
Bruce Powel Douglass, Ph.D. Page 1

Real-Time Design Patterns

Bruce Powel Douglass, Ph.D.
Chief Methodology Scientist

I-Logix

Some of the contents of this paper are adapted from the author’s book Real-Time UML:
Developing Efficient Objects for Embedded Systems published by Addison-Wesley, 1998.

Introduction
Many of us have had the experience of working with a truly great software designer. They
have the ability to look at a really hard problem and seemingly with no effort construct an
elegant and practical solution. Afterwards we all slap our foreheads and say “Of Course!
It’s so obvious!” How do those Great Designers actually come up with these great designs
in the first place?

By training, I am a neurophysiologist. During my medical school years, I primarily studied
information processing in biological neural systems1. The process of coming up with Good
Designs proceeds in 3 phases:

• Internalization
• Pattern Matching
• Sequential Analysis

The first phase, internalization, is a linear process of gathering information. What are the
functions of the design? What are its constraints? What aspects of the design should be
optimized at the expense of others? This is a process of gathering and organizing
information about the system under design.

The second phase, pattern matching, is an inherently nonlinear process and is performed
almost exclusively by the subconscious mind. It is exactly this kind of thinking that has
taken place when The Answer suddenly comes to you in the shower or when you wake in
the middle of the night. It often happens to me when I go for a run. I even go so far as to
classify problems by how far I think I’ll have to run to come up with a solution. I might
tell my boss “Gee, that’s a 10-mile problem. I’ll see you in a couple of hours – Bye!2”

I believe that subconsciously our rather impressive pattern matching apparatus goes to
work on a pre-analyzed problem (that’s where the internalization phase comes in) and
does “best fit” pattern matching comparing thousands of patterns while our conscious

1 Mostly in the subesophageal ganglion of the Hirudo medicinalis (a.k.a., the medicinal
leech), which, behaviorally has more in common with marketing folks than engineers, but I
believe the same rules apply.
2 You can’t believe how hard it is to sell this work flow concept to most managers!

Bruce Powel Douglass, Ph.D. Page 2

mind is off doing other things. Only when it finds a close-enough match (a potential design
solution) does it signal the conscious mind.

Just because the subconscious thinks it has found a good solution is no guarantee as to the
quality of the proposed solution. Once identified, it is up to the linear processing system of
the brain to take the proposed solution and see if it does in fact meet our criteria. This is
the process of sequential analysis that is applied to a proposed solution. Most often, this
takes the form of mentally applying scenarios against the design pattern to ensure that it in
fact meets the necessary criteria and optimizes all the right things.

Sequential Analysis

Pattern Matching

Internalization

Figure 1: The Creative Design Process

Bruce Powel Douglass, Ph.D. Page 3

It’s the part in the middle, the pattern matching phase where a “miracle occurs.”
However, I don’t believe this to be a miracle. I believe that the Great Designers have
internalized a vast store of design patterns through which they can subconsciously sift.

What is a Design Pattern?
Design patterns have been the target of a great deal of research in the last few years. A
design pattern is a general solution to a commonly occurring problem. They are composed
of three parts: a problem context, a generalized approach to a solution, and a set of
consequences.

Design patterns are usually constructed by extracting out the things in common from a
large set of specific instances. This process is called abstraction or inductive reasoning.
For example, C++ programs are riddled3 with pointers. There are a number of commonly
occurring problems with pointers:

• If pointers go out of scope without the memory to which they point being
recovered, the memory is no longer accessible (memory leak)

• Even if programmers remember to match up every new with a corresponding
delete, if an exception is thrown before reaching the delete, a memory leak will
occur

• If pointers are used prior to being initialized, they can corrupt system memory
(uninitialized pointers)

• If pointers are used after the memory to which they point has been recovered, they
can corrupt memory that has been reused by the system (dangling pointer)

• If multiple pointers to the same memory location are released, this can corrupt the
heap beyond repair (multiple delete)

So here we have a problem context: pointers are enormously useful for all kinds of
programming tasks, but their use can lead to errors because there are no safeguards built
into the language.

A generalized approach to a solution is to wrap raw pointers used within functions inside
of a class. Let’s see how the use of such smart pointer classes helps:

• Memory leak: Raw pointers do not have destructors that guarantee proper
memory release. However, when objects go out of scope, their destructors are
called. This allows memory to be properly released regardless of how the
object goes out of scope.

• Uninitialized pointer: a class can use attributes and methods to ensure that its
preconditional invariants are met prior to use. Specifically, a smart pointer
object can check to see whether or not it has been initialized.

• Dangling pointer: Once the memory pointed to has been released, the smart
pointer can remember that fact and disallow further access.

3 I mean that in every sense of the word.

Bruce Powel Douglass, Ph.D. Page 4

• Multiple delete: If several pointers to the same storage are used, a smart
pointer can keep track of how many pointers there are and automatically delete
the referenced memory if and only if the last pointer is deleted.

The last characteristic of a design pattern is the set of consequences of the pattern.
Specifically

• there is a small amount of overhead associated with the smart pointer:
• Prior to each access the pointer should be checked to ensure that it is

currently valid
• A small amount of memory must be used to keep a reference count to track

the number of currently valid pointers to the referenced memory
• Discipline must be enforced so that no one inadvertently uses raw pointers to

the same memory.

Phases of Design
I break up design into three phases: architectural, mechanistic, and detailed design.
Architectural design is concerned with large-scale strategic decisions that have broad and
widely-ranging effects. Architectural decisions include the placement of software modules
on different processors, real-time scheduling policies, identification of concurrency
models, and inter-processor and inter-thread communication.

Mechanistic design is so named because it deals with the construction of mechanisms –
groups of objects that collaborate together for medium-sized purposes. Typically,
mechanisms include a small number of objects, from 2 to a dozen or so.

Detailed design is concerned with the details of the object innards – data structuring and
typing, internal algorithms, visibility and interfaces.

Notation

The UML provides a notation for design patterns but this notation is targeted primarily
towards mechanistic design patterns. The reason for this is that this is the area receiving
the lion’s share of research interest. Nevertheless, the notational schema works for
architectural design as well. In this paper, we will not discuss detailed design patterns in
order to limit the size of this paper.

The UML pattern notation is based on the UML class diagram. The elements of most
interest are:

• Pattern (shown as a named oval)
• Class (shown as a named rectangle)
• Object (shown as a named rectangle in which the name is underlined)

Bruce Powel Douglass, Ph.D. Page 5

• Package (shown as a tabbed folder)
• Relation

• Association (shown as a line connecting classes or objects)
• Aggregation (“has-a” – shown as an association with a diamond at the owner-end)
• Composition (a strong form of aggregation – shown with containment of classes

within classes or with filled diamonds)
• Generalization (shown as an open arrow pointing to the more general class)
• Refinement (e.g. instantiation of templates into classes)

A sample design pattern looks like figure 1.

Pattern Name

Package

Package

Class
name

Class
name

Class
name

Class
name

Class
name

Class

Pattern
name

Package

Association

Generalization

Class name

Class
name

Composition

UML Design Pattern Notation
Figure 2: UML Design Pattern Notation

Bruce Powel Douglass, Ph.D. Page 6

We won’t go into the details of the UML notation or semantics (for more detail, see [1] or
the other references). Since the UML uses a class diagram to show design patterns, any of
the advanced UML features that can appear on a class diagram, such as refinement and
dependency relations, stereotypes, notes, etc., can also appear on a design pattern
diagram.

Architectural Design Patterns
Architectural design is the identification and definition of large-scale design strategies.
These strategic decisions determine how major architectural pieces of the system will be
structured, mapped to physical devices, and interact with each other. Such the effect of
such design decisions is widespread and affects most or all components. Some of these
patterns may be obvious while others seem rather opaque4.

We’ll discuss the following architectural design patterns:

Category Pattern Name Purpose
Preemptive
Multitasking

Control the execution of tasks based on their
priority and readiness to run (single processor).

Cyclic Executive Control the execution of tasks based on the
proscribed sequence of activities.

Time Slicing Control of the execution of tasks based on a
fairness doctrine.

Execution Control

Cooperative
Multitasking

Control of the execution of tasks based on
mutual agreement among tasks.

Master-Slave Multi-processor communication driven by a
single master processor querying slave
processor nodes.

Time-Division
Multiplexing
Access

Multi-processor communication driven by
passing a logical time token among multiple
processors on a single bus.

Communications

Bus-mastered Multi-processor communication in which nodes
arbitrate for control of the bus.

Reuse Microkernel Structuring of a system into a set of layers
Proxy Isolation of a subject away from its client when

they are in different address spaces
Distributed
Systems

Broker More general form of Proxy used when the
addresses of subjects are not known at
compile-time.

4 One of Douglass’ Law of the Universe (Volume 1) reads “One man’s ‘Of Course!’ is
another man’s ‘Huh?’.”

Bruce Powel Douglass, Ph.D. Page 7

Asymmetric
Multiprocessing

Processor nodes have dedicated processing
assignments.

Symmetric
Multiprocessing

Task assignment of processor nodes
dynamically allocated based on current
processor loading

Semi-symmetric
Multiprocessing

Task assignment of processor nodes allocated
at boot time based on available processor
capability

Static Allocation Pre-allocation of all objects to avoid time
overhead for heap management and memory
fragmentation

Fixed Size
Allocation

Allocation of fixed sized blocks from one of
potentially several different heaps to avoid
memory fragmentation

Resource

Priority Ceiling Used with priority-based preemptive
multitasking to avoid unbounded priority
inversion

Homogeneous
Redundancy

System with multiple identical processing
channels for protection against random faults

Heterogeneous
Redundancy

System with multiple diverse processing
channels for protection against random and
systematic faults

Sanity Check Heterogeneous pattern in which one channel
performs the primary processing and another
performs a lighter-weight reasonableness check
on the primary

Monitor-Actuator Heterogeneous pattern in which one channel
performs actuation while the other monitors the
performance of the actuator channel

Watchdog Pattern in which a centralized watchdog must
be stroked on a regular basis or corrective
action will be taken

Safety & Reliability

Safety Executive Pattern in which a centralized safety monitor
coordinates identification and recovery from
faults.

Other patterns are, of course, available. The interested reader is encouraged to examine
references 1, 2, 7-11 or look on the Patterns Home Page at http://st-www.cs.uiuc.edu/
users/patterns/patterns.html.

Execution Control Patterns
Execution control patterns deal with the policy by which tasks are executed in a
multitasking system. This is normally executed by the RTOS, if present. Most RTOSes

Bruce Powel Douglass, Ph.D. Page 8

offer a variety of scheduling options. The most important of these are listed here as
execution control patterns.

The graphical representation of all the execution control patterns looks essentially the
same, as shown in Figure 3.

Execution Control
Pattern

Kernel

Active Object

Sch
ed

ulin
g

Exe
cu

tive
Ta

sk

controls

1

* «active»

Figure 3: Execution Control Pattern

The primary difference occurs in the policy used for the selection of the currently
executing task.

Preemptive Multitasking Pattern
This pattern uses a task’s priority and readiness to run as the determining factors
controlling when it will be run. Priority-based scheduling systems operate it one of three
primary modes: static priority systems, semi-static or dynamic priority systems.

In a static system, a task’s priority is determined at compile time and is not changed during
execution. This has the advantages of simplicity of implementation and simplicity of
analysis. The most common way of selecting task priority is based on the period of the
task, or, for asynchronous event-driven tasks, the minimum arrival time between initiating
events. This is called rate monotonic scheduling (RMS). Static scheduling systems may be
analyzed for schedulability using mathematical techniques such as rate monotonic analysis
(see [2] and [12] for more information).

Bruce Powel Douglass, Ph.D. Page 9

Semi-static priority systems assign a task a nominal priority but adjust the priority based
on the desire to limit priority inversion. This is the essence of the priority ceiling pattern,
shown later in this paper.

Dynamic priority systems assign task priority at run-time based on one of several possible
strategies. The two most common dynamic priority strategies are

• Earliest Deadline
• Least Laxity
• Maximum Urgency First

In Earliest Deadline (ED) scheduling, tasks are selected for execution based on which has
the closest deadline. This algorithm is said to be dynamic because task scheduling can not
be determined at design time, but only when the system runs. In this algorithm, a set of
tasks is schedulable if the sum of the task loadings is less than 100%. This algorithm is
optimal in the sense that if it is schedulable by other algorithms, then it is also schedulable
by ED. However, ED is not stable; if the total task load rises above 100%, then at least
one task will miss its deadline, and it is not possible in general to predict which task will
fail. This algorithm requires additional run-time overhead because the scheduler must
check all waiting tasks for their next deadline on a frequent basis. In addition, there are no
formal methods to prove schedulability before the system is implemented.

Laxity for a task is defined to be the time to deadline minus the task execution time
remaining. Clearly, a task with a negative laxity has already missed its deadline. The
algorithm schedules tasks in ascending order of their laxity. The difficulty is that during
run-time, the system must know expected execution time and also track total time a task
has been executing in order to compute its laxity. While this is not conceptually difficult, it
means that designers and implementers must identify the deadlines and execution times for
the tasks and update the information for the scheduler every time they modify the system.
In a system with hard and soft deadlines, the Least Laxity (LL) algorithm must be merged
with another so that hard deadlines can be met at the expense of tasks that must meet
average response time requirements (see MUF, below). LL has the same disadvantages as
the ED algorithm: it is not stable, it adds run-time overhead over what is required for
static scheduling, and schedulability of tasks cannot be proven formally.

Maximum Urgency First (MUF) scheduling is a hybrid of RMS and LL. Tasks are initially
ordered by period, as in RMS. An additional binary task parameter, critcality, is added.
The first n tasks of high criticality that load under 100% become the critical task set. It is
this set to which the Least Laxity Scheduling is applied. Only if no critical tasks are
waiting to run are tasks from the noncritical task set scheduled. Because MU has a critical
set based on RMS, it can be structured so that no critical tasks will fail to meet their
deadlines.

Bruce Powel Douglass, Ph.D. Page 10

Cyclic Executive Pattern
In the cyclic executive pattern the kernel (commonly called the executive in this case)
executes the tasks in a prescribed sequence. Cyclic executives have the advantage that
they are “brain-dead” simple to implement and are particularly effective for simple
repetitive tasking problems. However, they are not efficient for systems that must react to
asynchronous events and not optimal in their use of time. There have been well-publicized
cases of systems that could not be scheduled with a cyclic executive but were successfully
scheduled using preemptive scheduling. Another disadvantage of the cyclic executive
pattern is that any change in the executive time of any task usually requires a substantial
tuning effort to optimize the timeliness of responses. Further if the system slips its
schedule, there is no guarantee or control over which task will miss its deadline
preferentially.

Time Slicing Pattern
The kernel in the time slicing pattern executes each task in a round-robin fashion, giving
each task a specific period of time in which to run. When the task’s time budget for the
cycle is exhausted, the task is preempted and the next task in the queue is started. Time
slicing the same advantages of the cyclic executive but is more time based. Thus it
becomes simpler to ensure that periodic tasks are handled in a timely fashion. However,
this pattern also suffers from similar problems as the cyclic executive. Additionally, the
time slicing pattern doesn’t “scale up” to large numbers of tasks well because the slice for
each task becomes proportionally smaller as tasks are added.

Cooperative Multitasking Pattern
The cooperative multitasking pattern relies on tasks to voluntarily relinquish control in
order to allow other tasks to run. One advantage to this pattern is the ability for tasks to
control their own destiny once they are started. Specifically, they can implement a “run-to-
completion” policy. A significant downside for this pattern is the ability of a single badly-
behaved task to halt all task execution in the entire system. Additionally, timing analysis of
cooperatively multitasking systems is difficult.

Communications Control Patterns
In systems distributed across more than a single processor, the various processor nodes
must communicate amongst themselves to achieve system goals. Communication control
patterns provide different solutions to how the control of this communication should be
carried out.

Master-Slave Pattern
The Master-Slave communications pattern is used when a single node (the master)
initiates all communications. The other nodes (slaves) respond to queries only when
asked. The advantage of this communication control pattern is that it is simple to
implement. Specifically, bus arbitration issues don’t arise because the master has total

Bruce Powel Douglass, Ph.D. Page 11

control. This means that the arbitration overhead (which can be up to 75% of the total
bandwidth) is reduced to zero, making the most bandwidth available for actual messaging.
The downside of this pattern is that it doesn’t scale up to large number of nodes well and
performance may be inadequate for asynchronous event handling.

Time-Division Multiplexing Access Pattern
In the TDMA pattern, a logical “Ok-to-Speak” token is passed from node to node based
on time. This requires that a stable clock time-base and is sensitive to time drift among
nodes. This pattern is simple and efficient because little protocol overhead is required. On
the other hand, like the Master-Slave communication pattern, the TDMA may not provide
timely response to asynchronous events and doesn’t scale up to large numbers of nodes.
The TDMA pattern is used in extensively in satellite communications.

Bus-Mastered Pattern
There are many different categories of bus mastered protocol patterns. For example,
Carrier Sense Multiple Access with Collision Detection (CSMA/CD) is commonly used in
computer networks. Any node can begin speaking as long as the bus is currently unused.
In the event of a collision (more than one node begins speaking at the same time), both
nodes back off and retry at some random time later. Bit dominance protocols pre-declare a
“winner” in the event of a collision. The Control Area Network is an example of a bit
dominance bus mastered pattern protocol.

Reuse Patterns

Microkernel Pattern
Only a single reuse pattern is provided here, but many are available. The Microkernel
pattern structures the software architecture into a set of layers. The layers are arranged as
a set of client-server associations in which the upper layers may call services of the lower
layers but not vice versa.

This organization has a number of advantages.
• Portability (reuse on different hardware platforms) is enhanced because the hardware

details are isolated in the lowest layers.
• Reuse in different applications is enhanced because the upper layers isolate the

application away from the lower layers.
• Scaled-down applications are possible by simply excluding some of the layers.

A closed-layered architecture means that each layer can only call the services of the layer
immediately below it. In an open-layered architecture, a layer can call services in any layer
beneath it.

Bruce Powel Douglass, Ph.D. Page 12

Microkernel
Pattern

Layer

Package

{ each layer uses the
facilities of layers below it }

Figure 4: Microkernel Pattern

Distributed Systems Patterns
In this context, a distributed system is one which multiple processors that must collaborate
closely together to achieve broad system goals. A number of patterns are useful in such
distributed systems.

Proxy Pattern
In many embedded systems data from a single sensor is used by multiple clients who reside
in a different address space (task space or processor). The naïve approach to this problem
is to have each client capable of tracking down and requesting the data from the data
server. This is problematic because if the characteristics of the remote server change, each
client must be updated as well.

The Proxy pattern solves this pattern by using a local stand-in for the remote data server,
called a proxy. The proxy encapsulates the information necessary to contact the real data
server and get up-to-date data. Meanwhile the local clients can directly call the proxy to
get the data but they remain decoupled from the remote data server. The client may link to
the proxy either by calling it when they need the data, or through the implementation of
callbacks. If a callback strategy is used, then the proxy uses one of several strategies to
determine when the client should be updated. The most common strategies are
• periodic
• episodic
• epi-periodic

Bruce Powel Douglass, Ph.D. Page 13

Periodic update strategy just updates the clients every so often, whether or not the data
has changed. An episodic update policy notifies the client only when the data changes. The
epi-periodic policy notifies the clients using a combination of both.

Client Package

Server Package

Proxy
Pattern

Client

Heart Rate
Client

Heart Rate
Server

Heart Rate
Proxy

Proxy

Server

1

*

*

1

Figure 5: Proxy Pattern

Broker Pattern
The Broker Pattern is an elaborated Proxy Pattern which goes another step towards
decoupling the clients from the servers. An object broker is an object which knows the
location of other objects. The broker can have the knowledge a priori (at compile-time) or
can gather the information dynamically as objects register themselves, or a combination of
both. The primary advantage of the Broker Pattern is that it is possible to construct a
Proxy Pattern when the location of the server isn’t known when the system is compiled.
This makes it particularly useful for systems using symmetric or semi-symmetric
multiprocessing.

Bruce Powel Douglass, Ph.D. Page 14

Broker
Pattern

Client

Object
Broker

Heart Rate
Server

Heart Rate
Server Proxy

Server
Proxy

Server

Heart Rate
Client Proxy

Heart Rate
Client

*

1

*
*

*

1

1

1

Client
Proxy

Broker

Client Package Server Package

Figure 6: Broker Pattern

Asymmetric Multiprocessing
Most multiprocessing real-time systems dedicate processing tasks to particular processors.
This arrangement works well, particularly for relatively simple systems. Load balancing in
such systems must be determined at run-time. It is a relatively difficult procedure to add
processors to an asymmetric multiprocessing system because the loading is determined at
compile- or build-time.

Symmetric Multiprocessing
In a true symmetric multiprocessing system, when a task is spawned, an executive (usually
the core of a distributed OS) determines which processor on which it should run. An
advantage of symmetric multiprocessing systems is that the addition of processing node
can make the software operate faster with no changes because the OS detects the new
processor nodes and can dynamically load the new processors relieving the remaining
processors of some of their workload. A final advantage is that this pattern can be used to
dynamically rebalance processor load in the event of a processor node failure.

The disadvantages of this pattern include complexity in the OS, which translate into
additional requirements for processor power and memory. Also many real-time systems
are highly optimized and this pattern usually requires some additional levels of indirection.
Finally, simple hardware devices must be interfaces with particular processors making it
difficult to effectively use symmetry.

Bruce Powel Douglass, Ph.D. Page 15

Semi-Symmetric Multiprocessing
The semi-symmetric multiprocessing (SSM) pattern is an optimization of the previous two
patterns. It provides most of the benefits of the symmetric multiprocessing pattern while
mitigating its drawbacks. Specifically, SSM does dynamic load balancing but only at boot
time. This means that system speed can be enhanced by adding a processor node, but it is
only recognized and balanced when the system is booted.

Resource Patterns
Many of the troubles of designing real-time embedded systems arise from the necessity of
managing data resources. One of the problems is heap fragmentation. Fragmentation can
arise when different sized blocks are allocated and released asynchronously from a heap.
Overtime, the free space on the heap can fragment into small blocks. This can lead to
allocation failures when a request is made which exceeds the size of the largest available
block even though more than enough total memory may be available. The first two
patterns, the static allocation pattern and the fixed size allocation pattern, address this
particular problem.

Another problem occurs when sharing resources in multitasking environments. If a low-
priority task locks a resource and a high priority task that needs that resource becomes
ready to run, it is blocked from executing by the low priority task. This is called priority
inversion. Worse, if the high priority task now suspends itself so that the low priority task
can run, any task with an intermediate priority will preempt it, and indirectly preempt the
waiting high priority task. This is called unbounded priority inversion and is a problem
because it can lead to missed deadlines. The priority ceiling pattern offers a solution to this
problem.

Static Allocation
One common pattern employed in embedded systems is to pre-allocate most or all objects
in the system. If message objects are needed, some maximum number of them are created
as the system starts up and then placed in a ring buffer. Because memory is never released,
heap fragmentation cannot occur. Also, overhead is minimized during run-time because
time need not be taken to call object constructors. In certainly languages (notably C++)
care must be taken to avoid inadvertent calls to the constructor (such as the copy
constructor), but this is true of embedded systems in general. This pattern is similar to the
Factory Pattern in [9].

One problem with this pattern is that it may not scale up well to large problems. It may be
impossible to pre-allocate all possible needed objects because of a lack of total memory.
Many systems can operate in a much smaller amount of total memory if they can
dynamically create and destroy objects as needed.

Bruce Powel Douglass, Ph.D. Page 16

Static Allocation
Pattern

Communicating
Object

Message
Queue

App
lica

tio
n

Obje
ct

R
es

ou
rc

e
M

an
ag

er
Requests

object from

1

*
Message*1

R
esource

Resources are created
at boot time.

Resource Manager
creates and then hands

off resources upon
request.

Application Object
requests objects when

needed and returns them
when done.

Figure 7: Static Allocation Pattern

Fixed Size Allocation
The Fixed Sized Allocation Pattern offers a different solution to the problem of heap
fragmentation. Heap fragmentation occurs because memory blocks of different sizes are
created. When they are destroyed, they leave holes in the memory space. Because these
holes are of different size than the requests, the holes may be unusable later. Fixed size
allocation solves this problem by creating a heap from which only a single sized block may
be allocated. If the needed object is smaller than the block, then the unused portion of the
allocated block is “wasted.”

It is not uncommon to provide a number of different block sizes in different heaps in an
effort to minimize the waste. A first-fit algorithm is then employed to find the smallest
block that meets the need.

This pattern eliminate fragmentation, which can be a severe disability in systems that must
operate for long periods of time between resets, such as monitoring equipment and space

Bruce Powel Douglass, Ph.D. Page 17

probes. It can be somewhat wasteful of memory because each allocated memory block will
typically have at least some memory that is not being used.

Fixed Size Block
Pattern

Object Factory

Sized Heap

ApplicationObject

Fi
xe

d
Si

ze
d

H
ea

p

manages

1

*

1

1

H
eap

Memory Segment

Allocated Block

Free Block

*

*

Heap Manager

Memory Block
Handle

Client

Object

Creator

Handle to

Requested Block

Hea
p M

an
ag

er

1

Sized heap tracks the free
and allocated block lists

free list

1 1

1

*

Figure 8: Fixed Sized Block Pattern

Priority Ceiling
If life was simple, concurrent tasks would never have to share resources directly with
other tasks5. However, life is anything but simple, so tasks operating in independent
concurrent threads must rendezvous and synchronize every so often. However, this is
itself problematic. In order to eliminate the possibility of data corruption due to
simultaneous read and write accesses, some means must be provided to allow only a single
object access to a resource at any given time. Monitors and semaphores are common such
means – they both work by granting exclusive access to a single object and blocking other
requests. This means that if a low priority task locks a resource needed by a high priority
task, the high priority task must block itself and allow the low priority task to execute, at
least long enough to release the needed resource.

5 On the other hand, if life was simple you could be replaced by a pimply-faced teenager
whose job is now filled with phrases like “Ya’ll want fries with that?”

Bruce Powel Douglass, Ph.D. Page 18

The execution of a low priority task when a higher priority task is ready to run is called
priority inversion. The naïve implementation of semaphores and monitors allows the low
priority task to be interrupted by higher priority tasks that do not need the resource.
Because this preemption can occur arbitrarily deep, the priority inversion is said to be
unbounded. It is impossible to avoid at least one level of priority inversion in multitasking
systems that must share resources, but one would like to at least bound the level of
inversion. This is problem addressed by the priority ceiling pattern.

The basic idea of the priority ceiling pattern is that each resource has an attribute called its
priority ceiling. The value of this attribute is the highest priority of any task that could ever
use that particular resource. The active objects6 have two related attributes: nominal
priority and current priority. The nominal priority is the normal executing priority of the
task. The object’s current priority is changed to the priority ceiling of a resources it has
currently locked as long as the latter is higher.

The advantage of this pattern can be illustrated by considering three tasks scheduled
without the use of the priority ceiling, as shown in Figure 9. Point B indicates the point at
which Task 2 preempts the lowest priority, Task 3. However, if the priority ceiling pattern
is used, then as soon as Task 3 locks the resource, its priority is elevated to the priority
ceiling of the resource (which the priority of Task 1). Therefore, at Point B (where Task 2
becomes ready run), Task 3’s current priority is higher than that of Task 2, so Task 3 is
not preempted by Task 2. Once Task 3 is done with the resource, it’s priority is restored
to its nominal priority and then the highest priority waiting task (in this case, that’s Task
1) preempts Task 3 and runs.

6 Which, in the UML, are the root objects of threads.

Bruce Powel Douglass, Ph.D. Page 19

Task 1 Task 2 Task 3

Highest Medium Lowest

Shared Resource

Task 1

Task 2

Task 3
a b

c

d

a. Task 1 wants to run but C
locked the resource
b. Task 2 preempts task 3, since it
is a higher priority and it doesn’t use the
resource
c. Task 1’s deadline passes
d. Task 3 finally releases the resource
allowing Task 1 to complete

Figure 9: Priority Ceiling Pattern In Action

Bruce Powel Douglass, Ph.D. Page 20

Priority Ceiling
Pattern

Task Scheduler

Se
m

ap
ho

re
1

Protected R
esource

RTOS

Scheduling

Kernel

Task
1

*

Lock
Release

Priority Ceiling

Resource
Semaphore

Resource
Nominal Priority
Current Priority

Active Object

1*1

May be in any of the
following states:

Idle
Waiting
Ready

Running {Interruptable or Atomic}
Blocked

Figure 10: Priority Ceiling Pattern

Safety and Reliability Patterns
There are many architectural patterns that relate to improving safety and reliability. A
detailed discussion of safety and reliability is beyond the scope of this paper. The
interested reader is referred to [1], [2], [13], and [14]. In principle, though, they all require

• some form of redundancy
• some mechanism to detect faults using the redundancy
• some corrective action to be taken in the presence of faults

Bruce Powel Douglass, Ph.D. Page 21

Homogeneous Redundancy
A common approach to improvement of reliability and safety is through multiple identical
channels. In this context, a channel is a collaboration of objects which performs a series of
safety-relevant computations or actuations. The use of identical channels allows protection
from random faults, such as component failures, but not against systematic faults, such as
software errors. Homogenous redundancy can be used in parallel using a voting scheme. It
can also be used as a switch-over backup in the event of a detected failure in the currently
executing channel.

Channel Subsystem

Controller Subsystem

Homogeneous
Redundancy

Pattern Redundant
Channel

Controller

1

*

Figure 11: Homogeneous Redundancy Pattern

An advantage of this pattern is the low R&D cost – since there is only a single channel to
design. It’s primary disadvantage is the lack of coverage for systematic faults and increase
deployment costs over non-redundant systems.

Heterogeneous Redundancy
Another common pattern is the heterogeneous redundancy pattern (a.k.a. diverse
redundancy pattern). This is similar to the previous pattern except that the channels are
differently implemented: the hardware is different and the software is typically built using a
different design and executable code.

Bruce Powel Douglass, Ph.D. Page 22

Channel Subsystem

Controller Subsystem

Heterogeneous
Redundancy

Pattern
Diversely
Redundant
Channels

Controller

1
*

Channel Subsystem

Channel Subsystem

Channel
Interface

Figure 12: Heterogeneous Redundancy Pattern

The heterogeneous redundancy pattern covers systematic as well as random faults, but at
an increase R&D effort and cost as well as increased deployment costs.

Sanity Check
The cost for fully redundant system may be prohibited in some cases even though some
protection from faults may be required. The sanity check pattern uses a primary
heavyweight channel plus a second lightweight channel. This latter channel cannot take
over the full duties of the primary channel but can detect faults within it. The advantage of
the sanity check pattern is that some protection against faults is provided at a lower cost
than either of the two previous patterns. The disadvantage is that inadequate recovery
means may be provided in the event of a failure. This pattern is particularly useful when
there is a known fail-safe state.

Bruce Powel Douglass, Ph.D. Page 23

Sanity Check

Controller Subsystem

Sanity Check
Pattern

Sanity
Checker

Controller

1 1

Actuation Channel

Actuator
Channel

1

1
1

1

Figure 13: Sanity Check Pattern

Monitor-Actuator
A common type of the sanity check pattern is the monitor-actuator pattern. In this latter
pattern, the monitor channel does not check the computations of the primary channel
directly as in the former pattern, but instead checks on the results of the actuation of the
primary channel. It is important that this monitoring is provided by a separate set of
sensors than is used by the actuation channel to provide protection from common-mode
faults (faults that occur in more than one channel).

Bruce Powel Douglass, Ph.D. Page 24

Monitor Channel

Controller Subsystem

Monitor-Actuator
Pattern

Monitor
Channel

Controller

1 1

Actuation Channel

Actuator
Channel

1

1
1

1

Figure 14: Monitor-Actuator Pattern

The monitor-actuator pattern provides the low-cost redundancy of the sanity check
pattern but relies on external sensors to achieve the fault identification. Thus, the
identification of faults will not be as fine-grained as other patterns, but on the other hand,
is based on real-world data.

Watchdog
Another variant of the sanity check pattern is the watchdog pattern. In the watchdog
pattern, an object called a watchdog is signaled periodically by various objects in the
system. The watchdog pattern is very widely used with additional hardware support (such
as an independent timebase) to provide isolation from CPU faults.

Bruce Powel Douglass, Ph.D. Page 25

Watchdog

Watchdog
Pattern

Watchdog

1 *

Channel

Monitored
Channel

Figure 15: Watchdog Pattern

The watchdog pattern is a low cost solution but it has limited applicability. Specifically, it
determines the health of the system from the fact that it is receiving events within a
specified time window. This does detect hung system faults but not other kinds of faults.
More complex watchdogs which must receive computed keys in a particular sequence are
also in common use, but the coverage of possible faults is minimal.

Safety Executive
The final architectural pattern is the safety executive pattern. This pattern is used when
many multiple safety concerns are addressed by a single system, fault detection is complex,
or the fault recovery mechanisms are elaborate.

The advantage is the safety executive pattern is that the safety mechanisms for complex
systems are centralized and isolated away from other system components. This pattern
also has the ability to handle complex fault isolation and recovery. Disadvantage is the
inherent complexity and effort required in constructing an effective safety executive.

Bruce Powel Douglass, Ph.D. Page 26

Safety Executive

Safety
Executive
Pattern

Safety
Executive

1

*

Subsystem

Subsystem

WatchdogWatchdog

*

1

1

1

Safety Policies

Safety
Measures

*

*

Fail-Safe Processing
Channel

1 *

Fault
Recovery
Channel

Figure 16: Safety Executive Pattern

Mechanistic Design Patterns
Mechanistic design patterns are smaller in scope from their architectural brethren. Such
patterns typically involve two to dozen classes.

Category Pattern Name Purpose
Observer Allow multiple clients to effectively share a server

and be autonomously updated
Transaction Control communication between objects with

various levels of reliability

Simple Patterns

Smart Pointer Avoid problems associated with dumb pointers
Container Abstract away data structuring concepts from

application domain classes to simply model and
facilitate reuse

Interface Abstract away the type of an object from its
implementation to support multiple
implementations of a given type and to support
multiple types with a common internal structure.

Policy Provide the ability to easily change algorithms
and procedures dynamically.

Reuse

Rendezvous Provide a flexible mechanism for light-weight
intertask communication.

Bruce Powel Douglass, Ph.D. Page 27

State Provide an optimal state machine implementation
when some state changes are infrequent

State Behavior

State Table Provide an efficient means to maintain and
execute large complex state machines

Simple Patterns

Observer
It is common that a single source of information acts as a server for multiple clients who
must be autonomously updated when the data value changes. This is particularly true with
real-time data acquired through sensors. The problem is how to design an efficient means
for all clients to be notified.

The Observer pattern7 is one design solution. A single object, called the server, provides
the data automatically to its clients, called observers. These are abstract classes which may
be subclassed (into Concrete Server and Concrete Observer) to add the specialized
behavior to deal with the specific information being served up.

The observers register with the server by calling the server’s Subscribe() method and
deregister by calling the Detach() method. When the server receives a subscribe message,
it creates a Notification Handle object which includes the address of the object. This
address may be either a pointer, if the object is in the same data address space, or a logical
address or identifier to be resolved by a separate communications subsystem or object
broker if the target object is in a remote address space.

The Notification Handle class is subclassed to distinguish its update policy. The update
policy defines the criteria for when data is sent to the observer. Typically, this is periodic,
episodic, or epi-periodic (both). In some cases, it may be sufficient to use the same policy
universally, but using a policy makes the design pattern more general. It is very common
for an episodic policy to be used exclusively, but this is insufficient for many applications.
In safety critical systems, for example, a lost message could result in an unsafe system. By
periodically sending the data to the observers, the system is hardened against random
message loss.

7 A.K.A. Publish-Subscribe

Bruce Powel Douglass, Ph.D. Page 28

Observer
Pattern

Observer

Server

*

1

Concrete
ObserverSubscribe()

Detatch()
Gimme()

AcceptTick()

CurrentTime

Server

{abstract}

Acquire()

Concrete Server

Update()

Observer

{abstract}

Object Address

Notification Handle

* 1

Concrete
Observer

Concrete
Server

Notification
Handle

Period
TimeOfNextUpdate

Periodic NH

EpiPeriodic NH

Episodic NH

{abstract}

Each registered observer is
matched with a separate

Notification Handle

Figure 17: Observer Pattern

Transaction
Real-time systems use communication protocols to send and receive critical information,
both among internal processors, and with external actors in the environment. Within the
same system, different messages may have different levels of criticality, and so may have
different requirements for the reliability of message transfer. Further, different media have
different reliability as do different environments.

The transaction is used when reliable communications is required over unreliable media or
when extraordinary reliability is required. For example, a system needs might need three
distinct levels of communications reliability:

1. At Most Once (AMO) – a message is transmitted only once. If the message is lost
or corrupted, it is lost. This is used when lightweight transfer is required and the
reliability of message transfer is high compared to the probability of message loss.

2. At Least Once (ALO) – a message is transmitted repeatedly until either an explicit
acknowledgement is received by the sender or a maximum retry count is exceeded.
This is used when the reliability of message transfer is relatively low compared to
the probability of message loss, but receipt of the same message multiple times is
ok.

Bruce Powel Douglass, Ph.D. Page 29

3. Exactly Once (EO) – a message is treated as an ALO transaction except that
should a message be received more than once due to retries, only the first message
instance will be acted upon. This is used when message transfer reliability is
relatively low but it is important that a message is acted on only once. Increment
or toggle messages, for example, must only be acted on once.

The Transaction Pattern is particularly suited to real-time systems which use a general
communication protocol with a rich grammar. It allows the application designers flexibility
in their choice of communications method so that they may optimize for speed or
reliability.

Transaction
PatternTarget

1

Sender
Receiver

1

*

Target Source

Receive()

TimeToLive
TriggerPeriod

MsgID

Receive
Transaction

Send()

Sender

Transmit()

Transmit Count
Max Retries
Retry Period

Msg ID
Source

Send
Transaction

Receive()

Receiver

MsgID
Transaction Type

Message

Source

1
*

*

1

*

1 1

Receive
Transaction

Send
Transaction

Figure 18: Transaction Pattern

Smart Pointer

The smart pointer is a common pattern meant to eliminate, or at least mitigate the myriad
of problems that stem from the manual use of raw pointers:

Bruce Powel Douglass, Ph.D. Page 30

• While raw pointers have no constructor to leave them in a valid initial state, smart
pointers can use their constructors to initialize them to NULL or force the
precondition that they are constructed pointing to a valid target object.

• While raw pointers have no destructor and so may not deallocate memory if they
suddenly go out of scope, smart pointers are determine whether or not it is
appropriate to deallocate memory when they go out of scope and call the delete
operator

• While a raw pointer to a deleted object still holds the address of the memory where
the object used to be (and hence can be used to reference that memory illegally),
smart pointers can automatically detect that condition and refuse access.

Smart Pointer
PatternClient

1

Smart
Pointer

1

Client Server

Server

1

1

SmartPointer

Target

ServerSP

Server

Figure 19: Smart Pointer Pattern

Internal to the smart pointer is a (static) reference count, which tracks the number of
current clients to the server. This count is incremented when smart pointers to the same
object are added and decremented when smart pointers are deleted. When the last smart
pointer is being deleted, the memory to the object is released by the smart pointer prior to
its destruction.

Bruce Powel Douglass, Ph.D. Page 31

Reuse

Container
Analysis models the “what” of a system – what it is, what are the fundamental concepts
involved and what are the important relations and associations among them. Design
specifies the “how” of all the unspecified portions of the system. One of the important
“hows” of design is how each and every object-object message will be implemented; is it a
function call, an OS mail message, a bus message, or something even more exotic?
Another important “how” is the resolution of associations with multi-valued roles.

When one object has a 1-to-many association, the question arises as to the exact
mechanism the “1” class will use to access the “many” objects. One solution is to build
features into the “1” class to manage the set of contained objects. These facilities typically
manifest themselves as operations such as add(), remove(), first(), next(), last(), and find().
Often the semantics of the associate dictate elaborate operations, such as maintaining the
set of objects in a specific order or balancing the tree. The common solution to these
problems is to insert a container object (a.k.a. collection object) between the “1” and the
“many.”

Adding a container object to manage the aggregated objects doesn’t solve the entire
problem because often the container must be accessed from several different clients. If the
container itself keeps track of the client position, then it will become confused in a multi-
client environment. To get around this, iterators are used in conjunction with the
containers. An iterator keeps track of where the client is in the container. Different clients
use different iterators so that the separate concerns of managing the collection and
tracking position within the container are abstracted away from each other. A single client
may use several different iterators. The Standard Template Library (STL), a part of the
ANSI C++ standard, provides many different containers with a variety of iterators, such as
first, last, and so on.

Bruce Powel Douglass, Ph.D. Page 32

Container
PatternClient

1

Container

1

Client Part

Part

1

*

Container

Target

Part Container

Part

Iterator

Target

*

myIterator

Part Container

*

Iterator

1
«friend»

Figure 20: Container Pattern

Interface Pattern
In languages like C++, the interface provided by a class is bound tightly to its
implementation. As discussed previously, strictly speaking the interface of an object is its
type and the implementation specification is its class. C++ mixes these metaphors so that
most of the time the difference is unnoticeable. Unfortunately, binding the type and class
together limits the reusability of a class. There are a number of cases in which explicit
separation of interface and implementation is useful.

First, a common implementation may be appropriate for a variety of uses. If a class could
provide different interfaces, a single underlying implementation could meet several needs.
For example, many common computer science structures, such as trees, queues, and
stacks, can actually use a single underlying implementation, such as a linked list. The
relatively complex innards of the common implementation can be used in different ways to
implement the desired behavior, even though the ultimate clients are clueless as to what
happens behind the scenes.

Bruce Powel Douglass, Ph.D. Page 33

Secondly, by separating an interface, it becomes easier to change an implementation or
add a new and different interface. As in our container example in the previous paragraph,
it becomes a simple matter to add a new container (for example, an extensible vector) by
creating an interface that provides the correct services to the client but implements those
services in terms of primitive operations of existing containers.

Lastly, it happens sometimes that you want different levels of access into the internals of
an object. Different interfaces can be constructed to provided different levels of access for
different client objects and environments. For example, you might want classes providing
services to users be able to use only a subset of all operations, while a different set be
provided in “service mode” and a much different set provided in “remote debugging
mode.”

The Interface Pattern8 solves all of these problems. It is a very simple pattern but is so
common that UML actually provides the stereotype «type» in the language specification.

Interface
PatternClient

1

Interface

1

Client Implementation

Implementation

1

1

Interface

Figure 21: Interface Pattern

Policy
Often classes are structurally similar or even identical, but differ in terms of how they
operate internally. For example, it is possible that a class looks the same but makes
different time/space/complexity/safety/reliability optimization choices. The selection of
different algorithms to implement the same black box behavior is called a policy. Policies
can be abstracted away from the main class to simplify the interface, improve reuse, and
even allow dynamic choices of policies based on operating condition or state.

8 a.k.a., the Adapter Pattern

Bruce Powel Douglass, Ph.D. Page 34

Policy Pattern
Client

1

Context

1

Client

Abstract Policy

Abstract
Policy

1 1
Context

Concrete Policy

Concrete
Policy

{abstract}

Figure 22: Policy Pattern

Rendezvous
A rendezvous refers to the synchronization of concurrent tasks. In fact, the use of a
mutual exclusion semaphore is also called a unilateral rendezvous. The more common use
of the term rendezvous refers to the synchronization of more than one task. For example,
the rendezvous of more than two tasks is referred to as a bilateral rendezvous.

This pattern consists of a coordinating passive object (called the rendezvous object),
clients which must synchronize, and mutex blocking semaphores. Blocking semaphores
are used to force the threads to waiting until all preconditions are met. More elaborate
behavior can be implemented using timed or balking semaphores, if desired.

Bruce Powel Douglass, Ph.D. Page 35

Rendezvous
PatternThread

*

Rendezvous

1

Thread

Lock

Lock

1 *
Rendezvous

{mapped}
Each client thread has a

unique lock for
synchronization

Figure 23: Rendezvous Pattern

State Behavior

State
Many systems spend most of their time in only a few states. For such systems, it is more
efficient to have a heavyweight process for transitioning to the less-used state if it can
make the more-used state transitions lighter weight. This pattern also facilitates reuse in
subclasses because often subclasses only change a small set of states. If the state pattern is
used, then only the state classes that are changed need to be modified. Thus the changes
are better encapsulated, simplification polymorphic behavior of reactive classes.

Bruce Powel Douglass, Ph.D. Page 36

State Pattern

Context Abstract
State

Concrete State

Accept(event)

Current State

Abstract State

Concrete
State

1
Context

*

{abstract}

Figure 24: State Pattern

State Table
The State Table Pattern provides a simple mechanism for managing state machines with an
efficiency of O(c), where c is a constant. This is a preferred mechanism for very large state
spaces because the time to handle a transition is a constant (not including the time to
execute actions associated with state entry or exit, or the transition itself). Another
advantage is that this pattern maps directly to tabular state specifications, such as those
used to develop many safety-critical systems.

The State Table pattern hinges upon the state table. This structure is typically implemented
as an n x m array, where n is the number of states and m is the number of transitions. Each
cell contains a single pointer to a Transition object which “handles” the event with an
accept operation. The operation returns the resulting state. Both events and states are
represented as an enumerated type. These enumerated types are used as indices into the
table to optimize performance. Although this pattern has a relatively high initialization
cost, its execution cost is low after it is set up.

Bruce Powel Douglass, Ph.D. Page 37

State Table
PatternContext

*

State

1

Context

Transition

These dependencies allow
transitions and states to call
operations within Context as

actions.

1

1

State
Table

1

The state table is oriented as a
state x transition matrix allowing

access in a single probe «callback»

«callback»
*

guard
accept

setDefault
addGuard

nextState

Transition

entry
exit

activity

stateID

State

entry
exit

activity

currentState

State TableStateTable
Template

state space,
transition space

Figure 25: State Table Pattern

References
[1] Douglass, Bruce Powel Real-Time UML: Efficient Objects for Embedded Systems,
Addison-Wesley-Longman, 1998

[2] Douglass, Bruce Powel Doing Hard Time: Using Object Oriented Programming and
Software Patterns in Real Time Applications, Reading, MA: Addison-Wesley-Longman,
Spring, 1998

 [3] Fowler, Martin and Kendall Scott UML Distilled: Applying the Standard Object
Modeling Language Reading, MA: Addison-Wesley-Longman, 1997

 [4] UML Summary Version 1.1 September, 1997. Rational Corp, et. al. As submitted to
the OMG.

[5] UML Semantics Version 1.1 September, 1997. Rational Corp, et. al. As submitted to
the OMG.

[6] UML Notation Guide Version 1.1 September, 1997. Rational Corp, et. al. As
submitted to the OMG.

Bruce Powel Douglass, Ph.D. Page 38

[7] A System of Patterns: Pattern-Oriented Software Architecture Buschmann, et. al.,
John Wiley & Sons, 1996

[8] A Pattern Language Alexander, Ishikawa, and Silverstain, Oxford University Press,
1977

[9] Design Patterns by Gamma, Helm, Johnson, and Vlissides, Addison-Wesley, 1995

 [10] Pattern Languages of Program Design ed. Coplien and Schmidt, Addison-Wesley,
1995

[11] Pattern Languages of Program Design 2 ed. Vlissides, Coplien and Kerth, Addison-
Wesley, 1996

[12] A Practitioner’s Handbook for Real-Time Analysis: Guide to Rate Monotonic
Analysis for Real-Time Systems by Klein, Ralya, Pollak, Obenza, and Harbour, Kluwer
Academic Publishers, 1993.

[13] Safety-Critical Computer Systems by Neil Storey, Addison Wesley, 1996.

[14] Safety Critical Systems by Bruce Powel Douglass, Embedded Systems Conference –
Spring, 1998.

About I-Logix
I-Logix Inc. is a leading provider of application development tools and methodologies that
automate the development of real-time embedded systems. The escalating power and
declining prices of microprocessors have fueled a dramatic increase in the functionality and
complexity of embedded systems— a trend which is driving developers to seek ways of
automating the traditionally manual process of designing and developing their software. I-
Logix, with its award-winning products, is exploiting this paradigm shift.

I-Logix technology supports the entire design flow, from concept to code, through an
iterative approach that links every facet of the design process, including behavior
validation and automatic “production quality” code generation. I-Logix solutions enable
users to accelerate new product development, increase design competitiveness, and
generate quantifiable time and cost savings. I-Logix is headquartered in Andover,
Massachusetts, with sales and support locations throughout North America, Europe, and
the Far East. I-Logix can be found on the Internet at http://www.ilogix.com

