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Chapter 12 Synthetic Aperture Radar 

12.1.  Introduction

Modern airborne radar systems are designed to perform a large number of
functions which range from detection and discrimination of targets to mapping
large areas of ground terrain. This mapping can be performed by the Synthetic
Aperture Radar (SAR). Through illuminating the ground with coherent radia-
tion and measuring the echo signals, SAR can produce high resolution two-
dimensional (and in some cases three-dimensional) imagery of the ground sur-
face. The quality of ground maps generated by SAR is determined by the size
of the resolution cell. A resolution cell is specified by range and azimuth reso-
lutions of the system. Other factors affecting the size of the resolution cells are
(1) size of the processed map and the amount of signal processing involved;
(2) cost consideration; and (3) size of the objects that need to be resolved in the
map. For example, mapping gross features of cities and coastlines does not
require as much resolution when compared to resolving houses, vehicles, and
streets.

SAR systems can produce maps of reflectivity versus range and Doppler
(cross range). Range resolution is accomplished through range gating. Fine
range resolution can be accomplished by using pulse compression techniques.
The azimuth resolution depends on antenna size and radar wavelength. Fine
azimuth resolution is enhanced by taking advantage of the radar motion in
order to synthesize a larger antenna aperture. Let  denote the number of
range bins and let  denote the number of azimuth cells. It follows that the
total number of resolution cells in the map is . SAR systems that are

Nr
Na

NrNa

© 2000 by Chapman & Hall/CRC



generally concerned with improving azimuth resolution are often referred to as
Doppler Beam-Sharpening (DBS) SARs. In this case, each range bin is pro-
cessed to resolve targets in Doppler which correspond to azimuth. This chapter
is presented in the context of DBS.

Due to the large amount of signal processing required in SAR imagery, the
early SAR designs implemented optical processing techniques. Although such
optical processors can produce high quality radar images, they have several
shortcomings. They can be very costly and are, in general, limited to making
strip maps. Motion compensation is not easy to implement for radars that uti-
lize optical processors. With the recent advances in solid state electronics and
Very Large Scale Integration (VLSI) technologies, digital signal processing in
real time has been made possible in SAR systems. 

12.2. Real Versus Synthetic Arrays

A linear array of size , element spacing , isotropic elements, and wave-
length  is shown in Fig. 12.1. A synthetic linear array is formed by linear
motion of a single element, transmitting and receiving from distinct positions
that correspond to the element locations in a real array. Thus, synthetic array
geometry is similar to that of a real array, with the exception that the array
exists only at a single element position at a time. 

The two-way radiation pattern (in the direction-sine ) for a real linear
array was developed in Chapter 10; it is repeated here as Eq. (12.1):

(12.1)

Since a synthetic array exists only at a single location at a time, the array
transmission is sequential with only one element receiving. Therefore, the
returns received by the successive array positions differ in phase by ,
where , and  is the round-trip path difference
between contiguous element positions. The two-way array pattern for a syn-
thetic array is the coherent sum of the returns at all the array positions.

Thus, the overall two-way electric field for the synthetic array is

(12.2)

By using similar analysis as in Section 10.4, the two-way electric field for a
synthetic array can be expressed as
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(12.3)

and the two-way radiation pattern is 

(12.4)

Comparison of Eq. (12.4) and Eq. (12.1) indicates that the two-way radiation
pattern for a real array is of the form , while it is of the form

 for the synthetic array. Consequently, for the same size aperture,
the main beam of the synthetic array is twice as narrow as that for the real
array. Or equivalently, the resolution of a synthetic array of length  (aperture
size) is equal to that of a real array with twice the aperture size , as illus-
trated in Fig. 12.2.
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Figure 12.1. Geometry of real or synthetic array. 
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12.3.  Side Looking SAR Geometry

Fig. 12.3 shows the geometry for the standard side looking SAR. We will
assume that the platform carrying the radar maintains both fixed altitude  and
velocity . The antenna  beam width is , and the elevation angle (mea-
sured from the z-axis to the antenna axis) is . The intersection of the antenna
beam with the ground defines a footprint. As the platform moves, the footprint
scans a swath on the ground.

The radar position with respect to the absolute origin , at any
time is the vector . The velocity vector  is

 (12.5)

The Line of Sight (LOS) for the current footprint centered at  is defined

by the vector , where  denotes the central time of the observation inter-

val  (coherent integration interval). More precisely,

(12.6)
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 Figure 12.2. Pattern difference between real and synthetic arrays. This plot 
can be reproduced using MATLAB program “fig12_2.m” given in 
Listing 12.1 in Section 12.12.
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Figure 12.3. Side looking SAR geometry.
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where  and  are the absolute and relative times, respectively. The vector 
defines the ground projection of the antenna at central time. The minimum
slant range to the swath is , and the maximum range is denoted , as
illustrated by Fig. 12.4. It follows that

(12.7)

Notice that the elevation angle  is equal to 

(12.8)

where  is the grazing angle. The size of the footprint is a function of the
grazing angle and the antenna beam width, as illustrated in Fig. 12.5. The SAR
geometry described in this section is referred to as SAR “strip mode” of opera-
tion. Another SAR mode of operation, which will not be discussed in this
chapter, is called “spot-light mode,” where the antenna is steered (mechani-
cally or electronically) to continuously illuminate one spot (footprint) on the
ground. In this case, one high resolution image of the current footprint is gen-
erated during an observation interval. 

12.4.  SAR Design Considerations

The quality of SAR images is heavily dependent on the size of the map reso-
lution cell shown in Fig. 12.6. The range resolution, , is computed on the
beam LOS, and is given by

 (12.9)
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where  is the pulse width. From the geometry in Fig. 12.7 the extent of the
range cell ground projection  is computed as

(12.10)

The azimuth or cross range resolution for a real antenna with a  beam
width  (radians) at range  is

(12.11)

However, the antenna beam width is proportional to the aperture size, 

(12.12)

where  is the wavelength and  is the aperture length. It follows that

(12.13)

And since the effective synthetic aperture size is twice that of a real array, the
azimuth resolution for a synthetic array is then given by

(12.14)
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Furthermore, since the synthetic aperture length  is equal to , Eq.
(12.14) can be rewritten as

(12.15)

The azimuth resolution can be greatly improved by taking advantage of the
Doppler variation within a footprint (or a beam). As the radar travels along its
flight path the radial velocity to a ground scatterer (point target) within a foot-
print varies as a function of the radar radial velocity in the direction of that
scatterer. The variation of Doppler frequency for a certain scatterer is called the
“Doppler history.”

Let  denote range to a scatterer at time , and  be the corresponding
radial velocity; thus the Doppler shift is

(12.16)

where  is the range rate to the scatterer. Let  and  be the times when
the scatterer enters and leaves the radar beam, respectively, and let  be the
time that corresponds to minimum range. Fig. 12.8 shows a sketch of the corre-
sponding  (see Eq. (12.16)). Since the radial velocity can be computed as
the derivative of  with respect to time, one can clearly see that Doppler
frequency is maximum at , zero at , and minimum at , as illustrated in
Fig. 12.9. 

In general, the radar maximum PRF, , must be low enough to avoid
range ambiguity. Alternatively, the minimum PRF, , must be high enough
to avoid Doppler ambiguity. SAR unambiguous range must be at least as wide
as the extent of a footprint. More precisely, since target returns from maximum
range due to the current pulse must be received by the radar before the next
pulse is transmitted, it follows that SAR unambiguous range is given by

(12.17)

An expression for unambiguous range was derived in Chapter 1, and is
repeated here as Eq. (12.18), 

 (12.18)

Combining Eq. (12.18) and Eq. (12.17) yields

(12.19)
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SAR minimum PRF, , is selected so that Doppler ambiguity is avoided.
In other words,  must be greater than the maximum expected Doppler
spread within a footprint. From the geometry of Fig. 12.10, the maximum and
minimum Doppler frequencies are, respectively, given by

(12.20)

(12.21)
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It follows that the maximum Doppler spread is

(12.22)

Substituting Eqs. (11.20) and (11.21) into Eq. (12.22) and applying the proper
trigonometric identities yield

(12.23)

Finally, by using the small angle approximation we get

(12.24)

Therefore, the minimum PRF is 

(12.25)

Combining Eqs. (11.19) and (11.25) we get

(12.26)

It is possible to resolve adjacent scatterers at the same range within a foot-
print based only on the difference of their Doppler histories. For this purpose,
assume that the two scatterers are within the  range bin. Denote their angu-
lar displacement as , and let  be the minimum Doppler spread
between the two scatterers such that they will appear in two distinct Doppler
filters. Using the same methodology that led to Eq. (12.24) we get

(12.27)

where  is the elevation angle corresponding to the  range bin. 

The bandwidth of the individual Doppler filters must be equal to the inverse of
the coherent integration interval  (i.e., ). It follows that

(12.28)
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(12.29)

Therefore, the SAR azimuth resolution (within the  range bin) is

(12.30)

Note that when , Eq. (12.30) is identical to Eq. (12.14).

12.5.  SAR Radar Equation

The single pulse radar equation was derived in Chapter 1, and is repeated
here as Eq. (12.31),

(12.31)

where:  is peak power;  is antenna gain;  is wavelength;  is radar cross
section;  is radar slant range to the  range bin;  is Boltzman’s constant;

 is receiver noise temperature;  is receiver bandwidth; and  is radar
losses. The radar cross section is a function of the radar resolution cell and ter-
rain reflectivity. More precisely,

(12.32)

where  is the clutter scattering coefficient,  is the azimuth resolution,
and Eq. (12.10) was used to replace the ground range resolution. The number
of coherently integrated pulses within an observation interval is

(12.33)

where  is the synthetic aperture size. Using Eq. (12.30) in Eq. (12.33) and
rearranging terms yield

(12.34)

The radar average power over the observation interval is 

(12.35)

The SNR for  coherently integrated pulses is then
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(12.36)

Substituting Eqs. (11.35), (11.34), and (11.32) into Eq. (12.36) and performing
some algebraic manipulations give the SAR radar equation, 

(12.37)

Eq. (12.37) leads to the conclusion that in SAR systems the SNR is (1)
inversely proportional to the third power of range; (2) independent of azimuth
resolution; (3) function of the ground range resolution; (4) inversely propor-
tional to the velocity ; and (5) proportional to the third power of wavelength. 

12.6.  SAR Signal Processing

There are two signal processing techniques to sequentially produce a SAR
map or image; they are line-by-line processing and Doppler processing. The
concept of SAR line-by-line processing is as follows. Through the radar linear
motion a synthetic array is formed, where the elements of the current synthetic
array correspond to the position of the antenna transmissions during the last
observation interval. Azimuth resolution is obtained by forming narrow syn-
thetic beams through combination of the last observation interval returns. Fine
range resolution is accomplished in real time by utilizing range gating and
pulse compression. For each range bin and each of the transmitted pulses dur-
ing the last observation interval, the returns are recorded in a two-dimensional
array of data that is updated for every pulse. Denote the two-dimensional array
of data as .

To further illustrate the concept of line-by-line processing, consider the case
where a map of size  is to be produced,  is the number of azimuth
cells, and  is the number of range bins. Hence,  is of size ,
where the columns refer to range bins, and the rows refer to azimuth cells. For
each transmitted pulse, the echoes from consecutive range bins are recorded
sequentially in the first row of . Once the first row is completely filled
(i.e., returns from all range bins have been received), all data (in all rows) are
shifted downward one row before the next pulse is transmitted. Thus, one row
of  is generated for every transmitted pulse. Consequently, for the current
observation interval, returns from the first transmitted pulse will be located in
the bottom row of , and returns from the last transmitted pulse will be in
the first row of . 
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In SAR Doppler processing, the array  is updated once every  pulses
so that a block of  columns is generated simultaneously. In this case, 
refers to the number of transmissions during an observation interval (i.e., size
of the synthetic array). From an antenna point of view, this is equivalent to
having  adjacent synthetic beams formed in parallel through electronic steer-
ing.

12.7.  Side Looking SAR Doppler Processing

Consider the geometry shown in Fig. 12.11, and assume that the scatterer 
is located within the  range bin. The scatterer azimuth and elevation angles
are  and , respectively. The scatterer elevation angle  is assumed to be
equal to , the range bin elevation angle. This assumption is true if the
ground range resolution, , is small; otherwise,  for some
small ; in this chapter .

The normalized transmitted signal can be represented by

(12.38)

MAP N
N N

N

Ci
kth

µi βi βi
βk

∆Rg βi βk εi+=
εi εi 0=

s t( ) 2πf0t ξ0–( )cos=

Tob

Figure 12.11. A scatterer Ci within the kth range bin.

x

z

h

y

kth

µi

range bin

βi

v

Ci

projection of 
radar LOS

© 2000 by Chapman & Hall/CRC



where  is the radar operating frequency, and  denotes the transmitter
phase. The returned radar signal from  is then equal to

(12.39)

where  is the round-trip delay to the scatterer, and  includes scat-
terer strength, range attenuation, and antenna gain. The round-trip delay is 

(12.40)

where  is the speed of light and  is the scatterer slant range. From the
geometry in Fig. 12.11, one can write the expression for the slant range to the

 scatterer within the  range bin as

(12.41)

And by using Eq. (12.40) the round-trip delay can be written as

(12.42)

The round-trip delay can be approximated using a two-dimensional second
order Taylor series expansion about the reference state . Per-
forming this Taylor series expansion yields

 (12.43)

where the over-bar indicates evaluation at the state , and the subscripts
denote partial derivatives. For example,  means

(12.44)

The Taylor series coefficients are (see Problem 11.6) 
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(12.47)

Note that other Taylor series coefficients are either zeros or very small, hence
they are neglected. Finally, by substituting Eqs. (12.45) through (12.47) into
Eq. (12.43), we can rewrite the returned radar signal as

(12.48)

Observation of Eq. (12.48) indicates that the instantaneous frequency for the
 scatterer varies as a linear function of time due to the second order phase

term  (this confirms the result we concluded about a scatterer
Doppler history). Furthermore, since this phase term is range-bin dependent
and not scatterer dependent, all scatterers within the same range bin produce
this exact second order phase term. It follows that scatterers within a range bin
have identical Doppler histories. These Doppler histories are separated by the
time delay required to fly between them, as illustrated in Fig. 12.12.

Suppose that there are  scatterers within the  range bin. In this case, the
combined returns for this cell are the sum of the individual returns due to each
scatterer as defined by Eq. (12.48). In other words, superposition holds, and the
overall echo signal is

(12.49)
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A signal processing block diagram for the  range bin is illustrated in Fig.
12.13. It consists of the following steps. First, heterodyning with carrier fre-
quency is performed to extract the quadrature components. 

This is followed by LP filtering and A/D conversion. Next, deramping or
focusing to remove the second order phase term of the quadrature components
is carried out using a phase rotation matrix. The last stage of the processing
includes windowing, performing FFT on the windowed quadrature compo-
nents, and scaling of the amplitude spectrum to account for range attenuation
and antenna gain.

The discrete quadrature components are

(12.50)

(12.51)

and  denotes the  sampling time (remember that ).
The quadrature components after deramping (i.e., removal of the phase

) are given by

(12.52)

12.8.  SAR Imaging Using Doppler Processing

It was mentioned earlier that SAR imaging is performed using two orthogo-
nal dimensions (range and azimuth). Range resolution is controlled by the
receiver bandwidth and pulse compression. Azimuth resolution is limited by
the antenna beam width. A one-to-one correspondence between the FFT bins
and the azimuth resolution cells can be established by utilizing the signal
model described in the previous section. Therefore, the problem of target
detection is transformed into a spectral analysis problem, where detection is
based on the amplitude spectrum of the returned signal. The FFT frequency
resolution  is equal to the inverse of the observation interval . It follows
that a peak in the amplitude spectrum at  indicates the presence of a scat-
terer at frequency .

For an example, consider the scatterer  within the  range bin. The
instantaneous frequency  corresponding to this scatterer is 
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(12.53)

which is the same result derived in Eq. (12. 27), where . Therefore,
the scatterers separated in Doppler by a frequency greater than  can then be
resolved. 

12.9.  Range Walk

As shown earlier SAR Doppler processing is achieved in two steps: first,
range gating and second, azimuth compression within each bin at the end of the
observation interval. For this purpose, azimuth compression assumes that each
scatterer remains within the same range bin during the observation interval.
However, since the range gates are defined with respect to a radar that is mov-
ing, the range gate grid is also moving relative to the ground. As a result a scat-
terer appears to be moving within its range bin. This phenomenon is known as
range walk. A small amount of range walk does not bother Doppler processing
as long as the scatterer remains within the same range bin. However, range
walk over several range bins can constitute serious problems, where in this
case Doppler processing is meaningless. 

12.10. Case Study

Table 12.1 lists the selected design system parameters. The 3 dB element
beamwidth is . The maximum range interval
spanned by the central footprint is

(12.54)

(12.55)

(12.56)

Substituting the proper values from Table 12.1 into Eqs. (12.54), (12.55), and
(12.56) yields

(12.57)

which indicates that the system should have a total of 82 range bins. Doppler
shift over the footprint is proportional to the radial velocity. It is given by

(12.58)

For this example,  is

fdi
1

2π
------

td
dψ

f0τtµµi
2v
λ
------ βisin µi= = =

µi ∆θ=
∆f

θ 63.75 milliradians=

Rspan Rmx Rmn–=

Rmx h β∗ θ 2⁄+( )cos⁄=

Rmn h β∗ θ 2⁄–( )cos⁄=

Rspan Rmx Rmn, ,{ } 81.448 1315.538 1234.090, ,{ }m=

2v
λ
------ 90 θ 2⁄+( )cos β∗sin f

2v
λ
------ 90 θ 2⁄–( )cos β∗sin< <

fd
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(12.59)

To avoid range and Doppler ambiguities the Pulse Repetition Frequency (PRF)
should be

(12.60)

Using the system parameters defined in Table 12.1, we find
. The DFT frequency resolution  is com-

puted as the inverse of the observation interval, and it is equal to . The
size of the DFT, denoted as , is equal to the number of positions the
antenna takes on along the flight path. The maximum Doppler variation
resolved by this DFT is less than or equal to .

12.11. Arrays in Sequential Mode Operation

Standard Synthetic Aperture Radar (SAR) imaging systems are generally
used to generate high resolution two-dimensional (2-D) images of ground ter-
rain. Range gating determines resolution along the first dimension. Pulse com-
pression techniques are usually used to achieve fine range resolution. Such
techniques require the use of wide band receiver and display devices in order
to resolve the time structure in the returned signals. The width of azimuth cells

TABLE 12.1. List of selected system parameters.

Parameter Symbol Value

 # subintervals   

 size of  array   

 wavelength   

 element spacing   

 velocity   

 height   

 elevation angle   

 range resolution   

 observation interval   

M 64

N 32

λ 3.19mm

d 16λ

v 65m s⁄

h 900m

β∗ 35°

dr 1m

Dob 20ms

1489.88Hz– fd 1489.88Hz< <

2v
λ
------θ PRF

c
2Rspan

----------------≤ ≤

5.995KHz PRF 1.31579MHz≤ ≤ ∆f
50Hz

NFFT

∆f NFFT 2⁄×
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provides resolution along the other dimension. Azimuth resolution is limited
by the duration of the observation interval.

An approach for multiple target detection using linear arrays operated in
sequential mode was previously presented by Mahafza. This technique is based
on Discrete Fourier Transform (DFT) processing of equiphase data collected in
sequential mode (DFTSQM). DFTSQM processing was also developed for 2-D
real and synthetic arrays to include applications such as SAR imaging. The
Field of View (FOV) of an array utilizing DFTSQM operation and signal pro-
cessing is defined by the 3 dB beamwidth of a single element. Advantages of
DFTSQM are (1) simultaneous detection of targets within the array’s FOV
without using any phase shifting hardware; and (2) the two-way array pattern
is improved due to the coherent integration of equiphase returns. More specifi-
cally, the main lobe resolution is doubled while achieving a 27 dB sidelobe
attenuation. However, the time required for transmission and processing may
become a limitation when using this technique. A brief description of
DFTSQM is presented in the next section.

12.11.1. Linear Arrays 

Consider a linear array of size , uniform element spacing , and wave-
length . Assume a far field scatterer  located at direction-sine .
DFTSQM operation for this array can be described as follows. The elements
are fired sequentially, one at a time, while all elements receive in parallel. The
echoes are collected and integrated coherently on the basis of equal phase to
compute a complex information sequence . The x-
coordinates, in -units, of the  element with respect to the center of the
array are

. (12.61)

The electric field received by the  element due to the firing of the , and
reflection by the  far field scatterer  is

(12.62)

(12.63)

(12.64)

N d
λ P βlsin

b m( ) m; 0 2N 1–,={ }
d xn

th

xn
N 1–

2
-------------– n+ 

  n; 0 N 1–,= =

x2
th

x1
th

l
th

P

E x1 x2 sl;,( ) G2 sl( )
R0

R
----- 
 

4

σl exp jφ x1 x2 sl;,( )( )=

φ x1 x2, sl;( ) 2π
λ

------ x1 x2+( ) sl( )=

sl βlsin=
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where  is the target cross section,  is the two-way element gain, and
 is the range attenuation with respect to reference range . The scat-

terer phase is assumed to be zero, however it could be easily included. 

Assuming multiple scatterers in the array’s FOV, the cumulative electric
field in the path  due to reflection from all scatterers is 

(12.65)

where the subscripts  denote the quadrature components. Note that the
variable part of the phase given in Eq. (12.63) is proportional to the integers
resulting from the sums . In the far field
operation there are a total of  distinct  sums. Therefore,
the electric fields with paths of the same  sums can be collected
coherently. In this manner the information sequence  is
computed, where  is set to equal zero. At the same time one forms
the sequence  which keeps track of the number of
returns that have the same  sum. More precisely, for

(12.66)

(12.67)

It follows that

(12.68)

which is a triangular shape sequence.

The processing of the sequence  is performed as follows: (1) the
weighting takes the sequence  into account; (2) the complex sequence

 is extended to size , a power integer of two, by zero padding; (3)
the DFT of the extended sequence  is computed,

(12.69)

σl G2 sl( )
R0 R⁄( )4 R0

x1 x2⇒

E x1 x2,( ) EI x1 x2 sl;,( ) jEQ x1 x2 sl;,( )+[ ]
all l

∑=

I Q,( )

xn1 xn2+( ); n1 n2,( ) 0 N 1–,={ }
2N 1–( ) xn1 xn2+( )

xn1 xn2+( )
b m( ) m; 0 2N 1–,={ }

b 2N 1–( )
c m( ) m; 0 2N 2–,={ }

xn1 xn2+( )
m n1 n2+= ; n1 n2,( ) 0 N 1–,=

b m( ) b m( ) E xn1 xn2,( )+=

c m( ) c m( ) 1+=

c m( ) m; 0 2N 2–,={ }
m 1 m;+ 0 N 2–,=

N m; N 1–=

2N 1– m m– N 2N 2–,= 











=

b m( ){ }
c m( ){ }

b m( ){ } NF
b' m( ) m; 0 NF 1–,={ }

B q( ) b' m( ) exp j
2πqm

NF

--------------– 
  q;⋅

m 0=

NF 1–

∑ 0 NF 1–,= =
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and (4) after compensation for antenna gain and range attenuation, scatterers
are detected as peaks in the amplitude spectrum . Note that step (4) is
true only when

(12.70)

where  denotes the direction-sine of the  scatterer, and  is
implied in Eq. (12.70).

The classical approach to multiple target detection is to use a phased array
antenna with phase shifting and tapering hardware. The array beamwidth is
proportional to , and the first sidelobe is at about -13 dB. On the other
hand, multiple target detection using DFTSQM provides a beamwidth propor-
tional to  as indicated by Eq. (12.70), which has the effect of dou-
bling the array’s resolution. The first sidelobe is at about -27 dB due the
triangular sequence . Additionally, no phase shifting hardware is
required for detection of targets within a single element field of view.

12.11.2. Rectangular Arrays 

DFTSQM operation and signal processing for 2-D arrays can be described as
follows. Consider an  rectangular array. All  elements are fired
sequentially, one at a time; after each firing, all the  array elements
receive in parallel. Thus,  samples of the quadrature components are col-
lected after each firing, and a total of  samples will be collected. How-
ever, in the far field operation, there are only  distinct
equiphase returns. Therefore, the collected data can be added coherently to
form a 2-D information array of size . The two-way
radiation pattern is computed as the modulus of the 2-D amplitude spectrum of
the information array. The processing includes 2-D windowing, 2-D Discrete
Fourier Transformation, antenna gain, and range attenuation compensation.
The field of view of the 2-D array is determined by the 3 dB pattern of a single
element. All the scatterers within this field will be detected simultaneously as
peaks in the amplitude spectrum.

Consider a rectangular array of size , with uniform element spacing
, and wavelength . The coordinates of the  element, in -

units, are

(12.71)

(12.72)

B q( )

βqsin
λq

2Nd
---------- q; 0 2N 1–,= =

βqsin qth NF 2N=

λ Nd⁄( )

λ 2Nd⁄( )

c m( ){ }

Nx Ny× NxNy
NxNy

NxNy
NxNy( )2

2Nx 1–( ) 2Ny 1–( )×

2Nx 1–( ) 2Ny 1–( )×

N N×
dx dy d= = λ nth d

xn
N 1–

2
-------------– n+ 

  n; 0 N 1–,= =

yn
N 1–

2
-------------– n+ 

  n; 0 N 1–,= =
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Assume a far field point  defined by the azimuth and elevation angles .
In this case, the one-way geometric phase for an element is

(12.73)

Therefore, the two-way geometric phase between the  and 
elements is

(12.74)

The two-way electric field for the  scatterer at  is

(12.75)

Assuming multiple scatterers within the array’s FOV, then the cumulative
electric field for the two-way path  is given by

(12.76)

All formulas for the 2-D case reduce to those of a linear array case by setting
 and .

The variable part of the phase given in Eq. (12.74) is proportional to the inte-
gers  and . Therefore, after completion of the sequential fir-
ing, electric fields with paths of the same  sums, where

 (12.77)

 (12.78)

can be collected coherently. In this manner the 2-D information array
 is computed. The coefficient sequence
 is also computed. More precisely,

(12.79)

(12.80)

It follows that

P α β,( )

ϕ' x y,( ) 2π
λ

------ x β αcossin y β αsinsin+[ ]=

x1 y1,( ) x2 y2,( )

ϕ x1 y1 x2 y2, , ,( ) 2π
λ

------ βsin x1 x2+( ) αcos y1 y2+( ) αsin+[ ]=

lth αl βl,( )

E x1 x2 y1 y2 αl βl,;, , ,( ) G2 βl( )
R0

R
----- 
 

4

σl exp j ϕ x1 y1 x2 y2, , ,( )( )[ ]=

x1 y1,( ) x2 y2,( )⇒

E x1 x2 y1 y2, , ,( ) E x1 x2 y1 y2 αl βl,;, , ,( )
all scatterers

∑=

Ny 1= α 0=

x1 x2+( ) y1 y2,( )
i j,( )

i xn1 xn2 i;+ N 1–( )– N 1–( ),= ={ }

j yn1 yn2 j;+ N 1–( )– N 1–( ),= ={ }

b mx my,( ) mx my,( ); 0 2N 1–,={ }
c mx my,( ) mx my,( ); 0 2N 2–,={ }

for mx n1 n2 and my n1 n2+=+= ;
n1 0 N 1–,= and n2, 0 N 1–,=

b mx my,( ) b mx my,( ) E xn1 yn1 xn2 yn2, , ,( )+=
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(12.81)

The processing of the complex 2-D information array  is simi-
lar to that of the linear case with the exception that one should use a 2-D DFT.
After antenna gain and range attenuation compensation, scatterers are detected
as peaks in the 2-D amplitude spectrum of the information array. A scatterer
located at angles  will produce a peak in the amplitude spectrum at
DFT indexes , where

 (12.82)

(12.83)

In order to prove Eq. (12.82), consider a rectangular array of size ,
with uniform element spacing , and wavelength . Assume
sequential mode operation where elements are fired sequentially, one at a time,
while all elements receive in parallel. Assuming far field observation defined
by azimuth and elevation angles . The unit vector  on the line of sight,
with respect to , is given by 

(12.84)

The  element of the array can be defined by the vector 

(12.85)

where . The one-way geometric phase for this element is

(12.86)

where  is the wave-number, and the operator  indicates dot
product. Therefore, the two-way geometric phase between the  and

 elements is

(12.87)

The cumulative two-way normalized electric due to all transmissions in the
direction  is

(12.88)

c mx my,( ) Nx mx Nx 1–( )––( ) Ny my Ny 1–( )––( )×=

b mx my,( ){ }
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---- 
 atan=

βlsin
λpl

2Nd αlcos
-------------------------

λql

2Nd αlsin
------------------------= =

N N×
dx dy d= = λ

α β,( ) u
O

u β α axcossin β α aysinsin β azcos+ +=

nx ny,( )th

e nx ny,( ) nx
N 1–

2
-------------– 

  d ax ny
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2
-------------– 
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nx ny, 0 N 1–,=( )

ϕ' nx ny,( ) k u e nx ny,( )•( )=

k 2π λ⁄= •( )
nx1 ny1,( )
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E u( ) Et u( )Er u( )=
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where the subscripts  and , respectively, refer to the transmitted and received
electric fields. More precisely,

(12.89)

(12.90)

In this case,  denotes the tapering sequence. Substituting Eqs.
(12.87), (12.89), and (12.90) into Eq. (12.88) and grouping all fields with the
same two-way geometric phase yield

(12.91)

(12.92)

(12.93)

(12.94)

(12.95)

The two-way array pattern is then computed as

(12.96)

Consider the two-dimensional DFT transform, , of the array

(12.97)

t r
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Comparison of Eq. (12.96) and (12.97) indicates that  is equal to
 if

(12.98)

(12.99)

It follows that 

(12.100)

which is the same as Eq. (12.82).

12.12. MATLAB Programs

This section contains the MATLAB programs used in this chapter.

Listing 12.1. MATLAB Program “fig12_2.m”
clear all
var = -pi:0.001:pi;
y1 = (sinc(var)) .^2;
y2 = abs(sinc(2.0 * var));
plot (var,y1,var,y2);
axis tight
grid;
xlabel ('angle - radians');
ylabel ('array pattern');

 Problems

12.1. A side looking SAR is traveling at an altitude of ; the elevation

angle is . If the aperture length is , the pulse width is

 and the wavelength is . (a) Calculate the azimuth reso-
lution. (b) Calculate the range and ground range resolutions.
12.2. A MMW side looking SAR has the following specifications: radar
velocity , elevation angle , operating frequency

, and antenna 3dB beam width . (a) Calculate

E u( )
W' p q,( )

2π
Na

------ 
  p–

2π
λ

------d β αcossin=

2π
Na

------ 
  q–

2π
λ

------d β αsinsin=

α q
p
--- 
 tan 1–=

15Km

β 15°= L 5m=

τ 20µs= λ 3.5cm=

v 70m s⁄= β 35°=

f0 94GHz= θ3dB 65mrad=
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the footprint dimensions. (b) Compute the minimum and maximum ranges. (c)
Compute the Doppler frequency span across the footprint. (d) Calculate the
minimum and maximum PRFs.
12.3. A side looking SAR takes on eight positions within an observation
interval. In each position the radar transmits and receives one pulse. Let the
distance between any two consecutive antenna positions be , and define

 to be the one-way phase difference for a beam steered

at angle . (a) In each of the eight positions a sample of the phase pattern is

obtained after heterodyning. List the phase samples. (b) How will you process
the sequence of samples using an FFT (do not forget windowing)? (c) Give a
formula for the angle between the grating lobes.
12.4. Consider a synthetic aperture radar. You are given the following Dop-

pler history for a scatterer:  which corresponds to

times . Assume that the observation interval is

, and a platform velocity . (a) Show the Doppler

history for another scatterer which is identical to the first one except that it is
located in azimuth  earlier. (b) How will you perform deramping on the
quadrature components (show only the general approach)? (c) Show the Dop-
pler history for both scatterers after deramping.
12.5. You want to design a side looking synthetic aperture Ultrasonic radar

operating at  and peak power . The antenna beam is

conical with 3dB beam width . The maximum gain is . The radar

is at a constant altitude  and is moving at a velocity of . The

elevation angle defining the footprint is . (a) Give an expression for
the antenna gain assuming a Gaussian pattern. (b) Compute the pulse width
corresponding to range resolution of . (c) What are the footprint dimen-
sions? (d) Compute and plot the Doppler history for a scatterer located on the
central range bin. (e) Calculate the minimum and maximum PRFs; do you need
to use more than one PRF? (f) How will you design the system in order to
achieve an azimuth resolution of ?

12.6. Derive Eq. (12.45) through Eq. (12.47).

12.7. In Section 12.7 we assumed the elevation angle increment  is equal

to zero. Develop an equivalent to Eq. (12.43) for the case when . You
need to use a third order three-dimensional Taylor series expansion about the
state  in order to compute the new round-trip delay
expression. 

d

δ 2πd
λ
--- βsin β0sin–( )=

β0

1000Hz 0 1000HZ–, ,{ }
10ms– 0 10ms, ,{ }

Tob 20ms= v 200m s⁄=

1m

f0 60KHz= Pt 2W=

θ3dB 5°= 16

h 15m= 10m s⁄
β 45°=

10mm

10mm

ε
ε 0≠

t µ ε, ,( ) 0 0 0, ,( )=
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