and the unambiguous range.

11.5. Reproduce Fig. 11.11 for  radians.

11.6. Reproduce Fig. 11.13 for the squint angles defined in the previous
problem.
11.7. Derive Eq. (11.33) and Eq. (11.34). 
11.8. Consider a monopulse radar where the input signal is comprised of
both target return and additive white Gaussian noise. Develop an expression

for the complex ratio .

11.9. Consider the sum and difference signals defined in Eqs. (11.7) and
(11.8). What is the squint angle  that maximizes ?

11.10. A certain system is defined by the following difference equation:

 

Find the solution to this system for  and .

11.11. Prove the state transition matrix properties (i.e., Eqs. (11.30) through
(11.36)).
11.12. Suppose that the state equations for a certain discrete time LTI sys-
tem are

 

If , find  when the input is a step function.

11.13. Derive Eq. (11.55).
11.14. Derive Eq. (11.75).

10µs

ϕ0 0.05 0.1 0.15, ,=

Σ ∆⁄

ϕ0 Σ ϕ 0=( )

y n( ) 4y n 1–( ) 2y n 2–( )+ + w n( )=

n 0> w δ=

x1 n 1+( )
x2 n 1+( )

0 1

2– 3–

x1 n( )
x2 n( )

0

1
w n( )+=

y 0( ) y 1( ) 1= = y n( )
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11.15. Using Eq. (11.83), compute a general expression (in terms of the
transfer function) for the steady state errors when the input sequence is:

 

 

 

 

11.16. Verify the results in Eqs. (11.99) and (11.100).
11.17. Develop an expression for the steady state error transfer function for

an  tracker. 

11.18. Using the result of the previous problem and Eq. (11.83), compute
the steady-state errors for the  tracker with the inputs defined in Problem
11.13.

11.19. Design a critically damped , when the measurement noise vari-

ance associated with position is  and when the desired standard

deviation of the filter prediction error is .

11.20. Derive Eqs. (11.118) through (11.120).
11.21. Derive Eq. (11.122).

11.22. Consider a  filter. We can define six transfer functions: ,

, , , , and  (predicted position, predicted

velocity, predicted acceleration, smoothed position, smoothed velocity, and
smoothed acceleration). Each transfer function has the form

  

The denominator remains the same for all six transfer functions. Compute all
the relevant coefficients for each transfer function.

11.23. Verify the results obtained for the two limiting cases of the Singer-
Kalman filter.
11.24. Verify Eq. (11.160).

u1 0 1 1 1 1 …, , , , ,{ }=

u2 0 1 2 3 …, , , ,{ }=

u3 0 12 22 32 …, , , ,{ }=

u4 0 13 23 33 …, , , ,{ }=

αβ

αβ

αβ

σv
2 50m=

5.5m

αβγ H1 z( )

H2 z( ) H3 z( ) H4 z( ) H5 z( ) H6 z( )

H z( )
a3 a2z

1–
a1z

2–+ +

1 b2z
1–

b1z
2–

b0z
3–+ + +

------------------------------------------------------------=
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